
Chapter 6
Homography Estimation Between
Omnidirectional Cameras Without Point
Correspondences

Robert Frohlich, Levente Tamás and Zoltan Kato

Abstract This chapter presents a novel approach for homography estimation
between omnidirectional cameras. The solution is formulated in terms of a sys-
tem of nonlinear equations. Each equation is generated by integrating a nonlinear
function over corresponding image regions on the surface of the unit spheres repre-
senting the cameras. The method works without point correspondences or complex
similarity metrics, using only a pair of corresponding planar regions extracted from
the omnidirectional images. Relative pose of the cameras can be factorized from the
estimated homography. The efficiency and robustness of the proposed method has
been confirmed on both synthetic and real data.

6.1 Introduction

Homography estimation is essential in many applications including pose estima-
tion (Sturm 2000), tracking (Mei et al. 2008; Caron et al. 2011), structure from
motion (Makadia et al. 2007) as well as recent robotics applications with focus
on navigation (Saurer et al. 2012), vision and perception (Molnár et al. 2014a, b).
Efficient homography estimation methods exist for classical perspective cameras
(Hartley and Zisserman 2003), but these methods are usually not reliable in case of
omnidirectional sensors. The difficulty of homography estimation with omnidirec-
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tional cameras comes from the non-linear projection model yielding shape changes
in the images that make the direct use of these methods nearly impossible.

Although non-conventional central cameras like catadioptric or dioptric (e.g. fish-
eye) panoramic cameras have a more complex geometric model, their calibration also
involves internal parameters and external pose. Recently, the geometric formulation
of omnidirectional systems was extensively studied (Nayar 1997; Baker and Nayar
1999; Geyer and Daniilidis 2000; Mičušík and Pajdla 2004; Scaramuzza et al. 2006b;
Puig and Guerrero 2013). The internal calibration of such cameras depends on these
geometric models, which can be solved in a controlled environment, using special
calibration patterns (Scaramuzza et al. 2006b; Kannala and Brandt 2006; Mei and
Rives 2007; Puig and Guerrero 2013). When the camera is calibrated, which is
typically the case in practical application, then image points can be lifted to the
surface of a unit sphere providing a unified model independent of the inner non-
linear projection of the camera. Unlike the projective case, homography is estimated
using these spherical points (Mei et al. 2008; Caron et al. 2011). Of course, pose
estimation must rely on the actual images taken in a real environment, hence we
cannot rely on the availability of special calibration targets. A classical solution is to
establish a set of point matches and then estimate homography based on these point
pairs. For this purpose classical keypoint detectors, such as SIFT (Lowe 2004), are
widely used (Makadia et al. 2007; Mei et al. 2008) for omnidirectional images.

Unfortunately, big variations in shape resolution and non-linear distortion chal-
lenges keypoint detectors as well as the extraction of invariant descriptors, which
are key components of reliable point matching. For example, proper handling of
scale-invariant feature extraction requires special considerations in case of omnidi-
rectional sensors, yielding mathematically elegant but complex algorithms (Puig and
Guerrero 2011). In Gutierrez et al. (2011) a new computation of descriptor patches
was introduced for catadioptric omnidirectional cameras which also aims to reach
rotation and scale invariance. In Makadia et al. (2007), a correspondence-less algo-
rithm is proposed to recover relative camera motion. Although matching is avoided,
SIFT features are still needed because camera motion is computed by integrating
over all feature pairs that satisfy the epipolar constraint.

A number of works discuss the possibility of featureless image matching and
recognition (most notably (Basri and Jacobs 1996)), but with limited success.

In this chapter, we propose a homography estimation algorithm which works
directly on segmented planar patches. As a consequence, our method does not need
extracted keypoints nor keypoint descriptors. In fact, we do not use any photometric
information at all, hence our method can be used even for multimodal sensors. Since
segmentation is required anyway in many real-life image analysis tasks, such regions
may be available or straightforward to detect. Furthermore, segmentation is less
affected by non-linear distortions when larger blobs are extracted. The main advan-
tage of the proposed method is the use of regions instead of point correspondence
and a generic problem formulation which allows to treat several types of cameras in
the same framework. We reformulate homography estimation as a shape alignment
problem, which can be efficiently solved in a similar way as in Domokos et al. (2012).
The method has been quantitatively evaluated on a large synthetic dataset and proved
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to be robust and efficient. We also show that the estimated homography can be used
to recover relative pose of an omnidirectional camera pair both in the general case
and, inspired by Saurer et al. (2012), under the weak Manhattan world assumption.

