Bernhard Pfahringer
Jochen Renz (Eds.)

Al 2015: Advances in
Artificial Intelligence

28th Australasian Joint Conference
Canberra, ACT, Australia, November 30 - December 4, 2015
Proceedings

LNAI 9457

@ Springer

Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbriicken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbriicken, Germany

9457

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Bernhard Pfahringer - Jochen Renz (Eds.)

Al 2015: Advances 1n
Artificial Intelligence

28th Australasian Joint Conference
Canberra, ACT, Australia,

November 30 — December 4, 2015
Proceedings

@ Springer

Editors

Bernhard Pfahringer Jochen Renz

The University of Waikato The Australian National University
Hamilton Canberra, ACT

New Zealand Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)

Lecture Notes in Artificial Intelligence

ISBN 978-3-319-26349-6 ISBN 978-3-319-26350-2 (eBook)

DOI 10.1007/978-3-319-26350-2
Library of Congress Control Number: 2015953780
LNCS Sublibrary: SL7 — Atrtificial Intelligence

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(Www.springer.com)

Preface

This volume contains the papers presented at the 28th Australasian Joint Conference on
Artificial Intelligence 2015 (AI 2015), which was held in Canberra, Australia,
November 30 to December 4, 2015. The conference is the premier event for artificial
intelligence in Australasia and provides a forum for researchers and practitioners across
all subfields of artificial intelligence to meet and discuss recent advances. Al 2015 took
place at the QT Canberra hotel in the heart of Canberra, Australia’s capital. The venue
provided a stimulating environment for the discussion of a broad range of aspects of
artificial intelligence. This year we were co-located with the Logic Summer School and
also with ACRA 2015, the Australasian Conference on Robotics and Automation, with
which we shared a joint session, a joint workshop, and a social event.

The technical program of Al 2015 comprised a number of high-quality papers that
were selected in a thorough, double-blind reviewing process with at least three expert
reviews per paper. Out of 102 submissions, our senior Program Committee with the
help of an experienced international Program Committee selected 39 long papers and
18 short papers for presentation at the conference and inclusion in these proceedings.
Papers were submitted by authors from 21 countries from five continents, demon-
strating the broad international appeal of our conference. In addition to the 57 paper
presentations, we had three keynote talks by high-profile speakers:

— Wolfram Burgard, Albert Ludwigs University Freiburg, Germany
— Kate Smith-Miles, Monash University, Australia
— Toby Walsh, NICTA and UNSW Sydney, Australia

AI 2015 also featured an exciting selection of workshops and tutorials that were free
for all conference participants to attend. The two workshops were:

— AI-15 Workshop on Deep Learning and its Applications in Vision and Robotics,
organised by Juxi Leitner (QUT), Anoop Cherian (ANU), and Sareh Shirazi (QUT)
— KR Conventicle 2015 in the memory of Norman Foo (1943 — 2015)

The four tutorials were on:

— Deep Learning by Lizhen Qu

— Fundamentals of Computational Social Choice, by Haris Aziz and Nicholas Mattei
— Mathematical Optimization in Supply Chain Logistics, by Thomas Kalinowski

— A Data Analytics View of Genomics, by Cheng Soon Ong

The conference was complemented by a student symposium as well as a social
program that included a conference dinner at the National Museum of Australia.

A large number of people and organizations helped make AI 2015 a success. First
and foremost, we would like to thank the authors for contributing and presenting their
latest work at the conference. Without their contribution this conference would not
have been possible. The same is true for the members of the conference organization.

VI Preface

Our special thanks go to our general chairs, Michael Maher and Sylvie Thiebaux, the
local organization chairs, Kathryn Merrick and Sameer Alam, the other members of the
conference organization, George Leu, Stephen Gould, Nina Narodytska, Carleton
Coffrin, and Jiangjun Tang, as well as our student volunteers. We also thank the
18 members of our senior Program Committee, the members of our Program Com-
mittee, as well as additional reviewers who were all very dedicated and timely in their
contributions to selecting the best papers for presentation at Al 2015.

We are grateful for support and sponsorship by the Artificial Intelligence journal, the
College of Engineering and Computer Science of the Australian National University,
UNSW Canberra, NICTA, AAAI, the Australian Computer Society, to Appazure (who
built a free conference app for us to be used during the conference), and also the free
conference management system EasyChair, which was used for putting together this
volume. Last but not the least, we thank Springer for their sponsorship and their
support in preparing and publishing this volume in the Lecture Notes in Computer
Science Series.

September 2015 Bernhard Pfahringer
Jochen Renz

Organization

Conference Chairs

Michael Maher UNSW Canberra, Australia
Sylvie Thiebaux The Australian National University and NICTA, Australia

Program Chairs

Bernhard Pfahringer =~ University of Waikato, New Zealand
Jochen Renz The Australian National University, Australia

Local Organizing Chairs

Kathryn Merrick UNSW Canberra, Australia
Sameer Alam UNSW Canberra, Australia

Finance and Sponsorship Chair

George Leu UNSW Canberra, Australia

Workshop Chair

Stephen Gould The Australian National University, Australia
Tutorial Chair

Nina Narodytska University of Toronto, Canada

Student Symposium Chair

Carleton Coffrin NICTA, Australia

Publicity Chair and Webmaster

Jiangjun Tang UNSW Canberra, Australia

Senior Program Committee

Abdul Sattar Griffith University, Australia
Abhaya Nayak Macquarie University, Australia
Ajit Narayanan Auckland University of Technology, New Zealand

VI Organization

Cecile Paris
Chengqi Zhang
Claude Sammut
Fatih Porikli
Hussein Abbass
Ian Watson
Marcus Hutter
Mengjie Zhang
Michael Thielscher
Patrik Haslum
Stephen Cranefield
Svetha Venkatesh
Tanja Mitrovic
Timothy Baldwin
Wai Yeap

CSIRO, Australia

University of Technology Sydney, Australia

The University of New South Wales, Australia
The Australian National University and NICTA, Australia
UNSW Canberra, Australia

The University of Auckland, New Zealand

The Australian National University, Australia
Victoria University of Wellington, New Zealand
The University of New South Wales, Australia
The Australian National University, Australia
University of Otago, New Zealand

Deakin University, Australia

University of Canterbury, New Zealand

The University of Melbourne, Australia

Auckland University of Technology, New Zealand

Program Committee

Harith Al-Sahaf
David Albrecht
Sagaya Amalathas
Quan Bai
Michael Bain
Mike Barley
Edwin Bonilla
Richard Booth
Adi Botea

Wray Buntine
Mark Carman
Gang Chen

Ling Chen

Vic Ciesielski
Gokberg Cinbis
Nathalie Colineau
Amélie Cordier
Mayank Daswani
James Delgrande
Jeremiah D. Deng
Grant Dick

Minh Do

Alan Dorin
David Dowe

Lan Du

Masoud Faraki
Xiaoying Gao
Xiaoyu Ge

Victoria University of Wellington, New Zealand
Monash University, Australia

UNITAR International University, Malaysia
Auckland University of Technology, New Zealand
UNSW, Australia

University of Auckland, New Zealand

The University of New South Wales, Australia
University of Luxembourg, Luxembourg

IBM Research, Ireland

Monash University, Australia

Monash University, Australia

Victoria University of Wellington, New Zealand
University of Technology, Sydney, Australia
RMIT University, Australia

Milsoft, Turkey

DSTO, Australia

LIRIS, France

Australian National University, Australia

Simon Fraser University, Canada

University of Otago, New Zealand

University of Otago, New Zealand

NASA Ames Research Center, USA

Monash University, Australia

Monash University, Australia

Macquarie University, Australia

ANU-NICTA, Australia

Victoria University of Wellington, New Zealand
Australian National University, Australia

Tom Gedeon

Stephen Gould

Garrison Greenwood

Peter Gregory

Hans W. Guesgen

Christian Guttmann

Ben Hachey

James Harland

Bernhard Hengst

Jose
Hernandez-Orallo

Geoffrey Holmes

Hisao Ishibuchi

Yaochu Jin

Bourhane Kadmiry

Sarvnaz Karimi

Sankalp Khanna

Michael Kirley

Frank Klawonn

Alistair Knott

Yun Sing Koh

Willem Labuschagne

Gerhard Lakemeyer

Jérome Lang

Tor Lattimore

Jae-Hee Lee

Gang Li

Jason Li

Sanjiang Li

C.P. Lim

Carlos Linares Lopez

Nir Lipovetzky

Jiamou Liu

Jing Liu

Guodong Long

Hui Ma

Daniele Magazzeni

Stephen Marsland

Moffat Mathews

Robert Mattmiiller

Michael Mayo

Brendan Mccane

Yi Mei

Thomas Meyer

Eva Millan

Rei Miyata

Organization

Australian National University, Australia
Australian National University, Australia
Portland State University, USA

Teesside University, UK

Massey University, New Zealand
IVBAR, Sweden

University of Sydney, Australia

RMIT University, Australia

UNSW, Australia

Universitat Politecnica de Valencia, Spain

University of Waikato, New Zealand

Osaka Prefecture University, Japan
University of Surrey, UK

C.I.,, New Zealand

CSIRO, Australia

Griffith University, Australia

The University of Melbourne, Australia
Ostfalia University of Applied Sciences, Germany
University of Otago, New Zealand
University of Auckland, New Zealand
University of Otago, New Zealand

RWTH Aachen University, Germany
LAMSADE, France

University of Alberta, Canada

The Australian National University, Australia
Deakin University, Australia

The Australian National University, Australia
University of Technology, Sydney, Australia
Deakin University, Australia

Universidad Carlos III de Madrid, Spain
University of Melbourne, Australia
Auckland University of Technology, New Zealand
Xidian University, China

UTS, Australia

Victoria University of Wellington, New Zealand
King’s College London, UK

Massey University, New Zealand

University of Canterbury, New Zealand
University of Freiburg, Germany

University of Waikato, New Zealand
University of Otago, New Zealand

RMIT University, Australia

UKZN and CSIR Meraka, New Zealand
Universidad de Malaga, Spain

University of Tokyo, Japan

IX

X Organization

Diego Molla
Masud Moshtaghi
Parma Nand

Nina Narodytska
Abhaya Nayak
M.A. Hakim Newton
Hien Nguyen
Scott Nowson
Oliver Obst
Yew-Soon Ong
Nir Oren

Mehmet Orgun
Huseyin Ozkan
Russel Pears

Duc Pham

Dinh Phung

Will Radford
David Rajaratnam
Miguel Ramirez
Santu Rana
Patricia Riddle
Goce Ristanoski
Ji Ruan

Jonathan Rubin
Abdallah Saffidine
Bahar Salehi
Philip Sallis
Mathieu Salzmann
Paulo E. Santos
Sebastian Sardina
Abeed Sarker
Ken Satoh
Torsten Schaub
Steven Schockaert
Rolf Schwitter
Amir Shareghi Najar
Andy Song
Akshay Soni
Hannes Strass
Hanna Suominen
Lech Szymanski
Yusuf Tas

Truyen Tran

Ivor Tsang
Takehito Utsuro
Keith Vander Linden

Macquarie University, Australia

The University of Melbourne, Australia

Auckland University of Technology, New Zealand
Carnegie Mellon University, USA

Macquarie University, Australia

Griffith University, Australia

Siemens, USA

Xerox Research Centre Europe, France

CSIRO, Australia

Nanyang Technological University, Singapore
University of Aberdeen, UK

Macquarie University, Australia

Koc University, Turkey

Auckland University of Technology, New Zealand
Griffith University, Australia

Deakin University, Australia

Xerox Research Centre Europe, France

University of New South Wales, Australia

RMIT University, Australia

Deakin University, Australia

University of Auckland, New Zealand

NICTA, Australia

Auckland University of Technology, New Zealand
University of Auckland, New Zealand

The University of New South Wales, Australia
Shiraz University, Iran

Auckland University of Technology, New Zealand
NICTA, Australia

FEI, Brazil

RMIT University, Australia

Arizona State University, USA

National Institute of Informatics and Sokendai, Japan
University of Potsdam, Germany

Cardiff University, UK

Macquarie University, Australia

University of Canterbury, New Zealand

RMIT University, Australia

StumbleUpon, USA

Leipzig University, Germany

NICTA, Australia

University of Otago, New Zealand

NICTA, Australia

Deakin University, Australia

UTS, Australia

University of Tsukuba, Japan

Calvin College, USA

Brijesh Verma
Karin Verspoor
Bao Vo
Kewen Wang
Lipo Wang
Renata Wassermann
Amali Weerasinghe
Martin Wehrle
Peter Whigham
Mark Whitty
Stefan Woelfl
Diedrich Wolter
Frank Wolter
Kit Wong
Wilson Wong
Brendon

J. Woodford
Bing Xue
Nitin Yadav
Yi Yang
John Yearwood
Gary Yen
Nayyar Zaidi
Dongmo Zhang
Peng Zhang
Dengji Zhao
Tianqging Zhu
Zhiqiang Zhuang

Organization

Central Queensland University, Australia
The University of Melbourne, Australia
Swinburne University of Technology, Australia
Griffith University, Australia

NTU, Singapore

University of Sdo Paulo, Brazil

The University of Adelaide, Australia
University of Basel, Switzerland
University of Otago, New Zealand
UNSW, Australia

University of Freiburg, Germany
University of Bamberg, Germany
University of Liverpool, UK

Callaghan Innovation, New Zealand
RMIT University, Australia

University of Otago, New Zealand

Victoria University of Wellington, New Zealand
RMIT University, Australia

University of Technology, Sydney, Australia
Deakin University, Australia

Oklahoma State University, USA

Monash University, Australia

University of Western Sydney, Australia
University of Technology, Sydney, Australia
University of Southampton, UK

Deakin University, Australia

Griffith University, Australia

Additional Reviewers

Wu Chen

Sarah Erfani

Tom Everitt
Alexander Feldman
Michael E. Houle
Ryutaro Ichise
Guifei Jiang
Farhan Khan
Trung Le

Shaowu Liu

Tu Dinh Nguyen
Christian Schulz-Hanke
Thsan Utlu

Zhe Wang

Amail Weerasinghe
Stefan Woelfl

Ping Xiong

XI

Contents

Exploiting the Beta Distribution-Based Reputation Model in Recommender

SYSIEIM . o ot et e e

Ahmad Abdel-Hafez and Yue Xu

A Heuristic Search Approach to Find Contrail Avoidance Flight Routes

Rubai Amin and Sameer Alam

Temporal Conjunctive Queries in Expressive Description Logics

with Transitive Roles. e

Franz Baader, Stefan Borgwardt, and Marcel Lippmann

Scaling up Multi-island Competitive Cooperative Coevolution for Real

Parameter Global Optimisationttt ..

Kavitesh K. Bali and Rohitash Chandra

An Evolutionary Algorithm with Classifier Guided Constraint Evaluation

Strategy for Computationally Expensive Optimization Problems

Kalyan Shankar Bhattacharjee and Tapabrata Ray

Cost to Evaluate Versus Cost to Learn? Performance of Selective

Evaluation Strategies in Multiobjective Optimization.

Kalyan Shankar Bhattacharjee and Tapabrata Ray

A Propositional Plausible Logic

David Billington

Monte Carlo Analysis of a Puzzle Game

Cameron Browne and Frederic Maire

Tracking Drift Severity in Data Streams.

Kylie Chen, Yun Sing Koh, and Patricia Riddle

Probabilistic Belief Contraction: Considerations on Epistemic

Entrenchment, Probability Mixtures and KL Divergence

Kinzang Chhogyal, Abhaya Nayak, and Abdul Sattar

DMAPP: A Distributed Multi-agent Path Planning Algorithm.

Satyendra Singh Chouhan and Rajdeep Niyogi

Graph-Based Collaborative Filtering Using Rating Nodes: A Solution to the

High Ratings/Low Ratings Problem.

Alphan Culha and Andrew Skabar

14

21

34

49

63

76

83

96

http://dx.doi.org/10.1007/978-3-319-26350-2_1
http://dx.doi.org/10.1007/978-3-319-26350-2_1
http://dx.doi.org/10.1007/978-3-319-26350-2_2
http://dx.doi.org/10.1007/978-3-319-26350-2_3
http://dx.doi.org/10.1007/978-3-319-26350-2_3
http://dx.doi.org/10.1007/978-3-319-26350-2_4
http://dx.doi.org/10.1007/978-3-319-26350-2_4
http://dx.doi.org/10.1007/978-3-319-26350-2_5
http://dx.doi.org/10.1007/978-3-319-26350-2_5
http://dx.doi.org/10.1007/978-3-319-26350-2_6
http://dx.doi.org/10.1007/978-3-319-26350-2_6
http://dx.doi.org/10.1007/978-3-319-26350-2_7
http://dx.doi.org/10.1007/978-3-319-26350-2_8
http://dx.doi.org/10.1007/978-3-319-26350-2_9
http://dx.doi.org/10.1007/978-3-319-26350-2_10
http://dx.doi.org/10.1007/978-3-319-26350-2_10
http://dx.doi.org/10.1007/978-3-319-26350-2_11
http://dx.doi.org/10.1007/978-3-319-26350-2_12
http://dx.doi.org/10.1007/978-3-319-26350-2_12

X1V Contents

A Comparative Study on Vector Similarity Methods for Offer Generation in
Multi-attribute Negotiation
Aodah Diamah, Michael Wagner, and Menkes van den Briel

Analytical Results on the BFS vs. DFS Algorithm Selection Problem.
Part I: Tree Search
Tom Everitt and Marcus Hutter

Analytical Results on the BFS vs. DFS Algorithm Selection Problem:
Part II: Graph Search.
Tom Everitt and Marcus Hutter

Region-Growing Planar Segmentation for Robot Action Planning
Reza Farid

A Differentially Private Random Decision Forest Using Reliable
Signal-to-Noise Ratios.
Sam Fletcher and Md Zahidul Islam

Learning from Demonstration Using GMM, CHMM and DHMM:
A COmPAriSON . . .ottt et et e e
Fenglu Ge, Wayne Moore, and Michael Antolovich

Implementing Modal Tableaux Using Sentential Decision Diagrams
Rajeev Goré, Jason Jingshi Li, and Thomas Pagram

Decision Making Strategy Based on Time Series Data of Voting Behavior. . .
Shogo Higuchi, Ryohei Orihara, Yuichi Sei, Yasuyuki Tahara,
and Akihiko Ohsuga

Finding Within-Organisation Spatial Information on the Web.
Jun Hou, Ruth Schulz, Gordon Wyeth, and Richi Nayak

Knowledge Sharing in Coalitions
Guifei Jiang, Dongmo Zhang, and Laurent Perrussel

Possibilistic Inferences in Answer Set Programming
Yifan Jin, Kewen Wang, and Zhe Wang

A Two Tiered Finite Mixture Modelling Framework to Cluster Customers
on EFTPOS Network.
Yuan Jin and Grace Rumantir

A Dual Network for Transfer Learning with Spike Train Data
Keith Johnson and Wei Liu

Stable Feature Selection with Support Vector Machines.
Iman Kamkar, Sunil Kumar Gupta, Dinh Phung, and Svetha Venkatesh

http://dx.doi.org/10.1007/978-3-319-26350-2_13
http://dx.doi.org/10.1007/978-3-319-26350-2_13
http://dx.doi.org/10.1007/978-3-319-26350-2_14
http://dx.doi.org/10.1007/978-3-319-26350-2_14
http://dx.doi.org/10.1007/978-3-319-26350-2_15
http://dx.doi.org/10.1007/978-3-319-26350-2_15
http://dx.doi.org/10.1007/978-3-319-26350-2_16
http://dx.doi.org/10.1007/978-3-319-26350-2_17
http://dx.doi.org/10.1007/978-3-319-26350-2_17
http://dx.doi.org/10.1007/978-3-319-26350-2_18
http://dx.doi.org/10.1007/978-3-319-26350-2_18
http://dx.doi.org/10.1007/978-3-319-26350-2_19
http://dx.doi.org/10.1007/978-3-319-26350-2_20
http://dx.doi.org/10.1007/978-3-319-26350-2_21
http://dx.doi.org/10.1007/978-3-319-26350-2_22
http://dx.doi.org/10.1007/978-3-319-26350-2_23
http://dx.doi.org/10.1007/978-3-319-26350-2_24
http://dx.doi.org/10.1007/978-3-319-26350-2_24
http://dx.doi.org/10.1007/978-3-319-26350-2_25
http://dx.doi.org/10.1007/978-3-319-26350-2_26

Contents XV

Gene Transfer: A Novel Genetic Operator for Discovering

Diverse-Frequent Patterns 309
Shanjida Khatun, Hasib Ul Alam, Mahmood A. Rasid,
and Swakkhar Shatabda

Task Allocation Using Particle Swarm Optimisation and Anomaly
Detection to Generate a Dynamic Fitness Function 317
Adam Klyne and Kathryn Merrick

Evolving High Fidelity Low Complexity Sheepdog Herding Simulations
Using a Machine Learner Fitness Function Surrogate for Human Judgement ... 330
Erandi Lakshika, Michael Barlow, and Adam Easton

An Episodic Memory Retrieval Algorithm for the Soar Cognitive
Architecture 343
Francis Li, Jesse Frost, and Braden J. Phillips

Finding the k in K-means Clustering: A Comparative Analysis Approach. ... 356
Markus Lumpe and Quoc Bao Vo

Discovering Causal Structures from Time Series Data via Enhanced
Granger Causality ot 365
Ling Luo, Wei Liu, Irena Koprinska, and Fang Chen

Automating Marine Mammal Detection in Aerial Images Captured During
Wildlife Surveys: A Deep Learning Approach 379
Frederic Maire, Luis Mejias Alvarez, and Amanda Hodgson

Path Algebra for Mobile Robots 386
Frederic Maire and Gavin Suddrey

Abduction in PDT Logic e 398
Karsten Martiny and Ralf Méller

Exploiting Innocuousness in Bayesian Networks. 411
Alexander Motzek and Ralf Moller

A Tweet Classification Model Based on Dynamic and Static Component
Topic VECIOTS. . . . o o 424
Parma Nand, Rivindu Perera, and Gisela Klette

Understanding Toxicities and Complications of Cancer Treatment:
A Data Mining Approach. 431
Dang Nguyen, Wei Luo, Dinh Phung, and Svetha Venkatesh

A Representation Theorem for Spatial Relations 444
Ozgiir Liitfii Ozgep

http://dx.doi.org/10.1007/978-3-319-26350-2_27
http://dx.doi.org/10.1007/978-3-319-26350-2_27
http://dx.doi.org/10.1007/978-3-319-26350-2_28
http://dx.doi.org/10.1007/978-3-319-26350-2_28
http://dx.doi.org/10.1007/978-3-319-26350-2_29
http://dx.doi.org/10.1007/978-3-319-26350-2_29
http://dx.doi.org/10.1007/978-3-319-26350-2_30
http://dx.doi.org/10.1007/978-3-319-26350-2_30
http://dx.doi.org/10.1007/978-3-319-26350-2_31
http://dx.doi.org/10.1007/978-3-319-26350-2_32
http://dx.doi.org/10.1007/978-3-319-26350-2_32
http://dx.doi.org/10.1007/978-3-319-26350-2_33
http://dx.doi.org/10.1007/978-3-319-26350-2_33
http://dx.doi.org/10.1007/978-3-319-26350-2_34
http://dx.doi.org/10.1007/978-3-319-26350-2_35
http://dx.doi.org/10.1007/978-3-319-26350-2_36
http://dx.doi.org/10.1007/978-3-319-26350-2_37
http://dx.doi.org/10.1007/978-3-319-26350-2_37
http://dx.doi.org/10.1007/978-3-319-26350-2_38
http://dx.doi.org/10.1007/978-3-319-26350-2_38
http://dx.doi.org/10.1007/978-3-319-26350-2_39

XVI Contents

Stream-Query Compilation with Ontologies 457
Ozgiir Liitfii Ozgep, Ralf Moéller, and Christian Neuenstadt

Vote Counting as Mathematical Proof 464
Dirk Pattinson and Carsten Schiirmann

Answer Presentation with Contextual Information: A Case Study Using
Syntactic and Semantic Models. L L. 476
Rivindu Perera and Parma Nand

A Multi-Agent Approach for Decentralized Voltage Regulation by
Considering Distributed Generatorso v 484
Fenghui Ren, Minjie Zhang, and Chao Yu

Turning Gaming EEG Peripherals into Trainable Brain Computer Interfaces . .. 498
Manisha Senadeera, Frederic Maire, and Andry Rakotonirainy

Event Classification Using Adaptive Cluster-Based Ensemble Learning
of Streaming Sensor Data. 505
Ahmad Shahi, Brendon J. Woodford, and Jeremiah D. Deng

Standoff-Balancing: A Novel Class Imbalance Treatment Method Inspired
by Military Strategy 517
Michael J. Siers and Md Zahidul Islam

Wisdom of Crowds: An Empirical Study of Ensemble-Based Feature

Selection Strate@ieso 526
Teo Susnjak, David Kerry, Andre Barczak, Napoleon Reyes,
and Yaniv Gal

Modeling Ice Storm Climatology 539
Ranjini Swaminathan, Mohan Sridharan, Gillian Dobbie,
and Katharine Hayhoe

Investigating Japanese Ijime (Bullying) Behavior Using Agent-Based
and System Dynamics Models 554
Chaiwat Thawiworadilok, Mohsen Jafari Songhori, and Takao Terano

On the Krom Extension of CFDZY, ... ovittee e e 559
David Toman and Grant Weddell

Understanding People Relationship: Analysis of Digitised Historical
Newspaper Articleso 572
Sharon Torao-Pingi and Richi Nayak

http://dx.doi.org/10.1007/978-3-319-26350-2_40
http://dx.doi.org/10.1007/978-3-319-26350-2_41
http://dx.doi.org/10.1007/978-3-319-26350-2_42
http://dx.doi.org/10.1007/978-3-319-26350-2_42
http://dx.doi.org/10.1007/978-3-319-26350-2_43
http://dx.doi.org/10.1007/978-3-319-26350-2_43
http://dx.doi.org/10.1007/978-3-319-26350-2_44
http://dx.doi.org/10.1007/978-3-319-26350-2_45
http://dx.doi.org/10.1007/978-3-319-26350-2_45
http://dx.doi.org/10.1007/978-3-319-26350-2_46
http://dx.doi.org/10.1007/978-3-319-26350-2_46
http://dx.doi.org/10.1007/978-3-319-26350-2_47
http://dx.doi.org/10.1007/978-3-319-26350-2_47
http://dx.doi.org/10.1007/978-3-319-26350-2_48
http://dx.doi.org/10.1007/978-3-319-26350-2_49
http://dx.doi.org/10.1007/978-3-319-26350-2_49
http://dx.doi.org/10.1007/978-3-319-26350-2_50
http://dx.doi.org/10.1007/978-3-319-26350-2_51
http://dx.doi.org/10.1007/978-3-319-26350-2_51

Contents

Towards the Elimination of the Miscommunication Between Users in

Twitter: Tweet Classification Based on Expected Responses by User.

Tomoaki Ueda, Ryohei Orihara, Yuichi Sei, Yasuyuki Tahara,
and Akihiko Ohsuga

Reinforcement Learning of Pareto-Optimal Multiobjective Policies Using

SEEEIING . . o o ottt e e

Peter Vamplew, Rustam Issabekov, Richard Dazeley,
and Cameron Foale

Absorption for ABoxes and TBoxes with General Value Restrictions

Jiewen Wu, Taras Kinash, David Toman, and Grant Weddell

Optimal Hyper-Parameter Search in Support Vector Machines Using Bézier

Surfaces. e

Shinichi Yamada, Kourosh Neshatian, and Raazesh Sainudiin

Hierarchical Learning for Emergence of Social Norms in Networked

Multiagent SYStemSottt e e

Chao Yu, Hongtao Lv, Fenghui Ren, Honglin Bao, and Jianye Hao

Information Extraction to Improve Standard Compliance: The Case

of Clinical Handover.

Liyuan Zhou and Hanna Suominen

Author Index e

XVl

http://dx.doi.org/10.1007/978-3-319-26350-2_52
http://dx.doi.org/10.1007/978-3-319-26350-2_52
http://dx.doi.org/10.1007/978-3-319-26350-2_53
http://dx.doi.org/10.1007/978-3-319-26350-2_53
http://dx.doi.org/10.1007/978-3-319-26350-2_54
http://dx.doi.org/10.1007/978-3-319-26350-2_55
http://dx.doi.org/10.1007/978-3-319-26350-2_55
http://dx.doi.org/10.1007/978-3-319-26350-2_56
http://dx.doi.org/10.1007/978-3-319-26350-2_56
http://dx.doi.org/10.1007/978-3-319-26350-2_57
http://dx.doi.org/10.1007/978-3-319-26350-2_57

Exploiting the Beta Distribution-Based Reputation
Model in Recommender System

Ahmad Abdel-Hafez™ and Yue Xu

Queensland University of Technology, Brisbane, Australia
{a.abdelhafez,yue.xu}@qut.edu.au

Abstract. Reputation systems are employed to measure the quality of items on
the Web. Incorporating accurate reputation scores in recommender systems is
useful to provide more accurate recommendations as recommenders are agnostic
to reputation. The ratings aggregation process is a vital component of a reputation
system. Reputation models available do not consider statistical data in the rating
aggregation process. This limitation can reduce the accuracy of generated repu-
tation scores. In this paper, we propose a new reputation model that considers
previously ignored statistical data. We compare our proposed model against state-
of the-art models using top-N recommender system experiment.

Keywords: Reputation system - Ratings aggregation - Beta distribution -
Recommender system

1 Introduction

Reputation systems are acquiring increasing credibility among web users because these
systems provide a metric with which product quality can be evaluated. They are currently
considered essential components of e-commerce or product review websites, where they
provide methods for collecting and aggregating users’ ratings to enable the calculation
of the overall reputation scores of products, users, or services (Shapiro 1982). Generated
reputation scores influence customer decisions regarding items, since they are typically
used to compare the quality of different available items.

In this paper, we focus on using ratings feedback in building item reputation scores.
The simple mean method is the most straightforward approach to aggregate user ratings
for the purpose of generating item reputations (Garcin et al. 2009). The mean provides
a magnitude value of all ratings with reasonable accuracy. The median, which is also
used to represent a reputation score, is more stable than the mean (Garcin et al. 2009).
Reputation scores are critical components of feedback systems because of their
increased influence on online users. Any minor improvement in the accuracy of repu-
tation scores can noticeably affect website performance. An increasing number of aggre-
gators have therefore been developed to enhance the accuracy of reputation scores
(Abdel-Hafez et al. 2015, Bharadwaj and Al-Shamri 2009, Lauw et al. 2012).

Many reputation systems have recently been put forward, with the majority embed-
ding one or more factors in the rating aggregation process to enhance the accuracy of
reputation scores. These factors include the time at which a rating was provided, the

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): A12015, LNAI 9457, pp. 1-13, 2015.
DOI: 10.1007/978-3-319-26350-2_1

2 A. Abdel-Hafez and Y. Xu

reputation of the user who provided this rating, and trust among users (Leberknight
et al. 2012, Resnick et al. 2000, Wang et al. 2008). These factors are usually regarded
as weights assigned to ratings during the aggregation process. The weighted mean
method is a typical approach (Sabater and Sierra 2002). User- and time-related factors
are independent of rating aggregation methods and can be incorporated into any aggre-
gation technique, such as the simple mean method and the Dirichlet (Jgsang and Haller
2007), fuzzy (Bharadwaj and Al-Shamri 2009), and NDR (Abdel-Hafez et al. 2015)
models.

Some of the proposed reputation models include other factors, such as the uncertainty
of available ratings. These methods can produce more accurate reputation scores than
those generated by the simple mean method (Jgsang and Haller 2007, Bharadwaj and
Al-Shamri 2009, Abdel-Hafez et al. 2015) and are considered state-of-the-art models in
reputation research. Despite these advantages, however, most existing reputation models
do not explicitly consider the number (count) of ratings and the frequency of rating levels
in the rating aggregation process. Rating count refers to the total number of ratings
assigned to an item. Rating level pertains to a rating value, and the frequency of a rating
level refers to the number of users who have rated an item with the rating value. In
general, we believe that rating weights should relate to the frequency of rating levels
and rating count. The frequency of rating levels for an item reflects how users view an
item. For example, more instances of rating level 5 than rating level 2 indicate that the
item is favored by a larger number of customers. The rating count of an item reflects the
reliability of rating usage in building reputation scores; the higher the number of ratings
assigned to an item, the larger the number of opinions that the ratings can reflect, and
thus, the more accurate the item’s reputation derived on the basis of these ratings.

In this paper, we propose a novel reputation method called the beta distribution-based
reputation (BetaDR) model, which takes both rating level frequency and rating count
into consideration in deriving item reputations.

2 Related Work

Reputation systems can be used to assess many objects, such as webpages, products,
services, users, and peer-to-peer networks; these systems reflect what is generally said or
believed about a target object (Abdel-Hafez et al. 2014b). An item’s reputation is calcu-
lated on the basis of the ratings provided by many users, and a specific aggregation
method is used for the calculation. Many methods use the weighted mean as an aggre-
gator of ratings, wherein weight can represent a rater’s reputation, the time at which a
rating was provided, or the distance between the current reputation score and a recently
received rating. Shapiro (1982) confirmed that time is important in calculating reputation
scores; hence, the time decay factor has been widely used in reputation systems (Jgsang
and Haller 2007, Leberknight et al. 2012, Wang et al. 2008). Leberknight et al. (2012)
discussed the volatility of online ratings in an effort to reflect the current trend of users’
ratings. The authors used the weighted mean, in which previous ratings have less weight
than do current ones. Riggs and Wilensky (2001) performed collaborative quality filtering
based on the principle of identifying the most reliable users. Lauw et al. (2012) classified
users into lenient and strict users in their proposed leniency-aware quality model.

Exploiting the Beta Distribution-Based Reputation Model 3

Jgsang and Haller (2007) introduced a multinomial Bayesian probability distribution
reputation system based on Dirichlet probability distribution. The authors indicated that
Bayesian reputation systems provide a statistically sound basis for computing reputation
scores. A major contribution of their proposed model is its introduction of uncertainty
to the reputation calculation process. The smaller the rating count involved, the higher
the impact of the uncertainty addition. This model therefore provides more accurate
reputation values when only a few ratings are assigned to an item.

Using fuzzy models is an equally popular approach in calculating reputation scores
because fuzzy logic provides rules for reasoning with fuzzy measures, such as trust-
worthiness. These measures are typically used to describe reputation. Sabater and Sierra
(2002) proposed the REGRET reputation system, which defines a reputation measure
that considers the individual, social, and ontological dimensions. Bharadwaj and
Al-Shamri (2009) put forward a fuzzy computational model for trust and reputation. The
authors define the reputation of a user as the accuracy of his/her prediction regarding
other users’ ratings for different items. The authors also introduced the reliability metric,
which represents the degree of reliability of a computed score.

Most recently, Abdel-Hafez et al. (2015) proposed a normal distribution-based repu-
tation model (NDR), which is described as a weighted mean reputation system, wherein
weights are generated using a normal distribution curve. In their work, the median rating
and the ratings close to it acquire higher weights than do other ratings. The authors also
put forward a modified NDR model with uncertainty (NDRU). Both models perform
well on sparse and dense datasets. However, neither model explicitly considers rating
count because under a small number of ratings, the median rating is unstable and unin-
formative. This shortcoming can negatively affect the accuracy of the reputations gener-
ated by NDR or NDRU.

3 The Beta Distribution-Based Reputation Model

In this section, we introduce a new rating aggregation method that generates item reputa-
tion scores. First, we use the arithmetic mean method as the naive method. Second, the term
“rating level” is used to represent the number of possible rating values that can be assigned
to a specific item by a user. Let us consider, for example, a five-star rating system with
possible rating values of { 1,2, 3,4, 5}. Under this system, we say that we have five rating
levels—one for each possible rating value.

As previously stated, the weighted mean method is the most frequently used approach
in rating aggregation, and weights usually represent time decay or reviewer reputation. In
the naive method, the weight of each rating is 1 /n, where n is the number of ratings for an
item. Regardless of whether we use the simplest mean method or the weighted mean
methods that consider time or other user-related factors, the frequency of each rating level
and the rating count of an item are not explicitly taken into consideration. For example, we
assume that an item receives a set of ratings (2,2,2,2,3,5,5), under the simplest mean
method, the weight assigned to each of the ratings is 1 /7. Although rating level 2 has a
frequency higher than those of all other rating levels, the ratings in this level are assigned
the same weight as those ascribed to other ratings, i.e., 1 /7. This example shows how rating
level frequencies are disregarded in the weight calculation process.

4 A. Abdel-Hafez and Y. Xu

Most ratings aggregators, such as the naive, weighted mean and NDR (Abdel-Hafez
et al. 2015) methods, disregard rating count as a measurement of the reliability of avail-
able ratings in reflecting item reputation. A situation that may occur in some cases and
by chance is when a new item is introduced, the first few raters have similar opinions
(either positive or negative) about an item. In such cases, available item ratings are
insufficient for producing reliable reputation scores. Generally, the fewer the number of
ratings assigned to an item, the less accurate the aggregated rating for this item.

We propose the use of the weighted mean to aggregate ratings. A more important
feature of our approach is that weights are generated following two principles. First, the
more frequent a rating level, the higher the weights assigned to the ratings at that level.
Second, different weighting strategies should be used to calculate the rating weights of
an item with few ratings and an item with many ratings. The beta distribution is suitable
for use in the proposed reputation model given that it enables the flexibility necessary
to satisfy the two principles.

3.1 Normal Distribution-Based Reputation Model

Abdel-Hafez et al. (2015) proposed the use of the probability density function (PDF) of
the normal distribution to generate weights for the ratings of an item and then produce
the item’s reputation score by aggregating the ratings through the weighted mean
method. This method (denoted as NDR) considers the frequency of ratings in the rating
aggregation process. Assuming that the ratings fall under normal distribution (bell
shape) the middle ratings are assigned higher weights than the ratings falling at the two
ends of the distribution curve. Figure 1 shows the weights assigned to a list of ratings
(2,2,2,2,3,5,5).

Garcin et al. (2009) studied and compared several reputation aggregators, including
the mean, weighted mean, mode, and median. The authors demonstrated that the median
is a more accurate representative of reputation because it is more informative and stable.
The use of a bell-shaped normal distribution guarantees that middle ratings will be
assigned weights higher than those allocated at the curve edges (extreme ratings). The
middle ratings represent the median rating and the ratings close to it. Assigning higher
weights to these ratings therefore enables a more accurate estimation of reputation score,
as indicated in (Abdel-Hafez et al. 2015).

In the experiment discussed in (Abdel-Hafez et al. 2015), the NDR method exhibits
higher accuracy when used on dense datasets than on sparse datasets. This result is
attributed to the method’s disregard of rating count in the weighting process. Under a
small number of available ratings, therefore, the frequencies of rating levels are insuf-
ficient to produce accurate aggregation. The NDRU method is an attempt to overcome
the unreliability problem. To this end, uncertainty is incorporated into the original NDR.
This modification enhances accuracy over sparse datasets. Nevertheless, both NDR and
NDRU assign higher weights to middle ratings by using a bell-shaped distribution to
generate rating weights, regardless of the rating count of an item.

Exploiting the Beta Distribution-Based Reputation Model 5

Normal Distribution
04 7
‘m‘ 0.3
® SN
g 0.2 t——
a0 0.1 -+ -~ N — el
£ ! 2's 3 53
“"f 0 / || !
L 1 2 3 a s 6 7
Index of ratings

Fig. 1. Example of NDR normalized weights for 7 ratings

3.2 Weighting Based on the Standard Beta Distribution

As mentioned earlier, the main problem with the NDR and NDRU models (Abdel-Hafez
etal. 2015) is the constancy of the bell distribution shape. Although the methods provide
more accurate aggregations over dense datasets, their performance on sparse datasets is
unimpressive. This failure establishes that assigning higher weights to middle ratings
works well only on dense datasets. Over sparse datasets, this approach becomes insuf-
ficient when only the frequency of rating levels is considered; ensuring accuracy neces-
sitates that the total number of ratings for an item (i.e., rating count) be taken into account
as well. In the cases where the ratings count is relatively low, we propose to assign higher
weights to extreme ratings to reduce the middle ratings contributions in reputation
scores.

The beta distribution shows potential for generating different shapes, thus empha-
sizing middle or extreme ratings on the basis of shape parameters that can be related to
dataset statistics. The standard beta distribution is generally a continuous probability
distribution that is defined on the interval of (0, 1), 0 < x; < 1. Its probability density
function is presented in Eq. (1).

_ T(a+p)

a—1 ¥, p-1
- F((X)F(ﬁ)x (1 Xl) (1)

Beta (x;) ¢
where I" represents the Gamma function, and a and § are two parameters that can deter-
mine distribution shape. Different values of shape parameters provide a variety of shapes
that can flexibly model various datasets. Our proposed method is thus described as a
weighted mean method, wherein weights are generated by the beta distribution. The
crucial issue here is to determine shape parameters a and f§ to produce the desired distri-
bution shape, which is used to generate ratings weights for every single item.

Suppose that we have n ratings for a specific item P, represented as a vector
Rp =r14,1y,15, ... ,1,_, Where 1, is the smallest rating, and r,_, is the largest rating, i.e.,
1y <1, <1, £ ... <1,_;. To aggregate the ratings, we need to compute the weight asso-

ciated with each rating, which is also represented as a vector Wp = wq, W, Wy, ..., W, _.

6 A. Abdel-Hafez and Y. Xu

As previously discussed, the weights of the ratings are calculated using the beta distribu-
tion PDF given in Eq. (1), where Beta (i) is the weight of the rating at index
1=0,...,n— L For the n ratings r; in Rp, we design Eq. (2) to evenly select n values x;
within [0, 1], thereby generating weights Beta (l) forratingr;,i=0,...,n— L

098 x1

+0.01 2

By using Eq. (2), we derive x, = 0.01, - ,x,_; = 0.99. The generated weights
Beta (Xi) are then normalized, so that the summation of all the weights is equal to 1. We
generate a unified weight for every rating level and then use it to calculate the final
reputation score. Normalized weights (wy, W, W,, ..., w,_;) are calculated in Eq. (3),

where Z:OI w, =1
Beta (x;)
57 Bet (v)

i =

3)

3.3 Reputation Score Generation

We separate ratings into groups on the basis of rating levels, with each group containing

ratings of the same level. R' = <r}),rll,r12, N >, 1=1,2,... .k, for each rating
[R'|-1

r € R!, r = 1. The set of all the ratings for item P is Rp = Ui(:l R!. The corresponding
weights of the ratings in R! are represented as W! = <wf), Wi, W, .. wlIRI o > The final
reputation score is calculated as the weighted mean for each rating level by using Eq. (4),

where level weight LW' is the summation of the weights of every rating that belongs to
level 1.

K |R1|—1
BetaDR, Z (IxLW), LW'= wl)
=1 i=0

3.4 The Beta Distribution Shapes

Figure 2 shows three beta distribution shapes (and thus, three weighting distributions)
for the simple rating example in Fig. 1. Shapes 1, 2, and 3 are generated for a = 2 and
B=5a=p=>5anda = 5andp = 2, respectively. The median rating is considered the
centroid of the ratings, and it separates all the other ratings into two groups: the lower
group, which contains all the ratings less than the median, and the upper group, which
comprises all the ratings larger than the median. The median rating in the example
illustrated in Fig. 2 is in index 4. The figure shows that for Shape 1 witha =2 andf =5

Exploiting the Beta Distribution-Based Reputation Model 7

(i.e.,a < p), the lower group is assigned weights higher than those obtained by the upper
group; for Shape 3 with o = 5 and = 2 (i.e., « >[) the upper group acquires weights
higher than those assigned to the lower group. These results indicate that in the two
cases, the ratings in the two groups contribute differently to the reputation calculation.
Generally, no evidence justifies the allocation of higher weights to either group. We
propose to equally consider the weights for the two groups in reputation calculation;
that is, in the proposed method, the weights assigned to both groups are equal, as in the
case illustrated by Shape 2 in Fig. 2. In this case, the shape of the weight distribution is
symmetric.

Symmetry is an important feature of the generated shape, which occurs when the
two shape parameters are equal, a« = f. A symmetric shape indicates that a line can split
the shape into two pieces that are each other’s mirror (Bury 1999). We use the symmetric
shape for the beta distribution at all times to ensure fairness and the equal contribution
of low and high ratings. In general, constantly using symmetric shapes in the proposed
method is considered crucial for it to fulfil its purpose.

Index of ratings

Fig. 2. The effect of using different values of o and § on PDF shape of the beta distribution using
Table 1 example.

Figure 3 shows an example of the three different symmetric shapes of the beta distri-
bution PDF. The U shape of the beta distribution is generated when shape parameters
a = P < 1. The figure indicates that the extreme ratings—the first indexed rating (lowest
rating value) and the last indexed rating (highest rating value)—are assigned the highest
weights. The weights of the extreme ratings depend on the depth of the U shape. The
lower the values of a and 3, the deeper the curve will be, indicating higher weights for
the extreme ratings. When a and § approach 1, the curve takes on a more flattened shape,
thereby increasing the weights assigned to the middle ratings and decreasing those allo-
cated to the extreme ratings.

In the case wherein shape parameters a = § = 1, the beta distribution PDF produces

a uniform distribution [0, 1]. All the ratings have the same weights w; = ﬁ Figure 3

depicts the uniform distribution as a straight line. This case illustrates the naive method,
wherein the weights of all the ratings are unified.

8 A. Abdel-Hafez and Y. Xu

The last shape illustrated in Fig. 3 is the bell shape, which is generated when the
values of shape parameters o = f§ > 1. In the bell shape case, the median rating and the
ratings close to it are assigned weights higher than those provided for the ratings far
from the median. Under larger shape parameters, the bell shape becomes sharper, thus
increasing the weight given to the median rating.

Beta Distribution PDF

0.16

\ I = = U Shape
P (0=B=0.5)
5 012y 7Y |
D
2 YUREAN .
> \ /’ l e | NiVErSAI
ﬁ 0.08 / N Distribution
T \) \‘) (a=B=1)
S 0.04 ~tT O LT = N == = = = Bell Shape

\ (0=3=5)
>

0 S -
1 3 5 7 9 11 13 15 17 19
Ratings Index

Fig. 3. Different symmetric PDF shapes of the beta distribution using 20 ratings

The reputation score of an item is derived from the ratings assigned to this item. As
previously stated, the number of ratings for an item is important to generate an accurate item
reputation score. This requirement indicates that if an item has a small number of ratings,
then the reputation score generated by these ratings may be less reliable than those gener-
ated by the use of a high number of ratings. The rating count for an item should therefore
be taken into consideration in deriving the reputation score for this item. Conversely, the
distribution of rating count over items can differ across various application domains. For
example, on average, the movies featured in a movie review website may receive hundreds
or thousands of ratings, whereas the cars in a car selling website may receive only a few
ratings. Directly using absolute rating counts in deriving reputations would therefore
generate bias from one domain to another. To address this problem, we propose adopting
the ratio between the rating count of an item and the average rating count for all the items
in a domain. This ratio, called the item rating relative count (IRRC), is used to measure the
rating count of an item, as calculated in Eq. (5):

-)y n;
l’ﬁ=ﬂ 5)

IRRC =
M|

5||5

where n, is the rating count of an item p;, and i denotes the average rating count of the items
in a domain, assuming that M is the set of items in the domain.

The most important issue in this study is our proposal to control the shape of the beta
distribution for an item’s ratings. We suggest using IRRC as key factor to determine the
distribution shape. Since the beta distribution shape is determined by the values of o and
f. The proposed method for calculating the two shape parameters is

a=p = IRRC ()

Exploiting the Beta Distribution-Based Reputation Model 9

4 Incorporating Reputation in Recommender System

In this section we employ a method proposed by Abdel-Hafez et al. (2014a), to merge
the recommender system generated ranked list of items with the reputation generated
one in order to produce the Top N recommendations. This method was adopted because
of its generality, as it separates the implementation of the recommender system, the
reputation system, and the merging process. We use the top N recommender system in
order to evaluate our proposed beta distribution-based reputation model. We implement
the reputation-aware recommender system with the baseline reputation models and
compare the results when we use our proposed reputation model. In this section we will
describe the weighted Borda count method (Abdel-Hafez et al. 2014a) briefly. First we
describe some definitions.

® Users:U = {ul, Uy o s Uy } is a set of users who have rated at least one item.
e Jtems: P = {pl,pZ, ’plPl} is a set of items that are rated at least one time by a
user inU.

o Users-Ratings: This is a user-rating matrix defined as a mapping ur:U X P — [0, r].
If the user u; has rated the item pj with rating a, then ur (14,», pj) = qa; otherwise,

ur (ui,pl-) = O such that 0 < a <= r, and r is the maximum rating.

¢ Item-Reputation Score: § = {sl,sz, s S|Pl }, where s; is the reputation score for
item p;.
¢ Item Recommendation Score: T = {tl, by oo PI} where ¢, is the recommendation

score for item p;. This value is used to generate the candidate list of top-M recom-
mendation using Eq. (7).

TopM, = argmaxT,,uy; € U %)
1 l—)M 1

4.1 The Weighted Borda-Count Method

Using the Borda-count (BC) (Dummett 1998) method the first ranked candidates given
the score N and the next one is N — 1, and so on. Every item that is outside the Top-N
list will receive a score of zero. For an item p € P, the sum of the BCs for this item is
denoted SBC (p). The items with the highest SBC will appear at the top of the list. The
BC method was adopted to merge a recommendation list and a reputation list. For a user
uand anitem p € P,let BC,,. (p) be the BC of p in the recommendation listand BC,, (p)

rec

the BC of p in the reputation list. Then, SBC (p) = BC,, (p) + BC,,, (p). The Top-N
recommendations for the user u are defined in Eq. (8).
C
TopNE‘ = argmax?ePSBC (p) (8)

The weighted Borda-count (WBC) method introduces a weight in the BC method.
The weighted sum of BC (WSBC) and the top-N recommendations are defined in
Egs. (9), and (10), where 0 < @ < 1:

10 A. Abdel-Hafez and Y. Xu
WSBC (p) = a X BC,. (p) + (1 —) X BCrep (p))

TopNXVBC = argmaxpNel,WSBC (p) (10)

4.2 Using Personalized Item Reputation

An item’s reputation is the global community opinion about it. At a specific time, the
ranking of items based on item reputation is the same for all users. Therefore, Abdel-
Hafez et al. (2014a) proposed to use personalized reputation for items to tackle this
problem. The idea is to build a user-preference profile based on previous user ratings,
and then to use this profile to filter the items that were outside the preference scope.

¢ Implicit Item Categories C = {C 1, G G }is the set of categories wherein items
in P belong to C; = {p|p € P}and C;n C; = .

User Item Preference P, = {p|p € P,ur(u,p) > (';—1) } , 7 is the maximum ring and

contains all the user’s preferred items.

® User Category Preference F, = {Cilci eC, (Ci n Pu) #* ﬂ} contains item catego-
ries in which the user’s preferred or positively rated items belong. A user category
preference F, is a set of categories that are preferred by the user u.

The personalized reputation was defined in Eq. (11), where S, is the reputation for
the item p.

S,, peC,C €eF
— p i 1 u
PIRP { 0, Otherwise (1D

S Experiment

We conducted the top-N recommender system experiment. We aimed to demonstrate
that combining item reputation with user-based CF could enhance the accuracy of the
top-N recommendations.

5.1 Dataset

We used the MovieLens movie ratings dataset extracted from Grouplens.org. We
used this dataset in three different ways: (1) using all (2) using only 10 %, and (3)
using only 5 % of the ratings (Abdel-Hafez et al. 2014c). The purpose of the three
tests was to observe whether the reputation method enhances recommendation accu-
racy over dense and sparse datasets. Table 1 presents some of the statistics for each
dataset. We split each dataset into training and testing sets by randomly selecting
80 % of each user’s ratings into a training dataset and the rest into a testing dataset.
We performed a 5-fold experiment, each time a different 20 % of the dataset was

Exploiting the Beta Distribution-Based Reputation Model 11

selected for testing. We calculated the average of the results at the end. Sparsity for
the datasets was calculated using Eq. (12).

Sparsity = 1 — #of Ratings (12)
#of Users X #of Items
Table 1. Datasets statistics

MovieLens 5 |MovieLens 10 % | MovieLens

% (MLS5) (ML10) Complete (MLC)
Number of ratings 6,515 13,077 100,000
Sparsity 0.99589 0.99175 0.93695
Min ratings per user 5 10 20
Max ratings per user 36 73 737
Average ratings per user | 6.849 13.867 106.044
Min ratings per movie 0 0 1
Max ratings per movie | 59 114 583
Average ratings per 3.840 7.774 59.453

movie

5.2 Experiment Settings

We conducted the experiment in three runs for each dataset using the values of the
recommendation listtop—N = 20, the candidate list fop—M = 60, and the nearest neigh-
bors K = 20. The recommended item was considered a hit if it appeared in the user-
testing dataset and the user has granted the item a rating >= 3. The evaluation metrics
used are precision, recall, and F1-score.

We implemented the user-based recommender system introduced in (Sarwar et al.
2000). We also implemented two baselines, the Dirichlet reputation model (DIR)
(Jgsang and Haller 2007), and the normal distribution based reputation model with
uncertainty (NDRU) (Abdel-Hafez et al. 2015). We compare the baseline models with
the proposed BetaDR model.

5.3 Results and Discussion

Table 2 shows the precision, recall, and F1-scores for each of the implemented methods
over the three tested datasets. We compare the proposed BetaDR model with the two
state-of-the-art models in two different settings, firstly, using only the general reputation
scores, and secondly, using the personalized version of each of the reputation models.
We notice that the proposed BetaDR produces better results using both settings. The

12 A. Abdel-Hafez and Y. Xu

uncertainty in the ML5 and ML10 datasets is high; hence, DIR and NDRU methods
provide similar results as both methods add uncertainty to their aggregation equations.
In contrast, the BetaDR uses different method of mixing U and Bell shapes distributions
to consider the count of ratings per item. This method uplifts the popular items in the
ranked list. In the complete dataset, MLC, we notice an improvement of the NDRU
model over the DIR one, as it emphasizes the ratings distribution. The BetaDR still
performs better than the NDRU as it emphasizes both the rating distribution and the
ratings count per item.

Table 2. Results of top-N recommendation accuracy using three datasets

Used Reputa- MLS5 ML10 MLC

::/(i)tl;ll\(/j[;th‘)d Precision| Recall | Fl-score | Precision| Recall | Fl-score | Precision| Recall | F1-score
N/A 0.0061 | 0.0684 | 0.0112 | 0.0079 | 0.0723 | 0.0142 | 0.0283 | 0.0229 | 0.0253
Mean 0.0067 | 0.0651 | 0.0122 | 0.0079 | 0.0725 | 0.0142 | 0.0289 |0.0237] 0.0259
DIR 0.0075 | 0.0665 | 0.0135 | 0.0079 | 0.0728 | 0.0143 | 0.0301 |0.0259| 0.0278
NDRU 0.0075 | 0.0665 | 0.0135 | 0.0079 | 0.0729 | 0.0143 | 0.0336 |0.0283| 0.0307
BetaDR 0.0091 | 0.0742 | 0.0162 | 0.0097 | 0.0812 | 0.0173 | 0.0362 |0.0394 | 0.0377
P-Mean 0.0112 | 0.1134 | 0.0204 | 0.0129 | 0.0793 | 0.0222 | 0.0363 |0.0351 | 0.0357
P-DIR 0.0130 | 0.1239 | 0.0235 | 0.0145 | 0.0849 | 0.0248 | 0.0398 | 0.0402 | 0.0400
P-NDRU 0.0131 | 0.1249 | 0.0237 | 0.0146 | 0.0858 | 0.0250 | 0.0465 |0.0448 | 0.0456
P-BetaDR 0.0178 | 0.1337 | 0.0314 | 0.0192 | 0.1015 | 0.0323 | 0.0519 |0.0489 | 0.0504

6 Conclusions

In this paper, we have proposed a new aggregation method for generating reputation
scores for items on the basis of customers’ ratings. The proposed method is described
as a weighted mean method that generates weights using the beta distribution. The
essential question we targeted is how to determine the appropriate beta distribution shape
for different datasets. In order to calculate the shape parameters we use the ratio between
the rating count of an item and the average rating count for all the items in a domain.
We provided an experiment using recommender-aware reputation model and compared
the results with two of the state-of-the-art reputation models. The results show improve-
ment for the proposed BetaDR model over the DIR and NDRU models.

References

Abdel-Hafez, A., Tang, X., Tian, N., Xu, Y.: A reputation-enhanced recommender system. In:
Luo, X., Yu, J.X,, Li, Z. (eds.) ADMA 2014. LNCS, vol. 8933, pp. 185-198. Springer,
Heidelberg (2014)

Abdel-Hafez, A., Xu, Y., Jgsang, A.: A rating aggregation method for generating product
reputations. In: Proceedings of the 25th ACM conference on Hypertext and Social Media,
ACM, pp. 291-293 (2014b)

Abdel-Hafez, A., Xu, Y., Jgsang, A.: A normal-distribution based rating aggregation method for
generating product reputations. Web Intell. 13(1), 43-51 (2015)

Exploiting the Beta Distribution-Based Reputation Model 13

Abdel-Hafez, A., Xu, Y., Tian N.: Item reputation-aware recommender systems. In: Proceedings
of the 16th International Conference on Information Integration and Web-based Applications
& Services. ACM, pp. 79-86 (2014c)

Bharadwaj, K.K., Al-Shamri, M.Y.H.: Fuzzy computational models for trust and reputation
systems. Electron. Commer. Res. Appl. 8(1), 37—47 (2009)

Bury, K.: Statistical Distributions in Engineering. Cambridge University Press, Cambridge (1999)

Dummett, M.: The Borda count and agenda manipulation. Soc. Choice Welfare 15(2), 289-296
(1998)

Garcin, F., Faltings, B., Jurca, R.: Aggregating reputation feedback. In: Proceedings of the First
International Conference on Reputation: Theory and Technology, Italian National Research
Council, pp. 62-74 (2009)

Jgsang, A., Haller, J.: Dirichlet reputation systems. In: Proceedings of the Second International
Conference on Availability, Reliability and Security, IEEE, pp. 112-119 (2007)

Lauw, HW., Lim, E.P., Wang, K.: Quality and leniency in online collaborative rating systems.
ACM Trans. Web (TWEB) 6(1), 4 (2012)

Leberknight, C.S., Sen, S., Chiang, M.: On the volatility of online ratings: an empirical study. In:
Shaw, M.J., Zhang, D., Yue, W.T. (eds.) WEB 2011. LNBIP, vol. 108, pp. 77-86. Springer,
Heidelberg (2012)

Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems. Commun. ACM
43(12), 45-48 (2000)

Riggs, T., Wilensky, R.: An algorithm for automated rating of reviewers. In: Proceedings of the
First ACM/IEEE-CS Joint Conference on Digital Libraries, ACM, pp. 381-387 (2001)

Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent systems. In:
Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent
Systems, Springer, Berlin Heidelberg, pp. 475-482

Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-
commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, ACM, pp.
158-167

Shapiro, C.: Consumer information, product quality, and seller reputation. Bell J. Econ. 13(1),
20-35 (1982)

Wang, B.C., Zhu, W.Y., Chen, L.J.: Improving the Amazon review system by exploiting the
credibility and time-decay of public reviews. In: Proceedings of the International Conference
on Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM, pp. 123-126 (2008)

A Heuristic Search Approach to Find Contrail Avoidance
Flight Routes

Rubai Amin and Sameer Alam™”
School of Engineering and IT, University of New South Wales,
Canberra, Australia
{r.amin,s.alam}@adfa.edu.au

Abstract. Contrails are line-shaped clouds or “condensation trails,” composed
of ice particles that are visible behind jet aircraft engines. Contrails can affect the
formation of clouds effecting climate change. This paper proposes an integrated
model of atmosphere, airspace and flight routing with a Gradient Descent based
heuristic search algorithm to find Contrail avoidance trajectories with climb,
descent and vector maneuvers. Trade off analysis of Contrails avoidance with fuel
burn/CO2 and distance flown is also presented.

