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Abstract. The support vector machine (SVM) is a popular method for
classification, well known for finding the maximum-margin hyperplane.
Combining SVM with l1-norm penalty further enables it to simultane-
ously perform feature selection and margin maximization within a single
framework. However, l1-norm SVM shows instability in selecting features
in presence of correlated features. We propose a new method to increase
the stability of l1-norm SVM by encouraging similarities between fea-
ture weights based on feature correlations, which is captured via a fea-
ture covariance matrix. Our proposed method can capture both positive
and negative correlations between features. We formulate the model as
a convex optimization problem and propose a solution based on alter-
nating minimization. Using both synthetic and real-world datasets, we
show that our model achieves better stability and classification accuracy
compared to several state-of-the-art regularized classification methods.

1 Introduction

High dimensional datasets have become increasingly popular in many real-world
applications. However, it is generally believed that in these datasets often only
a small number of features are informative and the remaining features are either
noisy or contain irrelevant information. Hence, selecting truly informative fea-
tures is essential for many real applications [8] and improves the prediction
accuracy of the model.

One of the important attributes of feature selection methods is their “sta-
bility” in selecting informative features. The feature stability is defined as the
variation in obtained feature sets due to small changes in dataset [18] and is
crucial in applications where selected features are used for knowledge discovery
and decision makings [12]. For example, in clinical domain, explaining the risk
factors in prognosis is as important as the prognosis itself. Consequently, stable
features in spite of data resampling, are critical for clinical adoption [7].

A widely used strategy for feature selection that imposes sparsity on regres-
sion or classification coefficients is l1-norm regularization. Perhaps the most well-
known example is Lasso that minimizes the sum of squared errors while penalizing
the l1-norm of the regression coefficients [13]. The idea of using l1-norm penalty
to automatically select features has also been extended to classification problems.
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Zhu et al. in [21] proposed l1-norm support vector machine that can perform fea-
ture selection and binary classification, simultaneously. Although using l1-norm
regularization has shown success in many applications and has been generalized
for different settings [21], it shows instability in presence of correlated features.
The reason for such instability is that it tends to assign a nonzero weight to only
a single feature among a group of correlated features [19,20].

Different methods have been proposed to address the instability of l1-norm
methods. Many of these methods try to find the groups of correlated features
because these groups are consistent to the variation of training data. In presence
of feature grouping information, groups Lasso [19] can be used and if features
have an intrinsic hierarchical structure, tree-Lasso can be considered as a solu-
tion for stabilizing Lasso [10]. When there are ordering between features which
imposes correlation among them, fused-Lasso can be used as a remedy to increase
the stability of Lasso by selecting neighboring features [14]. Use of these methods
requires that we know the structure of the data. However, such a structure is
not available in many applications, which renders these methods inapplicable.
There are limited works that try to solve the instability of l1-norm methods in
general context by incorporating feature similarities. Elastic net [22] is one of
these methods that assigns comparable weights to similar features by using a
combination of l1 and l2 penalty. However, it results in a longer lists of features
compared to Lasso. Another method is Oscar that performs feature grouping
and feature selection, simultaneously [1]. This method uses a combination of l1
and pairwise l∞ norm penalties to impose sparsity and equal feature weights for
highly correlated features. The features with equal weights automatically form a
group. Although Oscar tends to increase the stability of Lasso by grouping cor-
related features, assigning equal weights to features that are partially correlated
may degrade the performance of the method [3].

All the methods discussed above, are proposed to increase the feature sta-
bility of Lasso, where its loss function is residual sum of squares or the logit
function. As mentioned before, l1-norm penalty terms are also combined with
support vector machines to encourage sparsity. However, limited research has
been done to address the instability of l1-norm in these methods. To the best of
our knowledge the only work done to address the instability in l1-norm support
vector machines is combining SVM with elastic net penalty [16,17]. However,
this method does not properly exploit the feature correlations.

To address the instability in l1-norm SVM, we propose a regularization for-
mulation that encourages the similarities between features based on their relat-
edness. In our formulation, the relatedness between features is captured through
a feature covariance matrix. Our method can perform feature selection and cap-
ture both positive and negative correlations between features through a convex
objective function. In summary, our contributions are as follows:

– Proposal of a new model aimed to improve the stability of l1-norm support
vector machines by capturing the similarities between features based on their
relatedness via a feature covariance matrix.
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– Proposal of a convex optimization formulation for the model and a solution
based on an alternating optimization.

