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To Professor Krassimir T. Atanassov,
a great researcher, scholar,
friend and human being



Preface

Professor Krassimir Todorov Atanassov is a Bulgarian mathematician with out-
standing contributions in the areas of fuzzy logic and fuzzy mathematics, uncer-
tainty analysis, mathematical modelling, and decision making, as well as some
areas of number theory, notably the arithmetical functions and Fibonacci objects.

In 1982, Professor Atanassov proposed a novel mathematical formalism for the
description, simulation and control of parallel processes, named by him the Gen-
eralized Nets which represents a generalization of the well-known concept of the
Petri Nets and all their hitherto existing extensions and modifications. During the
course of years, Professor Atanassov has developed the main theoretical founda-
tions and analytic tools for the Generalized Nets, and—in collaboration with many
specialists from various fields of science and practice—has stimulated and
developed applications of this mathematical apparatus in various areas of science,
business and technology, notably artificial intelligence, medicine, telecommunica-
tion, transportation, chemical and petrochemical industries, and many more. He
is one of the very few people in Bulgaria who holds two different Doctor of
Sciences degrees, both from the Bulgarian Academy of Sciences; his first D.Sc. in
Technical Sciences was granted to him in 1997 for his research in the area of
Generalized Nets.

Another significant field of Professor Atanassov’s research interests is the theory
of fuzzy sets proposed in 1965 by Professor Lotfi A. Zadeh, who later originated the
idea of soft computing. In 1983, Professor Atanassov proposed an essential and far
reaching extension of the concept of a fuzzy sets, called an intuitionistic fuzzy set, in
which to the degree of membership (belongingness) of an element to a (fuzzy) set,
which is from the unit interval, there is assigned an additional degree that of
non-membership (non-belongingness) of an element to a (intuitionistic fuzzy) set,
which is also from the unit interval. These two degrees, of membership and
non-membership, sum up to a number from the unit interval, not necessarily to 1.
The complement of the sum of the degrees of membership and non-membership to 1
constitutes a third degree, that of uncertainty. This opportunity of rendering account
of the uncertainty makes the concept that Atanassov pioneered a particularly pow-
erful and flexible instrument in the area of uncertainty analysis and decision making.

vii



viii Preface

It is now a globally recognized scientific field on its own which relates to other fields
such as the theory of fuzzy sets, fuzzy logic, mathematical logic, notably
multi-valued logic, etc. His second D.Sc. in Mathematical Sciences was awarded in
2000 for his research on intuitionistic fuzzy sets.

For his contributions in the field, in 2013, the International Fuzzy Sets Asso-
ciation (IFSA) elected Professor Atanassov as the IFSA Fellow; and he is the first
Bulgarian working in Bulgaria, and the second Bulgarian altogether, who has
received this recognition. In 2013, Professor Atanassov was awarded the
‘Pythagoras’ Prize of the Bulgarian Ministry of Education and Science for estab-
lished researcher in the field of engineering sciences. In the same year, he was also
elected the Corresponding Member of the Bulgarian Academy of Sciences.

Professor Atanassov has authored and co-authored 30 monographs, more than
1,000 publications in international journals and conferences, and has served as a
supervisor of more than 20 Ph.D. students. His research is now being followed and
developed in multiple countries around the world by various research groups
including his own numerous Ph.D. students.

This volume is a small token of appreciation for Professor Atanassov on his 60th
anniversary for his great scientific achievement, multifaceted support of research
activities and researchers from all over the world, and his constant enthusiasm and
readiness to undertake new scientific challenges. We also greatly appreciate his
great human qualities and friendship.

We wish to thank all the contributors to this volume for their excellent scientific
works which involve many novel research results, insightful and inspiring analyses,
as well as relevant applications. We wish to thank Dr. Thomas Ditzinger,
Dr. Leontina Di Cecco and Mr. Holger Schaepe from Soringer for their help and
support to prepare this volume.

June 2015 Plamen Angelov
Sotir Sotirov
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Fuzzy, Intuitionistic Fuzzy, What Next?

Vladik Kreinovich and Bui Cong Cuong

Abstract In the 1980s, Krassimir Atanassov proposed an important generaliza-
tion of fuzzy sets, fuzzy logic, and fuzzy techniques—intuitionistic fuzzy approach,
which provides a more accurate description of expert knowledge. In this paper, we
describe a natural way how the main ideas behind the intuitionistic fuzzy approach
can be expanded even further, towards an even more accurate description of experts’
knowledge.

1 Fuzzy Logic: A Brief Reminder

The main objective of this paper is to describe the main ideas behind intuitionistic
fuzzy logic and to describe how these ideas can be expanded. To do that, we need to
recall the main motivations and the main ideas behind the original fuzzy logic; for
details, see, e.g., [6, 10, 11].

It is important to describe and process expert knowledge. In many practical sit-
uations, from medicine to driving to military planning to decisions on whether to
accept a paper for publication, we rely on expert opinions.

In every field, there are a few top experts. For example, in every medical area,
there are top specialists in this area. In the ideal world, every patient in need of a
surgery would be operated by the world’s top surgeon, and every person would get
an advice from the world’s top financial advisor on how to invest his or her savings.
Since it is not possible for a few top surgeons to perform all the operations and for
top financial advisors to advice everyone, it is desirable to design computer-based
system which would incorporate the advice of the top experts—and thus help other
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4 V. Kreinovich and B.C. Cuong

experts provide a better quality advice. Such computer-based systems are often called
expert systems.

Experts can describe their knowledge in terms of statements S, S,, ... (e.g., “if the
P/E ratio of a stock goes above a certain threshold ,,, it is recommended to sell it”).
In some situations, when we have a query O0—e.g., whether to sell a given stock—
we can use one of the expert rules. In many other cases, however, none of the expert
rules can lead directly to the desired answer, but a proper combination of the rules
can help. For example, in medical expert systems, we rarely have a rule directly
linking patient’s symptoms with the appropriate treatment, but we have rules which
link symptoms with diseases, and we have rules which link diseases with treatments.
By combining the corresponding rules, we can get an answer to the query. The part of
an expert system which, given a query, tries to deduce the corresponding statement
or its negation from the expert rules, is known as an inference engine.

Uncertainty of expert knowledge. In using expert knowledge, we need to take
into account that experts are usually not 100 % confident that their statements are
universally valid. For example, if a patient sneezes and coughs, a medical doctor will
conclude that it is most probably cold, flu, or allergy, but the doctor also understands
that there is a possibility of some rarer situations with similar symptoms.

A natural way to gauge the experts’ uncertainty is to ask the experts to mark their
uncertainty on a scale from O to some integer n (e.g., on a scale from O to 5), so that
0 corresponds to no certainty at all, and n correspond to the absolute certainty. If
an expert marks m on a scale from O to 7, then we claim that the expert’s degree of
certainty in his/her statement is the ratio m/n.

How to process experts’ uncertainty: towards a precise formulation of the
problem. Since the experts are not 100 % sure in their statements, we are therefore
not sure about the expert system’s conclusion either. It is therefore important to make
sure that the expert system not only provides a “yes” or “no” (or more complex)
answer to a given query, but that the user will also get a degree with which we are
confident in this answer.

For example, if a medical expert system recommends a surgery, and the resulting
confidence is 99 %, then it is probably a good idea to undergo this surgery. However,
if the resulting degree of confidence that this answer is correct is about 50 %, maybe
it is better to perform some additional tests so that we may become clearer on the
diagnosis.

It is thus important, once we have derived a statement Q from the expert knowl-
edge base {S,,S,, ...}, to provide the user with the degree d(Q) that the resulting
statement Q is correct. In some cases, there is only one chain of reasoning leading
to the conclusion Q, and this chain involves statements Sil, ,Sik. In this case, all
these statements need to be true for Q to be true: if one of the statements in the chain
is false, then the whole chain of reasoning collapses. In these cases, Q is true if the
statement S; & ... &S; is true. Thus, to gauge our degree of belief in O, we must
be able to estimate the degree of belief in a statement §; & ... &S, .

In general, we may have several derivations of 0—e.g., we may have several
different observations supporting the same diagnosis. In this case, Q is deduced if
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at least one of the corresponding derivation chains is valid, i.e., if a propositional
formula of the following type holds:

Approximate estimation is needed. In other words, we would like to estimate the
degree of belief in different propositional combinations of the original statements S;.
Of course, if we only know the expert’s degrees of belief d(S,) and d(S,) of differ-
ent statements S, and S,, we cannot uniquely determine the expert’s degree of cer-
tainty d(S; & S,). For example, if S| means that a fair coin falls heads, and S, = §,,
then it is reasonable to take d(S;) = d(S,) = 0.5 and, thus, d(S, & S,) = d(S,) = 0.5.
On the other hand, if we take S, = =S, then still d(S;) = d(S,) = 0.5 but now
ds, &S,) =0.

Since we cannot uniquely determine the degrees of certainty in all possible propo-
sitional combinations based only on the degrees d(S;), ideally, we should also find the
degrees of certainty in all these propositional combinations. The problem is that for
N original statements, we need >2" different degrees to describe, e.g., the degrees of
certainty in different combinations S; & ... S; (>2" because we have 2V — 1 pos-
sible non-empty subsets {7;,...,i,} € {1,...,N}).

Even for middle-size N ~ 100, the value 2V is astronomically high. It is not possi-
ble to elicit all these degrees of certainty from the expert. Thus, no matter how much
information we elicit, we will always have propositional combinations for which we
do not know the corresponding degrees, combinations for which these degrees must
be estimated.

How to estimate the corresponding degrees: fuzzy-motivated idea of
negation-, ‘“and”- and ‘“‘or’’-operations. A general propositional combination is
obtained from the original statement by using the logical connectives = (“not”), &
(“and”), v (“or”). Since we do not know the degrees of all composite statements, we
inevitable face the following problem:

« for some statements A and B, we know the expert’s degrees of certainty d(A) and
d(B) in these statements;

« we need to estimate the expert’s degree of certainty in the statements -A, A & B
and/or AV B.

Negation operations. In this situation, to come up with the desired estimate d(—A),
the only information that we can use consists of a single number d(A). Let us denote
the estimate for d(—A) corresponding to the given value d(A) by f_(d(A)). The cor-
responding function is usually known as an negation operation.

How can we choose this negation operation? Let us first describe some reasonable
properties that this function should satisfy. First, we can take into account that =(—A)
usually means the same as A. By applying the negation operation f, to the estimated
degree of certainty d(—A) ~ f_(d(A)), we can estimate the expert’s degree of certainty
in ~(=A)) as f.(f.(d(A)). It is reasonable to require that this estimate coincide with



6 V. Kreinovich and B.C. Cuong

the original value d(A): f_(f.(d(A)) = d(A). This equality must hold for all possible
values a = d(A) € [0, 1], so we must have f_(f,(a)) = a for all a. In mathematical
terms, this means that the function f_(a) is an involution.

When A is absolutely false, and d(A) = 0, then =A should be absolutely true,
i.e., we should have f (0) = 1. Similarly, if A is absolute true and d(A) = 1, then
-A should be absolutely false, i.e., we should have f,, (1) = 0. In general, the more
we believe in A, the less we should believe in —A, so the function fg,(a) must be
decreasing.

The most widely used negation operation is fg (a) = 1 — a, it satisfies all these
properties; there are also other negation operations which are sometimes used in
fuzzy systems.

“And”-operations. To come up with the desired estimate d(A & B), the only infor-
mation that we can use consists of two numbers d(A) and d(B). Let us denote the esti-
mate for d(A & B) corresponding to the given values d(A) and d(B) by f, (d(A), d(B)).
The corresponding function is usually known as an “and”-operation, or t-norm.

How can we choose the “and”-operation? Let us first describe some reason-
able properties that the corresponding function fg (a, b) should satisfy. First, since
A & B means the same as B & A, it is reasonable to require that the two estimates
S (d(A),d(B)) and g, (d(B), d(A)) corresponding to different orders of A and B should
be the same. This must be true for all possible values of @ = d(A) and b = d(B); this
means that we must have fg (a, b) = f (b, a) for all real values a, b € [0, 1]. In other
words, an “and”’-operation must be commutative.

Similarly, A & (B & C) means the same as (A & B) & C. If we follow the first
expression, then, to estimate the corresponding degree of certainty, we first esti-
mate d(A & B) as f,(d(A), d(B)) and then use the “and”-operation to combine this
estimate and the degree of certainty d(C) into an estimate f (fg, (d(A), d(B)), d(C)).
Alternatively, if we follow the second expression, we end up with the estimate
S (d(A),fe(d(B),d(C)). It is reasonable to require that, since A& (B&C) =
(A& B) & C, these two estimates should coincide, i.e., that the “and”-operation be
associative.

The expert’s degree of confidence d(A & B) that both A and B are true should
not exceed the degree of confidence that A is true. Thus, we should have d(A & B) <
d(A). It is therefore reasonable to require that fg(a,b) < a—and thus, that
J2(0,a) =0 for all a.

It is also reasonable to require that when d(A) = 1 (i.e., when we are 100 % certain
in A), then we should have A & B equivalent to B, so f (1,b) = b for all b. If we
increase our degree of confidence in A and/or B, this should not lead to a decrease in
our confidence in A & B; this means that the “and”-operation should be monotonic:
a <d and b < b’ implies fg (a,b) < fg(a’',b'). Finally, small changes in d(A) and
d(B) should not lead to a drastic change in d(A & B), so the “and”-operation must be
continuous.

“Or”-operations. Similarly, if we denote by f,,(d(A), d(B)) the estimate for d(A v
B), then the corresponding “or’-operation (also known, for historical reasons, as
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t-conorm) must be commutative, associative, monotonic, continuous, and satisfy the
properties f,,(0,a) = a and f,,(1,a) = 1 for all a.

Selecting different propositional operations: an empirical task. There are many
different negation, “and”-, and “or’-operations which satisfy these properties; for
each application area, we select the operations which best describe the reasoning of
experts in this area, i.e., for which the resulting estimates for the expert’s degrees
of confidence in composite statement are the closest to the estimates for d(—A),
d(A & B), and d(A Vv B) produced by the experts.

This idea was first implemented for the world’s first expert system MYCIN—
Stanford’s expert system for diagnosing rare blood diseases; see, e.g., [3]. The
authors of MYCIN tried different possible “and” and “or-operations and found the
one which was the best fit for the actual reasoning of medical experts. It is worth
mentioning that when they tried to apply their expert system to a different applica-
tion area—geophysics—it turned out that the medical-generated “and”- and “or”-
operations did not lead to good results, different operations had to be used.

Common misunderstanding. The reason why in fuzzy techniques (and in expert
systems in general), we estimate the degree of confidence d(A & B) by applying an
“and”-operation to d(A) and d(B) is not because we are under an illusion that the
expert’s degree of confidence in A & B is uniquely determined by his/her degrees
of confidence in A and B. Everyone understands that there is no uniqueness here,
the above example of a coin falling heads or tails is clear. What the “and”-operation
produces is an approximation to the actual expert’s degree of belief in A & B.

We do not use this approximation because we are under some erroneous belief
that “and”- and “or”’-operations are truth-functional, but simply because we cannot
realistically elicit all the degrees of confidence in all the propositional combinations
from all the experts, and we therefore need to estimate the unknown degrees of cer-
tainty based on the known ones.

2 From Fuzzy to Intuitionistic Fuzzy

How can we improve the traditional fuzzy approach? One of the main ideas
behind the traditional fuzzy approach is that, since we cannot elicit the expert’s
degrees of confidence in all possible propositional combinations of their original
statements S, ..., S,, we:

« extract the degrees of confidence d(S;) in these statements, and then
 use negation, “and”-, and “or”’-operations to estimate the expert’s degrees of belief
in different propositional combinations.

To make these estimates more accurate, a natural idea is to extract, from the expert,
not just his/her degrees of confidence in the original statements, but also degrees
of confidence in some propositional combinations of these statements—at least the
simplest ones.
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This idea naturally leads to intuitionistic fuzzy logic. Which propositional com-
binations are the simplest? The more original statements are involved in a combina-
tion, the more propositional connectives are used, the more complex the statements.
From this viewpoint, the simplest propositional combinations are the ones which
has the smallest number of the original statements—one—combined by the smallest
possible number of possible connectives: one. There are three possible connectives:
negation, “and”, and “or”. “And” and “or” requires at least two original statements
to combine (since S; & S; and S; V S; mean the same as S;). So, the only way to have
a single original statement is by using negation. Thus, the simplest possible propo-
sitional combinations are negations —S;.

Thus, to come up with a more adequate description of expert’s degree of cer-
tainty, a natural next step is not only to elicit the expert’s degrees of confidence
d(S;) in their original statements, but also their degrees of confidence d(=S;) in their
negations. In other words, to describe the expert’s certainty about his/her statement
S;, instead of a single number d(S;), we now use a pair of numbers d(S;) and d(=S;).
This is, in a nutshell, the main idea behind Atanassov’s intuitionistic fuzzy logic; see,
e.g., [1, 2] (see also [4]).

This idea makes perfect sense. Intuitively, the above idea makes perfect sense. In
contrast to the traditional fuzzy logic, this idea enables us to distinguish between two
different situations:

« asituation when we know nothing about a statement S, and
« a situation in which we have some arguments in favor of S and equally strong
arguments in favor of the opposite statement —S.

In both situations, we have equally strong arguments in favor of S and in favor of S,
so it is reasonable to conclude that d(S) = d(=S). In the traditional fuzzy logic, when
we assume that d(=S) = 1 — d(S), this implies that in both situations, we have d(S) =
d(=S) = 0.5. In the intuitionistic fuzzy logic, we describe the situation in which we
have no arguments in favor by S by taking d(S) = 0, and similarly d(=S) = 0. Thus,
this situation is described differently from the second one when d(S) = d(=S) > 0.

3 Beyond Intuitionistic Fuzzy

Beyond intuitionistic fuzzy logic: a natural next step. To get an even more ade-
quate description of expert’s knowledge, we need to also elicit the expert’s degree of
confidence in some more complex composite statements.

As we have mentioned, the fewer statements are used in a propositional combina-
tion, and the fewer propositional connectives are used, the simpler the combination.
If we use one statement S, then the only possible propositional combination is =S —
which is handled in the intuitionistic fuzzy approach. Thus, if we want to go beyond
intuitionistic fuzzy, we need to consider propositional combinations of two original
statements S and S’. Among such combinations, the simplest case if when we use a
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single propositional connective. Thus, the simplest such combinations are combina-
tions of the type S& S" and S v §'.

So, we arrive at the following natural description of the next step: in addition to
eliciting, from the experts, their degrees of belief in the original statements S;, we
also elicit their degrees of belief in composite statements S; & S; and §; v §;. Since
we have already included negation, it thus makes sense to also consider the expert’s
degrees of belief combinations of the type =S, & S}, =5, & =S}, =S; v §;, and =§; v
-S;.

The idea in more detail. To describe an imprecise (“fuzzy”) property P (e.g.,
“small”), in the traditional fuzzy logic, to each possible value x of the corresponding

quantity, we assign the degree pp(x) o d(P(x)) to which this quantity satisfies the
property P. The corresponding function up(x) from real values to the interval [0, 1]
is known as the membership function, or, alternatively, as the fuzzy set.

In the intuitionistic fuzzy logic, to describe a property P, we need to assign, for
each x, two degrees:

« the degree d(P(x)) € [0, 1] that the quantity x satisfies the property P, and
o the degree d(—P(x)) € [0, 1] that the quantity x does not satisfy the property P.

This pair of functions forms an intuitionistic fuzzy set.
In the new approach, to describe an imprecise property P, we need to also assign,
to every pair of values x and x":

o the degree d(P(x) & P(x")) € [0, 1] that both quantities x and x” satisfy the property
P;

o the degree d(P(x) v P(x")) € [0, 1] that either the quantity x or the quantity x" sat-
isfies the property P;

o the degree d(—P(x) & P(x")) € [0, 1] that the quantity x does not satisfy the prop-
erty P while the quantity x” satisfies P;

o the degree d(—=P(x) & ~P(x")) € [0, 1] that neither x nor x’ satisfy the property P;

o the degree d(=P(x) vV P(x")) € [0, 1] that either x does not satisfy P or x’ satisfies
P; and

o the degree d(—P(x) v =P(x')) € [0, 1] that either x or x’ does not satisfy the prop-
erty P.

The resulting collection of functions form the corresponding generalization of the
notion of a fuzzy set.

An interesting difference emerges when we want to consider two possible proper-
ties P and P’. In both traditional fuzzy approach and intuitionistic fuzzy approach, all
we can do is describe these two properties one by one. In the new approach, we also
need to describe the relation between the two properties. For example, for each x and
x', we can now describe the degree d(P(x) & P(x")) to which x satisfies the property
P and x’ satisfies the property P’.

Comment. The idea of describing such degrees was first formulated—in the proba-
bilistic context—in [5]; see also [9].
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This ideas also makes perfect sense. The above idea enables us to describe features
of the properties like “small” which are difficult to describe otherwise. For example,
while different experts may disagree on which values are small and which are not
small, all the experts agree that if x is small and x” is smaller than x, then x’ is small
as well. In other words, if X’ < x, then it is not reasonable to believe that x is small
but the smaller value x’ is not small. In other words, for P = “small” and x’ < x, the
corresponding degree of belief d(P(x) & ~P(x")) should be equal to 0.

This possibility is in contrast to the traditional fuzzy logic, where from d(P(x)) >
0 and d(-P(x"))=1-P(') >0, we would conclude that d(P(x)& —P(x")) ~
S (d(P(x)),d(—P(x"))). For most frequently used t-norms such as fg (a, b) = min(a, b)
and fg (a,b) = a - b, from d(P(x)) > 0 and d(-=P(x")) > 0, we deduce that the result-
ing estimate for d(P(x) & ~P(x)) is also positive—and not equal to 0 as common
sense tells us it should.

We can go further. To get an even more adequate representation of expert knowl-
edge, we can also elicit expert;s degrees of belief in composite statements which
combine three or more original statements S;.

4 From Type-1 to Type-2 Fuzzy

Need for type-2: brief reminder. We are interested in situations in which an expert
is not 100 % certain about, e.g., the value of the corresponding quantity. In this case,
we use, e.g., estimation on a scale to gauge the expert’s degree of belief in differ-
ent statements. The traditional fuzzy approach assumes that an expert can describe
his/her degree of belief by a single number.

In reality, of course, the expert is uncertain about his/her degree of certainty—just
like the same expert is uncertain about the actual quantity. In this case, the expert’s
degree of certainty d(P(x)) is no longer a single number—it is, in general, a fuzzy set.
This construction, in which, to each x, we assign a fuzzy number d(P(x)) is known
as a type-2 fuzzy set; see, e.g., [7, 8].

Need to combine intuitionistic and type-2 fuzzy sets. It is known that, in many
practical situations, the use of type-2 fuzzy sets leads to a more adequate description
of expert knowledge. Therefore, to achieve even more adequacy, it is desirable to
combine the advantages of type-2 and intuitionistic fuzzy set.

At first glance, such a combination is straightforward. At first glance, it looks like
the above combination is straightforward: all the above arguments did not depend on
the degree d(S;) being numbers; the exact same ideas— including the possibility to
go beyond the intuitionistic fuzzy sets—can be repeated for the case when the values
d(S;) are themselves fuzzy numbers—or, alternatively, intuitionistic fuzzy numbers.

However, as we will see, the relation between intuitionistic and type-2 fuzzy num-
ber is more complicated.
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Observation: some intuitionistic fuzzy numbers can be naturally viewed as a
particular case of type-2 fuzzy numbers. To explain this unexpected relation, let
us start with the simplest possible extension of the classical two-valued logic, in
which each statement is either true or false. The more possible truth values we add
to the original two, the more complex the resulting logic. Thus, the simplest possible
non-classical logic is obtained if we add, to the two classical truth values “true”
and “false”, the smallest possible number of additional truth values—one. A natural
interpretation of this new truth value is “uncertain”. For simplicity, let us denote the
corresponding truth values by 7' (“true”), F (“false”), and U (“uncertain”).

To fully describe the resulting 3-valued logic, we need to supplement the known
truth tables for logical operations involving T and F with operations including the
“uncertain” degree U.

For negation, this means adding =U. For each truth value X, the meaning of —X
is straightforward: if our degree of belief d(S) in a statement S is equal to X, then our
degree of belief in its negation =S should be equal to =X. For “uncertain”, the truth
value d(S) = U means that we are not sure whether the statement S is true or false.
In this case, we are equally uncertain about whether the negation =S is true or false;
thus, d(—=S) = U. In other words, we have ~U = U.

Similarly, if we are uncertain about S, but we know that S’ is false, then the con-
junction S & S’ is also false; thus, U & F = F. On the other hand, if we know that
S’ is true (or if we are uncertain about S’), then, depending on whether S is actually
true or false, it is possible that the conjunction S & §’ is true and it is also possible
that this conjunction is false. Thus, we have U& T =U & U = U.

If we are uncertain about S, but we know that S’ is true, then the disjunction S v §’
is also true; thus, U vV T = T. On the other hand, if we know that S’ is false (or if we
are uncertain about S’), then, depending on whether S is actually true or false, it is
possible that the disjunction S v ' is true and it is also possible that this disjunction
is false. Thus, wehave UVF =U v U = U.

In the spirit of type-2 logic, instead of selecting one of the three truth values 7, F,
or U, we can assign degrees of certainty d(T) > 0, d(F) > 0, and d(U) > 0 to these
three values. One possible way to assign such degrees is to distribute the same fixed
amount of degree (e.g., 1) between these three options; in this case, we always have
d(T) + d(F) + d(U) = 1. Because of this relation, the triple (d(T), d(F),d(U)) can be
uniquely described by two values d(T") > 0 and d(F) > O for which d(T) + d(F) < 1;
one can easily see that this is exactly the definition of an intuitionistic fuzzy degree
[1, 2].

Moreover, we will show that even some operations on intuitionostic fuzzy degrees
can be thus interpreted. Indeed, if we know the triples (d(T), d(F), d(U)) and (d'(T),
d'(F),d'(U)) describing the expert’s degree of belief in statements S and §’, then
the triple (d”(T), d" (F), d" (U)) corresponding to the composite statements §” = =S,
S =8&S,and " = S v § can be obtained by using Zadeh’s extension principle.
Let us describe this in detail.
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In the 3-valued logic, §” = =S is true if and only if S is false, and §” = —S is false
if and only if S is true. Thus, d''(T) = d(F) and d”(F) = d(T)). This is in line with
the usual definition of negation in the intuitionistic fuzzy logic, as f-,((d(T), d(F))) =
(d(F),d(T)).

In the 3-valued logic, §” = S & S’ is true if and only if S is true and " is true:

§"isT & ((Sis T) & (S is T)).

We know the degree d(T) to which S is true, and we know the degree d’(T') to which S’

is true. Thus, by applying an appropriate “and”-operation (t-norm), we can conclude

estimate the desired degree d’’(T) that S” is true as fg (d(T), d(T")). In particular, for

a frequently used “and”-operation fg (a,b) = a - b, we get d""(T) = d(T) - d'(T).
Similarly, §” = S & &' is false if and only if:

o cither S is false and S’ can take any possible value,
o or S is false and S can take any possible value.

Thus:
S"isFe (Sis F)& (S isT)) vV ((Sis F) & (S is U))v

(Sis F)& (S is F)) V ((Sis T) & (S is F)) V ((Sis U) & (S’ is F))).

By using the same “and”-operation and a frequently used “or”-operation f.,(a, b) =
min(a + b, 1), we get the estimate

d"(F) = min(d(F) - d'(T) + d(F) - d'(U) + d(F) - d'(F) + d(T) - d'(F) + d(U) - d'(U), 1).

Substituting d(U) = 1 — d(T) — d(F) into this formula, we conclude that d"’(F) =
d(F)+d'(F)— d(F) - d'(F). This is in line with the usual definition of an “and”-
operation in the intuitionistic fuzzy case as

fe(d(T),d(F)),(d'(T),d'(F))) = (fg(d(T),d'(T)).f,(d(F),d'(F))),

where f,(a,b) = 1 - fo(1 —a, 1 — b)). For f(a,b) = a - b, we thus get f,(a,b) =
a+b—a-b, and therefore, d'’(T) = fo (d(T),d'(T)) = d(T) - d(T’)) and d"(F) =
d(F)+d' (F) — d(F) - d'(F), exactly as in the above type-2 formulas.

For §" = §v S, we similarly get

S"isF e ((Sis F)& (S is F)),
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and thus, d’(F) = d(F) - d'(F). Also, we get
S"isTo (SisT) &' isT) v ((SisT) & (S is U))v
(Sis T) & (8" is F) v ((Sis F)& (S is T)) v (S is U) & (8" is T))),

and hence, the degree d"(T) is equal to

min(d(T) - d'(T) + d(T) - d'(U) + d(T) - d'"(F) + d(U) - &' (T) + d(F) - d'(T), 1) =
d(T)+d(T)—d(T) - d'(T).

This is also in perfect accordance with the intuitionistic fuzzy operation f, ((d(T),
d(F)),(d'(T),d'(F))) = (f,(d(T),d (T)).fo (d(F),d'(F))).
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Intuitionistic Fuzzy Logic and Provisional
Acceptance of Scientific Theories:

A Tribute to Krassimir Atanassov

on the Occasion of His Sixtieth Birthday

A.G. Shannon

Abstract This essay attempts to outline some essential features of Atanassov’s
intuitionistic fuzzy logic within the framework of the philosophy of science. In
particular, it aims to highlight the brilliance of Atanassov’s conceptual and sym-
bolic originality. It also illustrates the danger of the univocal caricaturing of sci-
entific terminology.

1 Introduction

It is a pleasure to pay tribute to my friend and colleague on the occasion of his 60th
birthday. We have been research collaborators for almost thirty years, and he has
been a generous host on my twenty visits to his beloved Bulgaria over many years.
He was a pioneer in the now burgeoning field of computational intelligence with its
use of both traditional fuzzy logic [1] and intuitionistic fuzzy logic [2] in a variety
of applications. He has also been an internationally renowned creator of new ideas
and an insightful solver of problems for almost forty years, particularly in discrete
mathematics [3]. These include his work on index matrices [4] and generalized nets
[5]. The latter are a major advance on the first form of neural network [6].

This essay is more discursive and expository, rather than technical, particularly
in relation to empirical sciences [7] in order to demonstrate the range and scope of
Krassimir’s fundamental ideas beyond fuzziness in the development of soft com-
puting alone. “Fuzziness” itself is open to misinterpretation. It goes far beyond
Russell’s notion of vagueness [8] and his study of symbols (which have themselves
been an important part of Atanassov’s research as we shall show). This leads to a
brief discussion on the equivocal misuse of scientific concepts: analogical carica-
tures make a weak argument weaker, not stronger!

A.G. Shannon (=)

Faculty of Engineering and Information Technology, University of Technology,
Sydney, NSW 2007, Australia

e-mail: Anthony.Shannon@uts.edu.au; tshannon38 @ gmail.com

© Springer International Publishing Switzerland 2016 15
P. Angelov and S. Sotirov (eds.), Imprecision and Uncertainty in Information

Representation and Processing, Studies in Fuzziness and Soft Computing 332,

DOI 10.1007/978-3-319-26302-1_2



16 A.G. Shannon

2 Science and Pseudoscience

Media reports of recent empirical challenges to the accepted understanding of the
nature and speed of light have demonstrated the inadequate critical understanding
of the experimental sciences in the popular mind, at a time when that same popular
mind is being asked to make important bioethical and technological decisions
vicariously through their representatives in parliamentary democracies. Recent
public debates to the contrary science is not democratic!

Most science, even mathematics, is conducted in a mode of ‘conventionalism’
[9], which involves provisional acceptance of hypotheses—the ‘probabilism’ hinted
at by Aquinas [10]. It is a purpose of this note to examine the foundations of this
provisional acceptance within the context of intuitionistic fuzzy logic (IFL) [11].

The simplest explanation which fits the facts tends to be the prevailing confir-
mation in science. Scientists, being human, can be prone to disregard facts which do
not fit this prevailing confirmation if their source is from authority less prestigious
than the recognized authorities in their field. Argument from authority in science
has historically hampered its progress. Scientific progress is usually marked by
‘confirmation’ [12] or ‘refutation’ [13], although in practice the working scientist
operates within a framework which contains a collection of hypotheses where there
can be disagreement between empirical data and individual hypotheses without
destroying the theory as a whole [14].

At this working stage of provisional acceptance, somewhere between refutation
and confirmation, the empirical support of the theory prevails over any alleged
counter-example. Such was Einstein’s attitude when he said that “only after a more
diverse body of observations becomes available will it be possible to decide with
confidence whether the systematic deviations are due to a not yet recognized source
of errors or to the circumstances that the foundations of the theory of relativity do
not correspond to the facts” [15].

Public intellectuals like Dawkins and Singer, for instance, at times like to use
their eminence and expertise in one field to assert authority in another, even seeking
though are seeking the truth. Thus I felt in Dawkins’ earlier writings that he was
almost drifting towards St Anselm’s ontological proof for the existence of God. The
god that Dawkins and his disciples are now trying to demolish though is the
anthropomorphic god of the fundamentalists. His misdirected zeal ironically
appeals to anti-theist fundamentalists. Singer too, while more consistently logical,
fails to see in his own thinking the faults he attacks in the thinking of others [16].
Not for them the humility inherent in the title of James Franklin’s recent book [17],
but rather the arrogance of Atkins [18]: “... science has never encountered a barrier,
and the only grounds for supposing that reductionism will fail are pessimism on the
part of scientists and fear in the minds of the religious”. That Dawkins has tried to
use mathematical tools in his argumentation and Singer to dismiss them has
motivated these comments.
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3 Evidence

It is not surprising that moral relativists disparage any “search for certainty”. For
them the only absolute is that there is no absolute. “It is as if to seek certainty
denoted a lack of character, and were a sign of psychological or intellectual
immaturity” [19]. Dawkins makes much of his view that “evidence”, as he defines
it, is missing from religious belief. There are, it is true, some truths, such as the
mystery of the Trinity which are inaccessible to reason in terms of existence and
content. This does not make it unreasonable to believe them. It depends on whose
authority we believe them. In any case a God we could fully understand would not
be God—to extend St Anselm [20]. Yet scientists themselves believe some things
on the basis of their nature rather than observation alone. Thus we believe it is in the
nature of humans to be mortal. While nearly every textbook of introductory logic
has the statement “all humans are mortal”, we know that all humans who have died
must ipso facto be mortal, but we do not know it scientifically that all humans are
mortal, because, as far as we know, most humans who have ever lived are alive
today. We know that we are mortal from the study of natures, which is something
we do in mathematics.

Yet for Dawkins the only evidence is scientific evidence, which itself is a
metaphysical opinion, not a scientific statement. Moreover, Dawkins has no evi-
dence that there is no evidence. Even the more persuasive Hitchens reduces his
evidence to a series of anecdotes [21]. While some might say that these rebuttals are
only playing with words, there are more serious underlying scientific issue relevant
to the context of this paper.

These have been articulated in a series of papers by McCaughan who distin-
guishes extrinsic and intrinsic causes to show that even within science confusion of
efficient and formality can lead to the domination of physics by mathematics to
control all explanation, despite the fact that mathematics can do no more than
predict [22]. Statistics too can disguise the existence of goal directed forces, but
“goal directed forces eliminate blind chance. In following David Hume, scientists
have removed goals or ends from science. This has not eliminated them from nature
but left them unrecognised. Blind faith in blind chance just leads to intellectual
blindness” [23]. We can see this in the way some evolutionary and generic algo-
rithms are used analogously [24].

4 Genetic Algorithms

Genetic Algorithms (GAs) are an adaptive heuristic search algorithm based on
analogies with the evolutionary ideas of natural selection and genetics [25].
Dawkins’ dichotomy is that we can have God or evolution but not both [23: 215]
and so his goal is to use these algorithms to prove that we cannot have God. The
basic techniques of GAs are designed to simulate processes in natural systems
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necessary for evolution, especially those that seem to follow the principles first laid
down by Charles Darwin of “survival of the fittest”. That GAs use evolutionary
terms can be a trap for the unwary.