6.2 Planar Homography for Central Omnidirectional
Cameras

A unified model for central omnidirectional cameras was proposed by Geyer and
Daniilidis (2000), which represents central panoramic cameras as a projection onto
the surface of a unit sphere S (see Fig. 6.1). According to Geyer and Daniilidis
(2000), all central catadioptric cameras can be modeled by a unit sphere, such that
the projection of 3D points can be performed in two steps: (1) the 3D point X is
projected onto the unit sphere S, obtaining the intersection xS of the sphere and
the ray joining its center and X (see Fig. 6.1). (2) The spherical point xS is then
mapped into the image plane I through the camera’s internal projection function Φ

yielding the image x of X in the omnidirectional camera. Thus a 3D point X ∈ R
3

in the camera coordinate system is projected onto S by central projection yielding
the following relation between X and its image x in the omnidirectional camera:

Φ(x) = xS = X
‖X‖ (6.1)

This formalism has been widely adopted and various models for the internal pro-
jection function Φ have been proposed by many researchers, e.g. Micusik (2004),
Puig (2011), Scaramuzza (2006a) and Sturm (2011). From our point of view, Φ pro-

Fig. 6.1 Homography acting between omnidirectional cameras represented as unit spheres
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vides an equivalent spherical image by backprojecting the omnidirectional image
onto S and the planar homography H simply acts between these spherical images,
as shown in Fig. 6.1.

Given a scene plane π , let us formulate the relation between its images D and
F in two omnidirectional cameras represented by the unit spheres S1 and S2. The
mapping of plane points Xπ ∈ π to the camera spheres Si , i = 1, 2 is governed by
(6.1), hence it is bijective (unless π is going through the camera center, in which
case π is invisible). Assuming that the first camera coordinate system is the reference
frame, let us denote the normal and distance of π to the origin by n = (n1, n2, n3)

T

and d, respectively. Furthermore, the relative pose of the second camera is composed
of a rotation R and translation t = (t1, t2, t3)T , acting between the cameras S1 and
S2. Thus the image in the second camera of any 3D point X of the reference frame is

xS2 = RX + t
‖RX + t‖

Because of the single viewpoint, planar homographies stay valid for omnidirectional
cameras too (Mei et al. 2008). The standard planar homography H is composed up
to a scale factor as

H ∝ R + 1

d
tnT (6.2)

Basically, the homography transforms the rays as xS1 ∝ HxS2 , hence the transfor-
mation induced by the planar homography between the spherical points is also bijec-
tive. H is defined up to a scale factor, which can be fixed by choosing h33 = 1,
i.e. dividing H with its last element, assuming it is non-zero. Note that h33 = 0 iff
H(0, 0, 1)T = (h13, h23, 0)T , i.e. iff the origin of the coordinate system in the first
image is mapped to the ideal line in the second image. That happens only in extreme
situations, e.g. when Z2 ⊥ Z and O2 is on Z in Fig. 6.1, which is usually excluded
by physical constraints in real applications. Thus the point Xπ on the plane and its
spherical images xS1 , xS2 are related by

Xπ = λ1xS1 = λ2HxS2 ⇒ xS1 = λ2

λ1
HxS2

Hence xS1 and HxS2 are on the same ray yielding

xS1 = HxS2

‖HxS2‖
≡ Ψ (xS2) (6.3)
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6.3 Homography Estimation

Given a pair of omnidirectional cameras observing a planar surface patch, how to
estimate the homography between its images, the spherical regions DS ∈ S1 and
FS ∈ S2? First, let us formulate the relation between a pair of corresponding omni
image points x1 and x2. The corresponding spherical points are obtained by applying
the camera’s inner projection functions Φ1, Φ2, which are then related by (6.3):

Φ1(x1) = xS1 = HxS2

‖HxS2‖
= Ψ (Φ2(x2)) (6.4)

Any corresponding point pair (x1, x2) satisfies the above equation. Thus a classical
solution is to establish at least 4 such point correspondences {(xi

1, xi
2)}N

i=1 by standard
intensity-based point matching, and solve for H. However, the inherent non-linear
distortion of omnidirectional imaging challenges traditional keypoint detectors as
well as the extraction of invariant descriptors, which are key components of reli-
able point matching. Therefore we are interested in a solution without finding point
matches.