– Demonstration of improved feature stability in terms of two stability mea-
sures, Jaccard similarity measure and Spearman’s rank correlation coefficient
in comparison with several baseline methods namely, Lasso, l1-SVM and Elas-
tic net SVM.

– Demonstration of improved classification accuracy of the model in comparison
with the above baseline methods.

2 Framework

We propose a new model to address the instability of l1-SVM in selecting infor-
mative features. We consider a binary classification problem with training data
{xi, yi}n

i=1, where xi = (xi1, . . . , xip)T is the feature vector and yi ∈ {−1, 1} is
the class label. In general, we make two assumptions: (1) We are dealing with
high dimensional but sparse setting. By sparsity we mean that the majority of
the features are not predictive of the outcome. (2) Among the features, there are
sets of features with high levels of correlations. In this context, l1-SVM shows
instability in selecting informative features because it randomly assigns a nonzero
weight to a single feature among a group of correlated features and so with small
changes in dataset, another feature maybe selected from the correlated group. To
overcome this problem, the similarities between the features can be encouraged
based on their relatedness. To this end, we use a feature covariance matrix to
capture relationships between features. Our proposed model, is the solution to
the following optimization problem:

arg min
β0,β,Ω

1
n

(1 − yi(β0 + xT
i β))+ + λ‖β‖1 +

η

2
βT Ω−1β (1)

s.t. Ω � 0, tr(Ω) = 1,

where β is the vector of feature weights and β0 is the intercept. Also, Ω is the
covariance matrix that models the relationships between features, λ and η are
the tuning parameters and (1 − T )+ = max(T, 0) is the hinge loss. The term
βT Ω−1β ensures that feature weights follow the feature correlations, i.e. if two
features are highly correlated their feature weights would become very high. We
refer to the above model as Covariance SVM (C-SVM).

2.1 Algorithm for Covariance-SVM

Although the objective function in (1) is convex with respect to all variables, it is
not straight forward due to the non-smooth convexity. To solve this problem, we
introduce an iterative algorithm that alternatively updates β and Ω as follows:

Optimizing w.r.t. β when Ω is Fixed: In this situation, the objective function
can be stated as:
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arg min
β0,β

1
n

(1 − yi(β0 + xT
i β))+ + λ‖β‖1 +

η

2
βT Ω−1β. (2)

This problem can be solved using the alternate direction method of multipliers
(ADMM), which has recently become a method of choice for solving many large-
scale problems [2]. Because of the nondifferentiability of the hinge loss and l1
norm term in (2), we introduce some auxiliary variables to handle these two
nondifferentiable terms. Suppose X = (xij)

n,p
i=1,j=1 and Y be a diagonal matrix,

where its diagonal elements are the vector y = (y1 . . . , yn)T . So the problem in
(2), can be reformulated as:

arg min
β0,β

1
n

n∑

i=1

(ai)+ + λ‖z‖1 +
η

2
βT Ω−1β (3)

s.t. a = 1 − Y (Xβ + β01), z = β,

where a = (a1, . . . , an) and 1 is a column vector of 1’s with length n. The
augmented Lagrangian function of (3) is

L(β0, β, a, z, u, v) =
1
n

n∑

i=1

(ai)+ + λ‖z‖1 +
η

2
βT Ω−1β (4)

+ 〈u,1 − Y (Xβ + β01) − a〉 + 〈v, β − z〉 ,

where u ∈ R
n and v ∈ R

p are dual variables corresponding to the first and
the second constraints in Eq. (3), respectively. 〈., .〉 is the inner product in the
Euclidean space and μ1 and μ2 control the convergence behavior and are usually
set to 1. By solving the above equation w.r.t u,v, (β0, β), a and z we have:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(βk+1
0 , βk+1) = arg minβ0,β L(β0, β, ak, zk, uk, vk),

ak+1 = arg mina L(βk+1
0 , βk+1, a, zk, uk, vk),

zk+1 = arg minc L(βk+1
0 , βk+1, ak+1, z, uk, vk),

uk+1 = uk + μ1(1 − Y (Xβk+1 + βk+1
0 1) − ak+1),

vk+1 = vk + μ2(βk+1 − zk+1).