GAs are implemented in a computer simulation in which a population of abstract
representations of candidate solutions to an optimization problem evolves toward
better solutions [26]. The “evolution” usually starts from a population of randomly
generated individuals and happens in generations. In each generation, the fitness of
every individual in the population is evaluated, multiple individuals are stochasti-
cally selected from the current population (based on their fitness), and modified
(recombined and possibly randomly mutated) to form a new population. The new
population is then used in the next iteration of the algorithm. Commonly, the
algorithm terminates when either a maximum number of generations has been
produced, or a satisfactory fitness (optimal) level has been reached for the popu-
lation. Once the genetic representation and the fitness (optimal) function are
defined, GAs proceed to initialize a population of solutions randomly, then improve
it through repetitive application of selection operators.

For instance, a Generalized Net model (which is essentially a directed graph with
choices at the nodes) [27] when combined with IFL (which provides for
non-membership as well as membership choices) [28], simultaneously evaluates
several “fitness” functions and then ranks the individuals according to their fitness
to choose the best fitness function in relation to what is being optimized. GAs
require only information concerning the quality of the solution produced by each
parameter set (objective function value information). The selection operator could
be, for instance, a roulette wheel [29]!

Thus, a GA is an algorithm which has a beginning and which is goal directed in
order to eliminate blind chance, but Dawkins, for example, has a goal as the end of
his evolutionary algorithm but also, in effect, wants to have no beginning. Hawkins
wants to have a beginning, but like Dawkins uses science to sidestep God [30].

5 Intuition

Like Dawkins, Peter Singer steps across into mathematics when he says: “...can we
really know anything through intuition? The defenders of ethical intuitionism
argued that there was a parallel in the way we know or could immediately grasp the
basic truths of mathematics: that one plus one equals two, for instance. This
argument suffered a blow when it was shown that the self evidence of the basic
truths of mathematics could be explained in a different and more parsimonious way,
by seeing mathematics as a system of tautologies, the basic elements of which are
true by virtue of the meanings of the terms used. On this view, now widely, if not
universally, accepted, no special intuition is required to establish that one plus one
equals two- this is a logical truth, true by virtue of the meanings given to the
integers ‘one’ and ‘two’, as well as ‘plus’ and ‘equals’, So the idea that intuition
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provides some substantive kind of knowledge of right and wrong lost its only
analogue” [31].

The broad and very loose statement denying intuitionism as a valid form of
knowledge in mathematics is difficult to understand and very contradictory, even
without the existence of intuitionism in mathematics [32]. Bertrand Russell a
hundred years ago attempted to reduce mathematics to ‘tautologies’ (logical truths)
but it proved impossible.

Working mathematicians simply do not deny intuition. For example, the stan-
dard presentation of the foundations of mathematics includes the “axiom of infin-
ity”, which says “There exists an infinite set”. You just have to take it (by intuition)
or leave it. In no way is it a logical truth and no-one the least bit informed maintains
it is [33]. Moreover, mathematicians do research by intuitive insights rather than by
“symbol shoving” or even logic, though they justify their conclusions with logic
acceptable to their peers [34].

Likewise, mathematical notation is more than a form of words; it is a tool of
thought [35]. For instance, the relationship between powers and subscripts within
the umbral calculus reveals ideas latent in the original mathematical language [36].
Here too Atanassov’s symbolism has proved to be a powerful tool of thought even
if we were only to judge it by the literature it has spawned. To see this we shall
touch on some features of IFL.

6 Intuitionistic Fuzzy Logic

We shall now briefly outline the salient features of Intuitionistic fuzzy logic
(IFL) by comparison with classical symbolic logic. IFL in many ways is a gener-
alisation of the mathematical intuitionism of Brouwer [32] and the fuzzy sets of
Zadeh [37].

In classical terms, to each proposition p, we assign a truth value denoted by /
(truth) or O (falsity). In IFL we assign a truth value, p(p) €[0,1], for the degree of
truth, and a falsity value, v(p) €[0,1] [4]:

0<u(p)+v(p) <1

This assignment is provided by an evaluation function V, which is defined over a
set of propositions S,

V:§—10,1]x0,1]
such that

Vip)= <p(p),v(p)>
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is an ordered pair. If the values V(p) and V(gq) of the propositions p and g are
known, then V can be extended:

V(=p)= <v(p),u(p) >
V(pAg)= <min(u(p), u(g)), max(v(p), v(q)) >,
V(pVq)= <max(u(p), u(q)), min(v(p),v(q)) >,
V(p>q) = <max(v(p), u(q)), min(u(p),v(q)) >;

and, for the propositions p, geS:

=V(p)=V(-p),
V(p)nV(g)=V(pAq),
V(p)uV(g)=V(pvag),
V(p) = V(g)=V(p>q).

A tautology and an intuitionistic fuzzy tautology (IFT) are then defined respec-
tively by

“A is a tautology” if, and only if, V(A)= < 1,0>;
“A is an IFT” if, and only if, V(A)= <a,b> > a>b.

Provisional acceptance of a scientific theory means that an individual coun-
terexample of empirical evidence can be related to an individual hypothesis within a
theoretical framework in order to modify some of the individual constituents of the
theory and thus accommodate the disagreement. This can be written as

(@) T1=((ADC)A-C)DA4,

(b) T,=((AABDOC)A—~CAB)D-A,
) T3=((AABDC)A-C)D(=AV-B),

for every three propositional forms A, B and C. This leads us to
Theorem T,,7,,T; are IFTs.

Proof In the interests of brevity, we shall consider (b) only, as it is typical of all
three parts.

V(T2) = [(<pa,va> A <pp, VB> ) = <pe, Ve > A <Ve, e > A <pp,Vp> = <va, fig >
=[<max(va, vg, vc), min(py, pg, pe) > A <min(ve, pg), max(pc, vp) > | = <va, py >
= <min(ve, ug), max(va, vg, e ) Max(py, dg, ve) > = <va, py >

=< max[/’lw VB, VA, min(/’lA’ Hp> VC)]’ min[VC’/‘Bn”A’ maX(VA’ VB,/"C)] >,
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and

max [pc, Vg, Va, Min(pa, g, ve)] — minfve, pg, pa, max(va, va, pic )]
> min(py, pp, ve) —min(ve, pp, pa)
=0. Therefore, TisanIFT.

7 Concluding Comments

The existence of an additional working modus operandi between refutation and
confirmation can clarify the way the empirical sciences work. Moreover, the
schematic expression of this provisional acceptance of a theory invites an estima-
tion of the truth values in any particular case so that the following type of analysis
can be made. Suppose that for the propositional forms A and B:

V(A) <V (B)if, andonly if, (uy <pp) A (va <vp),
\%

V(A) > V(B)if, and only if, (4 > pp) A (va <vg).

If we assume that s, v4, the intuitionistic fuzzy values of A are fixed, then from
the form of T, we see that T, is more reliable as the intuitionistic fuzzy truth of
B increases, that is, the bigger y and the smaller v, are.

The truth value of 7, can also increase if any of

(V(A)>V(B))V(V(A)>V(~C)), for fixed p,;
(V(A)<V(B)) Vv (V(B) < V(~C)), forfixed va;

(V(A) < V(=C))V (V(B) < V(~C)), for fixed ug.
On the other hand, 7, will not be changed if any of

(V(A) <V(B))V (V(A) < V(=C)), for fixed
(V(A)=V(B)) Vv (V(B) < V(=C)), forfixed vs;

(V(A) 2 V(=C)) v (V(B) > V(=C)), for fixed .
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Nevertheless, science should be no more exempt from moral evaluation than any
other human activity, especially as it lacks the intellectual certitude of metaphysics
and mathematics [38]. The logical analysis of ‘provisional acceptance’ will not
make scientists more logical, but it is important that both scientists and the general
public are aware of the nature and scope, including limitations, of science and
especially the role of models within science. This is a realm open to research in
psychology and philosophical anthropology, namely to relate the conceptual con-
nection between intuition and perception as the link between the internal and
external senses and the intellect. In the terminology of evolution, it is a missing link
in our knowledge of heuristics.
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Part 11
Intuitionistic Fuzzy Set



On the Atanassov Concept of Fuzziness
and One of Its Modification

Beloslav Riecan

Abstract The family 7 of intuitionistic fuzzy sets [1-3] is compared with the family
V of interval valued fuzzy sets. Since the spaces are isomorphic, from the measure
theory on 7 the measure theory on V can be deduced. In the paper they are mentioned
the state representation [7, 8, 44, 50], the inclusion—exclusion property [6, 22, 23]
and the existence of invariant state [45].

1 Introduction

Any subset A of a given space £2 can be identified with its characteristic function

x4 2 - {0,1}
where
Ial@) =1,
ifow €A,
Ia(@) =0,

if o € A. From the mathematical point of view a fuzzy set is a natural generalization
of y, (see [60, 61]). It is a function
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Evidently any set (i.e. two-valued function on £, y, — {0, 1}) is a special case of
a fuzzy set (multi-valued function), @, : £ — [0, 1]. There are many possibilities
for characterizations of operations with sets (union A U B and intersection A N B).
‘We shall use so called Lukasiewicz characterization [54]:
Xaos = (a+ xp) A1,
Xag =a+ 25— D VO.
(Here (f Vv g)(w) = max(f(w), g(@)), (f A g)(w) = min(f(w), g(w)).) Hence if ¢,,

@p - £ — [0, 1] are fuzzy sets, then the union (disjunction ¢, or @5 of correspond-
ing assertions) can be defined by the formula

Pa @ pp=(pstop—DAI,

the intersection (conjunction ¢, and @ of corresponding assertions) can be defined
by the formula
(pAO(ﬂB=((pA+(pB— 1)\/0

In the paper we shall work with the Atanassov generalization of the notion of fuzzy
set so-called IF-set (see [2, 3]), what is a pair

A= (puy, vyt 2—-10,11x[0,1]
of fuzzy sets p,, v, : £ — [0, 1], where
Mo+ py < 1
Evidently a fuzzy set ¢, : £ — [0, 1] can be considered as an IF-set, where
Hy=@4 - 2> [0,1Lvy=1—-9@, : 2= [0,1].

Here we have
Hy+vy =1,

while generally it can be u,(w) + v4(w) < 1 for some w € £2. Geometrically an IF-
set can be regarded as a function A : £ — A to the triangle

A={(u,)ER* : 0<u,0<vu+v<1).
Fuzzy set can be considered as a mapping ¢, : £2 — D to the segment

D={uv)eERu+v=10<u<l)
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and the classical set as a mapping y : 2 — D, from £2 to two-point set
Dy = {(0,1),(1,0)}.

In the next definition we again use the Lukasiewicz operations.

Definition 1 By an IF subset of a set 2 a pair A = (p4, v4) of functions
Hy 82— 10,1, vy 2 = [0,1]

is considered such that
Hy+vy < 1L

We call u, the membership function, v, the non membership function and
ALB << u, < up, vy > vp.
If A = (py, vy), B = (ug, vg) are two IF-sets, then we define
A®B=uy +ugp) AL, (vy +vp—1)VvO0),
AOB=((uy +ug—1)VO,(vy +vp) A ),
—A=(1—py, 1 —vy).
Denote by F a family of IF sets such that

A BeEF—=A®PBeF,AOBeF,"AeF.

29

Example I Let F be the set of all fuzzy subsets of a set Q. If f : 2 — [0, 1] then

we define

Az(f,l—f),

e vy =1—py.

Example 2 Let (£2, S) be a measurable space [53], S a o-algebra, F the family of all
pairs such that p, : £ — [0,1],v, : £ — [0, 1] are measurable. Then 7 is closed

under the operations @, ©, .

Example 3 Let (2, T) be a topological space, F the family of all pairs such that 1, :
2 —[0,1],v, : 2 — [0, 1] are continuous. Then F is closed under the operations

®D,0,.
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Of course, in any case A @ B,A O B, 7A are [F-sets, if A, B are [F-sets. E.g.
AD®B=(uy +up) A1, (vy +v3—1)VvO0),

hence
(g +up) A1+ (v +vp—1)vO0

= (g + ) AT+ (Vy +vp = D)V (g + ) A D)
=y +pg+vy+vg—DAAd+vy+vg—1) V(g +pug) A1)
SA+T=DAWy+vp) V(g +up) A1)
=LA Ws+vp) V(g + pp) A1)

<lvl=1

2 If Versus IV

If we consider two IF-sets A, B, then B is better than A, if the membership function
Uy 1s larger then the membership function function yuj the non-membership function
1y 1s smaller then the non-membership function function pj.

It is a philosophical background of IF-theory based on some problems inspired
by applications [9, 10, 18, 24, 38, 57].

Of course, in the vector space R?, the usual ordering is given by

(1, 31) < (X, ¥7) <= (X S x,¥1 S y)).

It leads to so-called interval valued fuzzy sets.

Definition 2 An interval valued fuzzy subset of £ is a mapping A = (ji4, ¥,) such
that ji, : 2 - [0,1],7, : 2 — [0,1] and

0<p,<v,<1.
If A = (jiy, V), B = (jig, V) are two [V-sets, then
A< B < (jiy < fig, Vy < Vp).

If we denote
A= {(u,v)eR2 :0<u,0<vu+v<1},

A={wv)eR?:0<u<v<1},
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then an IF-set is a mapping
A Q- A

and an IV-set is a mapping

Evidently A and 4 are equivalent, e.g.

@ A A_9¢(u7v) = (M,l —V)
realize the equivalence. Denote by 7 the family of all IF-subsets of £2, and by V the
family of all IV-subsets of 2. If A € F,A = (uy, v4), and A = @oA = (uy, 1 —vy) =
(fis, V4), then A = (fi,, V,) € V. Moreover, if

A= p(A) = poA,

then
p:F->V

is an equivalence and
A<B< A<B.

Indeed, A < Bmeans u, < ug, vy > vg, hence 1 —v, < 1—vp, and
A:(,uA,l—vA)§B=(/43,l—vB)

in V. Recall that in F
0,1)<A<(1,0)

for any A € F. On the other hand
0,00 <A =<(1,1)
forany A € V.
In the measure theory the monotone convergence is important [4, 24, 36, 41, 56,

58, 59]. Thenin F
Ay SAS S Vs N Vg

On the other hand in V
A, /A= Ha, /" HasVa, /' Va-
We have seen that F and V are isomorphic as lattices. It is natural to define

Lukasziewicz operations on V by such a way that 7 and V to be isomorph by the
help of the isomorphism @. So
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PA®B) = p((ug + ug) A1, (Va4 +vp =1V 0)
=((us+pp) AL =(vy+vp—1)VvO0)
=((uy+pp) A1, (A =vy+1=vp) Al
= (g + i) AL (V4 + V) A D),
PAOB)=@((us + up =D VO,(vy +vg) A D)
=((uy+pg—DVO,1=(yy+vp) Al
=y +pug—1HVvOo,(1—-vy+1—-vy—1)VvO|
= (g +ig—D VO,V + Vg — 1) VO),

hence we shall define the Lukasziewicz operations on V by the following way.

Definition 3 Let A = (jiy, V,) € V,B = (jig, V) € V. Then
ABB + ((fig + fip) AL, (V4 + Vp) A D),
AGOB = ((jiy + jiz — 1) VO, (U, + Vg — 1) VO).

Evidently the following proposition holds.
Proposition 1 [fA,B € F, then

P(A @ B) = p(A)Dp(B),
#(A O B) = p(A)Op(B).

Remark 1 1If for real numbers a,b € Rwedenotea® b =(a+b)Al,a®b=(a+
b—1)VvO0, then for A, B € F we have

A® B = (uy @ pg, vy O vp),
A QOB = (uy O ug, vy @ vp),
and for A, B € V we obtain
A®B = (ji,®jig, V,DVp),

AGB = (i, Ojig, V,O0p).
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Similarly states on F and V resp. can be defined in a convenience [11, 13-15, 21,
31, 34, 40, 42, 43]. Of course we shall consider only functions measurable with
respect to a o-algebra S of subsets of €.

Definition 4 A mappingm : F — [0, 1] is called a state, if the following properties
are satisfied:

(1.1 m((0, 1)) = 0,m((1,0)) =1,

12) AoB=(0,1)= mA & B) =m(A)+ m(B),

(1.3) A, /A= m(4,) / m(A).

Definition 5 A mappingm : V — [0, 1] is called a state, if the following properties
are satisfied:

2.1) m((0,0)) =0,m((1,1) =1,

(2.2) AGB=(0,1) = m(A®B) = m(A) + m(B),

23) A, /A= mA,) / mA).

Theorem 1 Letm : V — [0, 1] be a state. Define m . F — [0, 1] by the formula
m(A) = m(@(A).

Then m is a state.

Proof Prove first (1.1). By (2.1)

m((1,0)) = m(@(1,0)) =m((1,1) =1,

m((0, 1)) = m(@((0, 1)) = m((0,0)) = 0.
Further let A,B € F,A ® B = (0, 1). Then

P(A)Op(B) = (A © B) = @((0, 1)) = (0,0).

Therefore by (2.2)

m(@(A)®p(B)) = m(p(A)) + m(p(B))

= m(A) + m(B).

Of course,
m(@(A)®@(B)) = m(p(A & B)) = m(A @ B),

hence (1.2) is proved.
Finally, letA, € F,A € F,A,, /' A. Then

PA,) EV.P(A) €V, 0A,) / pA),
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and therefore by (2.2)
m(A,) = m(@A,) /" m(p(A) = m(A),

hence (1.3) holds. O
Theorem 2 Letm : F — [0, 1] be a state. Define im : V — [0, 1] by the formula

mA) = m@~' (A)).

Then m is a state.
Proof By (1.1) and the definition
m((0,0)) = m(@~"(0,0)) = m((0,1)) =0,
m((1, 1)) = m(@~"(1,1)) = m((1,0)) = 1,
hence (2.1) holds.
Now letA,B€ V,A®B=(0,1). ThenAOB=&"'(A) 0 o '(B) =
# "(A®B) = ((0,0)) = (0, 1). Therefore

m(A @ B) = m(A) + m(B).

But . . .
mA) = m(@~'(A))) = m(A), (¢~ (B)) = m(B),
mA®B) = (™' (A ® B) = m(A @ B),
hence
M(A®B) = m(A) + m(B),
and (2.2) holds.

Finally letA, / A. Then A, = " '(A,) /' @ '(A) = A, hence

mA,) =mA,) / mA) = m(A).

3 State Representation

One of he main result of the IF-probability theory is the state representation theorem
[7, 8, 25, 38, 44, 46, 47, 50]. Since IF-probability theory and IV-probability theory
are isomorphic, also I'V-state representation theorem holds.
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Recall that a state m : V — [0, 1] is considered with respect to the family V =

{A = (jiy, Vp); iy, v, © 2 — [0, 1] are measurable with respect to a c-algebra S of
subsets of £2, u, < v,}.

Theorem 3 Let m : V — [0, 1] be a state, a € [0, 1]. Then there exist probability
measures P,Q : S — [0, 1] such that

m(A)=/ﬁAdP+a/(‘7A_ﬁA)dQ,
Q Q

and a = m((0, 1)).

Proof Construct the state m : F — [0, 1] by Theorem 1. Then by [7, 8, 44, 50]
there exist probability measures P, Q : S — [0, 1] such that for any A = (uy, v,) €
F there holds

m(A) = / pudP + a(l —/(MA +v,)dQO.
Q Q

By Theorem 2 . .
m(A) = m(@ " (A) = m((uy, 1 = vy))

_ / MAdP+a(/(1 vy — 1)dQ
0 Q

= / ji,dP + a / (W, — fi,)dO.
Q Q

Moreover a = m((0, 0) = m(p((0,0))) = m((0, 1)). O

Remark 2 The representation Theorem 3 has been presented by Skiivanek in [56].

4 Inclusion-Exclusion

Inclusion—exclusion principle holds e.g. for any probability measure P : S — [0, 1]
defined on a o-algebra S:

P(AUB) =P(A)+ P(B)— P(ANB),
PAuBUC)=P@A)+PB)+ P
—PANB)—PANB)—PBNC)+PANBNC(O),

etc. We shall present the validity of IF-principle in IV-theory for the Godel
operations.
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Definition 6 If A, B € V then we define

(fiy U Vg, ¥, U Vp)

b N
oo
Il

U

= (jiy N Vg, ¥y N V)

Ny
o]}

N

where ' U g = max(f, g),f N g = min(f, g).
Theorem 4 Letm : V — [0, 1] be a state, Al,;\z, ,;\n € V. Then

m(U A) =2 mA) - ZmANA) + o+ (=D"VmA, nA;n - NA))
i=1

Proof Again we use the construction of the state m : F — [0, 1] presented in
Theorem 1:
m(A) = m((A)).
Define the operations V, A in F by the following way
AV B = (uy V g, V4 A Vp),

ANB = (uy Apg, vy V vp).

Then
@AYV B) = (py V pg, 1 — vy Avp)

= (g V ug, (1 =vy) V(I —vp)
= (fiy V fig, V4 V vg) = AUB,
PAAB) = (g A pg, 1 — vy Vvp)
= (g A g, (1 =v)) Al —vp)
= (fiy A fig, V4 Avg) =ANB.
By [6, 22, 23] we have

m(\/ A) =2 % i D DmA A AA).
k=1



On the Atanassov Concept of Fuzziness and One of Its Modification 37

Therefore
n n
m(( JA) =m\/A) = ZL 5, .y (D Vm@A, A AA)
i=1 k=1

=X 5 (CDEmA, 0 nA).

I

5 Invariant States

There is well known story about Haar measure [53], such measure u in an Abelian
group (G, +) that u(A + a) = u(A) for any a € G and any measurable A.

Assume that £ is a compact Abelian group, and S is the o-algebra generated
by the family of all compact subsets of £2. Further let V consist of all [V-sets A =
(fiy, v4) with continuous jiy, v, @ £2 — [0, 1].

For a given element a € €2 define a mapping 7, : V — V by the formula

7,(A) = (fizoT, V30T,

where T : Q - Q,T(x) =x+ a.

Theorem 5 There exists exactly one state im . V — [0, 1] such that
(7, (A)) = m(A)
forany A € V, and any a € Q.

Proof Define z, : 7 — F by the formula z,(A) = (4,07, v,oT). By [45] there exists
exactly one state m : F — [0, 1] such that

m(z,(A)) = m(A)

for any A € F, and any a € Q2. Define 7 : ¥V — [0, 1] by the equality m(A) =
m(p~'(A)). IfA € V, then

m(z,(A) = m(p~ (7,(A)))
= m(t,(A)) = m(A) = m(@(A)) = m(A),
hence m is invariant. Let & : V — [0, 1] be another invariant state, i.e.

k(7,(A) = k(A).
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Define k : F — [0, 1] by the equality x(A) = k(@(A)). Then

Kk (7,(A)) = k(p(7,(A))) = K(7,(P(A))

k(@A) = k(A),

for any A € F, and any a € €. Since there exists exactly one invariant state m :
F — [0, 1], we obtain that ¥ = m. Therefore

k(A) = k(@™ (A) = m(@""(A) = m(A)

forany A € V. O

6

Conclusion

We have seen that [F-probability theory and IV-probability theory are isomorphs.
Therefore all results of IF-probability theory can be reformulated by the help of
notions of interval valued notions. As an illustration we have presented three impor-
tant results: state representation theorem, inclusion exclusion property and Haar
measure theorem. Of course, also all results of IV-measure theory can be translated
to the IF-measure theory [12, 17, 20, 29, 30, 51, 52].
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Intuitionistic Fuzzy Inclusion Indicator
of Intuitionistic Fuzzy Sets

Evgeniy Marinov, Radoslav Tsvetkov and Peter Vassilev

Abstract In this paper we introduce a measure for inclusion of two IFSs into each
other according to the two main partial orderings in the family of IFSs. This inclu-
sion measure will be observed on few levels. From a set-theoretical point of view,
intuitionistic fuzzy point of view and ordinary fuzzy point of view. We also employ
the notion of the two modal quasi-orderings, the necessity and possibility, known for
intuitionistic fuzzy sets. All of these inclusion measures can be applied in real world
models where intuitionistic fuzzy sets are employed.

1 Introduction to Intuitionistic Fuzzy Sets
and their Orderings

A fuzzy set (FS) in X (cf. Zadeh [10]) is given by

A" = {{x uy W)x € X) (1)
where py (x) € [0, 1] is the membership function of the fuzzy set A'. As opposed to

the Zadeh’s fuzzy set, Atanassov (cf. [1, 2]) extended its definition to an intuitionistic
fuzzy set (abbreviated IFS) A, given by

A = {{x, uy(0), vy () |x € X} 2)
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where: p, : X = [0,1] and v, : X — [0, 1] such that
0 < py)+vy(x) <1 3

and p,(x), v4(x) € [0,1] denote a degree of membership and a degree of non-
membership of x € A, respectively. An additional concept for each IFS in X, that
is an obvious result of (2) and (3), is called

mA(x) = 1 = py(x) = vy () “4)

a degree of uncertainty or also hesitancy degree of x € A. It expresses a lack of
knowledge of whether x belongs to A or not (cf. Atanassov [1]). It is obvious that
0 < m,(x) <1, for each x € X. Uncertainty degree turn out to be relevant for both
applications and the development of theory of IFSs. For instance, distances between
IFSs are calculated in the literature in two ways, using two parameters only (cf.
Atanassov [1]) or all three parameters (cf. Szmidt and Kacprzyk [9]). For a detailed
discussion about distances and similarities for [FSs one may consult Szmidt [8].
For more detailed information regarding modal operators the reader may refer
to [2], Chap. 4.1. “Necessity” and “possibility”” operators (denoted [] and ¢, respec-
tively) applied on an intuitionistic fuzzy set A € IFS(X) have been defined as:

OA = {{x, py(0), 1= py(x) )|x € X}
CA = {{x, 1 —v(x), v4(x) Yx € X}

From the above definition it is evident that
*: IFS(X) — FS(X) ®))

where x is the prefix operator x € {[], ¢}, operating on the class of intuitionistic
fuzzy sets and FS(X) denotes the class of fuzzy sets defined over X.

Talking about partial ordering on IFSs, we will by default mean (IFS(X), <) where
< stands for the standard partial ordering in IFS(X). That is, for any two A and
B € IFS(X): A < Bis satisfied if and only if p,(x) < pp(x) and v, (x) > vz(x) for any
x € X. OnFig. | one may see the triangular representation of the two chosen A and B
in a particular point x € X, where f, (x) stands for the point on the plane with coordi-
nates (44 (x), v4(x)). That is, A < B means exactly that the point f;(x) must lie in the
trapezoidal area (or on its border) defined by the points (1, (x), 0), (1, 0), f 4, (X), f4 ().
On the other hand, B < A is satisfied exactly when point f5(x) lies in the trapezoidal
figure (or on its border) enclosed by the points f (x), f74(x), (0, 1), {0, v, (x)).

The reader is referred to Marinov [6], where a new partial ordering over the class
of IFSs has been introduced. Namely, the so called z-ordering, which is actually
only a left lattice but not a right one, i.e. it is not a complete lattice. The notion of
m-ordering has been employed for the introduction of an index of indeterminacy
measuring how far (close) is an IFS from (to) the family of the ordinary FSs on the
same universe X. A few examples of index of indeterminacy have been introduced
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Fig.1 Triangular <0,1>
representation of the the
intuitionistic fuzzy sets A
and B € IFS(X) in a

particular point x € X, where f oA (3:)
Jf4(x) stands for the point on
the plane with coordinates
(14 (x), v4(x)). [JA and GA
stand for the two modal
operators “necessity”” and B<A
“possibility” acting on A B

fa(z) foa(z)

<0,0> <1.L,0>

Fig. 2 Triangular <0,1>
representation of the the
intuitionistic fuzzy sets A
and B € IFS(X) in a

particular point x € X, where f 04 (LE)
[f4(x) stands for the point on
the plane with coordinates
(4 (x), v4(x)). [JA and GA
stand for the two modal
operators “necessity” and A=.B
“possibility” acting on A

B=zA

<0,0> <1,0>

based on the structure and properties of the underlying universe. It has to satisfy
three corresponding axioms and should not be confused with the degree of uncer-
tainty called also index of indeterminacy by some authors. In contrast to the standard
partial ordering A < B between two IFSs A and B, the x ordering A <_ B is satis-
fied iff p,4(x) < pp(x) and v, (x) < vy(x) for all x € X. The triangular representation
on Fig.2 gives us that A <, B iff for all x € X, fz(x) lies within (or on the border
of) the triangular area defined by the points f;(x),f,(x) and f74(x). On the other
hand, B <, A is satisfied iff for all x € X, fz(x) lies within (or on the border of) the
rectangular area defined by the points (0, 0), (4 (x), 0),f,(x) and (0, v, (x)). More-
over, the family of maximal elements of (IFS(X), <) consists exactly of the family
of ordinary fuzzy sets FS(X) and there is a unique minimal element 0, := (0, 0), see
Fig.2.
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2 Set Theoretical Inclusion Indicator j

For any two intuitionistic fuzzy sets A, B € IFS(X) we now define an inclusion indi-
cator (A, B), being itself an intuitionistic fuzzy set, belonging to IFS(U,), where
U, = {€y, €., €4} s the universe for this indicator. In the definition of U,, the
meaning of its elements is as follows:

g, corresponds to the standard strict inclusion (ordering),
» g, corresponds to the strict z-inclusion (z-ordering),

* £ corresponds to the quasi [J-ordering,

* &, corresponds to the quasi ¢-ordering.

For detailed introduction to quasi-ordered sets the reader could consult Birk-
hoff [3], Chap. II.1. And particularly, for the introduction of quasi [J-ordering and
quasi ¢-ordering the reader is referred to Atanassov [2], Chap. 4.1 and for a more
detailed discussion to Marinov [7]. A quasi ordering is, by definition, a binary rela-
tion <in Y, which is reflexive and transitive. Let us take any A, B € IFS(X) and write
A < Biff py < pp on X, respectively A <, Biff vy > vg on X. Obviously, < and
<, are both reflexive and transitive. That is, they are both quasi-orderings in IFS(X)
which have been called quasi []-ordering and quasi O-ordering, respectively.

We are going to define (A, B) to be itself an IFS and that is why we call it IF-
inclusion indicator for intuitionistic fuzzy sets. This indicator expresses the degree
to which A is included in B, for which the sense of the notion ”included” will be
explained further. For its introduction the two partial orderings described in the pre-
vious section will be simultaneously employed. We will obtain 1 = Valoj as the com-
position of two other mappings (j and Val), each of which having its own interest-
ing properties. In what follows, unless other stated, we will observe finite universe
X. That is, | X| = card(X) < w, where w = card(N). Let us now define two notions,
which turn out to be very important in the sequel. Likewise U,, we introduce U; in
the following way U; = {€,,, €0 > €51 €000 € 6.1} 1e( vy » OF more detailed

Uvj = {6eq7 60,;4’ 60,\/’ 87r,;4’ 'git,v’ EI:LW 8|:|,v’ 50,;4’ 'g<>,v }

The second important notion deserves to be introduced by a separate definition. For
its introduction we will observe functions like n : U; — Z(X) but from a special

type.

Definition 1 Let us denote the family of all functions with domain U; and range
P(X) by 2(X)Yi. Then, an important subset of Z2(X)" can be defined by

Split(U;, X) =
nine 2xX)% & Urey, 1K) = X & (V.1 € Up(k # [ = n(k) nn(l) = @)}.

Let us remark, that Split(U;, X) represents exactly the family of all equivalence
relations on X, consisting of at most 9 equivalence classes. Each of this equivalence
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classes turns out to have its own meaning in the terms of the above introduced order-
ings. Some (but not all) of the equivalence classes corresponding to elements of U;
may prove to be empty subsets of X.

Through the above introduced notions and for any A, B € IFS(X), let us define
the mapping j, which will be used for the introduction of the most important notion
in the current paper, i.e. the IF-inclusion indicator 1. For each mappingg : X — Y
and any Y, C Y, we denote the preimage of Y, by

g‘lY1 ={x|xeX&gkx) €Y}
Definition 2 In the above introduced notations, where A, B € IFS(X), let us define
J IFS(X) X IFS(X) — Split(U;, X), (6)

with j(A, B) € Split(U;, X) in the following way.

1. Fore,,:
o J(AB)eo) = (up = 1) {0} N (v = v) 7' {0}
2. For g:

o JAB)eg,) = (g — 1)1 (0,110 (v4 = vp)~'(0, 11,
o JA,B)(eg,) = (v = v) N0, 110 (uy — pp) ™ (0, 11.

3. Foreg,:

o JAB)eL,) = (up = 1a) (0, 110 (v = v)7'(0, 1],
o JAB)eL,) = (g — 1p)™' (0,110 (v4 = vp) (0, 1].

4. For et

* JAB)em,) = (up = 1)~ (0, 110 (v — v~ {0},
o JAB)eq,) = (g — 1p) (0,110 (v — v4) 7' {0},

5. Foreg,:

» JAA,B)g,,) = (up — 1)~ {0} N (vy = vp) (0, 1],
o J(A,B)g,,) = (g = 1) {0} N (vg = v)7'(0, 11.

The reader may easily verify that the above defined j(A, B) is really an element of
Split(U;, X), corresponding to the family of equivalence relations on X with not more
than 9 equivalence classes.

Let us now, trough the following remark, give a geometrical interpretation of the
above defined subsets of X, j(A, B)(¢) for each € € U;.

Remark 1 The image of j(A, B)(¢) for each € € U; corresponds to a particular area
(geometrical figure) from the triangular representation (see Figs. 3 and 4). The posi-
tion of the point f; (x) = (u4(x), v4(x)) for each x splits the triangular area {(¢,1,) |
(t,,) €10,11x[0,1] & t; + 1, < 1} in four main figures some of which can be
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Fig. 3 Tllustration of the
triangular representation of
the the intuitionistic fuzzy
set A in a particular point

x € X and the four figures
(splitting the triangular area),
corresponding to &g ,,, £g.,»
€0 €y € U;. The inner
contour, i.e. the segments
Vfsa @) and Mf, (x), is not
included in the
corresponding figures,
although some of the four
figures can degenerate into
segments or points

Fig. 4 Tllustration of the
triangular representation of
the the intuitionistic fuzzy
set A in a particular point

x € X and the four segments:
Lo 0. VI, (o), My (),
Sa@)fg4(x), corresponding to
€O €O Eos Eow € U
Some of the segments can
degenerate into points

E. Marinov et al.

<0,1>
fDA(?:)
&o,v Erp
y fa(z) foa(z)
Ex,v €0,
<0,0> M <1,0>
<0,1>
V —E&ny—
<0,0> M <1,0>

degenerated into lines or points. Actually, from Definition 2 it follows that each of
the equivalence classes of Split(U;, X), corresponding to j(A, B), proves to be bijec-
tively determined by the position of fz(x) in respect of the position of f,(x). The
geometrical and analytical (Definition 2) interpretations of j(A, B) have the follow-
ing correspondence in terms of the orderings and modal operators for IFSs:

1. Fore,,:

* J(A, B)(g,,) corresponds to the elements x € X for which A = B, or f,(x) =

S(0).

2. For g:

o Jj(A, B)(ew) corresponds to the elements x € X, for which f, (x) < fz(x),
* j(A,B)(g,) corresponds to the elements x € X, for which f, (x) > fp(x).
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3.

1.

For e :

o Jj(A, B)(s,w) corresponds to the elements x € X, for which f, (x) <, fz(x),

* j(A, B)(g,,,) corresponds to the elements x € X, for which f, (x) > fz(x).

For e

o j(A, B)(e, /4) corresponds to the elements x € X, for which f, (x) <g fp(x) and
fA ('x) =() fB('x)a

* j(A, B)(e,) corresponds to the elements x € X, for which £, (x) >0 fp(x) and
A=,B.

For g,

o j(A,B)(g,, M) corresponds to the elements x € X, for which f (x) <, fz(x) and
Jax) =0 S5,

* j(A, B)(g,,) corresponds to the elements x € X, for which f(x) >, fp(x) and
Fa(x) =0 J5(0.