Keywords: Heuristic search - Gradient descent - Environmental impact - Air
traffic

1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) special report on Aviation and
the Global Atmosphere has accepted that secondary aviation emissions such as Contrails
can have a climate impact comparable to the CO2 from the combustion process and may
add to greenhouse gas effect [1].

Recent advances in avionics and onboard computing power on an aircraft may help
pilots plan their routes that may mitigate the environmental impact of aviation. In this
paper we propose a simple yet effective heuristic search i.e. Gradient descent algorithm
to identify contrail avoidance trajectories with route choices for pilots and air traffic
planners. The research contribution of this paper is in integrating a heuristic search
algorithm with atmospheric, airspace and air traffic route models to generate realistic
aircraft trajectories that can be implemented in real time.

2 Background

Contrails (also known as condensation trails) consist of tiny ice particles and are formed
by water vapors in the exhaust of the aircraft engine, given the right weather conditions.
Contrail formation is well understood by the Schmidt—Appleman criterion [2]. Persistent
contrail increases the cloud cover over the Earth and in turn reflects solar radiation. This
contributes significantly to greenhouse gas effect [1].

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): A12015, LNAI 9457, pp. 14-20, 2015.
DOI: 10.1007/978-3-319-26350-2_2

A Heuristic Search Approach to Find Contrail Avoidance 15

There are several suggested technological and operational modifications in an
aircraft operation that can manage contrail formations. In this paper, we focus on Flight
path management as means of avoiding contrail formations as it can be easily achievable
yet cost effective. A flight path management option for contrail avoidance includes:

e Alteration of existing flight routes
e Climb/decent and vector based on daily conditions

An integrated approach with a combination of contrail model, atmosphere, airspace
and flight route and an effective search strategy on three axes (Climb, Descend and Turn)
can be more suitable and adoptable. Tradeoffs between increase in distance flown and
additional fuel burn have to be taken into account. The key research problem this paper
looks into is how can contrails formation be avoided or minimized by integrating a
heuristic search algorithm with atmospheric, airspace and flight route models.

We used Gradient Descent method [3] as heuristic search algorithm to identify
contrail avoidance trajectories. Gradient descent is an iterative method that is given an
initial point, and follows the negative of the gradient in order to move the point toward
a critical point, which is hopefully the desired local minimum. The key research question
this paper looks into are:

1. How to integrate atmospheric data with air traffic management to identify alternative
flight paths?

2. What are the tradeoffs between avoiding contrail formation and fuel burn/CO2
emissions and distance flown/time?

3 Methodology

Since the problem is two folds i.e. integrating different models and a search algorithm
to work over them, proposed methodology consisting of following models:

3.1 Airspace Model

The airspace model consists of geo-spatial data points of the Australian airspace. The
data is derived from Aeronautical Information Publication (AIP) for the Australian
region and contains airspace specific information such as lateral dimensions, special use
airspace, restricted zones, etc.

3.2 Atmospheric Model

The atmospheric model is developed by using data from the Bureau of Meteorology. It
provides wind and temperature data for 5° X 5° grids and 12 elevations. Further 3D
interpolation is done to obtain data for 1° X 1° grid. Humidity data is then obtained from
nearest weather station.

16 R. Amin and S. Alam

3.3 Persistent Contrail Model

Persistent contrails are of interest because they increase the cloudiness of the atmos-
phere. Persistent contrails often evolve and spread into extensive cirrus cloud cover that
is indistinguishable from naturally occurring cloudiness. Changes in cloudiness are
important because clouds help control the temperature of the Earth’s atmosphere.
Persistent contrail model is developed as follows [4]: A region is identified as contrail
formation region if the relative humidity >r,,;

G (T - Tcom‘r) + elvlaqt (Tcom‘r)
where 1, = iz

€sar (T)

A region is identified as persistent contrail formation region if relative humidity
>r.;; and relative humidity with respect to ice >100 %

6.0612¢18:102T/(249.52+T)
6.1162¢22.577T/(273.78+41)

this is given by RHi = (RHw)

Where:
EI HZOC pP

“oa-p ™

— T = ambient temperature

= Ty = —46.46 +9.431n (G — 0.053) + 0.72 In*(G — 0.053)
— . ElgoCP

QU
- ei’aqt = Saturation vapor pressure

— Ely o = Emission index of water vapor

— C, = Isobaric heat capacity of air

— P = Pressure

— & = Ratio of molecular masses of water and dry air
— O = Specific combustion heat

— 1 = Average propulsion efficiency of the jet engine

3.4 Flight Route Model

Upper airspace routes in Australian airspace are obtained from Air Traffic Service
Manual and integrated into the airspace model. Only those flight routes are considered
that are in the upper atmosphere where contrail formation is possible.

3.5 Integration of Contrail, Flight Route, Atmosphere and Airspace

All four models were integrated and as illustrated in Fig. 1, regions of contrail formation
can be seen in the Australian airspace with routes identified.

A Heuristic Search Approach to Find Contrail Avoidance 17

AN

AN e
e > @\
-15 e s g \;‘(‘\Y{ix\\\‘K “?’
Rk

-20

-25

Lattitude

-35

-40

N
[TTTT Tl H:H:ﬁzr s

105 110 115 120 125 130 135 140 145 150 155

45

Longitude

Fig. 1. An integrated view of flight routes, contrail regions, airspace and flights.

3.6 Algorithm Design

We then developed an algorithm for contrail avoidance. There are three maneuvers
possible, climb, vector and descent as illustrated in Fig. 2, for a given flight.
The cost function J is developed as follows:

MIN J = / ' [(SX@)'X(1) + C, + Cif + C,r(x,y))dt

Where Ct is Cost coefficient of time

Cf is Cost coefficient of fuel

Cr is Cost coefficient of penalty areas

r(x,y) which is the Penalty function (i.e. Contrails formation regions) is defined as

rxy) = % where di is the distance between the aircraft and centre of the ith region

l
that potentially form persistent contrails.

Gradient Descent algorithm is adopted as follows to minimize the cost function:

(a) Checks if a given route between two successive waypoints crosses or enters a
contrail formation region

(b) If route segment crosses contrail formation region then either the latitude or the
altitude of the second point is randomly increased or decreased by a small delta.

18 R. Amin and S. Alam

(c) Latitude is chosen based on the shortest distance to the next waypoint.
(d) This process is repeated until the distance between the aircraft and centre of the ith
region that potentially forms persistent contrails becomes less than an epsilon value.

30
16 2

20

Altitude
3>
Lattitude

©
>

-~ o
o

~

‘ | . 1 1 L | .)
0 2 4 6 8 10 12 14 16 18 20 5 10 15 20 25 30 35 40 45 50
Longitude Longitude

o

Fig. 2. Climb/descent and vector maneuvers on sample data by Gradient Descent. Straight lines
(original trajectory), circumventing line (contrail avoidance trajectory), contrail regions (circles).

4 Experiment Design

In experiments we first identified routes which were crossing the contrail formation
regions. Routes passing through regions of expected persistent contrail formation at the
flight level altitude of 33,000 ft are highlighted with blue colored waypoints in Fig. 1.
Three of these identified Air Traffic Service routes were chosen, J141, T97 and B340;
for application of our algorithm.

5 Results

Simulation results show that the contrail formation regions were successfully avoided
by employing different strategies such as climb, descent, vector and combination of
them. Figure 3 shows different maneuvers generated by the Gradient Descent algorithm
for contrail avoidance for some selected routes identified in Fig. 2.

The top section of Fig. 3 shows a Descend maneuver for contrail avoidance.
However, it leads to 2.48 % increase in distance flown and fuel burn.

The middle section of Fig. 3 shows a vector (Turn) maneuver for contrail avoidance.
However, it leads to 2.04 % increase in distance flown and fuel burn. The bottom section
of Fig. 3 shows a Climb maneuver for contrail avoidance. However, it leads to 5.56 %
increase in distance flown and fuel burn.

A Heuristic Search Approach to Find Contrail Avoidance 19

Original Route Modified Route
N co2 . B Additional
Distance Time Fuel (kg) emitted Distance Time Fuel (kg) €02 emitted distance, time,
k) hours| k| hours o
Route Name (k) {) (kg) {km) (J (k) fuel, CO, (%)
ATS ROUTE T97 1357 1.56 7267 22978 1390 1.60 7444 23538 248

Original Route Modified Route
N co2 N N . Additional
Distance Time N Distance Time €02 emitted N N
Fuel (kg) emitted Fuel (kg) distance, time,
(km) (hours) (km) (hours) (kg)
Route Name (kg) fuel, CO, (%)
ATS ROUTE J141 2985 3.44 15983 50539 3046 3.51 16309 51570 2.04
Original Route Modified Route
Distance Time coz Distance Time €02 emitted Additional
(km) (hours) Fuel (kg) emitted (km) (hours) Fuel (kg) (k) distance, time,
Route Name (kg) ® fuel, CO, (%)
ATS ROUTE B340 5624 6.48 30112 95217 5937 6.84 31786 100508 5.56

Fig. 3. Top (Descend maneuver), middle (Vector maneuver) and bottom (climb maneuver)

6 Analysis and Future Work

Gradient Descent approach efficiently minimized the cost function and successfully
managed to avoid contrail formation regions. However, the flight path modification also
leads to increased fuel burn/CO2 emissions (2.0-5.0 %) and distance flown.

20 R. Amin and S. Alam

1200 -
m Original Distance (10 km)
1000 - m Altermate-Distance (10-km)------
Original CO2 emitted (100 kg)
BOO |- o mmm e m e

m Alternate CO2 emitted (100 kg)

ATS ROUTE J141 ATS ROUTE 797 ATS ROUTE B340

Fig. 4. Distance flown and CO2 emissions in contrail avoidance routes as compared to original
routes in the three respective routes with three different routing strategies.

Results indicate that turn maneuvers were cost effective strategy in contrail avoid-
ance. As illustrated in Fig. 4, contrail avoidance on longer routes (ATS Route 8340) has
shown increase in distance flown and CO2 emission as compared to smaller routes (T97).
For future work we will combine contrail avoidance trajectories with other traffic flow
management strategies and employ multi-objective optimization approach.

References

1. Intergovernmental Panel on Climate Change (IPCC), Penner, J.E., Lister, D.H., Griggs, D.J.,
Dokken, D.J., McFarland, M. (eds.): Aviation and the Global Atmosphere. Cambridge
University Press, Cambridge (1999)

2. Mannstein, H., Meyer, R., Wendling, P.: Operational detection of contrails from NOAA-

AVHRR data. Int. J. Remote Sensing 20, 1641-1660 (1999)

. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

4. Mannstein, H., Spichtinger, P., Gierens, K.: A note on how to avoid contrail cirrus. Transp.
Res. Part D Transport Environ. 10(5), 421-426 (2005)

W

Temporal Conjunctive Queries in Expressive
Description Logics with Transitive Roles

Franz Baader, Stefan Borgwardt®™), and Marcel Lippmann

Theoretical Computer Science, TU Dresden, Dresden, Germany
{franz.baader,stefan.borgwardt,marcel.lippmann}@tu-dresden.de

Abstract. In Ontology-Based Data Access (OBDA), user queries are
evaluated over a set of facts under the open world assumption, while tak-
ing into account background knowledge given in the form of a Descrip-
tion Logic (DL) ontology. In order to deal with dynamically changing data
sources, temporal conjunctive queries (TCQs) have recently been proposed
as a useful extension of OBDA to support the processing of temporal infor-
mation. We extend the existing complexity analysis of TCQ entailment to
very expressive DLs underlying the OWL 2 standard, and in contrast to
previous work also allow for queries containing transitive roles.

1 Introduction

Given a (man-made or natural) dynamical system that changes its states over
time, it is sometimes useful to monitor the behavior of the system in order to
detect and then react to critical situations [2]. To achieve this, one can monitor
the running system using sensors (e.g., heart rate and blood pressure sensors
for a patient) and store the (possibly aggregated and preprocessed) values in
a database. Critical situations (such as “blood pressure too high”) can then
be described by database queries, and detecting them can be realized through
query answering. However, such a pure database solution is unsatisfactory for
several reasons. First, one cannot assume that the sensors provide a complete
description of the current state of the system, which clashes with the closed
world assumption used by database systems. Second, though one usually does
not have a complete specification of the system’s behavior, one may have some
background knowledge restricting the possible states of the system, which can
help to detect more situations.

These two problems are addressed by so-called ontology-based data access
(OBDA) [14,27], where (i) the preprocessed and aggregated data are stored in a
Description Logic (DL) ABox, which is interpreted with open world assumption,
and (ii) the background knowledge is represented in a TBox (ontology) expressed
in an appropriate DL. DLs [5] can be used to formalize knowledge using con-
cepts, which represent sets of elements of an application domain, and roles, which
describe binary relations between elements. For example, the concept Patient can
be used to model the set of all patients in a hospital, while isTreatedWith represents

This work was partially supported by the DFG in the CRC 912 (HAEC).

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 21-33, 2015.
DOI: 10.1007/978-3-319-26350-2_3

22 F. Baader et al.

a relationship between patients and treatments. Concept constructors can then
be used to build complex concepts out of atomic concepts and roles. For exam-
ple, Patient M disTreatedWith.Antibiotics describes patients treated with antibi-
otics. In the TBox, one can state subconcept-superconcept relationships, such a
disTreatedWith.Antibiotics = Jfinding.Bacteriallnfection, which says that antibi-
otics treatment is given only if there is a bacterial infection. In the ABox, one can
state specific facts about individuals, such as isTreatedWith(BOB, PENICILLIN).

When monitoring a dynamical system, the situation to be recognized may also
depend on states of the system at different points in time (such as “fluctuating
heart rate”). For this reason, OBDA was extended to the temporal case in [1,4].
In [4] the complexity of answering temporal conjunctive queries (TCQs) w.r.t.
TBoxes was investigated for TBoxes expressed in DLs between ALC and SHO.
The results are concerned both with data complexity (which is measured only in
the size of the data) and with combined complexity (which additionally takes the
size of the query and the TBox into account). In addition, the paper considers
rigid concepts and roles, whose interpretations must not change over time.

We extend the results of [4] in two directions. First, while being quite expres-
sive, SHQ does not contain the constructors nominals and inverse roles, which
are quite useful in many applications. Here, we also consider logics that have
these two constructors. However, the main difference is that, though SHQ can
express transitivity of roles and sub-role relationships, transitive roles and roles
with transitive subroles must not occur in queries in [4]. In the present paper, we
dispense with this restriction, which unfortunately leads to a dramatic increase in
complexity that reflects the results for standard (atemporal) queries (see [15,21]
and Table 2).

As an example that illustrates the benefit of transitive roles in queries, assume
that we want to recognize patients who have previously had myocarditis, i.e., an
inflammation of the heart muscle. This can be expressed using the TCQ

Patient(x) A
O~ O~ (3y, 2.partOf(y, z) A Heart(y) A partOf(z, y) A Muscle(z) A Inflamed(z)).

This query is looking for a patient that, at some past time point, had (as part)
a heart that itself had as part a muscle that was inflamed. In this example, we
assume that the role partOf is transitive and rigid. Transitivity implies that the
inflamed muscle was also part of the patient and rigidity ensures that the heart
is not part of different patients at different points in time. In addition, we assume
that Heart and Muscle are rigid (hearts and muscles stay hearts and muscles over
time), but Patient and Inflamed are non-rigid (the muscle may, e.g., cease to be
inflamed and the patient may be discharged).

In the next section, we introduce the DLs investigated in this paper, as well
as TCQs and their semantics. We also give an overview over the already known
and the new complexity results (see Table2). Section3 investigates the com-
plexity of answering certain atemporal queries in a fine-grained way. The reason
is that, similar to [4], we split the task of answering TCQs into propositional
temporal reasoning on the one hand, and answering atemporal queries on the

Temporal Conjunctive Queries in Expressive DLs 23

other hand. In Sect. 4, we then determine the combined complexity of answering
TCQs whereas in Sect.5 we deal with the data complexity. Full proofs of our
results can be found in an accompanying technical report [3].

2 Preliminaries

In this section, we recall the basic notions of DLs and TCQs. Throughout the
paper, let Nc, Ng, and N; be non-empty, pairwise disjoint sets of concept names,
role names, and individual names, respectively.

Definition 1 (Syntax of DLs). A role is either a role name r € Ngr or an
inwverse role r—. The set of concepts is inductively defined starting from concept
names A € N¢ using the constructors in the second part of Table 1, where r, s are
roles, a,b € Nj, n € N, and C, D are concepts. The third part of Table 1 shows
how axioms are defined. A TBox is a finite set of general concept inclusions
(GClIs), an RBoz is a finite set of role inclusions and transitivity azioms, and
an ABox is a finite set of concept and role assertions. A knowledge base (KB)

K=(AT,R) consists of an ABox A, a TBox T, and an RBoz R.

In the DL ALC, negation, conjunction, and existential restriction are the only
allowed constructors. Also, no inverse roles, role inclusions and transitivity
axioms are allowed in ALC. Additional letters denote different concept con-
structors or types of axioms: Z means inverse roles, O means nominals, Q means
at-most restrictions, and H means role inclusions. For example, the DL ALCHZ
extends ALC by role inclusions and inverse roles. The extension of ALC with
transitivity axioms is denoted by S. Hence, the DL allowing for all the construc-
tors and types of axioms introduced here is called SHOZ Q. We sometimes write
L-concept (L-KB, ...) for some DL £ to make clear which DL is used.

Table 1. Syntax and semantics of DLs

Syntax Semantics

Inverse role T {(e;d) | (d,e) € r*}

Negation -C AT\ C*

Conjunction cnbD c*tnpD?

Existential restriction Ir.C {d € AT | there is e € CT with (d,e) € 7"}
Nominal {a} {a®}

At-most restriction <nr.C {de AT |t{ec CT|(d,e) er’} <n}
General concept inclusion C T D €% C D

Concept assertion C(a) a*eC”

Role assertion r(a,b) (a®,b%) €r’

Role inclusion rCs rt C st

Transitivity axiom trans(r) % = (rI)*

24 F. Baader et al.

Definition 2 (Semantics of DLs). An interpretation is a pair T = (AZ,.T),
where AT is a non-empty domain, and -Z is a mapping assigning a set AT C AT
to every A € N¢, a binary relation 1T C AT x AT to every r € N, and a domain
element a¥ € AT to every a € Ny, such that a* # b* for all a,b € N, with
a # b (unique name assumption (UNA)). This function is extended to roles and
concepts as shown in Table 1, where S denotes the cardinality of the set S.

Moreover, T is a model of the axiom « (written T = «) if the condition
in the third part of Table 1 is satisfied, where -+ denotes the transitive closure.
Furthermore, T is a model of a set of axioms X (written T = X) if it is a model
of all azioms oo € X, and T is a model of a KBK = (A, 7,R) (written T = K)
if is a model of A, T, and R. We call K consistent if it has a model.

For an RBox R, we call a role name r € Ng transitive (w.r.t. R) if every model
of R is a model of trans(r). Moreover, r is a subrole of a role name s € Ng (w.r.t.
R) if every model of R is a model of r C s. Finally, r is simple w.r.t. R if it
has no transitive subrole. Deciding whether r € Ng is simple can be done in
time polynomial in the size of R by a simple reachability test. Unfortunately,
the problem of deciding whether a given SHO-KB K = (A, 7, R) is consistent is
undecidable in general [19]. To regain decidability, we need to make the following
syntactic restriction: if <nr.C occurs in K, then r must be simple w.r.t. R.

To better separate the influence the ABox has on the complexity of reasoning,
we assume in the following that assertions use only names that must also occur
in the TBox or the RBox. One can still simulate a complex concept assertion
C(a) using A(a) and A = C, where the latter stands for A C C' and C' C A.

Before we can define temporal queries, we need to lift the notions of knowl-
edge bases and interpretations to a temporal setting. We assume that there are
designated sets Nrc C Nc¢ of rigid concept names and Ngg C Ngr of rigid role
names, whose interpretation does not change over time. All individual names
are implicitly rigid. A concept or role name that is not rigid is called flexible.

Definition 3 (TKB). A tuple K = ((Ai)o<i<n,Z,R), consisting of a finite
sequence of ABoxes A;, a TBox T, and an RBox R, is called a temporal knowl-
edge base (TKB). Let 3 = (Z;)i>0 be an infinite sequence of interpretations
Z; = (A,-F) over a fivred domain A. Then J is a model of K (written J = K) if

) g
- I, E A; for alli,0 <i<n,
-L,ET andZ; ER for alli >0, and
~ J respects rigid names, i.e., x¥ = x%i for all z € N\UNRc UNgrg and i,j > 0.

We denote the set of all individual names occurring in a TKB K by Ind(K). TCQs
are defined by combining conjunctive queries via the operators of LTL [4,26].

Definition 4 (Syntax of TCQs). Let Ny be a set of variables. A conjunctive
query (CQ) is of the form Iy, ..., ym -, where yi, ..., ym € Ny and ¥ is a finite
conjunction of atoms of the form A(z1) (concept atom), r(z1,22) (role atom),
or z1 & zy (equality atom), where A € N¢, r € Ng, and 21,22 € Ny UN,.

Temporal Conjunctive Queries in Expressive DLs 25

Temporal conjunctive queries (TCQs) are built inductively from CQs, using
the constructors =gy (negation), g1 A\ po (conjunction), O¢y (next), O~ ¢y (pre-
vious), ¢1 U o (until), and ¢1S ¢o (since), where ¢p1 and ¢po are TCQs.

In contrast to [4], we allow non-simple roles to occur in CQs. A union of conjunc-
tive queries (UCQ) is a disjunction of CQs, defined as ¢1V ¢o := —(—d1 A—¢ha). A
CQ-literal is either a CQ or a negated CQ. We denote the set of individual names
occurring in a TCQ ¢ by Ind(¢), the set of variables occurring in ¢ by Var(¢),
and the set of free variables of ¢ by FVar(¢). If FVar(¢) = 0, we call ¢ Boolean.
As in [4], we assume without loss of generality that all CQs are connected, i.e.,
all variables and individual names are related (transitively) by roles.

Definition 5 (Semantics of TCQs). An interpretation T = (A,1) is a
model of a Boolean CQ ¢ (written T = ¢) if there is a homomorphism of
¢ into T, which is a mapping 7: Var(¢) UInd(¢) — A with w(a) = a* for all
a € Ind(¢); m(z) € AT for all concept atoms A(z) in ¢; (w(z1),7(22)) € v for all
role atoms r(z1, 22) in ¢; and 7(z1) = 7w(z2) for all equality atoms z1 = z3 in ¢.

An infinite sequence of interpretations J = (Ii)izo over a common domain
A is a model of a Boolean TCQ ¢ at time point i > 0 iff J,i = ¢ holds, where

JiE 3, ym i i E 3, ym Y
Jii = if JilE o
JifEd1 A g iff JiilE ¢ and J3,i = ¢o
J,i = O¢q iff Jyi+1E ¢
J,i = O¢ iff 1>0andJ,i—1FE ¢
J,i = ¢1U ¢ iff there is k > i with 3,k |= ¢
and 3,5 = ¢1 forall j, i <j<k
J,i = ¢1S oo iff there is k,0 <k < i with 3,k |E ¢

and 3,7 | ¢1 for all j,k <j <1

Given a TKB K = ((Ai)o<i<n,T,R), we say that J is a model of ¢ w.r.t. K if
JEK and I,n |E ¢. We call ¢ satisfiable w.r.t. K if it has a model w.r.t. I,
and it is entailed by K (written K = ¢) if every model T of K satisfies I,n = ¢.

For a TCQ ¢, a: FVar(¢) — Ind(K) is a certain answer to ¢ w.r.t. K if
K = a(¢), where a(¢) is obtained from ¢ by replacing the free variables using a.

As usual [4], in the following we consider only the TCQ entailment problem,
which can be used to compute all certain answers. For this purpose, we analyze
the satisfiability problem, which has the same complexity as non-entailment. We
examine both the combined complexity where the whole TKB and the TCQ are
considered as the input, and the data complexity, where TBox, RBox, and TCQ
are fixed, i.e., the complexity is measured only w.r.t. the sequence of ABoxes.
In the remainder of this section, we recall the basic approach from [4] to
decide satisfiability by splitting it into two separate satisfiability problems, one
for the temporal component and one for the DL component. In the follow-
ing, let £ = ((Ai)o<i<n,7,R) be a TKB and ¢ be a TCQ to be checked
for satisfiability. The propositional abstraction ¢P of ¢ is the propositional

26 F. Baader et al.

LTL-formula obtained from ¢ by replacing all CQs by propositional variables.
We assume that aq,...,q,, are the CQs occurring in ¢, and that each «; is
replaced by the propositional variable p;, 1 < ¢ < m. We now consider a set
S ={X1,..., X} C 2{PrPm} wwhich intuitively specifies the worlds that are
allowed to occur in an LTL-structure satisfying ¢P at time point n, and a mapping
t:{0,...,n} — {1,...,k}, which assigns a world X,;) to each input ABox A;.

Definition 6 (t-satisfiability). The LTL-formula ¢P is t-satisfiable w.r.t. &
and ¢ if there exists an LTL-structure J = (w;);>0 such that J,n = ¢P, w; € S
Jor alli >0, and w; = X, for alli, 0 <i <n.

However, finding S and ¢ and then testing t-satisfiability is not sufficient for
checking whether ¢ has a model w.r.t. K. We must also check whether S can
indeed be induced by some sequence of interpretations that is a model of &, in
the following sense.

Definition 7 (r-satisfiability). The set S is r-satisfiable w.r.t. ¢ and K if
there exist interpretations J1,...,Jx, Zo,..., I, that share the same domain,
respect rigid names, are models of T and R, and additionally each J;, 1 <i < k,
is a model of x; := N\ aj A /\pjéXi -y, and each I;, 0 <4 < n, is a model

p; €Xi
of Ai and X,(;)-

The following was shown in [4] for SHQ, but is actually independent of any
specific DL.

Proposition 8. ¢ is satisfiable w.r.t. K iff there are a set S and a mapping ¢
such that S is r-satisfiable w.r.t. v and KC, and ¢P is t-satisfiable w.r.t. S and ¢.

The complexity of the t-satisfiability problem is obviously also DL-agnostic, and
hence we can reuse another result from [4].

Proposition 9. Deciding t-satisfiability of ¢° w.r.t. S and ¢ can be done in EXp
w.r.t. combined complexity, and in P w.r.t. data complexity.

Table 2 gives an overview over all known complexity results for TCQ entailment.
We distinguish the cases that (i) no rigid names are allowed (Nrc = Ngrg = 0);
(ii) only rigid concept names are allowed, but no rigid role names (Ngg = 0);
and (iii) arbitrary rigid names are allowed. The first row of the table contains
the known results for ALC/ALCHQ [4]', and in this paper we derive the upper
bounds for cases (ii) and (iii) marked in bold font. Unfortunately, we leave open
the precise data complexity for case (iii), as was the case in [4]. A question mark
indicates that the precise complexity is unknown even for the atemporal CQ
entailment problem. For SHOZQ, it is not even known whether this problem is
decidable, while for ALCHOZQ it is only known to be decidable, but no better
upper bound has been found so far [25,28]. The shown lower bounds follow from
the complexity of satisfiability of ALC-LTL formulae [4,6] and the complexity
of atemporal CQ entailment. More precisely, the latter problem is co-NP-hard

! Actually, that paper considers SHQ, but restricts the roles in CQs to be simple.

Temporal Conjunctive Queries in Expressive DLs 27

Table 2. Summary of known and new complexity results for TCQ entailment, where
contributions of this paper are highlighted in boldface. Settings: (i) no rigid names
are allowed, (ii) only rigid concept names are allowed, and (iii) arbitrary rigid names
are allowed.

Data complexity Combined complexity
() (i) (iii) (i) (i) (i)

ALC — ALCHQ [4] co-NP co-NP < Exp Exp co-NExp 2-Exp
ALCO — ALCHOQ/ALCHOZ co-NP co-NP < Exp > co-NExp ? 2-Exp
S -89 co-NP co-NP < ExP > co-NExp ? 2-Exp
SO -S50Q >co-NP ? < Exp > co-NExp ? 2-ExpP
SH/ALCT — SHIQ co-NP co-NP < ExP 2-Exp 2-Exp 2-Exp
SHO - SHOQ/SHOT >co-NP ? < Exp 2-Exp 2-Exp 2-ExpP
ALCOTQ — ALCHOIQ >co-NP ? decidable >co-2-NExp ? decidable
SOZIQ - SHOZIQ >co-NP ? ? >co-2-NExp ? ?

in data complexity already for ALE [29]. Under combined complexity, it is CO-
NExp-hard for ALCO [23] and S [15], 2-Exp-hard for SH [15] and ALCZ [21],
and co-2-NExp-hard for ALCOZQ [18].

3 Atemporal Queries in SHZQ, SHOQ, and SHOZ

Since our results about TCQ entailment are based on reductions to conjunctions
of CQ-literals, we first analyze in more detail the case of such atemporal queries.
In a nutshell, we reduce the satisfiability of such a conjunction to UCQ non-
entailment and exploit existing algorithms for this problem. We consider only the
logics SHZQ, SHOQ, and SHOZ that have the quasi-forest model property [12],
which means that every consistent KB formulated in one of these logics has a
model that basically consists of several tree-shaped structures whose roots are
arbitrarily interconnected by roles (disregarding role connections due to nominals
or transitive roles).

To show the results in the following sections, however, we need to conduct
a more fine-grained analysis of the complexity of the atemporal query entail-
ment algorithms. The main insight is that, while UCQ entailment in SHZQ,
SHOQ, and SHOT is in 2-EXP w.r.t. combined complexity, the number of CQs
in the UCQ only has an exponential influence on the complexity of this decision
problem. Likewise, for data complexity, assuming that the number of CQs in
the UCQ is linear instead of constant usually has no influence on the complex-
ity. Unfortunately, to the best of our knowledge, the precise data complexity of
UCQ entailment is known only for SHZQ, ALCHOQ, and ALCHOZ, while for
SHOQ and SHOT it is still open [25].

In the following, we consider the size of a CQ ¢ (written |1|) to be the number
of symbols in v, ignoring constant expressions like ‘(" and ‘A’; considering each
name and variable to be of size 1, and further ignoring the prefix 3y, . .., y,, since
these variables also occur in the atoms of 1. For example, 3z, y.r(z,y) A A(z)
has size 5. We could also assume that each name or variable is represented by a
binary string denoting its name, and hence of size logarithmic in the size of ¢, but

28 F. Baader et al.

this would not affect our complexity results. Similarly, the size of a knowledge
base is computed by ignoring the concept constructors, and hence considers only
the number of occurrences of names in the axioms.

Lemma 10. Let) = p1 A--- Apg A—oq--- A =0, be a Boolean conjunction of
CQ-literals, K = (A, 7, R) be a KB formulated in SHZQ, SHOQ, or SHOZ,
and ||| := max{|p1l, .-, |pel|o1ls-- -, |00l}. Then the satisfiability of b w.r.t. K

can be decided by a deterministic algorithm in time bounded by 2P 1KD” (Hw”),

for two polynomials p and p’.

In the case of SHIQ, ALCHOQ, or ALCHOZ, if T, R, and ||¢|| are fized,
then satisfiability of ¢ w.r.t. IC can be decided by a mondeterministic algorithm
in time bounded by p(¢, 0, |A|) for some polynomial p.

Proof. Asin [4], we reduce the decision whether 1) has a model w.r.t. K to a UCQ
non-entailment problem. We instantiate the positive CQs p1, ..., p¢ by omitting
the existential quantifiers and replacing all variables by fresh individual names.
The set A, of all resulting assertions can be viewed as an additional ABox. To
ensure that the UNA is satisfied, we additionally consider equivalence relations ~
on Ind(AU A,) with the additional restriction that no two names from Ind(A)
may be equivalent. We denote by A the ABox resulting from A, by replacing
each new individual name by a fixed representative of its equivalence class, where
this representative is an element of Ind(A) whenever possible. It can be shown
as in [4] that ¢ is satisfiable w.r.t. K iff there is an equivalence relation &~ with

(AUAL, T, R)FE o1 V-V 0, (1)

Note that the number of equivalence relations =~ is exponential in the total
number of variables in p1, ..., ps, which is bounded by £- ||1]|, but each is of size
polynomial in £ - ||¢||. Hence, one can either enumerate all such equivalences in
time exponential in £ - ||1)||, or guess one of them in time polynomial in £ - ||¢]|.

We now consider the case that K is formulated in SHZ Q. By [16, Lemma 23],
for the non-entailment test (1), it suffices to find a so-called extended knowl-
edge base K' = (AU Ay UA, T UT',R), where A" and 7’ are formulated in
SHZIQ" ie., SHIQ extended by role conjunctions, such that K’ is consistent.
By [16, Lemma 20 and Definition 21], the size of each (A’,7’) is bounded by
p(o-(IK|+£-]]4))PUI*D for some polynomial p, where the term £- ||| represents
the size of the additional ABox Ax. The bound given in [16] is exponential in
the total size of the UCQ), i.e., o - ||¢]|, but the exponential blowup comes only
from the rewriting of each individual CQ ;. Moreover, all pairs (A’,7’) can
be enumerated in time bounded by gp(o-(IKI+E 19" M0 1 i important to note
that the size of the longest role conjunction occurring in (A’, 7") is bounded by
a polynomial in [[1]|. Hence, by [16, Lemma 28], one can check the consistency

of K in time op' (o (K1) 0 g some polynomial p’. Thus, we can decide
satisfiability of ¢ w.r.t. L by enumerating all relations =~ and extended KBs as
above and testing each of them for consistency within the claimed time bound.

If 7, R, and ||¢)|| are fixed, then one can guess & in time polynomial in ¢. Fol-
lowing the proof of [16, Theorem 35], one can also guess K’ in time p(o- (|A| +£)),

Temporal Conjunctive Queries in Expressive DLs 29

and the following consistency test can be done in (deterministic) polynomial time
in the size of the ABox AU Ay U A’, which is polynomial in o - (|A| + £). This
establishes the second bound for the case of SHZ Q.

The proof of the remaining cases can be found in the technical report. For
SHOQ, we use algorithms developed in [17,20]. For SHOZ, we analyze the
automata-based construction from [12,13] based on fully enriched automata [9].
For ALCHOQ and ALCHOZ under the assumption that 7, R, and ||¢| are
fixed, we obtain the claimed results using a tableaux algorithm introduced
in [24]. O

4 Combined Complexity of TCQ Entailment

Let £ = ((Ai)o<i<n,T,R) be a TKB, ¢ be a TCQ, and assume for now that
aset S ={Xy,...,X;} C2PrPm} and a mapping ¢: {0,...,n} — {1,...,k}
are given. For our complexity results, we employ the copying technique from [4, 6]
for deciding whether S is r-satisfiable w.r.t. ¢ and K. The idea is to introduce
enough copies of all flexible names in order to combine the separate satisfiability
tests of Definition 7 into one big atemporal satisfiability test.

Formally, for all ¢, 1 <14 < k+n—+1, and every flexible concept name A (every
flexible role name r) occurring in 7 or R, we introduce a copy A® (), We
call A® (r(®) the i-th copy of A (r). The conjunctive query ¥ (the axiom 3(*))
is obtained from a CQ « (an axiom f) by replacing every ﬂex1b1e name by its
i-th copy. Similarly, for 1 < ¢ < k, the conjunction of CQ-literals Xz is obtained

from x, (see Definition 7) by replacing each CQ «; by a; @, Finally, we define

XS, = /\ Xf)/\ /\ ((ktit1) | /\ a(k+z+1)>

1<i<k 0<i<n aEA;
Ts,, = {ﬁ(i) |Be€T and1<i<k+n+1},
Rs. ={"9|yeRand1<i<k+n+1}.
The following result, which reduces r-satisfiability to an atemporal satisfiability

problem, was shown in [4] for SHQ with simple roles in queries, but it remains
valid in our setting since it does not depend on the DL under consideration.

Proposition 11. The set S is r-satisfiable w.r.t. v and K iff xs,, is satisfiable
w.r.t. (TS,L7RS,L)'

Together with Lemma 10, this allows us to show our first complexity results.

Theorem 12. Let L be a DL that contains ALCT or SH and is contained in
SHIQ, SHOQ, or SHOZ. Then TCQ entailment in L is 2-EXP-complete w.r.t.
combined complexity, and in EXP w.r.t. data complexity.

Proof. The lower bound directly follows from 2-ExP-hardness of CQ entailment
in SH [15] and ALCZ [21]. To check a TCQ ¢ for satisfiability w.r.t. a TKB K,

30 F. Baader et al.

we first enumerate all possible sets S and mappings ¢, which can be done in
2-Exp. For each of these double exponentially many pairs (S, ¢), we then check
t-satisfiability of ¢P w.r.t. S and ¢ in exponential time (see Proposition9) and
test S for r-satisfiability w.r.t. ¢ and K (using Proposition 11). By Proposition 8,
¢ has a model w.r.t. K iff at least one pair passes both tests.

For the r-satisfiability test, observe that the conjunction of CQ-literals xs,,
contains exponentially many (negated) CQs, each of size polynomial in the size
of ¢, and that 7s , and Rs,, are of exponential size in the size of . By Lemma 10,
the satisfiability of xs, w.r.t. (Zs,,Rs,) can thus be checked in double expo-
nential time in the size of ¢ and K. For the data complexity, observe that the
number of CQs in xs,, is linear in the size of the input ABoxes, and their size
only depends on ¢ (the size of a single assertion is constant). Moreover, 75 , and
Rs,, are of size linear in n. Lemma 10 thus yields the claimed upper bound. O

By the same arguments, it is easy to see that TCQ entailment in ALCHOZQ is
decidable since this is the case for UCQ (non-)entailment [28].

5 Data Complexity Without Rigid Roles

To obtain a tight bound on the data complexity if we disallow rigid role names,
we follow a different approach from [4]. Similarly to the previous section, we
decide r-satisfiability of S w.r.t. ¢+ and K by constructing conjunctions of CQ-
literals of which we want to check satisfiability. However, we do not compile the
whole r-satisfiability check into just one conjunction. More precisely, we define
the conjunctions of CQ-literals v; A xs, 0 <i <n, w.r.t. (7s,Rs), where

Vi = /\ a(L(i))a XS ‘= /\ XEZ),

aEA; 1<i<k
Ts:={BY | BT and 1 <i <k},
Rs:= {7 |y€Rand 1 <i <k}.

This separates the consistency checks for the individual ABoxes A;, 1 < i < n,
from each other. For r-satisfiability, we additionally have to make sure that
rigid consequences of the form A(a) for a rigid concept name A € Ngc and an
individual name a € N, are shared between all the conjunctions v; A xs. It suffices
to do this for the set RCon(7) of rigid concept names occurring in 7 since those
that occur only in ABox assertions cannot affect the entailment of the TCQ ¢.
For this purpose, we guess a set D C 2RC(7T) that fixes the combinations of
rigid concept names that are allowed to occur in the models of v; A xs, and a
function 7: Ind(¢) U Ind(K) — D that assigns to each individual name one such
combination. To express this formally, we extend the TBox by the axioms in

TDZ:{AyECY|Y€D},

where Ay are fresh rigid concept names and, for every Y C RCon(7),

cy;:|_|An |_| —A.

AeY AeRCon(7T)\Y

Temporal Conjunctive Queries in Expressive DLs 31

The size of 7, is bounded polynomially in the sizes of D and RCon(7), which
are constant w.r.t. data complexity. We now extend the conjunctions v; A xs by

Pr = /\ A‘r(a) (a)

a€lnd(¢)UInd(K)

in order to fix the behavior of the rigid concept names on the named individuals.
We need one more definition to formulate the main lemma of this section.
We say that an interpretation Z respects D if

D = {Y C RCon(7) | there is a d € AT with d € (Cy)*},

which means that every combination of rigid concept names in D is realized by a
domain element of Z, and conversely, the domain elements of 7 may only realize
those combinations that occur in D.

Lemma 13. Let the DL L be contained in SHIQ, ALCHOQ, or ALCHOL. If
Nrr = 0, then S is r-satisfiable w.r.t. v and K iff there exist D C oRCon(T) nd
7: Ind(¢) U Ind(K) — D such that each v; A xs A pr, 0 < i <n, has a model
w.r.t. (Ts UTp, Rs) that respects D. O

The restriction imposed by D can be expressed as the conjunction of CQ-literals

op = (—3z.Ap(x)) A /\ Jz. Ay (),

where Ap is a fresh concept names that is restricted by adding the axiom Ap =
[lyep Ay to the TBox. We denote by 7g the resulting extension of 7s U 7p,
and have now reduced the r-satisfiability of S w.r.t. « and K to the consistency
of vi Axs A pr Nop w.rt. (T4, Rs).

Theorem 14. Let £ be a DL that contains ALE and is contained in SHIQ,
ALCHOQ, or ACCHOZ. Then TCQ entailment in L is CO-NP-complete w.r.t.
data complezity.

Proof. The lower bound follows from cO-NP-hardness of instance checking in
ALE [29]. To test satisfiability of a TCQ ¢ w.r.t. a TKB K, we employ the same
approach as before, but instead guess S and ¢. Since S is of constant size in the
size of the ABoxes and ¢ is of linear size, this can be done in nondeterministic
polynomial time. The t-satisfiability test for Proposition 8 can be done in poly-
nomial time by Proposition 9, and for the r-satisfiability test, we use Lemma 13.

Following the reduction described above, we guess a set D C 2R¢"(7) and
a function 7: Ind(¢) U Ind(K) — D, which can be done in nondeterministic
polynomial time since D only depends on 7 and 7 is of size linear in the size
of the input ABoxes. Next, we check the satisfiability of the polynomially many
conjunctions v; A xs A pr A op w.r.t. (75, Rs). Note that xs, op, 7§, and Rs
do not depend on the input ABoxes, while ; and p, are of polynomial size.
Furthermore, the size of the CQs in v; and p, is constant. Hence, Lemma 10
yields the desired NP upper bound for these satisfiability tests. O

32 F. Baader et al.

6 Conclusions

Query answering w.r.t. DL ontologies is currently a very active research area.
We have extended complexity results for very expressive DLs underlying the
web ontology language OWL 2 to the case of temporal queries. Our results show
that, w.r.t. worst-case complexity, adding a temporal dimension often comes for
free. In fact, in all sublogics of SHOZQ, the upper bounds for the combined
complexity of TCQ entailment obtained in this paper for the temporal case
coincide with the best known upper bounds for atemporal query entailment
(even in the presence of rigid roles). From the application point of view, data
complexity is more important since the amount of data is often very large, and in
comparison the size of the background knowledge and the user query is small. We
have shown that, in many cases, the atemporal data complexity of CO-NP does
not increase if we consider TCQs with rigid concepts (specifically, in ALCHOQ,
ALCHOZ, SHZQ, and sublogics). For the remaining logics of Table2, it is an
open problem to find a cO-NP algorithm even in the atemporal case.

As part of future work, we will try to obtain CO-NP upper bounds even in
the presence of rigid roles, and study extensions of TCQs with concrete domains
and inconsistency-tolerant semantics. Since CO-NP is already a rather negative
result for data complexity, we could also try to find restricted formalisms with
lower data complexity. On the one hand, one could take a less expressive DL
to formulate the background ontology, which has already been investigated for
EL [11] and DL-Lite)t .. [10], but only the latter choice reduces the data com-
plexity (to ALOGTIME). On the other hand, one could investigate whether the
data complexity can be reduced by imposing additional restrictions on the TBox
or CQs, as has been done in the atemporal case [7,8,22].

References

1. Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description
logic for ontology-based data access. In: Proceedings of IJCAI 2013, pp. 711-717
(2013)

2. Baader, F.: Ontology-based monitoring of dynamic systems. In: Proceedings of KR
2014, pp. 678-681 (2014)

3. Baader, F., Borgwardt, S., Lippmann, M.: Temporal conjunctive queries in expres-
sive DLs with non-simple roles. LTCS-Report 15-17, Chair of Automata Theory,
TU Dresden (2015). http://lat.inf.tu-dresden.de/research/reports.html

4. Baader, F., Borgwardt, S., Lippmann, M.: Temporal query entailment in the
description logic SHQ. J. Web Semant. 33, 71-93 (2015)

5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

6. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM T.
Comput. Log. 13(3), 21:1-21:32 (2012)

7. Bienvenu, M., Ortiz, M., Simkus, M., Xiao, G.: Tractable queries for lightweight
description logics. In: Rossi, F. (ed.) Proceedings of IJCAI 2013, pp. 768-774 (2013)

http://lat.inf.tu-dresden.de/research/reports.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Temporal Conjunctive Queries in Expressive DLs 33

Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: a
study through disjunction datalog, CSP, and MMSNP. ACM T. Database Syst.
39(4), 33:1-33:44 (2014)

Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched
p-calculi. Log. Meth. Comput. Sci. 4(3:11), 1-27 (2008)

Borgwardt, S., Thost, V.: Temporal query answering in DL-Lite with negation. In:
Proceedings of GCAI 2015 (2015, to appear)

Borgwardt, S., Thost, V.: Temporal query answering in the description logic £L.
In: Proceedings of IJCAI 2015, pp. 28192825 (2015)

Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in expressive description
logics with nominals. In: Proceedings of IJCAI 2009, pp. 714-720 (2009)
Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics via alternating tree-automata. Inf. Comput. 237, 12-55 (2014)
Decker, S., Erdmann, M., Fensel, D., Studer, R.: ONTOBROKER: ontology based
access to distributed and semi-structured information. In: Meersman, R., Tari, Z.,
Stevens, S. (eds.) Database Semantics. IFIP, vol. 11, pp. 351-369. Springer, New
York (1999)

Eiter, T., Lutz, C., Ortiz, M., Simkus, M.: Query answering in description logics
with transitive roles. In: Proceedings of IJCAI 2009, pp. 759-764 (2009)

Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHZ Q. J. Artif. Intell. Res. 31(1), 157-204 (2008)

Glimm, B., Horrocks, 1., Sattler, U.: Unions of conjunctive queries in SHOQ. In:
Proceedings of KR 2008, pp. 252262 (2008)

Glimm, B., Kazakov, Y., Lutz, C.: Status QZO: an update. In: Proceedings of DL
2011, pp. 136-146 (2011)

Horrocks, 1., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-
tion logics. L. J. IGPL 8(3), 239-263 (2000)

Lippmann, M.: Temporalised description logics for monitoring partially observable
events. Ph.D. thesis, TU Dresden, Germany (2014)

Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning.
LNCS, vol. 5195, pp. 179-193. Springer, Heidelberg (2008)

Lutz, C., Wolter, F.: Non-uniform data complexity of query answering in descrip-
tion logics. In: Brewka, G., Eiter, T., Mcllraith, S.A. (eds.) Proceedings of KR
2012, pp. 297-307 (2012)

Ngo, N., Ortiz, M., Simkus, M.: The combined complexity of reasoning with closed
predicates in description logics. In: Proceedings of DL 2015, pp. 249-261 (2015)
Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expres-
sive description logics via tableaux. J. Autom. Reasoning 41(1), 61-98 (2008)
Ortiz, M., Simkus, M.: Reasoning and query answering in description logics. In:
Reasoning Web. 8th International Summer School, Chap. 1, pp. 1-53 (2012)
Pnueli, A.: The temporal logic of programs. In: Proceedings of SFCS 1977, pp.
46-57 (1977)

Poggi, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semant. 10, 133-173 (2008)

Rudolph, S., Glimm, B.: Nominals, inverses, counting, and conjunctive queries or:
why infinity is your friend!. J. Artif. Intell. Res. 39(1), 429-481 (2010)

Schaerf, A.: On the complexity of the instance checking problem in concept lan-
guages with existential quantification. J. Intell. Inf. Syst. 2(3), 265-278 (1993)

Scaling up Multi-island Competitive
Cooperative Coevolution for Real Parameter
Global Optimisation

Kavitesh K. Balil:2®) and Rohitash Chandral-2

! School of Computing Information and Mathematical Sciences,
University of South Pacific, Suva, Fiji
2 Artificial Intelligence and Cybernetics Research Group,
Software Foundation, Nausori, Fiji
{bali.kavitesh,c.rohitash}@gmail.com

Abstract. A major challenge in using cooperative coevolution (CC)
for global optimisation is the decomposition of a given problem into
subcomponents. Variable interaction is a major constraint that deter-
mines the decomposition strategy of a problem. Hence, finding an
optimal decomposition strategy becomes a burdensome task as inter-
dependencies between decision variables are unknown for these problems.
In recent related work, a multi-island competitive cooperative coevolu-
tion (MICCC) algorithm was introduced which featured competition and
collaboration of several different decomposition strategies. MICCC used
five different uniform problem decomposition strategies that were imple-
mented as independent islands. This paper presents an analysis of the
MICCC algorithm and also extends it to more than five islands. We
incorporate arbitrary (non-uniform) problem decomposition strategies
as additional islands in MICCC and monitor how each different prob-
lem decomposition strategy contributes towards the global fitness over
different stages of optimisation.

1 Introduction

Cooperative coevolution (CC) [1] is an evolutionary algorithm that implements
divide and conquer paradigm to decompose complex problems into subcom-
ponents [2]. Cooperative coevolution (CC) [1] is an explicit means of problem
decomposition in the context of evolutionary algorithms (EAs) [3]. A major
challenge in using CC for large-scale optimisation is problem decomposition [4].
Without prior knowledge of the internal structure in terms of variable interac-
tions or inter-dependencies [5], it is quite difficult to group interacting variables
into an effective decomposition in order to take full advantage of cooperative
coevolution. It has been shown that placement of interacting variables into sep-
arate subcomponents degrades the optimisation performance significantly [1,6].
To remedy this limitation, several problem decomposition methods have recently
been proposed which automatically detect variable interaction and group them

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 34-48, 2015.
DOI: 10.1007/978-3-319-26350-2_4

Scaling up Multi-island Competitive Cooperative Coevolution 35

accordingly in order to minimise inter-dependencies and help converge to better
quality solutions [4,7-9].

In the context of CC for global optimisation, it is quite clear that there
are numerous different ways of subdividing different classes of problems. There
is no unique decomposition strategy for problems such as fully-separable, fully
non-separable or overlapping functions [10]. In a fully-separable problem, all of
the decision variables can be optimised independently. In principle, a complete
decomposition in which each variable is placed in a separate subcomponent is
the most efficient decomposition strategy. However, a recent study showed that
the performance of CC is very sensitive to the decomposition strategy for fully-
separable problems [11]. Some partially separable problems may also contain a
relatively high dimensional fully-separable subcomponent. Poor decomposition
strategies of such subcomponents also affects the optimisation process [11].

It is quite challenging to find an effective decomposition strategy for the dif-
ferent classes of problems given the hurdle of extensive empirical studies [11]. One
way to eliminate the need for finding optimal decomposition strategy is through
adaptation. MLSoft is a relevant example which utilized a very simple rein-
forcement learning approach to dynamically adapt the decomposition strategy
for fully-separable problems [11]. Recently, an alternative method to adaptation
known as multi-island competitive cooperative coevolution (MICCC) was pro-
posed which alleviated the need to find an optimal decomposition strategy [12].
MICCC is the successor to competitive island-based cooperative coevolution
(CICC) which utilizes only two islands for solving different classes of global opti-
misation problems efficiently [13,14]. CICC algorithm was originally designed for
training recurrent neural networks on chaotic time series problems [15,16].

In MICCC, a maximum of five different uniform problem decomposition
strategies were implemented as islands that competed and collaborated with each
other during evolution. The MICCC algorithm ensures that different problem
decomposition strategies are given an opportunity during the course of evolution.
In a uniform problem decomposition strategy, a problem is divided into equal
sized subcomponents. Conversely, non-uniform problem decomposition strategies
contain a range of different sized subcomponents.

It has yet not been established on to what extent MICCC can be effective if it
is employed with a larger pool of islands. There has not been any investigation on
the impact of having a hybrid pool of uniform and non-uniform problem decom-
position strategies. This paper attempts to address this research gap through
the following goals:

— To scale up MICCC algorithm and observe the behaviour as the number of
islands increases.

— To find out if competition and collaboration of uniform and non-uniform prob-
lem decomposition strategies can improve the performance during the course
of optimisation.

— To analyze the contributions of each of the problem decomposition strategies
and identify the stronger islands during evolution.

36 K.K. Bali and R. Chandra

The organization of the rest of this paper is as follows. Section 2 describes the
proposed method and its application to the different classes of problems. Exper-
imental results and their analysis are provided in Sect. 3. Section 4 concludes the
paper with discussion of future work.

2 Multi-island Competitive Cooperative Coevolution

In this section, we provide details of the Multi-Island Competitive Cooperative
Coevolution (MICCC) algorithm that enforces competition and collaboration
between various different problem decomposition strategies that are implemented
as islands.

Algorithm 1. Multi-Island Competitive Cooperative Coevolution

Stage 1: Initialization:
while Island-n < MazNumlslands do

| Cooperatively evaluate Island-n
end

Stage 2: Evolution:
while FuncEval < GlobalEvolutionTime do
while Island-n < MaxNumlslands do
while FuncFEval < Island-Evolution-Time do
foreach Sub-population at Island-n do
foreach Cwycle in Maxz-Cycles do
foreach Generation in Maxz-Generations do
Create new individuals using genetic operators
Cooperative Evaluation of Island-n
end
end
end

end
end

Stage 3: Competition: Compare and mark the island with the best fitness.

Stage 4: Collaboration: Inject the best individual from Winner island into all the other
islands.

end

In MICCC [12], five different uniform problem decomposition strategies
(same-sized subcomponents) are constructed as islands that compete and col-
laborate. These islands are evolved in isolation by independent G3-PCX [17]
algorithm. The islands enforce competition by comparing their solutions after
a fixed time (implemented as fitness evaluations) and exchange the best solu-
tion between the islands. Interaction and migration occurs between the differ-
ent islands when evolutionary processes carry on for defined number of fitness
evaluations or generations. During interaction, solutions of the winner island is
migrated to those who lose the competition. The key aspects of the MICCC
algorithm are initialization, evolution, competition and collaboration.

Scaling up Multi-island Competitive Cooperative Coevolution 37

2.1 Initialization

In MICCC, a problem decomposition strategy is implemented as an island. To
enforce an unbiased competition, all the islands begin search with the same
genetic materials in the population. At the beginning, all the sub-populations
of Island One are initialized with random-real number values from a domain
specified in Table 1. These real values (from Island One) are copied into the sub-
populations of the rest of the islands each of which are constructed with unique
problem decomposition strategies.

In MICCC, the number of fitness evaluation depends on the number of
sub-populations used in the respective island. An island with higher number
of subcomponents will acquire more fitness evaluations for each cycle. A cycle
is complete when all the sub-populations of an island have been cooperatively
evolved for m number of generations. Therefore, each of the islands evolve by
different island evolution time (in terms of fitness evaluations) until they have
all reached maximum evolution time.

2.2 Cooperative Coevolution

Once the islands have been initialised, they are evolved in isolation simultane-
ously for a predefined time in the usual round robin fashion through cooperative
coevolution. According to Algorithm 1, this predefined time is termed as island-
evolution time. The island evolution time is established by the number of cycles
that makes the required number of fitness evaluations for each of the different
islands. Once evolved, cooperative evaluation of individuals in the respective
sub-populations is done by concatenating the chosen individual from a given
sub-population with the best individuals from the rest of the sub-populations [1].

2.3 Competition

In the competition phase of MICCC algorithm, fitness comparison of all the
islands take place through a ranking mechanism whereby the islands with higher
fitness are ranked higher while the low performing islands are ranked lower. The
island with the best fitness is marked as the winner island. In the case when two
islands have the same fitness (fitness tie), the winner island is randomly selected.

2.4 Collaboration: Inter-island Interaction and Solution Migration

In the collaboration stage of the MICCC algorithm, the actual interactions and
migrations between different islands occur. Here, the best solution of the winner
is copied and injected into to the runner-up islands. This migration of the best
feasible solution is able assist and motivate the other islands to compete fairly
in the next round.

The transfer of best solutions from one island to the rest is done via a con-
text vector [18]. As an island wins, the best individuals from each of the sub-
components need to be carefully concatenated into a temporary context vector.

38 K.K. Bali and R. Chandra

5 .
e . s
~ ' '
B S -t '
v '

. B

.

.

W g Competition
9.

&
Collaboration
/\ " 4

Fig. 1. Scaled up MICCC algorithm employing a hybrid pool size of nine islands which
constitutes of five islands having uniform decomposition strategies while the remaining
four islands have non-uniform problem decomposition strategies. Uneven sizes and col-
ors of circular shapes represent non-uniform problem decomposition strategies (varied-
size subcomponents) of the four additional islands that have dashed-line boundaries
(Color figure online).

The best solutions are then split from the context vector and are then injected
into the respective subcomponents of each of the runner-up islands. The runner-
up islands which receive the best (injected) solution are cooperatively evaluated
to ensure that the newly injected solution has a fitness. The best fitness of the
winning island is also migrated alongside the best solution, to the rest of the
other islands. Moreover, since the fitness of the best solution from the last sub-
population carries a stronger solution, this fitness value is transferred and is
used to override the fitness of the best solutions of all the sub-populations of the
runnerup islands.

3 Simulation and Analyses

In this section, we perform a scale up study and evaluate the performances of
the multi-island algorithms with a max pool size of nine islands. These addi-
tional islands are constructed with arbitrary problem decomposition strategies.
For this study, we construct a hybrid pool size of nine islands which constitutes
of five uniform decomposition strategies and four non-uniform decomposition
strategies as shown in Fig.1. These extended multi-island instances are first
compared briefly against the standalone CC implementations. Next, we attempt
to compare these extended multi-island instances with the original MICCC that

Scaling up Multi-island Competitive Cooperative Coevolution 39

featured fives islands [12], and observe trends or correlations (if any) of intro-
ducing additional arbitrary problem decomposition strategies for competition.

