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Abstract This paper describes the design of ensemble neural networks using
Particle Swarm Optimization (PSO) for time series prediction with Type-1 and
Type-2 Fuzzy Integration. The time series that is being considered in this work is
the Mackey-Glass benchmark time series. Simulation results show that the
ensemble approach produces good prediction of the Mackey-Glass time series.
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1 Introduction

Time Series is defined as a set of measurements of some phenomenon or experi-
ment recorded sequentially in time. The first step in analyzing a time series is to plot
it, this allows: to identify the trends, seasonal components and irregular variations.
A classic model for a time series can be expressed as a sum or product of three
components: trend, seasonality and random error term.

Time series predictions are very important because based on them we can
analyze past events to know the possible behavior of futures events and thus we can
take preventive or corrective decisions to help avoid unwanted circumstances.

The contribution of this paper is the proposed approach for ensemble neural
network optimization using particle swarm optimization. The proposed models are
also used as a basis for statistical tests [1–4, 9, 10, 12, 14, 15, 19–22].

The rest of the paper is organized as follows: Sect. 2 describes the concepts of
optimization, Sect. 3 describes the concepts of particle swarm optimization, Sect. 4
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describes the concepts of Fuzzy Systems as Methods of integration, Sect. 5
describes the problem and the proposed method of solution, Sect. 6 describes the
simulation results of the proposed method, and Sect. 7 shows the conclusions.

2 Optimization

Regarding optimization, we have the following situation in mind: there exists a
search space V, and a function:

g:V →ℝ

and the problem is to find

argmin g.
v∈V

Here, V is vector of decision variables, and g is the objective function. In this
case we have assumed that the problem is one of minimization, but everything we
say can of course be applied mutatis mutandis to a maximization problem.
Although specified here in an abstract way, this is nonetheless a problem with a
huge number of real-world applications.

In many cases the search space is discrete, so that we have the class of com-
binatorial optimization problems (COPs). When the domain of the g function is
continuous, a different approach may well be required, although even here we note
that in practice, optimization problems are usually solved using a computer, so that
in the final analysis the solutions are represented by strings of binary digits (bits)
[32].

There are several optimization techniques that can be applied to neural networks,
some of these are: evolutionary algorithms [18], ant colony optimization [5] and
Particle swarm [7].

3 Particle Swarm Optimization

The Particle Swarm Optimization algorithm maintains a swarm of particles, where
each particle represents a potential solution. In analogy with evolutionary compu-
tation paradigms, a swarm is a population, while a particle is similar to an individual.
In simple terms, the particles are “flown” through a multidimensional search space
where the position of each particle is adjusted according to its own experience and
that of their neighbors. Let xi(t) denote the position of particle i in the search space at
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time step t unless otherwise selected, t denotes discrete time steps. The position of
the particle is changed by adding a velocity, vi(t) to the current position i.e.

xi t+1ð Þ= xiðtÞ+ vi t+1ð Þ ð1Þ

with xið0Þ∼U Xmin,Xmaxð Þ.
It is the velocity vector the one that drives of the optimization process, and reflects
both the experimental knowledge of the particles and the information exchanged in
the vicinity of particles. The experimental knowledge of a particle which is gen-
erally known as the cognitive component, which is proportional to the distance of
the particle from its own best position (hereinafter, the personal best position
particles) that are from the first step. Socially exchanged information is known as
the social component of the velocity equation.

For the gbest PSO, the particle velocity is calculated as:

vijðt+1Þ= vijðtÞ+ c1r1 yijðtÞ− xijðtÞ
� �

, + c2r2ðtÞ yĵðtÞ− xijðtÞ
� � ð2Þ

where vij(t) is the velocity of the particle i in dimension j at time step t, c1 y c2 are
positive acceleration constants used to scale the contribution of cognitive and social
skills, respectively, y r1j(t), y r2j(t) ∼ U(0, 1) are random values in the range [0, 1].

The best personal position in the next time step t + 1 is calculated as:

yiðt+1Þ= yi tð Þ if f ðxi xi t+1ð Þð Þ≥ f yi tð ÞÞ
xi t+1ð Þ if f xi xi t+1ð Þð Þ> f yi tð Þð Þ

�
ð3Þ

where f :ℝnx →ℝ is the fitness function, as with EAs, measuring fitness with the
function will help find the optimal solution, for example the objective function
quantifies the performance, or the quality of a particle (or solution).

The overall best position, y ̂(t) at time step t, is defined as:

y ̂ðtÞ ϵ y0ðtÞ, . . . , ynsðtÞf gf yðtÞð Þ=min f y0ðtÞð Þ, . . . f ynsðtÞð Þ,f g ð4Þ

where nS is the total number of particles in the swarm. Importantly, the above
equation defining and establishing y ̂ the best position is uncovered by either of the
particles so far as this is usually calculated from the best position best personal
[5, 6, 10].