Let us now, in a very intuitive way, introduce in Split(Uj,X) a binary relation,

denoted by <; .

Definition 3 For any two elements #;, 1, of Split(Uj, X)), let us define the following
binary relation <;: n; <; 1, iff

For e, :

° rll(geq) g nz(geq)'

. For gg:

. 711(80,”) Cc ']2(50,,,),
. 771(50,\/) 2 ’72(50,\/)'

. Fore,:

° ’11(5”,,4) c 772(5,,,;,),
° ’11(57,,\/) 2 ’12(5,,,\/)~

. For e

° ’11(55,”) - ’72(55,”)’
° ’11 (elj,v) 2 nZ(ED,v)'

For £,

o Mg, Cmes ),
° ’71(50,\/) 2 ’72(50,\/)~

Let us remark that the above defined binary relation <; can be stated in the following

more compact way. For #,,n, € Split(U;, X) we have that m =y iff
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1. For e,

° rll(geq) g ’72(88(1)'
2. Forall k € {0,z,[1, ¢}:

. nl(sk#) c ’72(51(,,4)»
. ”I(Ek,v) 2 ﬂz(ek,v)'

The proof of the following theorem is an application of the ordering properties of
the set theoretical partial ordering C.

Theorem 1 The binary relation <;, introduced in Definition 3, is a partial order-
ing in Split(U;, X). That is, it satisfies the three axioms for ordering: it is reflexive,
transitive and anti-symmetric.

Proof Let us show that the binary relation <; is reflexive. Taking any 7, €
Split(Uj,X), and because of the reflexivity of the set theoretical partial ordering

, we have that n,(¢,,) € n,(g,,) and n,(¢; ,) € ny (g ,), m(€g,) 2 m(gy,) for all
k e {0, 7,1, ¢}. Therefore, from Definition 3 we obtain that 7, <; n,. The transi-
tivity of <; is implied directly from the transitivity of C as well. To show the anti-
symmetric property, suppose that for n;, 7, € Split(U;, X) we have that ; <; n, and
1, <; n, simultaneously. Therefore, from the anti—symmetrlc property of C we get
that n,(e) = n,(¢) for all € € UJ Hence, 1, = #, on the whole domain of Uj, which
yields that #; = #,. The theorem is proved.

As an easy exercise the following propositions about the newly introduced partial
ordering <; is left to the reader.

Remark 2 Let us classify the minimal and maximal elements of the partially ordered
set (Split(Uj, X), _]) The family of the minimal elements of Splzt( , X) consists of
the elements n € Splif(U;, X), satisfying

n(e,) =9, forall k € {0, x,[], 0}.

The family of the maximal elements of Split(Uj,X) consists of the elements # €
Split(U;, X), satistying

n(e,) =9, forall k € {0, 7,7, 0}
Remark 3 LetA, B and C be elements of IFS(X) and j(A, B) < S J(B, C). Then we have
that,
J(A,B) %, j(A, €)

More generally, let A, ...,A, € IFS(X) and forall k=1, ...,n =2  j(A;, A1)
= J(Ags1,Agyn). Then forany [ € {1,...,n — 2} we have that,

JAL AL <5 J(ALA,)
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In order to introduce the final notion in this paper, i.e. the I[F-inclusion indicator
1, we will need the following mapping,

Val : Split(U;,X) — IFS(U,),

where U, has been defined as U, = {¢,€,, €, €, }. For each n € Split(U;, X) we
have that Val(n) € IFS(U,) such that:

1. For g:
In(eg,, )l (el
* v (€0) = = and vy (o) = T
2. Fore,:
In(e, )l _ nteg )l
* Hvaien(€x) = T and v (€2) = Ty
3. Foreq :
In(egy,)l gl
* Hyai(EQ) = |X|u and vy, (€) = I)?I
4. Foreg,:
n(eq,,0)] Ineo,)l
* Hvain(Eo) = T and vy (£6) = 5

Let us remark that the above definition of the mapping Val, that is its image Val(n),
can be stated in the following compact form. For each k € {0, z,[], ¢} we can write:

|’7(5k,;4)| |”I(5k,v)|

Hvaion (Ex) = IX] and Vain)(Ex) = IX|

We are going now to show that the so defined Val(n) is indeed an element of
IFS(U,). By the definition of Split(Uj,X), for each of its elements #, we have that
User k) = X and for all €, and ¢, € U;, £, # &, implies that n(e;) N n(e,) = @.

J
The above statement yields that )’ ., |#(¢)| = |X| and therefore,

eI+ Y I+ Y Inte )l =1X].

ke{0,7,[1,0} ke{0,7,[1,0}

From the above expression, dividing by |X| the two sides of the equation, we get that

Iﬂ(seq)|+ Z |'1(€/<,,,)|+ Z |f1(c€k,v)|=1

X1 X1 X1

ke{0,7,[1,0} ke{0,7,[1,0}

The last equation and the definition of the mapping Val provides the following inter-
esting property of the elements from Range(Val) C IFS(U,).
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Remark 4 For all 5 € Split(Uj, X), we have that

0< 2 Ilvaz(n)(gk) + 2 VVal(n)(gk) <L @)

ke{0,7,[1,0} ke{0,7,[1,0}

1. The right hand side inequality is equality in the above expression iff [n(¢,,)| = 0,
ie. n(e,,) =0.

2. The left hand side inequality is equality in the above expression iff |n(e,,)| =
IX], e n(e,,) =X.

The above remark permits us to state the following theorem.

Theorem 2 The mapping Val : Split(U;, X) — IFS(U,) is well defined. Its range
is indeed a subset of IFS(U,), i.e. for alln € Split(Uj,X) we have that

(V& € Ut)(MVal(n)(e) + VVa[(r])(e) < 1)

3 IF-inclusion Indicator 1

The reader may compare the notions, defined in this section with Atanassov [1],
Chap. 18, Definition 1.8. There an indicator of inclusion of IFSs, In(A, B) for any
A, B € IFS(X) has been introduced. In(A, B) being itself an element of IFS(X), for
which

« In(A,B) = (1,0} iff A < B,
« In(A,B) = (0, 1) iff B < A.

Another inclusion indicators and inclusion measures of intuitionistic fuzzy sets
can be found in Cornelis [4] and Grzegorzewski [5].

Let us now introduce the most important for this paper notion of IF-inclusion
indicator 1 through the following definition.

Definition 4 (IF-inclusion indicator) The mapping
1 @ IFS(X) X IFS(X) — IFS(U,)

will be called IF-inclusion indicator and let us define it as the composition of the
already defined j and Val, i.e. 1 = (Valoj). That is,

j Val
1 1 IFS(X) X IFS(X) = Split(U;, X) —> IFS(U,).
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Remark 5 Suppose that n = j(A,B) € Split(Uj,X) for some A, B € IFS(X) and let
us explain what really expresses Val(n) = Val(j(A, B)) = 1(A, B) (see Figs.2 and 3
for the geometrical interpretation).

1. Forg:

o Hap (g = ﬁ|{x | x € X & f,(x) < fz(x)}], i.e. the normalized number of
elements x € X, such that f, (x) < fz(x),
* Vun (&) = ﬁ“x | x € X & f(x) > fz(x)}], i.e. the normalized number of

elements x € X, such that f, (x) > fz(x) .
2. Fore,:

* Hup(€) = ﬁl{x | x € X & f,(x) <, fp(x)}], i.e. the normalized number of

elements x € X, such that f, (x) <, fz(x),
* Vunp (€)= ﬁ [{x | x € X & fy(x) >, fz(x)}], i.e. the normalized number of
elements x € X, such that f, (x) >, fz(x).
3. Foreq :
© Ham(En) = ] x € X & uy () < up®) & vy () = vl
* Vap(en) = Ilyll{x | x € X & py(x) > pp(x) & vy (x) = vg(x)].
4. Fore,:
© Ham(Ee) = Tl ] x € X & uy(0) = up() & vy(x) > vg(0),
* Vian(ee) = x| x € X & py () = jup(@) & vy () < (o).

As an easy exercise one can induce from the definition of the IF-inclusion indi-
cator following theorem.

Theorem 3 In the above notations with A, B € IFS(X), we have that
1(A,B) = —u(B,A).

Remark 6 We note that in (7) for n = j(A, B), where A, B € IFS(X), the equality

Z Hyap) (€ + Z Vian (&) =1

k€{0,7,01,0} k€{0,7,01,0}
is satisfied only if we have that for all x € X, p,(x) # pp(x) or v, (x) # vp(x).

Some combinations of the elements from the universe U, prove to be of inter-
est for practical estimations. Through such combinations we build up estimation
expressions not only for the strict < and < -inclusions, as already done through
Hya ) (€x)s Via ) (€x), k € {0, 7}, but for the non-strict ones as well. As already stated,
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g corresponds to the standard strict inclusion (ordering),
g, corresponds to the strict z-inclusion (z-ordering),

* & corresponds to the quasi [J-ordering,

* &, corresponds to the quasi ¢-ordering.

Let us now, employing the above introduced IF-index, give some expressions
providing a degree of inclusion (with respect to a partial ordering), for which

* {&g, €, €4} corresponds to the standard inclusion (ordering),
» {€,.€0,€,} corresponds to the z-inclusion (z-ordering).
And namely, let us take any two A, B € IFS(X) and define

1. The degree to which A equals B, 1_(A,B) = Va-Beq )|

2. The degree to which A is <-included into B, 1.(A, B) = p, p)(€9) + Hyap)(E) +

Hyap)(Eo) +1-(A,B)
3. The degree to which A is strictly <-included into B, 1 (A, B) = p, p)(g¢) +

Hyap)(ED) + Hiap)(Eo)

4. The degree to which A is <;-included into B, i (A, B) = p,4 p)(€ )+ Myu ) (E)
+ Vt(A,B)(Eo) +1_(A,B)

5. The degree to which A is strictly <, -included into B, 1. (A, B) = p, 4 p)(€,) +
Hyan)Em) + Via s (€o)

From (7) it now follows that for each p € {<, <, <,, <., =},
1, + IFS(X) X IFS(X) — [0, 1]. ®)
That is, ¢ p for each p € {<, <, <, <., =}, provides an ordinary fuzzy estimation.

Remark 7 The indicator i_ can be expressed as follows
1_A,B)=1- ( 2 Hyap)(Ex) + z Vz(A,B)(‘C’k)>'
ke{0,7.,[3,0} ke{0,7.[1,0}
One may easily verify the following theorem.
Theorem 4 For any A, B € IFS(X) the following expressions hold,

1.(A,B)=1iffA<B

and
1.(A,B)=0if1.(B,A)=1if B<A
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4 Conclusion

In this paper we have introduced a measure for inclusion of two IFSs into each other
according to the two main partial orderings in the family of IFSs. This inclusion
measure has been observed on two levels. From a set-theoretical point of view,
through the introduction of the mapping

Ji IFS(X) x IFS(X) — Split(U,, X),

where Split(U;, X) corresponds to the family of equivalence relations on X with at
least 9 equivalence classes. And the most important and of practical use IF-inclusion
indicator,

¢ IFS(X) X IFS(X) — IFS(U,),

introduced in Definition 4. The IF-inclusion indicator ranges over IFSs on a spe-
cial universe U,. It has been employed in the last section for the introduction of
expressions for a degree of inclusion of A into B according to any of the two main
orderings, where the range now is the interval [0, 1]. That is, these expressions give
us an ordinary fuzzy estimation. They are all applicable in real world models where
intuitionistic fuzzy sets are employed and give a more detailed information about the
inclusion of an IFS into another IFS. Many examples can be found in the literature,
especially for decision making procedures. This work is going to be extended further
for the investigation of the formulas proposed here in a more practical direction.
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One, Two and Uni-type Operators on IFSs

Gokhan Cuvalcioglu

Abstract Intuitionistic Fuzzy Modal Operator was defined by Atanassov in
(Intuitionistic Fuzzy Sets. Phiysica-Verlag, Heidelberg, 1999, [2], Int J Uncertain
Fuzzyness Knowl Syst 9(1):71-75, 2001, [3]). He introduced the generalization of
these modal operators. After this study, Dencheva (Proceedings of the Second
International. IEEE Symposium: Intelligent Systems, vol 3, pp 21-22. Varna, 2004,
[10]) defined second extension of these operators. The third extension of these was
defined by Atanassov in (Adv Stud Contemp Math 15(1):13-20, 2007, [5]). In
(Atanassov, NIFS 14(1):27-32 2008, [6]), the author introduced a new operator
over Intuitionistic Fuzzy Sets which is generalization of Atanassov’s and Dench-
eva’s operators. At the same year, Atanassov defined an operator which is an
extension of all the operators. The diagram of One Type Modal Operators on
Intuitionistic Fuzzy Sets was introduced first time by Atanassov (Int J Uncertain
Fuzzyness Knowl Syst 9(1):71-75, 2001, [3]). The author expanded the diagram of
One Type Modal Operators on Intuitionistic Fuzzy Sets with the operator Z (alpha
beta gamma). In 2013, the last operators were defined. These operators have
properties which are belong to both first and second type modal operators. So, they
called uni-type operators. After these operators the diagram of modal operators on
intuitionistic fuzzy sets is expanded.
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1 Introduction

The original concept of fuzzy sets in [13], Zadeh was introduced as an extension of
crisp sets by enlarging the truth value set to the real unit interval [0, 1]. In fuzzy set
theory, if the membership degree of an element x is p(x) then the non-membership
degree is 1 — p(x) and thus it is fixed.

Intuitionistic fuzzy sets have been introduced by Atanassov in 1983 [1] and form
an extension of fuzzy sets by enlarging the truth value set to the lattice [0, 1] X [0, 1]
is defined as following.

Definition 1 Let L =[0, 1] then L" = {(x;,x;) €0, 1]2: X| + X < 1} is a lattice with

(X1, x2) (¥, ¥Y2): X1 <y, X2 2y,

The units of this lattice are denoted by 0,-=(0,1) and 1;: =(1,0).
The lattice (L*, <) is a complete lattice: For each ACL",

sup A = (sup{x € [0, 1]: (y €[0, 1]), (x,y) € A)},
inf{y € [0, 1]: (x€[0, 1), (x.y) € A)})

and

inf A= (inf{x €0, 1]: (y€ [0, 1)), ((x,y) €A)},
sup{y €[0, 1]: (x € [0, 1]), ((x,y) €A)})

As is well known, every lattice L* has an equivalent definition as an algebraic
structure (L*, A, V, <) where the meet operator A and the join operator V are
linked the ordering “<” by the following equivalence, for x,y €L",

XSySXVYy=y&xXAy=X

The operators A and V (join and meets resp.) on (L*, <) are defined as follows,
for (x1,y), (x2,¥,) €L,

(X1, ¥1) A (X2, ¥2) = (X1 AX2, Y1 VY2)
(x1,¥1) V (X2, ¥2) = (X1 VX2, Y1 AY2)

Definition 2 ([1]) An intuitionistic fuzzy set (shortly IFS) on a set X is an object of
the form A={<x,p,(x),va(x)>:x€X} where p,(x), (pa: X — [0, 1]) is called
the degree of membership of x in A, va(x), (va: X — [0,1]) is called the degree of
non- membership of x in A, and where pa and v, satisfy the following condition:
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Ha(X) +va(x) <1, forallx e X.

The hesitation degree of x is defined by wa(Xx) 1 — pa(X) — va(X)

Definition 3 ([1]) An IFS A is said to be contained in an IFS B (notation A C B if
and only if, for all x € X, p, (X) < pg(x) and va(x) > vg(x).

It is clear that A = B if and only if AC Band BC A

Definition 4 ([1]) Let A € IFS and let A ={ <X, ps(x),va(x) >:x €X} then the
following set is called the complement of A

A°={<x,va(X), pa(x) > :x €X}

The notion of Intuitionistic Fuzzy Operators was firstly introduced by Atanassov
[1]. The simplest one among them is presented as in the following definition.

Definition 5 ([2]) Let X be a set and A ={ <x, p,(x),va(x) >:x € X} €IFS(X),
o, B €0, 1] then

(@) HA={<x, X udrls: xeX}
(b) KA={<x, L&+ wls xeX}.

After this definition, in 2001, Atanassov, in [3], defined the extension of these
operators as following:

Definition 6 ([3]) Let X be a set and A ={ <X, p,(x), va(x) >:x € X} € [FS(X),
a, pE[0, 1].

(@) HA={<x,aps(x),ava(x)+1—a>:xeX}
(b) R A={<x,0ps(x)+1—0a,avs(x)>:xEX]}.

In these operators [, and [X],; if we choose a=1, we get the operators H, [X],
resp. Therefore, the operators FH, and [X], are the extensions of the operators FH, X,
resp. Some relationships between these operators were studied by several authors
[10, 12].

In 2004, the second extension of these operators was introduced by Dencheva in
[10].

Definition 7 ([10]) Let X be a set and A ={ <X, p,(x),va(x) >:x € X} € IFS(X),
apelo,1].

(@) HHopA={<x,0p,(x),ava(x)+p>:x€X} where a+pe|0,1].
() Ky pA={<x,ops(x)+B, ava(x)>:x €X} where a+p €0, 1].

The concepts of the modal operators are being introduced and studied by dif-
ferent researchers, [3-6, 10-12], etc.

In 2006, the third extension of the above operators was studied by Atanassov. He
defined the following operators in [4].
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Definition 8 ([4]) Let X be a set and A ={ <x, p,(x),va(x) >:x € X} €IFS(X).
Then, for a, B,y €10, 1], max{o, } +y < 1.

(@) Hy py(A)={<x apy(x),pra(x) +y>:xeX}
(1) Xopy(A)={<x,ap,(x) +7,Pra(x) >:x€X}

If we choose o = § and y = f in above operators then we can see easily that
Hewy = BHop and Kooy = Ko, p Therefore, we can say that FHy oy and K.y are
the extensions of the operators [, g and [X], g, resp. From these extensions, we get
the first diagram of One Type Modal Operators (OTMOs) over Intuitionistic Fuzzy
Sets (IFSs) as displayed in Fig. 1.

In 2007, after this diagram, the author [7] defined a new operator and studied
some of its properties. This operator is named E, g and defined as follows:

Definition 9 ([7]) Let X be a set and A ={ <x, p,(x),va(X) >:x € X} €IFS(X),
a, p € [0,1]. We define the following operator:

Eop(A)={<x,Blapy(x) + 1 —a), a(pra(x) + 1 - B) >:xe X}

If we choose o = 1 and write « instead of § we get the operator [H,. Similarly, if
B = 1is chosen and written instead of §, we get the operator [X],. In the view of this
definition, the diagram of OTMOs on IFSs is figured below (Fig. 2).

These extensions have been investigated by several authors [5, 6, 9]. In par-
ticular, the authors have made significant contributions to these operators.

EEOL,BJ/ g%ﬁ,‘(

) !

Blap Mo

1 )

= X,

! !

i X

Fig. 1

EEO%B,Y gwﬁﬂ’
1 )
Ho g ., Ko
(AN
M, K,
1 1
2 X

Fig. 2



One, Two and Uni-type Operators on IFSs 59

In 2007, Atanassov introduced the operator [-], g ;s Which is a natural extension
of all these operators in [5].

Definition 10 ([5]) Let X be a set, A € IFS(X), a, B, y, & € [0, 1] such that
max(a, ) +7+8<1 then the operator [y, defined by

Clap.y.6(A) ={ <x,app (x) +7, Pra(x) +8>:x€X}

This operator changed the OTMOs’ diagram (Fig. 3).

At the end of these studies, Atanassov though that this diagram was completed.
However, he realized that it wasn’t totally true since there was an operator which
was also an extension of two type modal operators.

,,,,,

Definition 11 ([6]) Let X be a set, A € IFS(X), o, p,v,5,e,€]0, 1] such that
max(a—{,p—¢)+y+8<1 and min(a—{,p—e)+y+5>0 then the operator

©u.p.y.5.6.0(A) = { <X opp (X) —eva(x) +7, Pra(x) —Lpa(x) +8>:x € X}

After this definition, the OTMOs’ diagram is became as in Fig. 4.
In 2010, the author [8] defined a new operator which is a generalization of E, g

Definition 12 ([8]) Let X be a set and A = { <x, p,(x),va(X) >:x € X} €I[FS(X),
o, B, o € [0, 1]. We define the following operator:

Zop(A) = { <x, Bapa (x) + © — o.a), a(Pra(x) + © — o.p) > : x € X}

The diagram of OTMOs over IFSs is displayed in Fig. 5.
We have defined a new OTMO on IFS, that is generalization of the some
OTMOs. The new operator defined as follows:

Bopas

H X

By o.B.y

Bﬂf - \IZ
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¥

X,

\

H X
Fig. 3
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Definition 13 ([8]) Let X be a set and A ={ <x, p,(x),va(x) >:x € X} €IFS(X),
o, B, ,0€[0,1]. We define the following operator,

Z“;”’[?(A) ={<x, plaps(x) + 0 —w.a),a(pra(x) +0-0.p) > :xeX}

The operator Z“’ﬁ is a generalization of Zaﬁ , and also, Ey g, Hop, XKap. The
new diagram of OTMOs as in Fig. 6.

Before defining new operators which are generalization of both one type and
second type modal operators, we will recall definitions of second type modal
operators.
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X, By

Definition 14 ([1]) Let X be universal and A € IFS (X), a € [0,1] then
Do (A) ={ <x, pa(x) +ama(x), va(X) + (1 —a)wa(x) > x € X}

Definition 15 ([1]) Let X be universal and A € IFS (X), a,f€[0,1] and a+p <1
then

Fo p(A) ={ <X, pp(X) + ama (x), va(X) + Pra(x) > : x € X}
Definition 16 ([1]) Let X be universal and A € IFS (X), o, € [0, 1] then
Go, p(A) ={ <x, apy(x), Pra(x)>: xeX}

Definition 17 ([1]) Let X be universal and A € IFS (X), o, B €0, 1] then

(@) Hg, p(A)={<x, apy(x), va(x) +pra(x)>: xeX}
®) H, p(A) ={<x, opp (x), va(x) +B(1 —aps (x) —va(x)) >: xEX}

Definition 18 ([1]) Let X be universal and A € IFS (X), o, € [0, 1] then

@) Jo p(A) ={<x, pao(x) +ama(x), pra(x)>: xe€X}
(b) T, 5(A) ={ <x. pa(0) +a(l = pa(x) — Bra(x)). Pra(x)>: xeX}
Definition 19 ([1]) Let X be universal and A € IFS (X) then (Fig. 7)

@ OA)={<x pa(x), I-pa(x)>: x€X]}
(b) O(A)={<x, 1 —va(x), va(x)>: x€X}
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2 The Uni-type Operators E‘“’g , By, p and Hqp

o,

In this section, we give some operators. Some of them satisfy characteristic prop-
erties of one and two type operators. Because of these properties, they will be called
uni-type operators.

Definition 20 ([9]) Let X be a universal, A € IFS (X) and a, p, ® €0, 1]. We
define the following operator:

(@) H p(A) ={(x B(pa(x) + (1 —a)va(x)), a(pra(x) +© —of)): x €X}
(0) K 5(A)={{x, Blapy (x) + o —wa), a((1 —B)pa(x) +va(x))): x €X}

It is clear that;

Blra(x) + (1 —a)va(x)) + a(Pra(x) + © — 0f)
=PB(Ha(x) +va(x)) +ao(1—p)
<p+oan—apo=p(1-an)+on <1

It is clear that HH, (A) € IFS(X). We can say [X]; ;(A) € IFS(X), too.
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©(1J50/,5~8,T Xa,b,c.d,e,f

1\

Baﬁfné

From this definition, we get the following new diagram which is the extension of
the last diagram of intuitionistic fuzzy operators on IFSs in Fig. 8.
Some fundamental properties of these operators are following.

Theorem 1 Let X be a universal, A € IFS (X) and o, B, ® €[0, 1] then
(@) if p<o then Hy z(H; 5(A))EH; . (Hp o(A))
(b) if p<a then [X, 5Ky 5(A))EK] (XK o(A))

Proof

(a) If we use p<a then we get,

Bp<a= (a—P)(a+p+2ap) <0
= p*(1—2a) <o?(1-2p)
= B (1 =20)o <o (1 —2B)w

and with this inequality we can say

aPpa (x) +oB(1 = Bva(x) + B(1 — o) (aPva(x) + po — apw)
< s (x) + ap(1 = 0)va(x) + a1 = B)(apra(x) + ao — ofo)
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On the other hand

p<a=>(B—a)(ap—1)>0
> ap’ +a—op>a’p+p—ap
= ap’o + a0 — afo > oo + fo — afo

with this we can say

o*p?ua (X) + ap’o — o fo + oo — afo

> o pua (x) + o Bo — o B2w + Po — afw
So we get
EHG. o (B o (A))EH, o (EG 4 (A))

We can show the property (b) as the same way.
Proposition 1 Let X be a universal, A € IFS (X) and o, B€ [0, 1) then
B
@ Hiy(A)=Hap(A)
B
(b) :1:"1 (A) = xa,ﬁ(A)

Proof 1t is clear from definition. [l

Definition 21 ([10]) Let X be a set and A={<x, po(x), va(x)>: x€X}
eIFS(X), a, B, o, € [0, 1] .We define the following operator:

Epg(A)={<x B((1— (1 =0)(1=6))pp (%) + (1 = a)Bua(x) + (1 — ) (1 = B)w),
a((1=P)Opa(x) + (1 = (1=p)(1=0))va(x) + (1 =B)(1 —O)w) >:x €X}
Proposition 2 ([10]) Let X be a set and A € IFS (X), a, B, , 6 €0, 1]
Eyp(A9) =Ep i (A)°
Proof 1t is clear from definition. O
Proposition 3 ([10]) Let X be a set and A € IFS (X), o, B, , 6 €10, 1] if p <o then

0 .0
Eqp(A)EEg,(A)
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Proof If we use B <« then

P<a=P(O(us(x) +va(x)) +o(1=0)) <a(B(ps(x) +va(x)) +o(1—6))

= B(O(pa(x) +va(x)) + (1 =0)) + a(pa (x) +Opy (x) — Ova (X))

S a(O(pa(x) +va(x)) + (1 =6)) +af(pa (x) +0pa (x) —Ova(x))

SO we can say Ef;’g (A)EEE’”S (A) O
Proposition 4 ([10]) Let X be a set and A € IFS (X), o, B, o, €0, 1] if © <0 then

Eqp (A)CEG [ (A)

Proof 1t is clear from definition. O

Definition 22 Let X be a set, A € IFS (X) and o, p €0, 1]. We define the fol-
lowing operator:

B p(A) ={{x, B(Ha(x) + (1 = 0)va(x)), a((1 = B)ua(x) +va(x))): x €X}

Definition 23 Let X be a set, A € IFS (X) and «, B, ® € [0, 1] . We define the
following operator:

Bep(A) = (6%, Bl () + (1 = BJva(x)), (1 —oia () +va(x))): x €X)
Theorem 2 Let X be a set, A € IFS (X) and o, B €0, 1].

B(X,(X(A> = Eﬂ, (X(A)
Proof 1t is clear from definition. O

Theorem 3 Let X be a set, A € IFS (X) and a, B, ® €[0, 1]

(@) FHY p(A%) =K (A)°
(b) (X 5(A%) =HH] o(A)°
(©) Hop(A)=Hyp.«(A)

Proof

(a) From definition of this operators and complement of an intuitionistic
fuzzy set we get those,

XFB),O((A)C ={<x, B((1 —)ps(X) +va(X)), a(Bps(X) +@ —0p) > :x € X}

and
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0 5(A%) = {0, B(va(x) + (1 = g (%)), a(Biia (x) + 0 — wB)): x X}

So, we get HH ;(A°) =X o (A)".
(b) If we use definitions then we get

Bap(A°) = {(x, Bva(x) + (1= Bua (x)), a((1 - a)va(x) +pa(x))): x €X}

and

Bp.o(A)°={{x, B(1=B)pa(x) +va(x)). s (x) + (1 —0)va(x))): x €X}
0

Theorem 4 Let X be a set and A IFS (X), o, B€0, 1]. If a =1, B<] then

Bop(Bpa(A))EBpa(Bap(A))

Proof If we use a>1 and B <} then we get,

(1=20) < (1=2p) = (1 = 200 (i (x) +va(x)) S 0*(1 = 2B) (a () +va(x))

So,

oaBpip (%) + (1 = B)a (x) + B2 (1 = ) (x) + B* (1 = a)va ()
< oBpip (x) + oaB(1 = o)ua (x) + o (1 = B)*pp (x) + o (1 = B)va(x)

and
o (1= B)ha (%) + o (1 = B) va(x) + (1 — a)py (x) + ot (x)
> 7 (1= 0 () +B7(1 = 0 va (x) + 0B(L = B)pia (x) + aPra ()
with these inequalities Beg(Bpa(A))EBpa(Bog(A)) O

Proposition 5 Let X be a set and A € IFS (X), a, p€ 0, 1] then

Bog(A®) =Bpa(A)°

Proof 1t is clear from definition. O
Proposition 6 Ler X be a set and A € IFS (X), a, B, ® € [0, 1] then

@) Egg(A)=2Z3,(A)

(b) Eg'(A)=Bap(A)

©) Eqp(A)=Gepap(A)
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(@) Egp(A)
(e) EVo(A)
(f) EgY(A)

Eo p(A)
@
X

Proof Clear from definition. O
Proposition 7 Let X be a set and A € IFS (X), a, B, ® € [0, 1] then

es!

()
(b)
(©
(d)
(e
69)
(&)

[esliies|

m ™
E
Il
v}
g
z

es!

esl
SRS mE N2 RER,
T e, T O~ T o~ = O

E
I
=
>

Proof Clear from definition. [l

From these properties, as in Fig. 9, we get the following new diagram for
intuitionistic fuzzy modal operators,

©0!,l3“/,5«3,t Xa,b,c.d.e,f
-




68 G. Cuvalcioglu

3 The New Operators X5 and Y,

In this section, we give two new operators on intuitionistic fuzzy sets. They satisfy
the properties of one type modal operators. So, these operators belong to family of
one type operators.

Definition 24 Let X be a universal, A € IFS (X) and o, B, ® € [0, 1]. We define the
following operators,

@ X2 (A) = {(x Ba(x) + (1~ @)va (x)) + (@ — 0B). afra(x)):x €X}
(b) Y2 5(A) = {(x, aBpr (). (1 = Bl (x) +va(x)) + B0 — 000)): x €X}

It is clear that;

Blua(x) + (1 = a)va(x)) + (0 — o) + afra(x)
= Blpa(x) +va(x)) + 0w (1 - )
<B+aw—opo=p(1-aw)+on <1

and

afpa (x) +a((1 = P)pa(x) +va(x)) +p(o — ww)
=a(pa (x) +va(x)) +po(l - o)
<o+po—apo=a(l —pfu)+pe <1
Therefore we get X{ 4(A), Yy, 4(A) €IFS(X).
Proposition 8 Let X be a universal, A € IFS (X) and o, B€ 0, 1) then
@ X5 (A) =R p(A)
®) Yii(A) = p(A)

Proof 1t is clear from definition. O

Therefore, the last modal operators’ diagram of operators on intuitionistic fuzzy
sets is obtained as following Fig. 10.
Some properties of these operators are following.

Theorem 5 Let X be a universal, A € IFS (X) and o, B, ® € [0, 1] then

(@) If a <P then X ,(X (A))EXS (X2 4(A))
(b) if P<ot then YO 4(YS (A)EYS (YY 5(A))
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©11J5~‘/,5~8,T Xa,b,c.d,e,f

Proof

(a) If we use a < then,
a<Pp=>(a—PB)(1—a—P+ap) <0

>p(1—a)+a<a®(1—P)+p
= o[p*(1 - o) +of <wlo*(1 - ) + ]
and with this inequality we can say
By (X) +aB(1 = B)va(x) + B (0 — aw) + af? (1 — a)va(x) + oo — afo

<oy (x) +oB(1 = owa (x) + o (@ = o) +o* (1 = B) (Bya (x)) + Po — oo
a

On the other hand
o’ pua (x) = o’ pua ()
S0, X5 5 (X o (A)EXR (X5 5(A))
We can show the property (b) same way.
Theorem 6 Let X be a set, A € IFS (X) and o, B, ® €0, 1].
@) Xg (A7) =Yg (A)
(A)

(b) Yg (A =X},
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Proof

(a) From definition of this operators and complement of an intuitionistic
fuzzy set we get,

Y o(A)° ={(x a((1=B)pa(x) +va(x)) + B0 — oa), afp, (x), ):x €X}

and

A% ={(x Blva(x) + (1 = )pa (x)) + a0 — o), afp, (x)): x € X}
a

So, X (A%) =Y‘[;”a(A)°.
Property (b) can be shown by the same way.

Proposition 9 Let X be a set, A € IFS (X) and o, B, , 6 €10, 1], @ <6.

(a) X(x ﬁ(A) Xa [S(A
(b) Y& (A)EYS 4(A)

~—

Proof

(a) If we use o <0 then we can see,
®<0=>P(1—a)o<p(l—a)d
and through this inequality,

a((1=B)pa(x) +va(x)) + B0 - 0a) Sa((1 =P)pa(x) +va(x)) +H(0 - Oa)
a

So. Y& ,(A)EY?, 5 (A)

Theorem 7 Let X be a set, A € IFS (X) and o, B, o € [0, 1].

(@) X(&’, )] (EGA) EX(&), [} (&(XA)
(b) Y(&), )] (Ea(xA) EY:;), g (lqu)

Proof

B(1 =) = Blaa (x) + (1 = )va (x) + (1 = )?) + (0 — wp)
Bloa (x) + a1 —)ua(x) + (1 — ) + (0 — f)
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and

ap — o >0=> o Bra(x) + af — o P> o’ Pua(x)

Therefore, X{, 5(HH.A)EX] 5(XaA)
Similarly, if we use af(l —a) >0 and a(l —a) > a(l —p)(1 —a) we get

o p(EHA)TY, (KoA)
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Intuitionistic Fuzzy Relational Equations
in BL—Algebras

Ketty Peeva

Abstract We investigate direct and inverse problem resolution for intuitionistic
fuzzy relational equations in some BL—algebras, when the composition for the
membership degrees is a sup —f—norm and for non-membership degrees is an
inf —s—norm. Criterion for solvability of intuitionistic fuzzy relational equation is
proposed and analytical expressions for maximal solution is given.

Keywords Intuitionistic fuzzy relations * Direct and inverse problems * BL—algebra

1 Introduction

Intuitionistic fuzzy sets (IFS) were introduced by K. Atanassov in 1983 [1]. After
publishing his monograph [2], the interest on IFS was rapidly increasing with many
publications in variety of areas. My interest began about 2000 (see [20]). My atten-
tion was focused on intuitionistic fuzzy relations—direct and inverse problems, their
algorithmical and software resolution [16, 22-24, 27]. Intuitionistic fuzzy relations
are studied for instance in [5, 9, 13, 18-20, 22-24, 26].

Direct and inverse problem resolution for intuitionistic fuzzy linear system of
equations, when the composition is max —min for membership degrees and
min — max for non-membership degrees is studied first in [20-23] and corresponding
software is given in [16, 27].

In this chapter we present direct and inverse problem resolution for intuitionistic
fuzzy relations in some BL—algebras, when the composition g, for the membership
degrees is a sup —f—norm and for non-membership degrees is an inf —s—norm:

Axp B=C.
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Here A, B and C are finite intuitionistic fuzzy matrices. Two of them are given,
one is unknown:

(i) If A and B are given, computing the unknown matrix C is called direct problem
resolution.

(i1) If A and C are given, computing the unknown matrix B is called inverse problem
resolution.

In Sect. 2 we introduce r—norms, BL—algebras, intuitionistic fuzzy sets, intuition-
istic fuzzy relations and intuitionistic fuzzy matrices. Section 3 presents direct prob-
lem resolution for intuitionistic fuzzy matrices in BL—algebras with examples in
Godel algebra, Goguen algebra and Lukasiewicz algebra. Section 4 covers intuition-
istic fuzzy relational equations in BL—algebras, finding maximal solution and estab-
lishing consistency of the equation, as well as suitable examples. Concluding section
proposes ideas for next development.