(5)

The first term in (5) is a quadratic and differentiable objective function, so its
solution can be found by solving a set of linear equations:

(
λ2Ω

−1 + μ2I + μ1X
T X μ1X

T I
μ11T X μ1n

) (
βk+1

βk+1
0

)
(6)

=
(

XT Y uk − μ1X
T Y (ak − 1) − vk + μ2z

k

1T Y uk − μ11T Y (ak − 1)

)
.

The second term in (5) can be solved by using Proposition 1.
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Proposition 1. Let hλ(w) = arg minx λx+ + 1
2‖x − w‖22. Then hλ(w) = w − λ

for w > λ, hλ(w) = 0 for 0 ≤ w ≤ λ and hλ(w) = w for w < 0.

So the second term in (5), can be written as

‖u‖2
2

2μ1
+ μ1

2 ‖1 − Y (Xβk+1 + βk+1
0 1) − a‖22 +

〈
uk,1 − Y (Xβk+1 + βk+1

0 1) − a
〉

= μ1
2 ‖a − (1 + u

μ1
− Y (Xβk+1 + βk+1

0 1))‖22.

From above equation and Proposition 1, we can update ak+1 as follows:

ak+1 = H 1
nμ1

(1 +
uk

μ1
− Y (Xβk+1 + βk+1

0 1)), (7)

where Hλ(w) = (hλ(w1), hλ(w2), . . . , hλ(wn))T .
The third equation in (5) can be solved using soft thresholding. So we have

zk+1 = S λ
μ2

(
vk

μ2
+ βk+1

)
, (8)

where Sλ is the soft threshold operator defined on vector space and Sλ(w) =
(sλ(w1), . . . , sλ(wp)), where sλ(wi) = sgn(wi)max{0, |wi| − λ}.

By combining (5)–(8), we obtain the ADMM algorithm for solving the objec-
tive function (1) with respect to β when Ω is fixed.

Optimizing w.r.t Ω when β is fixed: In this situation, the optimization
problem for finding Ω becomes

min
Ω

βT Ω−1β such that Ω � 0, tr(Ω) = 1

Let B = ββT , as βT Ω−1β = tr(βT Ω−1β) = tr(Ω−1ββT ) and tr(Ω) = 1, so

tr(Ω−1B) = tr(Ω−1B)tr(Ω) = tr((Ω− 1
2 B

1
2 )(B

1
2 Ω− 1

2 ))tr(Ω
1
2 Ω

1
2 )

≥ (tr(Ω− 1
2 B

1
2 Ω

1
2 ))2 = (tr(B

1
2 ))2.

The inequality holds because of Cauchy-Schwarz inequality for the Frobenius
norm. From this inequality, we can say that tr(Ω−1B) achieves its minimum
value (tr(B

1
2 ))2 if and only if Ω− 1

2 B
1
2 = ζΩ

1
2 for some constant ζ and tr(Ω) = 1.

So Ω can be obtained from Ω = (ββT )
1
2

tr((ββT )
1
2 )

.

3 Experiments

In this section, we perform experiments using both synthetic and real datasets
and compare the classification accuracy and feature stability of the C-SVM with
several baselines that deemed to be closest to our work, namely Lasso [13], l1-
norm SVM [21] and Elastic net SVM (ENSVM) [16].
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3.1 Tuning Parameter Selection

In case of synthetic data set, we use a validation set to select the tuning para-
meters λ and η. We train each model on the training set and use the validation
set to select the best tuning parameter for the final model. The performance of
each model is evaluated using the test set. In case of real data sets, we use the
5-fold cross validation to select the best tuning parameters.

3.2 Performance Metrics

Feature Stability Measures. To compare the feature stability of C-SVM with
other methods we use two similarity measures, Jaccard similarity measure (JSM),
which considers the indices of the selected features in its evaluation process and
Spearman’s rank correlation coefficient (SRCC), which considers the rank of the
selected features for evaluating stability. Jaccard measures the similarities between
any two sets of selected features Sq and Sq′ as JSM(Sq, Sq′) = |Sq∩Sq′ |

|Sq∪Sq′ | , where
JSM∈ [0, 1] and 0 means there are no similarities between the two sets and 1 means
the two sets are identical. SRCC measures similarity between two rankings r and
r′ as SRCC(r, r′) = 1 − 6

∑
j

(rj−r′
j)

p(p2−1) , where SRCC∈ [−1, 1] and 1 shows the two
rankings are identical, 0 shows there is no correlation between two rankings and
−1 shows that rankings are in inverse order. In our experiments we generate M
sub-samples of the training set and apply each algorithm to each sub-sample to
obtain its selected feature set. We use JSM and SRCC to evaluate the similarity
between each pair of selected features and finally, average similarities over all pairs
to obtain the stability of each algorithm.