We will show that by identifying a single planar region in both omni images
(denoted by D and F , respectively), H can be estimated without any additional
information. Since we do not have established point pairs, we cannot directly use
(6.4). However, we can get rid of individual point matches by integrating both sides of
(6.4) yielding a surface integral onS1 over the surface patchesDS = Φ1(D) obtained
by lifting the first omni image region D and FS = Ψ (Φ2(F)) obtained by lifting
the second omni image region F and transforming it by Ψ : S2 → S1. To get an
explicit formula for these integrals, the surface patches DS and FS can be naturally
parameterized via Φ1 and Ψ ◦ Φ2 over the planar regions D ⊂ R

2 and F ⊂ R
2:

∀xS1 ∈ DS : xS1 = Φ1(x1), x1 ∈ D
∀zS1 ∈ FS : zS1 = Ψ (Φ2(x2)), x2 ∈ F ,

yielding the following integral equation:

∫∫
D

Φ1(x1)

∥∥∥∥ ∂Φ1

∂x11
× ∂Φ1

∂x12

∥∥∥∥ dx11 dx12 =
∫∫

F
Ψ (Φ2(x2))

∥∥∥∥∂(Ψ ◦ Φ2)

∂x21
× ∂(Ψ ◦ Φ2)

∂x22

∥∥∥∥ dx21 dx22

(6.5)

where the magnitude of the cross product of the partial derivatives is known as the
surface element. The above integrals can be regarded as component-wise surface
integrals of scalar fields, yielding a set of 2 equations. Since the value of a surface
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integral is independent of the parameterization, the above equality holds because
both sides contain an integral on S1, parameterized through Φ1 on the left hand side
and through Ψ ◦ Φ2 on the right hand side.

6.3.1 Construction of a System of Equations

Obviously, 2 equations are not enough to determine the 8 parameters of a homog-
raphy. In order to generate more equations, let us remark that the identity relation
in (6.4) remains valid when a function ω : R3 → R is acting on both sides of the
equation (Domokos et al. 2012). Indeed, for a properly chosen ω

ω(xS1) = ω(Ψ (Φ2(x2))). (6.6)

We thus obtain the following integral equation from (6.5) and (6.6)

∫∫
D

ωi (Φ1(x1))

∥∥∥∥ ∂Φ1

∂x11
× ∂Φ1

∂x12

∥∥∥∥ dx11 dx12 =
∫∫

F
ωi (Ψ (Φ2(x2)))

∥∥∥∥∂(Ψ ◦ Φ2)

∂x21
× ∂(Ψ ◦ Φ2)

∂x22

∥∥∥∥ dx21 dx22

(6.7)

The basic idea of the proposed approach is to generate sufficiently many independent
equations by making use of a set of nonlinear (hence linearly independent) functions
{ωi }�i=1. Each ωi generates a new equation yielding a system of � independent equa-
tions. Note however, that the generated equations contain no new information, they
simply impose new linearly independent constraints. Although arbitrary ωi functions
could be used, power functions are computationally favorable (Domokos et al. 2012).
In our experiments, we adopted the following functions:

ωi (xS) = xli
1 xmi

2 xni
3 , with 0 ≤ li , mi , ni ≤ 2 and li + mi + ni ≤ 3 (6.8)

These functions provide an overdetermined system of 15 equations of the form of
(6.7), which can be solved in the least squares sense via a standard Levenberg-
Marquardt (LM) algorithm. The solution to the system directly provides the para-
meters of the homography H.

The computational complexity is largely determined by the calculation of the
integrals in (6.7). Since both cameras are calibrated, Φ1 and Φ2 are known, hence
the integrals on the left hand side are constant which need to be computed only once.
However, the unknown homography H is involved in the right hand side through
Ψ , hence these integrals have to be computed at each iteration of the LM solver. Of
course, the spherical points xS2 = Φ2(x2) can be precomputed too, but the computa-
tion of the surface elements is more complex. First, let us rewrite the derivatives of
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the composite function Ψ ◦ Φ2 in terms of the Jacobian JΨ of Ψ and the gradients
of Φ2: ∥∥∥∥∂(Ψ ◦ Φ2)

∂x21
× ∂(Ψ ◦ Φ2)

∂x22

∥∥∥∥ =
∥∥∥∥JΨ

∂Φ2

∂x21
× JΨ

∂Φ2

∂x22

∥∥∥∥
Since the gradients of Φ2 are independent of H, they can also be precomputed. Hence
only Ψ (Φ2(x2)) and JΨ (Φ2(x2)) have to be calculated during the LM iterations
yielding a computationally efficient algorithm.