Furthermore, in-depth analyses are provided about which islands have been
most dominant during the course of evolution by observing the islands that win
the different phases of competition.

The generalized generation gap with parent-centric crossover evolutionary
algorithm (G3-PCX) [17] is used as the subcomponent optimizer. We use a pool
size of 2 parents and 2 offspring as presented in [17].

3.1 Benchmark Problems and Parameter Settings

The experimental results in this paper are based on eight benchmark problems
used in [13] and are selected considering the level of difficulty, the scope of sepa-
rability and the nature of problem.i.e. unimodal or multimodal listed by Table 1.
These different classes of problems enable us to examine if the proposed method
is suitable in a wide range of problems and if we could also highlight the limi-
tations of MICCC. Furthermore, we introduce different problem decomposition
strategies of 100 dimensions as inputs for competition in the multi-island algo-
rithms. Since we are not sure about the right decomposition strategy before evo-
lution, arbitrary problem decomposition strategies are included from the sixth
island onwards. In each case, the mean and standard deviation of fitness errors
(f(x)-f(*z)) of 25 runs are has been reported in the next subsection. The maxi-
mum number of fitness evaluations was set to 1500000.

Table 1. Problem definitions [19-21]

Problem | Name Optimum | Range Multi-modal | Fully separable
f1 Ellipsoid 0 [-5,5] No Yes
fo Shifted Sphere —450 [—100,100] | No Yes
f3 Schwefel’s Problem 1.2 0 [-5,5] No Yes
fa Rosenbrock 0 [-5,5] Yes No
f5 Shifted Rosenbrock 390 [—100,100] | Yes No
fe Rastrigin 0 [—5,5] Yes Yes
icd Shifted Rastrigin —330 [—5,5] Yes Yes
fs Shifted Griewank —180 [—600, 600] | Yes No

Table 2. Island implementations of scaled up MICCC-9*. Island-1 to Island-5 possess
uniform problem decomposition while Island-6 through Island-9 are constructed with
non-uniform subcomponent sizes.

Island|1 2 3 4 5 6 7 8 9
PD |20 x 5/10 x 10|4 x 255 x 20|50 x 2|[22-26- |[8-12-8-9-8- |[12-10-8-9- |[20-29-
25-27% |15-7-11-9- |8-15-7-11-9-|18-33]
11%] 11]

K.K. Bali and R. Chandra

40

PIOCT'T | FIOCT'T er-o1e'1 €T078°T | T0+9€Z'0| €T0L8C | €0°L9T| €1-960°C | £0+930°T | A0S
PI-029'8| F1-9TG'8 €1-0L9°L €1-0¢8°F | TO+OLF'0 | €T19C1°C| £€0-0€9°¢| €I-0IT'G|€0+o18°C ueoy 8f
T0+9LG°¢| T0+0LE0 10+06¢T 10+9LT°€ | 20+976°0 | 20+9CT°0 | 20+98L°T | Z0+9FE'T | Z0+9ET T | A0S
104+20L'8 | T10+°9L°L 70+9L6°G 20+oge'L | 5049z 1 | 0+°16'9 | 50+99G°L | G0+930°G | ¢0+oeg's | uedly | 4f
0042000 T0-20S"L 104+0L2°T 10+9GT°Z | 20+20L°0 | 20+9€0°T | 20+°12°C | 30+202°T | T0+9EF 0 | A23S
0042000 €I-9¢T'T z0+o10% T0+9E8Y | T0+20T'T | Z0+9ELY | G0+998'F | 20+20LT | T0+9L8'T | UedIN of
00+200°0| 002000 109690 20+oST'T | €0+967°€ | T0+91€°0 | TO+20Z'T | T0+9Z0°T | 0T+996'T | (IS
00+200°0| 002000 10909 20+926'T | F0+2L9°C | T0+°1L°€ | T0+2T0°6 | T0+208°C | 0T+0G6L | wesy sf
109626 | T0+079°0 10+0.8°0 10-9¢Z°9 | T0+9V€ T | T0-9€0°¢ | T0+90€'T | T0+20T°0 | T0+90€°C | A0S
10+92T'8 | T0+oLF€ 10+918°G 10-0L6°L | 20+2LS'T| T0-TE€9 | Z0+oITT | 10+°91°G | 30+965°C | ueeN vf
00+200°0| 002000 16-0T6°¢ TG0T8'G | 0SGT0C | 0S2L0T| 0S0£0'T| TS9869| €0-000'T | A23S
00+200°0| 002000 169662 0S0LzT| 0GP T| 0S©8T'T| 0SOCT'T| T¢986'L| £0-°00'G UedN &f
PI00V 1| FI-00F'T 719606 P1029°C| T09PEG| €I01¢T| €1-9€0°G| €0-9€0'T | PO+0GY T | A0S
€T00LT| €1-96£7C €T-96¢°6 €T-06G"8 | TO+9L3'0 | €T986'8| GI-980°T| £0-°£0°6 | G0+o¢h e | ueoly ef
0042000 68-9G6'T 66-0¢6°L 66082°L | 86-20L°T| 86-0€9'T | 86-0GF'T| 86-29¢°C | 00+9£0°C | A0S
0042000 68°SCF 86-969'G 86060°'C | 86-°T0°C| 869G | 86-09L°¢| 86-008F | 004+°0€89 ueS f
[+TT-6-TT-L
-G1-8-6-8-¢1-8] | [x£8-G2-92-ca] | &x09| 0&cx¢| GeX¥| 0L XO0T| §X%XO03

#L-DDDIN | x9-DODIIN DO prepuelg 'SYelg | ounyg

UOIYR[OST UI PIsTl S9189)e1}S UOI}ISOdWOIdP [RNPIATPUL
01 paredwod s3Nsal (4 -DODIIN PU® 9-DDDIIN) se13orelys uoryisoduiooop wojqold JUaIefIp UaAes Xew [m uonieduwo)) g a[qe],

Scaling up Multi-island Competitive Cooperative Coevolution 41

Table 4. Comparison between CICC, MICCC-5, MICCC-6*, MICCC-7*, MICCC-8*
and MICCC-9* algorithms

Func. | Stats. | CICC/MICCC instances
CICC [13]| MICCC-5 [12] | MICCC-6* | MICCC-7*| MICCC-8* | MICCC-9*
f1 Mean |3.76e-99 |5.59e-99 4.25e-89 0.00e4+-00 |8.30e-317 |2.12e-317
StDev |2.06e-99 |1.02e-99 1.95e-89 0.00e+00 |1.81e-317 |4.26e-317
fo Mean |7.78e-13 |1.73e-13 2.39e-13 1.70e-13 2.09e-13 2.05e-13
StDev|1.34e-13 |1.03e-14 1.40e-13 2.27e-13 1.51e-14 1.41e-14
f3 Mean |0.00e+00 |0.00e+00 0.00e+00 |0.00e+00 |0.00e4-00 |0.00e+00
tDev |0.00e+00 |0.00e+00 0.00e+00 |0.00e+00 |0.00e4-00 |0.00e+00
fa Mean |7.93e+01 | 7.43e+01 3.47e4-01 8.12e401 |6.29e401 |7.82e4-01
StDev |1.78e+01 |0.78e+-01 0.64e+01 9.25e-01 0.24e-01 0.41e-01
fs Mean |0.00e+00 |0.00e+00 0.00e+00 |0.00e+00 |0.00e4-00 |0.00e+00
StDev |0.00e+00 |0.00e+-00 0.00e-+00 0.00e+00 |0.00e+00 |0.00e+00
fe Mean |1.40e4-01 |9.95e-01 1.13e-13 0.00e+00 |9.95e-01 9.95e-01
StDev | 1.34e+00 |1.45e-01 7.50e-01 0.00e+00 |0.11e+01 |0.11e+01
fr Mean |3.92e4+02 |9.75e+01 7.76e+01 8.70e+01 |8.66e+01 |7.96e+01
StDev |2.09e+01 |1.45e+-01 0.57e+01 3.57e+01 |0.51e+01 |0.65e+01
fs Mean |[1.99¢-13 | 8.53e-14 8.52e-14 8.52¢-14 8.52e-14 8.52e-14
StDev|1.98e-13 |1.04e-14 1.13e-14 1.13e-14 1.13e-14 1.13e-14

3.2 Results and Analysis

This section provides an analysis of increasing the number of islands to the orig-
inal MICCC [12] that has a max pool size of five islands. We evaluate the per-
formances of the extended instances of MICCC with pool size of six, seven, eight
and nine islands. As mentioned earlier, the first five islands are constructed with
uniform problem decomposition strategies [12]. The rest of the additional islands
proposed for this extended study of MICCC possess arbitrary (non-uniform)
problem decomposition strategies. The island implementations of each of nine
suboptimal decompositions is given by Table 2. Experimental results have been
summarised in Tables3 and 4. The scaled up instances of MICCC are marked
with an asterisk(*) to distinguish them from the existing MICCC and CICC
algorithms [12-14].

3.3 Performance Analysis of MICCC as the Number of Islands
Increase

Table 3 shows the experimental results of MICCC-6* Island and MICCC-7*
Island algorithms alongside each of their standalone decomposition strategies.
The results in Table 3 have shown that competition and collaboration of several
different problem decomposition strategies can generate better quality solutions
than each of the standalone CC implementations. MICCC-6* Island algorithm

42 K.K. Bali and R. Chandra

had just one arbitrary decomposition strategy in its competition pool and man-
aged to perform generally than almost all its counterparts on problems identified
(Function fa—fg). It recorded similar solutions as the standalone CC for Func-
tion f;. MICCC-7* Island algorithm had two additional arbitrary decomposition
strategies and managed to outperform all the rest of the standalone problem
decomposition strategies for all the problems. This superior performances of the
island algorithms over the standard CC have been common observations in CICC
and MICCC [12-14]. Since we are focusing on the behaviour of MICCC as the
number of islands increase, we omit the comparisons of MICCC with standalone
CC for the cases of eight and nine islands. We are interested to discover any
trends or observations (if any) gathered by increasing the original size of the
pool of competition for MICCC which was limited to five islands. Table4 pro-
vides a set of comparative data for CICC, MICCC and extended versions of
MICCC* which were tested on the eight benchmark problems.

According to Table 4, it can be seen that CICC and MICCC with pool size of
2, 5 and 6 islands performed equally well on uni-modal and fully separable prob-
lems (Function fi;—f3) as they recorded similar solution accuracy. However, on a
closer inspection, one can see that the extended versions MICCC-7*, MICCC-8*
and MICCC-9* performed considerably better for f; than the rest of MICCC
with lower number of pools. These extended versions performed equally well as
MICCC-5 and CICC on the multi-modal and non-separable Shifted Rosenbrock
problem (Function f5). MICCC-6* recorded the best quality solutions for fj.
Another observation is that MICCC-7* performed outstandingly better than
the rest of the algorithms for fg. On that note, the extended versions MICCC-
8* and MICCC-9* performed equally well as MICCC-5, but outperformed the
existing CICC-2 island algorithm for fs. For multi-modal problems (Function f7
and Function fg), the extended instances of MICCC with pool size of six, seven,
eight and nine islands managed to improve the accuracy and quality of the solu-
tions when compared to the existing MICCC-5 island algorithm. From these
observations, we can generalise that the scaled up MICCC* with a wider pool of
nine islands is superior to the existing MICCC which is limited to five islands.
Experimental results show that quality and precision of the solutions improve
while utilising more islands in the competition. Arbitrary decomposition strate-
gies have shown to be highly beneficial. It is advantageous to have a hybrid pool
of uniform and non-uniform problem decomposition strategies competing and
collaborating together to converge to a high quality solution. In this manner,
the MICCC algorithm preserves diversity and combats premature convergence
for complex multi-modal problems.

3.4 Island Competition Analysis over the Evolutionary Process

In this section, we study the behaviour of the islands during the evolutionary
process. We check which islands are dominant and how each of the different
islands contribute towards the global fitness. Figures2, 3 and 4 show the com-
petition between the different islands (problem decomposition strategies) moni-
tored at different stages of the optimisation phase for each of the eight problems.

Scaling up Multi-island Competitive Cooperative Coevolution 43

Competition over Time (Evolution Phase)

Island-1 o
14 Island-2 ===
Island-3 m—
Island-4
12 Island-5 =—=
= Island-6 —=
5 Island-7 e—
g 10 Island-8
< Island-9
B
S 8
©
i
2 6
@
8
3 4
2
1 Iz
100000 250000 500000 750000 10000001500000
Function Evaluations (FE)
(a) fu
Competition over Time (Evolution Phase)
Island-1 o
14 Island-2 mmm |
Island-3 m—
Island-4
12 Island-5 =—= |
= Island-6 =—=
5 Island-7 m—
g 10 Island-8 mmm—
£ Island-9
s
> 8
©
i
g 6
Q
3
3 4
, Lo T

100000 250000 500000 750000 10000001500000
Function Evaluations (FE)

(b) f2

Competition over Time (Evolution Phase)

Island-1 o
14 Island-2 ===
Island-3 m—
Island-4
12 Island-5 =—=1 |

= Island-6 —=
S Island-7 m—
g 10 Island-8 mm—
< Island-9
s
2 8
I
i
e 6
@
8
o 4

5 . M1

PPy ey g oy oo 11|

100000 250000 500000 750000 10000001500000
Function Evaluations (FE)

(c) f5

Fig. 2. Competition over time for the success rate (win count) of Functions fi—f3 for
MICCC-9* Island algorithm.

44 K.K. Bali and R. Chandra

Competition over Time (Evolution Phase)

Island-1 o
14 Island-2 m==== |
Island-3
Island-4 o=
12 Island-5 =3
= Island-6 =—=
S Island-7 m—
3 10 Island-8 mmm
c Island-9
s
2
©
o
2 6
@
o
o
>
o 4
. []
NI] 0
100000 250000 500000 750000 1000000 1500000
Function Evaluations (FE)
(a) fa
Competition over Time (Evolution Phase)
Island-1
14 Island-2 ===
Island-3
Island-4 o=
12 Island-5 ===
= Island-6 =—=
5 Island-7 m—
3 10 Island-8 o
c Island-9 =
s
o
©
o
2 6
@«
o
o
3
] 4
2 I Tl
Il
100000 250000 500000 750000 1000000 1500000
Function Evaluations (FE)
(®) f5
Competition over Time (Evolution Phase)
Island-1 o
14 Island-2 ===
Island-3
Island-4 o=
12 Island-56 =3
= Island-6 =—=
E Island-7 m—
g 10 Island-8 . |
£ Island-9
=
o
T
i
2 6
@«
o
s
@ 4 T
2 i

100000 250000 500000 750000 1000000 1500000
Function Evaluations (FE)

() fo

Fig. 3. Competition over time for the success rate (win count) of Functions fs—fs for
MICCC-9* Island algorithm.

Scaling up Multi-island Competitive Cooperative Coevolution 45

Competition over Time (Evolution Phase)

Island-1 o=
14 Island-2 ==

10 Island-8 .
Island-9

Success Rate (Win count)

P T
0 thl 2 Tl JIMM

100000 250000 500000 750000 1000000 1500000
Function Evaluations (FE)

(a) fr

Competition over Time (Evolution Phase)

Island-1 oo
14 Island-2 e
Island-3 m—
Island-4
12 Island-5 =—=1 |
Island-6 —=

g Island-7 m—
3 10 Island-8 o -
< Island-9 =
s 5
Q
T
o
a 6
@
] 1
@ 4 T
2 [i
. L

100000 250000 500000 750000 1000000 1500000
Function Evaluations (FE)

(b) fs

Fig. 4. Competition over time for the success rate (win count) of Functions f7—fs for
MICCC-9* Island algorithm.

For the purpose of this study, we monitor the competition of MICCC-9* algo-
rithm which was implemented with the max pool size of nine different islands.
Analyses of the islands that win the competition at different stages of the opti-
misation phase are provided by measuring their success rate (win counts). Each
of the bars of the respective graphs show the average number of times an island
wins the competition over a time interval of 250 000 function evaluations. The
islands compete and collaborate until a fixed termination criteria of 1500 000
fitness evaluations is reached. The competition pool of MICCC-9* consists of
five uniform and four arbitrary problem decomposition strategies as previously
defined in Table 2. Since different types of problems feature unique search land-
scapes, we can observe that the competition success rate, that is, how often each

46 K.K. Bali and R. Chandra

island wins the competition vary across all the different problems throughout
the course of evolution.

According to the bar graphs of Figs.2, 3 and 4, Island 2 has been quite
dominant for uni-modal problems (Functions fi—f3) and multi-modal problem
(Function fg). It also dominated the initial stages of the competition phases
of Function f7; and Function fg, but was superseded by Island 7 in the later
stages. Interestingly, Island 7 that was constructed with a non-uniform problem
decomposition strategy has shown be an efficient decomposition strategy as it
was dominant in most of the multi-modal problems (Functions fy, f5, f7 and fg).
This suggests that Island 2 and Island 7 have been contributing more towards
the global fitness than the rest of the islands. In addition, Island 8 competed
well on problems (Functions f5 and fg). This justifies the improvements in the
solution quality obtained in Table4 as we increase the number of islands in the
existing MICCC which was limited to five islands [12].

Furthermore, the visualized competition analysis obtained from the bar
charts of Figs. 2, 3 and 4 offer some interesting observations. Since the proposed
MICCC algorithm incorporates solution migration phase during the course of
the optimisation, it motivates the runner-up islands to catch up and compete
over time. We observe intense competition between the all the nine different
islands for quite a number of different problems. Intense competition is observed
in some of the problems (Functions f,f5, f¢ and f3), whereby the islands that
were losing initially were able to improve their performances over time. This
notable trend is quite evident in most of the cases given in Figs. 2, 3 and 4. Con-
sidering the competition analyses for certain problems (Functions fa,f5 and fs),
we can observe that few other islands have also been contributing well during
the evolutionary process.

The current MICCC algorithm splits the computational budget equally
amongst all the islands. This gives motivation to divide the computational bud-
get more wisely according to the contributions of each of the islands. The concept
of contribution based cooperative coevolution (CBCC) [22] can be incorporated
to enhance the performance of MICCC. In conducting such empirical analy-
sis as above, it is possible to identify the stronger islands (implemented through
uniform or non-uniform problem decomposition strategies) and accurately quan-
tify the contribution of each of the islands towards the global fitness. Once the
contribution information is available, the computational budget can be utilized
more strategically. The stronger islands can be given more evolution time and
the weakest ones can be eliminated during the course of optimisation.

4 Conclusion

In this paper, we scaled up MICCC by enforcing competition with a wider pool of
islands. The experimental results show that enforcing competition with a wider
pool of islands (more than five) can improve the performance during the course
of the optimisation phase. The introduction of a hybrid pool of uniform and non-
uniform problem decomposition strategies can substantially enhance the quality

Scaling up Multi-island Competitive Cooperative Coevolution 47

of the overall fitness solutions. More diversity is introduced as we increase the
number of islands for competition which helps in escape the vulnerable fitness
stagnation or local minimums of complex multimodal problems.

In future, a contribution based scheme can be developed that quantifies
the contributions of each of the islands towards the global fitness. This can
enhance the optimisation performance of MICCC whereby the stronger islands
can be given more time (fitness evaluations) to compete and collaborate while the
weaker ones can be eliminated. This extended multi-island algorithm can also be
applied to large scale global optimisation as well as combinatorial optimisation
problems.

References

1. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Manner, R., Schwefel, H.-P. (eds.) PPSN 1994.
LNCS, vol. 866, pp. 249-257. Springer, Heidelberg (1994)

2. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using coopera-
tive coevolution. Inf. Sci. 178(15), 2985-2999 (2008)

3. Béck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Compu-
tation. Institute of Physics Publishing/Oxford University Press, Bristol/New York
(1997)

4. Omidvar, M., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential
grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378-393
(2014)

5. Salomon, R.: Reevaluating genetic algorithm performance under coordinate rota-
tion of benchmark functions - a survey of some theoretical and practical aspects
of genetic algorithms. BioSystems 39, 263-278 (1995)

6. Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up fast evolutionary programming
with cooperative coevolution. In: Proceedings of the 2001 Congress on Evolutionary
Computation, IEEE 2001, vol. 2, pp. 1101-1108 (2001)

7. Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Cooperative co-evolution with a new
decomposition method for large-scale optimization. In: Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2014, pp. 1285-1292 (2014)

8. Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using
cooperative coevolution with variable interaction learning. In: Schaefer, R., Cotta,
C., Kolodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 300-309.
Springer, Heidelberg (2010)

9. Omidvar, M.N., Li, X., Yao, X.: Cooperative co-evolution with delta grouping for
large scale non-separable function optimization. In: Proceedings of IEEE Congress
on Evolutionary Computation, pp. 1762-1769 (2010)

10. Omidvar, M.N.; Li, X., Tang, K.: Designing benchmark problems for large-scale
continuous optimization. Inf. Sci. 316, 419-436 (2015)

11. Omidvar, M.N., Mei, Y., Li, X.: Effective decomposition of large-scale separable
continuous functions for cooperative co-evolutionary algorithms. In: Proceedings
of IEEE Congress on Evolutionary Computation, pp. 1305-1312 (2014)

12. Bali, K., Chandra, R.: Multi-island competitive cooperative coevolution for real
parameter global optimization. In: International Conference on Neural Information
Processing (ICONIP), Istanbul, Turkey, November 2015 (in press)

48

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K.K. Bali and R. Chandra

Chandra, R., Bali, K.: Competitive two island cooperative coevolution for real
parameter global optimisation. In: IEEE Congress on Evolutionary Computation,
Japan, Sendai, pp. 93-100 (2015)

Bali, K., Chandra, R., Omidvar, M.N.: Competitive island-based cooperative
co-evolution for efficient optimization of large-scale fully-separable continuous
functions. In: International Conference on Neural Information Processing
(ICONIP), Istanbul, Turkey, November 2015 (in press)

Chandra, R.: Competition and collaboration in cooperative coevolution of Elman
recurrent neural networks for time-series prediction. IEEE Trans. Neural Netw.
Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2404823. http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=7055352&isnumber=6104215

Chandra, R.: Competitive two-island cooperative coevolution for training Elman
recurrent networks for time series prediction. In: International Joint Conference on
Neural Networks (IJCNN), Beijing, China, pp. 565-572, July 2014

Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm
for real-parameter optimization. Evol. Comput. 10(4), 371-395 (2002)

Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm
optimization. IEEE Trans. Evol. Comput. 8(3), 225-239 (2004)

Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.:
Benchmark functions for the CEC 2008 special session and competition on large scale
global optimization. Technical report, Nature Inspired Computation and Applica-
tions Laboratory, USTC, China (2007). http://nical.ustc.edu.cn/cec08ss.php

Li, X., Tang, K., Omidvar, M.N., Yang, Z., Qin, K.: Benchmark functions for
the CEC 2013 special session and competition on large-scale global optimization.
Technical report, RMIT University, Melbourne, Australia (2013). http://goanna.
cs.rmit.edu.au/xiaodong/cecl3-1sgo

Herrera, F., Lozano, M., Molina, D.: Test suite for the special issue of soft com-
puting on scalability of evolutionary algorithms and other metaheuristics for large
scale continuous optimization problems. Last accessed July 2010

Omidvar, M.N., Li, X., Yao, X.: Smart use of computational resources based on
contribution for cooperative co-evolutionary algorithms. In: Proceedings of Genetic
and Evolutionary Computation Conference, pp. 1115-1122. ACM (2011)

http://dx.doi.org/10.1109/TNNLS.2015.2404823
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7055352&isnumber=6104215
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7055352&isnumber=6104215
http://nical.ustc.edu.cn/cec08ss.php
http://goanna.cs.rmit.edu.au/xiaodong/cec13-lsgo
http://goanna.cs.rmit.edu.au/xiaodong/cec13-lsgo

An Evolutionary Algorithm with Classifier
Guided Constraint Evaluation Strategy
for Computationally Expensive
Optimization Problems

Kalyan Shankar Bhattacharjee®™) and Tapabrata Ray

School of Engineering and Information Technology,
University of New South Wales, Canberra, ACT 2600, Australia
{k.bhattacharjee,t.ray}@adfa.edu.au

Abstract. Practical optimization problems often involve objective and
constraint functions evaluated using computationally expensive numeri-
cal simulations e.g. computational fluid dynamics (CFD), finite element
methods (FEM) etc. In order to deal with such problems, existing meth-
ods based on surrogates/approximations typically use cheaper and less
accurate models of objectives and constraint functions during the search.
Promising solutions identified using approximations or surrogates are
only evaluated using computationally expensive analysis. In the event
the constraints and objectives are evaluated using independent compu-
tationally expensive analysis (e.g. multi-disciplinary optimization), there
exists an opportunity to only evaluate relevant constraints and/or objec-
tives that are necessary to ascertain the utility of such solutions. In this
paper, we introduce an efficient evolutionary algorithm for the solution
of computationally expensive single objective constrained optimization
problems. The algorithm is embedded with selective evaluation strate-
gies guided by Support Vector Machine (SVM) models. Identification
of promising individuals and relevant constraints corresponding to each
individual is based on SVM classifiers, while partially evaluated solu-
tions are ranked using SVM ranking models. The performance of the
approach has been evaluated using a number of constrained optimization
benchmarks and engineering design optimization problems with limited
computational budget. The results have been compared with a number
of established approaches based on full and partial evaluation strate-
gies. Hopefully this study will prompt further efforts in the direction of
selective evaluation, which so far had attracted little attention.

Keywords: Constraint handling - Selective evaluation - Approximation

1 Background

Constraint handling is an important area of research and several schemes have
been proposed in the literature. Depending on the evaluation strategy, these
schemes can be broadly categorized into two groups (a) full evaluation policy

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 49-62, 2015.
DOI: 10.1007/978-3-319-26350-2_5

50 K.S. Bhattacharjee and T. Ray

(all constraints and objectives are evaluated), (b) partial evaluation policy
(objective functions of feasible individuals are evaluated or selected constraints
are only evaluated till a violation is encountered). The first group can be again
sub categorized into several types depending on the constraint handling strat-
egy: use of penalty functions which is an aggregate of constraint violations and
the objective function [1], use of repair schemes [2] etc. All these schemes are
based on feasibility first principle and they use objective function values to order
feasible individuals and use sum of constraint violations to order the infeasi-
ble individuals in the population. Hence objective function values of infeasible
individuals are essentially unused information for such approaches. However,
methods such as stochastic ranking (SR) [3], infeasibility driven evolutionary
algorithm (IDEA) [4], epsilon level comparison [5] etc. utilize objective function
values of the infeasible solutions to order them. In the context of computationally
expensive optimization problems, to reduce the computational cost, researchers
have looked into the prospect of evaluating only a set of constraint(s) for an indi-
vidual. In the evaluate till you violate strategy [6], constraints were evaluated in
a sequence until a violation was encountered. This scheme needs the number of
satisfied constraints and the violation measure of the first violated constraint to
order the solutions. These schemes naturally fall into the second category of par-
tial evaluation policy. There is another class of algorithms which uses surrogates
to model the constraints and the objectives and uses actual evaluation for elite
solutions to update the model [7,8]. The evaluation cost can be further reduced
if one can (a) determine the constraint with the highest probability of being
violated and (b) identify potentially promising offspring solutions. In order to
identify the above, an efficient algorithm needs to continuously assess the trade
off between cost to evaluate vs. cost to learn. In this paper, we use a support
vector machine (SVM) classifier [9] to identity promising solutions and also for
each solution, the constraint that is most likely to be violated. It is important
to highlight that in the proposed approach, the classifier is used to predict a
single class label for a solution and its associated confidence. The use of a SVM
classifier to identify promising solutions appear in [10]. In this study, we used
SVM ranking [11] models to predict the rank of a partially evaluated solution.

2 Proposed Approach

A generic single objective constrained optimization problem is defined as follows:
minimize f(x)
X
subject to g;(x) > a;, 1=1,2,...,q (1)
hj(X) :bj, j: 172,...71"
where there are g inequality and r equality constraints, x = [x1 3 ...x,] is the
vector of n design variables and a; and b; are constants.

Our approach is based on a generational model where an initial parent popu-
lation is created using Latin Hypercube Sampling. All objectives and constraints

An Evolutionary Algorithm with Classifier Guided Constraint Evaluation 51

are evaluated for all the solutions in the initial population and the information
is stored in an Archive. Parents for recombination are identified using binary
tournament (BT). The binary tournament is held between two sets of parents
i.e. the first set of potential parents identified using roulette wheel selection and
the second set of potential parents identified using a random selection. Offspring
solutions are created using simulated binary crossover (SBX) and polynomial
mutation (PM). These offspring solutions need to be screened prior to any fur-
ther evaluation. Such a screening is performed using a two-class SVM classifier.
The SVM classifier is trained using the data from the Archive with its inputs
being the variables of the optimization problem x and the output being the
rank of the solutions. Offspring solutions predicted with a class label of 1 are
considered as potential solutions.

In the next step, for each potential offspring solution, we identify the
constraint that is most likely to be violated. Here we calculate two metrics
corresponding to each potential offspring solution i.e. Feasibility_Index and
Rank_index. Feasibility_index of a solution is represented using a vector of same
size as the number of constraints of the problem, wherein each element cor-
responds to the probability of satisfying a particular constraint (a value of 0
indicates that the solution would violate the constraint and 1 otherwise). The
Rank_Index for a solution is again a vector of same size as Feasibility_index,
with its elements providing the confidence information i.e. the confidence of the
solution being ranked among the top 50 % for that particular constraint. The
solutions are ranked based on each constraint with the information derived from
Archive. For any constraint, a solution that satisfies it and is farthest from
the boundary is placed at the top of the list, while the one which is infeasible
and farthest from the boundary is placed at the bottom. In order to capture the
local behavior, for each potential solution, the classifiers (one for each constraint)
are trained using k closest (in variable space) neighbors from the Archive. The
inputs to such classifiers are the variable values and the outputs are the cor-
responding ranks based on the particular constraint under consideration. For a
potential offspring solution, the constraint associated with least Feasibility_Index
and least Rank_Index will be evaluated first. However, in the situation where a
solution has same Feasibility_indexr values for all its constraints, the order of
evaluation is based on the following rule: (a) if all neighboring k solutions have
all the constraints violated i.e. (Feasibility_Index = 0), the constraint having
least Rank_Indez is evaluated first and (b) if all neighboring k solutions have all
the constraints satisfied i.e. (Feasibility_-Index = 1), the objective function for
this solution is only computed since it is most likely a feasible solution.

In the next step, we use SVM ranking model to predict rank of the potential
offspring based on all other constraints, where it has not been evaluated. In this
ranking scheme, a regression model is created using actual ranks of all the solu-
tions from the Archive based on that particular constraint (where the potential
offspring has been evaluated) as input and ranks based on other constraints or
final rank as output. Hence, for any potential offspring solution, ranks based
on all other constraints and its final rank in the population can be predicted

52

K.S. Bhattacharjee and T. Ray

Algorithm 1. CGCSM

SET: FEna.{Total amount of evaluation cost unit allowed}, N{Size of population},
Si¢{Confidence associated with SVM classifier (exponentially increases from 0 to 0.8
as cost of evaluation increases)}, My{Total number of constraints}, f{Objective},
g;{jt" Constraint}, Popbin{Repository of all solutions over the generation},
Archive{Repository of fully evaluated solutions}

10:
11:

12:
13:
14:
15:

16:
17:

18:
19:
20:

21:
22:

23:
24:
25:
26:
27:
28:
29:

PP Wy

: Initialize the population of N individuals
: Evaluate POpl:N’gleng and order them according to their final ranks

Popbin = Pop

: Update F'E, Update Archive

Update S;

. while (FE < FEpa,) do

Generate offspring solutions using BT, SBX and PM from Popbini.n
Construct a SVM classifier where top 100(1-S;) percent of Archive have class
label 1 and rest have 0
Determine unique C'hildpop w.r.t the Archive with a predicted class label 1, say
C eligible offsprings
for i = 1:C do
Calculate the Feasibility Index; ;. M, and Rank_Index;1.m, based on k neigh-
bors of Childpop; from the Archive
if Feasibility_Inde; ;.,;, = 1 then
Only evaluate Childpop;, ¢
else if Feasibility_Indez; 1., = 0 then
Find gevar € g; where Rank_Index; g, ,, is least and evaluate Childpop;, s
and Childpop;
else
Find gevar € g; where Feasibility_Index; ; ~ and Rank_Indez;g,,,, are min-
imum and evaluate Childpop;,; and Childpop;
end if
Update FFE
Predict rank of C'hildpop; in other g;’s and its final rank in Popbin using its
rank in geyq: based on SVM ranking
if (Final rank of Childpop; is within top 100(1-S;) percent of Popbin) then
Evaluate C'hildpopi,g,.,,, and place it in Popbin based on its actual final
rank
Update F'E, Update Archive
else
Place the offspring in Popbin according to its predicted final rank
end if
Popbin = Pop + Childpop;
end for
end while

s9deval

»Geval

*FE denotes the sum of objective and all individual constraint evaluation cost (1 unit
cost for each objective and 1 unit for each constraint)

based on the rank of this particular solution in its evaluated constraint. In order
to provide learning instances for the classifiers and to update the Archive, all

An Evolutionary Algorithm with Classifier Guided Constraint Evaluation 53

constraints and objective function values of the top (within a threshold) set of
solutions are evaluated. Please note that the final ranking of the whole pop-
ulation is carried out via feasibility first principle. Following is the pseudo-
code for our proposed approach: Classifier Guided Constraint Selection Mecha-
nism (CGCSM).

2.1 Test Function

The behavior of the proposed algorithm is illustrated using a single variable
constrained test function shown in Eq.2 with 5 nonlinear inequality constraints.
The variable x is bounded between 0 and 4.5. The objective and the constraints
are generalized as y, a function of (Figs. 1, 2 and 3). The following parameters
have been used: k£ = 16.9, m = 0.7, ¢ = 0.8 and d = 0.8. In this example, we
have used a population size of 8, neighborhood size of 4 with the maximum num-
ber of function evaluations set to 240 i.e. a total of 1440 evaluation cost units
(1 function evaluation corresponds to evaluation of objective and all constraints
for one solution). This test function has feasibility ratio (p) = 2.238 % computed
based on 1,000,000 random points. The relative sizes of the feasible spaces corre-
sponding to the constraints are 19.139 %, 9.672 %, 73.040 %, 25.174 % and 100 %
respectively. Since the proposed approach will attempt to satisfy the most dif-
ficult constraint, we expect the second constraint to be satisfied first, followed

0 05 1 15 2 25 3 35 4 45 0 05 1 1.5 2 25 3 35 4 4.5

(a) Test function: CGCSM (b) Test function: NSGA-II

gt

92
--g3
-
—g5

(c) Test function: IDEA

Fig. 1. State of population at 1st gen

54 K.S. Bhattacharjee and T. Ray

(a) Test function: CGCSM (b) Test function: NSGA-II

25

2]

151

2.!
3 35 4 4.5
X

(c) Test function: IDEA

Fig. 2. State of population at 3rd gen

by first, fourth and the third. The fifth constraint is feasible throughout the
search space. The state of the population at the third generation is presented
in Fig.2(a). The corresponding states of IDEA and NSGA-II are presented in
(Fig.2(c) and (b)). One can note that all solutions of CGCSM have satisfied
second constraint (equivalent to 144 function evaluations), while some solutions
of IDEA and NSGA-IT still could not satisfy the constraint.

The population of solutions after the 1%¢, and 7*" generations for IDEA and
NSGA-ITI are depicted in Figs. 1(c), 3(c), and 1(b), Fig. 3(b) respectively. Results
obtained using CGCSM i.e. population of solutions after 48, and 336 evaluation
cost units (equivalent to 1, 7 generations) are depicted in Figs. 1(a) and 3(a). It
is important to analyse the effect of the confidence associated with the classifier,
which has been varied between 0 and 0.8 in this study. A value of 0 indicates that
we have no belief on the classifier and all solutions undergo evaluation. Evalua-
tion of solutions would enrich the Archive, which in turn will allow the classifier
to be trained better. To investigate this, we used a high value of confidence (0.8)
for the classifier throughout the search process. The population of solutions after
336 evaluation cost units is presented in Fig.4. Once can observe that there are
no feasible solutions in the population. Since we placed a high confidence on

An Evolutionary Algorithm with Classifier Guided Constraint Evaluation

0.8 0.3

-1 0.7
33 335 34 345 35 3.55 33 335 34 3.45

X X
(a) Test function: CGCSM (b) Test function: NSGA-II

0.6

el

2

04 -

a

02 _55

\.\ —cv

(c) Test function: IDEA

Fig. 3. State of population at 7th gen

55

the classifier in early stages, the algorithm had limited opportunity to learn. On
the contrary, if the confidence was allowed to vary between 0 and 0.8, feasible

solutions emerge in the population as depicted in Fig. 3(a).

fx)=d+ Aefc‘”legﬁsin(wdx +)
subject to the following constraints
05—f>0x—2—-4f > 0;
03x—14+f>0;25x—8— f>0;
16f —3x + 14 > 0;

and bounds 0 < x < 4.5

where

Y LN (CORR 7
”\/;’A (wa)?

(= 5—iwa=wy/T= (%= tan~! 22

2mw’ Cw

56 K.S. Bhattacharjee and T. Ray

-0,
3.05 3.1 3.15 32 325 3.3 3.35 34
X

Fig.4. State of population at generation 7 for test function using CGCSM with
classifier threshold 0.2

3 Numerical Experiments

Having illustrated the search behavior of CGCSM, we objectively evaluate its
performance and compare it with mIDEA and mNSGA-IT using 15 well studied
benchmark problems: G series (G1-G11) [12], Belleville Spring [13], Speed
Reducer [14], Pressure Vessel [15] and Welded Beam [16]. These selected prob-
lems have variety of properties associated with their constraints: non-linearity,
inequality, equality; different attributes associated with the objective functions:
polynomial, linear, cubic, quadratic, non-linear etc.; different dimensions of vari-
ables and different feasibility ratios. The results obtained using the proposed
algorithm CGCSM are compared with those delivered using infeasibility driven
evolutionary algorithm (IDEA) [4] and non-dominated sorting genetic algo-
rithm (NSGA-II) [17]. Since the proposed algorithm CGCSM utilizes a different
scheme for offspring creation and retains unique solutions in the population, the
baseline algorithms i.e. IDEA and NSGA-II have been modified to mIDEA and
mNSGA-II for a fairer comparison. A one-to-one comparison of CGCSM with
mIDEA and mNSGA-IT would offer insights on the actual utility of the classifier.
Results are presented in Table 1. The mean convergence plots are also presented
for mIDEA and mNSGA-IT and CGCSM.

4 Results and Discussion

The following parameters were used in this study: population size: 40; total cost
of evaluation is 1000 times the total number of constraints and objective for the
problem; crossover probability: 0.9; mutation probability: 0.1; distribution index
for crossover: 20; distribution index of mutation: 30; confidence in the classifier
varied exponentially from 0 to 0.8 and the number of neighbors (k) was set to
12. In our study, the standard SVM classifier of MATLAB toolbox was used
with a Gaussian Radial Basis Function kernel with default settings and KKT
violation level set as 0.05. The following subsection presents the results of all
strategies i.e. CGCSM, IDEA, NSGA-II, mIDEA and mNSGA-IT based on 30

An Evolutionary Algorithm with Classifier Guided Constraint Evaluation 57

independent runs for each problem. One can observe from Table 1 that the pro-
posed approach is better in 2 out of 3 problems considering median statistics.
The modified IDEA and NSGA-II reported better median objective value for
the welded beam example, G11 and G4. However, baseline IDEA and NSGA-II
has better performance in G7 and G2. One can also notice that at the end of 30
runs, none of the algorithms could identify feasible solutions for G5. The pro-
posed approach is worse in G10, better in G6 and G11 and achieves competitive
results for all other problems. It is also important to take note that our proposed
approach performs much better in terms of convergence over others except for
G10. This is probably due to the fact that all the constraints are active at the
optimum for G10 which is beneficial to IDEA.

4.1 Performance on Problems

Figures5(a), 6(a), and 7(a) show convergence plots of mean sum of constraint
violations (CV) and average number of infeasible individuals over the evaluation

1
450 M —
—— CGCSOM-—CV CGCSOM-Obj
400 — IDEA-CV 40.8 _ II\E)SEGA;OI:)J Obi
——NSGA-II-CV. 0l
350 40.6
3 40.4 § ™
(&} 4=
€ 300 zZ = z
S 4022 2 ©
3 250 2 8 2
E 200 € 9 2
s 3085 5 °
2 150 s £ 2
S 3962 §
100, 39.4
CGCSOM-NI CGCSOM-NF
50 IDEA-NI 39.2 IDEA-NF
NSGA-II-NI - NSGA-II-NF
CO 2000 4000 6000 8000 1006% GO 1000 2000 3000 4000 5000 6000 7000 8000 90601
Evaluation Budget Evaluation Budget
(a) Mean CV and NI individuals versus (b) Mean Obj and NF individuals versus
cost: G5 cost: G5
Fig. 5. Convergence plots: G5
2000 - ™ 0 30
' — CGCSOM-CV — CGCSOM-Obj
——IDEA-CY —— IDEA-Obj
"o [ZNSGAICY —— NSGA-11-Obj
> ~
9 Z ~2000
k: 2
s e
2 1000 420 £
Z E]
;7 S .2 -4000 10 2
§ 38
A
CGCSOM-NI - CGCSOM-NF
IDEA-NI - IDEA-NF
NSGA-II-NI : NSGA-II-NF
0 500 1000 1500 2000 2500 3000 6000 0 500 1000 1500 2000 2500 3(]0(’)
Evaluation Budget Evaluation Budget
(a) Mean CV and NI individuals versus (b) Mean Obj and NF individuals versus
cost: G6 cost: G6

Fig. 6. Convergence plots: G6

58 K.S. Bhattacharjee and T. Ray

4

10

—cacsomov]| —— CGCSOM-0bj
— IDEA-CV — IDEA-Obj
—— NSGA-Il-CV ——NSGA-II-Obj
S . = _
z g £ g
=} o 2 [}
k5 2 3 k-
S o 0§ 352 20%
Z € o b
g 5 = 5
CGCSOM-NI CGCSOM-NF
IDEA-NI IDEA-NF
4 - NSGA-II-NI - NSGA-II-NF
710 1000 2000 3000 4000 5080 C0 1000 2000 3000 4000 506’0
Evaluation Budget Evaluation Budget
(a) Mean CV and NI individuals versus (b) Mean Obj and NF individuals versus
cost: Pressure Vessel cost: Pressure Vessel

Fig. 7. Convergence plots: Pressure Vessel

budget for problems: G5, G6, and Pressure Vessel. Similarly, mean objective
value and average number of feasible individuals for these problems are shown
in Figs.5(b), 6(b), and 7(b).

The best, mean, worst, median and standard deviation measures of the best
solution across 30 independent runs obtained using CGCSM, mIDEA, IDEA,
mNSGA-II, NSGA-II for G5, G6 and Pressure Vessel problems are presented
in Table 1. Here the last column success is defined as the number of runs which
were successful to obtain a feasible solution at the end of evaluation budget.
For all the other problems please refer to Supplementary where one can observe
that proposed approach is better in 9 out of 14 problems considering the median
statistics.

To compare any two stochastic algorithms a test based on statistical sig-
nificance is performed. Wilcoxon Signed Rank Test [18] is used to judge the
difference between paired scores when the assumptions required by the paired
samples in t-test may not be valid, such as a normally distributed population.
As a null hypothesis, it is assumed that there is no significant difference between
the statistical measure of the two samples. Whereas the alternative hypothe-
sis indicates a significant difference, with a significance level of 5%. Based on
the test results one of the three signs (+,—,~) is assigned for the comparison
of any two algorithms where the “+” sign indicates first algorithm is signifi-
cantly better than the second algorithm, the “—” sign indicates first algorithm
is significantly worse than the second algorithm and the “a” sign indicates no
significant difference between first algorithm and the second algorithm. Follow-
ing Table 2 indicates the pairwise comparison of CGCSM with other state of the
art algorithms:

The observations can be summarized as follows:

(a) At early stages of evolution, i.e. at lower evaluation budgets, our proposed
approach provides better results than those obtained using IDEA and NSGA-II.
This is evident from Figs.5(a), 6(a), and 7(a). Similar observations were noticed

http://seit.unsw.adfa.edu.au/research/sites/mdo/Ray/Research-Data/Supplementary.pdf

An Evolutionary Algorithm with Classifier Guided Constraint Evaluation 59

Table 1. Statistics for problems

Problem | Algorithms | Feasibility | Best Mean Median ‘Worst Std Success
G5 CGCSM Feasible NaN NaN NaN NalN NaN 0.000
Infeasible | 0.174 12.920 6.266 62.741 16.188 30.000
mIDEA Feasible NaN NaN NaN NaN NaN 0.000
Infeasible | 0.373 21.507 9.612 182.587 33.759 30.000
IDEA Feasible NaN NaN NaN NaN NaN 0.000
Infeasible | 0.015 13.098 7.833 68.571 14.345 30.000
mNSGA-II | Feasible NaN NaN NaN NaN NaN 0.000
Infeasible | 0.373 21.507 9.612 182.587 33.759 30.000
NSGA-II Feasible NaN NaN NaN NaN NaN 0.0000
Infeasible | 0.015 13.098 7.833 68.571 14.345 30.000
G6 CGCSM Feasible —6785.808 | —5041.048 | —5442.204 | —1228.347 | 1604.722 | 22.000
Infeasible | 0.0000 0.408 0.000 2.137 0.741 8.000
mIDEA Feasible —6940.985 | —4515.238 | —4898.142 —1419.739 | 1858.821 | 16.000
Infeasible | 0.000 0.376 0.000 2.445 0.616 14.000
IDEA Feasible —6862.173 | —4584.322 | —4551.042 —1301.353 | 1548.099 | 21.000
Infeasible | 0.000 0.338 0.000 2.074 0.617 9.000
mNSGA-II | Feasible —6941.706 | —4690.694 | —5114.001 —1543.642 | 1933.922 | 16.000
Infeasible | 0.000 0.376 0.000 2.445 0.616 14.000
NSGA-II Feasible —6794.650 | —4408.212 | —4609.070 —1303.680 | 1593.556 | 21.000
Infeasible | 0.000 0.338 0.000 2.074 0.617 9.000
Vessel CGCSM Feasible 6106.624 7392.035 6930.623 15990.470 | 1855.454 | 30.000
Infeasible | 0.000 0.000 0.000 0.000 0.000 0.000
mIDEA Feasible 6364.481 7570.466 7368.356 10554.951 | 979.533 30.000
Infeasible | 0.000 0.000 0.000 0.000 0.000 0.000
IDEA Feasible 6472.820 7528.553 7389.138 11412.717 | 917.034 30.000
Infeasible | 0.000 0.000 0.000 0.000 0.000 0.000
mNSGA-II | Feasible 6126.150 7015.135 6854.071 9961.452 712.944 30.000
Infeasible | 0.000 0.000 0.000 0.000 0.000 0.000
NSGA-II Feasible 6182.850 7152.707 7226.635 8551.650 541.266 30.000
Infeasible | 0.000 0.000 0.000 0.000 0.000 0.000

for other problems. (b) Since the best infeasible individual in IDEA and NSGA-
IT are the same, both have same convergence behavior in terms of mean sum
of constraint violations. In the test problem, one can clearly observe the differ-
ence in search strategy between CGCSM, IDEA and NSGA-II. While all the
strategies aim to reduce sum of constraint violations, CGCSM initially targets
constraints that are difficult to satisfy. This can be evidenced from Figs. 1(a),
2(a), and 3(a). (c) In the illustrative example (test problem), one can clearly
observe that the population of CGCSM reaches the feasible space much ear-
lier than IDEA and NSGA-II. This is depicted in Fig.3(c), (b) and (a). (d)
Since only promising solutions are evaluated, use of classifiers would reduce the
computational cost. However, the classifiers need to learn and their assessment
needs to be reliable. The process of learning requires information from evaluated
solutions. Although use of poorly trained classifiers would save computational
cost, the search outcome may not be satisfactory. To achieve this balance, the
confidence associated with the classifier is varied from 0 to 0.8 exponentially
during the course of search. We have also presented the results when the trust

60 K.S. Bhattacharjee and T. Ray

Table 2. Wilcoxon signed rank test for CGCSM

Comparison Fitness Better | Equal | Worse | Dec
CGCSM to IDEA Median 10 0 4 +
Mean 9 0 5 +
Successful runs | 2 11 1 ~
CGCSM to mIDEA Median 12 0 2 +
Mean 12 2 +
Successful runs | 2 11 1 ~
CGCSM to NSGA-IT | Median 11 0 3 +
Mean 10 0 4 +
Successful runs | 2 11 1 ~
CGCSM to mNSGA-IT | Median 10 4 +
Mean 10 0 4 +
Successful runs | 2 11 1 =

associated with the classifier set to high (0.8) throughout the course of search.
In such a scenario, very few solutions would be evaluated and in turn the classi-
fier would not have the opportunity to learn from diverse solutions. This can be
evidenced from Figs. 4 and 3(a). (e) Table 2 indicates the comparison of CGCSM
with IDEA, NSGA-II and the proposed modified versions mIDEA, mNSGA-II.
The table suggests significant improvement of CGCSM in terms of median and
mean objective values considering all successful runs compared to other algo-
rithms. However, in terms of number of successful runs where a feasible solution
was obtained at the end of a limited computational budget, CGCSM performs
at par with the other algorithms.

5 Summary and Conclusions

Real life optimization problems often involve objective and constraint functions
that are evaluated using computationally expensive numerical simulations e.g.
computational fluid dynamics (CFD), finite element methods (FEM) etc. In
order to solve such classes of problems, surrogate assisted optimization (SAO)
methods are typically used, wherein computationally cheap and less accurate
surrogates/approximation models of objectives/constraints are used during the
course of search. In this paper, we explore an alternative path i.e. one where
promising solutions are identified using support vector machine (SVM) based
models. The key difference being, SVM models are used to identify promising
solutions without explicitly attempting to approximate objective and constraint
functions. Furthermore, for every promising solution, the approach identifies
the constraints that are most likely to be violated and evaluates them first. In
the event the constraints and objectives are evaluated using independent com-
putationally expensive analysis (e.g. multi-disciplinary optimization), such an

An Evolutionary Algorithm with Classifier Guided Constraint Evaluation 61

approach would only evaluate relevant constraints and/or objectives that are
necessary to ascertain the rank of the solutions. The differences in the search
behavior of CGSCM, mNSGA-II and mIDEA are highlighted using a test func-
tion. The performance of the algorithm is further objectively assessed using a
number of constrained optimization benchmarks and engineering design opti-
mization problems with limited computational budget. The rate of convergence
of CGCSM is better for most of the problems and the final set of results are
clearly better on 9 out of 14 problems studied in this paper. We hope that this
study would prompt design of efficient algorithms that selectively evaluate solu-
tions and in particular selected set of constraints on the fly i.e. based on the
trade-off between need to learn/evaluate and cost to learn.

References

1. Coit, D.W., Smith, A.E.: Penalty guided genetic search for reliability design opti-
mization. Comput. Ind. Eng. 30(4), 895-904 (1996)

2. FitzGerald, A., O’Donoghue, D.P.: Genetic repair for optimization under con-
straints inspired by Arabidopsis Thaliana. In: Rudolph, G., Jansen, T., Lucas, S.,
Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 399-408. Springer,
Heidelberg (2008)

3. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary opti-
mization. IEEE Trans. Evol. Comput. 4(3), 284-294 (2000)

4. Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility driven evolutionary
algorithm for constrained optimization. In: Mezura-Montes, E. (ed.) Constraint-
Handling in Evolutionary Optimization. SCI, vol. 198, pp. 145-165. Springer,
Heidelberg (2009)

5. Takahama, T., Sakai, S.: Constrained optimization by the e constrained differential
evolution with gradient-based mutation and feasible elites. In: Proceedings of the
IEEE Congress on Evolutionary Computation (CEC), pp. 1-8 (2006)

6. Asafuddoula, M., Ray, T., Sarker, R.: Evaluate till you violate: a differential evo-
lution algorithm based on partial evaluation of the constraint set. In: Proceedings
of the IEEE Symposium on Differential Evolution (SDE), pp. 31-37 (2013)

7. Regis, R.G.: Stochastic radial basis function algorithms for large-scale optimization
involving expensive black-box objective and constraint functions. Comput. Oper.
Res. 38(5), 837-853 (2011)

8. Regis, R.G.: Evolutionary programming for high-dimensional constrained expen-
sive black-box optimization using radial basis functions. IEEE Trans. Evol. Com-
put. 18(3), 326-347 (2014)

9. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.:
Least Squares Support Vector Machines, vol. 4. World Scientific, Singapore (2002)

10. Loshchilov, 1., Schoenauer, M., Sebag, M.: A mono surrogate for multiobjective
optimization. In: Proceedings of the 12th Annual Conference on Genetic and Evo-
lutionary Computation (GECCO), pp. 471-478. ACM (2010)

11. Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with SVMs. Inf.
Retrieval 13(3), 201-215 (2010)

12. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parame-
ter optimization problems. Evol. Comput. 4(1), 1-32 (1996)

13. Siddall, J.N.: Optimal Engineering Design: Principles and Applications. CRC
Press, New York (1982)

62

14.

15.

16.

17.

18.

K.S. Bhattacharjee and T. Ray

Golinski, J.: Optimal synthesis problems solved by means of nonlinear program-
ming and random methods. J. Mech. 5(3), 287-309 (1970)

Coello Coello, C.A.: Use of a self-adaptive penalty approach for engineering
optimization problems. Comput. Ind. 41(2), 113-127 (2000)

Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182-197 (2002)
Corder, G.W., Foreman, D.I.: Comparing two related samples: the Wilcoxon signed
ranks test. In: Nonparametric Statistics for Non-Statisticians: A Step-by-Step
Approach, pp. 38-56. Wiley (2009)

Cost to Evaluate Versus Cost to Learn?
Performance of Selective Evaluation Strategies
in Multiobjective Optimization

Kalyan Shankar Bhattacharjee®™) and Tapabrata Ray

School of Engineering and Information Technology, University of New South Wales,
Canberra, ACT 2600, Australia
{k.bhattacharjee,t.ray}@adfa.edu.au

Abstract. Population based stochastic algorithms have long been used
for the solution of multiobjective optimization problems. In the event
the problem involves computationally expensive analysis, the existing
practice is to use some form of surrogates or approximations. Surrogates
are either used to screen promising solutions or approximate the objec-
tive functions corresponding to the solutions. In this paper, we inves-
tigate the effects of selective evaluation of promising solutions and try
to derive answers to the following questions: (a) should we discard the
solution right away relying on a classifier without any further evalua-
tion? (b) should we evaluate its first objective function and then decide
to select or discard it? (c) should we evaluate its second objective func-
tion instead and then decide its fate or (d) should we evaluate both its
objective functions before selecting or discarding it? The last form is
typically an optimization algorithm in its native form. While evaluation
of solutions generate information that can be potentially learned by the
optimization algorithm, it comes with a computational cost which might
still be insignificant when compared with the cost of actual computation-
ally expensive analysis. In this paper, a simple scheme, referred as Com-
bined Classifier Based Approach (CCBA) is proposed. The performance
of CCBA along with other strategies have been evaluated using five
well studied unconstrained bi-objective optimization problems (DTLZ1-
DTLZ5) with limited computational budget. The aspect of selective eval-
uation has rarely been investigated in literature and we hope that this
study would prompt design of efficient algorithms that selectively eval-
uate solutions on the fly i.e. based on the trade-off between need to
learn/evaluate and cost to learn.

Keywords: Multiobjective optimization - Approximation - Selective
evaluation

1 Background

All population based stochastic optimization algorithms (e.g. evolutionary algo-
rithms, particle swarm optimization, differential evolution etc.) typically work

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 63-75, 2015.
DOI: 10.1007/978-3-319-26350-2_6

64 K.S. Bhattacharjee and T. Ray

with a set of solutions and evolve them over a number of generations. New solu-
tions are constructed using stochastic recombination operators and the process
continues until some prescribed termination condition is met. In the context of
computationally expensive optimization problems, the termination condition is
typically based on the allowable run time (several hours to several days depend-
ing upon the complexity of the problem and available computational resources).
In mainstream evolutionary computation, evaluation of a solution typically refers
to evaluating all the objective and constraint functions of a solution under con-
sideration. This is quite a rigid assumption as in many practical problems, the
objectives and constraints can be independently evaluated and each of such
incurs a cost.

In the context of constrained single objective optimization, most existing
population based stochastic algorithms (e.g. Nondominated sorting genetic algo-
rithm (NSGA-II)) relying on feasibility first principles can easily save significant
amount of computational time by only evaluating the objective function values
for feasible individuals. Since such algorithms use objective function values to
order feasible individuals and constraint violation values to order infeasible indi-
viduals, the computation of objective function values of infeasible solutions is
redundant and is essentially unused information. However, methods such as sto-
chastic ranking (SR) [1], infeasibility driven evolutionary algorithm (IDEA) [2],
epsilon level comparison [3] ete. utilize information about the objective function
values of the infeasible solutions to order them. Previous studies have highlighted
benefits of using such information during the course of search. In an attempt to
further contain the computational cost, one can look into possibilities of evaluat-
ing only a selected set of constraints for an individual. In the event evaluate till
you violate strategy [4], constraints are evaluated in a sequence until a violation
is encountered. Thus for an efficient algorithm design, it is important for us to
continuously access the trade-off between need to learn and the cost to learn.

In the context of multiobjective optimization, the aspect of selective evalua-
tion has rarely been studied. Selective evaluation is particularly important in the
context of computationally expensive optimization problems, since every evalu-
ation incurs significant cost. Canonical evolutionary algorithms rely on recom-
bination schemes to construct solutions that are all considered promising and
undergo full evaluation i.e. all objectives of all solutions in the offspring popu-
lation are evaluated. In surrogate assisted optimization (SAO), approximations
or surrogates are typically utilized in two different forms i.e. (a) used to identify
promising solutions that are only evaluated i.e. a subset of offspring solutions
undergo full evaluation or (b) performance of a subset of solutions are approxi-
mated and a mixed population (i.e. mix of individuals approximated and evalu-
ated) is managed during the course of optimization. There is significant body of
literature related to SAO and the readers are referred to [5] for further details.

It is clear from the above discussion that the overall performance of an app-
roach would depend on the following (a) means to identify promising solutions
(b) choice of model management i.e. evaluation of promising solutions versus
managing a mixed pool of solutions and finally (c) the efficiency of the optimiza-
tion algorithm. In this paper, we use a support vector machine classifier [6] to

Cost to Evaluate Versus Cost to Learn? 65

identity promising solutions. It is important to highlight that a classifier pre-
dicts a single class label for a solution, as opposed to surrogates that predict
the objective function values. There are reports on the use of a SVM classifier
to identify promising solutions [7], wherein a two-class classifier trained between
variables and selected set of nondominated fronts was used to solve a number
of multiobjective optimization problems. One class SVM classifiers are typically
used when the data has a large imbalance i.e. number of non-promising solutions
in the training data set is far more than number of promising solutions. While
we agree that the data is likely to have significant imbalance [8], we focus our
attention to several fundamental questions and understand the implications and
their effects i.e. (a) can we discard a solution without even evaluating it based on
the SVM classifier? (b) does the SVM classifier perform better if the first objec-
tive function is provided as an additional input although such a computation
would incur cost? (c) should we evaluate its second objective function instead
and then decide its fate based on the classifier? (d) should we evaluate both its
objective functions and ignore use of classifier totally? We systematically con-
duct these experiments within the framework of Nondominated Sorting Genetic
Algorithm (NSGA-II) [9].