The overall best position may be selected from the actual swarm particles, in
which case:

y ̂ðtÞ=min f xoðtÞð Þ, . . . f xnsðtÞð Þ,f g ð5Þ
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4 Fuzzy Systems as Methods of Integration

Fuzzy logic was proposed for the first time in the mid-sixties at the University of
California Berkeley by the brilliant engineer Lofty A. Zadeh., who proposed what
it’s called the principle of incompatibility: “As the complexity of system increases,
our ability to be precise instructions and build on their behavior decreases to the
threshold beyond which the accuracy and meaning are mutually exclusive char-
acteristics.” Then introduced the concept of a fuzzy set, under which lies the idea
that the elements on which to build human thinking are not numbers but linguistic
labels. Fuzzy logic can represent the common knowledge as a form of language that
is mostly qualitative and not necessarily a quantity in a mathematical language [29].

Type-1 Fuzzy system theory was first introduced by Zadeh [13] in 1965, and has
been applied in many areas such as control, data mining, time series prediction, etc.

The basic structure of a fuzzy inference system consists of three conceptual
components: a rule base, which contains a selection of fuzzy rules, a database (or
dictionary) which defines the membership functions used in the rules, and reasoning
mechanism, which performs the inference procedure (usually fuzzy reasoning) [14].

Type-2 Fuzzy systems were proposed to overcome the limitations of a type-1
FLS, the concept of type-1 fuzzy sets was extended into type-2 fuzzy sets by Zadeh
in 1975. These were designed to mathematically represent the vagueness and
uncertainty of linguistic problems; thereby obtaining formal tools to work with
intrinsic imprecision in different type of problems; it is considered a generalization
of the classic set theory. Type-2 fuzzy sets are used for modeling uncertainty and
imprecision in a better way [15–17].

5 Problem Statement and Proposed Method

The objective of this work is to develop a model that is based on integrating the
responses of an ensemble neural network using type-1 and type-2 fuzzy systems
and their optimization. Figure 1 represents the general architecture of the proposed
method, where historical data, analyzing data, creation of the ensemble neural
network and integrate responses of the ensemble neural network with type-2 fuzzy
system integration and finally obtaining the outputs as shown. The information can
be historical data, these can be images, time series, etc., in this case we show the
application to time series prediction of the Dow Jones where we obtain good results
with this series.

Figure 2 shows a type-2 fuzzy system consisting of 5 inputs depending on the
number of modules of the neural network ensemble and one output. Each input and
output linguistic variable of the fuzzy system uses 2 Gaussian membership func-
tions. The performance of the type-2 fuzzy integrators is analyzed under different
levels of uncertainty to find out the best design of the membership functions and
consist of 32 rules. For the type-2 fuzzy integrator using 2 membership functions,
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Fig. 1 General architecture
of the proposed method

Ensemble Neural Network with Type-1 and Type-2 … 379



which are called low prediction and high prediction for each of the inputs and
output of the fuzzy system. The membership functions are of Gaussian type, and we
consider 3 sizes for the footprint uncertainty 0.3, 0.4 and 0.5 to obtain a better
prediction of our time series.

In this Fig. 3 shows the possible rules of a type-2 fuzzy system.

Pronostico1 (2)

Pronostico2 (2)

Pronostico3 (2)

Pronostico4 (2)

Pronostico5 (2)

Pronostico (2)

Mackey-Glass

(mamdani)

32 rules

Fig. 2 Type-2 fuzzy system for the Mackey Glass time series

Fig. 3 Rules of the type-2 fuzzy inference system for the Dow Jones time series
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Figure 4 represents the Particle Structure to optimize the ensemble neural net-
work, where the parameters that are optimized are the number de modules, number
of layers, number of neurons.

Data of the Mackey-Glass time series was generated using Eq. (6). We are using
800 points of the time series. We use 70 % of the data for the ensemble neural
network trainings and 30 % to test the network.

The Mackey-Glass Equation is defined as follows:

x ̇ðtÞ= 0.2xðt− τÞ
1+ x10ðt− τÞ − 0.1xðtÞ ð6Þ

where it is assumed x(0) = 1.2, τ=17, τ=34, and 68 x(t) = 0 for t < 0. Figure 5
shows a plot of the time series for these parameter values.

Number
of

Modules

Number
of

Layers 1
Neurons 1

Neurons
... n

Fig. 4 Particle structure to optimize the ensemble neural network
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Fig. 5 Mackey Glass time series
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This time series is chaotic, and there is no clearly defined period. The series does
not converge or diverge, and the trajectory is extremely sensitive to the initial
conditions. The time series is measured in number of points, and we apply the fourth
order Runge-Kutta method to find the numerical solution of the equation [10, 11].