6.3.2 Normalization and Initialization

Since the system is solved by minimizing the algebraic error, proper normalization
is critical for numerical stability (Domokos et al. 2012). Unlike in Domokos et al.
(2012), spherical coordinates are already in the range of [−1,+1], therefore no
further normalization is needed. However, the ωi functions should also be normalized
into [−1,+1] in order to ensure a balanced contribution of each equations to the
algebraic error. In our case, this can be achieved by dividing the integrals with the
maximal magnitude of the surface integral over the half unit sphere. We can easily
compute these integrals by parameterizing the surface via points on the unit circle
in the x − y plane as f (x, y) = (x, y,

√
1 − x2 − y2)T ,∀‖(x, y)‖ < 1. Thus the

normalizing constant Ni for the equation generated by the function ωi is

Ni =
∫∫

‖(x,y)‖<1

|ωi ( f (x, y))|
√

1

1 − x2 − y2
dx dy (6.9)

To guarantee an optimal solution, initialization is also important. In our case, a
good initialization ensures that the surface patches DS and FS overlap as much as
possible. This is achieved by computing the centroids of the surface patches DS and
FS respectively, and initializing H as the rotation between them.

The pseudo code of the proposed method is presented below.

Algorithm 6.8 The proposed homography estimation algorithm.
Input: A pair of 2D omnidirectional images with the same planar region segmented
Output: Homography H between the spherical images of the region
1: Back-project the 2D images onto the unit spheres using Φ1 and Φ2.
2: Construct the system of equations of (6.7) using the polynomial ωi functions in (6.8).
3: Normalize the equations using (6.9)
4: Initialize the homography matrix H with the rotation between the centroids of the shapes on the

sphere.
5: Solve the normalized nonlinear system of equations using the Levenberg-Marquardt algorithm.
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6.4 Omnidirectional Camera Models

We have developed a homography estimation algorithm in Sect. 6.3, which is inde-
pendent of the camera’s internal projection functions Φ1 and Φ2. However, the knowl-
edge of these functions as well as their gradient are necessary for the actual compu-
tation of the equations in (6.7). Herein, we will briefly overview two models that we
used for experimental evaluation of the proposed method: the first one is the classical
catadioptric camera model of Geyer and Daniilidis (2000) and the second one is the
model of Scaramuzza (2006a) who derived a general polynomial form of the internal
projection valid for any type of omnidirectional camera.

6.4.1 The General Catadioptric Camera Model

Let us first see the relationship between a 3D point X and its projection x in the
omnidirectional image I (see Fig. 6.2). Note that only the half sphere on the image
plane side is actually used, as the other half is not visible from image points.
The camera coordinate system is in S, the origin (which is also the center of the

Fig. 6.2 Omnidirectional camera model using Geyer and Daniilidis’ representation (Geyer and
Daniilidis 2000)
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sphere) is the effective projection center of the camera and the z axis is the optical
axis of the camera which intersects the image plane in the principal point. To repre-
sent the nonlinear (but symmetric) distortion of central catadioptric cameras, (Geyer
and Daniilidis 2000) projects a 3D point X from the camera coordinate system to a
virtual projection plane P through the virtual projection center CP = (0, 0,−ξ)T as

xP = h(X) =
⎡
⎢⎣

X1

X2

X3 + ξ

√
X2

1 + X2
2 + X2

3

⎤
⎥⎦

The virtual plane P is then transformed in the image plane I (see Fig. 6.2) through
the homography HC as

x = HC xP
HC = KC RMC ,

where KC includes the perspective camera parameters (taking the picture of the
mirror), R is the rotation between camera and mirror, while MC includes the mirror
parameters—see (Geyer and Daniilidis 2000) for details. Herein, we will assume an
ideal setting: no rotation (i.e. R = I) and a simple pinhole camera with focal length
f and principal point (x0, y0) yielding

HC =

⎡
⎢⎢⎣

f η 0 x0

0 f η y0

0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

γ 0 x0

0 γ y0

0 0 1

⎤
⎥⎥⎦

where γ = f η is the generalized focal length of the camera-mirror system and η is
the mirror parameter. According to Geyer and Daniilidis (2000), this representation
includes:

(1) conventional perspective cameras as ξ = 0 as well as
(2) catadioptric systems with parabolic mirror and orthographic camera for ξ = 1

and
(3) with hyperbolic mirror and perspective camera for 0 < ξ < 1

In the following, without loss of generality, we will focus on case (2). The bijective
mapping Φ : I → S is the inverse of the camera’s projection function, which is
composed of (1) transforming the image point x ∈ I back to the P virtual projection
plane by H−1

C
xP = H−1

C x,
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and then (2) projecting back this point (xP1, xP2, xP3)
T from P to a 3D ray through

the virtual projection center CP (assuming ξ = 1):

X = h−1(xP) =
⎡
⎣

xP1

xP2
x2
P3−x2

P1−x2
P2

2xP3

⎤
⎦

= h−1(H−1
C x) =

⎡
⎢⎢⎣

1
γ
(x1 − x0)

1
γ
(x2 − y0)

1
2

(
1 −

(
x1−x0

γ

)2 −
(

x2−y0

γ

)2
)

⎤
⎥⎥⎦ (6.10)

We thus get the following expression for Φ : I → S:

Φ(x) = xS = h−1(H−1
C x)

‖h−1(H−1
C x)‖ (6.11)

which provides the corresponding spherical point xS ∈ S. ∇Φ is easily obtained
from (6.10) and (6.11).

6.4.2 Scaramuzza’s Omnidirectional Camera Model

Following (Scaramuzza et al. 2006a, b), we assume that the camera coordinate system
is in S, the origin is the effective projection center of the omnidirectional camera. To
represent the nonlinear distortion of central omnidirectional optics, (Scaramuzza et al.
2006a, b) places a surface g between the image plane and the unit sphere S, which
is rotationally symmetric around z (see Fig. 6.3). The details of the derivation can be
found in (Scaramuzza et al. 2006a, b). Herein, as suggested by (Scaramuzza et al.
2006b), we will use a fourth order polynomial g(‖x‖) = a0 + a2‖x‖2 + a3‖x‖3 +
a4‖x‖4 which has 4 parameters (a0, a2, a3, a4) representing the internal parameters
of the camera (only 4 parameters as a1 is always 0 according to Scaramuzza et al.
(2006b)). The bijective mapping Φ : I → S is composed of (1) lifting the image
point x ∈ I onto the g surface by an orthographic projection

xg =
[

x
a0 + a2‖x‖2 + a3‖x‖3 + a4‖x‖4

]
(6.12)

and then (2) centrally projecting the lifted point xg onto the surface of the unit sphere
S:

xS = Φ(x) = xg

‖xg‖ (6.13)
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Fig. 6.3 Omnidirectional camera model using Scaramuzza’s representation (Scaramuzza et al.
2006a, b)

Thus the omnidirectional camera projection is fully described by means of unit
vectors xS in the half space of R3 and these points correspond to the unit vectors of
the projection rays. The gradient of Φ can be obtained from (6.12) and (6.13).

6.5 Experimental Results

A quantitative evaluation of the proposed method was performed by generating a total
of 9 benchmark datasets, each containing 100 image pairs. Images of 24 different
shapes were used as scene planes and a pair of virtual omnidirectional cameras with
random pose were used to generate the omnidirectional images of 1MP. Assuming
that these 800 × 800 scene plane images correspond to 5 × 5 m patches, we place the
scene plane randomly at around 1.5 m in front of the first camera with a horizontal
translation of ±1 m and ±[5◦ − 10◦] rotation around all three axis. The orientation
of the second camera is randomly chosen having ±5◦ rotation around the x and y
axis, and ±10◦ around the vertical z axis, while the location of the camera center is
randomly chosen from the [45–55] cm, [100–200] cm, and [200–500] cm intervals,
providing the first three datasets for 3 different baseline ranges. The alignment error
(denoted by δ) was evaluated in terms of the percentage of non overlapping area of
the omni images after applying the homography.
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Fig. 6.4 Alignment (δ) error of the homography for various internal projection models (Scaramuzza
et al. (2006a, b), Geyer and Daniilidis (2000), and mixed; m stands for median)

Fig. 6.5 Alignment error (δ) on the synthetic dataset with various baselines (m is the median, best
viewed in color)