2 Performance of Various Classifier Models

A generic bi-objective optimization problem is defined as follows:

Minimize [f1(x), f2(x)], x € R™ (1)

where f1(x) and f2(x)) are 2 objective functions, nx is the number of variables.

As in NSGA-II, a set of offspring solutions is generated using binary tour-
nament among parents, followed by simulated binary crossover and polynomial
mutation. In the context of computationally expensive optimization, we are inter-
ested to see if a subset of promising solutions can be identified using various
selection strategies discussed earlier. The pseudo-code of the algorithm is pre-
sented below. In this paper we have used NSGA-II framework with a selective
evaluation of potential child solutions. It is important to take note that the term,
number of function evaluations used in this study refers to the sum of individ-
ual fi1(x) and f2(x)) evaluations, i.e. evaluating a solution would incur a cost
of 2 units.

In the Train stage, all the nondominated solutions in the Archive are labelled
with class 1 while the rest have been labelled with class 0. We study each of the
possibilities in the Train and Identify stage i.e. (a) Ignore SVM in which case
it is baseline NSGA-II (b) use SVM classifier using only X as inputs (c) evaluate
f1 for all child solutions and use X and f; as inputs to SVM (d) evaluate f5 for
all child solutions and use X and f; as inputs to SVM and finally (e) use any of
the four strategies with equal probability for every child solution subsequently
referred as Random. This process will try to identify potentially nondominated
solutions using the above mentioned possibilities. We refer the readers to [6]

66 K.S. Bhattacharjee and T. Ray

Algorithm 1. SEMO

Input: N = Population size, F'E,.; = Maximum number of function evaluations
allowed, M;= Number of Objectives (2 used in this study), Archive=Repository of
all fully evaluated unique solutions.

1. FE=0,Gen=0

2: Initialize (pop); population of N individuals
3: Evaluate (popl:N,fl:Mf)
4: Update FE

5: Update Archive
6

7

8

: while (FE < FFEp4.)&(Gen < Genmaz) do
Train a two class SVM classifier
i Gen=Gen+1
9: childpop = Generate N child solutions
10: Identify C: set of promising child solutions
11: Evaluate childpopljcyfl:Mf
12: Update F'E
13: Update Archive
14: S = pop + childpop
15: Order S using nondominated sorting and crowding
16: pop:si:l:N,j:l:]\Jf)
17: end while

for the details on support vector machine classifiers. In our study, the standard
SVM classifier of MATLAB toolbox was used with a Gaussian Radial Basis
Function kernel with default settings and KKT violation level set as 0.05. One
can observe from Fig. 1, that there are approximately 9% class 1 solutions i.e.
nondominated solutions at the initial stage of the search process for a bi-objective
DTLZ1 problem. This justifies the use of a two-class classifier [8]. The percentage
however reduces in later stages of the evolution process to less than 1% which
is ideally suited for one-class classifiers.

N

n_ o

IS

2
—

Percentage of non-dominated solutions

/

N S ey

o

of

0.5 1 1.5 2
Evaluation Budget x 10

Fig. 1. Percentage of nondominated solutions in Archive versus cost: DTLZ1

Cost to Evaluate Versus Cost to Learn? 67

3 Experimental Results

In this section, we would like to use the DTLZ1 [10] example to highlight some
important observations. While this example is only used as an illustration and to
lay the foundation of our proposed scheme, the observations are also true for other
problems studied in the paper. The rationale behind the design of the proposed
algorithm Combined Classifier Based Approach (CCBA) is presented in the next
subsection. A complete benchmarking of all the above strategies and the newly pro-
posed strategy is presented using two objective formulations of DTLZ1, DTLZ2,
DTLZ3, DTLZ4 and DTLZ5 test functions. The number of variables nx is set to 6
for DTLZ1 and 11 for rest of the problems. The results are based on 30 independent
runs and the hyper volume metric [11] is used as a measure of performance. The
hypervolume is computed using true ideal point[0,0] as the reference and a lower
HV is preferred. While, Nadir point is usually used as a reference for hypervol-
ume computation (higher HV is better), use of true Nadir point to will lead to zero
HV values for several initial generations which is not useful. The actual hypervol-
ume measure is also given in Table 2 to provide more objective comparison. The
performance of the approach is objectively assessed using inverted generational
distance (IGD). The parameters used in this study include: Population size 100,
Maximum allowable number of generations 500, Total allowable cost 20,000, prob-
ability of crossover of 1, crossover distribution index of 15, probability of mutation
of 1/nx and a mutation distribution index of 20.

3.1 TIllustrative Example: DTLZ1

The best, mean, worst, median and standard deviation of the hyper volume
obtained using various selection strategies i.e. NSGA-II, X, XF1, XF2 and Ran-
dom for the DTLZ1 problem are presented in Table 1.

Table 1. Hypervolume statistics for DTLZ1 problem for 20000 cost

Problems | Algorithms | Best | Mean | Worst |Median | Std
DTLZ1 | NSGA-II]0.1277|0.3833 | 1.3051 |0.2209 | 0.3359

X 0.1289 | 1.6482 | 12.8327 | 0.6682 | 2.4747
XF1 0.1330 | 1.4229 | 20.4741 | 0.5524 | 3.5965
XF2 0.1366 | 1.8908 | 15.9307 | 0.8331 |3.1704

Random 0.1294 1 1.3630 | 4.1203 | 1.2384 |1.0329

The progress plot of hypervolume with cost for the DTLZ1 problem is pre-
sented in Fig. 2(a), In order to more objectively observe the performance of the
classifiers, the false positives and false negatives are analyzed. Take note that the
definition of false positives and false negatives used in this study are different
from those used in the domain of machine learning. The term false positive (FP)

68 K.S. Bhattacharjee and T. Ray

——NSGA-II
—X
—XF1

10 ——XF2
——Random

Hypervolume
False Positive Percentage
=
—

——NSGA-II
—X
—XF1
——XF2
—— Random

0 05 1 15 2 0 05 1 15 2
Evaluation Budget 10" Evaluation Budget «10*

(a) Mean hypervolume versus cost: (b) False positive percentage versus
DTLZ1 cost: DTLZ1

False Negative Percentage

——NSGA-II
107 —X

—XF1
——XF2
—— Random

0 0.5 1 15 2
Evaluation Budget x 10

(c) False negative percentage versus
cost: DTLZ1

Fig. 2. Base Plots-DTLZ1

Table 2. Actual hypervolume measure

DTLZ1 | DTLZ2 | DTLZ3 | DTLZ4 | DTLZ5
0.1250 | 0.7854 |0.7854 |0.7854 |0.7854

would mean the classifier has identified a child solution to be nondominated
based on the archive, but in reality it is a dominated solution. The computa-
tion of FP considers one child solution at a time and if the child solution was
dominated with respect to the archive, it would be considered a false positive
i.e. the child was evaluated by the algorithm based on the classifier although it
was in reality a dominated solution. The term false negative (FN) would mean,
a nondominated child solution classified as a dominated solution and discarded
without further evaluation. High number of false positives will incur significant
computational cost, while a high number of false negatives would mean promis-
ing solutions discarded. As for NSGA-II, all child solutions are evaluated and
thus there are no false negatives. The false positives and false negatives of various
strategies for the DTLZ1 problem is presented in Fig.2(b) and (c).

The preliminary observations can be summarized as follows: (a) Full evalu-
ation of all child solutions i.e. NSGA-IT offers the best performance for DTLZ1

Cost to Evaluate Versus Cost to Learn? 69

based on final hypervolume. (b) Random model seems to offer an average perfor-
mance. (c) In terms of false positives, XF1 and XF2 tend to have lower values.
This supports the argument that the models are cautious i.e. they are selectively
evaluating promising solutions. The false positives of model based on X alone is
less strict in its evaluation policy when compared to XF1 and XF2 models. (d)
It is interesting to note that the false negatives of all models are fairly low. This
suggests, that all the models quite accurate in discarding i.e. very few around

Table 3. Hypervolume statistics for DTLZ problem for 20000 cost

Problems|Algorithms|Best Mean Worst, Median |Std
DTLZ1 |NSGA-IT 0.1277 0.3833 1.3051 0.2209 0.3359
X 0.1289 1.6482| 12.8327 0.6682 2.4746
XF1 0.1330 1.4229| 20.4741 0.5524 3.5965
XF2 0.1366 1.8908| 15.9307 0.8331 3.1704
Random 0.1294 1.3630 4.1203 1.2384 1.0329
CCBA 0.1315 1.1499, 15.3663 0.5213 2.7715
DTLZ2 |NSGA-IT 0.7905 0.7910 0.7914 0.7910 0.0002
X 0.7900 0.7903 0.7907 0.7903 0.0002
XF1 0.7898 0.7904 0.7909 0.7905 0.0003
XF2 0.7899 0.7906 0.7910 0.7906 0.0003
Random 0.7906 0.7910 0.7915 0.7910 0.0002
CCBA 0.7899 0.7903 0.7906 0.7902 0.0001
DTLZ3 |NSGA-IT 17.2377| 158.3326| 460.6635 111.9531| 124.4603
X 65.6367| 847.7729/2280.8584| 656.2069, 641.5739
XF1 469.8990/2166.9133|5148.9793|1782.7222/1122.1093
XF2 377.6039/2109.2509/9849.1959 1809.4176|1870.4375
Random [187.3159| 691.4597/1984.1853/592.2983 | 415.63794
CCBA 80.5458| 537.4027(1730.7210| 444.5855, 356.0086
DTLZ4 |NSGA-II 0.7907 0.7911 0.7918 0.7911 0.0002
X 0.7900 0.7905 0.7911 0.7904 0.0003
XF1 0.7899 0.7907 0.7914 0.7908 0.0003
XF2 0.7901 0.7911 0.7987 0.7908 0.0017
Random 0.7899 0.7910 0.7918 0.7910 0.0004
CCBA 0.7901 0.7905 0.7909 0.7905 0.0002
DTLZ5 |NSGA-II 0.7905 0.7910 0.7914 0.7910 0.0002
X 0.7900 0.7903 0.7907 0.7903 0.0002
XF1 0.7898 0.7904 0.7909 0.7905 0.0003
XF2 0.7899 0.7906 0.7910 0.7906 0.0003
Random 0.7906 0.7910 0.7915 0.7910 0.0002
CCBA 0.7899 0.7903 0.7906 0.7902 0.0001

70 K.S. Bhattacharjee and T. Ray

1% of promising solutions are incorrectly eliminated. (e) There is no significant
difference in the performance between XF1 and XF2 models. It is clear, that the
number of FPs are extremely high and means to reduce that while maintaining
similar levels of FN would be necessary to achieve any benefit. In an attempt
to reduce FPs, Combined Classifier Based Approach (CCBA) is proposed which
is same as Algorithm 1 with modifications in the Train and Identify stages.
CCBA relies on the use of classifiers in two levels i.e. solutions identified promis-
ing based on X classifier is further analyzed using XF1 or XF2 classifier at
random. Solutions identified as promising at the second stage via XF1 or XF2
classifier would only be evaluated. Take note that in the event, XF1 classifier is
invoked, the fi is evaluated. This process is expected to be more strict, i.e., we
would expect less false positives.

3.2 Performance on DTLZ Problem Suite

The best, mean, worst, median and standard deviation of the hyper volume
measures for the problems using NSGA-II, X, XF1, XF2, Random and CCBA
are presented in Table 3.

Hypervolume

False Positive Percentage

of

0 0.5 1 1.5 2 0 0.5 1 1.5 2
Evaluation Budget x 10 Evaluation Budget x 10

10" 10

(a) Mean hypervolume versus cost: (b) False positive percentage versus
DTLZ1 cost: DTLZ1

False Negative Percentage

CCBA

0 05 1 15 2
Evaluation Budget < 10"

(c) False negative percentage versus
cost: DTLZ1

Fig. 3. Plots-DTLZ1

Cost to Evaluate Versus Cost to Learn? 71

2

10
= = =
—XF1
——XF2
——Random /

CCBA 10’

10 ——NSGA-II
—X
—XF1
——XF2
—— Random
CCBA

Hypervolume

False Positive Percentage

.
10 . .
1 15 2 0 05 1 15 2
Evaluation Budget «10° Evaluation Budget <10t

(a) Mean hypervolume versus cost: (b) False positive percentage versus
DTLZ2 cost: DTLZ2

False Negative Percentage

1 1
Evaluation Budget x10°

(c) False negative percentage versus
cost: DTLZ2

Fig. 4. Plots-DTLZ2

The hypervolumes, false positives and false negatives of various strategies for
DTLZ1, DTLZ2, DTLZ3, and DTLZ5 problems are presented in Figs. 3(a), 4(a),
5(a), 6(a), 3(b), 4(b), 5(b), 6(b), 3(c), 4(c), 5(c), 6(c).

The results listed in the above tables and plots can be summarized as fol-
lows: (a) Full evaluation of all child solutions i.e. NSGA-IT offers the best perfor-
mance for DTLZ1 and DTLZ3 problems. (b) Classification and selection based
on CCBA and X only offers the best performance in DTLZ2 and DTLZ5. (c)
Classification and selection based on CCBA and X only offers benefit in early
phases. (d) In terms of false positives, the average values are 90 %, 70 %, 50 %
for NSGA-II, X and CCBA models respectively and for rest of the models the
values are at par which is around 40 % for DTLZ1 problem. Whereas, for DTLZ2
problem, the average values of FPs are 80 % for NSGA-II and Random models
and 50 % for the rest. For DTLZ3 problem, NSGA-II has almost 100% FPs,
however X offers 50 %, CCBA offers 40 % and rest of the models offer around
30 %. Similarly for DTLZ5 problem, NSGA-IT and Random offer around 80 %
and rest of the models offer 50 %. However in terms of false negatives, NSGA-II
offers best in all problems. Among the rest of the models, Random offers the
highest in DTLZ1 and DTLZ3 and has less average value than others in DTLZ2,
and DTLZ5 problems. X, XF1, XF2, CCBA models are approximately at par for

72 K.S. Bhattacharjee and T. Ray

——NSGA-II

—X
—XF1 P Al
" ——XF2 -
107 ——Random M/{’?yl
: CCBA 10

Hypervolume
3,

False Positive Percentage

3

——NSGA-II
—X

2 -1
10 0 0.5 1 15 2 10 0 0.5 1 15 2
Evaluation Budget x10* Evaluation Budget x 10"

(a) Mean hypervolume versus cost: (b) False positive percentage versus
DTLZ3 cost: DTLZ3

False Negative Percentage

1 1.5
Evaluation Budget x10°

(c) False negative percentage versus
cost: DTLZ3

Fig. 5. Plots-DTLZ3

all the problems in terms of FNs. These support the argument that the XF1 and
XF2 models are cautious i.e. they are selectively evaluating promising solutions.
The false positives of model based on X alone is less strict in its evaluation policy
when compared to XF1 and XF2 models. However CCBA offers less or at par
in terms of FPs and it has better or similar performance in terms of IGD and
hypervolume in all the problems compared to X model. (¢) Random model seems
to offer an average performance across all problems. (f) There is no significant
difference in the performance between XF1 and XF2 models in most problems
except DTLZ4. One seems to more beneficial over another in different stages of
the search process.

The last aspect seems counter-intuitive as we would expect providing addi-
tional information would allow the classifier to trained better. Since f; and fs
are functions of X, it is difficult to generalize if evaluating them at a cost and
subsequently using them to identify promising solutions would be better than
using X alone without any additional cost. To examine this, we assumed zero
cost associated in evaluating fi and fy of the child solutions during their clas-
sification phase using XF1 and XF1 models. We would certainly expect, XF1
and XF2 models to perform better or at par with X model. In all the cases,
we noticed that XF1 and XF2 models performed better or at par with the X

Cost to Evaluate Versus Cost to Learn? 73

10 T
| ——NSGA-II ol
10”°H —X r’\ : T
‘ — XF1
| —XF2 ®]
—Random|| @ (
CCBA z 10’ :
- 2 ;
g 10 8
g 2
2 2
£ g 0
J 310 ——NSGA-II
° & —X
—XF1
——XF2
—— Random
01 \ " CCBA
10 = 10
0 0.5 1 1.5 2 0 0.5 1 15 2
Evaluation Budget «10° Evaluation Budget “10*
(a) Mean hypervolume versus cost: (b) False positive percentage versus
DTLZ5 cost: DTLZ5
10°
o
g
g
g
&
B
g
2
3
e
1 1.
Evaluation Budget x10°
(c) False negative percentage versus
cost: DTLZS
Fig. 6. Plots-DTLZ5
10°
‘(‘ : ——NSGA-II
\ —X
\ — XF1
o : ——XF2
o
£ £
s S 402l
é §10
z z
10’
. o
10 0 0.5 1 1.5 2 ° 0 0.5 1 15 2
Evaluation Budget x 10 Evaluation Budget x 10

(a) Mean hypervolume versus cost: (b) Mean hypervolume versus cost:
DTLZI1: Zero cost at classification DTLZ1: Different cost
stage

Fig. 7. Plots-DTLZ1: Different Settings

model. In all cases, CCBA performed better than X model. A typical DTLZ1
plot is included to illustrate this. The above discussion is based on hypervolume
measure. The study has clearly indicated that the choice of X, XF1, XF2 or
CCBA classifier certainly improves the performance over a full evaluation policy

74 K.S. Bhattacharjee and T. Ray

i.e. NSGA-II for all problems studied in the paper. We have also illustrated that
CCBA can bring down FPs for all problems while maintaining similar levels of
FNs and performance compared to X for all problems.

While in the above study, we considered equal cost of fi; and fo evaluation
i.e. each of 1 unit, the benefits of XF1 over XF2 or vice versa might be visible
if the evaluation costs are different. We present the results of such an example,
wherein f; evaluation costs 1 unit and f; evaluation costs 2 units. However the
results clearly identify that CCBA model offers greater benefits as opposed to
X, XF1 or XF2 models (Fig. 7).

4 Summary and Conclusions

In this paper, we investigated effects of classifiers and their utility for prob-
lems involving computationally expensive multiobjective optimization problems.
There has been a renewed interest within the EMO community to investigate
and develop classifier based approaches for the solution of such problems. The
approach can be considered as a parallel to existing surrogate assisted optimiza-
tion methods which independently evaluate the objectives. In classifier based
approaches, a class label i,e, promising or non-promising is assigned to solu-
tions. This paper attempts to investigate if partial evaluation is helpful i.e. can
we evaluated one of the objectives and attempt to assess the quality of the
solution. Results of classifiers being trained using X, XF1, XF2 and Random
strategies have been used to for baseline investigation. The utility of X, XF1
and XF2 based classifiers have also been assessed with cost and zero cost mod-
els. The difference between XF1 and XF2 models have also been assessed to
understand the utility of one over another. Furthermore, the results also suggest
that some solutions in the population can be discarded based on its variable
values only, while for others such a decision can only be made after evaluating
its first or second or both its objectives or combining these two strategies. The
results clearly indicate that development of strategies to exploit such schemes
is extremely challenging.The observation of large number of false positives in
all the above models prompted the design of Combined Classifier Based App-
roach (CCBA). The approach reduced the number of false positives and the false
negatives were at par with other strategies resulting in competitive performance
for all problems. While far from perfect, we hope that this study would prompt
the design of efficient algorithms that selectively evaluate solutions on the fly i.e.
based on the trade-off between need to learn/evaluate and cost to learn.

References

1. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary opti-
mization. IEEE Trans. Evol. Comput. 4(3), 284-294 (2000)

2. Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility driven evolutionary
algorithm for constrained optimization. In: Mezura-Montes, E. (ed.) Constraint-
Handling in Evolutionary Optimization. SCI, vol. 198, pp. 145-165. Springer, Hei-
delberg (2009)

10.

11.

Cost to Evaluate Versus Cost to Learn? 75

Takahama, T., Sakai, S.: Constrained optimization by the e constrained differential
evolution with gradient-based mutation and feasible elites. In: Proceedings of the
IEEE Congress on Evolutionary Computation (CEC), pp. 1-8 (2006)
Asafuddoula, M., Ray, T., Sarker, R.: Evaluate till you violate: a differential evo-
lution algorithm based on partial evaluation of the constraint set. In: Proceedings
of the IEEE Symposium on Differential Evolution (SDE), pp. 31-37 (2013)

Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61-70 (2011)

Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.:
Least Squares Support Vector Machines, vol. 4. World Scientific, Singapore (2002)
Loshchilov, 1., Schoenauer, M., Sebag, M.: A mono surrogate for multiobjective
optimization. In: Proceedings of the 12th Annual Conference on Genetic and Evo-
lutionary Computation (GECCO), pp. 471-478. ACM (2010)

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321-357 (2002)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182-197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolu-
tionary Multiobjective Optimization. Springer, Heidelberg (2005)

Beume, N., Fonseca, C., Lopez-Ibanez, M., Paquete, L., Vahrenhold, J.: On the
complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput.
13(5), 1075-1082 (2009)

A Propositional Plausible Logic

David Billington®

School of Information and Communication Technology, Griffith University,
Nathan Campus, Brisbane, QLD 4111, Australia
d.billington@griffith.edu.au

Abstract. A new non-monotonic propositional logic called PPL — for
Propositional Plausible Logic — is defined. An example is worked and
four theorems about PPL are stated.

Keywords: Plausible logic - Defeasible logic - Non-monotonic reasoning

1 Introduction

We shall define a new non-monotonic propositional logic called PPL, for Proposi-
tional Plausible Logic. PPL belongs to the family of propositional non-monotonic
logics called Defeasible Logics, first defined in [2]. Unlike PPL, previous
Defeasible Logics [1] do not handle conjunctions properly.

For a given formula, a proof algorithm will satisfy exactly one of the following
four conditions.

(i) not terminate,

(ii) terminate in a state indicating that the formula is proved,
(iii) terminate in a state indicating that the formula is not provable,
(iv) terminate in some other state.

A proof algorithm is said to be decisive if and only if for every formula, the
proof algorithm satisfies either (ii) or (iii). The proof algorithms of all previous
Defeasible Logics were not decisive. All the proof algorithms of PPL are decisive,
and so PPL is decidable.

This article is organised into the following sections. The definition of PPL
is in Sect. 2. In Sect.3 we apply PPL to an example. Four important theorems
about PPL are stated and discussed in Sect. 4. Section 5 is the conclusion.

2 PPL: A Propositional Plausible Logic

PPL uses a propositional language — with negation —, conjunction A, and dis-
junction V — to reason about facts and plausible information. The facts are
represented by formulas that are converted into clauses called axioms, which
are then converted into strict rules. The plausible information is represented by
defeasible rules, warning rules, and a priority relation, >, on rules.

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): AI 2015, LNATI 9457, pp. 76-82, 2015.
DOI: 10.1007/978-3-319-26350-2_7

A Propositional Plausible Logic 7

Definition 1. A rule, r, is any triple (A(r), arrow(r), ¢(r)) such that A(r) is
a finite set of formulas, arrow(r) € {—,=,~}, and ¢(r) is a formula. If r is
a rule then A(r) is called the set of antecedents of r, and c¢(r) is called the
consequent of 7.

Strict rules use the strict arrow, —, and are written A(r) — c(r).
Defeasible rules use the defeasible arrow, =, and are written A(r) = ¢(r).

Warning rules use the warning arrow, ~~, and are written A(r) ~ ¢(r).

Intuitively, A— c means if every formula in A is true then c is true; whereas
A= ¢ means if every formula in A is true then c is usually true. Roughly, A~-c
means if every formula in A is true then ¢ might be true. So A ~» —¢ warns
against concluding usually ¢, but does not support usually —c.

Definition 2. Let R be any set of rules. A binary relation, >, on R is cyclic iff
there exists a finite sequence, (1,72, ...,7,) where n > 1, of elements of R such
that r1 >ro > ... > 1, > rq.

A priority relation, >, on rules is used to indicate the more relevant of two
rules. For instance the specific rule ‘Quails usually do not fly’ is more relevant
than the general rule ‘Birds usually fly’ when reasoning about the flying ability
of a quail. Hence ‘Quails usually do not fly’ > ‘Birds usually fly’.

We shall now introduce some needed notation. The empty sequence is denoted
by (). Let S be a sequence. If S is finite then S 4 ¢ denotes the sequence formed
by just adding e onto the right end of S. Define e€.S to mean e is an element
of S, and e¢ S to mean e is not an element of S. A formula is contingent iff
it is not a tautology and it is not a contradiction. If @ is an atom then ~a is —a,
and ~—a is a. If L is a set of literals then ~L = {~l:l€L}.

Next we define, among other things, the conversion of a clause to strict rules.

Definition 3. Let R be a set of rules, I’ be a finite set of formulas, C be a set
of contingent clauses, and ¢ be a contingent clause.

(1) Rs is the set of strict rules in R.

(2) Ryq is the set of defeasible rules in R.

(3) ¢(R) is the set of consequents of the rules in R.

(4) Ru(c)={{}—=cU{{A~(L-K)} = VK :c=VL and {} CKCL}.
E5;) = U{Ru(c) : ceC}.

6

Ru(C
Ru(C, F) is the set of rules in Ru(C') whose set of antecedents is F'.

If ¢ has n literals then Ru(c) has 2"—1 strict rules. For example Ru(V{a,b, c})
={ {} = V{a,b,c}, {A{=d,~c}} — a, {M-a,~c}} — b, {A{-a,-b}} — ¢,
{—-a}—V{b,c}, {-b} —V{a,c}, {-c} —V{a,b}

Definition 4. Let R be a finite set of rules. (R,>) is a plausible theory iff
there is a satisfiable set of contingent clauses, Az, such that 1, 2, and 3 hold.

(1) Rs ={A — Ac(Ru(Az,A)) : Ac{A(r) : r€ Ru(Ax)}}.

78 D. Billington

(2) If Az#{} then r denotes the strict rule {} — AAx.
(3) > is a relation on R such that > C Rx(R—{r}) and > is not cyclic.

Space limitations mean that we have made R finite, although this is not neces-
sary. The rules in R; are the ‘anding’ together of the rules in Ru(Ax) that have
the same antecedent. The set Az is the set of axioms of the plausible theory
(R,>) and is denoted by Az(R).

In the rest of this section we define how to prove formulas given a plausible
theory. This is done by naming the proof algorithms (Definition 5), defining the
evidence for and against a formula (Definition 6), defining a mechanism for pre-
venting proofs from looping (Definition 7), and finally defining the proof function
and the proof algorithms (Definition 9).

Definition 5. Define Alg = {p, 7,9, 5,0 ,¢', 7'} to be the set of names of
the proof algorithms. Define ¢’ = . If a€{m, 1, 5} then define (/) = o” =
a. If a€ Alg, then the co-algorithm of a is «/'.

The ¢ algorithm mimics classical provability, = and ¢ propagating ambigu-
ity, and @ blocks ambiguity, see Sect. 3. The co-algorithms are used to evaluate
evidence against a formula.

The evidence for and against a formula is now defined.

Definition 6. Let (R, >) be a plausible theory, R'CR, Az = Az(R), ac Alg,
f is a formula, and {r,s} CR.

(1) Ry = (RUR,) - {r}.
(2) R'[f] ={reR : AzU{c(r)} is satisfiable and AzU{c(r)} = f}.
(3) R'[f;s] = {teR'[f]:t > s}.
(4) If aef{p, 7'} or r=r then Foe(w, f,r) ={}.
Foe(Y', f,r) ={s€R[~f] : s >r} = R[~f;r]
If a¢{p,',¢'} and r # 1 then Foe(w, f,r) = {s€R[-f]:s £r}.

Roughly R’[f] is the set of rules in R’ whose consequents and axioms imply f.
If f is not a fact then R5[f] is all the evidence for f; and Foe(c, f,r) is the set
of rules that o regards as the evidence against f that is not inferior to r.

A history of used rules prevents proofs from looping.

Definition 7. Suppose (R, >) is a plausible theory and « € Alg. Define aR =
{ar : r€ R}. Then H is an a-history iff H is a finite sequence of elements of
aRUA'R that has no repeated elements.

A formula is proved by evaluating its proof value, which is either +1 or —1;
+1 indicates the formula is proved, and —1 indicates the formula cannot be
proved. The arithmetic properties of the proof values are defined below. These
are as expected, but note that max{} = —1 and min{} = +1.

Definition 8. Suppose SC{+1,—1}. ThenminS = -1 iff —1€ S, min S = +1
iff —1¢5, maxS =+1iff +1€5, maxS = -1 iff +1¢S5, ——1 =+1, and
—+1=-1.

A Propositional Plausible Logic 79

The proof function P evaluates the proof value of its three arguments: the
proof algorithm «, the history of used rules H, and the formula f or set of for-
mulas I’ to be evaluated. An explanation of each part of the following definition
concludes this section.

Definition 9. Suppose P = (R, >) is a plausible theory, Az = Az(R), a€ Alg,
H is an a-history, and f is a formula. The proof function for P, P, and the
proof algorithms are defined by P1 to P5.

(P1) If F is a finite set of formulas, then P(«, H, F) = min{P(«, H, f) : f€F}.
(P2) If Az | f then P(a,H, f) =41. Also P(p,H, f)=+1 iff Az E f.
(P3) If Az ¥ f and « # ¢ then
P(o, H, f) = max{For(a, H, f,r) : ar¢ H and r€ R3[f]}.
(P4) If Az ¥ f, a # ¢, ar ¢ H, and r € Rj[f] then For(a,H, f,1r) =
min[{P(a, H+ar, A(r))} U {Dftd(a, H, f,r,s) : s€ Foe(a, f,7)}].
(P5) If Az ¥ f, a ¢ {p, 7'}, ar ¢ H, r € Rj[f], and s € Foe(c, f,r) then
Dftd(a, H, f,r,s) = max[{P(a, H+at, A(t)) : at ¢ H and t€ Rj[f;s]} U
{—P(o/,H+a's, A(s)) : /s ¢ H}].

If x is a formula or a finite set of formulas then define (o, H) |-z iff P(a, H,x) =
+1, and o |z iff z is a-provable iff P(«, (), z) = +1.

To prove a set F' of formulas every element of F' must be proved; hence P1.
If Az = f then f is a fact and so is declared proved. As ¢ only proves facts
we have the second part of P2.

To prove f we need a rule for f, r € Rj[f], that has not been used before, ar ¢
H, such that For(«, H, f,r) = +1; hence P3. For(«, H, f,r) = +1 whenever the
set of antecedents of r, A(r), is proved; and when all the evidence against f, that
is, rules in Foe(a, f,r), is defeated, that is, Dftd(a, H, f,r,s) = +1. Whenever
« uses a rule r, we must add ar to the history, H, of used rules giving H+ar.
Hence P4.

A rule s is defeated either by team defeat or by disabling s. The team of
rules for f is R5[f]. A rule s is defeated by team defeat if and only if there is
a member ¢ of the team for f such that ¢ > s, that is, ¢t € R[f;s], and every
formula in the set of antecedents of ¢, A(t), is proved. Of course we must be sure
that « has not previously used ¢, at ¢ H, and we must add at to H. A rule s is
disabled by showing that o’ cannot prove A(s). Again we must be sure that o’
has not previously used s, o’s¢ H, and we must add «'s to H. Hence P5.

Now that Plausible Logic is defined, it is time to apply it.

3 The Ambiguity Puzzle

Consider the following four statements.

(1) There is evidence that a is usually true.
(2) There is evidence that —a is usually true.
(3) There is evidence that b is usually true.
(4) If a is true then —b is usually true.

80 D. Billington

What can be concluded about b? The evidence for b is (3). The evidence
against b comes from (1) and (4). If we knew that a was definitely true then the
evidence for b and against b would be equal. But (1) and (2) means that the
evidence against b has been weakened.

Since (1) and (2) give equal evidence for and against a, a is said to be
ambiguous. If the evidence against b has been weakened sufficiently to allow b
to be concluded, then b is not ambiguous. So the ambiguity of a has been blocked
from propagating to b. An algorithm that can prove b (but not —b) is said to be
ambiguity blocking.

If the evidence against b has not been weakened sufficiently to allow b to be
concluded, then b is ambiguous. So the ambiguity of a has been propagated to b.
An algorithm that cannot prove b (or —b) is said to be ambiguity propagating.

The plausible theory (R,>) which models the Ambiguity Puzzle is defined
as follows. The priority relation > is empty, and R = {74, Tna, T, Tanb}, Where
ro is{}=a, rne is{}=-a, r is{}=0b, and 7renp is{a}=-b.

Since Rs; = {}, Az(R) = Az = {}. So R|a] = {r.}, R[b] ={rp}, R[a] =
{rna}, and R[-b] = {ronp}. If 1€{a,—a,b,—b} and s€ R then R[l;s] = {}.

We shall show that 7 and v are ambiguity propagating and that 3 is ambi-
guity blocking. In the following evaluations we shall use { and O.

T) P(a, H, {f}) = P(a7H7f)7 by P1.
0) P(a, H,{}) = min{} = +1, by P1.

Evaluation El1. a € {r, 1, 5}

la) P(a’ ()7 b) = FOT(Q, ()7 b, Tb)a by P3

2a) = min{ P(a, (arp),{}), Dftd(c, (), b, 75, Tans)}, by P4
3a) = Dftd(e, (), b, 76, Tanp), by O

da) = —P(, (&' Tanp), @), by P5, 1

5a) = —For(d/, (&'Tanp), a,r4), by P3

Evaluation E2. ac{r, ¢} and a ¥ b

5a) P(a,(),b) = —For(d/, (&'Tany), a,74), by E1
6a) = —P(d/, (&'Tanp, &'14),{}), by P4

7a) = —1, by O.

Evaluation E3. 5 |-b

58) P(B,(),b) = —For(B', (B'Tanb), a;7a), by El

66) = - min{P(ﬁ’, (ﬁ/""anba ﬁ/ra)7 {}’)7 thd(ﬁ/, (ﬁ/ranb)a @, Tq, rna)}y by P4
768) = —=Dftd(5', (8'Tanb)s @y Ta, Fna), by O

86) = - - P(ﬂ, (6/Tanbaﬂrna)7 {})7 by P5

948) = +1, by O.

By Evaluation E2 and Theorem 1 (Decisiveness), m and ¢ cannot prove b
and so they are ambiguity propagating. By Evaluation E3 and Theorem3 (2-
Consistency), 3 proves b and so is ambiguity blocking.

A Propositional Plausible Logic 81

4 Theorems About Propositional Plausible Logic

A major property of PPL is that it is decisive and hence decidable.

Theorem 1 (Decisiveness). Suppose P is a plausible theory, o € Alg, H is
an a-history, and x is either a formula or a finite set of formulas. Then either
P(a,H,z) = +1 or P(a,H,x) = —1, but not both.

Right Weakening is the property that if a formula f is provable and f clas-
sically implies a formula g then g is provable. Thus Right Weakening is closure
under classical inference. The following result shows that both Right Weakening
and ‘Modus Ponens (MP) for strict rules’ hold for PPL.

Theorem 2 (Right Weakening). Suppose (R, >) is a plausible theory, Az =
Az(R), a€ Alg, H is an a-history, and both f and g are formulas.

(1) If (o, H) | f and AzU{f} =g then (a,H) }-g.
(2) If (o, H) - f and f g then (o, H) Fg. (Right Weakening)
(3) If Ag€ R; and (o, H) A then (a,H) |-g. (MP for strict rules)

The next theorem states that any two proved formulas are consistent with
the axioms.

Theorem 3 (2-Consistency). Suppose (R,>) is a plausible theory, Az =
Az(R), ae{p,m, ¢, 3,5}, and both f and g are formulas.
If o f and o |-g then AzU{f,g} is satisfiable.

The final result shows that the proof algorithms form a hierarchy that is
consistent with the intuition that ambiguity propagating proof algorithms are
more cautious than ambiguity blocking algorithms.

Theorem 4 (Hierarchy). Suppose P = (R, >) is a plausible theory. Let P(«)
be the set of all formulas provable from P using the proof algorithm «.

(1) P(p) € P(m) € P(y) € P(B) = P(B) S P(Y) S P(x').
(2) If > is empty then P(p) € P(r) = P(y) € P(B) = P(F') € P(¢') = P(n).

So ', the co-algorithm of 3, proves exactly the same formulas as 8. The set of
formulas proved by 7’ is very similar to the union of all extensions of an extension
based logic, like Default Logic or argumentation systems. The difference between
¢’ and 7’ is that ' considers the priority relation > whereas 7’ does not. Since
both 1)’ and 7’ can prove a formula and its negation, it is better to think of them
as evidence finders rather than algorithms that prove formulas are true.

5 Conclusion

A new propositional non-monotonic logic, called PPL for Propositional Plausible
Logic, was defined. An example was worked and four theorems about PPL were

82 D. Billington

stated. PPL has been implemented by George Wilson under the direction of
Dr. Andrew Rock, who has implemented other Defeasible Logics.

Future work on PPL could involve a complexity analysis and a study of
PPL’s implementation. It may be worthwhile relating PPL and argumentation
systems. Adding variables to PPL would significantly increase its usefulness.

Acknowledgement. The author thanks Patrick Marchisella for many helpful discus-
sions.

References

1. Billington, D.: A defeasible logic for clauses. In: Wang, D., Reynolds, M. (eds.) Al
2011. LNCS, vol. 7106, pp. 472-480. Springer, Heidelberg (2011)

2. Nute, D.: Defeasible reasoning. In: Proceedings of the 20th Hawaii International
Conference on System Science, pp. 470-477 (1987)

Monte Carlo Analysis of a Puzzle Game

= . .
Cameron Browne® and Frederic Maire

School of Electrical Engineering and Computer Science,
Science and Engineering Faculty, Queensland University of Technology,
Gardens Point, Brisbane 4000, Australia
{c.browne,f.maire}@qut.edu.au
http://www.qut.edu.au

Abstract. When a puzzle game is created, its design parameters must
be chosen to allow solvable and interesting challenges to be created for
the player. We investigate the use of random sampling as a computa-
tionally inexpensive means of automated game analysis, to evaluate the
BoxOff family of puzzle games. This analysis reveals useful insights into
the game, such as the surprising fact that almost 100 % of randomly gen-
erated challenges have a solution, but less than 10 % will be solved using
strictly random play, validating the inventor’s design choices. We show
the 1D game to be trivial and the 3D game to be viable.

1 Introduction

Any newly designed game must undergo a process of playtesting and refinement
to ensure that its equipment and rule set are optimally tuned to realise an inter-
esting playing experience. This can be a painstaking and tedious process that
may take years, but can be assisted by mathematical and/or computer mod-
elling of the game in question [2]. However, analyses that rely on full game tree
expansions or complete enumerations of the design space can be prohibitively
expensive to compute for real-world cases of even modest complexity.

In this paper, we investigate ways in which random sampling can be used
instead, to quickly give some insight into a game’s inherent nature with less
computational effort. We use as our test case a new puzzle game called BoxOff.

Monte Carlo approaches have had spectacular success in game Al over the last
decade, especially Monte Carlo tree search (MCTS) methods, which now drive
the world champion AI players of many games [5]. MCTS approaches have been
especially successful in the related field of general game playing, i.e. the study
of computer programs for playing a range of games well rather than specialising
in any one particular game, as they allow the AI to make plausible moves for a
given game without any domain-specific strategic or tactical knowledge [6].

However, we use Monte Carlo approaches for a different purpose in this study.
We are less concerned with how to play the game than with how well it plays.
This study can be phrased as an optimisation problem — given the basic design
of a game, what are the parameters that provide the best experience for the
player? — which places it within the remit of procedural content generation [13].

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 83-95, 2015.
DOI: 10.1007/978-3-319-26350-2_8

84 C. Browne and F. Maire

900000 @

@
O
[O O OO0 | @
@0 0000 O

Fig. 1. A 6 x 8 challenge with three colours, and legal white and illegal black moves.

1.1 BoxOff

BoxOff! is a solitaire puzzle game invented in 2013 by American game designer
Stephen Meyers [9]. The rules are as follows:

1. Start: The game starts with pieces in C' colours randomly placed to cover
all cells of a regular rectangular grid (the board). This defines the challenge
to be solved. Figurel (left) shows a challenge on the standard 6 x 8 board
with C' = 3 colours.

2. Play: The player then makes a series of moves, each involving the removal
of a pair of same-coloured pieces that occupy a boz (rectangle) that includes
no other pieces. For example, the two white pieces in Fig.1 (right) can
be removed because they occupy a box (dotted) that is otherwise empty,
whereas the two black pieces are blocked from removal by the white piece.

3. End: The player wins by removing all pieces from the board, else loses if
there are no legal moves at any point while pieces remain on the board.

In order to be solvable, each challenge must have an even number N of board
cells, and for each colour ¢ the number of pieces P. must also be even. The
standard game is played on a 6 x 8 board with 16 pieces in each of C = 3
colours. For aesthetic reasons, the board dimensions are typically chosen to be
as square as possible for a given N, and the piece counts of each colour P; ... Pg
are typically chosen to be as similar as possible while summing to N.

1.2 Game Design Goals

The design parameters for BoxOff are therefore the board size N and number of
colours C. We define the design space to be the set of valid combinations of IV
and C, the challenge space to be the set of possible challenges for a given design,
and the solution space to be the set of possible solutions for a given challenge.
We are interested in whether random sampling of the design space of BoxOff
can shed some light on questions such as:

! The name “BoxOff” was coined by the first author.

Monte Carlo Analysis of a Puzzle Game 85

What are good values for the board size N for this game?

— What are good values for the number of piece colours C'?

How likely is a randomly generated challenge to be solvable?

— How likely is a randomly generated challenge to be interesting?

Solvability. The most important question regarding BoxOff — and indeed most
puzzles — is that of solvability, namely how likely it is that a given challenge
will actually have a solution. There are two relevant probabilities: P(S,) the
probability that randomly sampled challenges will be solvable with random play,
and P(S,) the probability that randomly sampled challenges will be solvable
with perfect play.

It is easy to artificially construct unsolvable challenges. For example, Fig. 2
shows a 2 x 3 challenge with no opening moves (left), and a 3 x 4 challenge
that allows several moves but never the removal of the lower left piece (right).
Conversely, it is easy to artificially construct challenges that are guaranteed to
be solvable, by starting with an empty board then adding same-coloured pairs
such that no odd-sized regions of empty cells are created, until the board is full.
Greg Schmidt uses this approach in his Axiom Al player for BoxOff [12].

However, a player using a physical version of the game does not want to worry
about such niceties. A patient player can construct challenges guaranteed to be
solvable if they wish, but most players will just want to place pieces randomly
and as quickly as possible, hence the question of solvability becomes important.

Firstly, players must have confidence that the majority of challenges they
construct will be solvable with perfect play, otherwise there is little point in
playing the game. Knowing the likelihood that challenges are solvable also helps
players gauge their progress based on win rate.

Secondly, it would be detrimental if most challenges could be solved by ran-
dom play. Challenges that can be trivially solved without thought or forward
planning will be of little interest to most players. Well designed puzzles tend to
display structure or dependency, such that certain moves reveal key information
that allows further moves to be made, and must be performed in a certain order
[4]. Challenges that can be solved by making random moves without any plan-
ning indicate a lack of such dependency, and are described as being susceptible
to random play.

Fig. 2. Unsolvable 2 x 3 and 4 X 3 challenges.

86 C. Browne and F. Maire

To answer the game design questions, we consider different complexity mea-
sures. The magjority of challenges should ideally be solvable by perfect play but not
by random play. We therefore want to maximise P(.S,) while minimising P(S,).
Section 2 discusses the complexity of BoxOff, Sect. 3 explores the solvability of
randomly generated challenges, Sect. 4 looks briefly at the interestingness of ran-
domly generated challenges, and Sect. 5 summarises our results.

2 Complexity

For this analysis, we implemented two types of Al solver for BoxOff:

1. S,: Random solver that applies a random legal move each turn, until the
game is won or lost.

2. Sp: Depth-first backtracking solver that returns the first valid solution found
(if any). S, recursively tries each available action of each state in order, using
a transposition table to avoid repetition [11].

2.1 Challenge Space Complexity

The challenge space complexity of a given board size is the number of distinct
challenges that it allows, not counting reflections, rotations and colour permu-
tations.

Table 1 shows the number of distinct challenges found in complete enumera-
tions of smaller board sizes up to 4 x 5 with C' = 3 colours, the number of these
challenges that are solvable with perfect play S,, and the ratio of these two
numbers in bold. The rightmost column of Table 1 shows the observed solvabil-
ity ratios of 10,000 randomly generated challenges for the same board sizes, with
95 % confidence intervals. Randomly sampled challenges appear to offer a fair
representation of the complete set of actual challenges. The number of challenges
increases exponentially with board size, for example, there exist approximately
1.355 x 10?! challenges for the standard 6 x 8 game played with C' = 3 colours,
including reflections, rotations and colour transpositions. This makes exhaustive
analysis of even the standard board size impractical.

Table 1. Solvability of complete and sampled challenge sets.

N | Complete Sampled
Challenges | Solvable | Ratio |Ratio
3x4/12 1,523 68210.4478 | 0.4438 + 0.0097

4x416 105,561 59,545 | 0.5641 | 0.5592 4 0.0097
4 x5/20/13,098,310 | 9,036,038 | 0.6998 | 0.6934 £ 0.0090

Monte Carlo Analysis of a Puzzle Game 87

O O

O

o® O
O
O

% B
i 305
8.0

O

1/3 1/2 1/2 2/2 3/3 3/3

:

Fig. 3. Full game tree expansion, showing ratios of winning choices.

2.2 Game Tree Complexity

The game tree complezity of a challenge is defined as “the number of leaf nodes
in the solution search tree of the initial position” [1, p. 160]. For example, Fig. 3
shows the full game tree expansion of a simple 4 x 3 challenge with C' = 3 colours,
showing the ratio of winning moves each turn (a statistic used later in Sect.4).
Obviously, no game of BoxOff on N cells can ever exceed N/2 moves, and a
solution will always be of length N/2. For example, the 6! move wins in all
cases on the N = 12 board shown in Fig. 3. Such complete game tree expansions
are infeasible for larger boards, but game tree complexity can be estimated based
on a challenge’s branching factor, i.e. number of legal moves M; for each turn t.

6 x 8 challenges tend to start with a branching factor of around My = 26
legal opening moves, decreasing almost linearly to zero over the course of the
game. The product of means Hivz/ 12 M; gives an estimated game tree complexity
of approximately 2.86 x 1022 non-distinct board positions for the 6 x 8 board
with C' = 3 colours.

2.3 State Space Complexity

The state space complexity of a challenge is defined as “the number of legal game
positions reachable from the initial position” [1, p. 158]. This is equivalent to the
number of distinct board positions stored in the transposition table following a
complete traversal of all possible lines of play.

A full BoxOff game tree expansion on a 6 x 8 board will typically involve
less than 1 x 108 distinct board states. As a rough rule of thumb, BoxOff games
tend to have state space complexity in the order of 2¥/2. While this is a more
manageable number than the game tree complexity, it is still prohibitively time

88 C. Browne and F. Maire

‘ de

Fig. 4. A challenge, its digraph, and solution subgraph.

consuming to expand full game trees for even medium sized boards, hence our
interest in analysing the game through random sampling alone.

2.4 Computational Complexity

We note that a given challenge can be represented as a directed graph G, in
which each potential move corresponds to a vertex, and an arc connects vertex
p; to vertex p; if move p; cannot be played before move p;. The game can then
be reduced to the problem of finding the largest subgraph in G that does not
contain a directed cycle. For example, Fig.4 shows the reduction of the 4 x 2
challenge shown to its largest acyclic subgraph.

A general version of this problem is equivalent to the feedback vertex set
problem, which was among the first problems shown to be NP-complete by Karp
[7]. However, we also note that graphs associated with BoxOff challenges may
contain structural properties that allow the design of polynomial time algorithms
for their solution. The complexity of the decision problem of the solvability of a
given BoxOff puzzle is an open problem.

3 Experiments

As stated in the introduction, we now examine the solvability of 2D, 1D and 3D
versions of the game. Recall from Sect. 1.2 (Solvability) that we especially want
to maximise solvability while minimising susceptibility to random play.

3.1 2D Case

The standard 2D version of the game is the case we are most interested in.
Figure 5 shows the observed solvability probabilities P(.S,) and P(.S,) for various
2D boards up to size N = 64 for C' = 2,3 and 4 colours. We only consider board

Monte Carlo Analysis of a Puzzle Game 89

sizes with at least 2C cells in each case, to allow at least one pair of each colour,
and we only consider board sizes up to N < 64, in order to allow an efficient
bitboard encoding with 64-bit long integers [3]. Board sizes tested: 2 x 2, 2 x 3,
3x4,4x4,4%x5,4%x6,5x6,6x6,6x7,6x8,7x8and8x8.

The dotted lines show the observed probabilities of success for the random
solver P(S,) averaged over 10,000 randomly sampled challenges. The solid lines
show the observed probabilities of success for the perfect solver P(S,) averaged
over 1,000 randomly sampled challenges (decreasing to 100 for some of the larger
board sizes, due to time constraints). The arrows indicate the disparity between
P(S,) and P(S,) for the standard N = 48 (i.e. 6 x 8) case, which we want
to maximise. Note that the random solver S, solvability curves (dotted) tend
to drop sharply, while the perfect solver S, solvability curves trend upwards to
plateau at almost 100 % for larger boards.

Fig. 5. Observed solvability probabilities P(S,) (dotted) and P(Sp) (solid) for 2D
cases, for C = 2,3 and 4. Arrows show the disparity between P(S,) and P(S,) for the
default N = 6 x 8 = 48 case, which is the key measurement here.

Table 2. Solvability probabilities for the 6 x 8 (2D) case for C = 2...6.

c

2 3 4 5 6

P(S;) |.349+.009|.083+.005 | .015£.002 | .002+.001 | .000 £ .000
P(Sp) | .999 £.000 | .999+.000 | .866 £ .021 | .293 £ .028 | .039 +.012

Table 2 shows the exact solvability probabilities P(S,) and P(S,) for the
standard 6 x 8 case, for C = 2...6 colours. Using two colours, almost 100 %
of randomly sampled challenges are solvable, although the high random solv-
ability rate of around 35% points to a lack of difficulty. Using three colours,
almost 100 % of randomly sampled challenges are solvable, with a much lower
susceptibility to random play of around 8 %. Using four colours, less than 87 %
of randomly sampled challenges are solvable. Three colours show the greatest
difference between P(S,) and P(S,) so are the optimal choice here.

90 C. Browne and F. Maire

In practice, only 1in around 5,000 randomly sampled challenges prove to be
unsolvable on the standard 6 x 8 board with three colours. Most players could
spend their entire lives without constructing a single unsolvable challenge, while
still having the luxury of being able to blame bad luck for any failure to solve a
particular challenge.

For completeness, Fig. 6 shows the observed solvability probabilities P(S,)
and P(S),) for various 2D boards up to size N = 64 for C' =5 and 6 colours. It
can be seen that solvability by random player P(S,.) drops quickly to almost 0 %
for both C' = 5 and 6, which is good. However, solvability by perfect play P(S,)
is in general much poorer than when using fewer colours. For example, less than
30 % of randomly sampled challenges will be solvable on the standard 6 x 8 board
using five colours, and less than 5% will be solvable using six. This means that
most challenges that players set themselves will be unsolvable, which is very
undesirable. These findings are consistent with an observation by the game’s
designer, Steve Meyers, that five and six colours may be suitable for very large
boards, e.g. 12 x 15, but are a poor choice for small or medium sized boards.?

Fig. 6. Observed solvability probabilities P(S,) (dotted) and P(Sp) (solid) for 2D
cases, for C =5 and 6.

Summary: The 6 x 8 board with three colours seems to be an astute design choice,
which allows a good balance between high solvability and low susceptibility to
random play.

3.2 1D Case

The simplest version of the game is the 1D case played on a 1 x n board.? The
pieces start in a line, and the player removes same-coloured pairs in clear line-of-
sight of each other. Figure 7 shows the observed solvability probabilities P(S;.)
and P(S,) for various 1D boards up to size N = 64 for C' = 2,3 and 4 colours.
Board sizes tested: 1 x4, 1 x8, 1 x12,1x16,1x20, 1x28, 1x36,1x42,1x48,

2 Personal correspondence.
3 The 1D version of the game might be called “LineOff”.

Monte Carlo Analysis of a Puzzle Game 91

1 1 14

Fig. 7. Observed solvability probabilities P(S,) (dotted) and P(Sp) (solid) for 1D
cases, for C' = 2,3 and 4.

Table 3. Average solvability of the 1 x 48 (1D) case.

c
2 3 4
1 x 48 0.2268 £0.0082 | 0.0042 £ 0.0013 | 0.0001 £ 0.0001

1 x 56 and 1 x 64. The first thing to note is that both curves are very similar for
each value of C. There is no significant difference between the success rates of
S, and S, at any point, and these curves would in fact be identical if they were
measured on the same sample sets rather than being sampled independently. This
is due to an unexpected anomaly that for any solvable 1D position, no sequence
of moves can ever lead to a loss. This is proven below, and is an example of
important knowledge about the game revealed through random sampling.

We characterise the winnable games in terms of a context-free grammar,
and show that for such games, any sequence of legal moves wins the game. To
compactly represent a challenge, we map a row of coloured pieces to a string of
integers. For example, the string “1 2 2 1” codes a challenge where “1” corre-
sponds to a black piece, and “2” corresponds to white a piece.

We will show that the context-free grammar G, = ({S},P,{1,2,...,n},9)
defined below generates exactly all winnable challenges. The grammar G; has a
unique non-terminal S. The set of terminals are the first n integers. The set P
contains the production rules {S — xSz, S — SS, S — €} where z takes all
values in {1,2,...,n}, and € denotes the empty string.

We can consider that the rules of the form S — zz are also part of the
grammar as they are obtained by applying the third rule after the first rule. We
write S = a, if the string o can be generated by repeated application of the
production rules. By abuse of notation, we also write a € G;. For example, we
have S = 322113, as “322 1 1 3” can be derived as:

S — 3S3 — 3SS3 — 325253 — 32521513 — 322113

where the bold substrings highlight the latest substitions of S. The grammar
G is very similar to a Balanced Parentheses grammar.

92 C. Browne and F. Maire

Lemma 1. Any string generated by the grammar Gy is a winnable 1D BoxOff
challenge.

Proof: In the derivation of a string generated by G;, the sub-sequence of sub-
stitions using the first rule of G is of the form S — x1S%z1, S — x2S5%2, ...,
S — x,Szp. A winning strategy is to contract xizy, then x;_jx,_1, and con-
tinue the contractions until xy2;. Reciprocally, we have:

Lemma 2. If a string is a winnable 1D BozxOff challenge, then the string belongs
to the language generated by G .

Proof: Base case: If the string is of length 2, then the string is of the form zx.
Therefore it can be generated by the sequence, S — xSz, and S — €. Induction
case: Without loss of generality, we assume that the first character of the string
is contracted at step k of a winning sequence of moves. The string is of the form
rpaxy [, where 3 is possibly the empty string. The string o must be contracted
before the pair xiz. Therefore, by induction on the length of the string, we
have S = a. Once the pair zz), is contracted, we are left with the winnable
string 8. Again, by induction we have S = 3. In summary, we can derive the
initial string as S — SS — xSz S 5 rporeS = rpoxyf.

The 1D version of BoxOff is uninteresting for a human player because it does
not require any forward thinking.

Theorem 1. A 1D BoxOff challenge is winnable if and only if it belongs to the
language generated by the grammar G1. Moreover, if the challenge is winnable,
then any sequence of legal moves is a winning strategy.

Proof: The first part of the theorem is a direct consequence of the two pre-
vious lemmas. We prove the second part of the theorem by induction on the
length of the string. Base case: The result is trivial for a string of length 2.
Induction case: Without loss of generality, assume that the winnable string is
of the form azxz, where xzx is a contractible pair that we arbitrarily choose
as the first move. If there exists a derivation S = wS3 — axzf, then o3 can
be generated by G;. Indeed, we just have to replace S — zz with S — € as
the last step of the derivation. Therefore, by induction, any sequence of legal
moves on «f is winning. If there exists no derivation S = @SS, then the
first x following « in axzx(must be generated as the right x of a produc-
tion S — xSz. Similarly, the x in front of § in azx(must be generated as
the left = of a production S — zSz. Hence the string azzf must be of the
form ayxasxxBrxPs, with ayzasxr = ax and zf1x62; = (3. We therefore have
S5 1858 5 a1xSxS By = a1xSTxSxFe = ayxasrxBixBe. This shows that
S5 a158B; and S 5 az and S = B with a = ayzas and 3 = Bizs.

Recall that we want to prove that af € G;. Starting from S = o550, and
using S — €, we derive that S = a1S3,. Applying the rules S — xSz and
S — S8, and using the fact that S = a5 and S = (1, we derive that:

S 5 158 — a1xSxfy = a1 2SSz B = anzas B fs

Monte Carlo Analysis of a Puzzle Game 93

We have just shown that ajzasfBizf: = af, therefore af € G .

Solvability in the 1D case drops to around 25 % for larger boards with C' = 2,
and around 0% for larger boards with C = 3 and C' = 4. Table3 shows the
average solvability of the special 1 x 48 case, which has the same number of cells
as the standard 6 x 8 board, with 95 % confidence intervals. Players can expect
to win around 23 % of games on this board with 2 colours, but less than 1% of
games with 3 or 4 colours.

Summary: The 1D version is trivial — if a challenge is solvable, then any move
is as good as any other — hence is of little interest to players.

3.3 3D Case

For completeness, we also consider the 3D version of the game in which piece
pairs define 3D boxes that must otherwise be empty. However, such 3D boards
would be difficult to make as physical sets so are mostly of academic interest
only. Figure 8 shows the observed solvability probabilities P(S,) and P(S,) for
various 3D boards up to size N = 64 for C = 2,3 and 4 colours. Again, the
arrows indicate the disparity between P(S,) and P(S,) for the N = 48 case.
The 3D solvability curves are strikingly similar to those of 2D case, although
the solvability rates for both random and perfect play tend to be slightly higher
in general. The exact values shown in Table 4 for the target case N = 48 (4x4x4)
indicate that C = 4 colours is probably optimal for this board, giving an almost
100 % solvability rate with a low susceptibility to random solution of around 2 %.

Summary: The 3D case is a viable version of the game.

Fig. 8. Observed solvability probabilities P(S,) (dotted) and P(S,) (solid) for 3D
cases, for C' = 2,3 and 4.