Terminology for algebra, orders and lattices is given according to [12, 17], for
fuzzy sets, fuzzy relations and for intuitionistic fuzzy sets—according to [2, 7, 10,
15, 22], for computational complexity and algorithms is as in [11].

2 Basic Notions

Partial order relation on a partially ordered set (poset) P is denoted by the symbol <.
By a greatest element of a poset P we mean an element b € P such that x < b for all
x € P. The least element of P is defined dually.

The tree well known couples of ~—norms and r—conorms (or s—norms) are given
in Table 1.

2.1 BL—-Algebra

BL—algebra [14] is the algebraic structure:

BL = <L’V’A’*’_)7071>’

Table 1 r—norms and s—norms

t—norm | Name Expression s—norm | Name Expression

3 Minimum, (x,y) = 3 Maximum, s3(x,y) =
Godel t—norm | min {x, y} Godel r—conorm | max {x, y}

t, Algebraic LH(x,y) =xy Sy Probabilistic $y(x,y) =
product sum xX+y—xy

t Lukasiewicz HLxy) = 5 Bounded sum s(x,y) =
t—norm max{x+y— min {x+y, 1}

1, 0}
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where V, A, %, — are binary operations, 0, 1 are constants and:

(i) L=<(L,V,A,0,1) is a lattice with universal bounds 0 and 1;
(i) L = (L, *, 1) is a commutative semigroup;
(iii) * and — establish an adjoint couple:

< (x> y)exxz<y,Vx,y,z€L.
@iv) forallx,y € L
x¥(x—->y)=xAy and x—->y)Vv@y-ox)=1.

We suppose in next exposition that L = [0, 1Jand x, y € [0, 1].
The following algebras are examples for BL—algebras.

1. Godel algebra
BLG = ([0’ 1]9\/9/\9 _>G’09 1>3

where operations are

(1) Maximum or s;—conorm:

max{x, y} =xVy. @))
(2) Minimum or t;—norm:
min{x, y} =xAy. 2
(3) The residuum — is
_Jlif x<y
x_)Gy_{yif x>y’ 3)

(4) A supplementary operation is useful

_Jy ifx<y
xey—{o’ if x>y 4)

It is not difficult to prove that (3) and (4) satisfy:
T(x=gy)=oxey. &)
2. Product (Goguen) algebra

BL, = ([0, 11,V,A,0,—p,0,1),
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where max and min are as (1) and (2), respectively, o is the conventional real
number multiplication (the ¢, norm, i. e, #,(x,y) = xy) and the residuum —p is

lif x<y
x_)Py={)'if x>y (6)

X

Here the supplementary useful operation is:

0if x>y

It is not difficult to prove that (6) and (7) satisfy:
ST =py)=xy oy ®)
3. Lukasiewicz algebra
BL; =([0, 1],V,A,®,—,,0,1),

where max and min are as (1) and (2), respectively, and

1D xQ@y=0viEx+y-1)=1xy).
(2) The residuum —; is

x=py=1A{0-x+y). 9
(3) A supplementary operation is useful
x6y =0V (y —x). (10)
It is not difficult to prove that (9) and (10) satisfy:

T y) =Xy Y

2.2 Intuitionistic Fuzzy Sets

Let E # @ be acrisp setand A C E. An intuitionistic fuzzy set [2] A on E is described
as

A={(x, yy @, vy W) Ix€E},
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where for each x € E, i, : E — [0, 1] defines the degree of membership and v, :
E — [0, 1] defines the degree of non-membership, respectively, of the elements x €
E to A and for each x € E holds 0 < Ha) +v(x) < 1.

The class of all intuitionistic fuzzy sets over E is denoted by In#(E).

Remark In [2] IFS is defined with degree of membership p, : E — [0, 1], degree
of non-membership and v, : E — [0, 1] and uncertainity degree z, : E — [0, 1]
of the elements x € E to A and for each x € E holds Ha(X) + vy(x) + 74(x) = 1, but
in this chapter we study IFS defined only with degree of membership an degree of
non-membership.

2.3 Intuitionistic Fuzzy Relations and Intuitionistic
Fuzzy Matrices

An intutionistic fuzzy relation (IFR) between two nonempty crisp sets X and Y is an

intutionistic fuzzy set on X X Y, written R € Int(X X Y). X X Y is called support of

R. We write R C X X Y for the (conventional) fuzzy relation R between X and Y.
Any IFR R € Int(X X Y) is given as follows:

RZ{((X7 )’), ﬂR(x’y)9 VR(x’ y))l(x,}’)EXXY’ ﬂR7 VR : XXY—) [O’ 1]}’
0 < g, y) + vp(x,y) < 1

for each (x,y) € X X Y.
The matrix A = (”2’ v;. Vnscn With u:;, v;; € [0, 1] such that
0$y3+vf} < l1foreachi, j,1 <i<m, 1 <j<n,

is called an intuitionistic fuzzy matrix (IFM) of type m X n.

When the IFR is over finite support, it is representable by IFM, written for con-
venience with the same letter. For instance, if the IFR R € Int#(X X Y) is over finite
support, its representative matrix is stipulated to be the matrix R = ( yﬁy_, VR

X )mxn
such that
R R
#xl_y}_ = MR(xis)’j)s VX,-.V,- = VR(xi’yj‘)-

According to this stipulation instead of IFRs we consider intuitionistic fuzzy
matrices and operations with them.
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3 Direct Problem

Two finite IFMs A = (;43., vf.} Jmxp and B = (,uf. , vg oxn are called conformable in
this order, if the number of columns in A is equal to the number of rows in B.
Let A and B be finite conformable IFMs.

Definition 1 If A = (/41/.]‘,, vg ) are finite IFMs, then the
matrix C = (;45, vi]C Ymxn 18 called intuitionistic fuzzy s — t product of A and B in
BL—algebra, written C = A %5, B, if foreachi, j,1 <i<m, 1 <j<nitholds:

—(yB B
mxp andB—(,uij, Vi I

C_ P A B C_, P B
ﬂl] =53 k=1 <tr(ﬂik7 'uk] )7 vij - t3 k=1 <SV(V;}(, ij)) ’ (12)

where s; and f; are maximum s—norm and minimum f—norm respectively; for r =

1, 2, 3 we have the corresponding s, norm and 7, norm, respectively, see Table 1.

Computing the product C = A *p; B is called direct problem resolution for s,
composition of the matrices A and B. The resulting product-matrix C = A *p; B is
also IFM because of the duality principle.

Direct problem for #5; composition of matrices is solvable in polynomial time.

Example 1 Find:

1. Intuitionistic fuzzy Godel product C = A *; B;
2. Intuitionistic fuzzy Goguen product C = A *, B;
3. Intuitionistic fuzzy Lukasiewicz product C = A *; B,
if
(0.5, 0.4) (0.5, 0.5) (0.9, 0.1) (0.3, 0.6)
A =1(0.8, 0.1) (0.1, 0.9) (0.7, 0.2) (0.5, 0.5) [, (13)
(0.7, 0.3) (0.9, 0.1) (0.3, 0.6) (0.4, 0.5)

(0.7, 0.3) (0.9, 0.) (0.5, 0.5)
(0.9, 0.1) (0.3, 0.6) (0.2, 0.7)
(0.5, 0.5) (0.6, 0.3) (1., 0.)
(0.4, 0.5) (0.7, 0.2) (0.5, 0.5)

B= (14)

1. Intuitionistic fuzzy Godel product [20, 23] of A and B, written C; = A * B, is
defined by

uC

_ P B c_ P A B
ij _k\=/1(Mik/\’ukj)’ V. _k/=\l (Vik Vv (15)

ij ki’
foreachi, j, 1 <i<m, 1<j<n.

Expression (15) is obtained from (12) for » = 3.

C; = A * B can be computed by software given in [16, 27]—for the member-

. p .
ship degrees yijc. = k\_/l(y;.‘}( A /4]1;.) one can use the max — min product code and for
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. p . .
the non-membership degrees viJC =AW,V v,z) the min — max product code is
k=1

useful:

(0.5, 0.4) (0.6, 0.3) (0.9, 0.1)
Co=A*; B=|0.7,03) (0.8, 0.1) (0.7, 0.2) |. (16)
(0.9, 0.1) (0.7, 0.3) (0.5, 0.5)

If the matrices A and B are IFM, then the matrix C = A *; B is also IFM, because
(max, min, N,) is a dual triple [15].

2. Intuitionistic fuzzy Goguen product of A and B, written Cp = A ), B, if for each
Lj,1<i<m, 1<j<n

c_?t c_ %
MU _k\=/1(Mik Mk]) vij - /=\ VZA (17)

In this case expression (17) is obtained from expression (12) for » = 2. The sign
@ is used for probabilistic sum, i.e. 5, (x,y) =x+y —xy =x @y, see Table 1.

The result in this case for (13) and (14) is the max —product for the membership

p . e . .
degrees u¢ = v (u% . u8) and the min —probabilistic sum for non-membership
ij k=1 ik Tkj
p
Cc_ B
degrees v = k/=\1 (vl{z O vp).

If the matrices A and B are IFM, then the matrix Cp = A *p Bis also IFM, because
(max, t,, N;) is a dual triple [15].

One can find software only for computing the membership degrees as max-
product code in [16, 27].

(0.45, 0.55) (0.54, 0.37) (0.9, 0.1)
Cp=A=pB=|(056,037) (0.72, 0.1) (0.7, 0.2 |. (18)
(0.81, 0.19) (0.63, 0.3) (0.35, 0.6)

3. Intuitionistic fuzzy Lukasiewicz product of A and B, written C; = A *; B, if for
eachi, j,1 <i<m, 1<j<n

P
ﬂif:kzl<t1(ﬂgc,yg)), V= A (sl(vf){,vkj). (19)

In this case expression (19) is obtained from expression (12) for r = 1.
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The numerical example results:

(0.4, 0.6 (0.5, 0.4) (0.9, 0.1)
C, =A%, B=|(05, 04)(0.7 0.1) (0.7, 02) |. (20)
(0.8, 0.2) (0.6, 0.3) (0.3, 0.6)

The result in this case for (13) and (14) is the max —Eukasiewicz product for the

. p .
membership degrees yijc. =V (ﬁ(ﬂﬁy ,ufj.)) and the min —bounded sum for non-

membership degrees v€ = A (s oA LV

pdeg i =0 VWiV ) -
There does not exist software neither for *; composition, nor for any of the mem-
bership or non-membership degrees.

If the matrices A and B are IFM, then the matrix C;, = A *; Bis also IFM, because
(max, ¢;, N,) is a dual triple [3, 8, 15].

Definition 2 If A = (yg, vl{? Imxp @nd B = (yg , vg )pxn are IFMs, then the matrix

C = (g, V5 o is called intuitionistic fuzzy t— —p, product of A and B in
BL—algebra, written C = A —5; B, if foreachi, j,1 <i<m, 1<j<nitholds:
c A B c A" B
MU = t3 Z=1 <(Hik _)BL Mkj)> s Vij = S3 Z=l ((Vik _>BL ij)> ) (21)

where
53 and #; are maximum s—norm and minimum f—norm respectively;
r
—pg= 0 for r =1, see (10);
-
—p =7y forr =2, see (7);

—r>BL= € for r = 3, see (4).

Computing the product C = A —; Bis called direct problem resolution for — p;
composition of the matrices A and B . The resulting product-matrix C = A —p; Bis
also IFM because of the duality principle.

Direct problem for —; composition of matrices is solvable in polynomial time.

We give examples for obtaining intuitionistic #— —p; product of matrices in var-
ious BL—algebras.

Example 2 1. Intuitionistic fuzzy Godel t— — ; product of A and B, written C =
A - B,ifr=3in(21):

P P
i = A GG = g vy =V (e v, (22)

foreachi, j,1 <i<m, 1<j<n.
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If the matrices A and B are IFM, then the matrix C = A —; B is also IFM,
because (max, min, ) is a dual triple [15] and (5) is valid.

As example, we implement (22) to compute A’ — C;, where A’ is the trans-
posed of A (see (13)) and Cj; is due to (16).

(0.7, 03) (1., 0.) (0.5, 0.5)
(1, 0.) (0.7, 0.3) (0.5, 0.5)
(0.5, 0.4) (0.6, 0.3) (1., 0.)
(1, 0) (1,0) (I,0)

Bs=A" 5, C,; = (23)

For computing (23) by software given in [16], one computes separately member-
ship degrees, using the code for min —a product and non-membership degrees
by the code for max —e product—in [16] it does not exist special code for the
— intuitionistic product.

2. Intuitionistic fuzzy Goguen t— — p product of A and B, written C = A —, B, if
r=2in (21):

P
A Gy =p uf) V=V 0hr VD) (24)

'ulJ - k=1 J y

foreachi, j,1 <i<m, 1<j<n.

If the matrices A and B are IFM, then the matrix C = A —, B is also IFM,
because (max, ., N,) is a dual triple [15] and (8) is valid.

There does not exist software for computing C = A —, B.

As example, we implement (24) to compute A" —, Cp, where A’ is the trans-
posed of A (see(13)) and Cp is due to (18).

(0.7, 0.27) (0.9.,0.) (0.5, 0.3)

(0.9, 0.09) (0.7, 0.2) (0.3889, 0.5)

(0.5, 0.45) (0.6, 0.27) (1., 0.)
(1, 0. (1, 0.) (0875, 0.1)

Bp=A"5,Cp= (25)

3. Intuitionistic fuzzy Lukasiewicz t— —; product of A and B, written
C=A-,B,ifr=1in(21):

14 14
Ay =L i) V=V (G 8 (26)

foreachi, j,1 <i<m, 1<j<n.

If the matrices A and B are IFM, then the matrix C = A —; Bis also IFM, because
(max, ¢, N,) is a dual triple [15] and (11) is valid.
There does not exist software for computing C = A —; B.
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As example, we implement (26) to compute A’ —; C,, where A’ is the transposed
of A (see(13)) and C; is due to (20).

(0.7, 0.3) (0.9., 0.) (0.6, 0.3)
(0.9, 0.1) (0.7, 0.2) (0.4, 0.5)
(0.5, 0.5) (0.6, 0.3) (1., 0.)
(1., 0 (1., 0. (0.9, 0.1)

B, =A">,C, = (27)

Hence, if the matrices A and B are IFM, then the matrices A xp; Band A —5; B
are also IFM, because of the duality principle.

For finite conformable intuitionistic fuzzy matrices direct problem for #, and
—p; compositions of matrices is solvable in polynomial time, but software is not
developed.

4 Inverse Problem

Let A and B be conformable IFMs.

(i) The equation
C=Axg B, (28)

where one of the matrices on the left side is unknown and the other two matrices
are given, is called g, intuitionistic fuzzy matrix equation.
(i) The equation
C=A—y B, 29)

where one of the matrices on the left side is unknown and the other two matrices
are given, is called —; intuitionistic fuzzy matrix equation.

In (28) and (29) A = (a;),,«,, stands for the IFM of coefficients, B = (b;),, x, —
for the IFM of unknowns, C = (c[j)m «n 18 the right-hand side of the equation, ;s bij,
¢; € [0, 1] for each i and each j.

Solving (28) or (29) for the unknown matrix is called inverse problem resolution
Jor intuitionistic fuzzy matrix equation in BL—algebra. In this chapter we present
inverse problem resolution for (28).

For X = ({ (), v;j(X) )y ad Y = ((t5(). v5(¥) ), the inequality
X<vY

means ,u,-j(x) < uij(y) and vij(x) >

vij(y) foreachi=1,...,p,j=1,...,n.
Definition 3 For the IREA *, B=C:

(i) The matrix ngm with xg €[0,1], when 1 <i<p, 1 <j<n, is called a
solution of A xp;, B = Cif A xp X° = C holds.
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(ii) The set of all solutions of (28) is called complete solution set and it is denoted
by X. If X # @ then (28) is called consistent, otherwise it is called inconsistent.

(iii) A solution X € X is called a lower or minimal solution of (28) if for any X € X
the relation X < X implies X = X , where < denotes the partial order, induced in
X by the order of [0, 1]. Dually, a solution X € Xis called an upper or maximal
solution of (28) if for any X € X the relation X<x implies X = X. When the
upper solution is unique, it is called the greatest or maximum solution. When
the lower solution is unique, it is called the least or minimum solution.

We present finding the greatest solution of intuitionistic fuzzy relational equation
(28), we also give a criterion for its consistency.

Theorem 1 Let A and C be finite IFMs, and let B be the set of all matrices B, such
that A sp; B = C. Then:

(i) B0 << A' -5 CEB;
(ii) If the equation (28) is solvable for B then A" — g, C is its greatest solution.
(iii) There exists polynomial time algorithm for computing A" — 5, C.

Here A’ denotes the transpose of A.

For fuzzy relations (that are not intuitionistic), Theorem 1 is given in [3, 8].

Theorem 1 is valid for intuitionistic fuzzy relational equations R x5, Q = T and
R —p; O =T, when the relations are over finite universal sets.

Corollary 1 The following statements are valid for the equation C = A %, B:

(i) The Equation (28) is solvable iff C = A sp; (A" =5, C) holds;
(ii) There exists polynomial time algorithm for establishing solvability of the equa-
tion (28) and for computing its greatest solution By, = A" — 5, C.

If the matrices are fuzzy (but not intuitionistic), results for the greatest solution
of a system of fuzzy linear equations are obtained in references: for max — min and
max —product composition in [21, 22], for max —Lukasiewicz—in [25], and for the
minimum solution for min — max composition—in [21].

Example 3 The greatest solution of IFRE (28), if A is given by (13):

(i) in Goguen algebra, when C is the IFM (16), is fQG =A' - C, already com-
puted in Example 2 (1), see (23);
(i) inProduct algebra, when C is the IFM (18), is 1§P = A" -, C,already computed
in Example 2 (2), see (25);
(iii) in Lukasiewicz algebra, when C is the IFM (20), EL =A' -, C, already
computed in Example 2 (3), see (27).

In particular, the results are valid for intuitionistic fuzzy linear systems of
equations.
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Conclusions

While finding the greatest solution of IFRE needs polynomial time, finding com-
plete solution set is an open problem and supplementary—it has exponential time
complexity [6, 21].

There do not exist methods and software for solving inverse problem for intuition-

istic fuzzy relational equations.

Inverse problem resolution for (29) is an open problem.
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Intuitionistic Fuzzy Weakly Open
Mappings

Biljana Krsteska

Abstract In this paper, we will introduce and characterize intuitionistic fuzzy
weakly open mappings between intuitionistic fuzzy topological spaces. We will
investigate their properties and relationships with other early defined classes of
intuitionistic fuzzy mappings.

Keywords Intuitionistic fuzzy topology -+ Intuitionistic fuzzy weakly open
mapping - Intuitionistic fuzzy weakly closed mapping

1 Introduction and Preliminaries

After the introduction of fuzzy sets by Zadeh [3], there have been numbers of
generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets
introduced by Atanassov [1] is one among them. Using the notion of intuitionistic
fuzzy sets, Coker [2] introduced the notion of intuitionistic fuzzy topological
spaces. In this paper, we will introduce and characterize intuitionistic fuzzy weakly
open mappings between intuitionistic fuzzy topological spaces and also we study
these mappings in relation to some other types of already known mappings.

Throughout this paper, (X,7), (Y,0) and (Z,7), or simply X, Y and Z, are
always means an intuitionistic fuzzy topological spaces [2].

2 Intuitionistic Fuzzy Weakly Open Mappings

Definition 2.1 A mapping f: (X, T) = (Y, o) is said to be an intuitionistic fuzzy
weakly open if f(A) <Intf(ClA) for each intuitionistic fuzzy open set A in X.
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It is evident that, every intuitionistic fuzzy open mapping is an intuitionistic
fuzzy weakly open. But the converse need not be true in general.

Example 2.1 Let X={a,b,c} and t={0y, A, 1x} and 6={0y,B,1x}, where
A =(x, (ﬁ’()%’ﬁ)’ (%’0%’0%5)) and B =(x, (0’%,&,0’%), (O%,O%,O%))- Then
the identity function id: (X,7) — (X,0) is an intuitionistic fuzzy weakly open
mapping which is not an intuitionistic fuzzy open mapping.

Theorem 2.3 Let f: (X, t) — (Y, ©) be a surjective mapping. The following
conditions are equivalent:

(1) fis an intuitionistic fuzzy weakly open;
(ii) f(IntA)) <Intf(A) for each intuitionistic fuzzy set A of X;
(i) Intf~'(B) <f~!'(IntB) for each intuitionistic fuzzy set B of Y;
(iv) f~'(CIB) <CIf~(B) for each intuitionistic fuzzy set B of Y;
(v) flA) is intuitionistic fuzzy open in Y, for each intuitionistic fuzzy 0 — open set A
in X;

Proof

(i) = (ii)) Let A be any intuitionistic fuzzy set of X and x(a,b) be an intuitionistic
fuzzy point in IntA. Then, there exists an intuitionistic fuzzy open
neighbourhood V of x(a,b) such that V<CIV <A. Then, we have
f(V) <f(CIV) <f(A). Since f is intuitionistic fuzzy weakly open,
f(V) < Intf(C1V) < Intf(A). It implies that f(x(a,b)) is an IFP in Intf(A).
This shows that x(a, b) € f~!(intf(A)). Thus IntyA <f~'(Intf(A)), and
so we obtain f(intA) <Intf(A).

(i) = (1) Let G be an intuitionistic fuzzy open set in X. As G <Inty(CIG),
f(G) < f(Inte(CIG)) < Intf(CIG). Hence, f is intuitionistic fuzzy weakly
open.

(i) = (iii)) Let B be any intuitionistic fuzzy set of Y. Then by (i),
f(Inty(f ~'(B)) < IntB. Therefore, Intef ~'(B) <f~!(IntB).

(iii) = (ii)) This is obvious.

(iii)) = (iv) Let B be any intuitionistic fuzzy subset of Y. By (iii), we have
1—Clof ~'(B) =Inty(1—f~"'(B)) =Intef ~'(1-B)
<f~!(Int(1-B)) =f~'(1=CIB)= 1 — f~!(CIB). Therefore, we
obtain f~!(CIB) < Clof ~'(B).

(iv) = (iii) It is similar to (iii) = (@iv).

(iv) = (v) Let A be an intuitionistic fuzzy € —open set in X. Then 1 — f(A) is
an intuitionistic fuzzy set of Y and by (iv), f~1(CI(1 —f(A))
< Clpf ~1(1 —f(A)). Therefore, 1 —f~!(Intf(A)) <Clg(1 = A) =1—A.
Then, A<f _I(Intf(A)) which implies f(A) <Intf(A). Hence f(A) is
intuitionistic fuzzy open in Y.

(v) = (vi) Let B be any intuitionistic fuzzy set in Y and A be an intuitionistic
fuzzy 6 —closed set in X such that f~!(B)<A. Since 1 — A is
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intuitionistic fuzzy 0 —open in X, by (v), f(1 — A) is intuitionistic
fuzzy openin Y. Let F = 1 — f(1 — A). Then F is intuitionistic fuzzy
closed and also B <F. Now we have f~!(F) =f~!(1 = f(1 — A)) =
1—f~1(f(A) <A.

(vi) = (iv) Let B be any intuitionistic fuzzy set in Y. Then A =Clg(f ~!(B)) is
intuitionistic fuzzy 0 —closed in X and f~ '(B) < A. Then there exists
an intuitionistic fuzzy closed set F in Y containing B such that
f~1(F)<A. Since F is intuitionistic fuzzy closed, we obtain that
f~1(CIB) < f~1(F) < Clof ~'(B). [

Theorem 2.4 Let f: (X, ©) = (Y, 6) be a mapping. Then the following statements
are equivalent:

(i) fis an intuitionistic fuzzy weakly open mapping;

(i1) for each intuitionistic fuzzy point x(a,b) in X and each intuitionistic fuzzy
open set G of X containing x(a,b), there exists an intuitionistic fuzzy open set
F containing f(x(a,b)) such that F < f(CIG).

Proof

(i) = (ii)) Let x(a,b) be an IFP in X and G be an intuitionistic fuzzy open set in X
containing x(a,b). Since f is intuitionistic fuzzy weakly open, {(G) < Intf
(CIG). Let F = Intf(CIG). Hence F < f(CIG), with F containing f(x(a,b)).
(i) = (1) Let G be an intuitionistic fuzzy open set in X and let y(a,b) € f(G) By
(i1), F < f(CIG) for some open set F in Y containing y(a,b). Hence we
have, y(a,b)eF < Intf(CIG). This shows that f(G) < Intf(CIG) and f is
intuitionistic fuzzy weakly open. |

Theorem 2.5 Let f: (X, 1) = (Y, 0) be a bijective mapping. Then the following
statements are equivalent:

(1) fis intuitionistic fuzzy weakly open;
(i1) CIffA) < fICIA) for each intuitionistic fuzzy open set A in X;
(iii) ClfiIntB) < fiB) for each intuitionistic fuzzy closed set B in X.

Proof

(i) = (iii)) Let B be an intuitionistic fuzzy closed set in X. Then we have
f(1-B) = 1 — f(B) < Intf(CI(1 — B)) and so 1 — f(B) < 1 — CIf(IntB).
Hence CIf(IntB) < f(B).

(iii) = (ii)) Let A be an intuitionistic fuzzy open set in X. Since Cl(A) is an
intuitionistic fuzzy closed set and A < Int(ClA) by (iii), we have CIf
(A) < Clf(Int(Cl1A)) < fCI(A).
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(i) = (iii) Similar to (i) = (ii).
(iii) < (i) Clear. [

The proof of the following theorem is obvious and thus omitted.

Theorem 2.6 For a mapping f: (X, 1) — (Y, o) the following statements are
equivalent:

(1) fis intuitionistic fuzzy weakly open;

(i1) for each intuitionistic fuzzy closed set B of X, f{IntB) < Intf(B);
(iii) For each intuitionistic fuzzy open set A of X, fllnt(CIA)) < Int(fCl(A));
(iv) for each intuitionistic fuzzy regular open set A of X, flA) < Intf(CIA);
(v) for every intuitionistic fuzzy preopen set A of X, flA) < Intf(CIA);
(vi) for every intuitionistic fuzzy 8 — open set A of X, flA) < Intf(CIA).

Theorem 2.7 Iff: (X, t) — (Y, o) is intuitionistic fuzzy weakly open mapping and
Intf(CIA) < flA) for every intuitionistic fuzzy open set A of X, then f is intuitionistic
fuzzy open mapping.

Proof Let A be an intuitionistic fuzzy open set of X. Since f is intuitionistic fuzzy
weakly open f(A) < Intf(CIA). However, since Intf(CIA) < f(A) for every intu-
itionistic fuzzy open set A of X, we obtain that f(A) = Intf(Cl1A) and therefore f(A)
is intuitionistic fuzzy open set. Hence f is intuitionistic fuzzy open mapping. [

Definition 2.2 A mapping f: (X, t) — (Y, o) is said to be intuitionistic fuzzy contra
open (resp. intuitionistic fuzzy contra-closed) if f(A) is an intuitionistic fuzzy closed
set (resp. intuitionistic fuzzy open) set of Y for each intuitionistic fuzzy open
(resp. intuitionistic fuzzy closed) set A in X.

Theorem 2.8

W) Iff: (X, ©) = (Y, o) is intuitionistic fuzzy preopen and intuitionistic fuzzy
contra open, then f is intuitionistic fuzzy weakly open mapping.

() Iff: (X, ©) = (Y, o) is intuitionistic fuzzy contra closed, then f is an
intuitionistic fuzzy weakly open mapping.

Proof

(1) Let A be an intuitionistic fuzzy open set of X. Since f is intuitionistic
fuzzy preopen f(U) < Int(CIlf(A)) and since f is intuitionistic fuzzy
contra-open, f(U) is intuitionistic fuzzy closed. Therefore, f(A) < Int(CIf
(A)) = Intf(A) < Intf(C1A) < Intf(CIA).

(i) Let A be an intuitionistic fuzzy open set of X. Then, we have f(A) < f
(C1A) < Intf(CIA). [ |

Remark 3.9 The converse of Theorem 2.8 does not hold. The mapping f defined on
Example 2.1 is an intuitionistic weakly open mapping but it is not an intuitionistic
fuzzy preopen mapping.
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Is ‘Fuzzy Theory’ An Appropriate Tool
for Large Size Decision Problems?

Ranjit Biswas

Abstract This chapter presents a review work in brief of the work [11] which is on
a recently unearthed domain of the intuitionistic fuzzy set theory of Atanassov
[1-8]. The most useful soft computing set theories [17-23, 25-29, 31, 32] being
used to solve the real life decision making problems are: fuzzy set theory, intu-
itionistic fuzzy set theory (vague sets are nothing but intuitionistic fuzzy sets,
justified and reported by many authors), i—v fuzzy set theory, i-v intuitionistic fuzzy
set theory, L-fuzzy set theory, type-2 fuzzy set theory, and also rough set theory,
soft set theory, etc. While facing a decision making problem, the concerned deci-
sion maker in many cases choose one or more of these soft computing set theories
by his own choice. Corresponding to each element x of all the universes involved in
the decision problem, the value of u(x) is proposed by the concerned decision
maker by his best possible judgment. In real life situation, most of the decision
making problems are of large size in the sense of the number of universes and the
number of elements in the universes. For example, the populations in Big Data
Statistics, be it R-Statistics or NR-Statistics [10], are all about big data; and decision
analysis in many such cases involve the application of various soft-computing tools.
But there arises a question: Is ‘Fuzzy Theory’ an appropriate tool for solving large
size decision problems? In the work [11] a rigorous amount of mathematical
analysis, logical analysis and justifications have been made to answer this question,
introducing the ‘Theory of CIFS’ (Cognitive Intuitionistic Fuzzy System). In this
chapter we revisit the mathematical analysis of [11] in brief, and discuss only the
important issues of the “Theory of CIFS’ presented in [11]. Many of the decision
problems are solved in computers using fuzzy numbers. It is observed that the
existing notion of triangular fuzzy numbers and trapezoidal fuzzy numbers are
having major drawbacks to the decision makers while solving problems using
computer programs or softwares, the issue which is also discussed in this chapter.
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1 Introduction

The ‘Theory of CIFS’ (Cognitive Intuitionistic Fuzzy System) introduced in [11] is
initiated with the most important question (but yet an open unsolved problem) in
the theory of soft-computing which is as mentioned below:

How Does the Cognition System of a Human or of an Animal or Bird (or of
any living thing which has brain) Evaluate the Membership Value u(x)?

The work in [11] is based on philosophical as well as logical views on the
subject of decoding the ‘progress’ of decision making process in the
Human/Animal cognition systems while evaluating the membership value p(x) in a
fuzzy set or in an intuitionistic fuzzy set or in any such soft computing set model or
in a crisp set. By ‘cognition system’ it is meant the cognition system of a human
being or of a living animal or of a bird or of any living thing which has brain
(ignoring the machines, robots, or software which have artificial intelligence).
While a hungry lion finds his food like one cow or one buffalo or one deer (or any
other animal of his own food list) in his forest, he decides a lot by his best possible
judgment on a number of significant parameters before he starts to chase and also
even during the real time period of his chasing. Even in many situations he decides
whether it is appropriate to chase, or even after chasing he decides every moment
whether to give up chasing or to continue chasing without any problem of his own
security, etc. No doubt that he takes these real time decisions by his best possible
judgment using his own logic/theory, which is not known to us. But whatever be
the different type of logic/theory be used by different kind of decision makers in
various decision problems, the kernel of their brain executes a unique common
logic of CIFS, irrespective of their intellectual capabilities. This was fact during
stone age period of earth, and will remain so for ever on this earth.

In this chapter we revisit the “Theory of CIFS’ [11] in brief, and discuss some of
the important issues of it. At the end we identify major demerits of the existing
notion of triangular fuzzy numbers and trapezoidal fuzzy numbers due to which
computational difficulties are being faced by the decision makers while solving their
problems in computers using softwares.
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2 Theory of CIFS: A Revisit in Brief

The Theory of CIFS (Cognitive Intuitionistic Fuzzy System) in [11] says that a
crisp decision maker or a fuzzy decision maker (or any soft decision maker) can not
decide on any decision making issue without using intuitionistic fuzzy set
(IFS) theory, but he does not necessarily need to have any knowledge of intu-
itionistic fuzzy set theory. The permanent residence of the ‘“Theory of IFS’ inside
the brain (CPU) of every living thing (i.e. every decision maker) is a hidden truth,
not by choice of the concerned living thing. In fact the ‘Theory of IFS’ is a
permanent and hidden resident inside the kernel (i.e. at the lowest level) of the
processor/brain of every cognition system (be of human or of animal or of bird or of
any living thing) in the form of like a ‘in-built system-software’ in the Operating
System. This software like system automatically gets executed at the lowest level
based upon the platform of intuitionistic fuzzy theory while evaluating any mem-
bership value u(x) for a fuzzy set or for any soft-computing set or crisp set. The
evaluated p(x) is always the output at higher level. Although the execution happens
in a hidden way at the lowest level (like execution of a machine language program
in CPU) but it continuously outputs to update the estimated value of p(x) at higher
level in the cognition system till some amount of time. But for this, it does not
require that a fuzzy decision maker or a crisp ordinary decision maker must be
aware or knowledgeable about IFS Theory. Consider the case of a FORTRAN
programmer who chooses the tool ‘FORTRAN language’ by his own choice and
executes his program written by him in FORTRAN language corresponding to a
given engineering problem. But for this, it does not require that the programmer
must be aware or knowledgeable about machine language programming!. The
analogous fact is true for a fuzzy decision maker too, who estimates p(x) using the
domain of his fuzzy knowledge whereas at the lowest level inside his cognition
system the exact execution happens under intuitionistic fuzzy systems only, the
theory which is established in [9, 11].

The fuzzy sets are a special case of intuitionistic fuzzy sets, but the existing
concept that “the intuitionistic fuzzy sets are higher order fuzzy sets” is incorrect
(an example of similar incorrect concept can be imagined if somebody says that
“fuzzy sets can be viewed as higher order crisp sets™!). It is fact that the Theory of
IFS is the most appropriate model for translation of imprecise objects while the
fuzzy sets are ‘lower order’ or ‘lower dimensional’ intuitionistic fuzzy sets as
special case. It is rigorously justified in [11] with examples that it may not be an
appropriate choice to use fuzzy theory if the problem under study involves esti-
mation of membership values for large number of elements. Unfortunately, most of
the real life problems around us consist of many universes where each universe is
having many elements. However, two interesting examples of ‘decision making
problems’ with solutions are presented in [11] out of which one example shows the
dominance of the application potential of intuitionistic fuzzy set theory over fuzzy
set theory, and the other shows the converse i.e. the dominance of the application
potential of fuzzy set theory over intuitionistic fuzzy set theory in some cases
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(where decision makers are pre-selected and most intellectual in the context of the
subject pertaining to the concerned problem).

The following two hypothesis are hidden facts in fuzzy computing or in any soft
computing process, which have been established in the Theory of CIFS [11] with a
detail analysis:-

Fact-1:
A decision maker (intelligent agent) can never use or apply ‘fuzzy theory’ or any
soft-computing set theory without intuitionistic fuzzy system.

Fact-2:

The Fact-1 does not necessarily require that a fuzzy decision maker (or a crisp
ordinary decision maker or a decision maker with any other soft theory models or
a decision maker like animal/bird which has brain, etc.) must be aware or
knowledgeable about IFS Theory!

The Theory of CIFS was initiated in [11] with the fundamental issues like: How
the estimation process of the “membership value p(x) of an element x to belong to a
fuzzy set A or an IFS A” is initiated in the cognition system at time t = 0 and
completed after time t =T (>0); How does in reality the ‘progress’ of decision making
process for p(x) actually happen inside the brain with respect to the variable ‘time’.