Based on our experimental results, we concluded that a registration error below
5 % corresponds to a correct alignment with a visually good matching of the shapes.
For the synthetic datasets, error plots are shown in Figs. 6.4 and 6.5. Note that each
plot represents the performed test cases sorted independently in a best-to-worst sense.
In Fig. 6.4, we present a quantitative comparison of homography estimation with each
of the camera models described in Sect. 6.4; as well as a test case with mixed cameras,
where the first camera uses the Scaramuzza’s polynomial representation and the sec-
ond adopts the general catadioptric model. As expected, the quality of homography
estimates is independent of the internal projection functions, both models perform
well, error plots almost completely overlap. Therefore in all other test cases, we will
only use Scaramuzza’s model from Sect. 6.4.2.

The median value of δ was 0.60 %, 0.72 % and 1.17 % for the different baselines.
In the first 2 cases, with baselines having values under 200 cm, we can say that only
1 % of the results were above 5 % error, while in the case of the biggest baselines
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[200–500] cm still 84 % of the results are considered good, having δ error smaller
than 5 %. The wrong results are typically due to extreme situations where the relative
translation from the first camera to the second camera’s position is in such a direction
from where the image plane can be seen under a totally different angle resulting a
highly different distortion of the shape on the omni image.

We have also tested the robustness of our method in some cases with unfavorable
camera poses, see Fig. 6.6. One such situation is when the image of the actual planar
region gets captured on the periphery of the omnidirectional image. It is well known,
that these cameras have a much higher distortion in these regions. For this purpose
we generated another synthetic dataset, making sure that all the regions fall on the
periphery of the omnidirectional image. Another situation is when the relative camera
pose has a much higher translation along the z axis, resulting a considerable size
difference of the regions on the omnidirectional images. For this experiment a new
synthetic dataset was generated with a bigger translation along the z axis (in the
range of ±1 m). The alignment errors of these two test cases are shown in Fig. 6.7.
As we can see, the differences in the size of the regions that occur when having
translation along the z axis are well tolerated by the algorithm, a homography can be
estimated with almost the same precision. On the other hand, the higher distortion
at the periphery of the images results in considerable loss of resolution, hence the
homography estimation also looses some precision, but the median of the δ errors
are still below 2 %. In summary, these results demonstrate that the method is robust
against both unfavorable situations.

In practice, the shapes are segmented from real world images subject to various
degree of segmentation errors. Therefore robustness against segmentation errors was
also evaluated on simulated data. For this we used the dataset having the typical base

input image pair δ = 0.5%

input image pair δ = 2.6%

Fig. 6.6 Typical registration results for the test cases with unfavorable camera pose. First row
shows a test case with big translation in the z, while the second row contains a test case with region
falling on the periphery of the image
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Fig. 6.7 Alignment error (δ) on the synthetic datasets with unfavorable camera poses (m is the
median, best viewed in color)

distances of [1–2] m and we generated segmentation error by randomly adding and
removing squares uniformly around the boundary of the shapes in one of the image
pairs. A total of four datasets were produced from 5 % up to 20 % of boundary error.
Samples from these datasets can be seen in Fig. 6.8, while Fig. 6.9 shows error plots
for these datasets. Obviously, the median of δ error increases with the segmentation
error, but the method shows robustness up to around 15 % error level. In particular,
80 % and 60 % of the first two cases are visually good, while only 44 % and 30 % of
the cases are below the desired 5 % δ error for larger segmentation errors.

The algorithm was implemented in Matlab and all benchmarks were run on a
standard quad-core desktop PC, resulting a typical runtime of 5–8 s without the code
being optimized.

0% 5% 10% 15% 20%

0.72% 2.69% 4.17% 5.37% 6.79%

Fig. 6.8 Typical registration results for various level of segmentation error. First row shows the
first image and the amount of segmentation error while the second row contains the overlay of the
transformed second image over the first image with the δ error (best viewed in color)
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Fig. 6.9 Alignment error (δ) on the synthetic dataset with various levels of boundary error (m is
the median, best viewed in color)

The real images, used for validation, were taken by a Canon 50D DSLR camera
with a Canon EF 8–15 mm f/4L fisheye lens and the image size was 3MP. In our
experiments, segmentation was obtained by simple region growing (initialized with
only a few clicks) but more sophisticated and automatic methods could also be used.
The extracted binary region masks where then registered by our method and the
resulting homography has been used to project one image onto the other. Three such
examples are illustrated in Fig. 6.10, where the first two images are the input omni
image pairs, showing the segmented region in highlight, and the third image contains
the transformed edges overlayed. We can observe that in spite of segmentation errors
and slight occlusions (e.g. by the tree in the first image of Fig. 6.10), the edges of the
reprojected region and the edges on the base image are well aligned. We should also
mention that while slight occlusions are well tolerated, our method does not handle
the occlusion of bigger parts of the region.