Table 4. Solvability probabilities of the 4 x 4 x 4 (3D) case.

c

2 3 4
4x4x4|P(S,) 0.376 £0.009 | 0.097 £ 0.005 | 0.019 £ 0.003
P(Sp) [0.999£0.000 | 0.999 % 0.000 | 0.999 £ 0.000

94 C. Browne and F. Maire

4 Tension

In this section, we use random sampling to evaluate the potential of BoxOff
challenges to interest human players, based on estimated tension, i.e. the degree
to which the players’ decisions affect the outcome of the game. If the player can
win by making random choices then the game is not tense, but if every decision is
critical to success then the game is very tense. Kramer [8] and Rose [10] observe
that well designed games tend to display points of high and low tension.

Tension 7' is measured as the average ratio of losing moves to total moves
at each turn (reduced to 0 if all moves are losing). For example, the first move
of the game shown in Fig. 3 is relatively tense, as 2 out of the 3 possible moves
will lose. However, the remainder of this game lacks tension as every subsequent
move leads to a win (or a loss, if the losing path is chosen).

Figure9 shows relative tension per turn for the 6 x 8 case, averaged over
1,000 randomly sampled solvable games. Games typically start in a state of low
tension that builds to a peak of almost 50 % in the mid game, followed by a quick
dénouement in the end game. This tension curve is actually a good shape for this
game. We want low tension (i.e. fewer losing moves) in the early game, as the
repercussions of losing moves may not become obvious until say 20 turns later,
which would be frustrating for the player and make such challenges intractable.
We want higher tension in the middle-to-end game, where there are fewer move
choices and the player can plan ahead with greater certainty, as found.

0-9 T T T ?
0 4 8 12 16 20 24

Turn

Fig. 9. Average tension probability T' for the 6 x 8 case over 1,000 games.

5 Conclusion

Random sampling yielded useful insights into the BoxOff puzzle game, where
analyses through complete game tree expansion would have been impractical.
The inventor’s default design parameter choices (three colours on a 6 x 8 board)
appear to be optimal, as almost every challenge randomly constructed by the
player will be solvable, while few will be susceptible to random play. The 1D
version of the game is trivially solvable and hence of little interest to players,
while the 3D version of the game appears to be viable. Our analysis also revealed

Monte Carlo Analysis of a Puzzle Game 95

that BoxOff challenges on the standard board tend to start with a low degree
of tension, and build to a climax in the mid-to-late game, allowing them to be
tractable but still demanding for players. Monte Carlo analysis proved useful in
this case. The general nature of our method, which requires no domain-specific
strategic or tactical knowledge, makes it potentially applicable to any domain
with discrete actions and computable outcomes.

Acknowledgements. This work was supported by a QUT Vice-Chancellor’s Research
Fellowship, as part of the project Games Without Frontiers.

References

Allis, V.: Searching for solutions in games and artificial intelligence. Ph.D. disser-
tation, University of Limburg, Maastricht, Netherlands (1994)

Althéfer, I.: Computer-aided game inventing. Technical report, Friedrich-Schiller
University, Faculty of Mathematics and Computer Science, Jena (2003)

Browne, C.: Bitboard methods for games. Int. Comput. Games Assoc. (ICGA) J.
37(2), 67-84 (2014)

Browne, C.: The nature of puzzles. Game Puzzle Des. 1(1), 23-34 (2015)
Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Trans. Comp. Intell. AT Games 4(1), 1-43 (2012)
Finnsson, H., Bjornsson, Y.: Simulation-based approach to general game playing.
In: Proceedings of the Association for the Advancement of Artificial Intelligence,
Chicago, Illinois, pp. 259-264 (2008)

Karp, R.M.: Reducibility among Combinatorial Problems. Springer, Berlin (1972)
Kramer, W.: What makes a game good? Games J. (2000)

Meyers, S.: BoxOff: a new solitaire board game. GAMES 37(6), 12-13 (2013)
Rose, J.: Addressing conflict: tension and release in games. Gamasutra (2015).
http://www.gamasutra.com

Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach (3rd internat
edn.). Pearson Education, New York (2010)

. Schmidt, G.: The axiom universal game system project. Mindsports (2012). http://

www.mindsports.nl/index.php/axiom

. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural

content generation: a taxonomy and survey. IEEE Trans. Comp. Intell. AT Games
3, 172-186 (2011)

http://www.gamasutra.com
http://www.mindsports.nl/index.php/axiom
http://www.mindsports.nl/index.php/axiom

Tracking Drift Severity in Data Streams

Kylie Chen®™, Yun Sing Koh, and Patricia Riddle

The University of Auckland, Auckland, New Zealand
kche309Q@aucklanduni.ac.nz, {ykoh s pat}@cs .auckland.ac.nz

Abstract. The evolution of data or concept drift is a common phenom-
ena in data streams. Currently most drift detection methods are able to
locate the point of drift, but are unable to provide important information
on the characteristics of change such as the magnitude of change which we
refer to as drift severity. Monitoring drift severity provides crucial informa-
tion to users allowing them to formulate a more adaptive response. In this
paper, we propose a drift detector, MagSeed, which is capable of tracking
drift severity with a high rate of true positives and a low rate of false posi-
tives. We evaluate MagSeed on synthetic and real world data, and compare
it to state of the art drift detectors ADWIN2 and DDM.

Keywords: Change detection - Severity detection - Drift detector

1 Introduction

One unique property of data streams and temporal datais the possibility of changes
in the underlying model through time. This is referred to as concept drift. In data
streams concept drift has been a well studied area. However most existing work in
drift detection focuses on accurately and efficiently finding true drift points whilst
minimising the delay time of detection, and are unable to detect the magnitude of
concept drifts which we refer to as drift severity. There has been relatively little
work that addresses the problem of drift severity, and how to accurately measure
the magnitude of concept drift for streams with different characteristics. One of
the challenges in measuring drift severity is that it is difficult to define a measure
to directly compare classifiers before and after change.

The main motivation for detecting the severity of changes is that it gives
an indication of the magnitude of concept change which allows responses to be
better adapted to the current situation. For example, change mining techniques
may be applied to data to identify the onset of viral outbreaks in a population.
Such monitoring could be beneficial to public health by providing an indication
of when episodes occur and how severe an outbreak is likely to be. Suppose
we are interested in monitoring the outbreak of flu in a population of a million
people. Drift detection techniques could potentially allow us to capture the onset
of change (a drift point) in the population to identify when a flu outbreak occurs.
Currently most techniques are unable to detect the magnitude of change within
the population contracting the flu. Measuring the magnitude of change could
© Springer International Publishing Switzerland 2015

B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 96-108, 2015.
DOI: 10.1007/978-3-319-26350-2_9

Tracking Drift Severity in Data Streams 97

provide an estimate of the number of individuals affected by the flu (e.g. 30 %
of the population), to give an early indication of how severe an outbreak may
be. This allows preventative and responsive measures to be taken in a timely
manner, such as stocking of medicine, alerting or vaccinating high risk groups
in response to the severity of the outbreak. Furthermore, the ability to capture
and monitor the magnitude of changes in a stream may be useful for magnitude
prediction of future drifts and the visualisation of changes in streams.

Recently [10] introduced a metric for measuring drift severity and presented
a technique for detectors that use statistical process control. It has been shown
to be effective at tracking changes of large magnitudes, and at high speed but
performs poorly for more gradual and less severe changes [10]. We will attempt
to address these issues by developing a drift detector with capability for severity
detection with greater sensitivity to smaller changes. Our main focus will be on
streams with gradual change.

The main contribution of our work is the development of a drift detector,
MagSeed, that is able to accurately capture drift severity. We compare our
method to other drift detectors DDM [4] and ADWIN2 [1]. We evaluate our
method using synthetic and real datasets and show that our algorithm detects
different severity levels in both gradual and abrupt concept drifts with some
robustness to noise.

The paper is organised as follows: Sect. 2 reviews the background, and Sect. 3
describes related work. Section 4 introduces our algorithm. Our experiments are
presented in Sect. 5. Section 6 discusses future directions and concludes our paper.

2 Background

In this section, we give the formal definitions of the concept drift problem [5],
and drift severity metric [10].

Concept Drift: Let a stream consist of labelled instances where each instance
is a pair (X,y) of input feature values X € R” and its class label y € R!, where
RF is the input feature space and R! is the class label space. The classification
problem can be described as p(y|X) = %, where p(y|X) is the concept
function we are trying to learn. We follow the definition by [5] which defines
concept drift as a change in the concept function p(y|X).

Drift Severity: Let f; and fi;11 represent two different consecutive concept func-
tions. The drift severity € [0, 1] is defined as the percentage of the input space that
has a different class label when the change from f; to fiy1 is complete [10]. This is
the amount of change between two concepts, where high severity represents a large
change, and low severity represents a small change in concepts.

Suppose we are interested in monitoring flu trends in a population of 1000
individuals. Say there were 100 individuals with flu at time ¢, and at a later time
t + 1 there were 600 affected individuals. The shift in the population of healthy
and affected individuals could be quantified by dividing the difference in the
number of affected individuals by the population size, severity = (600 — 100)/
1000 = 0.5.

98 K. Chen et al.

3 Related Work

Existing work in drift detection focuses on detectors. Gama et al.’s survey [5]
groups detection methods based on: (1) sequential analysis [11], (2) statistical
process control [4], (3) monitoring two distributions [1,7], and (4) contextual
approaches [9]. Our work is most closely related to SEED [7], ADWIN2 [1], and
DDM [4]. ADWIN2 [1] is an adaptive windowing technique that uses exponential
histograms as a data structure to store classification errors, and a Hoeffding
bound for drift detection. SEED [7] uses the same bound as ADWIN2, but
stores data in blocks and utilises a block compression algorithm to minimise
the number of boundary checks. DDM [4] detects drifts based on a significant
increase in the mean classification errors by comparing the current cumulative
mean and standard deviation with the minimum mean and standard deviation. It
is effective for abrupt drifts [3] and has both a drift and warning threshold which
allows it to monitor drift severity [10]. A comparison of different drift detectors
can be found in [3,6,12]. In [3] Bifet et al. showed using prediction accuracy as
the only measure of detector performance can be misleading and propose a new
metric that can more accurately describe the trade-off between false positives and
fast detection. Currently most drift detection methods are focused on supervised
learning and only work with numerical data such as classification accuracy [8].
These techniques are able to monitor when a drop in accuracy occurs, but [8]
point out that it is equally important to detect changes in categorical data and
also in the unsupervised setting, and work in this direction.

4 MagSeed Drift Detector

Our detector, MagSeed extends the SEED algorithm [7] which uses classification
error as input data. The novelty of our approach is that it allows the detection
of drift severity. Our algorithm has two parts: drift detection, and magnitude
tracking, each with three possible states: (1) no change - indicating there is no
concept drift, (2) warning - in anticipation of a drift, and (3) drift - signalling
a concept drift has occurred. First we describe the drift detection part, then
we address the magnitude tracking component of the detector. As input data
arrives, it is partitioned into blocks of size b where the block boundaries represent
potential drift points. Drift detection is performed by testing for a significant
difference in means between data on the left Wi and right Wg sides of the
block boundaries based on the Hoeffding bound with Bonferroni correction. The
condition for triggering a drift is

|ﬂWL - ﬂWR| > €4, (1)
2 2 2 2 1)

Tracking Drift Severity in Data Streams 99

where fiy, and fiy, represent the mean error rate of data in Wy, and W, respec-
tively, €4 is the Hoeffding bound with Bonferroni correction using a confidence
parameter 64 € (0,1), m is the harmonic mean of the lengths of Wy, and Wg,
and n is the length of W where W = Wy + Wg. When the drift threshold is
surpassed, the detector enters a drift state.

When the detector is not in a warning or drift state, block compression
is enabled to improve efficiency by removing potential drift points that have
low probability of becoming actual drift points. We use the block compression
algorithm detailed in [7] which uses the bound € = ¢« t, where the parameters
€ is a base value, « is the linear growth term, and ¢ is the relative arrival position.

To allow the anticipation of drift we introduced a more relaxed threshold for
detecting warnings. The first warning test is similar to the drift detection trigger
but uses the bound ¢,,, where €,, < €4. We use the condition below for warning
detection

|/:LWL - ﬂWR‘ > €, (3)

where €, is the Hoeffding bound with Bonferroni correction using a confidence
parameter 0,, € (0,1), where §,, > 4. By using only the first warning condi-
tion, it may cause warnings to be triggered too early. For example if the error rate
increases and passes the ¢, threshold, followed by a decrease that falls below the
€, threshold. This introduces a false warning. To address this, we used a second
warning threshold. We monitor the current mean p and standard deviation s of the
classification error over a sliding window of size 100, as well as the minimum p and
s values denoted by pyin and sp,i,. Our second warning threshold is defined as

P + s> Pmin + Cw * Smin, (4)

where ¢, € (1,3) is parameter which defines the confidence level for warning
detection. It is similar to the threshold used by DDM, but uses a sliding window
rather than a cumulative one. This second threshold should allow our detector to
pick up local changes and respond more quickly than the cumulative threshold
used by DDM. Here the choice of the window size was arbitrarily chosen, but we
note that a more adaptive approach would be more ideal. For example, monitor-
ing the sensitivity of different window sizes to internal false warnings (such as
when the error rate increases above the warning threshold then decreases) could
help us adjust the window size adaptively. When either condition (3) or (4) is
satisfied the detector enters a warning state. We also use them to control the
rate of false warnings. When either (4) or (3) is not satisfied for all block bound-
aries then the warning is flagged as a false warning, and the detector enters the
no change state. For computing drift severity we use the metric defined by [10]
which we denote as Rate, that computes the error rate in the warning window.

number of misclassifications in warnin
Rate = g (5)

total instances seen in warning

Algorithm 1 shows the pseudocode for the MagSeed algorithm. Lines 1-3 ini-
tializes the change detector. The algorithm (lines 4-7) processes the input as

100 K. Chen et al.

Algorithm 1. MagSeed algorithm

1: Initialize window W as blocks {By, ..., Bt} each of size n
2: Initialize state «+— no change

3: Initialize prmin—oo, Smin—oo

4: for t > 0 do where t is time

5 SetInput(z¢, W) where z; is classification error at ¢
6: return state

7: end for

8: function SETINPUT(item k, List W)

9: AddElement(k, W) adds element into tail block
10: update p, S, Pmin, Smin

11: warningFound «— false

12: if p+ 8> pmin + Cw * Smin then

13: state <+ warning

14: else state < no change

15: end if

16: for every split of W into W = W, Wg do

17: if |uw, — uwg| > €4 then

18: state < drift

19: Pmin«—oco

20: Smin«—oo

21: remove all blocks in W7,

22: else if |uw, — pwy| > €w then

23: state «— warning

24 warningFound « true

25: end if

26: end for

27: if warningFound = false then state < no change
28: end if

29: if state = no change then

30: CompressionCheck(W') compresses blocks in W
31: end if

32: end function

33: function ADDELEMENT(item k, List W)

34: if Tail Block of W is full then create Block B with k
35: W — WuU{B}

36: else add k to tail block of W

37: end if

38: end function

39: function COMPRESSIONCHECK (List W)

40: compressCount-++

41: if compressCount = compressionInterval then

42: for each two consecutive blocks By, Bi+1 do
43: if |;1,Bt — [J,Bt+1| < € then merge B¢, Biy1
44: end if

45: end for

46: end if

47: end function

Tracking Drift Severity in Data Streams 101

each instance arrives by passing the classification output z; € {1,0} at time ¢ to
the SetInput function, and returns the state of the detector indicating whether a
drift or warning has occurred at each time step ¢ (line 6). The SetInput function
(lines 8-32) contains the main algorithm used for change detection. Line 9 adds
the classification output k to the window W of data blocks by the AddElement
function. Line 10 updates the current p and s values by computing a rolling aver-
age of the classification error, and standard deviation of the error respectively,
and the minimums pp,in, Smin are updated when p + s < Ppmin + Smin. If the
warning threshold (Eq.4) is surpassed (line 12), the detector enters the warn-
ing state (line 13). Line 16 checks every block boundary in W against the drift
threshold (line 17), and the warning threshold (Eq. 3) in line 22 which also acts
as a false warning threshold. Lastly, if the detector is in the no change state after
the data is processed, the blocks may be compressed by the CompressionCheck
function (line 30). The AddElement function (lines 33-38) adds an element k
that represents the classification error to the window W by appending k to the
last block in W if the last block is not full (line 36), or by adding a new block
with element k to the end of the window W (line 35). The CompressionCheck
function (lines 39-47) merges consecutive homogeneous blocks in the window at
set intervals using the ¢’ bound which is detailed above (line 43).

5 Experiments

Our evaluation has three parts. First we evaluate the effectiveness of drift detec-
tion. Second we evaluate the effectiveness of the warning technique, and its
capability for tracking severity. Third we evaluate the performance and overall
prediction accuracy of our algorithm on real data streams using a Hoeffding tree.

5.1 Experimental Setup

We evaluated the algorithms on synthetic streams over 100 trials, and also on real
data streams. We test the robustness of the algorithms using synthetic streams
with three noise levels: 0%, 5% and 10 %, but only present results for streams
with 0% and 10 % noise due to space constraints.

Synthetic and Real Streams: We use three different synthetic streams: Grad-
ual Bernoulli [1], Abrupt SEA concepts [10], and Gradual CIRCLES [4] detailed
below. We use three real streams from MOA: Forest Covertype [3], Pokerhand
[2], and Airlines [8].

i. Gradual Bernoulli: These streams are binary streams of length 1,000,000
where each data point represents the classification error (1 for error, and 0
for a correct prediction). Initially a stable period is generated according to
a Bernoulli distribution with a mean error rate of y = 0.2. In the last 1,000
instances, gradual drift was simulated by linearly increasing the mean error
rate p by a slope value at each time step. Noise was controlled by flipping
the classification error data point according to the defined noise probability.

102 K. Chen et al.

ii. Abrupt SEA concepts: Each stream has a length of 90,000 instances with
2 balanced classes and a single point of abrupt drift. Instances have three
attributes f1, fo, f3 € [0,10] of which the last two (f2, f3) are relevant. An
instance has label class 1 if fo + f3 < 0, where 0 is a threshold parameter.
Abrupt drift was introduced by changing the class boundary threshold 6 at
the midpoint of the stream. Noise was controlled by flipping the class label
of instances according to the defined noise probability.

iii. Gradual CIRCLES: Each stream has a length of 1,000,000 instances with
2 balanced classes and a single drift of low severity. Instances have two
attributes x,y € [0,1] which define the location of a point in a 2D space.
The concept is defined by a circle in the 2D space, where instances inside
the circle have a class label of 1, or label 0 otherwise. Drift is introduced
by changing the radius of the circle concept, where a larger difference in
radii corresponds to higher severity. Gradual drift was introduced by linearly
increasing the probability of generating instances from the new concept by
0.1% at each time step in the last 1000 instances. Noise was controlled by
flipping the class label of instances according to the defined noise probability.

Parameter Selection: We evaluate the algorithms over a range of parameters,
and present the best and worst performance for each detector. For synthetic
streams we select the best and worst settings based on the number of true positive
drifts and the ratio of true and false positives. For real data streams we use the
best settings from the synthetic experiments.

Evaluation Metrics: We evaluate the algorithms using the rate of true positive
drifts (RD), rate of false positive drifts (FP), detection delay, memory (in bytes),
time (in milliseconds) used by the detector, computed severity (Rate), rate of
true warnings (TW), and correlation between computed and actual severity. A
high correlation would suggest that the computed severity reflects actual severity.
A true warning (TW) is a warning that was triggered between the true point of
drift and true detection by the detector.

5.2 Drift Detection

In these experiments, we test the drift detection capabilities of our algorithm
compared to current drift detection techniques: ADWIN2 [1], and DDM [4]. We
compare our drift detector to ADWINZ2 as it is a state of the art detector that
uses the same drift detection bound (the Hoeffding bound), and has been shown
to be effective at detecting gradual drifts [12], which are the type of streams
we will be focusing on. We also compare our detector with DDM, which is a
technique that is effective at detecting abrupt drifts. DDM also has a warning
threshold that would allow us to directly compare its performance in capturing
the warning state against our technique. Thus it makes sense that we chose these
two different detectors as our benchmark comparisons.

Tracking Drift Severity in Data Streams

Table 1. Rate of true and false positives for drift detection

103

Best

Noise | Detector | Slope | RD FP Delay (SD) Memory (SD) Time (SD)
0% | MagSEED | 0.0001 | 84 0.001 | 759.00 £(165.61) | 2134.86 +-(388.56) | 146.58 £(5.77)
54 =0.05 | 0.0002 | 100 | 0.001 | 543.32 £(118.79) | 2197.92 +(316.59) | 147.68 +(5.64)
6w = 0.1 | 0.0003 | 100 | 0.001 433.24 +(97.32) | 1986.72 £(328.89) | 147.09 £(5.09)
0.0004 | 100 | 0.001 | 361.56 £(77.94) | 1848.96 +(282.66) | 148.32 +(5.24)
ADWIN2 | 0.0001 | 83 0.001 | 782.71 £(162.45) | 1770.31 £+(198.92) | 353.65 £(11.60)
§ =0.05 | 0.0002 | 100 | 0.001 | 555.80 £(113.10) | 1565.92 £(52.42) | 353.08 £(12.51)
0.0003 | 100 | 0.001 439.96 +(94.04) 1520.56 +(79.39) | 352.63 +(11.78)
0.0004 | 100 | 0.001 | 370.20 £(74.79) | 1478.56 £(89.92) | 352.00 £(11.41)
DDM | 0.0001 | 1 |<0.001| 785.00 £(0) 248.00 +(0) 23.22 +(15.10)
a= 0.0002 | 1 | <0.001 560.00 £(0) 248.00 £(0) 23.77 £(14.31)
8= 0.0003| 1 | <0.001| 456.00 £(0) 248.00 +(0) 22.53 +(14.43)
0.0004 | 1 | <0.001 379.00 £(0) 248.00 £(0) 22.24 £(14.78)
10% | MagSEED | 0.0001 | 54 | 0.001 | 852.63 £(148.49) | 2218.67 £(431.11) | 149.00 %(5.78)
84 = 0.05 | 0.0002 | 100 | 0.001 | 658.84 4(133.12) | 2237.28 +(330.23) | 150.14 +(6.29)
w = 0.1 | 0.0003 | 100| 0.001 [517.72 £(107.82) | 2160.48 £(284.63) | 148.39 +(6.15)
0.0004 | 100 | 0.001 432.28 +(87.17) | 2044.80 £(321.96) | 150.85 +(7.12)
ADWIN2 | 0.0001 | 49 0.001 | 859.90 £(148.31) | 1918.86 +(265.54) | 353.80 £(12.86)
6 =0.05 | 0.0002 | 100 | 0.001 |669.40 £(136.56) | 1641.52 +(101.01) | 354.37 £(11.16)
0.0003 | 100 | 0.001 | 527.32 +(109.60) | 1559.20 +(50.65) | 355.76 +(10.96)
0.0004 | 100 | 0.001 437.72 +(91.47) 1532.32 4+(74.06) | 354.11 +(12.80)
DDM 0.0001 0 <0.001 - 248.00 £(0.00) 21.58 £(15.66)
a=3]0.0002] 0 |<0.001 - 248.00 +(0.00) | 22.17 £(16.17)
B =2 0.0003 0 <0.001 - 248.00 £(0.00) 23.21 £(15.35)
0.0004 | 0 | <0.001 - 248.00 £(0.00) 20.87 £(15.25)

‘Worst

Noise | Detector | Slope | RD FP Delay (SD) Memory (SD) Time (SD)
0% | MagSEED | 0.0001 | 84 0.002 | 754.43 £(165.77) | 2220.00 £(654.54) | 862.82 £(52.31)
84 = 0.05 | 0.0002 | 100 | 0.002 | 539.48 £+(122.93) | 2192.64 +(315.08) | 864.47 +(50.79)
dw = 0.2 | 0.0003 | 100 | 0.002 | 431.96 4(100.28) | 1977.12 £(318.59) | 864.57 £(52.90)
0.0004 | 100 | 0.002 359.96 +(78.05) | 1857.60 +(285.12) | 862.89 £(52.66)
ADWIN2 | 0.0001 | 92 0.011 | 671.70 £(196.98) | 1627.13 +(133.52) | 302.51 £(8.58)
5§ =0.3 0.0002 | 100 | 0.011 | 476.44 4(140.49) | 1512.16 +(88.64) 303.96 +(6.96)
0.0003 | 100 | 0.011 | 372.12 4(104.52) | 1461.76 +(98.11) 303.57 +(6.16)
0.0004 | 100 | 0.011 314.20 +(82.87) 1414.72 +(78.91) 301.33 +(7.66)
DDM 0.0001 1 <0.001 785.00 (0) 248.00 £(0) 23.41 £(16.04)
a= 0.0002 | 1 | <0.001 560.00 £(0) 248.00 £(0) 23.79 £(13.57)
B=1 0.0003 1 <0.001 456.00 £(0) 248.00 +(0) 23.70 £(14.58)
0.0004 | 1 | <0.001 379.00 £(0) 248.00 £(0) 24.37 £(14.47)
10% | MagSEED | 0.0001 | 53 | 0.002 | 842.62 £(158.10) | 2311.25 +(604.04) | 949.91 +(76.14)
54 = 0.05 | 0.0002 | 99 0.002 | 652.49 £(138.28) | 2266.18 +(406.15) | 944.83 £(78.22)
8w = 0.2 | 0.0003 | 100 | 0.002 |515.48 +(113.33) | 2162.88 £(300.25) | 945.61 +(75.83)
0.0004 | 100 | 0.002 432.28 +(92.35) | 2021.76 +(316.66) | 940.68 £(77.88)
ADWIN2 | 0.0001 | 74 | 0.011 | 714.03 £(231.13) | 1719.03 £(168.42) | 300.72 =£(7.90)
5 =0.3 0.0002 | 100 | 0.011 | 559.00 4(181.27) | 1564.24 +(76.47) 300.85 +(7.39)
0.0003 | 100 | 0.011 | 425.56 +(134.13) | 1517.20 £(84.00) | 301.11 +(7.44)
0.0004 | 100 | 0.011 | 363.80 4(115.99) | 1456.72 +(87.07) 302.68 +(7.78)
DDM 0.0001 0 <0.001 - 248.00 £(0.00) 23.60 £(16.96)
a=3 0.0002 0 <0.001 - 248.00 £(0.00) 20.57 £(15.16)
=1]0.0003] 0 |<0.001 - 248.00 £(0.00) | 19.64 £(13.40)
0.0004 0 <0.001 - 248.00 £(0.00) 20.96 £(16.63)

104 K. Chen et al.

Table 1 shows the rate of true drift detection for gradual Bernoulli streams
in the best (top) and worst (bottom) cases. MagSeed is comparable to ADWIN2
in terms of delay and true positive drift rate given the same confidence level §.
Both MagSeed and ADWIN2 outperform DDM on gradual Bernoulli streams in
terms of true drift detection rate, but require more memory as they monitor the
error distribution. In all cases, the rate of false positive drifts in MagSeed and
ADWIN?2 are below the theoretical upper bound for false positives §. In terms of
memory ADWIN2 outperforms MagSeed as the latter requires additional mem-
ory to monitor drift warnings.

5.3 Warning Detection and Severity Measure

In these experiments, we test the accuracy of warning detection and our pro-
posed severity measure by using classification errors generated by the synthetic
Bernoulli, SEA concept, and CIRCLES streams as input for the drift detectors.
For the SEA concept, and CIRCLES streams the classification errors are gen-
erated by passing the data through a Hoeffding tree learner. We compare our

Table 2. Warning detection on Gradual Bernoulli

Noise Detector Best Worst,
Slope | RD| TW | Rate (SD) |RD|TW Rate (SD)
0% MagSEED 0.0001| 84 | 84 |0.36 +(0.06) 84 | 84 | 0.34 £(0.05)
04 = 0.05 0.0002 | 100 | 100 |0.37 £(0.06) | 100 | 99 |0.36 £(0.06)
0w = 0.1 (Best) |0.0003|100| 100 |0.38 £(0.06) | 100 | 99 | 0.37 £(0.06)
0w = 0.2 (Worst) | 0.0004 | 100 | 100 |0.39 £(0.06) | 100 | 99 |0.38 £(0.06)
Correlation (slope and computed severity) 0.9973 0.9802
DDM 0.0001] 1 | 1 0.26+(0.00) 1 | 0 |0.23 £(0.00)
a=3 0.0002| 1 1]0.30 £(0.00) | 1 0 |0.24 +(0.00)
B=2(Best) |0.0003 1 | 1 |0.34=£(0.00) 1 | 0 | 0.24+(0.00)
B =1 (Worst) | 0.0004| 1 1]0.39 +£(0.00) | 1 0 |0.24 +(0.00)
Correlation (slope and computed severity) 0.9963 0.9876
10% MagSEED 0.0001| 54 | 54 |0.41 £(0.05) | 53 | 52 |0.40 £(0.05)
64 =0.05 0.0002 | 100 | 100 |0.42 £(0.05) | 99 | 98 |0.41 £(0.06)
0w = 0.1 (Best) | 0.0003|100| 100 |0.46 +(0.06)|100| 99 | 0.44 £(0.06)
0w = 0.2 (Worst) | 0.0004 | 100 | 100 |0.46 £+(0.07) | 100 | 99 |0.44 +(0.06)
Correlation (slope and computed severity) 0.9365 0.9844
DDM 0.0001| 0 0 0 0 0 0
a=3 0.0002| O 0 0 0 0 0
B =2 (Best) |0.0003| 0 0 0 0 0 0
B =1 (Worst) |0.0004| 0 0 0 0 0 0
Correlation (slope and computed severity) 0.0000 0.0000

Tracking Drift Severity in Data Streams 105

Table 3. Warning detection on Abrupt SEA concepts

Noise Detector Actual Best Worst
Severity | RD | TW | Rate (SD) |RD|TW | Rate (SD)
0% MagSEED 0.03 100 | 100 | 0.08 £(0.03) | 100 | 99 | 0.09 £(0.03)

0.05 | 100 | 100 |0.09 +(0.04
04 = 0.05 (Best) 0.09 | 100 | 100 | 0.13 £(0.04) | 100 | 100 | 0.12 £(0.04)
w = 0.1 (Best) 0.12 | 100| 100 |0.12 £(0.04) |100| 99 | 0.12 £(0.04)

)
(0.04) | 100| 98 | 0.08 £(0.03)
(0.04)
(0.04)
0.3 |100| 99 |0.16 £(0.05) | 100 98 | 0.16 +(0.05)
(0.06)
(0.06)
(0.06)
)

dq = 0.1 (Worst) 0.15 | 100| 88 |0.20 £(0.06) |100| 76 |0.20 £(0.05)
0w = 0.2 (Worst) | 0.16 |100| 92 |0.21 £(0.06) 100 | 85 |0.20 £(0.06)
0.24 |100| 96 |0.19 £(0.06) |100| 90 | 0.19 £(0.06)
0.27 | 100| 91 |0.21 £(0.06) | 100| 84 |0.21 £(0.07)

Correlation (actual and computed severity) 0.8670 0.8760
DDM 0.03 | 90| 90 |0.04 £(0.01) | 90 | 55 |0.04 £(0.01)
0.05 |100| 100 | 0.04 £(0.01) | 100 | 47 | 0.04 £(0.00)
a=3 0.09 100 | 100 | 0.10 £(0.02) 100 | 51 | 0.09 £(0.01)
0.12 100 | 100 | 0.08 £+(0.01) [100| 49 | 0.08 £(0.01)
B =2 (Best) 0.13 100 100 | 0.14 £(0.02) | 100 | 43 | 0.12 +(0.02)
B =1 (Worst) 0.15 100 | 100 | 0.20 +(0.03) 100 | 54 | 0.18 £(0.03)
0.16 |100| 100 | 0.19 £(0.02) | 100 | 52 | 0.17 £(0.03)
0.24 100 | 100 | 0.16 £(0.02) | 100 | 40 |0.14 £(0.03)
0.27 |100| 100 |0.17 £(0.03) | 100 | 40 | 0.15 £(0.03)
Correlation (actual and computed severity) 0.7980 0.7710
10 % MagSEED 0.03 29 | 28 |0.14 £(0.09) | 70 | 69 | 0.16 £(0.13)

0.05 38 | 36 |0.21 £(0.09
84 = 0.05 (Best) 0.09 |100/| 100 |0.24 £(0.05) |100| 99 | 0.24 +(0.05)
0w = 0.1 (Best) 0.12 | 100| 100 |0.25 £(0.06) | 100 | 100 | 0.23 £(0.05)

)
(0.09) | 86 | 85 | 0.19 £(0.08)
(0.05)
(0.06)
0.13 100 99 | 0.26 £(0.05) 100 | 98 |0.25 =£(0.05)
(0.06)
(0.06)
(0.06)
)

04 = 0.1 (Worst) 0.15 |100| 100 |0.29 £(0.06) |100| 99 | 0.29 +(0.06)
0w = 0.2 (Worst) | 0.16 | 100| 100 |0.30 £(0.06) | 100 | 99 |0.29 £(0.06)
0.24 100 | 100 | 0.29 £(0.06) | 100 | 99 |0.28 £(0.06)
0.27 | 100 100 |0.30 £(0.05) |100| 99 | 0.30 £(0.06)

Correlation (actual and computed severity) 0.8216 0.8662

DDM 003 | 0] 0 [0.00+(0.00) 0| 0 |0.00=£(0.00)

005 | 6 | 6 |0144(0.01) 6 | 2 |0.14 £(0.01)

a=3 0.09 |99 | 99 |0.17 £(0.01)| 99 | 17 |0.16 £(0.01)

012 |99 | 99 |0.17 £(0.01) | 99 | 18 | 0.16 £(0.01)

3 =2 (Best) 0.13 |100| 100 | 0.20 £(0.01) | 100 | 15 | 0.19 £(0.02)
B=1(Worst) | 0.15 | 98 98 |0.24 £(0.02) 98 23 |0.23 £(0.02)

0.16 100 | 100 | 0.24 £(0.02) | 100 | 16 |0.23 £(0.02)

0.24 | 98 | 97 |0.22 £(0.02) | 98 | 10 | 0.19 £(0.03)

0.27 98 | 97 0.23 £(0.02) | 98 | 8 |0.20 £(0.04)

Correlation (actual and computed severity) 0.7608 0.6732

106 K. Chen et al.

method to the DDM method presented by Kosina et al. [10], as their technique
has warning detection and can also capture drift severity. We did not compare
our method with the PHT method [10] as it was shown to perform worse in
terms of severity tracking. We did not include ADWIN2 in our comparison as
the nature of the exponential histogram data structure used in the detector
makes it difficult to implement a warning threshold for computing severity.
Table 2 shows the rate of true warning detection on gradual Bernoulli streams
with the correlation between average computed severity and slope of change
highlighted in bold. MagSeed has a high rate of true warning detection (98-100 %
given a true drift is detected) and is able to detect more true drifts than DDM.
Both detectors have high correlations for noise free data which shows that they
are capable of capturing the speed of concept drift. For noisy data (5% or 10 %
noise), MagSeed shows a clear advantage as it is able to detector more true
drifts, true warnings and the measure correlates well with speed of change. This
suggests that our detector is capable of tracking the speed of concept drift.
Table 3 shows results for abrupt SEA streams over a range of severity levels.
The third column in the table (Actual Severity) is the theoretical severity of
the streams computed as the area difference between two concepts. In these
experiments, the severity measure of MagSeed shows high correlation with actual
severity and consistently performed better than DDM in terms of true warning

Table 4. Warning detection on Gradual CIRCLES

Noise Detector Actual Best Worst
Severity | RD | TW | Rate (SD) |RD | TW | Rate (SD)
0% MagSEED 0.07 100 | 100 | 0.08 +(0.03) | 100 | 98 | 0.07 £(0.03)

64 =0.05,8, = 0.1 (Best) | 0.16 | 100 | 100 | 0.09 +(0.03) | 100 | 99 |0.07 +(0.03)
84 =0.1,8, = 0.3 (Worst) | 0.26 | 100 | 100 | 0.09 £(0.03) | 100 | 99 | 0.08 £(0.03)
0.38 | 100 | 100 | 0.09 +(0.03) | 100 | 99 |0.08 £(0.03)

Correlation (actual and computed severity) 0.8482 0.9782
DDM 007 | 0 | 0 |0.00+(0.000] 0 | 0 |0.00£(0.00)
a=3,8=2 (Best) 0.16 8 | 8 |0.25+(0.02)| 8 | 8 |0.15+£(0.01)
a=3,8=1 (Worst) 026 | 97 | 97 |0.26 £(0.02) | 97 | 62 |0.15 £(0.03)
0.38 100 | 100 | 0.28 +(0.02) | 100 | 65 |0.16 £(0.03)

Correlation (actual and computed severity) 0.7892 0.7514
10% MagSEED 0.07 | 100 | 100 | 0.24 +(0.05) | 100 | 98 |0.23 £(0.05)

54 =0.05,8, = 0.1 (Best) | 0.16 | 100 | 100 | 0.25 +(0.05) | 100 | 98 |0.24 +(0.05)
§q=0.1,8, = 0.3 (Worst) | 0.26 | 100 | 100 | 0.26 +(0.06) | 100 | 97 | 0.25 +(0.06)
0.38 | 100 | 100 | 0.26 +(0.06) | 100 | 97 |0.25 +(0.06)

Correlation (actual and computed severity) 0.9654 0.9374
DDM 007 | 0| 0 [0.00=£(0.000] 0 | 0 [0.00=£(0.00)
a=3,8=2 (Best) 016 | 0 | 0 |0.00+(0.000] 0 | 0 [0.00+(0.00)
a=3,8=1 (Worst) 026 | 0| 0 |0.00+(0.000] 0| 0 [0.00+(0.00)
038 | 0| 0 |0.00+(0.000] 0| 0 [0.00+(0.00)

Correlation (actual and computed severity) 0.0000 0.0000

Tracking Drift Severity in Data Streams 107

rate and true drift rate. For the noise free streams as the severity increases there
is also a decrease in delay which decreases the area for correct warning detection.
Most of these incorrect warnings are detected too early and the increasing error
rate prevents the warning from shifting forward in time. In contrast the noisy
streams have greater fluctuations in the error rate and are more apt to recover
from local maxima.

Table 4 shows results for gradual CIRCLES streams with low severity. The
third column (Actual Severity) is the difference in area between the new and
old circle concepts. The MagSeed detector shows high correlation between the
computed and theoretical severity of the stream, and has higher true drift and
true warning detection rates without compromising the false positive drift rate
as FFP <0.34% (not shown in table).

5.4 Performance on Real World Data

We also examine the performance of our algorithm on real world data, and com-
pare it to ADWIN2 and DDM using a Hoeffding tree learner which is retrained
using examples from the warning period for detectors with warnings.

Table 5. Performance on real world data

Dataset Detector | Accuracy | Drifts | Warnings | Rate (SD)

Forest covertype | MagSEED 0.84 2380 1395 0.49 £+(0.23)
DDM 0.83 1942 1475 | 0.83 £(0.27)

ADWIN2 0.85 2492 0 -
Pokerhand MagSEED | 0.75 2032 1248 | 0.54 £(0.20)
DDM 0.73 1046 1007 | 0.63 £(0.25)

ADWIN?2 0.75 2130 0 -
Airlines MagSEED | 0.66 173 131 | 0.40 £(0.15)
DDM 0.65 14 14 0.38 £(0.07)

ADWIN?2 0.65 384 0 -

Table5 shows the performance of MagSeed, DDM and ADWIN2 on three
real world datasets: Forest Covertype [3], Pokerhand [2], and Airlines [8]. All
the detectors are comparable in terms of overall prediction accuracy. However
it is difficult to access the performance of the severity measure as we do not
know the location or magnitude of the true drifts in these real world datasets.
For the MagSeed detector there is a large number of drifts that did not trigger
a warning, this may be caused by changes of large magnitudes which do not
trigger the warning threshold prior to the drift threshold.

108 K. Chen et al.

6 Conclusions

In this paper, we presented a drift detector that is capable of detecting drift
severity. We experimentally showed that there is a strong correlation between
the computed and real magnitudes in our synthetic datasets which suggests that
the computed and real magnitudes are similar. One limitation of our detector is
that it may be unable to capture the drift severity for changes of high magnitudes
where there are drastic changes in concepts. This is often due to the small
delay time between the true change and detected drift point which provides
less opportunity for correct warning detection. In the future, we would like to
extend MagSeed to adaptively determine the window size of our second warning
threshold. We would also like to conduct experiments on a wider range of data
streams and use drift severity for analysing characteristics of real data streams.

References

1. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of the Seventh SIAM International Conference on Data Mining,
26-28 April 2007, Minneapolis, MN, USA, pp. 443-448 (2007)

2. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams.
In: Balcdzar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010,
Part I. LNCS, vol. 6321, pp. 135-150. Springer, Heidelberg (2010)

3. Bifet, A., Read, J., Pfahringer, B., Holmes, G., Zliobaite, I.. CD-MOA: change
detection framework for massive online analysis. In: Tucker, A., Hoppner, F.,
Siebes, A., Swift, S. (eds.) Advances in Intelligent Data Analysis XII. LNCS, vol.
8207, pp. 92-103. Springer, Heidelberg (2013)

4. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection.
In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp.
286-295. Springer, Heidelberg (2004)

5. Gama, J., Zliobaité, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 45(4), 44:1-44:37 (2014)

6. Gongalves, P.M., de Carvalho, S.G., Santos, R., Barros, S., Vieira, D.C.: A com-
parative study on concept drift detectors. Expert Syst. Appl. 41(18), 8144-8156
(2014)

7. Huang, D.T.J., Koh, Y.S., Dobbie, G., Pears, R.: Detecting volatility shift in data
streams. In: 2014 TEEE International Conference on Data Mining, ICDM 2014,
Shenzhen, China, 14-17 December 2014, pp. 863-868 (2014)

8. Ienco, D., Bifet, A., Pfahringer, B., Poncelet, P.: Change detection in categorical
evolving data streams. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing, pp. 792-797. ACM (2014)

9. Klinkenberg, R.: Learning drifting concepts: example selection vs. example weight-
ing. Intell. Data Anal. 8(3), 281-300 (2004)

10. Kosina, P., Gama, J., Sebastido, R.: Drift severity metric. In: 19th European Con-
ference on Artificial Intelligence, Lisbon, Portugal, 16-20 August 2010, ECAT 2010,
pp. 1119-1120 (2010)

11. Page, E.: Continuous inspection schemes. Biometrika 41, 100-115 (1954)

12. Sebastido, R., Gama, J.: A study on change detection methods. In: 4th Portuguese
Conference on Artificial Intelligence, Lisbon (2009)

Probabilistic Belief Contraction: Considerations
on Epistemic Entrenchment, Probability
Mixtures and KL Divergence

Kinzang Chhogyal2®) Abhaya Nayak?, and Abdul Sattar!

! Griffith University, Brisbane, Australia
a.sattar@griffith.edu.au

2 Macquarie University, Sydney, Australia

{kin.chhogyal,abhaya.nayak}@mq.edu.au

Abstract. Probabilistic belief contraction is an operation that takes a
probability distribution P representing a belief state along with an input
sentence a representing some information to be removed from this belief
state, and outputs a new probability distribution P, . The contracted
belief state P, can be represented as a mixture of two states: the original
belief state P, and the resultant state P%, of revising P by —a. Crucial
to this mixture is the mixing factor ¢ which determines the proportion
of P and PZ, that are used in this process in a uniform manner. Ideas
from information theory such as the principle of minimum cross-entropy
have previously been used to motivate the choice of the probabilistic
contraction operation. Central to this principle is the Kullback-Leibler
(KL) divergence. In an earlier work we had shown that the KL divergence
of P, from P is fully determined by a function whose only argument is
the mixing factor e. In this paper we provide a way of interpreting e
in terms of a belief ranking mechanism such as epistemic entrenchment
that is in consonance with this result. We also provide a much needed
justification for why the mixing factor e must be used in a uniform fashion
by showing that the minimal divergence of P, from P is achieved only
when uniformity is respected.

1 Introduction

Cognitive agents use new information to form beliefs, and modify them. The
field of belief change (Alchourrén et al. 1985) studies how a rational agent’s set
of beliefs, represented as sentences, may change when a piece of new information
is acquired. It is convenient to view beliefs probabilistically when a finer grain
of uncertainty is desired. The belief state of an agent is then represented by a
probability distribution. The two main operations that are employed to represent
change in a belief state are contraction and revision. Contraction removes sen-
tences that represent beliefs where as revision accommodates information that
is possibly inconsistent with existing beliefs. The result of both these opera-
tions are (usually) new belief states. One of the main guiding principles in belief
change is that of minimal information loss which says that in the process of

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 109-122, 2015.
DOI: 10.1007/978-3-319-26350-2_10

110 K. Chhogyal et al.

belief change the loss of information should be minimised.! As belief states are
probability distributions, researchers have resorted to the principle of minimum
cross-entropy from information theory which is a technique that minimizes rela-
tive information loss and thus provides a way of selecting new belief states. The
principle of minimum cross-entropy is based on the Kullback-Leibler divergence
which measures the similarity between two probability distributions. Following
(Gérdenfors 1988), we represent the contracted belief state P, as the e-mixture
of two states: the original belief state P, and the resultant state P* of revising
P by —a. The factor € determines the proportion of P and P*, that are to be
used in a uniform fashion in this process.

In an earlier work, (Chhogyal et al. 2015), we showed a simple but somewhat
surprising result that the Kullback-Leibler divergence of P, from P is solely and
completely determined by e. This result is somewhat baffling since one would
have thought that the divergence would at least depend on the two belief states
P and P*,. One of the things we do in this paper is take up this issue, and
provide plausible ways for viewing the mixing factor € that are consistent with
this result. Of particular interest is one that connects ¢ with the entrenchment
level of the belief a that is being discarded, and provides a way of obtaining the
value of e.

While the aforementioned contribution involves the value of the mixing factor
€, the other contribution deals with how e is used. Although the factor € deter-
mines what proportions of P and P*, are to be used in the process of computing
P, in principle there are many ways of doing it. Following (Gérdenfors 1988),
it has been customary to use € as a uniform scaling factor for the probability
mass assigned to the worlds that model the current beliefs, but no justification
has been provided for this practice. We show that indeed, if the weight € is
given to the models of the current beliefs as a whole, but not uniformly (and
hence violating the “ratio principle”), then the KL-divergence would be more
than otherwise. Thus, in showing that the employment of € as a uniform scaling
factor is dictated by the principle of minimum cross-entropy, we provide a much
needed justification for the way probabilistic belief contraction is conceived in
the literature.

2 Background

Consider a finite set of propositional variables from which a language £ is gen-
erated. The set of all possible worlds (interpretations) of £ is {2. Lower case
Roman letters a,b,... are sentences in £ and, w with or without subscript
represents worlds in (2. An agent’s belief state can be represented as a single
sentence by the special symbol k or as a set of sentences K. Given a proba-
bility distribution P, the belief set K is the top? of P. Henceforth, P will be

! This principle is subject to debate and different interpretations; see for instance
(Rott and Pagnucco 1999; Arlé-Costa and Levi 2006). It has also been employed to
provide accounts of iterated belief contraction, e.g. in (Nayak et al. 2007).

2 Sentences that have a probability of 1.

Probabilistic Belief Contraction: Considerations on Epistemic Entrenchment 111

referred to as the belief state. Given P, the probability of a sentence a is given by
P(a) =) ,co P(w), where w |= a. If P(a) = 1, we say a is belief. If P(a) =0, a
is a disbelief, i.e. —a is a belief. For all other cases, a is called a non-belief. The
two belief change operations we are interested in are probabilistic belief revi-
sion and probabilistic belief contraction. Belief revision changes the status of a
sentence from a belief to a disbelief (and vice versa) because the agent accepts
information contrary to what it believes. Let P be the belief state and a be a
belief. The agent upon receiving word that a is false revises P by —a to trans-
form P to a new belief state represented by P*, where a is a disbelief. Thus,
P(a) =1 and P*,(a) = 0. Note that since P(a) = 0, Bayesian conditionalization
cannot be used for revision because it runs into the zero prior problem. In fact,
conditionalization is more appropriate for turning non-beliefs into beliefs.

Belief contraction changes the status of a sentence from a belief to a non-
belief. The contraction of P by a is represented by the new belief state P, .
Thus, P(a) =1 but 0 < P, (a) < 1. The semantics of revision and contraction
of probabilistic belief states is given by the movement of probabilities between
the worlds in 2. When revising P by —a, we must ensure that all a-worlds have
zero probability mass, i.e.) . PX,(w) = 0, where w |= a. This way P*,(a) =0
as required. On the other hand, in contracting P by a, some models of a must
have non-zero probability mass but the sum of these masses should not equal 1,
ie. 0<) cnPr(w) <1, where w = a. So, we have 0 < P, (a) < 1 as required
for a non-belief. Revision and contraction are functions that map belief states
and input sentences to belief states. Thus, given the set of all belief states P,
*:Px L —Pand —: P x £ — P. These functions must of course be subject to
some conditions. For instance, as we mentioned earlier, P*,(a) = 0 for revision
and 0 < P (a) < 1 for contraction. The former constitutes the so called revision
postulates, P*1 — P*5, where as the latter constitutes contraction postulates,
P~1— P75 (Gérdenfors 1986; Géardenfors 1988) provided below:

(P~1) P is a probability function
(P72) P, (a) < 1iff not F a.
(P~3) Ifl—a<—>b then P, = P,".
(P~4) If P(a) < 1, then P, = P.
(P~5)

If P(a) =1, then (P,) = P23
All the above postulates possibly except (P~5) named Recovery are self-
explanatory. Recovery captures the intuition that all the information lost in
the process of giving up a belief a should be regained by reinstating a as a belief.
It is a relatively controversial requirement, and discussion of it can be found, for
instance, in (Hansson 1991).

Definition 1 (Gdrdenfors 1988). Given P with P(a) =1, for all x € L:
P(x)=e-P(z)+ (1 -¢)- P (2)
for some e, 0 <e<1.

3 P is simply Bayesian conditioning.

112 K. Chhogyal et al.

Thus, P, is a mizture of P and P*, and is also often written as PeP”*,. To
keep in line with (P~4), € is taken to be 1 when P(a) < 1.* The following theo-
rem guarantees that probabilistic contraction functions obtained via Definition 1
satisfy the contraction postulates.

Theorem 1 (Gdrdenfors 1988). If a revision function satisfies P*1 — P*5, then
the contraction function gemerated by Definition 1 satisfies P~1 — P~5, where
P*1 — P*5 are probabilistic revision postulates.

3 What Is €7

In (Gérdenfors 1988), it is claimed that P, in Definition 1 is “a compromise
between the states of belief represented by P and P*,, where € is a measure of
degree of closeness to the beliefs in P.” It is not clear from this statement what
the nature of € exactly is. Neither has there been any work that we know of
which explicitly discusses €. Hence the nature of ¢ merits more discussion. First,
is € sensitive to the input a in P, 7 More precisely, if the current belief state is
P and there are two beliefs b and b’ such that b Z '/, should the value of € be
the same or different while constructing P, and P, respectively? Consider the
example below for the purpose of illustration.

Let’s assume that John believes: b: Betty’s new car is green, and g: grass
is green. If someone raises doubt about the colour of Betty’s new car,
chances are that John, who always believed that Betty’s favourite colour
is red, will discard the belief b and the new probability he will assign to
it will be relatively low. On the other hand, if John were to suspend the
belief that grass is green, it is likely to be with much reluctance that he
will do so, and assign relatively high probability to g.

This example indicates that e should be sensitive to the input. Indeed,
Gérdenfors himself has hinted support for it when he points out that P, (a) =€,
which is easily verified:

Pr(a) = P(a) + (1—) Py(a)
=e-1+(1—¢€)-0

= €.

So € is the probability that an agent would assign to a belief just discarded.
Presumably, a belief that an agent very reluctantly discards will retain a higher
degree of probability than one she happily discards. We next present two views
on €, both of which are sensitive to the input. One we call the epistemic entrench-
ment view and the other the probabilistic view.

4 One might wonder if the value of e is prefixed. We take the view that it is not, and
is indeed sensitive to the information a that is being removed.

Probabilistic Belief Contraction: Considerations on Epistemic Entrenchment 113

3.1 Two Views on €

We may now ask whether there exists some sort of measure that could be used to
represent John’s reluctance (or willingness) to give up a belief as in the example
above. An obvious candidate is the epistemic entrenchment (Gérdenfors 1988)
which is the degree of resistance of a belief to change. The more highly entrenched
a belief is the more reluctant an agent is to discard it. Epistemic entrench-
ment also serves as an extra-logical tool when having to choose between which
beliefs to give up. Whilst more typically studied syntactically, for our purposes it
helps to characterize it semantically via Groves’ System of Spheres (Grove 1988;
Nayak 1994).

5
a
3
2
1

Fig. 1. Grove’s system of spheres: Semantics for Epistemic Entrenchment. The inner
most sphere [K] represents the set of worlds considered most plausible by the agent
and have an ordinal value of 0. The dotted line represents [—al].

We give here a quick overview of entrenchment semantics using Fig. 1. An
epistemic entrenchment relation, <, can be viewed as inducing a system of
spheres that is centered on [K], where [K] represents the worlds that have been
assigned non-zero probability mass by the current belief state P. A system of
spheres represents the relative plausibility of worlds in 2. Each “solid” sphere
may be viewed as consisting of a number of smaller spherical bands. Each band
in this system consists of subsets of worlds that are considered equally plau-
sible. The further out a band is from the centre, the less plausible the worlds
contained in it are. Thus, the innermost sphere [K] contains the most plausible
worlds. Ordinal values, 0,1,2,..., are used to denote the relative plausibility of
the spheres. Thus, [K] being the set of most plausible worlds has an ordinal
value of 0. Now in order to determine how epistemically entrenched a belief a
is, we look at the innermost band that intersects [—a]. In the figure above, the
smallest sphere intersecting [—a] has an ordinal value of 3 which we assign to be
the entrenchment rank of a and is denoted as EF(a). Note that even though a
is belief with P(a) = 1, it is still not maximally entrenched since EE(a) # 5.°

5 Strictly speaking Girdenfors epistemic entrenchment is completely relational, and
using ordinals in this way is used for convenience only. Our approach may be taken
to be closer to Spohn’s degree of beliefs modeled via Ordinal Conditional Functions
(Spohn 1988).

114 K. Chhogyal et al.

We would expect that epistemic entrenchment can help with the determina-
tion of € when contracting a belief a from P. Since we argued above that both e
and epistemic entrenchment have to do with the reluctance to give up beliefs, it
is reasonable to assume that € should be determined by EE(a). Given P and two
beliefs a and b, what we are then aiming for is a relation between € on the one
hand, and FE(a) and EE(b) on the other that satisfies the following criteria.
For all beliefs a and b,

1. If EE(a) < EE(b), then ¢, < €, where P, = Pe,P*
and
2. 0<é€q,6p < 1.

and P, = Pe,P%,,

a

We know that P, (z) = e, for any belief = in P. The first criteria says if belief
a is less epistemically entrenched than belief b, then when we contract a from P
the probability assigned to a should be less than the probability assigned to b
when we contract b from P. The following definition satisfies the criteria above:

Definition 2. Given an epistemic entrenchment relation, <, and the corre-
sponding epistemic ranking function, EE(-):

1
EE(a)

€q=1—

where a is the belief to be contracted and EE(a) is the epistemic rank of a.b

It is easily seen that the more entrenched a belief is, the closer will be the
value of € to 1 and the less entrenched a belief is, the closer € will be to 0. It is
important to note here that since a is a belief proper, it will never be the case
that EFE(a) = 0 and thus € is always well defined. We state this as a simple
proposition.

Proposition 1. Given a consistent belief state P and a belief a, € obtained via
Definition 2 is always well defined.

Proof. The only case where € is undefined is the case when EE(a) = 0. We
show that this case is not possible. Since P is consistent and P(a) = 1, each
world in [K], i.e. the set of worlds P assigns non-zero mass to, must also be
models of a. This also means [K]N[-a] = 0. Assume EE(a) = 0, this means the
innermost band that intersects [—a] is [K] or in other words [K]| N [—a] # 0 but
this contradicts the fact that [K] N [—a] = 0. Hence, EE(a) # 0. O

On a final note, it is interesting to ask whether epistemic entrenchment is
in someway connected to probabilities. If so, then € may be possibly computed

5 We assume that a # k. The special case when the agent discards all that it believes
will need special treatment, and will digress us to the discussion of special forms
of belief contraction such as pick contraction and bunch contraction that are not
directly relevant to the main contribution of this paper.

Probabilistic Belief Contraction: Considerations on Epistemic Entrenchment 115

simply from the probabilities assigned by P. Thus, for two sentences, the one
with a lower probability can be taken to be the one less epistemically entrenched.
However, the problem with this reasoning is that all sentences of probability 1
should be maximally entrenched. According to (Gérdenfors 1988), one should
find it harder to give up beliefs in natural laws than beliefs in single factual sen-
tences. Thus, the former is more epistemically entrenched than the latter even
though they may be both maximally probable. Indeed, as (Levi 1983) notes, “It
is tempting to correlate these grades of corrigibility with grades of certainty or
probability. According to the view I advocate, that would be a mistake. All items
in the initial corpus L which is to be contracted are, from X’s point of view, cer-
tainly and infallibly true. They all bear probability 1.” What Levi describes as
“grades of corrigibility” can be roughly seen as the degree of epistemic entrench-
ment. So, statically speaking, the connection between probability and epistemic
entrenchment is rather tenuous since only sentences with maximal probability
have a nontrivial entrenchment ranking. However, our approach indicates that
the connection between probability and epistemic entrenchment is dynamic in
nature — epistemic entrenchment is a prime driver of the probability assigned to
non-beliefs.

We now depart from the epistemic entrenchment view of €, and instead look
at how e might be determined from probabilities alone. This view is relatively
straightforward. Since P is defined as PeP*_, € should at least partly be a

a —a’

function of P and P*,. We have the following general definition:

Definition 3. Given P and P*_,

ezf(PaP*(u@)'

-

where O is contextually determined set of parameters that is possibly empty and
f is a function with an appropriate signature.

We do not provide an explicit construction of the function f here since for
our purpose the general definition will suffice. A possible way to construct f
is provided in (Chhogyal et al. 2015) where arguments of varying degrees of
strength are derived from P and P*_, and then used to determine e.

4 The Kullback-Leibler Divergence

In belief change, the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951)
has attracted some researchers to use it as tool for choosing between different prob-
abilistic belief states when the current belief state is to undergo change. The KL
divergence is central to the principle of minimum cross-entropy (Kullback and
Leibler 1951), which in simple terms says that when faced with several probability
distributions to move to from the current belief state, the probability distribution
with the minimum KL divergence should be the one chosen. In this paper, we do
not prescribe specific constructs that exploit the KL divergence in choosing a suit-
able belief state P, given P and P. The interested reader is referred to works such
as (Kern-Isberner 2008; Potyka et al. 2013; Ramachandran et al. 2012). Our main

116 K. Chhogyal et al.

aim is to study the relation between € and the KL divergence. This work builds on
the work done in (Chhogyal et al. 2015) where a basic result which we present later
was established. However, it was rather reticent on the implications of that basic
result and this is what we hope to shed more light on. Recall from Definition 1 that
P (z) =¢-P(x)+ (1 —¢€) - P*,(z). From here onwards, by P, , we refer to the

probability distribution obtained via Definition 1. We start Wlth the definition of
the KL divergence.