Suppose that the complete processing time taken by the decision maker to come
to his final judgment about p(x) is T (>0) unit of time. In [11] we designate this
time of processing for evaluating the membership value p(x) as “Atanassov Pro-
cessing Time”” (APT) for the element x corresponding to this decision maker, and
denoted by the notation APT(x) = T. Thus, the value of p(x) is proposed by the
decision maker for which the time-cost is T (>0), and hence in fuzzy theory one can
compute v(x) = 1 — p(x) by doing an arithmetic just, without any further cost of
time towards decision process. There is in fact no element of soft-computing in
calculating the value of v(x) in fuzzy theory.

In [11] the Atanassov Trio Functions and Atanassov Constraint are defined as
below:

Let R” be the set of all non-negative real numbers. Consider a pre-fixed fuzzy
decision maker. For any given element x of the set X to belong to the fuzzy set A of
X, the membership value p(x) is the final output of a hidden “cognitive intuitionistic
fuzzy system” in the brain of the fuzzy decision maker where the following three
functions are co-active:-

(1) h(x, t) called by ‘Hesitation Function’ whose domain is X X R" and range is
[0,1]. For a fixed element x of the set X, h(x, t) is a non-increasing continuous
function of time t.

(i) m(x, t) called by ‘Membership Function’ whose domain is X X R" and range
is [0,1]. For a fixed element x of the set X, m(x, t) is a non-decreasing
continuous function of time t.

(iii)) n(x, t) called by ‘Non-membership Function’ whose domain is X X R and
range is [0,1]. For a fixed element x of the set X, n(x, t) is a non-decreasing
continuous function of time t.
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These three functions <m(x, t), n(x, t), h(x, t)> are called Atanassov Trio
Functions (AT functions).
These functions are subject to the constraint:

h(x,t) + m(x,t) +n(x,t)=1 for any time t. (Atanassov Constraint).

Each of the AT functions is to be basically treated as a function of time t,
because it is always considered once an element x be picked up for evaluation by
the decision maker. For a fixed decision maker (intelligent agent), corresponding to
every element x of X to belong to the fuzzy set A, there exists Atanassov Trio
Functions i.e. a set of three AT functions. The value p(x) in the fuzzy set A comes
at the instant t = T from the function m(x, t). This function m(Xx, t) finally converges
at the value p(x) after a course of sufficient growth for a total T amount of time. The
function m(x, t) gets feeding from h(x, t) in a continuous manner starting from time
t = 0 till time t = T. None else feeds m(x, t).

The membership value p(x) for an element x in a fuzzy set A (or in an intu-
itionistic fuzzy set or in a soft computing set) can never be derived without the
activation of AT functions in the cognition system, and this happens to any brain of
human being or animal or of any living thing, irrespective of his education or
knowledge. This was a fact in the stone age of the earth too, and will continue to
remain as a fact for ever. A crisp decision maker or a fuzzy decision maker or any
soft computing decision maker does not need to have knowledge about ‘Intu-
itionistic Fuzzy Set Theory’.

At time t = 0 i.e. at the starting instant of time for evaluating the membership
value p(x), any decision process in the cognition system starts with AT functions
with the following initial values:-

h(x,0)=1, with m(x,0)=0 and n(x,0)=0.

The clock starts from time t = O and the whistle blows from this initialization
only. This initialization <0, 0, 1> is called by ‘Atanassov Initialization’.

It is important to understand that Atanassov Initialization is not initialized by any
choice of the decision maker or by any decision of the decision maker or by any
prior information from the kernel of the cognition system to the outer-sense of the
decision maker. It is never initialized by the decision maker himself, but it gets
automatically initialized at the kernel during the execution of any decision making
process. By decision maker, we shall mean here a human or an animal or a bird or
any living thing which has a brain (we exclude the cases of intelligent robots or
intelligent machines or intelligent software which have artificial intelligence).

During the progress of decision making process with respect to the variable
‘time’ in the brain while evaluating the membership value p(x), imagine that the
values of AT functions are stored and updated continuously, with respect to time, in
the three bags (imaginary bags): h-bag, m-bag and n-bag. The updating happens
like in computer memory, always replacing their previous values. These three bags
are called by Atanassov Trio Bags (see Fig. 1).
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Fig. 1 Atanassov Trio bags
h - bag

m- bag n-bag

It is obvious that at time t = O each of the Atanassov Trio Bags contains the
value corresponding to Atanassov Initialization, not else. Immediately after that, the
m-bag and n-bag start getting credited with zero or more amount of values con-
tinuously from the h-bag, subject to fulfillment of Atanassov Constraint at every
instant of time t. But there never happens a reverse flow, i.e. the h-bag does never
get credited from any or both of m-bag and n-bag.

While evaluating the membership value p(x) of an element X, the Atanassov
Initialization happens at time t = O at the human cognition system (or at the
cognition system of the animal or bird whoever be the decision maker). At the very
next instant of time, i.e. from time t > 0, the following actions happens simulta-
neously to the AT functions subject to fulfillment of Atanassov constraint (as-
suming that the transaction time from h-bag to any bag is always nil):

(1) h(x, t) starts reducing (at least non-increasing), and
(i) m(x, t) as well as n(x, t) start increasing (non-decreasing).

After certain amount of time, say after t = T (>0) the processing of the decision
making process stops (converges) at the following state, say:

h(x,T)=z(x), with m(x, T)=p(x) and n(x, T) = 9(x)

where 7(x) + p(x) + 9(x) =1, and after which there is no further updation happens
to the values of AT functions in the cognition system (Fig. 2).

Thus at the end of the convergence process at Tth instant of time where T is the
value of APT(x), the following results outcome:-

Lt m(x,t)=p(x), Lt n(x,t)=39(x) and Lz h(x,t)=xr(x),
t—T t—=T t—=T
such that p(x) +9(x) + z(x) =1.
It is fact that the cognition system of a decision maker (fuzzy decision maker or
intuitionistic fuzzy decision maker or crisp decision maker) can not evaluate the
membership value u(x) of an element x without initiating from the Atanassov
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h(x,t) /h- bag

@, ®,
m- bag n- bag
att=0 atinterimtimet at t=T

Fig. 2 Evaluation of p(x) starting from ‘Atanassov initialization’

Fig. 3 Cognition system of a
decision maker in CIFS, be it
a human or animal or bird or
any living thing which has
brain

sphere
Kemel processes
CIFS only, notby

any cheice, but an
inbuilt system.

interim annulus spheres

outer annulus sphere of the cognition
system processing fuzzy theory or any
soft computing theory or crisp
known/unknown theory, by choice.

proposing membership value u(x) finally, after
being processed by all the annulus spheres

Initialization “h(x,0) = 1 with m(x,0) = 0 and n(x,0) = 0” by default, irrespective of
his awareness/knowledge of IFS Theory (see Fig. 3).

It is because of the fact that this intuitionistic fuzzy processing happens at the
kernel of the brain (CPU) of the decision maker, analogous to the case of execution
of FORTRAN codes in CPU, irrespective of the awareness/knowledge of the
concept of Machine Language by the concerned ‘higher level language program-
mer’ (see Fig. 4). Here the decision maker may be a fuzzy decision maker or any
kind of decision maker (who may be a layman of IFS theory or of Fuzzy theory, or
who could be even an animal or a living thing having brain).

The four variable parameters m, n, h and t could be viewed to form a
4-dimensional hyperspace in the Theory of CIFS. Since our interest is on the trio m,
n and h only, we consider 3-D geometry with three mutually perpendicular axes
called by m-axis, n-axis and h-axis, forming a 3-D mnh-space.
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innermost sphere

Kemnel processes
Machine
Language only,
not by any choice,
but an inbuilt
system.

inter liate codes

r i =
/ outer lus sphere of the computer

system processing codesin FORTRAN
or in COBOL or in any higher level

X language, by choice of the programmer.

displaying or printing the output.
Fig. 4 CPU of a computer with common machine language at the kernel irrespective of any
higher level language of the programmer by his own choice

m-axis 4
(0,1) Z

(0, u(x)) B C (T, u(x))

the curve m = m(x,t)

* t-axis
o} A(T,0)

Fig. 5 The curve m = m(x, t) on tm-plane

The following proposition is reproduced from [11] to justify the weak situation
to be faced by the decision makers in case the indeterministic part be ignored while
solving large size decision problems using any soft-computing set theory, and then
to propose the next proposition as an extension for the CIFS.

Proposition 1 For any decision maker, be it a human or an animal or any living
thing which has brain, it is impossible that his brain (kernel of his cognitive system)
does always have the indeterministic component (i.e. the hesitation component or
undecided component) h(x, t) to be nil for the element x of the universe X, while
going to propose the corresponding membership value p(x).

Proof Suppose that APT(x) = T.
Consider the 2-D curve m = m(x, t) on tm-plane (as shown in Fig. 5). Suppose
that A, is the area under the curve m = m(x, t) bounded by the lines t-axis, m-axis
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n-axis 4
0,1) Z
(0,8(x))B 3, C (T.8(x)
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Fig. 6 The curve n = n(x, t) on tn-plane

h-axis 4

0,1) Z

the curve h=h(x,t)

(0, 7(x)) B — C (T, 7(x)

t-axis
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Fig. 7 The curve h = h(x, t) on th-plane

and the line t = T. Clearly, corresponding to a given decision maker the quantity A,
is not a function of t but of the parameter x. O

Now consider the 2-D curve n = n(X, t) on tn-plane (as shown in Fig. 6).
Suppose that A, is the area under the curve n = n(x, t) bounded by the lines t-axis,
n-axis and the line t = T.

Also consider the 2-D curve h = h(x, t) on th-plane (as shown in Fig. 7).

Suppose that Ay, is the area under the curve h = h(x, t) bounded by the lines
t-axis, h-axis and the line t = T.

Now consider the Atanassov Constraint

m(x, t) + n(x, t) + h(x, t) = 1.

Integrating with respect to time t we get,

T

T T
/m(x, 1)dt + /n(x,t)dt+ /h(x,t)dt=T
0 0 0

or, Am+A,+Ay=T
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Now let us agree that in this real world it is quite obvious that nothing can
happen or can be achieved at the cost of zero amount of time. Even for light particle
to travel one nano centimeter, it takes some infinitesimal small amount of time At
which is greater than zero. Consequently, in Fig. 5 it is obvious that the curve OVC
does always starts from the origin, for which t = 0 and m = 0.

Thus, from the Fig. 5, it is obvious that

area amount A, < Area of the rectangle OACB.

(There is no chance under any circumstances that the Area amount A, = Area of
the rectangle OACB, unless both are equal to zero).

Therefore, A, <T.p(x) in general, excluding the case y(x)=0 for which the
equality Ay, <T. p(x) holds good.

In a similar way it can be established that A, < T.9(x) in general, excluding the
case 9(x) =0 for which the equality A, < T.9(x) holds good.

And also it is true that A, > T.z(x) in general, excluding the case z(x)=1 for
which the equality A, > T.z(x) holds good.

Consider now the following three cases:-

Case(1) p(x) =0 and 9(x) > 0. and
Case(2) ux) > 0and 9(x) =0
Case(3) ux) > 0and I(x) >0

It is obvious that for all of these three cases
Am+ A, <(T. p(x) + T.9(x)) (2)

Now let us prove our proposition by contradiction.

For this, let us suppose that:

For any decision maker, be it a human or an animal or any living thing, it is
possible that his brain (kernel of his cognitive system) does always have the
indeterministic component (i.e. the hesitation component or undecided component)
h(x, t) to be nil while going to propose the membership value u(x).

Therefore, h(x, t) = O for every t € [0,T].

From (1), T = A, + A,

Therefore, T < (T. u(x) + T.9(x)), using (2).

This means that u(x) + 9(x) > 1, which is not possible in any soft-computing set
theory (for instance, not possible in Fuzzy Set theory). Hence the Proposition.

Proposition 2 For any decision maker in the Theory of CIFS, be it a human or an
animal or any living thing which has brain, it is impossible that his brain (kernel of
his cognitive system) does always have the indeterministic component (i.e. the
hesitation component or undecided component) h(x, t) to be nil for the element x of
the universe X, during the progress of decision making process for evaluating u(x).
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Fig. 8 The curve m = m(x, t) on tm-plane

0.1) Z
0. 9() B 5 C(T. 9@)
- il :
(7.n(x.7)) Q(z.n(x.7)) !
. the curve n = n(x.t)
| = 5
t-axis
(0] P(z.0) AT 0

Fig. 9 The curve n = n(x, t) on tn-plane

Proof Suppose that APT(x) = T. Consider any arbitrary time 7 < T.

Consider the 2-D curve m = m(x, t) on tm-plane (as shown in Fig. 8). Suppose
that ay, is the area under the curve m = m(x, t) bounded by the lines t-axis, m-axis
and the line t = 7. Clearly, assuming the amount 7 now fixed here, the quantity a,, is
not a function of t but of the parameter x. O

Now consider the 2-D curve n = n(X, t) on tn-plane (as shown in Fig. 9).
Suppose that a, is the area under the curve n = n(x, t) bounded by the lines t-axis,
n-axis and the line t = 7.

Also consider the 2-D curve h = h(x, t) on th-plane (as shown in Fig. 10).

Suppose that ay, is the area under the curve h = h(x, t) bounded by the lines
t-axis, h-axis and the line t = 7.



104 R. Biswas

h-axis 4
©.1) Z
<+———— thecurve h=h(x.t)
a, v
(7.h(x,7)) R Q(7,h(x,7))
©, T(x) B ~ C (T.z(x)
) P(z.0) A0 > canis

Fig. 10 The curve h = h(x, t) on th-plane

Now consider the Atanassov Constraint

m(X, t) +n(x,t) + h(x, t) = 1.

Integrating with respect to time t we get,

T T T

/m(x,t)dt+ /n(x, 1)dr + /h(x, ndt=t )

0 0 0
or, amp+ta,+a,=7

Now let us agree that in this real world it is quite obvious that nothing can
happen or can be achieved at the cost of zero amount of time. Even for light particle
to travel one nano centimeter, it takes some infinitesimal small amount of time At
which is greater than zero. Consequently, in Fig. 8 it is obvious that the curve OVC
does always starts from the origin, for which t = 0 and m = 0.

Thus, from the Fig. 8, it is obvious that

area amount ap, < Area of the rectangle OPQR.

(There is no chance under any circumstances that the Area amount a,,, = Area of
the rectangle OPQR, unless both are equal to zero).

Therefore, a,, < 7. m(X, 7) in general, excluding the case m(x,z) = 0 for which
the equality a,,, = 7. m(X, 7) holds good.

In a similar way it can be established that a, < 7. n(x, 7) in general, excluding the
case n(x, 7) = 0 for which the equality a, = 7. n(x,7) holds good.

Similarly, it is true that a;, > 7. h(x, 7) in general, excluding the case h(x,7) = 1
for which the equality ay, = 7. h(x, 7) holds good.

Consider now the following two cases:-

Case(1): m(x, 7) = 0 and n(x, 7) > 0. and
Case(2): m(x, 7) > 0 and n(x, 7) = 0. and
Case(3): m(x, 7) > 0 and n(x, 7) > O.
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It is obvious that for all of these three cases
am + a < (r.m(x, 7) + 7.n(x, 7)) (2)

Now let us prove our proposition by contradiction.

For this, let us suppose that:

For any decision maker, be it a human or an animal or any living thing, it is
possible that his brain (kernel of his cognitive system) does always have the
indeterministic component (i.e. the hesitation component or undecided component)
h(x, t) to be nil during the progress of decision making process for evaluating p(x).

Therefore, h(x, t) = 0 for every t € [0, z].

From (1), 7 = a,, + a,

Therefore, 7 < (z. m(x, 7) + 7. n(x, 7)), using (2).

This means that m(x, 7) + n(x, 7) > 1, which is not possible in the Theory of
CIFS. Hence the Proposition.

3 Is ‘Fuzzy Theory’ an Appropriate Tool for Large Size
Decision Problems?

It is observed that 0 < z(x) < 1 for every x of the universe X, whoever be the
decision maker. As a special case, it may happen for one or few elements in the
IFS A that z(x) = 0. But in ground reality, for a decision maker by the best possible
processing in his cognition system, the data ‘z(x) = 0’ can not be true in general for
all and across all the elements x of any universe X while proposing an IFS A of X
(as justified further in Proposition 1 and 2). Even if it be true for one or few or
many elements, it is illogical to believe that it is true for all and across all the
elements of any universe X while proposing an IFS A. Consequently, it is a rare
case that an intuitionistic fuzzy set eventually becomes equivalent to a fuzzy set. It
is not a feasible case that a fuzzy decision maker can ignore z(x) by his own
decision if it is not zero.

Further to that, any real life soft-computing problem on this earth usually occurs
involving more than one universe. There could be r number of universes viz. X,
) TN , X; in a given problem under consideration by a decision maker. And in
that case it is extremely illogical to believe that ‘z(x) = 0’ is true for all the elements
of all the r universes. Neither any real logical system(s) nor the Nature can force a
decision maker (human being or animal or any living object having a brain) either
to stand strictly at the decision: “z(x) = O for every x of every X”, or “to abandon
his decision process otherwise”.

Any decision process for deciding the membership value p(x) starts with Ata-
nassov’s initialization <0, 0, 1> and then after certain amount of time T (called by
Atanassov Processing Time) it converges to the trio <u(x), 9(x), z(x)> without any
further updation of the AT functions. In general in most of the cases, z(x) # NIL.
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Even if z(x) = NIL for one element x, it is a very rare situation that z(x) will be Nil
for all the elements x of X in the IFS proposed by the decision maker. It is a very
very special case, the following justification will support further to this hypothesis:-

Suppose that, to solve an ill-defined problem we have to consider 20 number of
universes, while in each universe there is at least 200 elements. Suppose that, to
solve this problem an intelligent decision maker (say, a soft computing human
expert) needs to consider more than 30 fuzzy sets of each universe. Clearly, he has
to propose membership values by his best possible judgment for more than
1,20,000 elements. For deciding the membership value for each of these 1,20,000
elements the cognition system of the decision maker by default begins with Ata-
nassov’s initialization <0, 0, 1> and after certain time converges to the decision
about u(x) for the element. Can we presume that for each of these 1,20,000 ele-
ments his convergence process starting from the Atanassov’s initialization trio <0,
0, 1> will stop at the trio < p(x), 9(x), 0 > with z(x) = O for each and every x? Can
we presume that there is not a single element x out of 1,20,000 elements for which
the convergence process ends with some non-zero amount of z(x)?

This surely justifies that it may not be appropriate to use fuzzy theory if the
problem under study involves the estimation of membership values for large
number of elements of one or more universes. For instance the populations in Big
Data Statistics [10, 16], be it R-Statistics or NR-Statistics, are all about big data
expanding in 4Vs very fast; and decision analysis in many such cases involve the
application of various soft-computing tools, but it is most important to have
excellent results only.

In our everyday life, every human being plays the role of a decision maker at
every moment of time (ignoring his sleeping period at night). He is compelled to
decide every day for large number of imprecise problems of various nature. But one
can not be always an excellent and outstanding decision maker for all the unknown
(or known), unpredictable, homogeneous/heterogeneous, precise/imprecise prob-
lems he faces every day without ‘any element of hesitation’ at all.

Consequently, it is well justified in [11] that for a large or moderate size soft
computing problem, it may not be appropriate to use the tool ‘Fuzzy Theory’
in order to get excellent results.

However, there are also a number of real life cases where only the best/excellent
decision makers (in most of the cases being pre-selected or pre-choosen) are
allowed to take decisions who can do the job and are supposed to do the job
‘without any hesitation’ on any issue of the problem under consideration, i.e. the
outcome ‘z(x) = 0 is to happen to be true everywhere during the execution of the
problem-solving by them. The example of CESFM presented in [11, 14] is a very
ideal example to understand the situation where fuzzy theory is more appropriate
tool than intuitionistic fuzzy theory in some special cases.
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4 Major Failures of the Existing Notion of Fuzzy Numbers
to the Decision Makers

While doing computations to solve real life ill-posed problems in computers using a
program or a software, the decision makers (including academicians, scientists and
engineers) face a serious problem due to the failures of the role of the existing
popular notion of fuzzy numbers [24]: Triangular Fuzzy Numbers and Trapezoidal
Fuzzy Numbers. This failure are frequently observed by the scientists, mathe-
maticians, statisticians, engineers and academicians while they are in many areas of
simple or complex computations. For solving a very precise and well posed
problem in a computer, a decision makers may use crisp numbers only (say, real
numbers) in modeling the problem into a Linear Programming Problem or a
Non-linear Programming Problem or a Game Theory Problem or a Statistical
Problem, etc. In that case he does not face any problem in memory utilization.
A positive real number x can be stored in memory in consecutive four bytes
reserved for x. The addition, subtraction, multiplication, division of two real
numbers x and y are again real numbers and hence can be stored in memory in
consecutive four bytes reserved for z. It is because of the reason that the set R of
real numbers forms a division algebra, and does also form a region [13, 15].
Consequently, decision makers can fluently use real numbers, can fluently store
them and their results in the space of z. But this is not possible [12] if a decision
maker solves an ill defined problem using Triangular Fuzzy Numbers and/or
Trapezoidal Fuzzy Numbers [24]. Both Triangular Fuzzy Numbers and Trapezoidal
Fuzzy Numbers are paralyzed with exactly analogous type of drawbacks. For
example, consider the triangular fuzzy numbers a = <1, 2, 3> and b = <4, 5, 6>
and see carefully that a * b is not a triangular fuzzy number!. Thus after the
multiplication operation on triangular fuzzy numbers a and b be performed, the
result is loosing the data-structure of the two operands! To store the triangular fuzzy
numbers a or b in memory we need six bytes, but how to store the simple multi-
plication result a * b which is not a triangular fuzzy number!.

Similarly it can be noticed that division of two triangular fuzzy numbers is not a
triangular fuzzy number. These are the major drawbacks of triangular fuzzy numbers.
The main problem is that what kind of ADT (Abstract Data Type) is to be considered
in fuzzy arithmetic computing? What kind of storage-structure is to be considered? In
computer science, a programmer knows that if a, b, ¢ are real(float) numbers then
x =a * b + cis also real, and hence the programmers reserves in memory the number
of bytes for x accordingly. If a, b, c, are three dimensional vectors thenx =aXb + cis
also a three dimensional vector where X denotes cross-product. But if a, b, ¢ are
triangular fuzzy numbers, then x = a * b + ¢ is not a triangular fuzzy number
(although it is a fuzzy number). This serious problem is faced by the fuzzy mathe-
maticians, fuzzy statisticians, and fuzzy experts of all other fields. To solve this crisis,
the notion of T-fuzzy numbers and Z-fuzzy numbers are introduced in this section,
but retaining compatibility with the Tokunaba and Yasunobu’s model [30] of fuzzy
computer, probably the first ever attempt to model fuzzy computers.
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4.1 T-Fuzzy Numbers and Z-Fuzzy Numbers

In this section the existing concept of triangular fuzzy numbers and trapezoidal
fuzzy numbers is updated by introducing T-fuzzy numbers (Triangle Type Fuzzy
Numbers) and Z-fuzzy numbers (Trapezoidal Type Fuzzy Number) respectively.
The ‘triangular fuzzy numbers’ and ‘Triangle Type Fuzzy Numbers’ are not same.
Similarly the ‘trapezoidal fuzzy numbers’ and ‘Trapezoidal Type Fuzzy Numbers’
are not same. The existing notion of triangular fuzzy numbers is a special case of
T-fuzzy numbers and the existing notion of trapezoidal fuzzy numbers is a special
case of Z-fuzzy numbers.

T-Fuzzy Number
A triangle type fuzzy number (T-fuzzy number) 2 is of the form

a= <ap, ap, az, l(X)’ r(X)>

where the functions 1(x): [a;, a;] — [0, 1] and r(x): [a,, a3] — [0, 1] are inversible
(bijective), fuzzy convex and satisfy the following conditions:

@i Ila;)) =0
(i) Kap) =1 =r(ay)
(i) r(az) =0

The curve y = 1(x) is called the left boundary, and the curve y = r(x) is called the
right boundary of the T-fuzzy number 2.

Thus the membership function of a T-fuzzy number 2 = <ay, a,, as, 1(x), r(x)>
will be as follows:-

0 if x<a
I(x) if aj<x<a
r(x) if ay<x<az
0 if x>as

Z-Fuzzy Number
A trapezoidal type fuzzy number (Z-fuzzy number) & is of the form

a= <aj,ay, a3, a4, 1(x), m(x), r(x) >,

where the functions 1(x): [a;, a;] — [0, 1], and r(x): [a3, a4] — [0, 1] are inversible
(bijective), fuzzy convex and satisfy the following conditions:

i) @) =0
(i) l(ap) =1 = r(as)
(iii) r(ay) = 0 and
(iv) m(x): [ay, az] — {1} is a constant function.
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The curve y = 1(x) is called the left boundary, the curve y = r(x) is called the right
boundary, and the curve (straight line) y = m(x) is called the roof-line of the
Z-fuzzy number 4. Thus the membership function of a Z-fuzzy number d = <ay, a,
a3, a4, 1(x), m(x), r(x)> will be as follows:-

0 if x<a

I(x) if aj<x<a
A(x)=<1 if a,<x<as

r(x) if az<x<ay

0 if x>ay

In the next part we define the various arithmetic operations over T-fuzzy numbers
and Z-fuzzy numbers.

4.2 Arithmetic of T-Fuzzy Numbers and Z-Fuzzy Numbers

Clearly, the existing concept of triangular fuzzy numbers is a special case of
T-fuzzy numbers. Many authors studied arithmetic of fuzzy numbers and applied in
wide variety of fields viz. Fuzzy Linear Programming, Fuzzy Optimization,
Fuzzy DBMS, Fuzzy Searching Techniques in Al, Neuro-fuzzy Systems, Fuzzy
Pattern Recognition etc. to list a few only. The work of Kaufmann and Gupta [24] is
interesting. They noted that fuzzy numbers can be treated as a generalization of the
concept of the confidence interval. Let & = (a,, ay, a3) be a triangular fuzzy number,
and suppose that for a given level a of presumption p; (x) > « is true in the interval
[a;, a,] and not true outside, where [a;, a,] C [a;, az]. Then we say that this fuzzy
number i has the confidence interval [a;, a,] corresponding to the level of pre-
sumption a. For adding two triangular fuzzy numbers, we simply add the confi-
dence intervals of them corresponding to the common values of a. In a similar way
the other operations like Subtraction, Multiplication, Division, Scalar Multiplication
etc. can be performed. To study the arithmetic with T-fuzzy numbers, we will
follow an analogous art of Kaufmann and Gupta [24]. In the next part of this section
we present the operations over T-fuzzy numbers. The operations over Z-fuzzy
numbers are to be carried out in a similar manner. We use the notations +, —, *, /
for the operations of Addition, Subtraction, Multiplication and Division respec-
tively of two T-fuzzy numbers.

4.2.1 Addition of two T-Fuzzy Numbers

Consider two T-fuzzy numbers A and B given by
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A= <aj,a,as3,15(x),ra(x)>, and
B= <b1,b2,b3,13(x),rB(x)>.

For a level of presumption a, suppose that the confidence intervals of A and B
are

Ao=[A% A% and B,[B% B.

If C = A + B, (using the symbol ‘+’ to denote the operation of addition of two
T-fuzzy numbers), then using Kaufmann and Gupta’s style we have

Ca=Au®B,=[A] +B{,A7+Bj).

where @ denotes the symbol for interval-addition.
We will now establish the following proposition:

Proposition 3 The fuzzy number C is also a T-fuzzy number.

Proof The equations of the two boundaries of the T-fuzzy number A could be
viewed as

a=I15(A]) and a=ra(AT).

This gives Aq =[1; (), ri H(a)].

Similarly B, =[l5 (), r5 ' (a)].

Therefore, Cy, =[C{, C§] =I5 (o) + 15 (o), ri (o) + 75 ()]

The left boundary of the T-fuzzy number C is given by the curve a = I-(x) where
o is the solution of the equation x=1;'(a) +/; '(a); and the right boundary is
given by the curve a = rc(x), where o is the solution of the equation
x=ry (o) +r5 ! (a).

We will now verify that

(i) I, r. are inversible functions, and
(i) 1, r. are fuzzy convex.

Consider the function o = 1¢(x).

We see that I ! (a) =1 () + /5 ' (), which is unique. This shows that 1. is an
inversible function. Similarly we can argue for r..

To prove that 1, is fuzzy convex, it is sufficient if we prove that 1. is an increasing
function.
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For this, take x, > x; and suppose that 1c(x,) = v, and Ic(x;) = v;.
Now, e () > e (1)
or, L)+ ) >0 )+ ()

which implies that y, > v;.

(Because if y, > vy, is not true, then we must have y; > v,. and in that case we
must have ;7' (y,) +15 ' (y;) =17 ' (v,) + 15 ' (v,) which is not true). Hence 1 is an
increasing function.

In a similar way we can prove that r, is a decreasing function.

Now, to find out the values of c;, ¢, and c; we solve the following equations
respectively for x:

1) 1cx) =0, (ii) 1c(x) = 1, [or, the equation rc(x) = 1], and (lii) re(x) = 0.

The equation Ic(x) = 0 gives

ci=1c'(0)
=1;"(0)+1;'(0)
=a; +b

Similarly the equation rc(x) = 0 gives ¢z = a3 + bs.
The equation Ic(x) = 1 gives

c=1c'(1)

=5 () +1;' (1)
=a,+by

The equation rc(x) = 1 too gives the same value for c,.
Thus we get that, addition of two T-fuzzy numbers A = <ay, a,, a3, [5(X), ra(x)>
and B = <by, by, bs, 1g(x), rg(x)> is the T-fuzzy number C given by

C=<ay,ay,as,lp, 1o > + <by,by, bz, 1z, 15 >
= <¢1,62,63,1c,1¢ >

where

(1) ci=a+b,fori=1,2,3
(i) 1c(x) is the solution of the equation x =y (o) + 5 ! (o) for unknown a, and
(iii) rc(x) is the solution of the equation x =r; (o) +r5 ! () for unknown a.

It is obvious that this addition operation is commutative.
In a similar way we see that the following results are true.
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4.2.2 Subtraction of Two T-Fuzzy Numbers

Subtraction of the T-fuzzy number A = <ay, a,, a3, Ia(X), r1o(X)> from the T-fuzzy
number B = <by, by, b3, I3(x), rg(x)> yields the T-fuzzy number C given by

C= <ay,ap,a3,1p, 1A > — <by, by, b3, 1,13 > = <cy,¢0,¢3,1c, 1c >

where

(i ci=a —Dbfori=1,23
(i) 1c(x) is the solution of the equation x =I5 (o) + 5 ! () for unknown a, and
(iii) re(x) is the solution of the equation x = rA_l((x) +r5 '(a) for unknown «.

4.2.3 Multiplication of Two T-Fuzzy Numbers

Multiplication of two T-fuzzy numbers A = <ay, a,, az, Ia(X), ra(X)> and B = <by,
b,, b3, 13(X), rg(x)> denoted by A * B is the T-fuzzy number C given by

C= <ay,a,a3,15,17o > * <by, by, b3, 1,13 > = <cy,¢p,¢3,1c, 1c >

where

(i ci=a.b fori=1,2,3
(i) 1c(x) is the solution of the equation x =/ () .l; ! (o) for o, and
(iii) rc(x) is the solution of the equation x =r; !(a) . rz (o) for a.

It is obvious that this multiplication operation is commutative.

4.2.4 Division of Two T-Fuzzy Numbers

Division of the T-fuzzy number A = <aj, a,, a3, 1o(X), ra(x)> by the T-fuzzy
number B = <by, b,, bs, Ig(x), rg(x)> denoted by A/B is the T-fuzzy number C
given by

C= <aj,ay,a3,15,1o > /<by, by, b3, I, 13 >
= <CI’C2’CS,lerC>-

where

(i) ¢ = ay/bs ¢y = ay/by, c3 = as/b.
(ii) le(x) is the solution of the equation x =1y !(a) /rz ! (o) for a, and
(iii) rc(x) is the solution of the equation x =r; (o) /5 (o) for a.



Is ‘Fuzzy Theory’ An Appropriate Tool ... 113
4.2.5 Scalar Multiplication

For any scalar k, the scalar multiplication of a T-fuzzy number A = <a,, a,, as,
Ia(x), ra(x)> with k results in the T-fuzzy number C given by
C=k.<ay,ap,a3,la, 1A > = <cy,C2,C3,lc, rc > where

i) ¢g=kafori=1,2,3
(ii) lc(x) is the solution of the equation x=k. I (o) for o, and
(iii) rc(x) is the solution of the equation x =k.r; !(a) for a.

The membership function of the T-fuzzy number C will be

0 if x<ka,

I(xk) if ka;<x<kap

he(x) = r(xk) if kay <x<kaz
0 if x>kajs

5 Conclusion

This chapter presents a very brief review exercise of the work of [11] entitled: “Is
‘Fuzzy Theory’ An Appropriate Tool For Large Size Problems?”, in which the
Theory of CISF is introduced. Theory of CISF is basically on the subject of
decoding the ‘progress’ of decision making process in the Human/Animal cognition
systems while evaluating the membership value u(x) in a fuzzy set or in an intu-
itionistic fuzzy set or in any such soft computing set model or in a crisp set. The
theory of CIFS in [9, 11] explains and well justifies that it may not be an appro-
priate decision to apply fuzzy set theory if the problem under consideration involves
the estimation of membership values for a large number of elements. The two
hidden facts about fuzzy set theory (and, about any soft computing set theory)
established in [11] are:

Fact-1:

A decision maker (intelligent agent) can never use or apply ‘fuzzy theory’ or any
soft-computing set theory without intuitionistic fuzzy system.

Fact-2:

The Fact-1 does not necessarily require that a fuzzy decision maker (or a crisp
ordinary decision maker or a decision maker with any other soft theory models or
a decision maker like animal/bird which has brain, etc.) must be aware or
knowledgeable about IFS Theory!

It has been philosophically and logically justified that whenever fuzzy theory or
any soft computing set theory be applied to any real problem, it happens by the
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mandatory application of intuitionistic fuzzy system inside the brain (CPU), but it is
fact that the decision maker (human being or animal or any living thing having a
brain or processor element) need not be aware of IFS Theory!. The decision maker
is, neither knowingly nor un-knowingly, applying the IFS theory during the pro-
gress of any decision making process by any theory/logic of his own choice;
because of the hidden truth that the cognition system has an in-built system soft-
ware type which spontaneously processes IF philosophy at the kernel.

It is justified in [11] that although fuzzy sets are a special case of intuitionistic
fuzzy sets, but the existing concept that ‘the intuitionistic fuzzy sets are higher order
fuzzy sets” is incorrect (a similar incorrect concept can be imagined if one says
that ‘fuzzy sets can be viewed as higher order crisp sets’). Rather, the fact is that the
IFSs are the most appropriate optimal model for translation of imprecise objects
while the fuzzy sets are ‘lower order’ or ‘lower dimensional’ intuitionistic fuzzy
sets.

Decision making activities of ill-defined problems are a routine work at every
moment for every living agent. The same was true during the period prior to the
discovery of crisp set theory, even starting from the stone age too. Decoding the
‘progress’ of decision making process in the human cognition systems (or, in the
cognition system of any living animal which has a brain or a processor element, be
it of a fuzzy decision maker or an intuitionistic fuzzy decision maker or any
intelligent decision maker) while evaluating the membership value u(x) to construct
a fuzzy set or an IFS or any such soft computing set model, it is observed that the
exact algorithm processed (analogous to the execution of machine language pro-
gram corresponding to any higher level language program) is absolutely nothing
but intuitionistic fuzzy only, which is not by any choice of the decision maker but
by in-built CIFS.

However, the intuitionistic fuzzy processing in the cognition system of the
membership value u(x) as a special case many times may converge at fuzzy or at
the crisp output for one or more elements of the universe of discourse.