6 Simulation Results

In this section we present the simulation results obtained with the integration of the
ensemble neural network with type-2 fuzzy integration and its optimization with the
genetic algorithm for the Mackey-Glass time series.

Table 1 shows the particle swarm optimization where the best prediction error is
of 0.0063313.

Table 1 Particle swarm results for the ensemble neural network τ=17

No. Iterations Panicles Number
modules

Number
layers

Number
neurons

Duration Prediction
error

1 100 100 4 2 20, 14
13, 16
17, 8
6, 26

02:23:18 0.0076048

2 100 100 2 2 12, 16
12, 26

01:45:45 0.0063313

3 100 100 2 3 17, 5, 18
6, 25, 24

01:28:42 0.0018838

4 100 100 4 2 7, 24
14, 22
1, 8
15, 23

02:40:20 0.0073005

5 100 100 4 2 14, 9
11, 26
27, 16
11, 13

02:11:34 0.0081418

6 100 100 4 2 16, 16
9, 19
6, 6
9, 12

01:34:05 0.0087983

7 100 100 2 3 11, 23, 26
15, 15, 5

02:09:17 0.0076315

8 100 100 2 2 14, 10
14, 21

01:23:28 0.0061291

9 100 100 3 2 9, 5
23, 20
22, 13

02:17:06 0.0053679

10 100 100 3 3 23, 14, 16
19, 10, 23
22, 12, 11

02:20:04 0.0061983
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Fuzzy integration is performed initially by implementing a type-1 fuzzy system
in which the best result was in the experiment of row number 5 of Table 2 with an
error of: 0.1521.

Fuzzy integration is performed by implementing a type-1 fuzzy system in which
the results were as follows: for the best evolution with a degree of uncertainty of 0.3
a forecast error of 0.1785 was obtained, and with a degree of uncertainty of 0.4 a
forecast error of 0.1658 and with a degree of uncertainty of 0.5 a forecast error of
0.3134 was obtained, as shown in Table 3.

Table 4 shows the particle swarm optimization where the best prediction error is
of 0.0019726.

Fuzzy integration is performed by implementing a type-1 fuzzy system in which
the best result was in the experiment of row number 2 of Table 5 with an error of:
0.4586.

Table 2 Results of Type-1 fuzzy integration for τ=17

Experiment Prediction error with fuzzy integration Type-1

Experiment 1 0.1879
Experiment 2 0.1789
Experiment 3 0.2221
Experiment 4 0.1888
Experiment 5 0.1521
Experiment 6 0.2561
Experiment 7 0.1785
Experiment 8 0.1942
Experiment 9 0.2536
Experiment 10 0.1965

Table 3 Results of Type-2 fuzzy integration for τ=17

Experiment Prediction error
0.3
Uncertainty

Prediction error
0.4
Uncertainty

Prediction error
0.5
Uncertainty

Experiment 1 0.2385 0.2385 0.3952
Experiment 2 0.2489 0.2231 0.3909
Experiment 3 0.2482 0.2226 0.3642
Experiment 4 0.2214 0.1658 0.3856
Experiment 5 0.2658 0.2234 0.3857
Experiment 6 0.2756 0.2592 0.3134
Experiment 7 0.1785 0.2352 0.3358
Experiment 8 0.1825 0.2546 0.4561
Experiment 9 0.2018 0.2373 0.3394
Experiment 10 0.2076 0.2003 0.3687
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Table 4 Particle swarm results for the ensemble neural network for τ=34

No. Iterations Particles Number
modules

Number
layers

Number
neurons

Duration Prediction
error

1 100 100 4 3 12, 23, 12
9, 19, 7

02:45:14 0.0019726

2 100 100 4 3 19, 11, 11
16, 11, 14
15, 24, 19
22, 13, 27

01:28:06 0.0063623

3 100 100 3 2 4, 9
9, 20
10, 11
23, 20

02:03:06 0.0046644

4 100 100 4 2 14, 18
12, 19
20, 17
10, 6

03:22:13 0.0072153

5 100 100 3 2 7, 6
10, 15
12, 16

01:39:13 0.0075658

6 100 100 3 3 14, 20, 18
15, 21, 12
19, 17, 26

03:08:02 0.0047515

7 100 100 2 2 4, 24
9, 26

02:00:10 0.003601

8 100 100 2 2 24, 17
14, 23

02:27:21 0.0065506

9 100 100 3 3 7, 11, 8
23, 21, 21
17, 8, 11

02:03:12 0.0037758

10 100 100 2 3 20, 28, 15
15, 12, 24

02:04:18 0.0066375

Table 5 Results of Type-1
fuzzy integration for τ=34

Experiment Prediction error with fuzzy
integration Type-1

Experiment 1 0.9587
Experiment 2 0.4586
Experiment 3 0.5871
Experiment 4 1.2569
Experiment 5 0.9517
Experiment 6 1.556
Experiment 7 1.0987
Experiment 8 1.9671
Experiment 9 1.698
Experiment 10 1.4626
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Table 6 Results of Type-2 fuzzy integration for τ=34