Classification Accuracy. To compare the classification accuracy of C-SVM
with other baselines, F-measure and AUC score are used [9].

3.3 Simulation Results

We consider a binary classification problem in a p dimensional space where only
the first 50 features are relevant for classification and the remaining features are
noise. To this end, we generate n instances where half of them belong to +1 class
and the other half belong to −1 class. Instances in positive class are i.i.d drawn
from a normal distribution with mean μ+ = (1, . . . , 1︸ ︷︷ ︸

50

, 0, . . . , 0︸ ︷︷ ︸
p−50

)T and covariance

Σ =
(

Σ∗
50×50 050×(p−50)

0(p−50)×50 I(p−50)×(p−50)

)
,

where in Σ∗ the diagonal elements are 1 and others are all equal to ρ. The mean
for negative class is μ− = (−1, . . . ,−1︸ ︷︷ ︸

50

, 0, . . . , 0︸ ︷︷ ︸
p−50

). In this situation, the Bayes

optimal classification rule depends on x1, . . . , x50, which are highly correlated if
ρ is large.
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Table 1. Stability performance of C-SVM compared to other baselines for Synthetic
dataset. Means and standard error over 50 iterations are reported.

Synthetic data Lasso l1-SVM ENSVM C-SVM

ρ = 0 JSM 0.652 (0.015) 0.649 (0.019) 0.655 (0.026) 0.662 (0.031)

SRCC 0.452 (0.031) 0.448 (0.037) 0.463 (0.027) 0.487 (0.025)

ρ = 0.8 JSM 0.447 (0.027) 0.510 (0.021) 0.571 (0.034) 0.603 (0.027)

SRCC 0.305 (0.032) 0.319 (0.018) 0.368 (0.032) 0.407 (0.034)

We explore two values of ρ, 0 and 0.8, where ρ = 0 simulates the situation
that informative features are uncorrelated to each other and ρ = 0.8, simulates
the situation that those features are highly correlated. The stability performance
of each method, measured in terms of JSM and SRCC, is shown in Table 1. The
high value of SRCC implies that ranks of features do not vary a lot for different
training sets and high value of JSM means that the selected features do not
change significantly when there is a slight change in the training set. As the table
implies, when there is no correlation among variables (ρ = 0), the stability of
C-SVM is comparable to other baselines. However, when the correlation among
features is high (ρ = 0.8) Lasso and l1-SVM show low stability performance
in terms of both JSM and SRCC. However, ENSVM that incorporates l2-norm
penalty shows better stability performance compared to Lasso and l1-SVM. For
C-SVM, we can see that as this model encourages similarities between features
based on their relatedness, it shows the best stability compared to the baselines
in terms of both JSM and SRCC.

Figure 1 shows the classification performance of C-SVM in terms of two classi-
fication measures, F-measure, and AUC and compares them with other baselines.
As shown, the classification performance of C-SVM outperforms other baselines
in terms of the both classification measures.

Fig. 1. Classification performance of C-SVM and baseline methods in terms of F-
measure and AUC for Synthetic dataset.
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3.4 Application on Real Datasets

In this section, we evaluate the performance of C-SVM on real datasets and
compare it with other baselines. The datasets used are as follows:

Breast Cancer Dataset: This dataset is compiled by [15] and consists of gene
expression data for 8141 genes in 295 breast cancer tumors (87 metastatic and
217 non-metastatic). As the dataset is very imbalanced, we balance it by using
3 replicates of each positive (metastasis) sample while keeping all replicates in
the same fold during cross validation.

Cancer Dataset: This dataset is obtained from a large regional hospital in
Australia. There are eleven different cancer types in this data recorded from
patients visiting the hospital during 2010–2012. Patient data is acquired from
Electronic Medical Records (EMR). The dataset consists of 4293 patients with
3867 variables including International Classification of Disease 10 (ICD-10), pro-
cedure and diagnosis related Group (DRG) codes of each patient as well as
demographic data (age, gender and postcode). Using this dataset, our goal is to
predict 1 year mortality of patients while ensuring the stable feature sets.