The Atanassov ‘Theory of IFS’ is purely a choice of the decision maker. The
decision maker must be knowledgeable about the ‘Theory of IFS’ if he wants to use
it for solving any ill-defined problem. But the ‘Theory of CIFS’ is not and never a
choice of the decision maker. It is an in-built in the cognition system of every
decision maker, irrespective of his any knowledge about intuitionistic fuzzy set
theory. Whoever be the decision maker, be it a human or an animal or a bird or any
living thing which has brain, the ‘Theory of CIFS’ is automatically and mandatorily
followed and finally executed inside the kernel of the cognition system, irrespective
of his intellectual capability, irrespective of his any knowledge about intuitionistic
fuzzy set theory.

Pattern Recognition or Object Recognition is one of the earliest and probably the
most important and most executed Decision Making Problem on this earth. This
problem is being solved by every human being, every living animal and every bird
as a routine exercise probably very large (if not infinite) number of times every day
in his real life environment. This problem has converted every human being, every
living animal and every bird into a decision maker. Any problem of pattern
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recognition or object recognition is an impossible task without CISF. When your
eyes are open, you see something and can (or can not) recognize it. Every moment
your brain is recognizing something i.e. Every moment your brain is solving some
kind of pattern recognition problem. For example, at some real instant of time when
you see a chair by your eyes, you immediately (in time t > 0) recognize it and say
that it is ‘chair’ and/or you also may say that it is a furniture, etc. rejecting all other
infinite number of possibilities like: it is a dog, it is a book, it is a banana, car, tiger,
mango, a number 54, a building, table, laptop, etc. When you see a mango by your
eyes, you immediately (in time t > 0) recognize it and say that it is ‘mango’,
rejecting all other infinite number of possibilities like: it is a dog, it is a book, it is a
banana, car, tiger, a number 54, a building, table, laptop, etc.

While a hungry tiger chases a buffalo in a jungle, he decides a lot by his own
logic (the logic which is unknown to us). The tiger does not know fuzzy logic or
intuitionistic fuzzy logic or type-2 fuzzy logic, etc. But he has his own logic by
which he decides and very rightly decides about many issues like:

(i) which buffalo to chase now (out of thousands buffalos available in his prox-
imity). It is also fact that in many occasions he does not choose the buffalo of
his nearest proximity due to some reason, or sometimes he decides to choose to
chase a baby buffalo because he does also optimize the chance of his success in
the real time scenario.

(i1) even sometimes after chasing a particular buffalo for about 300 m, he decides to
give up his run (leading to failure to get his food in this attempt), or sometimes
he decides to shift his target to another buffalo.

All these are real time decision oriented activities done by his best possible
judgement, by his own logic which is unknown to us. This tiger may be illiterate
according to our rich literature or rich logic, but surely he is literate by his own
logic, by his own literature which are unknown to us. Whatever be the logic or
literature being practiced by this tiger, the kernel always executes the algorithms of
CIFS being initiated by Atanassov Initialization, not by any choice of the tiger. The
different logic or literature used by different decision makers are analogous to
higher level language operating in the outer annulus sphere (see Fig. 3) of the
cognition system, but the kernel of every decision maker (be it human being,
animal/bird, or any living thing which has brain) functions by a common machine
language of CIFS irrespective of all kind of the knowledge of the decision maker
which resides at the outer annulus sphere. This logic is well analysed in [11] in
details, justifying that the soft-computing solution of any problem of Object
Recognition can be well solved using the theory of IFS, but can not be so well
solved if fuzzy theory be applied. However by another interesting example of
CESFM on football sports explained in [11], it is shown that for a given problem if
the decision makers of excellent talent be allowed to give their best possible
judgment to the issues (i.e. if they are the best available decision makers on the
subject under consideration), then fuzzy set theory will be more appropriate than
intuitionistic fuzzy set theory. In the theory of CIFS in [11] it is well justified with
several examples that in most of the cases of real life problems Intuitionistic Fuzzy
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Set Theory of Prof. Atanassov will be the more appropriate tool for applications
compared to the Fuzzy Set Theory of Prof. Zadeh. But in the Theory of CESFM in
football sports the decisions are to be taken by the FIFA Referees of best qualities
and of best intellectual capabilities (on the subject) of the world who are expected to
have no element of hesitation while proposing membership values. Hence this is a
particular case of interest where Fuzzy Set Theory is a better tool for the
soft-computing CESFM method compared to the Intuitionistic Fuzzy Set Theory.

It has been noticed well that multiplication or division (and many other operations)
of two triangular fuzzy numbers (trapezoidal fuzzy numbers) does not yield a fuzzy
number which is a triangular fuzzy number (trapezoidal fuzzy numbers). This leads to
a serious architectureus problem to the computer scientists while attempting to design
fuzzy computers. In particular the programmers, while solving ill-defined engi-
neering problems or fuzzy optimization problems or any soft-computing problems
where multiplication/division operations are involved, have been facing problem
regarding distortion of data structures of the output values. This problem is overcome
by defining T-fuzzy numbers and Z-fuzzy numbers, just by the way they are con-
structed. Various operations are defined on T-fuzzy numbers and Z-fuzzy numbers
compatible with the Tokunaga and Yasunobu’s model [30] of fuzzy computer.

If a, b are two T-fuzzy numbers (Z-fuzzy numbers) then the following are now
true:

(i) a + b is also a T-fuzzy number (Z-fuzzy numbers)
(i) a — b is also a T-fuzzy number (Z-fuzzy numbers)
(iii) a * b is also a T-fuzzy number (Z-fuzzy numbers)
(iv) a/b is also a T-fuzzy number (Z-fuzzy numbers)

(v) a’isalso a T-fuzzy number (Z-fuzzy numbers)

(vi) a"is also a T-fuzzy number (Z-fuzzy numbers)
(vii) 1/ais also a T-fuzzy number (Z-fuzzy numbers) etc.

Consequently, with these revised notion of the fuzzy numbers: T-fuzzy numbers
and Z-fuzzy numbers, a possible way could now be discovered by rigorous future
research work to define methods of fuzzy computing like sqrt(n), ", log n, etc. and
fuzzy trigonometrical terms like sin a, cos a, etc. where n and a are fuzzy numbers.
The Tokunaga and Yasunobu’s model [30] of fuzzy computer will be able to
compute fuzzy arithmetic expression (which is in infix notation) of T-fuzzy num-
bers in two steps:-

Step-1. It will convert the infix form of fuzzy arithmetic expression into postfix
fuzzy arithmetic expression.

Step-2. It will evaluate the fuzzy postfix expression to give the result which is a
T-fuzzy number.

In each step, the fuzzy stack will be the main tool to accomplish the task. But
there is no literature reported so far on fuzzy stacks, possibly because of the
drawback of existing notion of triangular fuzzy numbers. Anyway, in the future
research work the fuzzy experts will concentrate upon the problem how to define
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the notion of fuzzy stacks which can be used to evaluate fuzzy arithmetic expres-
sions of T-fuzzy numbers. Attempt may be made to define fuzzy queues and many
other fuzzy data-structures, their applications in fuzzy computing. The notion of
T-intuitionistic fuzzy numbers and Z-intuitionistic fuzzy numbers can also be
introduced in a similar way. Attempt will also be made to explore whether and how
the set of all T-fuzzy numbers (Z-fuzzy numbers) forms a region [13, 15] or at least
forms a division algebra, whether and how the set of all T-intuitionistic fuzzy
numbers (Z-intuitionistic fuzzy numbers) forms a region [13, 15] or at least forms a
division algebra. Otherwise the use of fuzzy numbers and/or intuitionistic fuzzy
numbers will not be fruitful for any kind of complex computation for solving any
mathematical or engineering or optimization or statistical or decision making
problem. Presently it is an important unsolved problem.
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Properties and Applications
of Pythagorean Fuzzy Sets

Ronald R. Yager

Abstract We introduce the concept of Pythagorean fuzzy subsets and discuss its
relationship with intuitionistic fuzzy subsets. We focus on the negation and its
relationship to the Pythagorean theorem. We describe some of the basic set oper-
ations on Pythagorean fuzzy subsets. We look at the relationship between Pytha-
gorean membership grades and complex numbers. We consider the problem of
multi-criteria decision making with satisfactions expressed as Pythagorean mem-
bership grades. We look at the use of the geometric mean and ordered weighted
geometric (OWG) operator for aggregating criteria satisfaction. We provide a
method for comparing alternatives whose degrees of satisfaction to the decision
criteria are expressed as Pythagorean membership grades.

Keywords Intuitionistic fuzzy sets -+ Non-standard membership grades -
Pythagorean theorem -« Complex numbers - Multi-criteria aggregation -
Geometric mean

1 Introduction

Atanassov introduced the idea of intuitionistic fuzzy sets [1]. A considerable body
of research has been devoted to these sets [2]. Intuitionistic fuzzy sets extend the
representational capability of fuzzy sets from being able to represent partial
membership to additional being able to represent lack of commitment or uncertainty
in providing the membership grade. They are an example of what are referred to as
non-standard fuzzy sets. In a standard fuzzy subset A one provides a membership
grade A(x) € [0, 1], indicating the degree of support for the membership of x in A.
Implicit in this situation is the assumption that the degree of support against
membership of x in A is valued as the negation of A(x), typically taken as 1 — A(x).
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Instead of accepting this implicit assumption for the support against membership
intuitionistic fuzzy allows for a separate specification of this value, being only
constrained by the requirement that the sum of the supports for and against doesn’t
exceed one. In adding this capability Atanassov has allowed the providers of
membership grades to be uncertain or hesitant in providing their membership
grades, thus if A*(x) and A™(x) are the degrees of support for and against mem-
bership then the value 1 — (A*(x) + A7(x)) is the amount of uncommitted or
uncertain membership.

Implicit in the use of intuitionistic fuzzy sets is the acceptance of the linear form
of logical negation, Neg(a) = 1 — a. As shown by Sugeno and Yager there are other
possible formations within the field of fuzzy sets for the modeling of negation [3].
One notable example is the negation Neg(a) = (1 — a2)1/ 2 which Yager has referred
to as the Pythagorean negation. Using this formation for the negation instead of the
linear formulation Yager [4-6] provided a related class of non-standard fuzzy sets
that he referred to as Pythagorean fuzzy sets. Some researchers have begun using
these sets in some applications [7, 8]. Here we look in more detail at the Pytha-
gorean fuzzy sets. In addition to discussing the basic properties of these sets we
provide a formulation in terms of complex numbers [9]. We consider the problem
of multi-criteria decision making when the degrees of satisfaction are expressed as
Pythagorean membership grades. We also provide a formation for comparing
Pythagorean membership grades.

2 Pythagorean Membership Grades

In [4-6] Yager introduced a new class of fuzzy sets called Pythagorean fuzzy sets,
PFS, which are closely related to Atanassov’s intuitionistic fuzzy sets [1, 2]. We
shall refer to the membership grades associated with these sets as Pythagorean
membership grades, PMG’s. In the following we describe the Pythagorean mem-
bership grades.

One way of expressing Pythagorean membership grades is by giving a pair of
values r(x) and d(x) for each x € X. Here r(x) € [0, 1] is called the strength of
commitment at X and d(x) € [0, 1] is called the direction of commitment. Here r(x)
and d(x) are associated with a pair of membership grades Ay(x) and An(x) indi-
cating respectively the support for membership of x in A and the support against
membership of x in A. As we shall see Ay(x) and An(x) are related using the
Pythagorean complement with respect to r(x). In particular the value of Ay(x) and
An(x) are defined from r(x) and d(x) as

Ay (x) =r(x)Cos(0(x))
An(x) =r(x)Sin(0(x))
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where 0(x) = (1 — d(x))3. Here we see 0(x) is expressed as radians and 6(x) € [0, 7].
Thus we see the closer d(x) to 1, the closer 8(x) to 0, the more the commitment r(x)
is supporting membership of x in A.

We now show that Ay(x) and An(x) are Pythagorean complements with respect
to r(x).

AL (x) + A% (x) =r*(x)Cos?(8(x)) +12(x) sin?(0(x))

and since it is known from the Pythagorean theorem that Cos?*(0) + Sin*(0) = 1 then
we have that A%((X) + A%I(x) = rz(x) and hence A%((x) = rz(x) - Alz\l(x) and
AYX) = rP(x) = AYR).

Thus Ay and Ay are Pythagorean complements with respect to r(x).

Pythagorean membership grades allow some lack of commitment in addition to
imprecision in assigning membership. We see that r(x), which is a value in the unit
interval, is the strength of commitment about membership at point x, the larger r(x)
the stronger the commitment. Let us know understand the meaning of the value d
(x), the direction of the strength. We recall that 8(x) = (1 — d(x))3. In the case when
d(x) = 1, then 6(x) = 0 and Cos(8(x)) = 1 and Sin(8(x)) = 0. Thus Ay(x) = r(x) and
An(x) = 0. On the other hand if d(x) = 0 then 8(x) = /2 and we get Ay(x) = 0 and
An(x) = 1. Thus we see that d(x) is essentially indicating on a scale of 1 to 0 how
fully the strength r(x) is pointing to membership. If d(x) = 1 the direction of r(x) is
completely to membership while d(x) = 0 the direction of the strength is completely
to non-membership. Intermediate values of d(x) indicate partial support to mem-
bership and non-membership.

Here we note that the Pythagorean membership grade can be expressed either by
providing r(x) and d(x) or by r(x) and 6(x) were we express 0 as radians in the range
[0, 71.

Thus we see that the Pythagorean membership grade provides a type of
imprecise membership grades, generally referred to as type 2. These membership
grades, Ay(x) and An(x), are related by the Pythagorean complement with respect

to strength of commitment, A%(x) + A%(x) = r’(x). Furthermore we have

Cos(0(x)) = Ar&))() and hence 6(x) = Arccos(@(\;g))'

We note that more generally a Pythagorean membership grade A(x) is a pair of
values (a, b) such that a, b € [0, 1] and a>+b’>< 1. Herea= Avy(x), the degree of
support for membership of x is A and b = An(x) the degree of support against
membership of x in A. We see that for this pair a* + b? = . Thus a Pythagorean
membership grade is a point on a circle of radius r. We also recall that any point (a,
b) on a circle of radius 2 = a> + b” can be expressed as (r Cos(0), r Sin(0)). Thus we
see that Cos(0) = % and Sin(0) = % hence 6 = arc Cos(a/b) thus d = ”‘—”29. Thus the
point (a, b) has strength of commitment and direction of commitment pair
r=@ +b)"?andd = n—Tze' We emphasize that since we require that a and
b € [0, 1] then 6 € [0, 5], a Pythagorean membership grade is a point in the upper
right quadrant.
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Another example of non-standard fuzzy subset is the intuitionistic fuzzy subsets
introduced by Atanassov. An intuitionistic membership grade F(x) = (A*(x),
A~(x)) is also a pair (a, b) such that a, b € [0, 1]. Here A*(x), a, indicates the
amount of guaranteed membership of x in A and A™(x), b, indicates the guaranteed
non-membership in A however here we require that a + b < 1. The expression Hes
(x) =1 — (A*(x) + A™(x)) is called the hesitancy of x. It is a reflection of lack of
commitment or uncertainty associated with the membership grade at x. We shall
find it convenient to denote S(x) = 1 — Hes(x) = AT(x) + A"1(x). It is a kind of
total commitment.

Thus while both intuitionistic and Pythagorean membership allow for the rep-
resentation of uncertain membership in grades in terms of pairs of values (A™(x),
A~ (x)) and (Ay(x), An(y)) there are some important differences between these two
representations. The first is that AT(x) + A7(x) < 1 while A3(x) + AZ®x) < 1.

We observe that for a and b € [0, 1] then a> < a and b> < b from this we observe
that if a + b < 1 then a> + b?> < 1. From this we can conclude the following
theorem.

Theorem The set of Pythagorean membership grades is greater than the set of
intuitionistic membership grades.

We see this as follows. First we note that every point (a, b) that is an intu-
itionistic membership grade is also a Pythagorean membership grade. We first
observe that for any a and b € [0, 1] then a® < a and b? < b from this we observe
that if a + b < I then a> + b® < 1. Secondly there are Pythagorean membership

grades that not intuitionistic membership grades. Consider now the point (\/Tg’ %).
2
We see that (\?) + (%)2 = % + % =1 thus this is a Pythagorean membership grade.

However since ‘/7§ = % = 0.866 then 0.5 + 0.866 > 1 this is not an intuitionistic
membership grade.

This result can be clearly seen from Fig. 1. Here we observe that intuitionistic
membership grades are all points under the line x + y < 1 and the Pythagorean
membership grades are all points with x> + y> < 1. We see then that the Pytha-
gorean membership grades allow for the representation on a larger body of
non-standard membership grades then intuitionistic membership grades.

x+y=1

Fig. 1 Comparison of space of Pythagorean and intuitionistic membership grades
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3 On the Negation Operation

Another distinction between Pythagorean and Intuitionistic fuzzy sets relates to
their definitions of complement or negation. Before introducing the negation of
Pythagorean fuzzy sets we need to say something about the complement operator
[3]. A complement C operator is a mapping C: [0, 1] — [0, 1] that satisfies

(1) Boundary Conditions: C(0) = 0 and C(1) =0

(2) Monotonicity: For all a, b € [0, 1] if a < b then C(a) > C(b)

(3) Continuity

(4) Imvolution: C(C(a)) = a

We recall that the linear function C(a) = 1 — a is the classic example of a com-
plement operator.

Yager [10, 11] introduced a family of complement operators. The Yager class of
complements is defined by

C(a)=(1-2a")'*

where P € (0, o). We observe that for P = 1 we get the classic linear complement
C(a) =1 — a. If p = 2 then we get

we note here

We shall refer to this as the Pythagorean complement.
We know introduce the related idea of complements with respect to r, where
r € [0, 1]. We define Cy,: [0, r] = [0, 1] as a complement with respect to r if

Cjy(0)=r
C[r] (I‘) =0
(2) Cpy is monotonic

(3) Cyy is continuous
4) Ciy(Cyy(a)) = a Involution

€]

We note that the Yager class of complements is easily extended to be comple-
ments with respect to r,

Cy(a)=("=a")""

We note here that (Cg(a))’ = £ — af and hence Cp@) + al = . It can be
shown these satisfy the required conditions. Two important complements with
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respect to 1 are the linear complement Cp(a) = r — a and the Pythagorean com-
plement with respect to r, Cpy(a) = (r2 — a2)1/2.

We now turn to the idea of set complement. Assume A is an intuitionistic fuzzy
set with intuitionistic membership grades, <A%*(x), AT(x)> where
A*(x) + A7(x) < 1. We recall an intuitionistic fuzzy set A has complement A with
membership grades [1, 2]

Ax)= <A (x),A7(x)> = <A™ (x),AT(x)>.

We have simply interchanged values of degree of support for with of degree of
support against. A more fundamental understanding of this operation can had
recalling that the strength of commitment S(x) = A*(x) + A™(x). Here we see A
*x) = A"(x) =S(x) — AT(x) and A" (x) = AT(x) = S(x) — A™(x). Using this we can
express

Ax)= <A (x),A7(x)> = <S(x) —A* (x),S(x) — A~ (x)>

Here then we have that A*(x) is the linear complement of A*(x) with respect to S
(x) and A™(x) is the linear complement of A™(x) with respect to S(x).

In the case of the Pythagorean fuzzy sets we define the complement in analogous
manner using the Pythagorean complement with respect to the commitment r(x)
[4-6]. Assume a Pythagorean membership grade A(x) = <Ay(x), An(x)> we define
its complement A(x) = <Ay(x), Ax(x)> such that Ay(x) = (P(x) — A¥(x))"* and
An(x) = (P(x) — AR(X)"? where r’(x) = A¥(x) + A%(x). Here then Ay(x) is the
Pythagorean complement of Ay(x) with respect r(x) and Ax(x) is the Pythagorean
complement of An(x) with respect r(x). We easily see that Ayx) = (rz(x) —
AX)™ = (ARG = Ay®) and Av) = (0 - A0 =
(A%(x))l/ 2= Ay(x). Thus here again we have Ay(x) = An(x) and An(X) = Ay(X).

We recall that if A and B are two intuitionistic fuzzy sets with intuitionistic
membership grades A(x) = <A™(x), A"(x)> and B(x) = <B™(x), B"(x)> then as
suggested by Atanassov [2] we say A C B if A*(x) < B*(x) and A™(x) > B7(x) for
all x. We see that since A(x) = = <A™ (x), AT(x)> and B(x) = <B(x), B¥(x)> then
if A C B we have B C A.

In an analogous manner if E and F are two Pythagorean fuzzy sets with
Pythagorean membership grades E(x) = <Ey(x), Ex(x)> and F(x) = <Fy(x), Fn(X)
> we say E C Fif Ey(x) < Fy(x) and Ex(x) > Fx(x) for all x. Since E(x) = <En(x),
Ey(x)> and F(x) = <Fx(x), Fy(x)> then if E C F we have FC E.
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4 Basic Set Operations for Pythagorean Fuzzy Sets

We now turn to the basic operations needed for combining Pythagorean fuzzy sets
Assume A; and A, are two fuzzy subsets of X with Pythagorean memberships
grades. For simplicity we denote for A;(x) = (a;, by) and Ay(x) = (a,, b,). Here we
have aj + b7 = 1] < 1 and a5 + b3 = 13 < 1. Consider now the intersection,
D = A; n A,. We shall D define D(x) = (d;, d,) where d; = Min(a;, a,) and
d, = Max(by, b,). In order for D to be a Pythagorean fuzzy subset we must have that
di + d3 < 1. We see since d, = Max(b,, b,) then

d%:Max(b%,b2)=Max(r a%,r% %)

<
dj <Max(1 —Min(aj,a3), 1 — Min(af, a3)

Ma ( Mln(al,az) Mln(a%,ag))
<1~ Min(a}, 23

From this we see that d% + d% < Min(a%, a%) +1- Min(a%, a%) < 1. Thus we see that
this satisfies the requirement of being a Pythagorean membership grade.

We now define E = A; U A, so that E(x) = (eq, e,) where e; = Max(a;, a,) and
e, = Min(by, b,). In a manner analogous to the preceding we can show that (e, e,)
is a Pythagorean membership grade.

Thus, as in the case of the intuitionistic fuzzy sets we can define the set oper-
ations of intersection and union using the Max and Min operators. If A; and A, are
two Pythagorean fuzzy sets with membership grades A;(x) = (a;, b;) and
Ay(X) = (ap, by) then D = A; N A, and E = A, U A, are Pythagorean fuzzy sets
such that

e(x) = (e1,e2) = (Max(aj, a2), Min(by, by)

We further define the complement of A;, A, such that A(x) = (@ = ah°s,
(13 — b)%). where 17 = a? + b} and hence A(x) = (by, a;).

We now look at the more general question of aggregation of Pythagorean fuzzy
sets.

Definition A function Agg: [0, 119 — [0, 1] is called an aggregation function
[12, 13] if

(1) Agg@©, ...,00=0
2) Agg(,...DH=1
(3) Agg(ay, ..., ag) > Agg(by, ..., by) if a; > b; for all j

Conditions one and two are referred to as boundary conditions and condition three
is a monotonicity requirement.

We now define the dual of an aggregation operator [12, 14].
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Definition Let Agg be any aggregation operator defined on the unit interval I,
Agg: 19 - I, we define the dual of Agg, Agg as

Agg(xi, ....x,) =Neg(Agg(Neg(x)), ..., Neg(x,)))

where Neg is a complement operator.

Definition Assume A, ..., A, are collection of PFS, Pythagorean Fuzzy Sets, with
membership grades A;(x) = (Ajy(X), Ajn(x)). We define E = Agg(Ay, ..., Ag) as a
PFS with Pythagorean membership grades E(x) = (Ey(x), En(X)) such that

Ey(x) =Agg(Ary(x), Aoy (x), -, Agy(X))

Ex(x) = Agg(Amn(x), Amn(X), - .., Agn(x))
In the case of the Pythagorean membership grade Neg(a) = (1 — a®)'%.

For E to be a PFS we require that Ey(x) and Ex(x) satisfy E3(x) + E&(x) < 1.
Thus if E3(x) + EXx(x) < 1 the operator of Agg is closed, it maps the collection of
PFS into a PFS.

We note that Agg is monotonic, Agg(xy, ..., Xq) = Agg(Xy, ..., yn) if Xj > y; We
now prove the following theorem using the monotonicity.

Theorem If Agg is monotonic then it is always the case that E%((x) + EzN(x) <l1.
Proof In the following for notational convince we shall denote the pair (Ajy(x),
Ajn(x)) as (aj, b)) where each pair (aj, b;) satisfies aj2 + bj2 = rj2 <1
Ey(x)=Agg(a, ...,aq)
Ex(x)=Agg(by, ..., by) = (1 - (Agg((1-b})"", (1-b2)"7, ..., (1-b2))")'~

We now recall that since aj2 + bj2 <1lthenl - bj2 > ajz. From this we observe that

Ey(x) =Agg(ar, ....aq) <Agg((1-b})"2, ..., (1-b)'?)
We now observe that

EY () +EX (%) < (Agg((1-b1)", (1-b3)"))* + (1 - (Agg((1-b])"2, .., (1-1)))%)"?)?
E3 (x) +EX (x) < (Agg((1-b7)"7, (1-52)"%))* + 1 = (Agg((1-b])'"2, (1 -b3)'#))?
E2(x) +Ex(x) <1

Thus we see that if Aj(x) are a collection of PFS, Pythagorean fuzzy sets, then if
we define E = Agg(A;, ..., A> where such that Ey(x) = Aggi(A;y(x)) and

Ex(x) = Agg;(Ain(x) then E is a PFS with E(x) = (Ey(x), Ex(x)). Thus the operation
Agg is closed.
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In [12] authors consider a number of important classes aggregation operators.
We briefly look at these for the case of aggregation Pythagorean fuzzy subsets. Two
important classes of aggregation functions are conjunctive and disjunctive opera-
tors. An aggregation function is said to be a conjunctive type operator if Agg(ay, ...,
a,) < Min(a;, ..., a,) and is called a disjunctive type operator if Agg(a;, ...,
a,) > Max(a;, ..., a,). The conjunctive operator generalizes the set intersection,
and, operator while the disjunctive operator generalizes the set union, or, operator.

It can be shown that if Agg is a conjunctive type operator then Aé/g is disjunctive

and if Agg is disjunctive then ngg is conjunctive.

An special important type of conjunctive operators are t-norms and a related
special important type of disjunctive operators are t-conorms [15]. We recall that a
t-norm is defined as a binary aggregation operator that has one as an identity, T(a,
1) = a, and is associative T(a, T(b, c)) = T(T(a, b, ¢)). A conorm is also associative
and has zero as its identity, S(a, 0) = a. It can be shown [12] that if Agg is a t-norm
then AAng is a t-conorm and also if Agg is a t-conorm then X\Jgg is a t-norm.

Another important class of Agg operators are mean type aggregation operators.
These operators are defined by their satisfaction of the condition Min;j[a;] < Agg(a,

..., 8g) < Maxj[a;]. It can be shown that if Agg is a mean type operator then Agg is
also mean type operator.
We now consider the following mean aggregation operator

Agg(by. ....by) = (Zw;b?)'”

where Zjw; = 1 and w; € [0, 1]. This is an example of a class of mean operators
called weighted power means [12]. We can show its dual

Agg(by, ...,by) =Neg(Agg;(Neg(b;)) = (ijjbjz)l/2
Thus Agg(ay, ..., a,) = (Zjoajz)l/z is self dual Agg(ay, ..., a,) = Xéé(al, .eey Ap).
Another example of mean of is the geometric mean Agg(by, ..., by) =[] b,

j=17%]
It can be easily shown [4-6] that its dual is

Agg(by, ...,by)=(1—-Agg((1-b2), ...... ,(1=b2))'"

5 Pythagorean Membership Grades and Complex
Numbers

In [4] we showed that for some purposes these types of Pythagorean membership
grades could be effectively expressed using a complex number to represent the
membership grade. We note in [16] Dick and Yager explored this relationship in
considerable detail.
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In anticipation of investigating this relationship between Pythagorean member-
ship grades and complex numbered membership grades we review some ideas
about complex numbers [9].

A complex number z is an ordered pair (X, y) interpreted as z = x + iy where
i = /=1, the so-called imaginary number. One can view a complex number as a
point in a plane as shown in Fig. 2.

Fundamental to the manipulation of complex numbers is the Euler formula. For
any real number x

e =Cos(x) +i Sin(x)

where x is interpreted as radians. We recall 2z radians is 360°. A useful formula
when using the Euler formula is the Pythagorean theorem, Cos?(x) + Sin*(x) = 1.

Assume any complex number z = a + ib, and let r = Va2 + b*> = lzl. Consider
now a value 0 such that Cos(0) = —2—. We see that from the Pythagorean

al+
theorem
2 12 2 2
+b a b
Sin%(8) =1 — Cos?(0) = = — -
©) ®) a2+b>  a2+b>  aZ+4b?
Hence Sin(6) = b Here now we see that from Cos(0) = ‘% we get a = |zl Cos(0)

Va2 + b’
and from Sin(0) = \z\ we get b = Izl Sin(0). Using this we can express the complex
number z = a + ib as z = |zl Cos(0) + ilzl Sin(0) = Izl (Cos(0) + i Sin(0)). Using the
Euler formula we get

z=z|e® =|z|(Cos(0) +i Sin(6)).

We see that any complex number z = a + ib can be is altematively expressed as

z = Izle © where Izl = (a> + b*)"? and 6 = ArcCos( " bz ), the angle whose

cosine is & 4 We note 0 = ArcSm( ). The form z = Izle® is called the polar

b
a2 b2 12

(x,y)

Fig. 2 Point in complex plane
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Iz] [b
A

| a

Fig. 3 Geometric perspective

representation of the complex number z. Geometrically we see this relationship in
Fig. 3.

The polar representation greatly simplifies many operators involving complex
numbers, especially multiplication. Consider the multiplication of two complex
numbers, z; = a; + ib;, and z, = a, + ib,. We easily see that
712, = (aja; — byby) + i(a;by + azby). Performing this using the polar representation
is much simpler. In this case with z; = r; ¢ and z; = r; ¢®. We get 2,2, = ;1>
¢'®+%) - Another operation that is easy to perform is the polar domain is raising a
complex number to a power. Here if z = a + ib = re'” then (z)™ = re'™ =r, &/,

We note that r, = r™ and 6, = m0, the term 6 multiplied by m. Thus we have

=1"(Cos(m”) +iSin(m0)).
We see if m = —1 then z7' = L = L(Cos(-0) + iSin(-0)). Recalling that
Cos(—0) = Cos(0) and Sin(—0) = —Sin(0) then z~' = %(Cos(@) — 1 Sin(0))
We also observe that if z; = r; € and z; = r; €% then

2 Teiei-0) - (Cos(e1 0,) + i Sin(6; —6,)
V45 Iy

We recall the conjugate of z=a+ibisZ=a —ib. If z=1(Cos(0) + i Sin(0)) = re' then
Z =1(Cos(0) — i Sin(0)). Recalling that Cos(—0) = Cos(0) and Sin(—0) = —Sin(0) we
see that z = r(Cos( 9) + i Sin(-0)) = re”®. From this we see z
z=1et% % =r? = a> + b°.

Returning to our discussion of Pythagorean membership grades (a(x), b(x)) =
(r(x) Cos(0B(x)), r(x) Sin(6(x))). We see that formally we can view these as complex
numbers of the form z(x) = r(x)eie(x). However we note that not all complex
numbers of the form z = re' are interpretable as Pythagorean membership grades.
As we noted the requirement for a pair (r Cos(8), r Sin(0)) to be a Pythagorean
membership grade is that r Cos(0) and r Sin(6) be in the unit interval and
e Cosz(e) + Sinz(e) < 1. These conditions require that r € [0, 1] and 6 € [0, Z].
So complex numbers z = re'® having the properties r € [0, 1] and 6 € [0, 71 are
examples of Pythagorean membership grades, we shall refer to these as II-i
numbers.

In the preceding we described a number of operations on complex numbers we

now must consider which of these operations are useful in the domain of Il-i
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numbers. In particular, we must consider which operations allow us to start with I1-i
numbers and end with a IT-i number. We first observe that the conjugate z = re ™ is
not a Il-i number, thus care must be taken if we use conjugation.

Assume z = re' is a [1-i number we note that if a € [0, 1] is a real number then
are’® is a II-i number. Consider now the multiplication of II-i numbers. Let
z; =€) and z, = r,e5 be two IT-i numbers their product is z = 7,2, = r; 1,e'% +%
is a Il number if 0, + 0, < 3. Consider division with II-i numbers
% = %ei(el =%)_ Here we see that z is a IT-i number if r, > r; and 6, > 6,. The
condition r, > ry is expected but the condition 8; > 6, is interesting. Assume
z =re' is a [1-i number and m € [0, 1] we see that z™ = r™ ¢ and since r <™ < 1
and 0 < Om < 0 then z™ is II-i number. Consider now the operation

7=

z2=(2125...2,)" =272} . ... .. =1y r?eim(e‘ +02 4. +0,)
We see that while r'r5'....... ' € [0, 1]if m € [0, 1] to be certain that m Zjn=1 0; <
we must have m < 1/n.

Consider now a more complex operation. Let m; € [0, 1] for j = 1 to n and
consider

I
2

_ My my m, __ .mj_mp my ,i(m 0 + my0, + ... + m,6,)
2=Z721 Zy" «..... Znn—rl L rn € e
We see that while r"'r3” .. .. .. 12 € [0, 1] to be sure that 377_; wi6; < % and in turn

to be sure that z is II-i number we require that Z?:] w; < 1.

Let us look at the product and try to understand its semantics. We see
72 =212, =1, 1?19 = r ¢ We see that r is generally smaller then either r; or 15,
this a kind of reduction in strength of commitment, an increase in uncertainty. On
the other hand O is larger then either 0, or 0,. The larger 6 the more of the
committed value r is pushed toward non-membership. One clear effect of this
operation is reduction of support for membership. This seems to be somewhat in the
spirit of and “anding” or conjunction operation.

One can consider some variation of the product of II-i numbers that will always
assure it is a I1-i number by defining z = z; ® 7, = r112e! (" +9)A3) here A is the
minimum operation.

6 Geometric Aggregation of Multiple Criteria

We now consider the issue of multiple-criteria decision-making. Assume we have a
finite set X of alternatives and a collection of q criteria that we desire to be satisfied.
We denote these criteria C;, for j = 1 to q. Furthermore we let Ci(x) indicate the
degree of satisfaction of criteria C; by alternative x. The problem here is to select
the alternative that best satisfies the collection of criteria. One approach is to
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aggregate the satisfactions to the individual criteria by each alternative and then
select the alternative with the maximum aggregated satisfaction. In [17-20] the
authors discuss the use of the geometric mean to provide an aggregation of these
criteria satisfactions for each x. They also associate with each criteria C; an
importance weight w; € [0, 1] where E?:l wj=1. Using this information they
calculate the overall by alternative x, C(x) = H;]:] Cj(x)"™, it is the geometric
mean [12].

In these works the authors assume C;(x) € [0, 1] here we shall extend these ideas
to the case where the Cj(x) are Pythagorean membership grades. Here then
Ci(x) = [Cyj(x), Cnj(x)] = [rj(x) Cos(0;(x), 1j(x) Sin(B;(x))] where Cy;(x) € [0, 1]
indicates the degree of support for satisfaction of Cj by x and Cy;(x) € [0, 1]
indicates the degree of support against satisfaction of C; by x. Here we shall find it
convenient to represent Cj(x) as T; (x)e®™). The use of Pythagorean degrees of
satisfaction allows for the inclusion of imprecision and lack of commitment in
modeling of the criteria satisfactions.

Our problem is to calculate C(x) = [7_, Cj(x)"™ where Cj(x) =1 (x)e%®), Here
we have

C(x)= T 600" = TT (5(e®)" = T (5,00)e T4
j=1

Denoting r(x) = ngl (rj(x))™ and B(x) = Jg:l wi0;(x) we have C(x) = r(x)e"*™.