Evolution Prediction error
0.3
Uncertainty

Prediction error
0.4
Uncertainty

Prediction error
0.5
Uncertainty

Evolution 1 0.6036 0.8545 0.4570
Evolution 2 1.5862 1.0021 1.3533
Evolution 3 0.8002 0.6943 0.3893
Evolution 4 1.4032 0.9617 0.9665
Evolution 5 0.8658 0.8299 0.6358
Evolution 6 1.3986 0.1052 1.2354
Evolution 7 1.465 1.3566 0.6646
Evolution 8 1.7453 0.8966 0.8241
Evolution 9 0.9866 0.6524 0.6661
Evolution 10 1.4552 0.9956 0.7557

Table 7 Particle swarm results for the ensemble neural network for τ=68

No. Iterations Particles Number of
modules

Number of
layers

Number of
neurons

Duration Prediet
ion error

1 100 100 2 3 17, 5, 18
6, 25, 19

02:05:53 0.0019348

2 100 100 2 2 7, 8
6, 20

04:1936 0.0041123

3 100 100 2 3 21, 11, 16
5, 10, 10

02:23:02 0.0042367

4 100 100 4 3 15, 7, 4
11, 22, 5
24, 19, 22
4, 14, 11

02:37:06 0.0050847

5 100 100 3 2 22, 23
2, 21
10, 2

01:5 0.0037132

6 100 100 4 3 10, 13, 22
24, 8, 17
13, 16, 20
7, 24, 17

02:10:27 0.0057235

7 100 100 2 2 8, 20
15, 23

0.0033082

8 100 100 3 2 28, 6
2, 16
18, 10

01:40:18 0.0057402

9 100 100 3 2 22, 17
10, 10
21, 12

02:45:31 0.0047309

10 100 100 2 3 22, 11, 18
27, 7, 14

01:35:13 0.0044649
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Fuzzy integration is performed by implementing a type-2 fuzzy system in which
the results were as follows: for the best evolution with a degree of uncertainty of 0.3
a forecast error of 0.6036 was obtained, and with a degree of uncertainty of 0.4 a
forecast error of 0.6524 and with a degree of uncertainty of 0.5 a forecast error of
0.3893 was obtained, as shown in Table 6.

Table 7 shows the particle swarm optimization where the prediction error is of
0.0019348.

Fuzzy integration is performed by implementing a type-1 fuzzy system in which
the best result was in the experiment of row number 4 of Table 8 with an error of:
0.32546.

Fuzzy integration is also performed by implementing a type-2 fuzzy system in
which the results were as follows: for the best evolution with a degree of uncer-
tainty of 0.3 a forecast error of 0.6825 was obtained, and with a degree of uncer-
tainty of 0.4 a forecast error of 0.7652 and with a degree of uncertainty of 0.5 a
forecast error of 0.6581 was obtained, as shown in Table 9.

Table 8 Results of Type-1
fuzzy integration for τ=68

Experiment Prediction error with fuzzy
integration Type-1

Experiment 1 0.8753
Experiment 2 0.3625
Experiment 3 0.6687
Experiment 4 0.3254
Experiment 5 0.5489
Experiment 6 1.3183
Experiment 7 1.8972
Experiment 8 1.6977
Experiment 9 1.5879
Experiment 10 0.9652

Table 9 Results of Type-2 fuzzy integration for τ=68

Evolution Prediction error
0.3
Uncertainty

Prediction error
0.4
Uncertainty

Prediction error
0.5
Uncertainty

Evolution 1 0.7895 0.9631 0.7365
Evolution 2 0.9875 1.2365 1.564
Evolution 3 0.9874 0.7965 0.6581
Evolution 4 1.5325 0.9874 0.9723
Evolution 5 0.7763 0.9723 0.9858
Evolution 6 0.8694 0.9235 1.3697
Evolution 7 0.6825 1.4263 0.6646
Evolution 8 1.336 0.8963 0.8288
Evolution 9 0.9852 0.7652 0.7234
Evolution 10 1.365 1.4224 1.5984
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7 Conclusions

Using the technique of PSO particle we can reach the conclusion that this algorithm
is good for reducing the execution time compared to other techniques such as
genetic algorithms, and also architectures for ensemble neural network are small
and they applied to the time series, as in this case the time series of Mackey-Glass.
Also the outputs results obtained integrating the results of the neural network with
type-1 and type-2 fuzzy systems and integrated type-2 the best results with type 2
are very good.
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