Definition 4. Given two discrete probability distributions P and Q) over the set
of worlds 2, the Kullback-Leibler (KL) divergence of Q from P is defined as:”

Dir(P|lQ) =) Pw) < EZ§>

wes?

Intuitively, the KL divergence measures the difference between two probability
distributions. If P is the real distribution then Dy (P || Q) measures how good
an approximation @) is of P, or alternatively how close @ is to P. It can also be
viewed as measuring how much information is lost in moving from P to Q). The
following are some important properties of the KL divergence:

2. Dgr(P || Q) =0iff P(w) = Q(w) for all w € £2, and
3. Dgr(P || Q) # Dkr(Q || P).

The first property says that the KL divergence is always non-negative. The
second property says that the KL divergence between two distributions is 0 if
and only if the distributions are equal. The third property says that in general
the KL divergence is not symmetric. We will also adopt the convention that
0/0 = 0. We have some simple observations:

Observation 1. Given P, P*, and e,

1. Ife=1, then DLg,(P || P;) =0,
2. If0<e<1,then0 < DLkp(P | P;) < oo and,
3. Ife=0, then DLk (P || P;) is undefined, i.e. it is oo.

Proof. The observation follows directly from Definition 1. First consider when
€ = 1 and we get P, = P. From property 2 of KL divergence, we know
DLk (P || P;) = 0. Next consider when 0 < ¢ < 1, by virtue of Definition 1,

any world assigned non-zero probability mass by P is also assigned non-zero
P(w)
P, (w)

is positive and well-defined. It

mass by P, . It is easily seen then that: a) the ratio is either O or greater

than 0, and b) there exists w such that P(‘(‘g)

follows then that 0 < DLk (P | P;) < oo. For the final case when ¢ = 0,
P = P*, and there exists a world w such that P(w) > 0 and P, (w) = 0. This

means }f_(zg) is undefined. Thus, DLg (P || P;) = oc. O

" KL divergence is often defined only when Q(w) = 0 implies P(w) = 0, obviating the
need for special conventions such as 0/0 = 0.

Probabilistic Belief Contraction: Considerations on Epistemic Entrenchment 117

When € = 1, contraction does not change the beliefs, so there should be no
divergence. When e = 0, contraction results in a drastic change of beliefs so the
divergence should be maximum.

Observation 2. Given P, P*, and e, DLi (P, || P) is undefined, i.e. cc.

Proof. This proof is similar to case 3 above. There are worlds that P, assign
non-zero probability mass to but not by P.

Theorem 2 (Chhogyal et al. 2015). Given P, P,
in(2).

Theorem 2 was established in (Chhogyal et al. 2015). As we can see, the
claims made in Observation 1 agree with this theorem. Corollary 1 below is a
simple consequence of Theorem 2 and the two will be central to our discussions
later on.

ande, DLKL(P || P(:) -

Corollary 1. Let belief state P, the mizing factor €, belief a, and revision oper-
ators x and %" be given. Let P, = PeP*, and P, = PeP*,. Then DLk (P ||
Py)=DLgL(P | P;).

Proof. Since € is fixed, it easily follows from Theorem 2, that DLy (P || P;) =
In(1) and DLk (P || P;') =In(1). O

Table 1. Two partial belief states P’ and P” that are obtained from P via scaling by
€ = 0.1. € is applied uniformly to obtain P’ and non-uniformly to obtain P”. Note that
the probabilities assigned by P’ and P” sum to e.

w P P’ P~
w1 0.2 0.02 0.01
w2 0.3 0.03 0.06
w3 0.5 0.05 0.03
w4 0 0 0

We next look at the relation between the uniform scaling of probabilities and
the KL divergence. For ease of explanation, let P, = @ + Q’, where Q is ¢ - P
and Q" is (1 —¢€) - P*,. Thus, DLk (P || P;) would be:

P(w)
DLir(P | P, P(w —
e ZQ (@) +Q <w>>

In both cases @ and Q' are obtained by scaling P and P*, uniformly and
results in ., Q(w) =eand) Q' (w)=1— e This raises an interesting
question. Why should @Q and @’ be obtained by uniform scaling? To make the

118 K. Chhogyal et al.

idea of uniform scaling clearer, consider Table 1. We obtain the partial distrib-
ution P’ by taking the probability of each world assigned by P and uniformly
scaling it by €. For P”, each world is scaled by a different factor but the sum of
the probability mass in P” still . What if we only adhere to the condition that
Ywen QW) =eand) ., Q'(w) = 1 —e but not bother that they are obtained
by scaling P and P*, uniformly? Of course, we also require that Q(w) # 0 iff
P(w) # 0, and similarly for @’ and P*,. Would the divergence DLk, (P || P,)
be less in this case when the scaling is non-uniform? A little reflection will
show that in calculating the DLk (P || P,), Q' really has no influence. This
% when P(w) # 0 or equivalently Q(w) # 0, we
have @'(w) = 0 and vice versa. This means we only have to focus on the case
where) o Q(w) = € and Q # ¢ - P. To help answer the question regarding
DLk (P | P;), we first introduce a result from information theory:

is because in the ratio

Theorem 3. (Cover and Thomas 1991, Log Sum Inequality). For positive num-
bers, a1,..., a, and by, ..., by,

S (i) = (o) (525)

with equality iff for all i, 3+ = constant.

Theorem 4. Given P, P*_, ande, let [k] be the set of worlds such that P(w) > 0
and 3 ey P(w) = 1. Let Q be such that a) 3-,c o Qw) =€, b) Q(w) # €- P(w)
for some w € [k],® and ¢) Q(w) # 0 iff P(w) #0. If Py (w) =€ P(w)+ (1 —¢)-
P2 (w) and P (@) = Q)+ (1=6)- P, (w), then DLy (P || Py) < DLy (P |
P,

a

Proof. We want to prove that DL (P || P;) < DLgr(P | P.”). First, we
compute DLy (P || P,). Since P is scaled uniformly by €, from Theorem 2 we
know

DLi(P | Pr)=mn (1),

We next compute DLg (P || P;'). By definition,

P(w)
DLk (P | P ZP (Pa,(w))

wen

We know P, (w) = Q(w) 4 (1 —€) - P*,(w), thus

P(w)
DLki(P | P;) =) Pw) ln< ()+(1—e)-P:a(w)>'

wes?

Since 2 = [k] U 2\ [k], we can rewrite the equation above as follows:

8 This is the same as saying it s not the case that Q(w) = ¢ - P(w) for all w € [k].

Probabilistic Belief Contraction: Considerations on Epistemic Entrenchment 119

DLk (P | P,)=A+B

where A= 3 P(w)ln (%) and B=), P(w)ln (%)
= Qw)+(1—e)-P%, (w) we k] Qw)+(1—e)-P%,(w)

Consider A first. Since w € [k], P(w) > 0, Q(w) > 0 and P*,(w) = 0.

_ P(w)
AWEZMP(w)ln (Q(w)—!—(l—e)-O)

C Y plym (2
=Y Pw)]l (Q@))'

welk]

Now consider B. Since w € 2\ [k], P(w) =0 and Q(w) = 0.

0
s> 0'1“<o+<1—e>-Pia<w>)

weN\[k]

= > 0-In(0)
we N\ [k]

=0.

Thus,

_ P(w)
DLkr(P| Py) =) Pw)h ()
et Qw)

This is the left side of the log-sum inequality. Thus,

DLk (P || P) > (> P(w)) In <W>

welk] Zwe[k] Q(W)
Now we know Y, P(w)=1and > Q(w)=e. Thus,
welk] welk]

/ 1
DLir(P | P7) > In ()
€
The equality in > above only holds iff % =cor Qw) = 1 P(w), where c
is a constant. Assume there is a constant ¢, we get

S Qw =Y L Pw)

welk] wek] ¢

1

- Z P(w)
welk]

1

C

120 K. Chhogyal et al.

as we know 3 oy P(w) = 1. We also know ., Q(w) = € so,

1

Z—¢

c

This means that Q(w) = €- P(w) for all w € [k] which contradicts the assumption

we made at the beginning that Q(w) # € - P(w) for some w € [k]. It follows that
P(w)

there cannot be any constant ¢ such that % = ¢ and the equality in > above

no longer holds. Thus,

, 1
DLKL(P||PG_)>IH()

€
Since, DLk (P || P,;)=1n (%), we have:

DLk (P | Py) < DLgr(P | P;).

O
Theorem 4 gives us the answer that we were seeking, namely, when constructing
P, using Definition 1, scaling P uniformly is preferable since it produces a
smaller divergence. This provides a much needed justification for the uniform

scaling of P as conceived by Géardenfors.

5 Conclusion

In this paper we provided a reasonable way of establishing the value of the mixing
factor € that is used for the computation of probabilistic belief contraction. We
also showed that the uniform scaling of the belief state P used for this purpose
can be formally justified by appealing to the principle of minimum cross-entropy.

As concluding remarks, let us consider the two competing views of € provided
in Sect. 3: the epistemic entrenchment view and the probabilistic view. Note that
our results for the KL divergence in Theorem 2 does not specify which of these
two views that € is being interpreted under. That is, Theorem 2 may be inter-
preted under both these views. We consider these two cases in a little more
detail.

Let us look at the epistemic entrenchment view first. Consider two revision
operators * and *'. Presumably they are associated with two different entrench-
ment ranking functions.” Let us further assume that both these ranking functions
assign the same rank to the belief @ whereby the mixing factor € is identical in
both the cases.'® Thus, given an initial belief state P, an existing belief a, the two

9 Strictly speaking relations, but we make appropriatete mental adjustments here.

10 We note here in passing that even if a is assigned the same epistemic rank by the
two ranking functions, and hence the revised belief sets K*, and K i/a are the same,
the revised probabilistic states P, and Pf; could be different. Support for this view
can be obtained based on the accounts of probabilistic belief revision developed in
(Chhogyal et al. 2014).

Probabilistic Belief Contraction: Considerations on Epistemic Entrenchment 121

revision operators *, * and the mixing factor €, we know from Corollary 1 that
the following holds: DLk (P | P;) = DLg(P || P;), where P; = PeP*,
and P, "= PePi:l. Since the states P, and P, " are both equally divergent from
the initial state P, they are equally attractive belief states to move to after the
contraction by a. Thus, according to the epistemic entrenchment view, € is inde-
pendent of different revisions of P by a as long as the presumed entrenchment
ranking functions assign equal rank to a.

Let us now consider the probabilistic interpretation of €. According to this
view, € is a function of P, P*, and possibly some set of other parameters ©.
Different revision operators %1, %2, ...*n will produce different probability func-
tions P*L P*2 . . P*" with possibly different values for e. One way of con-
cretely establishing the value of € in this way is given in (Chhogyal et al. 2015).
Accordingly we will obtain different contracted states P, !, P2, ..., P, ™. Since
we know from Theorem 2 that DLk (P || P,) = (), unlike the case of the epis-
temic entrenchment view, some of the P, Y, P2, ... P,™ are almost guaranteed
to be preferable to others. Thus, the probabilistic interpretation of € leads to a
more fine-grained account of probabilistic belief contraction than the epistemic
entrenchment interpretation.

Thus we have provided a reason why the probabilistic interpretation is prefer-
able to an epistemic entrenchment interpretation of the mixing factor. Nonethe-
less, it remains to be seen if the probabilistic interpretation of € has the last
word in this debate. We suspect a more informative measure for belief revision
such as provided in the possibility theory (Dubois et al. 1994) will be a strong
contender. But that is a topic for a future work.

References

Alchourrén, C.E., Gardenfors, P., Makinson, D.: On the logic of theory change: partial
meet contraction and revision functions. J. Symb. Log. 50(2), 510-530 (1985)

Arlé-Costa, H.L., Levi, I.: Contraction: on the decision-theoretical origins of minimal
change and entrenchment. Synthese 152(1), 129-154 (2006)

Chhogyal, K., Nayak, A.C., Sattar, A.: On the KL divergence of probability mixtures
for belief contraction. In: Proceedings of the 38th German Conference on Artificial
Intelligence (KI-2015) (to appear 2015)

Chhogyal, K., Nayak, A., Schwitter, R., Sattar, A.: Probabilistic belief revision via
imaging. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS, vol. 8862, pp.
694-707. Springer, Heidelberg (2014)

Chhogyal, K., Nayak, A. C., Zhuang, Z., Sattar, A.: Probabilistic belief contraction
using argumentation. In: Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pp. 2854-2860 (2015)

Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, New
York (1991)

Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D.M., Hogger, C.J.,
Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, vol. 3, pp. 439-513. Clarendon Press, Oxford (1994)

122 K. Chhogyal et al.

Gardenfors, P.: The dynamics of belief: contractions and revisions of probability func-
tions. Topoi 5(1), 29-37 (1986)

Gardenfors, P.: Knowledge in Flux. Modelling the Dymanics of Epistemic States. MIT
Press, Cambridge (1988)

Grove, A.: Two modellings for theory change. J. Philos. Logic 17(2), 157-170 (1988)

Hansson, S.0O.: Belief contraction without recovery. Stud. Logica 50(2), 251-260 (1991)

Kern-Isberner, G.: Linking iterated belief change operations to nonmonotonic reason-
ing. In: Principles of Knowledge Representation and Reasoning: Proceedings of the
Eleventh International Conference, KR 2008, pp. 166—176 (2008)

Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79-86
(1951)

Levi, I.: Truth, faillibility and the growth of knowledge in language, logic and method.
Boston Stud. Philos. Sci. N.Y., NY 31, 153-174 (1983)

Nayak, A.C.: Iterated belief change based on epistemic entrenchment. Erkenntnis 41,
353-390 (1994)

Nayak, A.C., Goebel, R., Orgun, M.A.: Tterated belief contraction from first principles.
In: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, pp. 2568-2573 (2007)

Potyka, N., Beierle, C., Kern-Isberner, G.: Changes of relational probabilistic belief
states and their computation under optimum entropy semantics. In: Timm, I.J.,
Thimm, M. (eds.) KI 2013. LNCS, vol. 8077, pp. 176-187. Springer, Heidelberg
(2013)

Ramachandran, R., Ramer, A., Nayak, A.C.: Probabilistic belief contraction. Mind.
Mach. 22(4), 325-351 (2012)

Rott, H., Pagnucco, M.: Severe withdrawal (and recovery). J. Philos. Logic 28(5),
501-547 (1999)

Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In:
Harper, W., Skryms, B. (eds.) Causation in Decision, Belief Change, and Statistics,
I, Kluwer, pp. 105-134 (1988)

DMAPP: A Distributed Multi-agent Path
Planning Algorithm

Satyendra Singh Chouhan®) and Rajdeep Niyogi

Department of Computer Science and Engineering,
Indian Institute of Technology Roorkee, Roorkee 247667, India
{satycdec,rajdpfec}@iitr.ac.in

Abstract. Multi-agent path planning is a very challenging problem
that has several applications. It has received a lot of attention in
the last decade. Multi-agent optimal path planning is computationally
intractable. Some algorithms have been suggested that may not return
optimal plans but are useful in practice. These works mostly use central-
ized algorithms to compute plans. However in a multi-agent setting it
would be more appropriate for the agents, with limited information, to
compute the plans. In this paper, we suggest a distributed multi-agent
path planning algorithm DMAPP, where all the phases are distributed.
We have implemented DMAPP and have compared its performance with
some existing algorithms. The results show the effectiveness of our app-
roach.

Keywords: Multi-agent path planning - Distributed decision making -
Plan restructuring

1 Introduction

Multi-agent path planning problem has been studied in several application sce-
narios like inventory management, warehouse management, games, and robotics
[1-5]. The main objective of multi-agent path planning is to find a set of paths
such that the paths avoid the obstacles in a domain and the paths do not conflict
with each other. Multi-agent optimal path planning is PSPACE-hard [6].

Multi-agent path planning approaches can be broadly divided in to coupled
and decoupled approaches. In the former, a centralized planner computes a path
in the composite state space, which is a Cartesian product of the state space of
the individual agents. A centralized planner can compute optimal plans [7,8].
However, this approach becomes computationally intensive, as the number of
states and the number of agents increases. In fact, the computational complexity
of the time taken to compute such a plan grows exponentially with the number
of agents. It has been shown recently in [9] that suboptimal solutions for path
finding with several agents can be found efficiently.

Decoupled approaches although not complete and not guaranteed to return
optimal solutions, are, however, more practical in use [10,11]. It works in three
© Springer International Publishing Switzerland 2015

B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 123-135, 2015.
DOI: 10.1007/978-3-319-26350-2_11

124 S.S. Chouhan and R. Niyogi

phases: (i) computing the plans of individual agents, (ii) deciding the priority
of the agents for plan coordination (restructuring), and (iii) plan restructuring.
Recent works [12-14] use only phases (i) and (iii), where the decision making
for priority can be done in any of these two phases. Decoupled approaches scale
well compared to coupled approaches. [15] suggest a decoupled approach, where
a class of problems called SLIDEABLE has been identified for which planning
is complete and it takes low polynomial time to compute plans.

The existing decoupled approaches [8,16-20] use centralized algorithms for
the three phases. An exception being [19] where phase (ii) is computed in a dis-
tributed manner but the other two phases use centralized algorithms. In distrib-
uted multi-agent planning [21] the agents are involved in the planning process,
there is no central agent to compute the plans. In [17] the agents are spatially
distributed but the plan coordination is achieved by a centralized agent. Multi-
agent systems are inherently distributed where each agent has limited or no
knowledge about the environment and other agents. In this paper, we present a
fully distributed multi-agent path planning algorithm, called DMAPP, where all
the three phases are distributed.

The rest of this paper is organized as follows. In Sect.2 we discuss some
related work. DMAPP is given in Sect.3. In Sect.4 the simulation results are
given. Conclusions are given in Sect. 5.

2 Related Work

A decoupled approach to solving a multi agent path planning problem typically
cousists of three phases: (i) computing the plans of individual agents, (ii) deciding
the order (priority of the agents) in which the plans of individual agents would be
restructured so as to obtain an overall collision free solution, (iii) restructuring
the individual plans based on the order obtained in (ii).

In phase (i) individual plans are obtained with respect to static obstacles but
not considering the plans of other agents. In phase (iii) the plan of the highest
priority agent is first computed by looking at only the static obstacles. The plan
of the next agent in the order of priority is computed by looking at the plan
of the highest priority agent and the static obstacles. This continues till we get
the agent with the least priority. Eventually the plan of the least priority agent
is computed by considering the plans of all the higher priority agents and the
static obstacles. We review some works that adopt different strategies for the
phases (ii) and (iii).

In [10], a multi agent path planning algorithm is suggested. The phases (ii)
and (iii) are combined together by first assigning a priority to the agents, which
is obtained in a centralized manner. The combined phases (ii) and (iii) is also
computed by a centralized algorithm.

In [5], a path finding problem for real-time strategy games (RTS) is consid-
ered. The environment is an 8-connected deterministic grid world. The paths
of the individual agents, without considering collision with other agents, are
obtained by using the A* algorithm. The priority of the agents in such game

DMAPP: A Distributed Multi-agent Path Planning Algorithm 125

settings is predetermined. A centralized algorithm is suggested (phase (iii)) to
remove the collisions, if any, in the individual plans, using the priority. In order
to resolve collisions, a biased cost function is defined on collision points for all
the colliding agents, except the agent with the highest priority.

In [15,22], a multi-agent path planning problem is considered in a 4-connected
grid world. In phase (i), plans of individual agents are obtained together with
alternate plans. In phase (ii) the priority of the agents is computed using some
heuristics. A centralized algorithm is suggested to find an overall collision free
solution. A class of problems in grid world has been identified called SLIDEABLE
for which the overall algorithm MAPP is complete. Moreover, MAPP has low
polynomial complexity for computing plans.

In [19], a path planning problem for multiple robots is considered. In phase
(i) the plans of the individual robots are obtained. In phase (ii) a priority value
is obtained by each robot based on the static obstacles and the kinematic con-
straints of the robot. Then each robot broadcasts its priority value and the
number of obstacles that it senses to all the other robots. These values are com-
pared to obtain the order of priority. This phase is thus distributed. In phase
(iii) a centralized algorithm is used to restructure the plans.

In the light of the above works, we now present some features of the proposed
algorithm in this paper, DMAPP. Phase (i) of DMAPP is distributed since each
agent computes its plans by considering the static obstacles, whereas the plans
of the agents are computed by a centralized agent in [5,15,19,22]. Phase (ii)
in [5,15,22] is computed in a centralized manner whereas it is computed in a
distributed manner in [19]. However, in [19] it is assumed that each agent knows
the total number of agents in the system, which makes it possible to broadcast the
messages. In DMAPP, this assumption is relaxed, where an agent does not know
the total number of agents, which is a standard assumption, is most distributed
systems [23]. Phase (iii) in all the above works is computed by a centralized
algorithm. In DMAPP phase (iii) is computed in a distributed manner by the
agents by sending messages. Thus, DMAPP is a fully distributed multi-agent
path planning algorithm.

3 A Distributed Multi-agent Path Planning Algorithm

In this section, we present the DAMPP algorithm. It works in three phases: path
planning by an agent, Distributed decision-making, and plan restructuring. The
algorithm uses the following data structures as listed in Table 1.

3.1 Path Planning

In this phase, each agent computes a path corresponding to its initial-goal states
by using the search technique used in the FF planning system [24]. In each
iteration [24] performs a complete breadth-first-search to find a state with strictly
better evaluation. It [24] evaluates all the successor states of a state s. If a state
s’ with better heuristic value than that of s is found, add the path up to s’ and

126 S.S. Chouhan and R. Niyogi

Table 1. Data Structures and variables used in DAMPP

Notation Meaning

nwn Agent i, where 1 < i < n, n: number of agents

P; Plan of agent i

| P;| Length of the plan of agent ¢

T; (id;, | Py, id is an identifier

MA-Plan[l ...n][1 ...m] | A cell (i, k) of MA-Plan contains the kth action of agent i
1, G; Initial and goal states of agent 4

make s’ the current state. We have used Euclidean distance as the heuristic. The
path is computed by considering only the static obstacles in the environment;
the presence of other agents is, however, not considered. At the end of this phase,
each agent comes up with an individual plan.

Pseudo code of phase (i) for agent i is as follows:

Input: Initial and goal state of each agent
Output: plan (P;) of agent ¢

P, := ComputePlan(I;, G;,null)

T; = (idi, | P5])

insert T; in set S;

Algorithm 1. Phase (i): individual path planning

3.2 Priority Decision-Making

After first phase, each agent has its own plan. The individual plans may be con-
flicting with each other. Therefore the agents need to restructure their plans by
considering the plans of the other agents. Thus the order in which the restructur-
ing will be done has to be decided. In the literature the following strategies have
been adopted: distance between initial and goal states [19], a random sequence of
agents [10], individual plan length of the agents as obtained in phase (i) [16,18].

In this paper, we decide priority based on individual plan length of the agents
as obtained in phase (i). Highest priority is given to the agent that has the longest
plan length. The advantages of using this measure are:

— The overall plan restructuring time would be reduced compared to that
obtained by assigning a random priority as in [16].

— The number of problem instances solvable is more than that obtained by
assigning a random priority as in [16].

Priority of the agents can easily be achieved by a central agent that can com-
pare the individual plan length of the agents or distance between initial and goal
states of the agents. In a distributed approach, the agents can exchange messages

DMAPP: A Distributed Multi-agent Path Planning Algorithm 127

(that contain information on plan length, kinematic constraints) with all the
other agents to come up with a priority as in [19]. This method [19] assumes that
an agent knows the total number of agents in the system, which makes it possible
to broadcast the messages. In a multi-agent setting it would be more appropriate
to assume that an agent has limited information about the environment and
other agents. Typically an agent does not know the total number of agents in
the system. We suggest a distributed decision making procedure.

3.2.1 Distributed Priority Decision-Making

The proposed algorithm is based on the classical synchronous leader election
LCR algorithm [23].

Problem (Priority of Plan Restructuring): The underlying network topol-
ogy for message passing is a unidirectional ring consisting of n nodes, numbered
1 to n in the clockwise direction. Counting is modulo n. A ring topology is
used to illustrate the main idea of the algorithm. However, an arbitrary graph
structure can also be used [23]. The messages can only be sent in a clockwise
direction. The agents are associated with the nodes. The agents do not know
their indices, nor those of their neighbors. Each agent can distinguish its clock-
wise neighbor from its counterclockwise neighbor. The number n of nodes in
the ring is unknown to each agent. Each agent has a unique identifier chosen
from the set of positive integers. All the agents communicate and compute in
synchronous rounds. At each round all the agents send a message at the same
time to its clockwise neighbor; after receiving a message every agent performs
some computation. Then the next round begins. The communication system is
lossless.

Each agent j has a set that is initialized to a tuple (id;,plan — length;).
The goal of each agent is to know the plan length of every other agent. This
allows an agent to determine the priority of the agents for plan restructuring.
The algorithm terminates when each agent knows the plan length of every other
agent.

Priority of Agents (Pa) Algorithm (Informal): Each agent sends a message
that consists of a pair (identifier, plan length) around the ring. When an agent
receives a message, it compares the incoming identifier to its own. If the incoming
identifier is not equal to its own, it first updates its set with the pair and then
passes the message; if it is equal to its own, it comes to know the plan length of
every other agent and thus the priority of the agents.

For each agent j, the states in states; consist of the following components:

uj, a tuple (id, Plan_length) initially (id;,|P;|)

S; is a set, initially, S; = {(id;, |P;|)}

send;, a tuple, initially (id;, |P;|),

status;, with values in {unknown, known}, initially unknown.

128 S.S. Chouhan and R. Niyogi

When the status becomes ‘known’ for all the agents, the algorithm terminates.

send Function for Agent j
send the current value of send; to agent j + 1
Receive function for agent j
send; = null
if the incoming message is v, a tuple, (id, plan length) then
case:
vid # uwid : Sj:=8;U{v}; send; :=v
vad = u.ad : status := known
endcase

Algorithm 2. Phase (ii): Distributed priority decision making
Lemma 1. FEvery agent j outputs ‘known’ by the end of round ‘n’.

Proof. Note that u; is the initial value of j. Also note that the value of u; is not
changed by the code. Therefore, by the code, it is suffices to show Assertion 1.

Assertion 1. After n rounds, status; = known for all agents.
To prove this assertion, we need a preliminary invariant that says something about
the situation after smaller number of rounds. Therefore, we add Assertion 2.

Assertion 2. For 0 <r < n — 1, after r rounds, send;,, = u; for all agents.

This says that the initial value of u for the agent j appears in the send
component of the agent (j + r) after r rounds. It is straightforward to prove by
induction on r. For r = 0, send; = u;. The inductive step is based on the fact
that, every agent other than j will accept the tuple and places it into its send
component. Hence, Assertion 2 is proved.

Having proved Assertion2, we use its special case for r = n — 1, and one
more argument about what happens in a single round to show that Assertion 1
holds. The key fact here is that process j accepts u; as a signal to set its status
‘known’. O

Lemma 2. After n rounds, Set; is same for all the agents.

Proof. Consider an agent j. By Lemmal for agent j, status = known after n
rounds. By the code of the Receive function for an agent, it means that the
condition v.7d # w.id holds for n — 1 rounds. This implies that the set S; has
been updated n — 1 times. But at each round it is updated with a unique value
since the ids are distinct for each agent. Since the initial value of S; is the tuple
of j ((id;,plan;)), so after n rounds [(n — 1) + 1] the set contains n distinct
values. Since the choice of j is arbitrary, so S; is same for all agents. O

DMAPP: A Distributed Multi-agent Path Planning Algorithm 129

Lemmas 1 and 2 together imply the following:

Theorem 1. The Pa algorithm solves the problem of priority of plan restructur-
ing.

Time complexity of the distributed decision making algorithm is O(n) since
after n rounds the algorithm terminates. Message complexity of the algorithm is
O(n?) since in each round n messages are sent and the algorithm takes n rounds.
The message complexity can be reduced to O(nlogn) by suitably modifying the
HS algorithm [23].

Example. Consider a network of 4 agents in a unidirectional ring, numbered 1
to 4 in the clockwise direction. Plan length of the agents (1,2,3,4) with identifiers
(11,22,33,44) are 20, 10, 15 and 25 respectively. The distributed priority decision-
making process is shown in Fig. 1.

Set_1:{<11,20%} Set_1: {<44,25>, <11, 20>}

Set_4 {<44, 25>}
Set_2{<11, 20>,

<22,10>}
Set_4 {<44, 25>,
<33, 15>}
Set_3:{<33, 15>} Set_3:{<33, 15>, <22,10>}
a) |Initially at round =0 b) After round =1
Set_1: {<44,25>, <11, 20>, <33, 15>} Set_1: {<44, 25><11, 20>,<33, 15>, <22,10>}

Set_2 {<44, 25>, <11,
20>, <22, 10>}

Set_2: {<44, 25>
<11, 20> <33, 15>,

Set_4 {<44, 25>, Set_4 : {<44, 25>, <22,10>}
<33, 15>, <11, 20>
<22, 10>} ,<33, 15>,
<22,10>}
Set_3: {<11, 20>,<33, 15>, <22,10>} Set_3 : {<44, 25><11, 20>,<33, 15>, <22,10>}
c) After round =2 d) After round =3

Fig. 1. Distributed priority decision making

130 S.S. Chouhan and R. Niyogi

Figure 2(a) shows the initial tuple in the sets of agents. After each round, a
new tuple is added in to the set (Fig.2(b)—(d)). Figure 2 shows that after round
3, all the agents have same tuples in the set. The algorithm runs for 4 rounds.
In the last (fourth) round every agent receives its own tuple. There is no change
in the sets of the agents in the fourth round.

The set S; = {(44, 25), (11, 20), (33,15),(22,10) } is same for all the agents.
Set of each agent is sorted according to plan length of the agents. Hence, all
agents know the order in which the plan restructuring will be done. For this
example plan restructuring sequence will be 4 — 1 — 3 — 2.

In addition, each agent knows for the restructuring phase, who would be
the communicating agents. For example, agent 1 knows that it will receive a
message from agent 4, then it would restructure its plan, and then it would send
a message to agent 3.

3.3 Plan Restructuring

The highest priority agent will not restructure its plan and least priority agent
will restructure the plan according to the plans of all the other agents. After
phase (ii):

— Every agent knows the value of n.
— Every agent knows the sequence (of agents) in which restructuring will be
done.

Plan restructuring for the example illustrated in Fig. 2 will be done as follows.
Plan restructuring sequence is agent 4 — agent 1 — agent 3 — agent 2.

MA-plan /\ MA-plan
ANV

MA-plan

(. A
The initiating agent
4 will update
MA-Plan with its
own plan and send
Ma-plan to next
agent

& J

(. ™
The agent 1 will
check it its plan
conflict with
MA-Plan. If so, it
restructure its own
plan and send to
agent 3

& J

(- N

The agent 3 will
check it its plan
conflict with
MA-Plan.. If so, it
restructure its own
plan and send to
agent 2

. J/

(The agent 3 will\

check it its plan
conflict with
MA-Plan. If so, it
restructure its own
plan and send ok
message to all
agents

J

Fig. 2. Plan restructuring for the example illustrated in Fig. 1

DMAPP: A Distributed Multi-agent Path Planning Algorithm 131

Pseudo code for plan restructuring is as follows:
send function for agent j

send MA-plan to agent k
Receive function for agent k, where k is not the last agent to

restructure
if the plan of k is conflicting with MA-Plan then
Py, := ComputePlan(Iy, Gy , MA-Plan)
if P # null then
update MA-Plan With Pg; send MA-Plan
else

send ‘fail’ to all the other agents.
Receive function for agent k, where k is the last agent to

restructure
ifthe plan of k is conflicting with MA-Plan then
Py, := ComputePlan(I, Gy , MA-Plan)
if P, # null then
update MA-Plan With Py; send ‘ok’ to all the other agents
else
send ‘fail’ to all the other agents.

Algorithm 3. Phase (iii): plan restructuring

Lemma 3. Plan restructuring terminates in at most O(nT) time, O(T) is time
complexity of FF.

Proof. Initially highest priority agent will send the plan to the next agent. It is
clear from the algorithm that at most n-7 communication will be done between
the agents. In worst case, apart from highest priority agent, every agent will
restructure its plan. Hence, it will take O(nT) time. O

Lemma 4. MA-plan obtained by the restructuring phase is correct.

Proof. For n=1 (basis of induction), MA-plan consists of only one plan from
highest priority agents. Since there is only one plan, therefore it is coordinated
and valid plan. Let the Lemma be true for the ith agent in the priority. To prove
that if the (i + 1)th agent in the priority finds a plan then it is correct. For this
we need the following cases.

Case 1: The plan of the (i+ 1)th agent in the priority is not conflicting with
the remaining plans. In this case no restructuring is to be done. So the overall
plan is correct.

Case 2: The plan of the (i+ 1)th agent in the priority is conflicting with the
remaining plans. The FF algorithm computes a conflict free plan by looking at
all the other plans and static obstacles. Thus the overall plan is correct. Thus if
the restructuring phase obtains a plan it is correct. a

132 S.S. Chouhan and R. Niyogi

] °
o

Fig. 3. A simple warehouse domain (represented as a grid structure) with two agents.
Initial state of an agent is shown using a rectangle and the final state using a circle.

4 Implementation

We have implemented the DAMPP algorithm in JAVA using NetBeans 8.0.2
IDE. Experiments were performed on a workstation with 2.53GHz processor
with 4 GB of RAM. Simulation of the overall implementation is done using Java
threads (Using Thread Class). Each agent (thread) runs FF algorithm [19] to
compute its plan (Phase 1). To ensure synchronization between agents in phase2,
we used inbuilt semaphore class of JAVA (java.util.concurrent.Semaphore). Syn-
chronization between all three phases is done using valid checkpoints. Experi-
ments were run for several times for each instance and average running time is
reported.

Abbreviations used in Tables.

#n : Number of Agents

T1: Average individual Planning Time (in millisecond)

T2: Average time for Distributed Priority decision making (in millisecond)
T3: Average time for plan restructuring (in millisecond)

4.1 Warehouse Domain

We have evaluated our algorithm in the warehouse domain, by considering a
grid of size 50 x 50. It can be easily extended to larger grid structure. Some cells
contain obstacles. An agent can occupy a cell if there is no obstacle or another
agent. Objective is to find a coordinated path for all the agents. Figure 3 shows a
simple warehouse domain having two agents with their initial and goal locations
respectively (Fig. 3).

We have compared the performance of DMAPP with the randomized prior-
itized planning approach [10] and the priority scheme in [19]. We have imple-
mented these approaches in java to compare the peformance. In [10] priority of
the agent are pre-decided. In [19] the priority of agents is decided based on a
distance heuristic whereas in our work priority of agents is based on plan length.

DMAPP: A Distributed Multi-agent Path Planning Algorithm 133
1000 60 »
50
800 »
/ 40 /

600 / 20 4
400 / 20 /_//
200 10 oo

0 L_oeet? 0 : : : ‘

0 5 10 15 20 25 0 5 1012
a) b)

Fig.4. (a) Number of messages communicated vs Number of agents (b) Number of
agents vs average time for Distributed Priority decision-making (T2) in DMAPP

Table 2. Comparison results with Random prioritized planning and Path planning
using distance heuristic [19]

Sr. no|n | DMAPP Random prioritized | Path planning using
planning distance heuristic
Solved? | (T1+ T2+ T3) | Solved? | Time (ms) | Solved? | Time (ms)
1 2| Yes 15 Yes 13 Yes 16
2 3| Yes 16 yes 15 Yes 18
3 5| Yes 53 Yes 48 Yes 42
4 5| Yes 43 yes 39 Yes 43
5 6| Yes 35 No - Yes 56
6 7| Yes 77 No - Yes 79
7 10| Yes 166 No - No -
8 15| Yes 221 No - No -
Table 3. Experimental results of DMAPP algorithm
Sr. no | #n=5 #n=10 #n=15 #n=20
Solved? | T1 | T2 | T3 | Solved? | T1 | T2 | T3 | Solved? | T1 | T2 | T3 | Solved? | T1 | T2 | T3
1 Yes 44 [9 [2 [yes 7213 | 3] Yes 176 | 27 | 167 | Yes 202 | 44 | 36
2 Yes 36 | 6 |1 | Yes 13415 | 9 Yes 220 | 30 | 160 | Yes 179 | 67 | 49
3 Yes 44 | 5 [2 | Yes 126 | 14 | 9| Yes 136 | 35 | 166 | Yes 154 | 50 | 32
4 Yes 65 | 8 |2 | Yes 132 [18 | 16 | Yes 209 [21 | 54| Yes 148 [50 | 118
5 Yes 63 | 10 [3 | Yes 132 [12 | 63| Yes 180 | 27 | 54| Yes 201 | 41 | 107
6 Yes 39 |16 |2 | Yes 117 | 16 | 149 | Yes 173 [34 | 42 Yes 169 | 46 | 68
7 Yes 53 | 9 [3 |No 130 |20 [- | Yes 164 | 26 | 31| Yes 188 |43 | 19
8 Yes 64 | 8 |4 | Yes 130 | 15 | 109 | Yes 170 | 47 | 12 Yes 170 |50 | 30
9 Yes 53 | 9 [3 | Yes 133 [17 | 109 | Yes 150 | 33 | 15| Yes 180 | 60 | 20
10 Yes 64 | 8 4 | Yes 124 | 13 | 142 | Yes 179 [22 | 32| No 201 | 47 | -

134 S.S. Chouhan and R. Niyogi

The experimental results given in Table2 show the difference between using
these two measures for priority decision making. It can be seen from the table,
that DMAPP solves large problem instances that are not solvable by the other
approaches. In Table 3, we have reported the average running time of DMAPP
for different sized problem instances.

5 Conclusions

In this paper we considered the multi-agent path planning problem. Most of the
existing works have used a centralized approach for solving the problem. We feel
that in multi agent settings it would be more appropriate for the agents to com-
pute the plans, rather than relying on a centralized unit. Moreover it is typical
in multi-agent systems that the agents have limited information. Motivated by
these aspects, we have developed a distributed multi-agent path planning algo-
rithm DMAPP. The salient feature of DMAPP is that all the three phases are
computed in a distributed manner. For determining the priority for plan restruc-
turing we have developed a distributed algorithm by modifying a classical leader
election algorithm [23]. The implementation of a distributed algorithm is seem-
ingly more challenging. We have implemented DMAPP in Java and the results
are quite promising.

As part of future work, we would like to determine the class of problems solv-
able by DMAPP and compare it with the class SLIDEABLE [15,22] and examine
the two classes from both theoretical and practical perspectives. Another line of
work would be to see the scope of DMAPP for some application scenarios.

Acknowledgements. The authors thank the anonymous reviewers of AI-2015 for
their valuable comments and suggestions for improving the paper.

References

1. Parker, L.E.: Distributed intelligence: overview of the field and its application in
multi-robot systems. J. Phys. Agents 2(1), 5-14 (2008)

2. Bernardini, S., Fox, M., Long, D.: Planning the behaviour of low-cost quadcopters
for surveillance missions. In: Proceedings of ICAPS (2014)

3. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative
autonomous vehicles in warehouses. AI Mag. 29(1), 9 (2008)

4. Cirillo, M., Pecora, F., Andreasson, H., Uras, T., Koenig, S.: Integrated motion
planning and coordination for industrial vehicles. In: Proceedings of the 24th Inter-
national Conference on Automated Planning and Scheduling, vol. 2126 (2014)

5. Geramifard, A., Chubak, P., Bulitko, V.: Biased cost pathfinding. In: AIIDE, pp.
112-114 (2006)

6. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion planning
for multiple independent objects; PSPACE-hardness of the warehouseman’s prob-
lem. Int. J. Robot. Res. 3(4), 76-88 (1984)

7. Standley, T.S.: Finding optimal solutions to cooperative pathfinding problems. In:
AAAT, vol. 1, pp. 28-29 (2010)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

DMAPP: A Distributed Multi-agent Path Planning Algorithm 135

Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for opti-
mal multi-agent pathfinding. Artif. Intell. 219, 40-66 (2015)

Cohen, L., Uras, T., Koening, S.: Feasibility study: using highways for bounded-
suboptimal multi-agent path finding. In: International Symposium on Combinato-
rial Search (SOCS) (2015)

Erdmann, M., Lozano-Perez, T.: On multiple moving objects. Algorithmica 2(1-4),
477-521 (1987)

Silver, D.: Cooperative pathfinding. In: AIIDE, pp. 117-122 (2005)

Surynek, P.: A novel approach to path planning for multiple robots in bi-connected
graphs. In: IEEE International Conference on Robotics and Automation, 2009, pp.
3613-3619 (2009)

Botea, A., Surynek, P.: Multi-agent path finding on strongly biconnected digraphs.
In: Twenty-Ninth AAAT Conference on Artificial Intelligence (2015)

de Wilde, B., Ter Mors, A.W., Witteveen, C.: Push and rotate: a complete multi-
agent pathfinding algorithm. J. Artif. Intell. Res. 51, 443-492 (2014)

Wang, K.-H.C., Botea, A.: Tractable multi-agent path planning on grid maps. In:
1JCAI, pp. 1870-1875 (2009)

Van Den Berg, J.P., Overmars, M.H.: Prioritized motion planning for multiple
robots. In: International Conference on Intelligent Robots and Systems (IROS
2005), pp. 430-435 (2005)

Wilt, C., Botea, A.: Spatially distributed multiagent path planning. In: Twenty-
Fourth International Conference on Automated Planning and Scheduling (2014)
Liu, S., Sun, D., Zhu, C.: A dynamic priority based path planning for cooperation
of multiple mobile robots in formation forming. Robot. Comput. Integr. Manuf.
30(6), 589-596 (2014)

Yu, W., Peng, J., Zhang, X.: A prioritized path planning algorithm for MMRS. In:
33rd Chinese Control Conference (CCC 2014), pp. 966-971 (2014)

Wagner, G., Choset, H.: Subdimensional expansion for multirobot path planning.
Artif. Intell. 219, 1-24 (2015)

De Weerdt, M.M., Clement, B.: Introduction to planning in multiagent systems.
Multiagent Grid Syst. 5(4) (2009) (preprint)

Wang, K.-H.C., Botea, A.: Mapp: a scalable multi-agent path planning algorithm
with tractability and completeness guarantees. J. Artif. Intell. Res. 42, 55-90
(2011)

Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through
heuristic search. J. Artif. Intell. Res. 14, 253-302 (2001)

Graph-Based Collaborative Filtering Using Rating Nodes:
A Solution to the High Ratings/L.ow Ratings Problem

Alphan Culha®™ and Andrew Skabar

Department of Computer Science and Information Technology, La Trobe University,
Melbourne, Australia
{a.culha,a.skabar}@latrobe.edu.au

Abstract. Graph-based random walk models have recently become a popular
approach to collaborative filtering recommendation systems. Under the conven-
tional graph-based approach, a user node and item node are connected if the user
has rated the item, and the value of the rating is represented as the weight of the
connection. Commencing from some target user, a random walk is performed on
the graph, and the results used to perform useful tasks such as ranking items in
order of their importance to the user. Because random walk favors large-weighted
connections, walk is more likely to proceed through two users that share a high
rating for some item, than through users who share a low rating. This is a problem
because there are similarity relations implicit in the data that are not being
captured under this representation. We refer to this as the ‘High Ratings/Low
Ratings’ problem. This paper proposes a novel graph representation scheme in
which item ratings are represented using multiple nodes, allowing flow of infor-
mation through both low-rating and high-rating connections. Empirical results on
the MovieLens dataset show that recommendation rankings made using the
proposed scheme are much better correlated with results in the test ratings, and
that under a top-k evaluation, there is an improvement of up to 15 % in precision
and recall. An attractive feature of the approach is that it also associates a confi-
dence value with a recommendation.

1 Introduction

Recommender Systems are defined as software tools and techniques that provide
suggestions for items to be of use to a target user [14]. Although recommender systems
have been an important research area since the mid-1990s, interest in this area has
increased dramatically as a result of the vast amounts of online data, information, and
options that are now available to users [1, 6]. Recommender systems are now a vital
component of many online services and retail e-commerce sites including Amazon
(general products), Netflix (movies), YouTube (videos) and Pandora (music).
Collaborative filtering has been the most popular and successful approach in building
recommender systems [12, 17]. In contrast to content-based filtering, in which the list
of recommendations is based on the similarity of an item to items the user has previously
purchased, collaborative filtering bases the recommendations on the item similarities as
well as the purchases of users who have similar tastes and preferences; for example, if
a target user had bought books on recommendation systems in the past, then recommend

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): A12015, LNAI 9457, pp. 136-148, 2015.
DOI: 10.1007/978-3-319-26350-2_12

Graph-Based Collaborative Filtering Using Rating Nodes 137

books that are preferred by other users who have also bought books on recommendation
systems. One of the main problems suffered by collaborative filtering approaches is the
sparsity problem; i.e., because the number of items is so large, the average user will only
have rated an extremely small proportion of these items, meaning that even the most
popular items will have very few ratings.

Graph-based random walk models have recently become a popular approach to
collaborative filtering [2, 4, 12, 16, 17]. These models represent users and items as the
nodes of a graph. A user node and item node are connected if the user has rated the item,
purchased the item, or displayed interest in the item in some other way. In the case of
ratings data (which we focus on in this paper), the value of the rating is usually repre-
sented as the weight of the edge connecting the user and item. Commencing from the
node for some target user, a random walk is performed on the graph, and the results are
then used to perform useful tasks such as ranking items in order of their importance to
the user. Representing the relationships between users and items as a graph helps over-
come the data sparsity problems inherent in more traditional approaches to collaborative
filtering. Graph-based models also offer the advantage of being easily able to incorporate
social network data, as recently demonstrated in [2, 16].

A problem with the graph-based representation described above, which we will refer
to as the ‘weighted-edge representation’, is that it is unable to fully capture the similarity
relations that are implicit in the data. The premise of collaborative filtering is to make
item recommendations based on user similarities; however, because random walk favors
large-weighted connections, walk is more likely to proceed through two users that share
a high rating for some item than through users who share a low rating. That is, two users
who are similar by virtue of rating the same items highly will be more influential in the
construction of the recommendation list than two users who have rated the same items
poorly. We refer to this as the ‘High Ratings/Low Ratings’ problem. The problem arises
as a result of representing ratings using a single weight.

In this paper we introduce a novel scheme for representing recommendation data as a
graph. Unlike the weighted-edge approach, in which a user and an item are each repre-
sented by a single node, under the proposed scheme item ratings are represented by
multiple nodes. This enables the explicit representation of low ratings, thus facilitating the
flow of information through both low-rating and high-rating connections. Empirical results
on the MovieLens dataset show that recommendations made using the proposed scheme
are much better correlated with results in the test ratings set, and that under a top-k evalu-
ation, there is an improvement of up to 15 % in precision and recall. An attractive feature
of the approach is that it also associates a confidence value with a recommendation.

The remainder of the paper is structured as follows. Section 2 describes the weighted-
edge graph representation, and how random walk commencing from some target user
can be used to produce a ranking of nodes according to their importance to that user.
The section also provides a simple example demonstrating the inability of the weighted-
edge representation to fully capture and utilize similarities based on low rankings.
Section 3 presents the proposed approach, which we refer to as the ‘rating-nodes repre-
sentation’. Section 4 presents results comparing the performance of the two approaches
on the well-known MovieLens dataset. Section 5 provides further discussion of the
rating-nodes approach, and concludes the paper.

138 A. Culha and A. Skabar

2 Graph-Based Recommender Models

We define a weighted-edge recommendation graph as an undirected graph G = {V, E},
in which the set of nodes V is the union of a set of user nodes U and a set of item nodes
1. A user node is connected to an item node if the user has rated the item; i.e., for some
user u € U and item i € I, edge (4, i) € E only if r,; # 0. Associated with the edge will be
a weight w,;, based on some normalization of r,;, We assume for simplicity that the
recommendation graph is bipartite, meaning that edges may exist only between user
nodes and item nodes, but not between nodes of the same type; however, this assumption
does not limit the generality of the approach, which can easily be extended to deal with
connections between nodes of the same type, as well as the introduction of other node
types (e.g., nodes representing social network data, as in [16]).

The Markov Chain describing the sequence of nodes visited by a random walker is
called a ‘random walk’. The concept of random walk is important, because the amount
of time a random walker spends visiting some node provides a measure of the relative
importance of that node. The probability of moving from node i to node j is calculated
by dividing the edge weight w;; by the sum of the weights of all of i’s outgoing edges:

Wij

Pi=w
ZkeN(i) Wik

)]

where N(i) denotes the nodes that are the immediate neighbors of i. The larger the value
of an outgoing weight, the larger is the probability of traversing that edge as opposed to
the other outgoing edges.

The relative importance of nodes can be determined by finding the stationary distri-
bution. For a graph with adjacency matrix W = {w;;}, the stationary distribution can be
found by solving the eigenvector equation x = Wx, in which case the dominant eigen-
vector x will represent the stationary distribution. Page-Rank [3] is a variation of this in
which at each step the walker is teleported with probability (1 — d) to a random node
rather than following an edge (typically d = 0.85). Personalized PageRank [8] is a further
variation in which the user is teleported not to a random node, but to the node corre-
sponding to that user. The eigenvector equation in this case is

x=dWx+(1-d)b)

where 0 is a vector in which 6 = 1 for the node corresponding to the target user, and 0
for all others. The components of x are the PageRank values. Each node will have a
PageRank value.

In order to find the dominant eigenvector x, the above eigenvector equation needs
to be solved. A general and robust approach is power iteration, which begins with a
random vector x;, and iterates the step x| = dWx, + (1 — d)6 until convergence, when
x will be the dominant eigenvector [13]. Note that the dominant eigenvector will not be
unique, since any linear scaling of this eigenvector will also satisfy the eigenvector
equation. Therefore it is the relative, not absolute, scores which are important. It is
common to normalize the eigenvector such that its components sum to one.

Graph-Based Collaborative Filtering Using Rating Nodes 139

The PageRank values obtained by performing personalized PageRank for some
target user provide a measure of the relative importance of those nodes to the user. A
recommendation list for that user can be constructed by simply sorting the user’s un-
rated items in decreasing order of PageRank.

2.1 The High Ratings/Low Ratings Problem

When a random walk is applied to a weighted-edge graph as described above, the Page-
Rank value of an item node provides a relative measure of the strength of the recom-
mendation of that item to the target user. The PageRank for an item ultimately depends
on how similar users rated the item, and we now demonstrate through a simple example
that the weighted-edge representation is deficient in fully capturing the similarity rela-
tions that may be present in ratings data.

Consider the graph shown in Fig. 1, which represents recommendation data for four
users and three items. The edge weightings represent the ratings, and can take an integer
value from 1 to 5, with a 1 representing a low rating and a 5 representing a high rating.
The absence of an edge indicates that the user has not rated the item. Table 1 is the
adjacency matrix for the graph, where a value of 0 indicates no edge (i.e., no rating).

Table 1. Adjacency matrix for Fig. 1 graph

USERS ITEMS
vl | u2| u3
viloioio
w vzl oioio
w
w
Slusloioio
wuloioio
1|5 is5i1
108 K
=3 i
3|s5io0io0 0ioio

| User 4 |

Fig. 1. Sample recommendation graph for 4 users and 3 items.

User 1 and User 2 gave a rating of 5 to Item 1, while User 3 and User 4 gave a rating
of 1. Users 1 and 2 liked the item as much as each other, and Users 3 and 4 (dis)liked it

140 A. Culha and A. Skabar

as much as each other. In addition to this, User 1 gave a rating of 5 to Item 2, while User
3 gave arating of 5 to Item 3. We want to find out how User 2 would have rated Item 2
and how User 4 would have rated Item 3. That is, we need Item 2’s PageRank for target
User 2, and Item 3’s PageRank for User 4.

Table 2 shows the PageRank values for the three items for separate random walks
commencing from each user. Note that the PageRank values in each row do not sum to
unity. This is because some of the PageRank will be assigned to user nodes. The percen-
tages indicate the proportion of item PageRank assigned to each item node. The
PageRank of Item 2 for target User 2 is 0.0795 (17 %), while the PageRank of Item 3
for User 4 is significantly lower than this at 0.0425 (9 %). This is despite the fact that,
on the basis of the ratings data available, User 1 and User 2 are as similar to each other
(i.e., one rating in common) as User 3 and User 4 are to each other (also one rating in
common). Also problematic is the fact that for User 4, Item 2 actually receives a higher
PageRank than Item 3, which is also at odds with what the similarities in the ratings data
suggest.

Table 2. PageRank values for Fig. 1 graph

11 12 13

Ul | 0264(58%) @ 0.162(35%) 0.033 (7%)
U2 | 0337(74%) 0.079 17%) 0.042 (9%)
U3 | 0.141(31%) 0.033(7%) = 0.284 (62%)
U4 | 0.337(74%) 0.079 (17%) 0.042 (9%)

We refer to this problem as the ‘High ratings/Low ratings’ problem. The problem
occurs because the weighted-edge representation causes random walk to favor high-
weighted edges. Item 1 has four outgoing links: edges of weight 1 to each of Users 3
and 4; and edges of weight 5 to Users 1 and 2. Any walk passing through Item 1, will
be more likely to proceed to Item 2 (via User 1) than to Item 3 (via User 3), thus
explaining the observations from Table 2. Under the weighted-edge representation, two
users who are similar by virtue of rating the same items highly will be more influential
in the construction of the recommendation list than two users who have rated the same
items poorly. In the next section we provide an alternative representation scheme that
avoids these problems.

3 Rating Node Representation

In order to overcome the High/Low Ratings problem, we propose in this section a novel
graph representation scheme which we refer to as the ‘rating-nodes representation’.
Whereas in the weighted-edge representation each item is represented by a single
node, under the rating-nodes representation each item is represented by multiple nodes,
which we refer to as ‘rating nodes’. That is, G = {V, E} is an undirected graph in which
V:= U U I, where U is the set of users, and Ip: =1, UL, U ... U Iyis the set of item

Graph-Based Collaborative Filtering Using Rating Nodes 141

rating nodes. Corresponding to each item there are N rating nodes, not just one. This
allows the representation of an item rating to be distributed over a collection of rating
nodes, and it is this distributed representation that allows a fuller representation of the
similarity relationships implicit in the ratings dataset.

There is some scope in how an item rating may be represented using such a
collection of nodes. In the following, each of the rating nodes for an item corre-
sponds to one of the possible ratings that can be given to an item. For example, in the
MovieLens dataset, ratings can take an integer value from 1 to 5; thus ratings will
be represented using five rating nodes, each corresponding to each of the possible
rating values. If a user u € U gave movie i a rating of n (where n is a number between
1 and 5), then there will be an edge (of weight 1) between user node u and item rating
node i,, but no connection (i.e., weight 0) between u and the other rating nodes for
item i. Suppose that a user has given an item a rating of 5, and that another user has
given the same item a rating of 1. Figure 2a shows the weighted-edge representa-
tion, and Fig. 2b shows the rating nodes representation.

N gy B ey

(a)

Item 1Rating 1

Item 1 Rating 2

Item 1 Rating 3

Item 1 Rating 4

Item 1 Rating 5

(b)

Fig. 2. Recommendation graph for 2 users and 1 item (a) weighted-edge representation; (b)
ranking-node representation.

The rating—nodes representation does not change the nature of the random walk, and
personalized PageRank can be applied exactly as described in Sect. 2. At convergence,
the PageRank for a particular item will be distributed over the rating nodes for that item.
Prior to describing how these PageRank values can be collapsed to provide a single
recommendation value, we return to the example from Sect. 2.1 to demonstrate how the
rating-nodes representation overcomes the High Ratings/Low Ratings problem.

142

3.1 High Ratings/Low Ratings Revisited

Under the ranking-nodes representation, the rating information in Table 1 would be
represented as per the adjacency matrix shown in Table 3. Running personalized Page-
Rank from each of the four users, results in the PageRank values shown in Table 4.
There are two things to note. Firstly, the PageRank of Item 2 for target User 2 (0.101)
is now the same as the PageRank value of Item 3 for target User 4. Secondly, the
PageRank value of Item 3 for User 4 (0.101) is now equal to the PageRank value of Item
2 for User 2. The rating-nodes representation has solved the High Ranking/Low Ranking

A. Culha and A. Skabar

problem: similarity is equally propagated through both low and high ratings.

Table 3. Adjacency matrix for Fig. 1 graph (ranking-nodes representation)

USER ITEM
n 12 13
Ul:U2:U3:U4|R1:R2:R3:R§iR5|R1:R2:iR3:R4:R5|R1:R2: R3 { R4 { RS
vl 1 1
& U2 1
3 u3 1 1
us 1
R1 1 1
R2
11 | R3
R4
RS 1 1
R1
R2
E 12 | R3
R4
RS | 1
R1
R2
I3 | R3
R4
RS 1
Table 4. PageRank values for Fig. 1 graph (ranking-nodes representation)
ITEMS
Item 1 Item 2 Item 3
R1 R2 R3 R4 RS R1 R2 R3 R4 RS R1 R2 R3 R4 RS
(5 0 0 0 0 0.280 0 0 0 0 0.179 0 0 0 0 0
§ u2 0 [} [0 0.358 0 0 0 0 0.101 0 0 0 0 0
3 U3 | 0.280 0 0 0 0 0 0 0 0 0 0 0 0 0 0.179
U4 | 0.358 0 0 0 0 0 0 0 0 0 0 0 0 0 0.101

Graph-Based Collaborative Filtering Using Rating Nodes 143

3.2 Recommendation Value

The recommendation value rec,; of an item i for some target user u is simply the
PageRank-weighted sum of the rating values represented by the rating nodes; i.e.

rec = 2) Yo)

where xf is the PageRank score for the j” rating node for item i and r;is the rating value
represented by the rating node (1 through to 5 for the MovieLens dataset). While rec,;
will always take a real value on the interval [1 5], this value should not be interpreted
as being on the same scale as the ratings in the dataset, since by the nature of the aver-
aging process the rec,; values will rarely take extreme values of 1 or 5. Note also that
the same value for rec,; may result from more than one combination of values for the
x]l For example, multiplying each of the xi by a factor of 2 will not affect the value of
rec,;. The total PageRank associated with an item i (i.e., the denominator in the above
equation) can be interpreted as the strength of the recommendation. That is, some rec,,
value may be predicted strongly or weakly.