AMI Dataset: This dataset is also obtained from the same hospital in Australia.
It involves patients admitted with AMI conditions and discharged later between
2007–2011. The task is to predict if a patient will be re-admitted to the hospi-
tal within 30 days after discharge. The dataset consists of 2941 patients with
2504 variables include International Classification of Disease 10 (ICD-10), pro-
cedure and diagnosis-related Group (DRG) codes of each admission; details of
procedures; and departments involved in the patient’s care.

Experimental Results

Stability Performance. The comparison between stability performance of C-
SVM and other baselines in terms of JSM and SRCC for real datasets are pre-
sented in Table 2. For Breast cancer dataset, C-SVM shows the best stability
performance in terms of JSM (0.620). However, in terms of SRCC, ENSVM rep-
resents the best stability (0.512), which is closely followed by C-SVM (0.509). For
Cancer dataset, C-SVM shows the best stability performances with JSM = 0.631
and SRCC = 0.518. In terms of both JSM and SRCC, C-SVM is followed by
ENSVM with JSM = 0.568 and SRCC = 0.427. For AMI dataset, again C-SVM
shows the best stability in terms of both JSM (0.572) and SRCC (0.509), which
is followed by ENSVM with JSM = 0.516 and SRCC = 0.457. As seen, stability
performances of Lasso and l1-SVM are close to each other and these methods
show the least stability, the reason for which is that these methods use only l1
regularization term which is unstable in selecting correlated features.

Classification Performance. Figure 2 shows the classification performance
of C-SVM and other baselines in terms of F-measure and AUC for real-world
datasets. For Breast cancer dataset, we can see that the classification perfor-
mance of C-SVM outperforms other methods in terms of both F-measure and
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Table 2. Stability performance of C-SVM compared to other baselines for real data
sets. Means and standard error over 50 iterations are reported.

Real data Lasso l1-SVM ENSVM C-SVM

Breast cancer JSM 0.352 (0.028) 0.348 (0.025) 0.551 (0.021) 0.620 (0.031)

SRCC 0.237 (0.028) 0.235 (0.019) 0.512 (0.026) 0.509 (0.023)

Cancer JSM 0.420 (0.019) 0.423 (0.025) 0.568 (0.018) 0.631 (0.026)

SRCC 0.273 (0.021) 0.276 (0.030) 0.427 (0.022) 0.518 (0.015)

AMI JSM 0.372 (0.026) 0.368 (0.033) 0.516 (0.036) 0.572 (0.036)

SRCC 0.268 (0.031) 0.270 (0.024) 0.457 (0.028) 0.509 (0.021)

Lasso L1-SVM ENSVM C-SVM
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Fig. 2. Classification performance of C-SVM and other baselines in terms of accuracy,
F-measure and AUC for Cancer dataset.

AUC. For Cancer data, we can see that C-SVM along with ENSVM show the
best classification performance in terms of both F-measure and AUC. Turning
to the AMI data, again C-SVM shows the best accuracy among other baselines
in terms of the two classification measures.

Estimated Covariance Matrix. As feature names forAMIandCancer datasets
are available, we show the estimated covariance matrix for these datasets in Fig. 3
and we further discuss about some of the correlated features estimated in their Ω
matrix. For better representation, we show the correlation matrix computed from
Ω matrix by standardizing its values as Ωst(i, j) = Ω(i,j)√

Ω(i,j)Ω(i,j)
. In Ω matrix of
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Fig. 3. The pictorial representation of estimated covariance matrix for real data sets.
For better representation, we show the correlation matrix computed from Ω matrix by
standardizing its values.

AMIdataset, the first groupare the features related to cardiac troponin and the last
group are features related to discharge sodium values. Both of these features are
reported as important risk factors for Mayocardial infarction [6,11]. In Ω matrix
obtained for Cancer dataset, the first group are the features related to diabetes
mellitus and the last group are the features related to anemia, where both of these
features are important risk factors for cancer survival prediction [4,5].

4 Conclusion

In this paper, we propose a method that can increase feature stability of l1-norm
SVM in presence of highly correlated features. The method can capture both
the positive and negative relations between features using a covariance matrix,
therefore the highly correlated features could be selected or rejected together by
the model. We propose a convex formulation for the model that can be solved
using an alternating optimization algorithm. We show the proposed method is
more stable and more accurate than many existing methods.
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