We see since each rj(x) € [0, 1] and each w; € [0, 1] that r(x) = ?:1 (rj(x))™

€ [0, 1]. In addition since each 6;(x) € [0, 5 | and the w; also satisfy ZJ‘LI wj=1
i0(x)

then we have 6(x) € [0, Z ]. Thus we see that C(x) = r(x)e

, 5 is a I1-i number.

7 Comparing Pythagorean Membership Grades

As we have just seen the result of the aggregation of the criteria satisfactions is the
association of a Pythagorean membership grade (a(x), b(x)) with each alternative x.
The next question we are faced with is selecting the best alternative. Here we shall
suggest a method for comparing Pythagorean membership grades. Let P indicate a
generic Pythagorean membership grade, now we shall introduce a function that
associates with P a value in the unit interval so that the bigger this value the more
preferred the alternative. If P is the set of Pythagorean membership grades we want
a function F: P — [0, 1].

Let us recall then that there are two basic representations of a Pythagorean
membership grade. The first is (a, b) here a € [0, 1] and b € [0, 1] and a2 +b2<1.
The second is the polar co-ordinates (r, ). Their relationship is that r* = a? + b* and
a=rcos(0) and b =rsin(0). Here r € [0, 1] and 8 € [0, x/2]. Closely related to this
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polar representation is a representation (r, d) withd € [0, IJandd =1 — %. Thus
when 6 = 0 we have d = 1 and when 6 = /2 we have d = 0.

To obtain the desired function F we shall use fuzzy function modeling [21].
Consider Fig. 4, which describes the space of Pythagorean membership grades.
What is clear is that at point A we want our function F to take its largest value of 1,
as this corresponds to the point where an alternative fully satisfies the criteria.
Point B corresponds to a membership grade indicating that the criteria are com-
pletely unsatisfied by the alternative. Here we want our function to take on the
lowest value of zero. Finally the point C is a place where we neither have support
for or against the satisfaction of the criteria. Here we will let our function take a
neutral value of 0.5. We further note that the point A corresponds to the case where
ris one and d is one (0 is zero). The point B corresponds to the case where r is one
and d is zero (0 is n/2). The point C corresponds to the case where r is zero.

Using the above we define our function F using a fuzzy rule base with three rules
(21]

If r is close to oneand d is close to one then F is 1.
If risclosetooneand d is closeto zero then F is 0

If is r close to zero then F is 0.5

We represent close to one for r as a fuzzy subset E; on unit interval where
E (r) = r. We represent close to zero for r as a fuzzy subset E, on unit interval
where E;(r) = 1 — r. We represent close to one for d as a fuzzy subset D; on unit
interval where D,(r) = d. We represent close to zero for d as a fuzzy subset D, on
unit interval where D,(r) = 1 — d.

Using the Takagi-Sugeno [22] approach for building functions from fuzzy rule
bases we get

C A

Fig. 4 Function points
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F(r, d) = (1Ei(D;(d) + (0)E; (NDy(d) + (0.5)Ex(r) _ (d)(r) +0.5(1 —r)
T E; (DD (d) +E; (D, (d) + Ex (1) Tdr+ (D1 =d)+(1-71)

We easily see thatd - r + r(1 —d) + (1 —r) = 1 thus we get for our function

1 1 1
F(r,a)=d r+ E(l—r)=§+ r(d _5)

Sinced =1 — % we can also express the function as

1 1 26
F(r,9)= E + I'(E - ;)

Let us look this for some particular instances. We see if r = 1 and 0 = 0, point A,
we get F(r, 0) = 1. We see if r = 1 and 6 = n/2, point B, then F(r, 6) = 0. We see if
r =0, point C, then F(r, 8) = 0.5. This function satisfies the three rules. Let us look
further at the performance of this function. If we let r be fixed then we see that

dF(r,6)  2r
o =

it decreases as 0 increases. Thus on a fixed arc of radius r we see that F decreases as
we go from 0 = 0 to 6 = «/2.
Consider now the case of a fixed value for 0 and let us see what happens when r

changes. Here dF(gI{,e) = % - 21[—9. We see that for 8 < /4 F increases as r increases.

For 6 > m/4 then F decreases as r increases. Finally if 0 = n/4 then F(r, n/4) = 0.5. It
remains the same for all r.

We also observe then that if 8 = 0, then F(r, 0) = %(1 + r). Thus we see that as r

1
2

goes for 0 to one, F(r 0) goes from 0.5 to 1. Similarly if 6 = n/2 then F(r, 0) =
Here the as r goes from zero to one F goes from 0.5 to zero.

Thus we see if X and y are two alternatives such that their overall satisfaction to
the multiple criteria are be expressed Pythagorean membership grades (r(x), 0(x))
and (r(y), 0(y)) if we calculate F(r(x), 6(x)) and F(r(y), 6(y)) the bigger of these
corresponds to the preferred alternative.

_I
3

8 Aggregation Using a Ordered Weighted
Geometric Operator

An alternative approach for aggregation of the individual criteria discussed in
[17-19] is the Ordered Weighted Geometric (OWG) operator which is based on the
OWA operator introduced by Yager [23, 24]. We note as discussed in [19] as well
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as in [24] the use of ordered weighted type aggregation provides the capability to
model various different types of user specified aggregation imperatives.

Here again we assume a collection of q criteria that we desire to be satisfied, Cy,
for k = 1 to q. Again we let C(x) indicate the degree of satisfaction of criteria Cy by
alternative x. Here we also have a set of weights o; € [0, 1] such that E}l:] aj=1.
However the weight o rather then being associated with the criteria C; is associated
with the criteria with the jth largest satisfaction. In [17, 19] the authors assumed
Ci(x) € [0, 1]. From these Cy(x) one obtains an index function, ind, so that ind(j) is
the index of the jth largest C(x). Using the ind(j) we obtain the OWG aggregation
of the Cy(x) as C(x) = H;Ll Cina(j) (x)¥. Here we emphasize the Cingg) is the jth
most satisfied criteria by alternative x and Cij,q(j)(X) is its degree of satisfaction by x.
Here then we have ordered the criteria by there satisfaction under x to obtain ind.

Here we shall extend the use of the OWG operator to the case where the Cy(x)
are Pythagorean satisfaction grades. Here then Cy(x) = [Cyi(x), Cnk(X)] = [1(X)
Cos(0k(x), rx(x) Sin(By(x))] where Cyi(x) € [0, 1] indicates the degree of support
for satisfaction of Cy by x and Cni(x) € [0, 1] indicates the degree of support
against satisfaction of Cy by x. Here again we shall find it convenient to represent
Ci(x) as rk(x)eiek(x). While the situation appears very similar to the earlier situation,
where we extended the geometric mean to the case of Pythagorean membership
grades, there is one substantial difference. Here in the case of the OWG we must
order the satisfactions, the C,(x). Since the Ci(x), rk(x)eiek(">, are not scalar num-
bers there is not an implicit ordering of the Cy(x). So as to obtain the requisite
ordering we shall use the function F(r, 0) to induce an ordering on the Cy(x). In

particular for each Cy(x) = rk(X)eiek(X)

(X)) = % + rk(x)(% — 29“7()()). Using the P(k)’s we obtain the function ind such ind(j)
is the index of the criteria with jth largest value for P(k). We note that this is in the
spirit of the idea of induced ordering introduced in [25, 26]. Once having the
function ind(j) we are in a position to calculate C(x) = H?: 1 Cina() (x)% as we did in

we calculate a value P(k) = F(r(x),

the earlier case of geometric mean with Pythagorean satisfactions.

9 Conclusion

We introduced the idea of Pythagorean fuzzy subsets and discussed its relationship
with intuitionistic fuzzy subsets. We focused on the negation and its relationship to
the Pythagorean theorem. We described some of the basic set operations on
Pythagorean fuzzy subsets. We looked at the relationship between Pythagorean
membership grades and complex numbers. We considered the problem of
multi-criteria decision making with satisfactions expressed as Pythagorean mem-
bership grades. We looked at the use of the geometric mean and ordered weighted
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geometric (OWG) operator for aggregating criteria satisfaction. We provided a
method for comparing alternatives whose degrees of satisfaction to the decision
criteria are expressed as Pythagorean membership grades.
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Additive Generators Based on Generalized
Arithmetic Operators in Interval-Valued
Fuzzy and Atanassov’s Intuitionistic Fuzzy
Set Theory

Glad Deschrijver and Etienne E. Kerre

Abstract In this paper we investigate additive generators in Atanassov’s
intuitionistic fuzzy and interval-valued fuzzy set theory. Starting from generalized
arithmetic operators satisfying some axioms we define additive generators and we
characterize continuous generators which map exact elements to exact elements in
terms of generators on the unit interval. We give a necessary and sufficient condition
under which a generator actually generates a t-norm and we show that the generated
t-norm belongs to particular classes of t-norms depending on the arithmetic operators
involved in the definition of the generator.

Keywords Atanassov’s intuitionistic fuzzy set : Interval-valued fuzzy set -
Additive generator - t-norm

1 Introduction

Triangular norms on ([0, 1], <) were introduced in [1] and play an important role in
fuzzy set theory (see e.g. [2—4] for more details). Additive generators are very useful
in the construction of t-norms: any generator on ([0, 1], <) can be used to generate
a t-norm. Generators play also an important role in the representation of continuous
Archimedean t-norms on ([0, 1], <). Moreover, some properties of t-norms which
have a generator can be related to properties of their generator. See e.g. [4-8] for
more information about generators on the unit interval.
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Interval-valued fuzzy set theory [9, 10] is an extension of fuzzy set theory in
which to each element of the universe a closed subinterval of the unit interval
is assigned which approximates the unknown membership degree. Another exten-
sion of fuzzy set theory is intuitionistic fuzzy set theory introduced by Atanassov
[11-13]. In [14] it is shown that the underlying lattice of Atanassov’s intuitionistic
fuzzy set theory is isomorphic to the underlying lattice of interval-valued fuzzy set
theory and that both can be seen as L-fuzzy sets in the sense of Goguen [15] w.r.t.
a special lattice £”. In [16] we introduced additive and multiplicative generators on
L! based on a special kind of addition introduced in [17]. In [18] another addition
was introduced and many more additions can be introduced. Therefore, in this paper
we will investigate additive generators on £' independently of the addition.

2 The Lattice £/

Definition 1 We define £ = (L', <;r), where

L' = {[x1, x2] | (x1,x2) € [0, 11* and x; < x5},

[x1, x2] <pr [y1, 2] <= (x1 < y1and xo < y2), forall [x1, x2], [y1, y2] in L .

Similarly as Lemma 2.1 in [14] it can be shown that £ is a complete lattice.
Definition 2 [9, 10] An interval-valued fuzzy set on U is a mapping A : U — L.

Definition 3 [11-13] An intuitionistic fuzzy set on U is a set

A ={(u, pa(u), va(u)) | u € U},

where 4 (1) € [0, 1] denotes the membership degree and v4(u) € [0, 1] the non-
membership degree of u in A and where forallu € U,

ma(u) +va(u) < 1.

An intuitionistic fuzzy set A on U can be represented by the L-fuzzy set A given
by
A:U — L":
u = [pau), I —va@)l,

In Fig.1 the set L’ is shown. Note that to each element x = [x;, x»] of L’
corresponds a point (xy, xp) € R2.

In the sequel, if x € L', then we denote its bounds by x; and x,1.e. x = [x1, x2].
The length x, — x; of the interval x € L is called the degree of uncertainty and is
denoted by x,;. The smallest and the largest element of £ are given by 0,1 = [0, 0]
and 1. = [1, 1]. Note that, for x, y in L', x < y is equivalent to x <;/ y and
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Fig. 1 The grey areais L' o
[0, 1] [1,1]
r = [xl, o)
T2 p==- -?
1
I
1
I
|
l
L 1
[0,0] .

x # y,1.e. either x; < y; and xp < yp, or x; < y; and x, < y,. We define the
relation <1 by x K1y <= x; <y and x; < yp, forx, yin L'. We define for
further usage the sets

D = {[x,x]|x €[0, 1]},
L' = {[x1, x2] | (x1, x2) € R?and x| < x,},
D = {[x,x] | x € R};
LY = {lx1, 0] | (x1, %) € [0, +00* and x1 < x2},
Dy = {[x,x] | x € [0, +o0[},
L! = {lx1, x2] | (x1,x2) € 10, +oo[* and x; < x2},
Ll = {[x1, x2] | (x1,x2) € [0, +00]* and x; < x2},

Dy + = {[x,x] | x € [0, +00]}.

Theorem 1 (Characterization of supremum in £') [19] Let A be an arbitrary non-
empty subset of L' and a € L'. Then a = sup A if and only if

Vx e A)(x <p1 a)
and (Ve; > 0)(3z € A)(z1 > a; — €1)
and Ve, > 0)(3z € A)(z2 > ar — €).

Definition 4 A t-norm on £’ is a commutative, associative, increasing mapping
7T : (L"? — L' which satisfies 7 (101, x) = x, forallx € L.

A t-conorm on £/ is a commutative, associative, increasing mapping S : (L')? —
L' which satisfies S(0:, x) = x, forall x € L'.

Theorem 2 [19-21]Let Ty, T, and T be t-norms on ([0, 1], <) for which Ti(x, y) <
Tr(x,y), forallx, y in[0, 1], and let t € [0, 1]. The functions Tz, r,, Tr, T; and Tz,
defined by, for all x, y in L,



140 G. Deschrijver and E.E. Kerre

Tr.1,(x, y) = [T1(x1, y1), Ta(x2, y2)],
Tr(x,y) = [T (x1, y1), max(T (x1, y2), T (x2, yn)I,
Tr(x, y) = [min(T (x1, y2), T (x2, y1)), T (x2, y2)],
Tr.r(x,y) = [T (x1, y1), max(T (¢, T (x1, y1), T (x1, y2), T (x2, y1))1,

are t-norms on L.

The t-norms of type Ir, 1, are called t-representable, the t-norms of type Ir are
called pseudo-t-representable of the first kind, the t-norms of type T} are called
pseudo-t-representable of the second kind.

If for a mapping f on [0, 1] and a mapping F on L’ it holds that F(D) € D, and
F(la,a]l) =[f(a), f(a)], foralla € L', then we say that F is a natural extension
of fto L'.E.g. Tr.7, Tr, Tr, and 7;. are all natural extensions of T to L.

Example 1 The following are well-known t-norms and t-conorms on the unit inter-
val: for all x, y in [0, 1],

Tr(x,y) =max(0,x +y — 1),

TP(xv y) =Xy,

min(x, y), if max(x,y) =1,
Tp(x.y) = (x,¥) (x,¥)

0, else,

Sp(x,y) = min(l, x + y).

Using these t-norms and the above constructions, we can construct t-norms on £/,
For example, using 7; we obtain, for all x, y in L,

Tr, 1, (x, y) = [max(0, x; + y; — 1), max(0, xo + y, — D],
Tr, (x,y) = [max(0, x; + y; — 1), max(0, x; + y» — 1, xo + y; — D].

3 Arithmetic Operators on L/

We start from two arithmetic operators @ : (L/)> — L’ and ® : (L!)*> — L!
satisfying the following properties,

(ADD-1) @ is commutative,

(ADD-2) & is associative,

(ADD-3) @ is increasing,

(ADD-4) 0y ®a =a, foralla € L',

(ADD-5) [a, x] ® [B, B] = [@ + B, o« + B], for all «, B in [0, 400,
(MUL-1) ® is commutative,

(MUL-2) ® is associative,
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(MUL-3) ® is increasing,
(MUL4) 1,1 ® a =a,foralla € L!,
(MUL-S) [o, @] ® [B, B] = [af, aB], for all @, B in [0, +o0l.

The conditions (ADD-1)—-(ADD-4) and (MUL-1)-(MUL-4) are natural condi-
tions for any addition and multiplication operators. The conditions (ADD-5) and
(MUL-5) ensure that these operators are natural extensions of the addition and
multiplication of real numbers to L' .

Sometimes we will assume that @ and ® satisfy the following alternative condi-
tions instead of (ADD-5) and (MUL-5):

(ADD-5") [o, ] ® b = [o + by, @ + by], forall « € [0, +00[ and b € L,
(MUL-5") [, @] ® b = [aby, ab], for all & € [0, +oo[ and b € l_,i.

Note that from (ADD-3) and (ADD-4) it follows that, for all a, b in L a®b > L a,
if b >;1 Op:. Similarly, we find thata @ b >;: a,if b > 1,1, forall a, b in Li.
Define the mapping © by, for all x, y in L',

lyex:[l—xz,l—xl], (1)
roy=lge(lgox)dy). 2

Define finally the mapping @ by, for all x, y in Li,o’

1 1
lpp@x = |:x_27 x—]i|, 3)
xQy=1lpg0((Iz10x)®Yy). “4)

We recall some properties that we need later on; other properties can be found in
[22].

Theorem 3 [22] The mapping © satisfies the following properties, for all a, B in R

anda, b, cin L',

(i) le,a]O[B, fl = — B, a — B],
(i) acboc)=(Ug b &c)o (o ©a).
If @ satisfies (ADD-5’), then
(iii) [a,] ©b =[a — by, — by],
(iv) (@a®b)OS[a,al=a® O [a, al).
The mapping @ satisfies the following properties, for all a, B in 10, +o0[ and a, b,
cin Z‘i,o’

o

(v) lo, ] @, Bl = [% E}’
i) a@ (b@c)=((10b)®c)@ (121 @a).
If ® satisfies (MUL-5’), then
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(vii) lo, ] @b = |, =
Vil o, = |55 |
by b
(viii) (@@ b)Qla,a] =a® (b QO [a, a]).
Example 2 'We give some examples of arithmetic operators satisfying the conditions
(ADD-1)-(ADD-4) and (MUL-1)-(MUL-4).

e In the interval calculus (see e.g. [23]) the following operators are defined: for all
x,yin L',

x @y =[x+ y,x2+yl,
xXOy=I[x1—y2x2—yl
x®y =[xy, xay], ifx,yinL!,

X X —
XQy= [_1, —2], ifx,yin L. ,.

It is easy to see that these operators satisfy (ADD-1)-(ADD-4), (MUL-1)-(MUL-
4), (1), (2), (3) and (4). _
e In [17] the following operators are defined: for all x, y in L',

x @pry = [min(x; + y2, x2 + y1), X2 + y21,
X Opry = [x1 — y2, max(x; — y1, X2 — y2)1,
X ®pry = [xiyr, max(xy2, xoy)],  ifx, yin LY,
XOp y = [min(ﬂ, x—2) x—z] if x,yin L' .
yi 2/ n ’
It was proven in [17] that these operators satisfy (ADD-1)-(ADD-4), (MUL-1)-
(MUL-4), (1), (2), (3) and (4). _
e In [18] the following operators are defined for all # € ]0, 1]: for all x, y in L',

x @y =[min(l — 14 x1 + yi, X1 + y2, X2 + y1), X2 + y21,

x O y=1[x; —y,max(t + xo — y; — 1, x; — y1, x2 — y2)1,

X ® y =[xy, max(txy, X1y2, xoy))],  ifx,yin L.,

x Q! y—[min(ﬂ il x_z) )2] if x, yin L’

“ ' yi /o d ’ o
It was proven in [17] that these operators satisfy (ADD-1)-(ADD-4), (MUL-1)—
(MUL-4), (1) and (2). In [22] it is shown that these operators satisfy (3) and (4).
e Define the following operators, for all x, y in L’,
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x @y = [x1 + yi, max(x; + y2, x2 + y)],
x Oy = [min(x; — y1, X2 — y2), X2 — 11,

x ® y = [min(x1y2, x21), 2321, ifx, yin L,

X1 X1 X2 . Y
X @y = [—,max(—,—)], ifx,yin L. .
“ 2 yio» +0

It is easy to verify that these operators satisty (ADD-1)-(ADD-4), (MUL-1)-
(MUL-4), (1), (2), (3) and (4).

4 The Arithmetic Operators and Triangular Norms
and Conorms on £/

Theorem 4 [22] The mapping Sg : (L')?> — L' defined by, for all x, y in L',
Se(x, y) =inf(lz, x & y), ®)
is a t-conorm on L' if and only if @ satisfies the following condition.:
(V(x,y,2) € (L))
(((nf(lz,x®y)®2) < land (x ® y), > 1) (6)
= (inf(lz,x®y) ®2)1 = (x ®inf(lgr, y ®2))1).
Furthermore Sg is a natural extension of Sy to L.

Theorem 4 shows that in order to check whether the mapping Sg given by (5) is
a t-conorm, it is sufficient to check the associativity for all x, y, z in L' such that
(inf(lpr,x®y)®z); <land (x D y), > 1.

Theorem 5 [22] The mapping Tg, : (L')* — L' defined by, for all x, y in L,

Tg(x,y) = sup(Ozr, x © (121 © ), (7

is at-norm on L' ifand only if @ satisfies (6). Furthermore, Tg, is a natural extension
of Ty to L.

The following theorem gives a simpler sufficient condition so that Sg, is a t-conorm
and 7 is a t-norm on L',

Theorem 6 [22] Assume that @ satisfies the following condition:

(V(x,y) e L x L")

®)
(((x1, M@y < Land x; € 11,2]) = ([x1, 1@ y)1 = (x ® ).



144 G. Deschrijver and E.E. Kerre
Then the mappings T, Sg : (L')> — L' defined by, for all x, y in L,

Tgp(x,y) =sup(Oz, x © (12 ©y)),
Sg(x,y) =inf(lz,x @ y),

are a t-norm and a t-conorm on L' respectively. Furthermore Tg, is a natural exten-
sion of Ty to L', and Sg is a natural extension of Sy to L.

Theorem 7 [22] The mapping Ty : (L')* — L' defined by, for all x, y in L,
To(x,y) =x®,
is a t-norm on L. Furthermore Ty is a natural extension of Tp to L'.

In the following theorem an alternative way of extending the Lukasiewicz t-norm
on the unit interval to £/ using the arithmetic operators on L’ is given.

Theorem 8 [22] The mapping Tg, : (L")* — L' defined by, for all x, y in L',
Tg(x, ) =sup(0zr, x & (y © 1z1)), ©)
is a t-norm on L' if and only if @ satisfies the following conditions:
(Va € LYz @ (@ 1) =a)
and

(Y(x,y,2) € (L") (10)
(((sup(Ozr, x® (y© 1) ® (26 12:))2 > 0and (x ® (y © 121))1 < 0)
= (sup(Ozr, x® (YOS 1) ® (26 121))2
=(x @ (sup(Oz1, y ® (2O 121)) ©121))2).

Furthermore Tg is a natural extension of T, to L'

Corollary 1 [22] Assume that & satisfies (ADD-5’). The mapping T, (LN - L1
defined by," for all x, y in L',

T (x,y) =sup(Ogr, x &y © 121),

is at-normon L if and only if @ satisfies (10). Furthermore 14 is a natural extension
of Ty to L.

ISince from Theorem 3(iv) it follows that (x & VOl =x®(yoS 1), forallx,yin L', we
will omit the brackets in this formula.
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Lemma 1 Assume that @ satisfies (ADD-5’). Let T, : (L')> — L' be the mapping
defined by (7). Then for all x; € [0, 1]and y € L?,

Te([x1, x11, y) = [max(0, x; + y; — 1), max(0, x; + y» — D)].
Proof Using Theorem 3(i) we obtain, for all x; € [0, 1]and y € L/,

To([x1, x11, y) =sup(Oz, x ©[1 = y2, 1 = y1])
=sup(Ozr, [x1 — (1 =y, x1 — A = y)])
= [max(0, x; + y; — 1), max(0, x; + y» — 1)]. O

Example 3 We give t-norms 7g, 75 and t-conorms Sg on L' defined using the
examples for & and © given in the previous section.

e Let @, © and ® be the addition, subtraction and multiplication used in the interval
calculus, then 7g = 77, 1,, 79 = 71, 1, and Sg = Sy, 5, . Thus the t-norms 7g,
Tg and the t-conorm Sg obtained using the arithmetic operators from the interval
calculus are t-representable.

o Using® .1, ©,r and ® 1 weobtainthat 7y ., = 77,7, = Tr, and S, = S, .
Thus the t-norms 7 ,, 73, and the t-conorm Sg ., are pseudo-t-representable.

e Using ®/,,, ©,, and ®)., we obtain that T@’L: = Tr, 1, T®'Lz = Tr,, and
S@'a , = Ss,1-

e Using @/, ©/,; and ®',, we obtain that T@ru =’TT’L, T®/LI =TT/P and S@/CI = SéL.

5 Additive Generators on £/

Definition 5 [2, 4, 6] A mapping f : [0, 1] — [0, +o0] satisfying the following
conditions:

(ag.1) f is strictly decreasing;

(ag2) f(1)=0;

(ag.3) f is right-continuous in 0;

(ag.4) f(x)+ f(y) € mg(f) U[f(0), +o0], forall x, y in [0, 1];

is called an additive generator on ([0, 1], <).

Definition 6 [4, 6] Let f : [0, 1] — [0, +00] be a strictly decreasing function. The
pseudo-inverse £V 0, +00] — [0, 1] of f is defined by, for all y € [0, +00],

FEP(y) = sup({0} U {x | x € [0, 1]and f(x) > y}).

We extend these definitions to L’ as follows.
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Definition 7 Let § : L’ — I:(IX), . be a strictly decreasing function. The pseudo-
inverse f1 : L’ — L' of f is defined by, forall y € L., _,
supfx | x € L' and f(x) 311 y}, if y <pr f(0z0);
sup({Oz1} U fx | x € L" and (§(x))1 > y1
P00 =1 and G2 = (022, if y2 = (0£))2;
sup({0,/) U {x | x € L' and (f(x))2 > y2
and (f(x))1 = (F(0z )1}, if y1 = (F(O0z))1.
Note that if f(0/) € Do, then, forall y € L’

00,4+
fV(y) = sup @,,
where

{x I x e Ll and f(x) >y}, if y i §(0z1);
@y = {0} U {x | x € LT and (j(x))1 > yi
and (f(x))2 = (f(0z1))2}, if y2 = (F(021))2.

The set f(@,) is depicted in Fig.2 for two possible values of y € I:fx)q 4

In the following definition we consider continuity w.r.t. the Euclidean metric d E
in R? restricted to L’ and L., . We say that a function f : L — L. _ is right-
continuous in a € L” if

(Ve > 0)(38 > 0)(Vx € L) (dE(x,a) <8 Ax > a = dE(J(x), {(a)) < €).

f(Ozr) f(Ozr)

—n
—~
S
<
~—

[0,0] . [0,0] .

Fig. 2 The largest possible set f(®y) in the case that y <,/ §(0.:) (left) and in the case that
y2 = (§(0,z1))2 (right)
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Definition 8 A mapping f: L' — L/ satisfying the following conditions:

(AG.1) fis strictly decreasing;

(AG.2) f(I1zr) =03

(AG.3) fis right-continuous in O.1;

(AG.4) f(x) @ f(y) € R(f), forall x, y in L!, where

RE =mg(HU{x|xe L! ot and [xy, (f(0z1))2] € rng(f)
and x3 > (f(021))2}
Ufx | x € L, and [(f(0z)1. x2] € mg(f)
and x; > (f(0z1))1}
Ufx |xeLl andx >1: §(0z)};

(AG.5) fV(f(x)) = x, forall x e L/;

is called an additive generator on £.

If f(0z1) € Do, then

R(f) = mg(f) U fx | x € L. o+ and [x1, (f(01))2] € mg(f) and xa > (§(0,1))2}
Ufx|x e Ll andx =5 f(0z0).

An example of how the set R(f) may look like is given in Fig. 3.
In [16] the following three properties are shown. Since their proof does not involve
(AG.4), they are also valid for the current definition of additive generator.

Lemma2 [16] Letf: L' — l_,g)q+ be a mapping satisfying (AG.1), (AG.2), (AG.3)
and (AG.5). Then, for all x € L' such that x, > 0, it holds that (f(x))> < (§(0z1))2
and (§(x))1 < (FOz))-

Lemma3 [16] Letf: L' — L’ + be a mapping satisfying (AG.1), (AG.2), (AG.3)
and (AG.5). Then (§([0, 1])), = (f(OU))l or (§([0, 11))2 = (F(01))a.

Fig. 3 An example of the
set R(f) given by the shaded
areas together with the thick
lines

[0,0]
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Corollary 2 [16] Let § : L' — I_J(IDQHr be a mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and §(D) € Do 1. Then (}([0, 11))2 = (F(0£1))2-

Lemma 4 Let f, be an additive generator on ([0, 1], <) and let § : LT — I:éo& be
a mapping satisfying (AG.1), (AG.2), (AG.3), (AG.5) and, for all x € L',

FO)1 = fi(xa).

Then, forall y € I:éo,Jr,
Vo2 = A7)

Proof Lety € L, . Define the set A by,

{x |x € L" and fi(x2) > y; and (f(x))2 > y2}, if y <1 §(0z1);
{02} U{x | x € LT and fi(x2) > y; and (f(x))2 = (f(021))2}.
A= if y2 > (F(021))2;
{02} Ufx | x € L and (f(x))2 > y> and fi(x2) = f1(0)},
if yi > £1(0).

Then f~P(y) = sup A. Let a = [(sup A){, sup A,], where
Ay ={0}U{x | x €[0,1]and fi1(x) > y};

We prove that (sup A), = a, then we will have that (P (y)), = ap = fl(fl)(yl).
From the characterization of supremum in £/ it follows that it is sufficient to prove
that x» < ao, for all x € A, and that for all ¢, > O there exists z € A such that
7o > dy — €).

If x € A, then fi(x;) > y; or x, = 0, taking into consideration that fj(x;) =
f1(0) < x, = 0, since f) is strictly decreasing. So x, € A,. We obtain that
Xy < SllpA2 = a.

From Lemma 3 and the fact that (f([0, 1])); = fi(1) < f1(0) = (§(0Oz1))1, since
/1 is strictly decreasing, it follows that (f([0, 1])), = (f(0.21))s.

Let €, > 0, then from sup A, = a5 it follows that there exists a z; € A, such
that zo > a; — €. Then fi(z2) > yjorzo = 0.Letz; = 0.If y <1 f(Ogzr), then
Sf1(z2) > y1 (even if zo = 0) and (f([0, z2]))2 = (F([0, 1]))2 = (F(Ozr))2 > y2,
50 [0, 22] € A If y2 = (f(021))2, then (F([0, 1))z < (F([0, z21))2 < (F(0z1))a, 50
(f(10, z21))2 = (§(0.1))2- Since either f1(z2) > y; or z2 = 0 (and so [0, z2] = 0.1),
we obtain that [0, zo] € A. If y; > f1(0), then fj(z») cannot be strictly greater than
v1,50 22 = 0. Thus [0, z,] = 0,1 € A.

From the characterization of supremum in £/ it now follows that sup A = a. [
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Lemma 5 Let f, be an additive generator on ([0, 1], <) and let § : L' — l_‘éo,+
be a mapping satisfying (AG.1), (AG.2), (AG.3), (AG.5), (D) < Doo,+ and, for all
xelLl

(Fx))2 = falx1).

Then, forall y € I:éoy_’_;
o0 = £

Proof Lety € L. . Define the set A by,

{x | x € L"and (f(x)); > y1 and fo(x1) > y»}, if y <pr f(0z1);
A= 1{0}U{x | x €L and (§(x)); > y; and f>(x1) = f>(0)},
if y, > £2(0).

Then {~P(y) = sup A. Leta = [sup A}, (sup A),], where
A ={0}U{x | x €[0,1]and f>(x) > y2};

We prove that (sup A); = a;, then we will have that (f~"(y)); = a; = £ " ().
From the characterization of supremum in £/ it follows that it is sufficient to prove
that x; < ay, for all x € A, and that for all ¢, > 0 there exists z € A such that
Z1 > da; — €.

If x € A, then f>(x;) > y, or x; = 0, taking into consideration that f,(x;) =
£(0) < x; = 0, since f; is strictly decreasing. So x; € A;. We obtain that
Xy <supA; =ay.

Let €; > 0, then from sup A; = q; it follows that there exists a z; € A such
that z; > a; — €;. Then f(z1) > y, orz; = 0. If y, > f5(0), then f>(z1) > y»
would imply that f>(z;) > f2(0), which is a contradiction. So z; = 0, and [z}, z1] =

O € A If y <pr §(0zr), then f>(z1) > y2 (even if z; = 0). Since (D) € Do 4,

(f([z1, z1D)1 = f2(z1) > y2 > y1. Hence [z1, 21] € A.
From the characterization of supremum in £/ it now follows that sup A = a. [

Theorem 9 Let f be an additive generator on ([0, 1], <) and let f : LT — l_,éo’+
the mapping defined by, for all x € L',

fx) = [f (x2), f(xD)]. (1)

Then, forall y € l_zéo’_’_y

) =100, TP (12)

Proof From the fact that f is an additive generator on ([0, 1], <) it follows that
the mapp_ing f defined by (11) satisfies (AG.1), (AG.2) and (AG.3). Furthermore
f(D) c Doo,Jr'

Since, forall x € L,
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{zlzeL"and f(z2) > f(x2) and f(z1) > f(x1)},
if f(x2) < f(0)and f(x1) < f(0);

{[0,0}U{z |z € L' and f(z2) > f(x2) and f(z1) = f(0)},
if f(x1) > f(0)

_ [([o,xl[ X [0.x0D ML, if f(e) < f(O);

S
-
=

=
hd
I

{0} x [0, xa, if f(x1) = f(0),

we obtain that f(’l) (f(x)) = sup @j(») = x. So (AG.5) holds. From Lemmas 4 and 5
it follows that = is given by (12). O

Lemma 6 Letf: L' — l—‘éo,+ be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and §(D) < DOC,JF. Then there exists a continuous additive generator
f on ([0, 1], <) such that (§(x)); = f(x2), forall x € L.

Proof Let x, € 10, 1]. Since § is decreasing, (f([x2, x2]1))1 < (F([0, x2]));. Assume
that (f([x2, x21))1 < (F([0, x21))1. We first show that (f([y2, y2D)1 = (F([0, x2]D)1,
for all y, < x,. If this were not the case, then from (D) € D 4 it would follow

that [0, x2] € Pj(y,.yop- Thus [y2, y21 = FV(§([y2, y21)) =11 [0, x21, 50 y2 > xo,
which is a contradiction.

Define the mapping f : [0, 1] = R by f(z2) = (([z2. 22])1. for all 2, € [0, 11.
Since f is continuous, f = pr; of o g is continuous, where g : [0, 1] — L' is
defined by g(z2) = [z2, z2], for all z; € [0, 1]. From the above it follows that
f(2) = (0, x21))1, for all y, € [0, xo[. On the other hand, since f is strictly
decreasing and f(D) C Dy, f is strictly decreasing, so f(y;) < f(xy), for
all y, € [xp, 1]. Hence mg(f) < [0, f(x2)] U [(F([O0, x2])1, f(0)], taking into
consideration that (f([0, x21)); < (f(0z1))1 = f(0). It follows from the Mean Value
Theoremthata € rng(f),foranya € ]f(x2), (f([0, x2])):[, which is a contradiction.
Hence (f([0, x21))1 = (f([x2, x2]))1 = f(x2).

From §(1,:) = O, it follows that (1) = 0, so from the above it follows that f
is a continuous additive generator. O

Corollary 3 Letf: LT — I_‘éo. + be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and (D) C Dy 4. Then ([0, 1) = [0, (f(0.1))2].

Proof This follows immediately from Corollary 2, Lemma 6 and (AG.2). (|

Lemma?7 Letf: L' — I:<1>o,+ be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and (D) C Doc,+- Then there exists a continuous additive generator
f on ([0, 1], <) such that (§(x)), = f(x1), forall x € L.
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Proof From Corollary 3 it follows that (f([x;, 1])); = 0, for all x; € [0, 1]. Thus,
since f is strictly decreasing and using Corollary 2, (f([x, 1]1))2 < (f([0, 11)), =
(§(0z1))2, for all x; € ]0, 1].