3.3 Additional Comments

One potential issue that can be identified from Table 4 concerns the disconnection between
nodes. For example, random walk starting at User 3 now gives a PageRank of O for Item
2. This might be considered reasonable on the grounds that there is no longer a path from
User 3 to Item 2 (because Users 3 and 1 disagree on their rating of Item 1, which has a
pivotal position in this graph). However the fact that Users 1 and 3 even reviewed the same
movie (despite disagreeing about their ratings of it) suggests that there should perhaps be
some connection between the two users. This issue of disconnection is not a problem under
the weighted-edge representation since any item that was reviewed by the same two
reviewers will result in weights of at least 1 connecting the two users with that item node.
This problem can be solved in the rating-nodes approach by inserting edges, weighted with
some small positive value a (e.g., 0.05), between user nodes and item rating nodes corre-
sponding to recommendations not made by the user. However we will see from the results
in Sect. 4 that in the case of large graphs, disconnection is not an issue, as there are many
other pathways through which random walk can proceed. While the rating-nodes repre-
sentation that we have described in this section has assumed that nodes are of two types—
user nodes and item nodes—the representation can easily be extended to incorporate social
attributes. In this paper we are primarily interested in determining whether the rating-nodes
representation leads to improved performance, and we leave the investigation of incorpo-
rating social attributes to future work.

4 Experiments

This section presents empirical results comparing the performance of the rating-nodes
and weighted-edge representations on the well-known MovieLens dataset (www.movie-
lens.umn.edu) [5]. The version of the dataset used in this research contains 943 users,

http://www.movielens.umn.edu
http://www.movielens.umn.edu

144 A. Culha and A. Skabar

1682 movies and 100,000 ratings in the scale of 1 to 5. The data is organized into five
80 %-20 % training/test splits, for use in five-fold cross-validation. The dataset has been
collected on the MovieLens web site and made available by GroupLens Research and
has been used in [6, 10, 11, 15, 16].

4.1 Correlation-Based Evaluation

The recommendation value rec,; defined in Sect. 3.2 provides a measure which can be used
to produce a ranked item recommendation list for the target user. This suggests an evalua-
tion based on correlation; i.e., how well does the ranking of items in the recommendation
list correlate with the ranking of items by their star-rating value in the test set?

This correlation can be measured using Spearman’s rank correlation coefficient,
defined as

)= Zi(xi_)_‘) (yi_)_’) @
2 (xi _5‘)2 2 (yi _5’)2

where x; and y; are ranks of the scores represented by variables X; and Y;. In our case, one
of these variables corresponds to the recommendation values; the other to the star-ratings
in the test set. Since the star-ratings in the test set can only take an integer value in the set
{1,2,...,5}, the test ratings will involve many ties. Ties are assigned a rank equal to the
average of their position in the descending order of values. For example, assuming that six
movies are sorted according to their star-ratings of 5, 4,4, 3, 2, 1 (second and third movies
tied with a rating of 4), the rankings given to the movies would be 1, 2.5,2.5,4, 5, 6 (The
second and third movie both receive a rating of 2.5 = (2 + 3)/2).

Table 5 shows the Spearman rank correlations between test rankings and recom-
mendation list for the weighted-edge and rating-nodes representations. For the latter we
used both a =0and a=0.1. The correlations were obtained by averaging the correlations
across all users and all 5 train/test splits. The recommendation values resulting from the
rating-nodes approach are clearly much more highly correlated with the test set ratings
than are the recommendation values from the weighted-edge approach.

Table 5. Spearman rank correlations between test ratings and recommendation values

Graph representation Correlation

Weighted-edge representation 0.221

Rating-nodes representation (a = 0) 0.389

Rating-nodes representation (a0 = 0.1) | 0.381

To explore this further, Fig. 3 shows scatterplots of recommendation rankings
(vertical axis) versus test set rankings (horizontal axis) for a typical user (User 1, Test
Set 1). The test set for this user consisted of 137 movie reviews. Higher-rated movies
appear to the left of the plot; lower-rated movies appear to the right. Thus the first vertical

Graph-Based Collaborative Filtering Using Rating Nodes 145

bar corresponds to movies with a 5-star rating; the second to movies with a 4-star rating,
etc. The correlation coefficient for the weighted-edge representation is 0.331, and that
for the rating-nodes representation is 0.578. This difference in correlation can be clearly
discerned through visual inspection, and is particularly apparent for both higher-rated
and lower-rated movies, and to a lesser degree for middle-rated movies.

140 T T T T T T 140
.

120 3 24 1} + . :
.
100 1 oof

80 80

W e
- e e

60 60

G ———-

n 40r

20 H 4 201

EERT R

B e s sersears 4 o

=)
e W s+
e w .

=]

' L L L o
40 60 80 100 120 140 0

(@) (b)

1)

0 40 60 a0 100 120 140

Fig. 3. Recommendation rankings (vert.) versus test rankings (horz.) for User 1, Test_Set 1. (a)
weighted-node representation (p = 0.331); (b) rating-nodes representation (p = 0.578).

4.2 Top-K Evaluation

A common approach to evaluating recommendations on the MovieLens dataset is Top-
k evaluation (used, for example in [7, 9, 16]). Under this style of evaluation, a recom-
mendation set is formed by selecting the k most highly recommended items, and a test
set is formed by selecting the most highly rated items from some test data. Measures
such as Precision and Recall are then calculated based on these lists. It is not surprising
that graph-based approaches such as the weighted-edge approach typically perform well
under this type of evaluation, since these type of recommendation systems are designed
to predict higher-rated items. Given the correlation results above, it is interesting to
compare the performance of the rating-nodes approach with the weighted-edge approach
under this style of evaluation.

To evaluate the predictions for some user u, we select the £ most highly recom-
mended movies from the sorted recommendation list, and place these in the Recom-
mendation Set (recset). Following Shang et al. [16], we use only the test set movies with
a 5-star rating. We place all of the movies to which user « has given a 5-star rating in
the Test Set (festset). Any movie which appears in both the Test Set and the Recom-
mendation Set is a hit. Recall, Precision and F1-measure are then defined as follows:

146 A. Culha and A. Skabar

recset N testset
Recall = Irecset O testset]
|testset|

.. |recset N testset|

Precision = ————
|recset|

2 - Precision - Recall

Precision + Recall

F1 — measure =

Figure 4 shows the Precision, Recall, and F1 curves corresponding to the weighted-
edge and rating-nodes representations for k =5, 10, ..., 50. (For the rating-nodes repre-
sentation, curves for a = 0 and a = 0.1 were identical). The values are averaged across
all users and all 5 training/test splits. As can be seen from the curves, the Precision and
Recall for low values of k are approximately 15 % higher for the rating-nodes represen-
tation than they are for the weighted-edge representation. As the value of k increases,
the difference in performance becomes less significant.

1.00 0.45
0.90 - ——— 0.40
080 - P I 0.35
0.70 - = 030 .
— 0.60 - <= g DN
3 050 e g 025 S
% 0.40 1 42 g o020 e
. ==
030 7 015 T
0.20 0.10
0.10 0.05
0.00 —— 0.00 ——
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
0.45
0.40
035 SR
Pid ~~“~
® 0.30 =T
2 e
2 0.25 p——
[e
£ 020
T 015
0.10
0.05
0.00 —— T T— T

5 10 15 20 25 30 35 40 45 50

Fig. 4. Recall, Precision and F1-measure for Top-k analysis.

5 Conclusion

Graph-based approaches provide a powerful means of combining collaborative and
content-based filtering. Users are similar if they like the same items, and items are similar
if they are liked by the same users. This provides a powerful mechanism by which
similarity relations can be propagated through such networks. In Sect. 2.1 we demon-
strated that while the weighted-edge representation is able to capture similarities
between users who share high-ratings for products, it is not able to adequately capture
relationships between users who share a low-rating for some item, and we referred to

Graph-Based Collaborative Filtering Using Rating Nodes 147

this as the high-ratings/low-ratings problem. The rating-nodes representation proposed
in Sect. 3 was designed to overcome this problem.

Results on the MovieLens dataset have shown that recommendation rankings made
using the rating-nodes representation are much better correlated with results in the test
ratings than are the rankings produced using the weighted-edge approach. However,
what is surprising about this result is that the correlation improved so dramatically over
the full range of ratings; i.e., for high ratings as well as low ratings. While we expected
a significant increase in correlation for low ratings, there is less room for improvement
in the case of high rankings since the weighted-edge approach is designed to predict
high ratings. The improved performance in predicting high ratings was corroborated by
the results of the top-k analysis, in which the rating-nodes approach displayed a clear
improvement in precision and recall over the weighted-edge approach.

The graphs we used in this paper were bipartite; i.e., edges exist only between user
nodes and item nodes, but not between nodes of the same type. However, both the
weighted-edge and rating-nodes representations are general, and can easily represent
user-user links, as well as item-item links. There has been considerable recent interest
in incorporating social network data into graph-based recommender systems. For
example Bogers [2] and Shang et al. [16] have recently incorporated social network data
into graph-based recommender systems using the weighted-edge representation. With
the increasing amount and variety of social networking data that is becoming available,
this area of research will no doubt continue to grow, and we believe that the distributed,
multiple-node representation scheme that we have proposed in this paper will provide
a powerful method of incorporating such data, thus allowing a richer representation of
similarities than is possible through weighted-edge representations.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey
of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734—
749 (2005)

2. Bogers, T.: Movie recommendation using random walks over the contextual graph. In:
Proceedings of the 2nd International Workshop on Context-Aware Recommender Systems
(2010)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput.
Netw. ISDN Syst. 30(1), 107-117 (1998)

4. Fouss, F., Pirotte, A., Renders, J.M.: Random-walk computation of similarities between nodes
of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng.
19(3), 355-369 (2007)

5. Gabrielsson, S., Gabrielsson, S.: The Use of self-organizing maps in recommender systems.
Master’s thesis, Department of Information Technology at the Division of Computer Systems,
Uppsala University (2006)

6. Herlocker, J.L., Konstan, J.A.: Content-independent task-focused recommendation. IEEE
Internet Comput. 5(6), 40—47 (2001)

7. Herlocker,J.L., Konstan,J.A., Terveen, L.G.: Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5-53 (2004)

148

10.

11.

12.

13.

14.

15.

16.

17.

A. Culha and A. Skabar

. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th Wold Wide

Web Conference (WWW), pp. 271-279 (2003)

. Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Proceedings of

the Tenth International Conference on Information and Knowledge Management, pp. 247—
254. ACM (2001)

Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM
Conference on Recommender Systems, pp. 17-24. ACM (2007)

Miller, B.N., Albert, I., Lam, S.K., Konstan, J.A., Riedl, J.: Movielens unplugged:
Experiences with a recommender system on four mobile devices. In: Proceedings of the 2003
Conference on Intelligent User Interfaces (2003)

Mohsen, J., Ester, M.: TrustWalker: a random walk model for combining trust-based and
item-based recommendation. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 397-406. ACM (2009)
Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)
Ricci, F., Rokach, L., Shapira, B., Kantor, P.: Recommender Systems Handbook. Springer,
New York (2011)

Sarwar, B., Karypis, K., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference on World
Wide Web, pp. 285-295. ACM (2001)

Shang, S., Kulkarni, S.R., Cuff, P.W., Hui, P.: A random walk based model incorporating
social information for recommendation. International IEEE Workshop Machine Learning for
Signal Processing, pp. 1-6 (2012)

Yildirim, H., Krishnamoorthy, M.S.: A random walk method for alleviating the sparsity
problem in collaborative filtering. In: Proceedings of the 2008 ACM Conference on
Recommender Systems, pp. 131-138. ACM (2008)

A Comparative Study on Vector Similarity
Methods for Offer Generation
in Multi-attribute Negotiation

Aodah Diamah'®? , Michael Wagnerl’z, and Menkes van den Briel**

! Faculty of ESTeM, University of Canberra, Canberra, Australia
{aodah. diamah, michael. wagner}@canberra. edu. au
2 College of Engineering and Computer Science,
Australian National University, Canberra, Australia
menkes@nicta. com. au
3 National ICT Australia, Eveleigh, Australia

Abstract. Offer generation is an important mechanism in automated negotia-
tion, in which a negotiating agent needs to select bids close to the opponent
preference to increase their chance of being accepted. The existing offer gen-
eration approaches are either random, require partial knowledge of opponent
preference or are domain-dependent. In this paper, we investigate and compare
two vector similarity functions for generating offer vectors close to opponent
preference. Vector similarities are not domain-specific, do not require different
similarity functions for each negotiation domain and can be computed in
incomplete-information negotiation. We evaluate negotiation outcomes by the joint
gain obtained by the agents and by their closeness to Pareto-optimal solutions.

Keywords: Multi-attribute negotiation - Offer generation - Vector similarity -
Cosine distance * Euclidean distance * Pareto-optimal solutions

1 Introduction

Automated multi-attribute negotiations have been studied extensively in recent years
because of their potential applications for e-commerce. One of the research foci in this
field is the negotiation strategy to achieve high benefit for the negotiating parties. The
negotiation strategy can be decomposed into three key components: bidding (which
includes conceding and offer generation), opponent modeling, and acceptance condi-
tions [1, 2]. Much of the research has been applied to opponent modeling and con-
ceding, and less attention has been placed on offer generation. Many negotiating agents
choose their offers randomly when they are indifferent to a set of iso-utility offers [3-5].
Faratin et al. in [6] introduced a fuzzy similarity function to choose an offer similar to
the opponent’s last offer from a set of iso-utility offers, since that increases the chance
of the offer being accepted by the opponent. That approach, however, requires a
similarity function that is defined for every issue/attribute being negotiated, which
makes the approach domain dependent. Moreover, to perform well, that similarity
function requires information on the weights placed by the opponent on each negoti-
ation issue. To address this, we investigate the use of Euclidean and cosine vector

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): Al 2015, LNAI 9457, pp. 149-156, 2015.
DOI: 10.1007/978-3-319-26350-2_13

150 A. Diamah et al.

similarities to choose a bid similar to the opponent’s last offer from a set of iso-utility
offers. Cosine similarity has been used for text and image information retrieval [7], face
verification [8] and computer virus detection [9]. However, it has not been used before
for the offer generation mechanism in multi attribute negotiation. Vector similarity
eliminates the need to define a similarity function for each attribute, and no information
on the opponent’s weights is needed’. Because the attributes of a negotiation rarely fall
in the same scale (e.g. price may be $1000-5000, while delivery time may be 3-10
days), we are also interested to see if attribute scaling has any effect on the similarity
computation and thus on the negotiation outcome.

The structure of the paper is as follows: First we address domain-dependent sim-
ilarity modeling by using vector similarities. Second, we compare how two vector
similarities (Euclidean and cosine) perform on (1) unscaled and (2) normalized attri-
butes. This comparison will allow agents to decide whether they should normalize
attributes before performing similarity computation.

2 Negotiation Settings

We define the negotiation model between two agents, buyer A and seller B, as follows.

Utility function: In evaluating incoming offers, agents need to calculate how closely
the offer matches their own preference. Utility functions have been used to score offers
based on negotiator preferences [10]. In multi-attribute negotiation, each attribute value
is assigned a score by an evaluation function that falls into a normalized interval of
[0,1]. Each attribute has a weight attached to it, representing the importance the agent
places on that attribute. In the literature, the common assumption is that the utilities of
the attributes are positive and mutually independent [10, 11]. For n attributes, the sum
of the weights Y """ ; w' must be one.
The total utility score of an offer vector x = (xy -+ - x,,) is:

n

Vm(x) = Z Wf?zu:;l(xi) (1)

i=1

where u', is the utility of attribute i for agent m, and V,, is the total utility for agent m.

Concession strategy: We assume that agents propose offers with high utility at the
beginning of the negotiation and lower their utility (i.e. concede) as the negotiation
proceeds. We use an alternating-offer protocol, in which agents in each round make
offers in turn until either an agreement is reached or the maximum number of rounds.
We use the monotonic, time-dependent concession strategy from [12] to determine the
target utility in each round:

VE =1+ (vrin —1) <k> ()

lellX

! In this paper, agents do not reveal their utility function to their opponent.

A Comparative Study on Vector Similarity Methods 151

where k is the current round, %, is the maximum round, V,’n""” is the minimum
acceptable utility for agent m and o is the rate at which agent m is conceding. A larger
value of a represents a slower conceding strategy.

3 Vector Similarities for Offer Generation

Suppose agent A receives agent B’s offer x]g in round k and that offer does not meet
agent A’s acceptable minimum utility. In generating a counter offer, agent A has to
satisfy two objectives: (1) an acceptable utility for itself and (2) an acceptable utility for
its opponent. Objective 1 is relatively easy to achieve. The agent calculates its target
utility for a given round using Eq. (2) and any bid with that utility can be offered. The
set of those iso-utility offers was defined by [6] as

isoa(0) = {x|Va(x) = 0} (3)

where @ is the acceptable utility for agent A and V,(x) is agent A’s total utility function.
As any two offers x,y € iso,(0) may have different utilities to agent B, i.e.
Va@x) = Vu(y), but Vg(x) # Vp(»), agent A needs to find an offer from isos(0) with
maximum utility for agent B to increase the chance that objective (2) is met and an
agreement can be reached. Because the agent does not know the opponent’s utility
function, it can approximate the opponent’s partial preference from the opponent’s last
offer and use that to find the offer x € iso,(0) that is maximally similar to the oppo-
nent’s last offer. This offer generating mechanism is expressed as:

+1 i best
xf‘ = argmaX,cis, (0) {szm (x,xB"S)} 4)
where xﬂg+ ! is the offer agent A is about to propose at round k + 1, x¥ is the opponent’s
last offer, and S(x,x%) is the similarity of x and x%.

Similarity between two offers is calculated using Euclidean and cosine distances
Se(x,y) = 1/x —y and Sc(x,y) = x -y/(|x||y|), respectively.

4 Experiment and Results

4.1 Negotiation Domain

We evaluate cosine and Euclidean similarity with two negotiation scenarios taken from
[13] and [14] for ease of comparison with the results in those papers. The domain for
each attribute and the corresponding evaluation function for negotiation settings 1 and
2 are shown in Table 1. Each agent knows its own utility function, but not its oppo-
nent’s utility function. However the domain knowledge is common to both agents.

There are many possible different weight combinations that an agent may attach to
the negotiation attributes and it is not feasible to try them all. However, to allow us to
see how cosine and Euclidean similarity perform under different possible preferences,
we define several weight sets for agents A and B, as seen from Tables 2 and 3.

152 A. Diamah et al.

Table 1. Domain and utility functions for negotiation setting 1 and negotiation setting 2

Domain | Negotiation setting 1 Negotiation setting 2
Attribute Attribute | Attribute | Attribute | Attribute | Attribute | Attribute
1 2 3 1 2 3 4
[5000, [30,90] |[0,3] [0,5] [0,4] [30,70] [5,15]
10,000]
i, <x15—050%00) (906—0xz> L 4 n Boxs Loy
il (10(;(())(()):0 (ngoso) (3?3) G ;xl) (474)51) % Ml(—)s
Table 2. Weights for negotiation setting 1
Set | wy wg
1 102,04,04 0.1,5 0.6, 0.25
2 10.15,0.6,0.25 |0.2,04,04
3 10.3,0.55,0.15 |0.5,0.2,0.3
4 105,02,03 0.3, 0.55, 0.15
5 10.5,0.3,02 0.15, 045, 04
6 |0.15,0.45,04 |0.5,0.3,0.2
7 10.8,0.1, 0.1 0.33, 0.33, 0.33
8 10.33,0.33,0.33/0.8, 0.1, 0.1
9 10.3,0.1,0.6 04, 0.5, 0.1
10 (0.4, 0.5, 0.1 0.3, 0.1, 0.6
Table 3. Weights for negotiation setting 2
Set | wy wg
1 10.35,0.15, 0.45, 0.05| 0.1, 0.15, 0.4, 0.35
2 0.1, 0.15, 04,035]0.35, 0.15, 0.45, 0.05
3 10.7,0.1, 0.1, 0.1 0.25,0.25, 0.25, 0.25
4 10.25, 0.25, 0.25, 0.25|0.7, 0.1, 0.1, 0.1
5 104,0.05, 0.1,045 |0.1, 045, 0.4, 0.05
6 |0.1,0.45,04,0.05 [04,0.05,0.1, 045
7 10.15,0.15,03,04 |04,04,0.1, 0.1
8 104,04,0.1, 0.1 0.15, 0.15, 0.3, 0.4
9 10.05,0.6,0.3,0.05 [0.1,0.3,04, 0.2
10 /0.1, 0.3, 0.4, 0.2 0.05, 0.6, 0.3, 0.05

The Pareto front will be further away from the origin if agents have very different
weight rankings, i.e. low opposition, while identical weight rankings mean high
opposition, thus increasing the possibility of a high-gain agreement for both agents.

The attributes in the two negotiation settings are of different scales. It is likely that
attributes with a larger scale dominate the similarity calculation (e.g. attribute 1 and
attribute 3 are dominating similarity calculation between offers in negotiation setting 1

A Comparative Study on Vector Similarity Methods 153

and 2, respectively). We hypothesize that the effect of dominating attributes will be
removed if attributes are normalized to the range [0,1], and that the agents can therefore
improve their offers and thus the negotiation outcome.

For all negotiations, the reservation utility for both agents is set to be 0.5 so that a
zone of agreement exists between them. The agents are assumed to be “tough”
negotiators with a conceding rate of a = 1.3. We are aware that in real life agents may
negotiate differently, e.g., one agent may be hard to budge and the other generous, and
thus have different conceding rates a. However, in this negotiation we deliberately posit
agents of equal toughness to eliminate an imbalanced negotiation dyad affecting the
negotiation outcome. The maximum number of rounds is varied from 10 to 15. For
each maximum, we run the negotiations ten times (totaling 50 negotiations in each set)
and calculate the average joint utility for all deals reached.

4.2 Negotiation Outcome Evaluation

For every deal x reached, the evaluation is carried out with the following metrics:
Joint utility reflects the total value of a negotiation agreement for the negotiating
parties. It is the sum of the gains received by each agent and is calculated as

Vi(x) = Va(x) + Vi (x) (5)

Distance to Maximum Joint Utility on the Pareto Front. The utilities V,(x) and
Vg(x) each possible solution x have coordinates (V,(x), Vz(x)) in the two-dimensional
utility space. A solution is Pareto-optimal when utility improvement in one direction is
impossible without lowering utility in the other direction. We find the maximum joint
utility V7" of all Pareto-front solutions, which is the metric used to calculate the
distance from a deal. The closer a deal to the maximum joint utility the higher is the
gain for both agents. That distance for a vector x is

Dy (x) = Vi = V;(x) (6)

4.3 Results and Discussion

We compare the average joint utility for all sets in negotiation settings 1 and 2 in
Tables 4 and 5, respectively. The average joint utility was computed from 50 negoti-
ation deals in each set. Because each set has a different Pareto front, the maximum joint
utility the agents can obtain for each set is different. The results indicate that for the
majority of sets, a better joint utility can be achieved when the domains are normalized.
For both Euclidean and cosine similarities, agents obtain higher joint utility and the
deals are closer to maximum joint utility.

This confirms our hypothesis that scaling the attributes removes the effect of
large-scale attributes dominating the similarity computation. When the attributes are
normalized, Euclidean similarity gives higher joint utility in 12 out of 20 negotiation

154 A. Diamah et al.

Table 4. Negotiation setting 1: Outcomes

Joint utility Distance to max JU

Attributes are | Attributes are | Attributes are | Attributes are
not normalised | normalised not normalised | normalised

EUC |COS |EUC |COS |EUC |COS |EUC

COS

Set 1 |1.0430|1.0979 | 1.1506 | 1.1868 | 0.1570 | 0.1021 | 0.0494
Set 2 | 1.0596 | 1.0958 | 1.1478 | 1.1525 | 0.1404 | 0.1042 | 0.0522
Set 3 |1.2101 | 1.2583 | 1.2770 | 1.2070 | 0.1399 | 0.0917 | 0.0730
Set 4 |1.1845]1.2709 | 1.2755 | 1.2854 | 0.1655 | 0.0791 | 0.0745
Set5 |1.1448 | 1.2378|1.2672|1.2558 | 0.2052 | 0.1122 | 0.0828
Set 6 |1.1328 | 1.2484 | 1.2640 | 1.2208 | 0.2172 | 0.1016 | 0.0860
Set 7 |1.2292|1.2152|1.4081 | 1.3942 | 0.2375 | 0.2515| 0.0586
Set 8 | 1.2235]1.2424 | 1.4013 | 1.2326 | 0.2432 | 0.2243 | 0.0654
Set 9 |1.3594 | 1.3609 | 1.4404 | 1.4304 | 0.1406 | 0.1391 | 0.0596
Set 10 | 1.3353 | 1.3645 | 1.4501 | 1.4433 | 0.1647 | 0.1355 | 0.0499

0.0132
0.0475
0.1430
0.0646
0.0942
0.1292
0.0725
0.2341
0.0696
0.0567

Table 5. Negotiation setting 2: Outcomes

Joint utility Distance to max JU

Attributes are | Attributes are | Attributes are | Attributes are
not normalised | normalised not normalised | normalised

EUC |COS |EUC |COS |EUC |COS |EUC

COS

Set 1 |1.2484 |1.1999 | 1.2766 | 1.2601 | 0.0516 | 0.1001 | 0.0234
Set2 | 1.2778 |1.1927 | 1.2765|1.2513 | 0.0222 | 0.1073 | 0.0235

0.0399
0.0488

Set 3 |1.2621|1.3951|1.3660 | 1.2513 | 0.1879 | 0.0549 | 0.0840

0.1988

Set 4 |1.24981.3605 | 1.3353 | 1.4103 | 0.1903 | 0.0795 | 0.1047
Set5 |1.5592|1.5817 | 1.6667 | 1.6667 | 0.1408 | 0.1183 | 0.0333
Set 6 |1.5852|1.4133|1.6692|1.6733|0.1148 | 0.2868 | 0.0308

0.0297
0.0333
0.0267

Set 7 | 1.3135]1.3904 | 1.3971 | 1.3988 | 0.1865 | 0.1096 | 0.1029
Set 8 |1.2913 |1.4338 | 1.3875|1.4225 | 0.2088 | 0.0663 | 0.1125
Set 9 |1.1725|1.2525|1.2795|1.2154 | 0.0516 | 0.1001 | 0.0234
Set 10| 1.1725 | 1.1888 | 1.2803 | 1.2198 | 0.1275 | 0.0475 | 0.0205

0.1013
0.0775
0.0399
0.0846

sets compared to cosine similarity. For unnormalised attributes, the

cosine similarity

performs better in 16 out of 20 negotiation sets. This suggests that the agents may want
to choose cosine similarity for their offer generation mechanism when negotiating in
unscaled domains. As an example, agents may find themselves in a situation where
they know the minimum and the maximum value of the price they are going to offer,
but they do not know these values for their opponent. Hence, scaling the attribute
values is not possible in this situation and the agents may choose cosine similarity with

higher chance for high joint utility.

Further investigation is needed to find out which factors cause the different simi-
larity measures to perform better in the different domains. With those factors identified,
agents could then choose the appropriate similarity confidently to achieve higher joint

utility.

A Comparative Study on Vector Similarity Methods 155

5 Conclusion

We have presented an experiment to compare two vector similarity measures for
generating offers in multi-attribute negotiation. Vector similarities eliminate the need to
redefine similarity functions when the negotiation domain changes. In addition, vector
similarities in this experiment do not require information on the opponent’s weight
values or ranking. In this study we also compare the results of using the two vector
similarities on the original and normalized domains.

The results indicate that cosine similarity performs better for unscaled domains
while Euclidean distance gives better joint utility in normalized domains. In real-life
applications there are situations when negotiating parties are supplied with information
on allowed value ranges to bid. In such situation agents can normalize the domain.
However when the negotiators have different ranges of attribute values and that
information is not shared, it is not possible for agents to normalize the domain. The
results of our study can give options on what similarity measure to use when negoti-
ating in either scenario. However, further experiments are required to identify what
factors contribute to these results so as to allow agents negotiate for higher joint utility
confidently with either similarity method.

References

1. Baarslag, T., Hindriks, K., Hendrikx, M., Dirkzwager, A., Jonker, C.: Decoupling negotiating
agents to explore the space of negotiation strategies. Novel Insights in Agent-Based Complex
Automated Negotiation, pp. 61-83. Springer, Berlin (2014)

2. Dirkzwager, A.S.Y.: Towards understanding negotiation strategies: analyzing the dynamics
of strategy components (2013)

3. Chen, S., Weiss, G.: A novel strategy for efficient negotiation in complex environments. In:
Timm, LJ., Guttmann, C. (eds.) MATES 2012. LNCS, vol. 7598, pp. 68-82. Springer,
Heidelberg (2012)

4. Williams, C.R., Robu, V., Gerding, E.H., Jennings, N.R.: Iamhaggler 2011: a gaussian
process regression based negotiation agent. Complex Automated Negotiations: Theories,
Models, and Software Competitions, pp. 209-212. Springer, Berlin (2013)

5. Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: The first automated negotiating
agents competition (ANAC 2010). In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T.
(eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383,
pp. 113-135. Springer, Heidelberg (2012)

6. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in
automated negotiations. Artif. Intell. 142, 205-237 (2002)

7. Korenius, T., Laurikkala, J., Juhola, M.: On principal component analysis, cosine and
Euclidean measures in information retrieval. Inf. Sci. 177, 48934905 (2007)

8. Nguyen, H.V., Bai, L.: Cosine similarity metric learning for face verification. In: Kimmel,
R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 709-720.
Springer, Heidelberg (2011)

9. Karnik, A., Goswami, S., Guha, R.: Detecting obfuscated viruses using cosine similarity
analysis. In: Modelling and Simulation. In: First Asia International Conference on AMS
2007, pp. 165-170. IEEE (2007)

156 A. Diamah et al.

10. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.M.: Propositional-logic approach to
one-shot multi issue bilateral negotiation. ACM SIGecom Exch. 5, 11-21 (2006)

11. Coehoorn, R.M., Jennings, N.R.: Learning on opponent’s preferences to make effective
multi-issue negotiation trade-offs. Presented at the (2004)

12. Jazayeriy, H., Azmi-Murad, M., Sulaiman, N., Izura Udizir, N.: The learning of an opponent’s
approximate preferences in bilateral automated negotiation. J. Theor. Appl. Electron.
Commer. Res. 6, 65-84 (2011)

13. Ros, R., Sierra, C.: A negotiation meta strategy combining trade-off and concession moves.
Auton. Agent. Multi-Agent Syst. 12, 163-181 (2006)

14. Cheng, C.-B., Chan, C.-C.H., Lin, K.-C.: Intelligent agents for e-marketplace: negotiation
with issue trade-offs by fuzzy inference systems. Decis. Support Syst. 42, 626-638 (2006)

Analytical Results on the BFS vs. DFS
Algorithm Selection Problem. Part I: Tree
Search

Tom Everitt®) and Marcus Hutter

Australian National University, Canberra, Australia
tom.everitt@anu.edu.au

Abstract. Breadth-first search (BFS) and depth-first search (DFS) are
the two most fundamental search algorithms. We derive approximations
of their expected runtimes in complete trees, as a function of tree depth
and probabilistic goal distribution. We also demonstrate that the analyti-
cal approximations are close to the empirical averages for most parameter
settings, and that the results can be used to predict the best algorithm
given the relevant problem features.

1 Introduction

A wide range of problems in artificial intelligence can be naturally formulated as
search problems (Russell and Norvig 2010; Edelkamp and Schrodl 2012). Exam-
ples include planning, scheduling, and combinatorial optimisation (TSP, graph
colouring, etc.), as well as various toy problems such as Sudoku and the Towers
of Hanoi. Search problems can be solved by exploring the space of possible solu-
tions in a more or less systematic or clever order. Not all problems are created
equal, however, and substantial gains can be made by choosing the right method
for the right problem. Predicting the best algorithm is sometimes known as the
algorithm selection problem (Rice 1975).

A number of studies have approached the algorithm selection problem with
machine learning techniques (Kotthoff 2014; Hutter et al. 2014). While demon-
strably a feasible path, machine learning tend to be used as a black boz, offering
little insight into why a certain method works better on a given problem. On the
other hand, most existing analytical results focus on worst-case big-O analysis,
which is often less useful than average-case analysis when selecting algorithm.
An important worst-case result is Knuth’s (1975) simple but useful technique for
estimating the depth-first search tree size. Kilby et al. (2006) used it for algo-
rithm selection in the SAT problem. See also the extensions by Purdom (1978),
Chen (1992), and Lelis et al. (2013). Analytical IDA* runtime predictions based
on problem features were obtained by Korf et al. (2001) and Zahavi et al. (2010).
In this study we focus on theoretical analysis of average runtime of breadth-first
search (BFS) and depth-first search (DFS). While the IDA* results can be inter-
preted to give rough estimates for average BFS search time, no similar results
are available for DFS.

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 157-165, 2015.
DOI: 10.1007/978-3-319-26350-2_14

158 T. Everitt and M. Hutter

To facilitate the analysis, we use a probabilistic model of goal distribution and
graph structure. Currently no method to automatically estimate the model para-
meters is available. However, the analysis still offers important theoretical insights
into BFS and DF'S search. The parameters of the model can also be interpreted as
a Bayesian prior belief about goal distribution. A precise understanding of BFS
and DF'S performance is likely to have both practical and theoretical value: Prac-
tical, as BFS and DFS are both widely employed; theoretical, as BFS and DFS
are two most fundamental ways to search, so their properties may be useful in
analytical approaches to more advanced search algorithms as well.

Our main contributions are estimates of average BFS and DFS runtime as a
function of tree depth and goal distribution (goal quality ignored). This paper
focuses on the performance of tree search versions of BF'S and DFS that do not
remember visited nodes. Graph search algorithms are generally superior when
there are many ways to get to the same node. In such cases, tree search algo-
rithms may end up exploring the same nodes multiple times. On the other hand,
keeping track of visited nodes comes with a high prize in memory consumption,
so graph search algorithms are not always a viable choice. BFS tree search may
be implemented in a memory-efficient way as iterative-deepening DF'S (ID-DF'S).
Our results are derived for standard BFS, but are only marginally affected by
substituting BFS with ID-DFS. The technical report (Everitt and Hutter 2015a)
gives further details and contains all omitted formal proofs. Part II of this paper
(Everitt and Hutter 2015b) provides a similar analysis of the graph search case
where visited nodes are marked. Our main analytical results are developed in
Sects. 3 and 4, and verified experimentally in Sect. 5. Part IT of this paper offers
a longer discussion of conclusions and outlooks.

2 Preliminaries

BFS and DFS are two standard methods for uninformed graph search. Both
assume oracle access to a meighbourhood function and a goal check function
defined on a state space. BFS explores increasingly wider neighbourhoods around
the start node. DFS follows one path as long as possible, and backtracks when
stuck. The tree search variants of BFS and DFS do not remember which nodes
they have visited. This has no impact when searching in trees, where each node
can only be reached through one path. One way to understand tree search in
general graphs is to say that they still effectively explore a tree; branches in this
tree correspond to paths in the original graph, and copies of the same node v
will appear in several places of the tree whenever v can be reached through sev-
eral paths. DFS tree search may search forever if there are cycles in the graph.
We always assume that path lengths are bounded by a constant D. Figure 1
illustrates the BFS and DFS search strategies, and how they (initially) focus on
different parts of the search space. Russell and Norvig (2010) has further details.

The runtime or search time of a search method (BFS or DFS) is the number
of nodes explored until a first goal is found (5 and 6 respectively in Fig. 1). This
simplifying assumption relies on node expansion being the dominant operation,

Analytical Results on the BFS vs. DFS Algorithm Selection Problem 159

Fig. 1. The difference between BFS (left) and DFS (right) in a complete binary tree
where a goal is placed in the second position on level 2 (the third row). The numbers
indicate traversal order. Circled nodes are explored before the goal is found. Note how
BFS and DFS explore different parts of the tree. In bigger trees, this may lead to
substantial differences in search performance.

consuming similar time throughout the tree. If no goal exists, the search method
will explore all nodes before halting. In this case, we define the runtime as the
number of nodes in the search problem plus 1 (i.e., 2P%1 in the case of a binary
tree of depth D). Let I" be the event that a goal exists, I';, the event that a goal
exists on level k, and I" and I, their complements. Let Fj, = I'; N (ﬂf;ol I}) be
the event that level k has the first goal.

A random variable X is geometrically distributed Geo(p) if P(X = k) =
(1 — p)*=1p for k € {1,2,...}. The interpretation of X is the number of trials
until the first success when each trial succeeds with probability p. Its cumulative
distribution function (CDF) is P(X < k) = 1 — (1 — p)*, and its average or
expected value E[X] = 1/p. A random variable Y is truncated geometrically
distributed X ~ TruncGeo(p,m) if Y = (X | X < m) for X ~ Geo(p), which
gives

(1—p)*p
PY = k)= T-0-p)7 for k € {1,...,m}
0 otherwise.
1—(1—pmpm+1)

p(1—(1—=p)™)

When p > %, Y is approximately Geo(p), and tc(p, m) = %. When p < %, Y

te(p,m) :=E[Y] =E[X | X <m]=

becomes approximately uniform on {1,...,m} and tc(p,m) ~ 3.

A random variable Z is exponentially distributed Exp(\) if P(Z < z) =1—
e~ for z > 0. The expected value of Z is %, and the probability density function
of Z is Ae™**. An exponential distribution with parameter A = — In(1 —p) might
be viewed as the continuous counterpart of a Geo(p) distribution. We will use

this approximation in Sect. 4.

Lemma 1 (Exponential approximation). Let Z ~ Exp(—In(l — p)) and
X ~ Geo(p). Then the CDF's for X and Z agree for integers k, P(Z < k) =
P(X < k). The expectations of Z and X are also similar in the sense that
0<E[X]-E[Z]<1.

We will occasionally make use of the convention 0 - undefined = 0, and often
expand expectations by conditioning on disjoint events:

160 T. Everitt and M. Hutter

Lemma 2. Let X be a random variable and let the sample space {2 = UieIC'i be
partitioned by mutually disjoint events C;. Then E[X] =), P(C;)E[X | Cy].

3 Complete Binary Tree with a Single Goal Level

Consider a binary tree of depth D, where solutions are distributed on a single
goal level g € {0, ..., D}. At the goal level, any node is a goal with iid probability

€ 10,1]. We will refer to this kind of problems as (single goal level) complete
binary trees with depth D, goal level g and goal probability p, (Sect. 4 generalises
the setup to multiple goal levels).

As a concrete example, consider the search problem of solving a Rubik’s
cube. There is an upper bound D = 20 to how many moves it can take to
reach the goal, and we may suspect that most goals are located around level 17
(£2 levels) (Rokicki and Kociemba 2013). If we consider search algorithms that
do not remember where they have been, the search space becomes a complete
tree with fixed branching factor 3. What would be the expected BFS and DFS
search time for this problem? Which algorithm would be faster?

The probability that a goal exists is P(I') = P(I,) = 1 — (1 —p,)*. If a
goal exists, let Y be the position of the first goal at level g. Conditioned on a
goal existing, Y is a truncated geometric variable Y ~ TruncGeo(pg,29). When
pg > 279 the goal position Y is approximately Geo(p,), which makes most
expressions slightly more elegant. This is often a realistic assumption, since if
p % 279, then often no goal would exist.

Proposition 1 (BFS runtime Single Goal Level). Let the problem be a
complete binary tree with depth D, goal level g and goal probability p,. When
a goal exists and has position Y on the goal level, the BFS search time is
t8ES(g,pg,Y) = 29 — 1 +Y, with expectation, t552(g,py | Iy) = 29 — 1 +
te(pg,29) =29 — 1+ é. In general, when a goal does not necessarily exist, the
expected BFS search time is tS550 (g,p4) = P(I') - (29 — 1 + te(py, 29)) + P(I) -
2D+ 99 1 4 é The approximations are close when pg > 279.

Proposition 2. Consider a complete binary tree with depth D, goal level g and
goal probability p,. When a goal exists and has position Y on the goal level, the
DFS search time is approzimately 1552 (D, g,pg,Y) := (Y — 1)2P =911 4 2 with
expectation 1555 (D, g,py | Ty) := (1/py — 1) 2P=9%L 4 2. When p, > 279, the
expected DFS search time when a goal does not necessarily exist is approximately

= 1
t8eL(D. g pg) == P(F)((tC(ng29)_1)2D_g+1+2)+P(F)2D+1%<_1>2D—g+1.
Dy

The proofs only use basic counting arguments and probability theory.
A less precise version of Proposition 1 can be obtained from (Korf et al. 2001,
Theorem 1). Full proofs and further details are provided in (Everitt and Hutter
2015a). Figure2 shows the runtime estimates as a function of goal level. The
runtime estimates can be used to predict whether BFS or DFS will be faster,
given the parameters D, g, and pgy, as stated in the next Proposition.

Expected Search Time

Analytical Results on the BFS vs. DFS Algorithm Selection Problem

Decision Boundary

15 x DFS wins z
10* N o BFS wins L x
BFS=DFS x x
5 RN 10 4BFS _ jDFS x
10 bed > saL = lsgL | x x [¢)

N x O
R M
N X X o O o O O

o 5 x o x
AN * S o o o o
e e o o o

5 10 15 4 6 8 10 12 14 16
g D

Fig. 2. Two plots of how expected BFS and DFS search time varies in a complete
binary tree with a single goal level g and goal probability py = 0.07. The left depicts
search time as a function of goal level in a tree of depth 15. BFS has the advantage
when the goal is in the higher regions of the graph, although at first the probability
that no goal exists heavily influences both BFS and DFS search time. DFS search time
improves as the goal moves downwards since the goal probability is held constant. The
right graph shows the decision boundary of Proposition 3, together with 100 empirical
outcomes of BFS and DFS search time according to the varied parameters g € [3, D|NN
and D € [4,15] N N. The decision boundary gets 79 % of the winners correct.

Proposition 3. Let v,, = log, (tc(py,29) — 1) /2 ~ log, () /2. Given the

approzimation of DFS runtime of Proposition 2, BFS wins in expectation in
a complete binary tree with depth D, goal level g and goal probability p, when
g< % +Yp, and DFS wins in expectation when g > % + Y, + %

The term 7, is in the range [—1,1] when p, € [0.2,0.75], ¢ > 2, in which
case Proposition 3 roughly says that BFS wins (in expectation) when the goal
level g comes before the middle of the tree. BFS benefits from a smaller py,
with the boundary level being shifted v, =~ k/2 levels from the middle when

~ 27k > 279, Figure?2 illustrates the prediction as a function of goal depth
and tree depth for a fixed probability p, = 0.07. The technical report (Everitt
and Hutter 2015a) gives the full proof, which follows from the runtime estimates
Propositions 1 and 2.

It is straightforward to generalise the calculations to arbitrary branching
factor b by substituting the 2 in the base of t557 and t557 for b. In Proposition 3,
the change only affects the base of the logarithm in 7, . See (Everitt and Hutter
2015a) for further details.

4 Complete Binary Tree with Multiple Goal Levels

We now generalise the model developed in the previous section to problems that
can have goals on any number of levels. For each level k € {0,..., D}, let py be
the associated goal probability. Not every py should be equal to 0. Nodes on level
k have iid probability p, of being a goal. We will refer to this kind of problems
as (multi goal level) complete binary trees with depth D and goal probabilities p.

162 T. Everitt and M. Hutter

DFS Analysis To find an approximation of goal DFS performance in trees
with multiple goal levels, we approximate the geometric distribution used in
Proposition 2 with an exponential distribution (its continuous approximation by
Lemma 1).

Proposition 4 (Expected Multi Goal Level DFS Performance). Con-
sider a complete binary tree of depth D with goal probabilities p = [po, - ..,pp| €
[0, 1)P+L If for at least one j, p; > 279, and for all k, py, < 1, then the expected

number of nodes DFS will search is approzimately t955 (D, p) =1/ ZkD:O In(1—
pk)7127(D7k+1) .

The proof (available in Everitt and Hutter 2015a) constructs for each level
k an exponential random variable X, that approximates the search time before
a goal is found on level k (disregarding goals on other levels). The minimum of
all X}, then becomes an approximation of the search time to find a goal on any
level. The approximations use exponential variables for easy minimisation.

In the special case of a single goal level, the approximation of Proposition 4
is similar to the one given by Proposition 2. When p only has a single element
p;j # 0, the expression t5s simplifies to t055 (D, p) = —2P~9+1/In(1 — p;).
For p; not close to 1, the factor —1/In(1 — p;) is approximately the same
as the corresponding factor 1/p; — 1 in Proposition 2 (the Laurent expansion

is —=1/In(1 = p;) = 1/p; — 1/2+ O(p;)).

BFS Analysis The corresponding expected search time tf/I%SL(D,p) for BFS
requires less insight and can be calculated exactly by conditioning on which
level the first goal is. The resulting formula is less elegant, however. The same
technique cannot be used for DFS, since DFS does not exhaust levels one by
one.

The probability that level k has the first goal is P(Fy) = P(I%) H;:é P(I3;),
where P(I) = (1 — (1 — p;)?'). The expected BFS scarch time gets a more
uniform expression by the introduction of an extra hypothetical level D + 1
where all nodes are goals. That is, level D 4 1 has goal probability ppy1 = 1
and P(Fpi1) = P(I") =1—Yr_, P(Fy).

Proposition 5 (Expected Multi Goal Level BFS Performance). The
expected number of nodes tS55 (p) that BFS needs to search to find a goal in
a complete binary tree of depth D with goal probabilities p = [po, - ..,pp|, P # 0,
is RS (P) = 000 PAFBES (ke | 1) ~ 0% PR (25 +).

See (Everitt and Hutter 2015a) for a proof. For p, = 0, the expression tgFBS
(k, pr.) and 1/py, will be undefined, but this only occurs when P(F}) is also 0. The
approximation tends to be within a factor 2 of the correct expression, even when
pr. < 2% for some or all p, € p. The reason is that the corresponding P(F},)’s are
small when the geometric approximation is inaccurate. Both Propositions 4 and 5
naturally generalise to arbitrary branching factor . Although their combination
does not yield a similarly elegant expression as Proposition 3, they can still be
naively combined to predict the BFS vs. DFS winner (Fig. 3).

Analytical Results on the BFS vs. DFS Algorithm Selection Problem 163

14

x DFS wins
o BFS wins
tBFS 712']31"%
12 x x X x MGL=IMGL
O x
10| x x X xx xO% x O o
3
o 0
8 o o o o
o ® o o o
6 o e x O o o o
1072 107" 10° 10" 10°

o

Fig. 3. The decision boundary for the Gaussian tree given by Propositions 4 and 5,
together with empirical outcomes of BFS vs. DFS winner. The scattered points are
based on 100 independently generated problems with depth D = 14 and uniformly
sampled parameters p € [5,14] NN and log(c?) € [~2,2]. The most deciding feature is
the goal peak u, but DFS also benefits from a smaller o2, The decision boundary gets
74 % of the winners correct.

5 Experimental Verification

To verify the analytical results, we have implemented the models in Python 3
using the graph-tool package (Peixoto 2015)!. The data reported in Tables 1

Table 1. BFS and DF'S performance in the single goal level model with depth D = 14,
where g is the goal level and p, the goal probability. Each box contains empirical
average/ analytical expectation/error percentage.

9\pg| 0.001] 0.01] 01] [g\py] 0.001] 0.01] 0.1
5 46.33| 40.01| |5 14680| 8206
46.64| 39.86 15 000| 8053

0.7%| 0.4% 22%|1.9%

8 369.5| 332.8| 264.6| |8 14530] 9833| 1105
378.0| 333.9| 265.0 15 620 9967 1154

23%| 0.3%| 0.2% 75%| 1.4%| 4.5%

11 2748| 2143| 2057 |11 11200 1535| 152.3
2744 | 2147 2057 11 140| 1586(146.0

01%| 02%| 0.% 0.5%| 3.4%|4.1%

14 | 17360| 16480| 16390| |14 1971 208.8| 30.57
17 380(16 480|16 390 2000 200.0)20.00
0.1%| 0.%| 0.% 1.4%| 42%| 35%

(a) BFS single goal level (b) DFS single goal level

! Source code for the experiments is available at http://tomeveritt.se.

http://tomeveritt.se

164 T. Everitt and M. Hutter

Table 2. BFS and DFS performance in Gaussian binary trees with depth D = 14.
Each box contains empirical average/analytical expectation/error percentage.

Mol 01l 1] 10| 100|[p\e] 0.1 [10] 100
5 37.24| 43.75] 90.87| 225.1(|5 5374| 8572] 3405| 385.8
37.04141.55|883.72|210.8 594910 070\ 3477\379.1
0.5%]| 5.0%| 7.9%| 6.4% 11%| 18%|21%| 1.7%
8 261.2| 171.9] 119.6] 212.0(|8 677.3| 1234| 454.6| 252.6
261.31173.4(119.8|211.0 743.6| 1259|473.61260.0
0.%| 0.9%| 0.2%| 0.5% 9.8%| 2.1%| 4.2%| 2.9%
11 2049| 953.0] 303.9| 249.5||11 | 97.38| 168.1] 117.4| 210.0
2050(955.0(305.0\247.5 92.95| 157.4|106.71211.7
0.%| 0.%]|0.3%| 0.8% 4.5%| 6.4%|9.1%| 0.8%
14 | 16210| 5159| 968.5| 332.9(|14 | 24.00| 43.38| 81.75| 213.6
16 150| 51361960.6|329.7 11.62| 32.89|74.46(205.0
0.4 %] 0.4 %] 0.8%] 0.9% 52%| 24%]| 8.9%| 4.0%

(a) BFS multi goal level (b) DFS multi goal level

and 2 is based on an average over 1000 independently generated search problems
with depth D = 14. The first number in each box is the empirical average, the
second number is the analytical estimate, and the third number is the percentage
error of the analytical estimate.

For certain parameter settings, there is only a small chance (< 1072) that
there are no goals. In such circumstances, all 1000 generated search graphs typ-
ically inhabit a goal, and so the empirical search times will be comparatively
small. However, since a tree of depth 14 has about 2% ~ 3 - 10° nodes (and
a search algorithm must search through all of them in case there is no goal),
the rarely occurring event of no goal can still influence the expected search time
substantially. To avoid this sampling problem, we have ubiquitously discarded
all instances where no goal is present, and compared the resulting averages to
the analytical expectations conditioned on at least one goal being present.

To develop a concrete instance of the multi goal level model we consider the spe-
cial case of Gaussian goal probability vectors, with two parameters y and 2. For a

given depth D, the goal probabilities are given by p; = min { 20\1/?6(i_“)2/”2, %}
The parameter p € [0, D] NN is the goal peak, and the parameter 02 € R is the
goal spread. The factor 1/20 is arbitrary, and chosen to give an interesting dynamics
between searching depth-first and breadth-first. No p; should be greater than 1/2,
in order to (roughly) satisfy the assumption of Proposition 5. We call this model
the Gaussian binary tree.

The accuracy of the predictions of Propositions 1 and 2 are shown in Table 1,
and the accuracy of Propositions 4 and 5 in Table 2. The relative error is always
small for BFS (< 10%). For DFS the error is generally within 20 %, except
when the search time is small (< 35 probes), in which case the absolute error
is always small. The decision boundary of Proposition 3 is shown in Fig.2, and
the decision boundary of Propositions 4 vs. 5 is shown in Fig. 3. These boundary

Analytical Results on the BFS vs. DFS Algorithm Selection Problem 165

plots show that the analysis generally predict the correct BFS vs. DFS winner
(79 % and 74 % correct in the investigated models).

6 Conclusions and Outlook

Part II of this paper (Everitt and Hutter 2015b) generalises the setup in this
paper, analytically investigating search performance in general graphs. Part II
also provides a more general discussion and outlook on future directions.

References

Chen, P.C.: Heuristic sampling: a method for predicting the performance of tree search-
ing programs. SIAM J. Comput. 21(2), 295-315 (1992)

Edelkamp, S., Schrédl, S.: Heuristic Search. Morgan Kaufmann Publishers Inc., San
Francisco (2012)

Everitt, T., Hutter, M.: A topological approach to meta-heuristics: analytical results on
the BF'S vs. DFS algorithm selection problem. Technical report, Australian National
University (2015a). arXiv:1509.02709 [cs.Al]

Everitt, T., Hutter, M.: Analytical results on the BFS vs. DFS algorithm selection
problem. Part II: graph search. In: 28th Australian Joint Conference on Artificial
Intelligence (2015b)

Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: meth-
ods & evaluation. Artif. Intell. 206(1), 79-111 (2014)

Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Estimating search tree size. In: Proceed-
ings of the 21st National Conference of Artificial Intelligence. AAAI, Menlo Park
(2006)

Knuth, D.E.: Estimating the efficiency of backtrack programs. Math. Comput. 29(129),
122-136 (1975)

Korf, R.E., Reid, M., Edelkamp, S.: Time complexity of iterative-deepening-A*. Artif.
Intell. 129(1-2), 199-218 (2001)

Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. Al Mag.,
1-17 (2014)

Lelis, L.H.S., Otten, L., and Dechter, R.: Predicting the size of Depth-first Branch and
Bound search trees. In: IJCAI International Joint Conference on Artificial Intelli-
gence, pp. 594-600 (2013)

Peixoto, T.P.: The graph-tool python library. figshare (2015)

Purdom, P.W.: Tree size by partial backtracking. SIAM J. Comput. 7(4), 481-491
(1978)

Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65-117 (1975)

Rokicki, T., Kociemba, H.: The diameter of the rubiks cube group is twenty. STAM J.
Discrete Math. 27(2), 1082-1105 (2013)

Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice
Hall, Englewood Cliffs (2010)

Zahavi, U., Felner, A., Burch, N., Holte, R.C.: Predicting the performance of IDA*
using conditional distributions. J. Artif. Int. Res. 37, 41-83 (2010)

http://arxiv.org/abs/arXiv:1509.02709

Analytical Results on the BFS vs. DFS
Algorithm Selection Problem:
Part 1I: Graph Search

Tom Everitt® and Marcus Hutter

Australian National University, Canberra, Australia
tom.everitt@anu.edu.au

Abstract. The algorithm selection problem asks to select the best algo-
rithm for a given problem. In the companion paper (Everitt and Hutter
2015b), expected runtime was approximated as a function of search depth
and probabilistic goal distribution for tree search versions of breadth-first
search (BFS) and depth-first search (DFS). Here we provide an analo-
gous analysis of BFS and DFS graph search, deriving expected runtime
as a function of graph structure and goal distribution. The applicability
of the method is demonstrated through analysis of two different gram-
mar problems. The approximations come surprisingly close to empirical
reality.

1 Introduction

Search is a fundamental problem of artificial intelligence (Russell and Norvig
2010), and a sizeable list of search algorithms with different pros and cons can
be found in the literature (Edelkamp and Schrédl 2012). Examples of search
tasks include combinatorial optimisation problems and planning, and core search
algorithms include BFS, DFS, A* simulated annealing, and genetic algorithms.
Techniques for selecting the best algorithm for a given problem is of obvious
importance (Rice 1975; Kotthoff 2014; Hutter et al. 2014).

Tightly related to the algorithm selection problem is the problem of predict-
ing algorithm runtime; in particular expected runtime. In the companion paper
(Everitt and Hutter 2015b) we gave a brief survey of related work and derived
(approximations of) expected runtime for breadth-first search (BFS) and depth-
first search (DFS) in trees. The results also applied to search in general graphs
for the variants of BF'S and DFS that do not remember visited nodes; so called
tree search algorithms. Their name does not stop them from being used also in
other types of graphs, but they then run the risk of spending most of the time
searching the same nodes many times. This paper analyses expected runtime of
graph search variants of BFS and DFS that do remember which nodes they have
visited. Although graph search variants usually are more efficient in the sense
that they search fewer nodes, the extra memory overhead means that they are
not always applicable.

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 166-178, 2015.
DOI: 10.1007/978-3-319-26350-2_15

Analytical Results on the BFS vs. DFS Algorithm Selection Problem 167

Our main contributions are estimates of expected BFS and DF'S graph search
runtime as a function of graph structure and distributions of goals (Sect. 3). Note
that we focus solely on the time it takes to find a goal, and ignore aspects such
as solution quality. We demonstrate the relevance of the results by applying
them to two different grammar problems (Sect.4). Setup and background are
described in Sect. 2, and experimental verification in Sect. 5. Finally, conclusions
and outlooks come in Sect. 6. The technical report (Everitt and Hutter 2015a)
offers a greatly extended discussion about the setup.

2 Preliminaries

The graph search variants of BFS and DFS are two standard methods for unin-
formed graph search. Both BFS and DFS assume oracle access to a neighbour-
hood function and a goal check function defined on a state space. BFS explores
increasingly wider neighbourhoods around the start node. DFS follows one path
as long as possible, and backtracks when stuck. Figure 1 illustrates the different
search strategies, and how they (initially) focus on different parts of the search
space. Please refer to Russell and Norvig (2010) for details.

R x 6 7 9 14
8 9 10 11 12/\M/\15 @G () s 10/\}/12/\15

Fig. 1. The difference between BFS (left) and DFS (right) in a directed graph where a
goal is placed in the second position on level 2 (the third row). The numbers indicate
traversal order. Circled nodes are explored before the goal is found. Note how BFS
and DFS explore different parts of the tree. In bigger search spaces, this may lead to
substantial differences in search performance.

The runtime or search time of a search method (BFS or DFS) is the number
of nodes explored until a first goal is found (5 and 7 respectively in Fig. 1). This
simplifying assumption relies on node expansion being the dominant operation,
requiring similar time throughout the tree. If no goal exists, the search method
will explore all nodes before halting. In this case, we define the runtime as the
number of nodes in the search problem plus 1. Let I' be the event that a goal
exists, I}, the event that a goal exists on level k, and I" and I their complements.
Let Fy, =1, N (ﬂf;ol ;) be the event that level k has the first goal.

A random variable X is geometrically distributed Geo(p) if P(X = k) =
(1 — p)*=1p for k € {1,2,...}. The interpretation of X is the number of trials
until the first success when each trial succeeds with probability p. Its cumulative

168 T. Everitt and M. Hutter

distribution function (CDF) is P(X < k) = 1 — (1 — p)¥, and its average or
expected value E[X] = 1/p. A random variable Y is truncated geometrically
distributed X ~ TruncGeo(p,m) if Y = (X | X < m) for X ~ Geo(p), which
gives
(1-p)*p
PY = k)= (-7 for ke {1,...,m}
0 otherwise.
1-(1—p)"(pm+1)
(= (1= p)™)

When p > ., Y is approximately Geo(p), and tc(p,m) ~ 1. When p < ., Y
becomes approximately uniform on {1,...,m} and tc(p, m) ~ 3.
We will occasionally make use of the convention 0 - undefined = 0, and often

expand expectations by conditioning on disjoint events:

te(p,m) =E[Y]=E[X | X <m] =

Lemma 1. Let X be a random variable and let the sample space {2 = UieIC'i be
partitioned by mutually disjoint events C;. Then E[X] =), ; P(C;)E[X | Cy].

3 Colliding Branches

The companion paper (Everitt and Hutter 2015b) explores a model of ¢ree search,
where path redundancies are not recognized by the search algorithms. In this
section we develop a similar model for graph search performance. The abstract
results of this section are applied to two grammar problems in the next section.