6.6 Relative Pose from Homography

If we consider again that the homography H is composed as in (6.2) from a rotation R,
the ratio t/d of the translation to the distance of plane and the normal n of the plane,
we can express the pose parameters as described in Faugeras and Lustman (1988)
using the singular value decomposition (SVD) of H. Of course as the d distance of
the plane is unknown, we can only express the translation t up to a scale factor. We
fixed this scale factor by choosing the last element h33 of H to be 1.

The parameters that we obtain by the decomposition method can easily be verified
in case of synthetic data, since we have the reference parameters saved during the
dataset generation. The error in the relative translation can be characterized by either
verifying the angle between the estimated and reference translation vectors, or by
scaling up the estimated translation vector with the length of the reference translation



144 R. Frohlich et al.

Original image pair Registration result

Fig. 6.10 Homography estimation results on real omni image pairs. Segmented regions are over-
layed in lighter color, while the result is shown as the transformed green contours from the first
image region over the second image

and computing the Euclidean distance between them. Here we have chosen to show
the former one. The results can be seen in Fig. 6.11, where test cases are sorted
by increasing δ error. We can observe that on a set of 150 test cases the estimated
homography is really good, the δ error was below 2 % in all cases, and its median
is less than 0.6 %. From a good input like this, the relative rotation and translation
of the cameras can be factorized with high precision, only 0.19◦ median error in the
rotation, and 0.51◦ in the direction of the translation vector.

The results show, that except a few test cases, the relative pose is determined with
high stability. These few test cases (the spikes on Fig. 6.11) can be better explained
by looking at Fig. 6.12 which shows only the factorized pose parameters for all test
cases, sorted by the rotation error. The plot confirms a clear correlation between these
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Fig. 6.11 Homography factorization results showing the δ error(%) of the homography, the rotation
error and the translation error as the angle between the reference and factorized translation vectors
(m is the median)

Fig. 6.12 Homography factorization results showing the rotation error and the translation error as
the angle between the reference and factorized translation vectors, sorted by the rotation error (m
is the median)

values, more visible on the second half of the plot, where the rotation and translation
error increases together. This can be caused by the rare appearance of some specific
camera configurations, where these errors in the parameters can compensate each
other’s effect, resulting in an overall good overlap (hence a low δ error) but spikes
on Fig. 6.11.

Since the δ error of the homography in the previously mentioned dataset was
considerably low (0.57 % of median error), we have also tested the factorization on the
datasets with simulated segmentation error used in Sect. 6.5, where the homography
errors span on a larger scale. The rotation error can be observed in Fig. 6.13. The
effect of the worse homographies can obviously be seen on the factorized rotation,
but still, at 10 % segmentation error, which resulted a δ error of 4.17 % for the dataset
(see Fig. 6.9), the rotation error is well below 4◦ in median.
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Fig. 6.13 Factorized rotation error with respect to different levels of segmentation error. Test cases
sorted independently (m is the median)

Fig. 6.14 Factorized translation error with respect to different levels of segmentation error. Test
cases sorted independently (m is the median)

For the characterization of the translation errors in this case, we’ve expressed the
Euclidean distance between the scaled up translation and the reference translation
vector. The effect of the bigger δ error of the homographies in the different datasets
can be observed in this case as well, visible in Fig. 6.14. The median of approximately
13 cm in the case of the 10 % segmentation error can be considered a reasonably good
result, since our regions represent approximately 5 × 5 m surfaces in the scene.

Manhattan World Assumption

Manhattan world assumption is quite common when working with images of urban
or indoor scenes (Coughlan and Yuille 1999; Furukawa et al. 2009). Although this
is a strong restriction, yet it is satisfied at least partially in man-made structures.
A somewhat relaxed assumption is the weak Manhattan world (Saurer et al. 2012)
consisting of vertical planes with an arbitrary orientation but parallel to the gravity
vector and orthogonal to the ground plane. Following (Saurer et al. 2012), we can also
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take advantage of the knowledge of the vertical direction, which can be computed
e.g. from an inertial measurement unit (IMU) attached to the camera. While (Saurer
et al. 2012) deals with perspective cameras, herein we will show that homographies
obtained from omnidirectional cameras can also be used and then we conduct a
synthetic experiment to evaluate the performance of the method.