Definition 1. For a given search problem: Let the level of a node v, level(v),
be the length of a shortest path from the start node to v. Let D = max, level(v)
be the (generalised) depth of the search graph. Let &, be the first node on level
n reached by DFS, 0 < n < D. Any node reachable from v is a descendant of v.

The descendant counter L plays a central role in the analysis. For a given
search problem, let

L(n,d) = [{v : level(v) = d,v € descendants(dy,)}|
count the number of nodes on level d that are reachable from d,,.

As in the companion paper, we assume that goals are distributed by level in
an iid manner according to a goal probability vector p. We will also assume that
the probability of DF'S finding a goal before finding dp is negligible. We will refer
to this kind of problems as search problems with depth D, goal probabilities p and
descendant counter L. The rest of this section justifies the following proposition.

Proposition 1. The DFS and BFS runtime of a search problem can be roughly
estimated from the descendant counter L, the depth D and the goal probabilities
P = [po, - - ., pp| when the probability of DFS finding a goal before 6 p is negligible.

The assumption of DFS not finding a goal before §p is not always realistic,
but is for example satisfied in the grammar problems considered in Sect. 4 below.

Analytical Results on the BFS vs. DFS Algorithm Selection Problem 169

3.1 DFS Analysis

The nodes dg, - . ., dp play a central role in the analysis of DFS runtime, since all

the descendants of é,,1 will be explored before the descendants of d,, (excluding

the d,,+1 descendants). We say that DFS explores from 6, after DF'S has explored

all descendants of §,,+1 and until all descendants of 4,, have been explored. The

general idea of the DFS analysis will be to count the number of nodes under

each J,, and to compute the probability that any of these nodes is a goal.
Some notation for this:

— Let the d,-subgraph S, = {v : v € descendants(d,)} be the set of nodes
reachable from ¢, with cardinality |S,| = Zio L(n,i), 0 < n < D. Let
Sp+1 = 0 and let S_; be a set of cardinality |S_;| = |So|—|—lzzizo L(0,4)+1.

— Let the d,,-ezplorables T,, = S,, \ Sp+1 be the nodes explored from d,,.

— Let the number of level-d §,-explorables A, q = L(n,d) — L(n + 1,d) be the
number of level d descendants of d,, that are not descendants of §,; for
0 < n,d < D. The relation between T,, and A, 4 is the following: |T;,| =

Zin Anvi'
Let gy =1 —pi for 0 < k < D.

Lemma 2. Consider a search problem with depth D, goal probabilities p, and
descendant counter L. The probability that the d,-explorables T,, contains a goal

1§ T = 1 — HkD:() q,?""“, and the probability that T,, contains the first goal is
D
Gn 1= Tn Hi:n+1(1 — 7).

Proof. T, is 1 minus the probability of not hitting a goal at any level d, n < d <
D, since at each level d, A,, 4 probes are made when exploring from &,,.

Proposition 2 (Colliding Branches Expected DFS Search Time). The
expected DFS search time lfDFS(D7p7 L) in a search problem with depth D, goal
probabilities p, and descendant counter L is bounded by

D
test (D, p, L) Z |Sni1lén <t (D, P, L) < Y [Snlén = tohu(D, p, 1)

n=-—1 n=-—1
where p_1 =1 =1 — 25:0 On 1S the probability that no goal exists.

The arithmetic mean t255(D, p, L) := (t252 (D, p, L) + t253(D, p, L))/2 of
the bounds can be used for a single runtime estimate.

Proof. Let X be the DFS search time in a search problem with the features
described above. The expectation of X may be decomposed as

D
E[X] = P(D)E[X | I+ Z P(first goal in T,,) - E[X | first goal in T5,]. (1)

n=0

170 T. Everitt and M. Hutter

The conditional search time (X | first goal in T},) is bounded by |Sy+1] < (X |
first goal in T},) < |S,] for 0 < n < D, since to find a goal DFS will search the
entire d,1-subgraph S, 1 before finding it when searching the §,-explorables
T,, but will not need to search more than the §,-subgraph S,, = S,11 UT,
(disregarding the few probes made ‘on the way down to’ §, (i.e. to T},); these
probes were assumed negligible). The same bounds also hold with Sy and S_;
when no goal exists (recall that |S_1| := |Sp| + 1). Therefore the conditional
expectation satisfies

|Sn+1] < E[X | first goal in T,] < |y, (2)

for —1 < n < D. By Lemma 2, the probability that the first goal is among the
Sp-explorables T}, is ¢y, and the probability P(I") that no goal exists is ¢_1 by
definition.

Substituting ¢, and (2) into (1) gives the desired bounds for expected DFS

search time t25°(D, p, L) = E[X].

The informativeness of the bounds of Proposition 2 depends on the dispersion
of nodes between the different T,,’s. If most nodes belong to one or a few sets
T, , the bounds may be almost completely uninformative. This happens in the
special case of complete trees with branching factor b, where a fraction (b—1)/b
of the nodes will be in Ty. The companion paper (Everitt and Hutter 2015b)
derives techniques for these cases. The grammar problems investigated in Sect. 4
below show that the bounds may be relevant in more connected graphs, however.

3.2 BFS Analysis

The analysis of BFS only requires the descendant counter L(0,-) with the first
argument set to 0, and follows the same structure as the BF'S analysis in (Everitt
and Hutter 2015b). In contrast to the DFS bounds above, this analysis gives a
precise expression for the expected runtime. The idea is to count the number of
nodes in the upper k levels of the tree (derived from L(0,0),...,L(0,k)), and
to compute the probability that they contain a goal. Let the upper subgraph
U, = Zf;ol L(0,4) be the number of nodes above level k. When there is only
a single goal level, the following expression for BFS runtime may be readily
derived.

Lemma 3 (BFS Runtime Single Goal Level). For a search problem with
depth D and descendant counter L, assume that the problem has a single goal
level g with goal probability py, and that p; = 0 for j # g. When a goal exists
and has position Y on the goal level, the BFS search time is:

toEs (9,pg,L,Y) = U, + Y, with expected value

tggs(g,PgaL | I'y) = Ug + te(pg, L0, 9))

Proof. When a goal exists, BFS will explore all of the top of the tree until depth
g — 1 (that is, U, nodes) and Y nodes on level g before finding the first goal.
The expected value of Y is tc(pg, L(0, g)).

Analytical Results on the BFS vs. DFS Algorithm Selection Problem 171
The probability that level k has a goal is P(I';) = 1 — (0) and the
probability that level k has the first goal is P(Fy) = P(I%) Hk ' P(I). To
BFS, only the first goal level matter. This allows BFS runtime to be expanded
over the Fj events as in Lemma 1. For greater uniformity, a hypothetical level

D + 1 only containing goals is introduced to handle the event of no goal in the
first D levels.

Proposition 3 (Branch Colliding Expected BFS Performance). The
expected number of nodes that BFS needs to search to find a goal in a search
problem with depth D, goal probabilities p = [po,...,ppl, P # 0, and descendant

counter L is
D+1

teg” (p, L Z P(Fy)ten’ (ks pr, L | Ty)

where the goal probabilities have been extended with an extra element pp41 =1,
and Fpy = T is the event that no goal exists.

For pj, = 0, t2ES will be undefined, but this only occurs when P(Fy) is also 0.
Propositions2 and 3 give (rough) estimates of average BFS and DFS graph
search time given the goal distribution p and the structure parameter L. The
results can be combined to make a decision whether to use BFS or DFS (Fig. 3).

4 Grammar Problems

We now show how to apply the general theory of Sect. 3 to two concrete grammar
problems. A grammar problem is a search problem where nodes are strings over
some finite alphabet B, and the neighbourhood relation is given by a set of
production rules. Production rules are mappings ¢ — y, x,y € B*, defining
how strings may be transformed. For example, the production rule S — Sa
permits the string aSa to be transformed into aSaa. A grammar problem is
defined by a set of production rules, together with a starting string and a set
of goal strings. A solution is a sequence of production rule applications that
transforms the starting string into a goal string. Many search problems can be
formulated as grammar problems, with string representations of states modified
by production rules. Their generality makes it computably undecidable whether
a given grammar problem has a solution or not. We here consider a simplified
version where the search depth is artificially limited, and goals are distributed
according to a goal probability vector p.

4.1 Binary Grammar

Let € be the empty string. The binary grammar consists of two production rules,
€ — a and € — b over the alphabet B = {a,b}. The starting string is the empty
string €. A maximum depth D of the search graph is imposed, and strings on
level k are goals with iid probability pg, 0 < k < D. Since the left hand substring

172 T. Everitt and M. Hutter

aaa aab” aba = baa = abb ™" bab ~ bba bbb

Fig. 2. Graph of binary grammar problem with max depth D = 3. Contiguous lines
indicate first discovery by DFS, and dashed lines indicate rediscoveries.

of both production rules is the empty string, both can always be applied at any
place to a given string. The resulting graph is shown in Fig. 2.

The first node on level n that DFS reaches in the binary grammar problem is
0, = a” for 0 < n < D, assuming that the production rule € — a is always used
first by DFS. The following lemma derives an expression for the descendant
counter LBG required by Proposition 2. Incidentally, the number of level-d §,
explorables A,, 4 (Sect. 3.1) gets an elegant form in the binary grammar problem.

Lemma 4. Forn < d, let LBS(n,d) = |{v : level(v) = d,v € descendants(a™)}|
be the number of nodes reachable from a™, and let A, 4 = LB%(n,d) — LBS(n +
1,d) be the number of descendants of a™ that are not descendants of a™*1. Then

LBS(n,d) = 00 (4), and Apa = (,%).

Proof. The reachable nodes on level d that we wish to count are d—n levels below
a™. To reach this level we must add ¢ < d —n number of b’s and d —n — ¢ number
of a’s to a™. The number of length d strings containing exactly ¢ number of b’s
is (f) (we are choosing positions for the b’s non-uniquely with repetition among
d — i+ 1 possible positions). Summing over i, we obtain LB%(n,d) = Z?;(;L (‘f),
and A, 4 = LB%(n,d) — LBS(n +1,d) = (d n)

Corollary 1 (Expected Binary Grammar BFS Search Time). The
expected BFS search time tggs(p) in a Binary Grammar Problem of depth D
with goal probabilities p = [po, ..., pp] is

tBFS(2SBFS(7LBG).

p) =

Corollary 2 (Expected Binary Grammar DFS Search Time). The
expected DFS search time fDFS(D,p) in a binary grammar problem of depth
D with goal probabilities p = [pg,...,pp| is bounded between tggi(D7p) =
t2ES (D, p, LBC) and tREY (D, p) = tRES (D, p, LBC), and is approzimately

DFS(D p) DFS(D p,LBG)

Proof (Proof of Corollaries1 and 2). Direct application of Lemma4, and Propo-
sitions 2 and 3 respectively.

The bounds are plotted for a single goal level in Figs. 3 and 4.

Analytical Results on the BFS vs. DFS Algorithm Selection Problem

Decision Boundary

14

¥
3

173

®)

X

BFES wins
DFS wins

DFS=BFS

tBFS _ i’DFS
BG — 'BG

O O -0 O O oo O

1072 107t 10°

Pg

1074 1073

Fig. 3. The decision boundary predicted by Corollaries 1 and 2, together with empir-
ical outcomes of BFS and DFS search time. The scattered points are based on 100
independently generated binary grammar problems of depth D = 14 with uniformly
sampled (single) goal level g € [8,14] NN and log(py) € [—4,0]. DFS benefits from a
deeper goal level and higher goal probability compared to BFS. The decision boundary
gets 87 % of the instances correct.

Complete Binary Tree Binary Grammar

1000 -~ 1090 T
10 Y 10* ors e
\\ BG '
~. ___ jDFS \'\.
S BCG .
10% H ——t8&¢ 10? tRer, 2N
-~ - 5o tBEY
5 10 15 20 5 10 15 20

9

g

Fig. 4. The expected search time of BFS and DF'S as a function of a single goal level g
with goal probability p, = 0.05 in a tree of depth D = 20. BFS has the advantage when
the goal is in the higher regions of the graph, although at first the probability that no
goal exists heavily influences both BFS and DFS search time. The greater connectivity
of the graph in the binary grammar problem permits DFS to spend more time in the
lower regions before backtracking, compared to the complete binary tree analysed in
the companion paper (Everitt and Hutter 2015b). This penalises DFS runtime when
the goal is not in the very lowest regions of the tree. BF'S behaviour is identical in both
models.

174 T. Everitt and M. Hutter

4.2 Full Grammar

The full grammar problem has alphabet B = {S,a,b} and start string S. The
production rules are S — € (with € the empty string) plus the adding rules
S — Sa, S — a8, S — Sb, S — bS, and the moving rules Sa — aS, aS — Sa,
Sb — bS, and bS — Sb. Only S-less strings can be goal nodes. As usual, a
maximum depth D and a goal probability vector p = [po,...,pp] are given.
For simplified analysis, we will abuse notation the following way. We will
consider S-less nodes to be one level higher than they actually are. For example,
a would normally be on level 2 (e.g. reached by the path S — Sa, S —),
but we will consider it to be on level 1. A slight modification of BFS and DFS
makes them always check the S-less child first (which is always child-less in
turn), which means the change will only slightly affect search time. We will still
consider §,, = Sa™ whenever S — Sa is among the production rules, however.
The search graph of the full grammar problem is shown in Fig. 5.

Fig. 5. Search graph for the Grammar problem until level 2. Connections induced by
moving rules are not displayed. Contiguous lines indicate the first discovery of a child
by DFS and dashed lines indicate rediscoveries.

The problem can be analysed by a reduction to a binary grammar problem
with the same parameters D and p. Assign to each string v of the binary gram-
mar problem the set of strings that only differ from v by (at most) an extra S.
We call such sets node clusters. For example, {a, Sa,aS} constitutes the node
cluster corresponding to a. Due to the abusing of levels for the S-less strings, all
members of a cluster appear on the same level (the level is equal to the number
of a’s and b’s). The level is also the same as the corresponding string in the
binary grammar problem.

Lemma 5 (Binary Grammar Reduction). For everyn, d, n < d, the descen-
dant counter L¥G of the full grammar problem is L¥S (n,d) = (d + 2)L2%(n,d).

Proof. LB%(n,d) counts the level d descendants of a™ in the binary grammar
problem (BGP), and LF%(n, d) counts the level d descendants of Sa™ in the full
grammar problem (FGP). The node u is a child of v in BGP iff the members
of the u node cluster are descendants of Su. Therefore the node clusters on level d

Analytical Results on the BFS vs. DFS Algorithm Selection Problem 175

descending from Sa™ in FGP correspond to the BGP nodes descending from a™.
At level d, each node cluster contains d + 2 nodes.

Corollary 3 (Expected Full Grammar BFS Search Time). The expected
BFS search time 1RES(p) in a full grammar problem of depth D with goal prob-
abilities p = [po, - ..,pp] is

tr (p) =t (P, L9).

Corollary 4 (Expected Full Grammar DFS Search Time). The expected
DFS search time t?gs(D,p) in a full grammar problem of depth D with goal
probabilities p = [po, .. .,pp)| is bounded between tRES (D, p) := t2EF (D, p, LFY)

and t2E% (D, p) = tEEY (D, p, LFY), and is approzimately
trG" (D, p) = to5° (D, p, L"),

Proof (Proof of Corollaries3 and 4). Direct application of Lemma 5, and Propo-
sitions 2 and 3 respectively.

5 Experimental Verification

To verify the analytical results, we have implemented the binary grammar in
Python 3 using the graph-tool package (Peixoto 2015)!. The data reported
in Table1 is based on an average over 1000 independently generated search
problems with depth D = 14. The first number in each box is the empirical
average, the second number is the analytical estimate, and the third number is
the percentage error of the analytical estimate.

For certain parameter settings, there is only a small chance (< 1073) that
there are no goals. In such circumstances, all 1000 generated search graphs typ-
ically inhabit a goal, and so the empirical search times will be comparatively
small. However, since a binary grammar of depth 14 has about 2% ~ 3 - 10°
nodes (and a search algorithm must search through all of them in case there is
no goal), the rarely occurring event of no goal may still influence the expected
search time substantially. To avoid this sampling problem, we have ubiquitously
discarded all instances where no goal is present, and compared the resulting
averages to the analytical expectations conditioned on at least one goal being
present.

The binary grammar model of Sect. 4.1 serves to verify the general estimates
of Propositions 2 and 3. The results are shown in Table 1. The estimates for BF'S
are accurate (< 3% error). With few exceptions, the lower and the upper bounds
tBES and tBET; of Corollary 2 for DFS differ by at most 50 % on the respective
sides from the true (empirical) average. The arithmetic mean 55> often gives
surprisingly accurate predictions (< 4 %) except when t2E3 and thEY leave wide
margins as to the expected search time (when g = 14, the margin is up to 84 %
downwards and 125 % upwards). Even then, the gggs error remains within 30 %.

! Source code for the experiments is available at http://tomeveritt.se.

http://tomeveritt.se

176 T. Everitt and M. Hutter

Table 1. Comparison of analytical estimates with empirical averages for BFS and
DFS in binary grammars of depth D = 14. Goals are distributed on a single goal
level g with goal probability p,. The BFS estimates thee are highly accurate, and
the averaged DFS estimates fggs are mostly accurate. Each box contains empirical
average/ analytical expectation/error percentage.

9\pg| 0.001] 0.01] 01 9\pg| 0.001] 0.01] 01
5 46.74| 40.53 5 30910| 27 840
46.64| 39.86 81 870|130 190
02%| 1.7% 1.5%| 84%
8 375.7| 332.5| 265.7 8 28000| 25160| 15490
378.0| 333.9| 265.0 27 410\24 420|115 200
0.6%| 04%| 0.3% 21%| 29%| 1.9%
11 2751 2145 2058 11 17280 5932| 1815
2744 2147 2057 16 790| 5806| 1788
0.3%| 0.1%| 0.% 29%| 21%| 1.5%
14 | 17370] 16480| 16 390 14 1304| 122.1] 25.60
17 380116 480|16 390 1522| 164.6| 20.06
01%| 0.%| 0.% 17%| 35%| 22%

(a) BFS the® (b) Average DFS #he"
g\py| 0.001] 0.01] 0.1 g\py| 0.001] 0.01] 0.1
5 30910| 27840 5 30910| 27 840
30 710|129 080 32 020|31 290
0.7%| 45% 3.6%| 12%
8 28000| 25160| 15490 8 28000| 25160| 15490
25 740|122 15012 070 29 08026 690(18 340
81%| 12%| 22% 3.8%| 6.1%| 18%
11 17280 5932| 1815 11 17280 5932| 1815
14 160 3822| 918.6 19 410 7790| 2657
18%| 36%| 49% 12%| 31%| 46%
14 1304| 122.1] 25.60 14 1304| 122.1] 25.60
808.8| 54.12] 3.990 22536 275.1| 36.12
38%| 56%| 84% 2% 125%| 41%

(¢) Lower DFS tB&3 (d) Upper DFS tB&%;

6 Discussion

Search and optimisation problems appear in different flavors throughout the field
of artificial intelligence; in planning, problem solving, games, and learning. There-
fore even minor improvements to search performance can potentially lead to gains
in many aspects of intelligent systems. It is even possible to equate intelligence
with (Bayesian expectimax) optimisation performance (Legg and Hutter 2007).

Summary. In this paper and Part I (Everitt and Hutter 2015b) we have derived
analytical results for expected runtime performance. Part 1 focused on BFS

Analytical Results on the BFS vs. DFS Algorithm Selection Problem 177

and DFS tree search where explored nodes were not remembered. A vector
p = (p1,-..,pp) described a priori goal probabilities for the different levels
of the tree. This concrete but general model of goal distribution allowed us to
calculate approximate closed-form expression of both BFS and DFS average
runtime. Earlier studies have only addressed worst-case runtimes: Knuth (1975)
and followers for DFS; Korf et al. (2001) and followers for IDA*, effectively a
generalised version of BFS.

This paper generalised the model of Part I to non-tree graphs. In addition
to the goal probability vector p, the graph search analysis required additional
structural information in the form of a descendant counter L. The graph search
estimates for DF'S also took the form of less precise bounds. Even so, the arith-
metic mean of the lower and the upper bound often came close the empirical
average. The analysis of this paper does not supersede the results of Part I, as
the bounds become uninformative when the graph is a tree. Overall, the ana-
lytical approximations derived in both papers were generally consistent with
experimental outcomes.

Conclusions and Outlook. The value of the results are at least twofold. They offer
a concrete means of deciding between BFS and DF'S given some rough idea of the
location of the goal (and the graph structure). To make the results more generally
usable, automatic inference of model parameters would be necessary; primarily of
goal distribution p and graph structure L. (The depth D will often be set by the
searcher itself, and perhaps be iteratively increased.) There is good hope that the
descendant counter L can be estimated online from the local sample obtained dur-
ing search, similar to Knuth (1975). The goal distribution is likely to prove more
challenging, but resembles the automatic creation of heuristic functions, so tech-
niques such as relazed problems could well prove useful (Pearl 1984). Estimates of
goal distribution could possibly also be inferred from a heuristic function.

The results also offer theoretical insight into BFS and DFS performance. As
BFS and DFS are in a sense the most fundamental search operations, we have
high hopes that our results and techniques will prove useful as building blocks
for analysis of more advanced search algorithms. For example, A* and IDA* may
be viewed as a generalisations of BFS, and Beam Search and Greedy Best-First
as generalisations of DFS.

Acknowledgements. Thanks to David Johnston for proof reading final drafts of both
papers.

References

Edelkamp, S., Schrédl, S.: Heuristic Search. Morgan Kaufmann Publishers Inc, San
Francisco (2012)

Everitt, T., Hutter, M.: A topological approach to Meta-heuristics: analytical results on
the BFS vs. DFS algorithm selection problem. Technical report, Australian National
University. arXiv:1509.02709[cs.Al] (2015a)

http://arxiv.org/abs/1509.02709

178 T. Everitt and M. Hutter

Everitt, T., Hutter, M.: Analytical results on the BFS vs. DFS algorithm selection
problem. In: 28th Australian Joint Conference on Artificial Intelligence, Part I: Tree
Search (2015b)

Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: meth-
ods and evaluation. Artif. Intell. 206(1), 79-111 (2014)

Knuth, D.E.: Estimating the efficiency of backtrack programs. Math. Comput. 29(129),
122-122 (1975)

Korf, R.E., Reid, M., Edelkamp, S.: Time complexity of iterative-deepening-A*. Artif.
Intell. 129(1-2), 199-218 (2001)

Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. Al Mag-
azine, pp. 1-17 (2014)

Legg, S., Hutter, M.: Universal intelligence. Minds Mach. 17(4), 391-444 (2007)

Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, Boston (1984)

Peixoto, T.P.: The graph-tool python library. figshare (2015)

Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65-117 (1975)

Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice
Hall, Upper Saddle River (2010)

Region-Growing Planar Segmentation
for Robot Action Planning

Reza Farid®)

Institute for Integrated and Intelligent Systems, Griffith University,
170 Kessels Rd, Nathan, QLD 4111, Australia
r.faridOgriffith.edu.au

Abstract. Object detection, classification and manipulation are some of
the capabilities required by autonomous robots. The main steps in object
classification are: segmentation, feature extraction, object representation
and learning. To address the problem of learning object classification
using multi-view range data, we used a relational approach. The first
step of our object classification method is to decompose a scene into
shape primitives such as planes, followed by extracting a set of higher-
level, relational features from the segmented regions. In this paper, we
compare our plane segmentation algorithm with state-of-the-art plane
segmentation algorithms which are publicly available. We show that our
segmentation outperforms visually and also produces better results for
the robot action planning.

Keywords: Object classification - Robot action planning - Planar
segmentation - Point cloud - Range data

1 Introduction

A considerable amount of research has been devoted to generic object recognition
(Opelt, 2006; Vasudevan et al., 2007; Shin, 2008; Endres, 2009), which is required
by robots in many tasks. For instance, in service robotics applications, such as a
catering or a domestic robot (Shin, 2008), the robot must recognise specific kinds
of tableware, while the robot’s ability to distinguish a set of products is necessary
in industrial applications (Endres, 2009). We are mostly interested in urban
search and rescue; where a team of robots are sent to a post-disaster environment.
The robot’s mission is to traverse the arena, to search for victims while making
a map of the area. Rescue robots may be tele-operated or autonomous. When
running autonomously, classification of objects is useful for reporting to human
rescuers what is in the environment as well as determining the robot’s behaviour.
For example, recognising a staircase can provide necessary information to a
wheeled robot (Fig. 1a) to avoid that object, whereas a tracked robot (Fig. 1b) is
capable of climbing stairs but it must reconfigure its flippers (Fig.2) to be able
to climb (Kalantari et al., 2009) successfully as shown in Fig. 3. Another example
is to use the relation between surfaces to grasp objects (Prankl et al., 2013).

© Springer International Publishing Switzerland 2015

B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 179-191, 2015.
DOI: 10.1007/978-3-319-26350-2_16

180 R. Farid

~ ! 2 s
Sensor head f ff
Auto-levelled ﬁ
" 4 5 6
‘llaser rangefinder
Heading-attitude sensor
Onboard computer g

'; i

Fig. 2. Robot planning

<€— Movable flippers

(a) Emu (b) Negotiator

Fig. 1. Some autonomous robots (Team
CASuality in RoboCup 2011) (McGill
et al., 2012)

Fig. 4. Range image and corresponding point cloud from front and top view (Farid
and Sammut, 2014a)

Range cameras have become popular in robotics because they are small,
light, consume relatively little power and have the ability to produce range mea-
surements of up to several metres, making them suitable for indoor use. Range
images are acquired by these 3D range/depth cameras, such as the Microsoft
Kinect and ASUS Xtion PRO LIVE. These images are like grey scale images in
which the value of each pixel represents the distance of the sensor to the surface
of an object in a scene from a specific viewpoint (Géchter et al., 2006), and
can be used to infer the shape of the object (Hegazy and Denzler, 2009). The
Kinect and Xtion sensors also provide a colour video image. However, in this
research, only the depth image is used for object recognition as it is capable of
operating in the dark, which is often required in search and rescue operations.
Furthermore, colour calibration under different lighting conditions is trouble-
some (Opelt, 2006).

A range image can be transformed into a point cloud by converting each pixel
of the image into 3D coordinates. Figure 4 shows a range image of a staircase with
four steps. The image was taken by a robot positioned in front of the staircase.
In the leftmost image (the grey scale), darker colours represents closer surfaces.
The next image (a colour-mapped version) is presented for clarity. The next two
images are front and top views for the same point cloud, in which the point cloud

Region-Growing Planar Segmentation for Robot Action Planning 181

is segmented into planes that are identified by unique colours. Since a range image
is taken from one viewpoint, it only provides a partial view of a scene.

An object class describes a set of instances that share common properties,
such as shape or function. A common starting point for finding the properties
to be used in similarity matching is to segment the image into different regions
and to characterise the relationships between those regions. Segmenting a point
cloud can be viewed as the process of assigning each point to a region, with an
accompanying label.

In previous work (Farid and Sammut, 2012b; 2014a), we extracted planes
from a 3D point cloud based on a region growing plane segmentation algorithm
(Farid and Sammut, 2012a; 2014¢) and used them as primitives for object cate-
gorisation. In this paper, we show that our plane segmentation algorithm outper-
forms state-of-the-art plane segmentation methods which are publicly available.
For this purpose, in the following sections, we compare the methods based on
their visual results and the suitability of the plane features for robot action
planning.

2 Background Work

Planes are useful features in built environments, including urban search and
rescue for identifying floors, walls, stairs, ramps and other terrain that the robot
is likely to encounter. Modelling a scene from planar patches is used in computer
vision, robotics and augmented reality (Prankl et al., 2013). For example, it
has been used for scene understanding (Bartoli, 2007; Xu and Petrou, 2011),
localisation (Mohr et al., 1992) and 3D virtual reconstruction of the environment
(McGill et al., 2012).

Our earlier approach (Farid and Sammut, 2012b; 2014a) was most closely
related to Shanahan (2002) and Shanahan and Randell (2004) who used a logic
program as a relational representation for 3D objects in 2D line drawings, while
abduction is used in object recognition. We extended this representation, replac-
ing the 2D lines with 3D planes. Furthermore, we used ALEPH (Srinivasan, 2002)
to learn the logic programs from instances obtained by a robot equipped with a
depth camera.

The fact that all points belonging to the same plane are supposed to have
approximately the same normal vector, formed the core of the our segmentation
algorithm. We introduced a region-growing plane segmentation algorithm based
on neighbourhood normal vector similarity to segment an object into a set of
planar surfaces. The method starts with a point and traverses the other points
through the neighbourhood structure. To decide if the point can be added to
the planar surface, it must satisfy the planar surface criteria, which determine
when to add a point to a region. Our algorithm is based on using neighbouring
points to grow the region. This is where the distance threshold, ¢, can be used
to decide whether a point is too far away to be accepted as a neighbour for a
point. If a point is not too far, it can be included in the not visited neighbours
list, candidates, as shown in the Algorithm 1. We have used the below values for
input variables:

182 R. Farid

min neighbour num = 4 base_update_step = 8
num_initial points = 16 0 = 15° —20°

Features of these planar regions and their relationships were generated to
form a planar description for an object class. The segmentation result and fea-
tures were used for learning. We also showed that the learning system was able to
use other primitives such as cylinders and spheres for the same purpose (Farid
and Sammut, 2014b). A relational representation is useful in this application
because it is our interest to recognise objects that are characterised by relation-
ships between its parts, as in the steps constituting a staircase, and the number
of parts may not be fixed, as the number of steps in a staircase can vary.

Ideally, an off-the-shelf segmentation method would have been used to decom-
pose a scene into shape primitives. Several methods claim to provide good
plane segmentation. However, they are not publicly available or they are not
usable as claimed (Farid, 2014). Two algorithms are provided by PCL (Rusu
and Cousins, 2011) using the RANdom SAmple Consensus (RANSAC) (Fischler
and Bolles, 1981) algorithm. We use these state-of-the-art plane segmentation
methods especially because they are publicly available:

— One of the PCL algorithms, setting the model type as SACMODEL_PLANE,
uses 3D points belonging to the point cloud! without considering normals or
any additional constraints. We call it as SP.

— The other algorithm, using SACMODEL_NORMAL_PLANE for model type,
has an additional constraint similar to the method used in our research. We
call it as SNP. It assumes the normal of each point must be parallel to the
output plane normal within a maximum angular difference?. The use of SNP
has been shown as a part of PCL’s tutorial for cylinder model segmentation®.

These two methods require a few parameters such as “Distance Threshold” and
“Angle Threshold” to decide whether a point must be added to a plane. We will
discuss these parameters later.

PCL has an algorithm as region growing segmentation. However, this algo-
rithm merges the points to form a segment considering a smoothness constraint.
The output clusters can be considered as smooth surfaces, not primitives such
as planes, spheres and cylinders. This algorithm can be used to cluster the point
cloud before passing each cluster to other segmentation algorithms such as SP
and SNP. That is why we will not consider this algorithm for comparison in this
paper. Our algorithm will be compared with SP and SNP visually and based on
the quality of the segmented planes.

3 Experimental Evaluation

3.1 Dataset

Figure 1 shows several robots used for urban search and rescue. These ground
robots were designed to participate in the RoboCup Rescue Robot competition,

! http://pointclouds.org/documentation /tutorials/planar_segmentation.php.
2 http://docs.pointclouds.org/1.7.0/group__sample__consensus.html.
3 http://pointclouds.org/documentation /tutorials /cylinder_segmentation.php.

http://pointclouds.org/documentation/tutorials/planar_segmentation.php
http://docs.pointclouds.org/1.7.0/group__sample__consensus.html
http://pointclouds.org/documentation/tutorials/cylinder_segmentation.php

Region-Growing Planar Segmentation for Robot Action Planning 183

Algorithm 1. Region growing plane segmentation algorithm using normal vectors

Input: PointCloud, normal vector for all points in PointCloud
Input: min_neighbour_num > 0, base_update_step > 0
Input: num_initial_points > 0, min_region_size
Input: 6 // angle threshold
Input: ¢ // distance threshold
Input: angle-mf <1 // angle modifying factor
1. R« {} // output: Regions
2. for all p in the PointCloud do
3. if p is visited V p is rejected then
4 continue
5. else if number_of _usable_neighbour(p) < min_neighbour_num then
6: continue
7. end if

52 Cr<p

9. Base_normal «— get_normal_vector(p)

10 candidates — get_not_visited_neighbours(p,)

11. for all ¢ in candidates do

12: if Size(Cr) < numinitial_points V mod(Size(Cr), base_update_step) = 0
then

13; Base_normal «— get_average_normal_vectors(Cr)

14; end if

15: current_angle <« get_angle(Base_normal, get_normal_vector(q))

16: accepted — false

17: if Size(Cr) < num_initial_points then

18: if current_angle < 6 then

19: accepted «— true

20: end if

21 else if current_angle < 0 x angle-m f then

22: accepted +— true

23 end if

24; if accepted then

25: Cr+—CrUgq

26: set_visited(q)

27 candidates «— candidates U get_not_visited_neighbours(q,)

28: end if

20. end for

so: if Size(CRr) > min_region_size then

31 set_final_normal_vector(CRr)

32: R+~ RUCRr

33: end if
31: end for
35: return R

184 R. Farid

=

5
=

(a) bozx class

-N

(b) stairs class

(c) pitch/roll ramp class

Fig. 5. Examples of instances used in this research

held annually. The competition arena uses elements developed by the US National
Institute of Standards and Technology (NIST, 2010) to certify robots for emer-
gency operations. These elements simulate typical hazards that might be encoun-
tered in buildings damaged by a disaster such as an earthquake. We captured data
during RoboCup Rescue competitions, as well as from rescue laboratories and
other indoor locations. In this paper, we use a subset (45 images) of such data
which we used for learning classes such as box (12 images), stairs (15 images) and
pitch/roll ramp in a maze (18 images). Since it is difficult to comprehend the range
image, the corresponding colour (RGB) image of the scene will be shown in the
rest of the paper. For each class, different multi-view data are chosen. For example,
Fig. 5 shows one view of some of the examples in this research which previously
were used for training boz, stairs and pitch/roll ramp classes respectively.

3.2 Parameters

Distance Threshold. SP and SNP are using the distance threshold parameter
to limit the maximum acceptable distance of a point to the plane model. If the
point is further, it will not be considered as an inlier for the plane. In the PCL
tutorial, this value is set to 0.01 for SP. However, for SNP, this value is set to
0.03. Due to this difference, we use more than one value as the distance threshold

Region-Growing Planar Segmentation for Robot Action Planning 185

in our experiments. For example, for experiments regarding SP, we configured
four experiments by using 0.005, 0.01, 0.03 and 0.05 as distance thresholds.

Angle Threshold. SNP also considers the surface normal of each point and
employs a weight value to determine the surface normal influence. We used the
suggested value by the PCL tutorial as 0.1. We also have used similar threshold
(15) in our region-growing algorithm to accept or reject adding a point to the
current plane. In other words, if the angle of the current plane and the candidate
point is more than 15, the point can not be added to the region.

Minimum Region Size. All methods use a value as the minimum size for the
plane. If the number of points belonging to the region is less than this value, the
region will be rejected. We employed 90 for this purpose.

3.3 Data Preparation

Before applying PCL plane segmentation algorithms, we must prepare our data.
Since our range images have 640 x 480 pixels, we sub-sample them to 160 x 120,
while we converting them to point clouds. All data and the result of experiments
are available via http://rfarid.altervista.org/plane_seg_compare/index.html.

3.4 Evaluating SP

The first experiment set is based on using the first PCL plane segmentation
algorithm, called as SP. We applied SP on our data four times by using 0.005,
0.01, 0.03 and 0.05 as distance thresholds.

Considering the Number of Planes. Table1 shows the total and average
number of planes produced per each class. This table indicates that the number of
planes is closer and more reliable using distance thresholds 0.03 and 0.05.

Table 1. Total and average number of planes using SP

Sum Average

Distance threshold Distance threshold
Class 0.005 | 0.01|0.03 | 0.05 | 0.005|0.01 | 0.03 0.05
box 182 | 108 67 | 60 |15.17 |9 5.58 |5
pitch/roll ramp | 493 |281 |144 |116 |27.39 15.61|8 6.44
stairs 320 226 |124 | 84 |21.93 |15.07|8.27 | 5.6
Total 1004 | 615 |335 |260

http://rfarid.altervista.org/plane_seg_compare/index.html

186 R. Farid

Table 2. Distribution of segmentation Table 3. Distribution of segmentation
quality using SP quality per object class using SP for
distance threshold as 0.03

Distance |Segmentation quality level
threshold | H MH |ML |L Seg. quality level
0.005 2.22%(11.11% | 8.89% |77.78 % Class H MHML |L
0.01 11.11%| 6.67%53.33% 28.89% | POX 0%|83%| 17%| 0%
0.03 0.00% 33.33%|62.22% | 4.44% Pitch/roll ramp|0%/28% 61%|11%

0.05 0.00% 24.44% T1.11% | 4.44% |Stairs 0%]0% [100%| 0%

Fig. 6. Example of SP segmentation result for stairs using dis. thr. as 0.03

Visual Quality of the Output. We defined four levels of segmentation qual-
ity as H, MH, ML and L indicating high, mid to high, mid to low and low
respectively. We went through all visual results and scored them based on a
human-manual segmentation expectation. Table2 shows the percentage of the
images per each distance threshold and segmentation quality level. It illustrates
that although we get high segmentation quality around 2% and 11 % of times
for using distance threshold as 0.005 and 0.01, these thresholds cause less qual-
ity level of segmentation. In contrast, using threshold as 0.03 and 0.05 produces
results with the mid to low and mid to high level of segmentation quality.
Table 3 shows the same distribution per class while we used 0.03 as distance
threshold. It indicates that the 83 % of images containing boz class are segmented
with the mid to high level of segmentation quality, while 61 % of pitch/roll ramp
images have mid to low level of segmentation quality and all the stairs class
images are segmented with a mid to low level of segmentation quality. Figure 6
shows three examples of stairs using SP segmentation (with distance threshold
as 0.03) corresponding to the scenes shown in Fig.5b. Each plane is coloured
differently. All the segmentation results are available in the experiment website.

3.5 Evaluating SNP

The second experiment set is based on using the second PCL plane segmentation
algorithm, called as SNP, which employs normal vectors in its process. Since
using 0.005 as distance threshold caused a major low quality segmentation for
SP, we avoided using 0.005 and applied SNP on our data three times by using
0.01, 0.03 and 0.05 as distance threshold values.

Region-Growing Planar Segmentation for Robot Action Planning 187

Table 4. Total and average number of planes using SNP

Sum Average

Distance threshold
Class 0.01 | 0.03|0.05|0.01 |0.03 0.05
box 235 | 98 | 89 19.58 | 8.17| 7.42
pitch/roll ramp | 456 |269 |177 |25.33|14.94 9.83
stairs 174 1205 |191 |12.4313.67|12.73
Total 865 | 572 |457 119.22]12.71|10.16

Table 5. Distribution of segmentation Table 6. Distribution of segmentation

quality using SNP quality per class using SNP
Distance |Segmentation quality level Dist. Thr.=0.05 |Seg. quality level
threshold Class H MH |ML L

H |MH ML |L box 8.3% | 75.0 %|16.7%|0.00 %
0.01 0.0%| 0.0%| 2.2%|97.8% pitch/roll ramp |0.0% | 72.2%|27.8 % |0.00 %
0.03 0.0%51.1%|48.9% | 0.00% stairs 6.7%193.3% | 0.0%0.00%
0.05 4.4%(80.0% |15.6% | 0.00%

Considering the Number of Planes. Table4 shows the total number and
average number of planes produced using SNP per each class. This table indicates
that the number of planes are closer and more reliable using distance thresholds
as 0.03 and 0.05.

Visual Quality of the Output. For analysing the visual quality of the output,
we used the same approach employed for SP. Table5 shows the percentage of
the images per each distance threshold and segmentation quality level. It illus-
trates that the distance threshold set at 0.05 produces more mid to high quality
segmentation.

Table 6 shows the same distribution per each class while we used 0.05 as
distance threshold. It indicates that for each class images, the majority of seg-
mentation quality are mid to high. The visual comparison between SP and SNP
results shows that SNP outperforms SP. Figure 7 shows the corresponding ver-
sion of Fig. 6 using SNP segmentation (with distance threshold as 0.05), where
each plane is coloured differently. All the segmentation results are available in
the experiment website.

3.6 Comparing SNP and Our Method

We applied our region-growing plane segmentation algorithm on the same data.
As shown before, SNP outperformed SP, so we just compared the result of seg-
mentations between ours and SNP (using distance threshold 0.05) as follows:

188 R. Farid

Fig. 7. Example of SNP segmentation result for stairs using dis. thr. as 0.05

Considering the Number of Planes. The average number of planes is 9.44
for ours while this average is 10.16 for SNP.

Visual Quality of the Output. To compare the results visually, we split a
score 100 between the result of our segmentation method and SNP. We scored
SNP as 2138 totally, which means 47.51 on average. Additionally, we also asked
some people to do the same. We provided a web-page* showing the RGB version
of the scene and the results of segmentation for method 1 and 2. The participants
did not know which method was which. They were asked to split the score 100
between the two methods based on their expectations of the correct manual
segmentation. SNP was scored 46.86 on average, while our algorithm was scored
53.14 on average. This comparison shows that the our segmentation algorithm
outperforms the SNP visually.

Comparison Based on the Quality of the Features. Visual comparison
might not be good enough to compare two segmentation methods. Since the
result of segmentation can be passed to a robot as features for action planning,
it is important to evaluate the correctness of these features, which is not possible
to do just by visual comparison. In this case, a plane can be represented by a
point belonging to the plane, its normal vector and its boundaries. The boundary
can be represented by a convex hull (Farid and Sammut, 2012b). That is where
SNP fails. SNP uses RANSAC and produces planes that cover many sparse
points. As a result, two set of points, which are very far from each other, are put
together in the same plane, while there is no such planar surface in the reality.
These virtual planes can interfere with robot action planning, since there is
no planar surface where the robot expects one based on the features provided.
Figure 8 shows an example of such situation. Using the colour legend provided,
the figure shows that our segmentation produces 10 planes, while SNP produces
12 planes in which planes coloured as regions 1, 3, 8, 9 and 10 are sparse and
the corresponding features will be problematic. Figure 9 shows another example
based on the leftmost stairs instance in Fig. 5b. SNP produces regions 8, 9, 12
and 13 by putting edges of steps together as planes, which cause trouble when
the robot uses these planes for actions such as climbing.

* http://rfarid.altervista.org/plane_seg_compare/comp.html.

http://rfarid.altervista.org/plane_seg_compare/comp.html

Region-Growing Planar Segmentation for Robot Action Planning 189

o PN E 7" EMEN 10 11 [EI
16 (47018 [BGIEE] 22 23 MMEEN 6] 27 28

Fig. 8. Colour legend for segmentation, RGB version of the scene and results of seg-
mentations using our algorithm (left) and SNP (right) (Color figure online).

Table 7. Distribution of
sparse planes using SNP
(distance threshold = 0.05)

Number of Frequency

sparse planes

13

Fig. 9. Segmented planes using our algorithm (left)
and SNP (right)

Gk |lW| N |~ O
N N © ©

Considering this sparse issue, we counted the number of sparse planes for the
segmentation results by SNP. The details are available in the experiment website.
Table 7 shows the numerical results of this evaluation and how the number of
sparse regions per images are distributed. Based on these numbers, we can say 96
planes of total 457 planes for 45 images had this issue due to SNP segmentation.
That is, there is an average of 2.13 planes per image affected by this issue.

Comparison on Distance Threshold. As shown before, SP and SNP are
sensitive to the value chosen for the distance threshold. Some images might
work well with one value and another value might produces better results on
another subset of images. SP and SNP do not suggest any systematic way to
define the distance threshold. Our algorithm calculates the distance threshold
based on each image automatically by using the minimum distance between each
point and its adjacent neighbours and finding the average of them as the base.
So, this distance threshold is also reliable in existence of noisy data. The detail
and the relevant experiments are provided in Farid and Sammut (2014c).

190 R. Farid

4 Conclusion

Segmentation is an important step in robotics applications such as object clas-
sification and robot action planning. In this paper, we compared our region-
growing plane segmentation algorithm with two state-of-the-art plane segmen-
tation algorithms which are publicly available by PCL. We showed that the
visual quality of our segmentation outperforms the others. We also showed that
those RANSAC based segmentation algorithm can create planes with very sparse
points which provide wrong information for robot action planning. We are plan-
ning to add our plane segmentation algorithm as a new method to PCL and/or
ROS. The URL http://rfarid.altervista.org/plane_seg_compare/index.html pro-
vides the data and the detailed results.

Acknowledgement. We thank the people who kindly participated on visual compar-
ison between our method and SNP.

References

Bartoli, A.: A random sampling strategy for piecewise planar scene segmentation. Com-
put. Vis. Image Underst. 105(1), 42-59 (2007)

Endres, F.L.: Scene Analysis from Range Data. Master thesis, Albert-Ludwigs-
University Freiburg, Faculty of Applied Sciences (2009)

Farid, R.: Generic 3D Object Recognition Using Multi-view Range Data. Ph.D. thesis
(2014). URL http://handle.unsw.edu.au/1959.4/53848

Farid, R., Sammut, C.: A relational approach to plane-based object categorisa-
tion. In: RSS 2012 Workshop on RGB-D: Advanced Reasoning with Depth
Cameras (2012a). http://mobilerobotics.cs.washington.edu/rgbd-workshop-2012/
papers/farid-rgbd12-object-categorization.pdf

Farid, R., Sammut, C.: Plane-based object categorisation using relational learning.
In: Online Proceedings of ILP 2012 (2012b). URL http://ida.felk.cvut.cz/ilp2012/
wp-content /uploads/ilp2012_submission_6.pdf

Farid, R., Sammut, C.: Plane-based object categorisation using relational learning.
Mach. Learn. 94(1), 1-21 (2014a). doi:10.1007/s10994-013-5352-9

Farid, R., Sammut, C.: Region-based object categorisation using relational learning.
In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS, vol. 8862, pp. 357-369.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-13560-1_29

Farid, R., Sammut, C.: Plane-based object categorisation using relational learning:
implementation details and extension of experiments. Technical Report UNSW-
CSE-TR-201416, School of Computer Science and Engineering, The University of
New South Wales (2014c). URL ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/
201416.pdf

Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Comm. ACM 24(6),
381-395 (1981). doi:10.1145/358669.358692

Gachter, S., Nguyen, V., Siegwart, R.: Results on range image segmentation for ser-
vice robots. In: Proceedings of IEEE International Conference on Computer Vision
Systems, pp. 53-53 (2006). doi:10.1109/ICVS.2006.54

http://rfarid.altervista.org/plane_seg_compare/index.html
http://handle.unsw.edu.au/1959.4/53848
http://mobilerobotics.cs.washington.edu/rgbd-workshop-2012/papers/farid-rgbd12-object-categorization.pdf
http://mobilerobotics.cs.washington.edu/rgbd-workshop-2012/papers/farid-rgbd12-object-categorization.pdf
http://ida.felk.cvut.cz/ilp2012/wp-content/uploads/ilp2012_submission_6.pdf
http://ida.felk.cvut.cz/ilp2012/wp-content/uploads/ilp2012_submission_6.pdf
http://dx.doi.org/10.1007/s10994-013-5352-9
http://dx.doi.org/10.1007/978-3-319-13560-1_29
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201416.pdf
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201416.pdf
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1109/ICVS.2006.54

Region-Growing Planar Segmentation for Robot Action Planning 191

Hegazy, D., Denzler, J.: Generic 3D object recognition from time-of-flight images using
boosted combined shape features. In: Ranchordas, A., Aratjo, H., (eds.) Proceedings
of the 4th International Conference on Computer Vision, Theory and Applications,
vol. 2, pp. 321-326. INSTICC Press (2009)

Kalantari, A., Mihankhah, E., Moosavian, S.A.A.: Safe autonomous stair climbing for a
tracked mobile robot using a kinematics based controller. In: IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics (AIM2009), pp. 1891-1896
(2009). doi:10.1109/AIM.2009.5229765

McGill, M., Salleh, R., Wiley, T., Ratter, A., Farid, R., Sammut, C., Milstein, A.:
Virtual reconstruction using an autonomous robot. In: Proceedings of the Interna-
tional Conference on Indoor Positioning and Indoor Navigation (IPIN2012), pp. 1-8
(2012). doi:10.1109/IPIN.2012.6418851

Mohr, R., Morin, L., Grosso, E.: Relative positioning with uncalibrated cameras.
In: Mundy, J.L., Zisserman, A. (eds.) Geometric Invariance in Computer Vision,
pp. 440-460. MIT Press, Cambridge (1992). http://dl.acm.org/citation.cfm?id=
153634.153656, ISBN 0-262-13285-0

NIST: The national institute of standards and technology; test methods. Retrieved
14-02-2014 (2010). URL http://www.nist.gov/el/isd /test-methods.cfm

Opelt, A.: Generic Object Recognition. Ph.D. thesis, Graz University of Technology
(2006)

Prankl, J., Zillich, M., Vincze, M.: Interactive object modelling based on piecewise
planar surface patches. Comput. Vis. Image Underst. 117(6), 718-731 (2013). doi:10.
1016/j.cviu.2013.01.010. ISSN 1077-3142

Rusu, R.B., Cousinsm, S.: 3D is here: point cloud library (PCL). In: Proceedings of
ICRA 2011, pp. 1-4 (2011). doi:10.1109/ICRA.2011.5980567

Shanahan, M.: A logical account of perception incorporating feedback and expectation.
In: Proceedings of 8th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, pp. 3-13. Morgan Kaufmann, Toulouse, France (2002)

Shanahan, M., Randell, D.: A logic-based formulation of active visual perception. In:
Dubois, D., Welty, C.A., Williams, M.-A., (eds.) Proceedings of KR 2004, pp. 64-72.
AAAT Press (2004)

Shin, J.: Parts-Based Object Classification for Range Images. Ph.D. thesis, Swiss Fed-
eral Institute of Technology Zurich (2008)

Srinivasan, A.: The Aleph Manual (Version 4 and above). Technical report, University
of Oxford (2002)

Vasudevan, S., Géachter, S., Nguyen, V., Siegwart, R.: Cognitive maps for mobile robots-
an object based approach. Robot. Auton. Syst. (From Sensors to Human Spatial
Concepts) 55(5), 359-371 (2007). doi:10.1016/.robot.2006.12.008

Xu, M., Petrou, M.: 3D scene interpretation by combining probability theory and logic:
the tower of knowledge. Comput. Vis. Image Underst. 115(11), 1581-1596 (2011).
doi:10.1016/j.cviu.2011.08.001

http://dx.doi.org/10.1109/AIM.2009.5229765
http://dx.doi.org/10.1109/IPIN.2012.6418851
http://dl.acm.org/citation.cfm?id=153634.153656
http://dl.acm.org/citation.cfm?id=153634.153656
http://www.nist.gov/el/isd/test-methods.cfm
http://dx.doi.org/10.1016/j.cviu.2013.01.010
http://dx.doi.org/10.1016/j.cviu.2013.01.010
http://dx.doi.org/10.1109/ICRA.2011.5980567
http://dx.doi.org/10.1016/j.robot.2006.12.008
http://dx.doi.org/10.1016/j.cviu.2011.08.001

A Differentially Private Random Decision Forest
Using Reliable Signal-to-Noise Ratios

Sam Fletcher®™) and Md Zahidul Islam

School of Computing and Mathematics, Charles Sturt University, Bathurst, Australia
{safletcher,zislam}@csu.edu.au

Abstract. When dealing with personal data, it is important for data
miners to have algorithms available for discovering trends and patterns
in the data without exposing people’s private information. Differential
privacy offers an enforceable definition of privacy that can provide each
individual in a dataset a guarantee that their personal information is no
more at risk than it would be if their data was not in the dataset at
all. By using mechanisms that achieve differential privacy, we propose a
decision forest algorithm that uses the theory of Signal-to-Noise Ratios
to automatically tune the algorithm’s parameters, and to make sure that
any differentially private noise added to the results does not outweigh the
true results. Our experiments demonstrate that our differentially private
algorithm can achieve high prediction accuracy.

Keywords: Differential privacy - Noise + Decision tree + Data mining

1 Introduction

Collecting data about people—whether it be for economic, medical, political,
militaristic or academic purposes—is becoming increasingly commonplace. With
it, comes the question of privacy: what safeguards are data collectors required to
enforce to protect the privacy of those whose data they are collecting? The world
at large has agreed that privacy is a human right [18]; fortunately, this right can
still be upheld without forgoing the benefits of data collection wholesale. Instead,
privacy preservation techniques can be employed to remove or distort identifying
markers about individuals in the data without ruining the underlying trends and
patterns in the data.

Balancing the loss of information with the gain in privacy has been an
active area of research for nearly two decades [11]. In the early years, a privacy-
preservation technique known as generalization was at the forefront of research,
with k-anonymity [17] gaining a lot of support and leading to the development of
machine learning techniques that minimized the loss of information in the data
while still preserving privacy [11]. One thing these approaches lacked however
was a strong definition of “privacy”. This was rectified by differential privacy,
proposed in 2006 [4-6,15,16]. It made the following promise to each individual in
the data: “Any information that could be discovered about you with your data

© Springer International Publishing Switzerland 2015
B. Pfahringer and J. Renz (Eds.): AI 2015, LNAT 9457, pp. 192-203, 2015.
DOI: 10.1007/978-3-319-26350-2_17

A Differentially Private Random Decision Forest 193

in the dataset could also, with high probability, be discovered without your data
in the dataset”. In other words, the output of any query @ performed on dataset
D will be indistinguishable from the output of the same query @) performed on
dataset D', where D’ differs from D by one record (the record of an individual).

Using differential privacy, we propose a data mining algorithm that builds
an ensemble of randomized decision trees (i.e. a forest), queries the data in a
differentially private manner, and outputs a classifier capable of high accuracy
even with very high privacy requirements. We approach the problem by phrasing
it in terms of the Signal-to-Noise Ratio of our queries, and using signal averaging
to reduce the noise in the queries.

1.1 Problem Statement

Dataset D is a two-dimensional matrix of rows and columns, where each row
(i.e. record) r € D describes a single individual, and each column is an attribute
a in the set of attributes A. Each r possesses one discrete value v € a;Va € A. We
symbolize that record r has value v for attribute a by writing r, = v. Each r also
has a class value ¢, from the class attribute C'. The aim of a decision forest is to
correctly predict ro (the class value c of record r) for records r € B: BN D = {),
where B and D are drawn from the same population.

A user is given limited access to D, in which they are allowed to query D
in an e-differentially private way. For any given query @, the value of € can be
equal to or less than the total privacy budget G provided to the user by the data
owner. We will be dividing § into smaller parts for each query . Our aim is
to build 7 decision trees by only submitting e-differentially private queries @ to
D, and without exceeding our total budget 3. The decision trees need to have
acceptably high prediction accuracy in order to be valuable.

Decision Trees [13] work by iteratively selecting attributes in a dataset that
can most accurately classify a class attribute.® When an attribute is selected,
the records in the dataset are split up according to what value they have for the
chosen attribute. For each of these partitions, the process is then repeated until
a user-defined termination condition is met.

1.2 Owur Contributions
Our novel contributions can be summarized as the following:

— We re-phrase the problem of making a differentially private data mining algo-
rithm in a novel way, by using Signal-to-Noise Ratio theory to assess the noise
added to differentially private queries (Sect.3).

— We present a differentially-private randomized decision forest algorithm
(referred to as DP-RF) in which the structure of the decision trees is decided
before querying the dataset D at all (Sect.4).

! The class attribute is the attribute that the user wishes to accurately predict the
value of for future records, where the value is not known.

194 S. Fletcher and M.Z. Islam

— Our algorithm automatically tunes all parameters, with the only inputs being:
access to the secure dataset D, the domains of the attributes A, and the
privacy budget 5 (Sects. 4.3, 4.4 and 4.5).

— We take full advantage of the benefits of randomly built decision trees, while
identifying the assumptions usually made about decision trees that no longer
hold, and providing solutions (Sect.4.6).

We also provide code for our algorithm online.?

2 Previous Work

2.1 Differential Privacy

We provide a brief summary of the main components of differential privacy that
we use in this paper. We refer the reader to [6] for a more thorough introduction.
Differential privacy can be formally defined as follows:

Definition 1 (Differential Privacy [4]). A query Q : Q(D) — Y satisfies
e-differential privacy if for all datasets D and D' differing by at most one record,

Pr(QD)=yeY)<e xPr(QD')=yeY). (1)

Common values for € range from 0.005 to 0.1. This definition allows a data
collector to make a strong promise to each individual in D: that for any query
@, the output observed is 1/e€ as likely to occur even if they had not been in D.
It does not promise that a malicious user cannot find out any information about
them, but it does promise that any information they can find, they could have
found without the individual even being in D.

In order for Definition 1 to be possible for query @ to achieve, there must
be a randomized component in (), preventing any output y from being 100 %
likely. One mechanism commonly used to inject randomness into queries is the
Laplace Mechanism. Before we define this mechanism, we first need to define the
“sensitivity” of Q:

Definition 2 (Sensitivity [5]). A query Q has sensitivity A(Q), where:

A(Q) = max [Q(K) — Q(K))| (2)

KK’
and K and K' are any datasets that differ by at most one record.

Using Definition 2, we now define:

Definition 3 (The Laplace Mechanism [5,6]). A query Q satisfies e- dif-
ferential privacy if it outputs y + Lap(@), where y € Y : Q(D) — Y and
Lap(x) is an i.i.d. random wvariable drawn from the Laplace distribution with
mean 0 and scale z (i.e. variance 22?2).

2 Our code can be found at http://csusap.csu.edu.au/zislam/, or you can email us.

http://csusap.csu.edu.au/zislam/

A Differentially Private Random Decision Forest 195

We will later take advantage of two more theorems that have been proven
about differential privacy:

Definition 4 (The Composition Theorem [16]). The application of queries
Qi, each satisfying €;-differential privacy, satisfies Y, €;-differential privacy.

Definition 5 (The Parallel Composition Theorem [15]). Let D; be a
disjoint subset of dataset D, and let Q;(D;) satisfy e-differential privacy; then
>; Qi(D;) also satisfies e-differential privacy.

2.2 Previous Differentially Private Decision Trees

The work most closely related to ours is the differentially private random deci-
sion forest proposed by [14] in 2012. The main differences between our proposed
algorithm and theirs stem from our re-framing of the scenario in terms of Signal-to-
Noise Ratios. Our algorithm automatically tunes the required parameters, while
the work in [14] requires the user to manually set parameters, or otherwise uses
heuristics. Their heuristics are based on the combinatorial reasoning used in an
earlier randomized decision tree algorithm [7], which demonstrated that randomly
built trees can actually produce high quality classifiers, even in scenarios without
privacy restrictions. Other work since then has supported their findings [12]. Out-
side of randomly built decision trees, another differentially private data mining
algori