Let us consider a vertical plane π with its normal vector n = (nx , ny, 0)T (z is
the vertical axis, see Fig. 6.1). The distance d of the plane can be set to 1, because H
is determined up to a free scale factor. Knowing the vertical direction, the rotation
matrix R in (6.2) can be reduced to a rotation Rz around the z axis, yielding

H = Rz + (tx , ty, tz)(nx , ny, 0)T

=
⎛
⎝ cos(α) + nx tx − sin(α) + nytx 0

sin(α) + nx ty cos(α) + nyty 0
nx tz nytz 1

⎞
⎠ (6.14)

=
⎛
⎝ h11 h12 0

h21 h22 0
h31 h32 1

⎞
⎠

The estimation of such a weak Manhattan homography matrix is done in the same
way as before, but the last column of H is set to (0, 0, 1)T , yielding 6 free parame-
ters only. In order to quantitatively characterize the performance of our method, 2
synthetic datasets with weak Manhattan world assumption were generated: first the
3D scene plane is positioned vertically and randomly rotated around the vertical
axis by [−10,+10] degrees, followed by a translation in the horizontal direction
by ±[400–800] pixels, equivalent to [2–4] m such that the surface of the plane is
visible from the camera. For the second camera position we used a random rotation
of [−10,+10] degrees around the vertical axis followed by a horizontal transla-
tion of ±[50–100] cm. The second dataset only differs in the vertical position of the
3D scene plane: in the first case, the plane is located approximately 150 cm higher
than in the second case. Figure 6.15 shows the registration error for these datasets.
As expected, having less free parameters increases estimation accuracy (alignment
error is consistently under 2.5 %) and decreases computational time (typically 2–3 s).

Based on the above parameterization, H can be easily decomposed in the rotation
α and the translation t = (tx , ty, tz)

T parameters of the relative motion between the

cameras. For example, using the fact that n2
x + n2

y = 1, tz = ±
√

h2
31 + h2

32 (see Saurer
et al. (2012) for more details).

Following the decomposition method of Saurer et al. (2012), the horizontal rota-
tion angle of the camera can be determined with a precision of around 0.6 degrees,
which means a precision of a little above 5 % of the total rotation (see Fig. 6.16).
As for the translation t, it can be also recovered with an error of less then 5cm
in the camera position. Note that the scale of t cannot be recovered from H, but
during the generation of our synthetic dataset, we also stored the length of the trans-
lation, hence we can use it to scale up the unit direction vector obtained from H and
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Fig. 6.15 Alignment error (δ) on the synthetic dataset with weak Manhattan constraint (only
vertical surfaces and horizontal camera rotation allowed)

Fig. 6.16 Horizontal rotation error in relative pose (m is the median)

Fig. 6.17 Translation error in relative pose (m is the median)
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compare directly the distance between the original and estimated camera centers.
This is shown in the plots of Fig. 6.17.

Of course, classical homography decomposition methods could also be used. As
an example, we show the pose estimation results obtained on the same dataset using
the SVD-based factorization method from Sturm (2000). Figures 6.16 and 6.17 show
the rotation and translation errors for both methods. Although the differences are not
big, one can clearly see the increased stability of Sturm (2000).

6.7 Conclusions

In this chapter, a new homography estimation method has been proposed for central
omnidirectional cameras. Unlike traditional approaches, we work with segmented
regions corresponding to a 3D planar patch, hence our algorithm avoids the need
for keypoint detection and descriptor extraction. In addition, being a purely shape-
based approach, our method works with multimodal sensors as long as corresponding
regions can be segmented in the different modalities. The parameters of the homog-
raphy are directly obtained as the solution to a system of non-linear equations, whose
size is independent of the input images. Furthermore, the method is also independent
of the internal projection model of the camera as long as the projection function and
its gradient are known. The algorithm is computationally efficient, allowing near-real
time execution with a further optimized implementation. Quantitative evaluation on
various synthetic datasets confirms the performance and robustness of the method
under various conditions. We also demonstrate, that the accuracy of our homography
estimates allows reliable estimation of extrinsic camera parameters.
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