Let x; € ]0, 1[. Assume that (f([x, 1]1))2 < (f([x1, x1]))2. Since for any y, €
Ix1, 11, from (§([x1, 11))2 < (F([y1, y11))2 it would follow that [y1, y1] € Pf(x,.1))
we obtain similarly as in the proof of Lemma 6 a contradiction. So (f([x1, 11)), >

(11, y1 1)z, for all yy > x;. Define the mapping f : [0, 1] — R by f(z)) =
(f([z1, z1]))2, for all z; € [0, 1]. The sequel of the proof is now similar as for

Lemma 6. O

Lemma$8 Letf: L' — l:éo& be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and (D) C Doc,_,_. Then there exists a continuous additive generator
f on ([0, 11, <) such that, for all x € L',

o) = [f (x2), f(xD)].

Proof From Lemmas 6 and 7 it follows that there exist continuous additive generators
f and f: on ([0, 1], <) such that f(x) = [f(x2), f'(x1)], for all x € L’. Since
f(D) € Deo 4, we have that f = f. O

Lemma9 Letf: L' — l:éo& be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and f(D) € Do 4. Then R(f) = L., | and f satisfies (AG.4).

Proof By Lemma 8, there exists a continuous additive generator f on ([0, 1], <)
such that f(x) = [f(x2), f(x1)], for all x € L’ . From the Mean Value Theorgm it
follows that [0, f(0)] € rng(f). Since f(D) € Dy 4+, we obtain that {x | x € Léo,+
and (x;,x2) € [0, fOO]’} ={x | x € I:éo,+ and x <71 §(0z1)} < rng(f). Hence
R = l_,éo’ +- It follows immediately that f satisfies (AG.4). O

Theorem 10 A mapping f: L' — I:<1>o, + s a continuous additive generator on L

for which (D) C D4 if and only if there exists a continuous additive generator
f on ([0, 1], <) such that, for all x € L',

f(x) = [f (x2), f(xD] (13)

Proof From Lemma 8 it follows that if § is a continuous additive generator for which
(D) < DOOHL, then there exists a continuous additive generator f on ([0, 1], <)
such that (13) holds for all x € L.

Let conversely f be a continuous additive generator on ([0, 1], <) and define the
mapping f by (13) for all x € L’. Then clearly f is continuous, strictly decreasing,
and f(1/)=0,:. From Theorem 9 it follows that {~" (f(x)) = [f"(f(x1)), fV
(f(x2))] = x,forall x € L' Obviously, (D) € DOOJL. From Lemma 9 it follows
that f satisfies (AG.4), so f is an additive generator on L. ]

Theorem 10 shows that no matter which operator @ satisfying (ADD-1)-(ADD-4)
is used in (AG.4), a continuous additive generator f on £ for which §(D) € D,
can be represented using an additive generator on ([0, 1], <).
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The following theorem shows that in order to allow additive generators on £ to
be defined in a componentwise way using an additive generator on the unit interval,
the set R(f) in (AG.4) must indeed be defined as in (AG.4).

Theorem 11 Let f be an additive generator on ([0, 1], <). Then the mapping f :
L' — L, defined by, forall x € L',

f(x) = [f(x2), f(xD],

is an additive generator on L! associated to & if and only if, for all x, y in L,

f(x) @ f(y) € (mg(f) ULf(0), +oo])?.

Proof Since f is strictly decreasing, { is strictly decreasing. From f(1) = 0 it
follows that f([1, 1]) = [0, 0]. Since f is right-continuous in 0, liron fx) =
x—=0,1

[lim fGa). lim )] = [lim f(o). lim fo)] = 1£0). fO = fO).

x—=>0,;
so f is right-continuous in O.:. From Theorem 9 it follows that f(’l)(f(x)) =

LFD(f ), fV(f ()] = x, forall x € L. i
Finally we check (AG.4). Since f is decreasing, f(x2) < f(x1),s0 f(x) € Léo, 4
forall x € L'. Tt is easy to see that

mg(f) = (mg()*NLL ..
{x1 | x1 € [0, +o0] and [xy, (f(02))Y] € mg(f)} = mg(f),
[(f(0£))Y, +00] = [£(0), +00],
(x|xell  andx > f(0c)} = [£(0), ool NLL ,.

So R(f) = (mg(f) U[f(0), +oo])?* N l_,éo’Jr. Hence f is an additive generator on £’
if and only if §(x) ® f(y) € (mg(f) U [ £(0), +00])2. O

6 Additive Generators and Triangular Norms on £/

Lemma 10 Let | be an additive generator on L' associated to ®. Then the mapping
T; : (L") — L' defined by, forall x, y in L,

Ti(x,y) = {6 @ (),

is commutative, increasing and T;(1,:, x) = x, forall x € L',
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Proof Clearly, since @ is commutative, 7; is commutative. Since § and §~! are
decreasing and @ is increasing, 7; is increasing. Finally, from (AG.5) it follows that,
forallx € L, (121, x) = §7D (02 @ f(x)) = §V(f(x)) = x. ]

Theorem 12 Let § be a continuous additive generator on L associated to @ for
which §(D) € Do 4. The mapping T; : (L")> — L' defined by, for all x, y in L',

Ti(x,y) = {7 (G0 @),
is a t-norm on L' if and only if @ satisfies the following condition.:

(V(x,y.2) € A%)
(((inf(oz, X®y) D) <ayand (x ®y) > al) (14)
= (inf(, x ®y) ®2); = (x B inf(e, y GBZ))l),

where ¢« = f(0z1) and A = {x | x € l_,éo’_,_ and x <p1 §(0z1)}.

Proof Let { be a continuous additive generator on £/ for which f(D) € D 4.
Then from Theorem 10 it follows that there exists a continuous additive generator
f on ([0, 1], <) such that (13) holds. From Theorem 9 it follows that =V (y) =

[fP0), fCV )] forally € L, .
Let arbitrarily y € L. . Then

FEP 0N = LA 0, FFTP o]
= [min(f(0), y), min( £ (0), y2)] (15)
= inf(f(0z1), y).

Define the mapping 7; : (L')? — L' by T;(x, y) = {~V(f(x) & §(»)), for all x,

y in L’. Assume first that 7; is a t-norm. From the associativity of 7; it follows for
all x, y, zin LY,

V@ @GOy @ 1)) = 1V (oo @ £(0) @ (2)).  (16)

By applying f on both sides of this equality and taking into account (15), we obtain

inf (F(021), f(x) @ inf (020, () @ (2)))

17
= inf(j(01), inf (021, f(x) @ §() @ f(2)). 4
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Since f is given by (13) and f is continuous, rng(f) = A, where A = {x | x € l_léwr
and x <p: §f(0z:)} (see the proof of Lemma 9). Thus, from (17) it follows that for
all x, y,zin A,

inf (o, x ® inf(, y & z)) = inf (v, inf (o, x D y) D 2), (18)

where o = §(01).

Assume conversely that (14) holds. From Lemma 10 it follows that 7 is com-
mutative, increasing and Zs(1.:,x) = x, for all x € L'. We still have to prove
the associativity. Let x, y in L’ such that x # y, then x; # y; or x, # y,. Since
f is represented by (13) and f is strictly decreasing, from x; # y; it follows that
f(x1) # f(1), so f(x) # f(y). Similarly, if x, # y», then f(x) # f(y). Hence, for
all x, yin L7,

f) =f(y) <= x=y.

Thus, if (17) holds, then using (15) we obtain that (16) holds,_so 7T; is associative.
Note that (17) holds as soon as (18) holds. Since «=f(0,:) € D, the proof that (18)
holds for all x, y, z in A, is similar to the second part of the proof of Theorem 4. [

Taking into consideration the similarity between the conditions (6) and (14), we
consider a condition whichis similar to (8) and prove that it is a sufficient condition for
@ so that a (not necessarily continuous) additive generator associated to € generates
a t-norm. First we give a lemma.

Lemma 11 Let | be an additive generator on L' associated to ®. Assume that ®
satisfies the following condition:
(Y(x,y) € L x A)
(((Lx1, 2] @ y)1 < @y and x; € Ja, 20]) = ([x1, ] @ Y)1 = (x B y)1),
(19)
and
(V(x,y) € L} x A)

(a1, x21 @ y)2 < @2 and x; € Jay, 2a1]) = ([a1, %] D y)2 = (x D y)2),
(20)

where a = f(0z1) and A = {x | x € l_,éo’Jr and x <p1 §(0z1)}. Then, for all x € L'
andy € R(J) such thaty <1 §(0z1) @ §(0z1),

fx) ® 1V () € R($)

and

fV G @ T (0)) = F V() @ y). 1)
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Proof Let x € L' and y € R(§) such that y <;: §(0z1) @ f(0z1). We have the
following cases:

e If y € rng(}), then there exists a z € L’ such that (z) = y, so f(x) @ f(F~V(y)) =
() @ F(V(§(2)) = f(x) @ f(2) = f(x) ® y € R(f), using (AG.4) and (AG.5).

o If [y1, (f(Oz1))2] € mg(f) and y, > (§(0z1))2, then there exists a z € L’ such
that §(z) = [y1, (f(Oz1))2]. Since y, and (f(z)), are both greater than or equal to
(j(0£1))2, we obtain that {1 (y) = f~V(f(2)) = sup({0zr} U (" | x’ € L" and
FOM > yi = (@)1 and F(x))2 = (F(0£1))2}). It follows that £ (y)) =
f(F<D(f(z))) = f(2), using (AG.5). Thus

) @ FG V() = f(x) @ (z) € R(). (22)

Since (f(z))2 = (f(0z1))2, we obtain that (f(x) & f(z))2 = (f(0Ozr))2. On the
other hand, (f(x) ® y)2 > y» > (f(0z1))2. Note that f(z) = [y, @2] and y> €
Jag, 205]. If (F(x) @ f(z))1 < (f(0z1))1 = «y, then from (19) it follows that

(F(x) & f(2))1 = (F(x) & y)1- If (F(x) @ £(2))1 = (§(0z1))1, then, since y =11 §(2)
and @ is increasing, (f(x) @ y)1 > (f(Oz:));. It is easy to see that in all cases
Pimeic) = Piway = {0} U{x' | x" € L and (f(x")); > (f(x) @ y); and
(F(x"))2 = (§(0z1))2}. Using the equality in (22), we obtain that (21) holds.

o If [(§(O,1))1, ¥2] € rng(f) and y; > (f(0O,1))1, then it can be similarly proven that
f(x) @ fGP(y)) € R(f) and that (21) holds.

o Ify >./ f(0zr), then fV(y) = 0zr and f(x) & §(F" (y)) = f(x) ®(0.1) € (x|
¥ e Ll and x' =11 (020} € R(P), s0 fV((x) @ (" () = 0. Since
y > §(0z1), we obtain that f(x) @ y > §(0z1), so f~V(f(x) @ y) = 01 =
fV ) @ 1P (). O

Using Lemma 11, the following theorem can be shown.

Theorem 13 Let f be an additive generator on L associated to @. If @ satisfies
(19) and (20), then the mapping T; : (L')* — L' defined by, for all x, y in L',

Ti(x,y) = fVGx) @ (),

is a t-norm on L.

Proof From Lemma 10 it follows that Tf is commutative, increasing and that
T;(1zr,x) = x, forall x € L. We still have to prove the associativity of 7.
Let x, y, zin L', then T;(x, T;(y, 2)) = f*" (jx) @ f(F" " (7(») @ §(2)))). From
Lemma 11 it follows that

f(x) & F(F-" (GO @ £(2))) € R(F)
fV () @ FF ) @ 1)) = 17 (1) @ (50 @ ().

From the associativity of @ it now easily follows that 7 is associative. (|
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Theorems 10 and 9 show that no matter which operator & is used in (AG.4), a
continuous additive generator f on £/ satisfying f(D) C De. . is representable and
has a representable pseudo-inverse. Therefore it depends on the operator @& which
classes of t-norms on £’ can have continuous additive generators that extend additive
generators on ([0, 1], <).

7 Conclusion

In this paper we presented a more general approach to additive generators in interval-
valued fuzzy and Atanassov’s intuitionistic fuzzy set theory than in [16]. In this paper,
instead of choosing one particular set of arithmetic operators, we allow any set of
arithmetic operators satisfying certain axioms to be used in the construction of addi-
tive generators. We characterized continuous generators which map exact elements
to exact elements in terms of generators on the unit interval. We gave a necessary
and sufficient condition under which a generator actually generates a t-norm and we
showed that the generated t-norm belongs to particular classes of t-norms depending
on the arithmetic operators involved in the definition of the generator.
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On the TOPSIS-Class Methods
in the Intuitionistic Fuzzy Environment

Piotr Dworniczak

Abstract TOPSIS is one of the basic methods of multicriteria decision aid. In the
paper a classical algorithm TOPSIS and its analogies in the intuitionistic fuzzy
environment are presented. The application of intuitionistic fuzzy implication for a
new solution of some step in the method is given. The comments about the new
conversion of the input decision matrix due to the criteria validity are given. The
illustrative example is given.

Keywords Intuitionictic fuzzy sets « TOPSIS - Intuitionistic fuzzy implication

1 Introduction

Multi-criteria Decision Making is, despite of many years of research, a field of
presentation of new methods and modifications of the already existing. The intu-
itionistic fuzzy (for shortly: IF) sets theory is a promising tool in this area. Fur-
thermore, due to the tendency to facilitate the opinion expressed by experts, the
linguistic values as evaluation of the variants are being used. Due to the genesis, the
linguistic variables are usually vague (fuzzy). For their processing the IF sets theory
can also be useful.

The intuitionistic fuzzy sets (IFS) have been introduced by K. Atanassov [2,l 3].

Definition 1 (Atanassov [2]) The intuitionistic fuzzy set A on a universe U # @ is
understood as

A={(x pg (x),va(x)): x € U},

"The publication from 1983 was first but IFS became widely known after the publication [3].
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where p, and v, are the function from U to closed interval [0, 1], and for every
x € U holds ps(x) + va(x) < 1.

The ordered pair <u4(x), va(x)> is called the IF value or IF pair [6].

The value ms(x) = 1 — pua(x) — va(x) is called a hesitation margin (or a hesitancy
degree).

The values pu4(x) and v4(x) are, respectively, the degree of membership and degree
of non-membership of element x to the set A.

Decision making in the intuitionistic fuzzy environment is an example of an area
of research in which, in light of the above comments, the IFSs can be used even in
those cases where uncertainty or ignorance exists, concerning the evaluation of
options made it difficult or impossible to use other methods for decision support.

Citing Szmidt and Kacprzyk [26] we assume, that IFSs based models may be
adequate mainly in the situations when we face human testimonies, opinions, etc.
involving answers of three types:

yes,

no,

abstaining, i.e. which can not be classified (because of different reasons, e.g. “I
do not know”, “I am not sure”, “I do not want to answer”, “I am not satisfied
with any of the options” etc.).

The applications of the IFSs theory for the decision-making appeared a relatively
long time after the first publication of Atanassov [10]. The first monograph on this
subject was the Szmidt paper [23] where two main approaches for decision support
were presented. The first is the intuitionistic generalization of Bellman—Zadeh’s
approach given by Kacprzyk [18], and the second presented some solution concepts
in group decision making with (individual and social) intuitionistic fuzzy preference
relations.

One of the directions of further research is the adaptation of the TOPSIS method
to the IF environment.

2 The TOPSIS-Class Methods

One of the basic methods of the decision making (decision aid) is the TOPSIS
method. It was presented by Hwang and Yoon [17]. The name of method is the
acronym derived from Technique for Order Preference by Similarity to an Ideal
Solution. It is an important method of ordering of the elements in the multidi-
mensional metric space. This method allows to show the best solution (alternative,
decision), based on some aggregate measure of the distance of the evaluation of the
variants from the ideal- and the anti-ideal solution (positive- and negative-ideal,
ideal- and anti-ideal evaluation).
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In this paper the review the TOPSIS-like methods in the intuitionistic fuzzy
environment is presented. Besides, the idea of simple modification of the method is
given. The methods based mainly on the idea of TOPSIS method we will call
hereafter TOPSIS-class methods.

2.1 The Classical TOPSIS Method

The decision-making problem is to identify the optimal variant or ordering of the set
of variants based on the evaluating criterion or criteria. In the multi-criteria decision
making problem (MCDM), it is very difficult due to the lack of a unequivocal order
in a multidimensional space. The TOPSIS is one of the ways to solve this problem
with a finite number of decision variants and a finite number of criteria.

Let X = {x1, x5, ... x,,} be a finite set of the variants (alternatives) and C, C, ...
C; the set of criteria. The classical TOPSIS method is specified in following steps.

1°Tt is given the matrix S = [s;],x«, Where s;; is the evaluation of the ith variant due

to the jth criterion (or, in other words, the value of the jth attribute of the ith
variant).

On this basis we create the matrix R = [r;],,x of the normalized values, calculated
by formula

rij=

N. .

ng <
N
<o

The S matrix is called the decision matrix, where R is called the normalized
decision matrix.
2% We construct the weighted normalized decision matrix T = [t;],x, where

Ly =Wwj - 1.

k
The value w;, where w; € [0, 1] and ) w; =1, is the weight for the jth criterion.
j=1
3% We determine the ideal solution x* = (#;*,#", ...4*) and anti-ideal solution
x~ =(t7,t;, ...t7 ). For the benefit criteria we take
tr

= max f;{ = min f;
i=l..n i=1l.n

while for cost criteria

tT = min ¢;,¢” = max t;.
- b7 P ij
i=1l..n i=1l..n
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4° For the ith variant (i=1, ..., n) we compute the distance dl-+ from the ideal
solution and the distance d;~ from the anti-ideal solution

k
2
df =X (t5—1")
Jj=1
and
k 2
di =y 2 (ty—17)"
j=1
59 For the ith variant (i=1, ..., n) we calculate the index of relative closeness to the

ideal solution as

d-
= S 0,1 .
¢« =grva- €01
6° We order the variants by the rule: the higher is the value ¢, the better is the ith
variant.

Let us note that the normalization, as given in step 1°, the weighted normalized
decision matrix determined in step 20, the ideal and anti-ideal solution in step 30,
the distance (here—the Euclidean distance) determined in step 4° and even the
index of relative closeness in 5° can be determined in other ways.

2.2 TOPSIS-Class Methods in the IF Environment—Basic
Solutions

TOPSIS-class methods in the intuitionistic fuzzy environment appeared relatively
late. It is possible that the work of Szmidt and Kacprzyk [24, 25, 27] have estab-
lished finally the standards for determining of the distances, and have opened the
way for important methods using a distance or similarity measure of the IFSs. The
research on the distance of the IFSs were initiated by Atanassov. In the book [4]
Atanassov gives the definition of the Hamming distance and Euclidean distance of
IFSs.

Definition 2 (Azanassov [4]) For IFSs A = {<x, pa(x), va(x)>: x € U} and B = {<x,
up(x), vg(x)>: x € U} the Hamming distance is given as

HAB)= 5 3 (a0 = g + o) =),
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while the Euclidean distance

EAB)=(5 % (1) = a(0)* + (0a(x) = ()"

xeU

Szmidt and Kacprzyk [24] proposed the Hamming distance and the Euclidean
distance using also the third parameter—the hesitation degree .

Definition 3 (Szmidt and Kacprzyk [24]) For the IFSs A = {<x, pa(x), va(x)>:
x € U} and B = {<x, ug(x), vg(x)>: x € U}, in the finite universe U, the normalized
Hamming distance is the number

1
Lis(A, B) = 2, 2 (ma () = s ()] + va(x) = vp ()] + |74 (x) = 75(x)]),
Nnyevu
and the normalized Euclidean distance is

Grs(A. B) = % 2 ((ua(x) = () + (va(x) = vp(x)) + (ma (x) = 75(x)) "),

xeU

In the subsequent papers [25, 27] Szmidt and Kacprzyk justify the need of taking
into account the degree of uncertainty, pointing its important role in the assessing of
decisions. The authors emphasize that the degree of uncertainty is an important
measure of the lack of information. This lack of information is strictly associated
with a risk characterizing almost all decisions, and it is clear that the decision
should be assessed otherwise at the changes of the level of risk.

In 2008 Luo and Yu [21] proposed the TOPSIS-class method for the rank of
variants using the inclusion degree of the IFSs characterizing the variant in the IFSs
characterizing the optimal variant (optimal solution). The method of Luo and Yu
addresses the problem by a finite set of variants and a finite set of criteria. This
solution indicates one of the basic directions of using of the inclusion for the
comprehensive evaluation of variants. The main idea is as follows.

Let X = {x;, x5, ... x,,} be the finite set of variants (alternatives) while {C;, C»,
..., C¢} a finite set of criteria. Each variant x; is characterized by the IFS

Xi={<Crpy.vii>, <Copp.vp>, ... <Cp vk > }.

The p;; value is interpreted as the degree to which the x; satisfies the C;, while the
v; value as the degree to which x; does not satisfy the C;.

Authors assume that the decision-maker would like to choose a variant, which in
the best way satisfies all criteria Cy, Cs, ..., Ci_; or the Cy criterion.

In the first step, on the base of sets X; (for i = 1, ..., n) are determined two IFSs,
called the ideal- and the anti-ideal solution. Luo and Yu [21] proposed following
formulas.
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For Cy, C,, ...Ci_; criteria, the IFS

IS ={<Cr, s, vis1 >, <Co,pygo, Visa >, « oy <Cro 1, yspe— 1> Visk—1> }
={<C, max p;, min v; >, <Cp, max up, min vp>, ...,
i=1l..n i=1l..n i=1l..n i=1..n

<Cp-1, Max py_;, min vg_;>},
i=1l..n i=1..n
is the ideal solution of MCDM problem, while

AIS) ={ < C1, pass1, vars1 > <Co, fhagso, Vais2 > -« s <Cr 1, Pagsi— 1> VAisk—1> }
={<Cy, min p;, max v; >, <Cp, min p,, max vp>, ...,
i=1.n i=1l..n i=1l..n i=1..n

<Cy_1, 'min Hix—1>, MaX Vjg—1 >}
i=1l..n i=1l..n

is the anti-ideal solution of the MCDM problem.
For the last criterion Cj, the ideal- and anti-ideal solution are, similarly

IS; ={ < Cy, max py, min vy >},
i=1l..n i=1l..n
and

AlS; ={ < Cy, min p;, max vy > }.
i=l..n i=l..n

In the next step the inclusion degrees of the ideal solution in all of the variants
evaluations, and, similarly, the inclusion degrees of all of the variants evaluations in
the anti-ideal solution are defined as

Dine (xi) =max{INCgs(IS1, Xi1 ), INCips (182, Xin) }
dive (x;) = min{INCyps(Xi1, AIS1), INCips(Xin, AIS>) },

where

Xi={<Crpy,vii>, <Copp,vin>, ... <Cro1, flig_1-Vik—1> },
Xio ={ < Cr, g, vir > },

The INCrs (A, B) is a real degree of the inclusion of A in B.

Luo and Yu in the cited paper give various ways of the determining of
the inclusion degree of IF sets based on intuitionistic fuzzy implication or on the
cardinality of IF sets.

The value Dyyc(x;) as well as djyc(x;) is the analogy of the distance from clas-
sical TOPSIS solution.
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In the last step the index p; (for i = 1, ..., n) is determined:

pi= Dine(x;)
" Dive(x;) +dive(xi)

The ordering of indexes from largest to smallest determines the ranking of
variants from the best to the worst.

The above sets 1S, (and IS,) can be called the max-min ideal solution. It is the
basic form of the ideal solutions considered in the TOPSIS-class methods.

Further papers concerning the TOPSIS-class methods in the IF environment are
given by Wang and Wei [28] and Xu [31]. The solution given in the first paper is
close to the Luo and Yu solution. Wang und Wei assume also the choice from the
finite set of variants xy, x,, ... X,,. Each variant is assigned to k attributes (the variant
is evaluated according to k criteria) C;, C,, ...C;. But, unlike as in Luo and Yu
solution, attributes are associated with the weights wy, w, ... wy, where w; € [0, 1]

k
and ) w;j=1. Authors do not specify the method of determining of weights.
j=1

However, we can suspect that they must be given by the decision maker. Authors
assume also that it must be given the matrix Ryps = [1jlixx = [<pij» vi>]uxk called
the intuitionistic decision matrix. Each element <u;, v;> of the matrix is the IF
value. The y;; value is interpreted as the degree to which the x; satisfies the C;, while
the v;; value as the degree to which x; does not satisfy the C;. Similarly, as in the
Luo and Yu solution, the ideal solution IS and anti-ideal solution AIS (called in
the paper the positive and the negative ideal) are determined. It is namely

IS={<Cr,pysi>vis1 >, <Co, pysps visa > 5 -+ -5 < Cos sy Visk > }
={<Cy, max p;, min v; >, <Cy, mMax p,, min vp>,...,
i=l..n i=1l..n i=1l..n i=1l..n

<Cy, max py, min vy >},
i=l..n i=1..n
and

AIS={ < Cy, passi-vaist > » < Co, plazsos vars2 > - - -» < Crs fagsps Vaisk > }
={<Cj, min p;, max v; >, <Cp, min p,, max vp>, ...,
i=1..n i=1.n i=1..n i=1.n

< Cy, min py, max vy > }.
i=1l.n i=1l..n

Further the authors compute the weighted Hamming distance (not using the
hesitation degree)

H(r;, IS) =

I >

1
5 Wi (|1 = pasi | + [ = vasi )
j=1
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and

k
H(ri, AlS) = '21 w; (|1 = | + v = vans|)
i

N —

of the IFSs r; (rows of the R;rg matrix), characterizing each variants, from the ideal
and the anti-ideal solutions. Finally, they compute indexes c; of relative closeness of
the x; to the IS in the form

H(ri,AIS)

i(ri, 1S) = ,
cilr, 1) H(r:,1S) + H(r;, AIS)

fori=1, ..., n

In the conclusion the ranking of variants is obtained, wherein a variant having
greater index is considered better.

Similar solution is given by Xu [31]. He proposed to determine the index of
relative similarity

Sim(r;, IS)

RSim(r;, IS) = — : ,
(15 18) = Gl 1) + Sim(ry, AIS)

of each variants to the ideal.
The Sim is a similarity measure of IFSs. It was introduced in the paper earlier.
Xu gives in particular two measures of similarity

Simy(A, B) =1 = L5(A, B)
and
Sim,(A,B)=1—qz5(A, B).

Both measures are based on the distance defined by Szmidt and Kacprzyk.

The larger the RSim(r;, IS) value is, the better is the variant corresponding to the
set r;.

A solutions similar to the work of Wang und Wei and Xu are presented by Liu
[20], Guo and Zhang [15] and Guo et al. [14] but the weights, given by an expert,
are used to the transformation of the intuitionistic decision matrix Ryrg and not to
correct the distance measurement.

A similar paper to that of Wang and Wei is presented also by Li and Zhang [19].
In this paper, weights are computed based on the symmetric judgment matrix
relating to preferences of attributes (criteria). Elements of the matrix are IF values
<mjj, V>, where u;; is a preference degree of the criterion C; to the criterion C;j,
while v; is a preference degree of the criterion C; to the C,. It is also u; = vy,
l/lj:/lj,,/l,,:I/”:O,S,OSMU,I/US 1,0SﬂU+I/US 1.
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Hung and Chen [16] solution is also similar, but the authors, for the computing
of weights, used the entropy measures of the IFSs which are the columns of the
intuitionistic decision matrix Ryps.

In turn, Boran et al. [9] applying the solution, given in the mainstream by Luo
and Yu, and Wang and Wei, introduce to the method, besides weights of criteria
(given by the experts) also weights of opinion of experts. All the weights are
computed on the basis of IF values equivalent to the linguistic terms for rating the
importance of criteria and the importance of decision makers, like very important,
important, medium etc. Variants can be assessed up to 10, while criteria and
decision makers up to 5 linguistic terms. Every variant is evaluated by / experts.
The mth expert gives the intuitionistic fuzzy decision matrix R;jfs) = [ri<jk)]n>< =
[< Hij» Vig > |« Basing on the linguistic assessments of decision makers authors

compute the weights of the kth decision maker as

— 'um + Tm Hm + Um
A =

i M~

(,u m+ m Hm + vm)

Taking into account the above weights it is constructed the aggregated intu-
itionistic fuzzy decision matrix R which elements are calculated using the operator
IFWA proposed by Xu [30].

The element 7;; of the aggregated matrix is the IF value equal to

L (m) A L (m) m
T = <y Vr > = <1— H1 (l—ﬂi,- ) , H1 (uij ) >
m=

m=

Similarly to the weights 4,,, the weights wy, w, , ..., w; are computed. These
weights w, = <y, ,vy, >. correspond to the decision makers. Basing on these
values and the aggregated intuitionistic fuzzy decision matrix R authors compute
the aggregated weighted intuitionistic fuzzy decision matrix R” which elements are

ry= <ﬂr;j.ﬂwm’yrif+ywm_I/riilywm>'

The matrix R’ is the basis for next steps. Subsequently are computed, in the
classical form, the max-min positive ideal solution and the negative ideal solution,
and then the separation measures (distances in the Szmidt-Kacprzyk sense) of each
variant from positive and negative ideal solutions. In the last step, the index of
relative closeness (as in the classical TOPSIS method) is computed and the rank of
alternatives is determined.

The method presented above is almost in the same form as presented by Agarwal
et al. [1]. The difference lies in the determination of weights assessed by decision
makers (experts). Authors proposed namely



168 P. Dworniczak

Hom
H m + Mo +VUm

=
m=1

without taking into account the hesitation degree.

For the evaluations of variants or experts importance authors proposed up to
10 different linguistic values with corresponding IF values. As the averaging
operator, besides the IFWA operator, is also given the IFWG operator [32].

It means that the element 7;; of the aggregated intuitionistic fuzzy decision matrix
is the IF value equal to

Lo\ L (m))
1= <y Uy > = < Ul(ﬂifm> , 11— Hl(l_”y‘m) >,

m=

The subsequent steps are the same as given by Boran et al.

The solution of Boran et al. [9] has been applied, in the economic problems: in
the personnel selection [8], in a supply chain management process [29], in the
construction safety evaluation [7], in Project and Portfolio Management Informa-
tion System [13].

A simplest version of TOPSIS in the IF environment has been applied by Zhang
and Huang [33] for a supplier selection in information technology service
outsourcing.

Maldonado-Macias et al. [22] applied the TOPSIS-class method for ergonomic
compatibility evaluation of advanced manufacturing technology. They used mainly
the Wang and Wei solution, but the vector of weights of attributes is determined as
the eigenvector of the matrix of the pair-wise comparison of attributes corre-
sponding to the maximal eigenvalue of this matrix. The elements of this comparison
matrix are determined by decision makers according to the 9 point Saaty impor-
tance scale. The distances to the (classical) ideal and anti-ideal solution and the
index of relative closeness are computed based on Euclidean distance g}

The solutions presented above link directly to the classical method of TOPSIS
joint with the IFSs. However, a lot of papers on IFSs use some parts of the TOPSIS.
The very developed direction, is currently the use of interval valued IFSs in con-
nection with the TOPSIS-class methods. In this paper these works are omitted.

3 The Intuitionistic Fuzzy Implication as a Tool
in the TOPSIS-Class Method

In the intuitionistic fuzzy logic (IFL) the truth-value of variable p is given by ordered
pair <a, b>, where a, b, a + b € [0, 1]. The numbers a and b are interpreted as the
degrees of validity and non-validity of p. We denote the truth-value of p by V(p).
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The variable with truth-value true (in the classical logic) we denote by 1 and the
variable false by 0. For this variables holds also V(1) = <1, 0> and V(0) = <0, 1>.
Important in the IFL is an intuitionistic fuzzy implication. It is, following [11], the
logical connective — fulfilled for any variable p, pi, p», 9, g1, g» properties:

(1) if V(p)) < V(p») then V(p, — q) = V(p2 — q),
(2) if V(q1) < V(igo) then V(p = q1) < V(p — q»),
(3) VO - q) = V(D),
@ Vip -1 =V,
(%) v - 0) = V0.

where < denotes the (typical) order relation on the set of IF values. Namely, for the
variable p and g with V(p) = <a, b> and V(q) = <c, d> it holds V(p) < V(q) if and
only if a < cand b > d.
In the literature on the subject, about 150 different IF implication were noticed
[, 6]. Two of the classical are the Kleene-Dienes and the Lukasiewicz implications.
They are given by formulas

V(p — kpq) = <max{b,c}, min{a,d} >,
V(p—19)= <min{l,b+c},max{0,a+d—1}>

where p and ¢q are the logical variable with V(p) = <a, b>, V(q) = <c, d> and a, b,
c,d,a+ b, c+de]01].

Each of IF implication can be used as a tool for the aggregation of the validity of
criteria / attributes and the assessments of variants according to these criteria.

Let us suppose that each variant x;, i = 1, ... n, from a finite set of variants
(alternatives) are assigned according to the criteria C;, C,, ...Cy. We assume also
that the decision maker gives the intuitionistic decision matrix Rips = [rijlpic =
[<uy vi>luxk- The values py;, v; are interpreted as the degrees of validity and
non-validity of the judgment the variant x; satisfies the criterion C;.

Let us assume that the criteria are not equally important and each of them is
assigned to one of the linguistic assessments, as given in the first column of the
Table 1. These assessments must be made by a supervisor, or, in the case of many
experts, must be some aggregation of their opinions. Let the linguistic assessment
of C; correspond to the intuitionistic fuzzy value IFV; = <c;, d;> as in Table 1.

Based on the application of the implication to the assessments <u;;, v;>, using
IFV; from the Table 1, we will evaluate the adjusted degrees of validity of each
variants.

The adjusted degrees of validity we compute as the truth-value of the expression
if the criterion C; is valid then it is by x; satisfied.

Therefore we compute the IF value V(<c;, d> — <, v;>).

The type of IF implication — affects of course the truth-value obtained after its
application.

The intuitionistic assessment of the variants according to various criteria,
adjusted by degrees of criteria validity, form the matrix Tyrs = [<ey, fi>laxk -



170 P. Dworniczak

Table 1 Linguistic assessments and their intuitionistic counterparts

Linguistic assessments of the criterion C; IFV;
Strongly important <1.0, 0.0>
Important <0.8, 0.0>
Rather important <0.6, 0.0>
Insignificant <0.0, 0.5>
Almost totally unimportant <0.0, 0.9>
I do not know, Type 1; I have no opinion, I can not regard <0.0, 0.0>
this criterion as valid or invalid

I do not know, Type 2; some prerequisites suggest that the <0.5, 0.5>
criterion is important and some prerequisites, on the contrary

Source [12]

The ith row of the Tyrg matrix is the vector of adjusted evaluations of ith variant
according to all criteria, while the jth column is the vector of evaluations of all
variants according to jth criteron.

Based on elements of Tyrs we create, in the usual manner, the IFSs, that are the
ideal and anti-ideal solution. Namely

IS={<Cremi.fis1 >, <Cyemsa.fisn>, ..., <Cr, esk.fisk >}
={<C;, max ¢;, min fi >, <Cp, max ep, min fp>, ...,
i=1l..n i=1l..n i=1l..n i=1l.n

<Cy, max ey, min fi >},
i=1l..n i=1l..n

AIS={ < Cy, eassi.fais1 >, < Ca,ears, fais2> s - - < Cr, earsis faisk > }
={<C;, min ¢;, max fj; >, <Cp, min ep, max fn>, ...,
i=1l..n i=1..n i=1..n i=1..n

<Cy, min ey, max fi >}
i=1l.n i=1l.n

Using the normalized Hamming distance I}FS, or the normalized Euclidean
distance q}FS, for the i-th variant, we compute the distance from the ideal solution
d7 and the distance from the anti-ideal solution d;” . In the last step we obtain the
index of relative closeness to the ideal solution as given in the classical TOPSIS
method

+ di-

T=—"—e€el0,1
¢« =grya €01
and also, as a consequence, the ranking of variants, and the best variant with the
highest index value.

The new step in this method, mentioned first in [12], is the use of an IF
implication for the transformation of input IF values. The use of an IF implication
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is, in author’s opinion, valuable, although it may still be under discussion. An IF
implication has the properties (1)-(5). In a simplified wording, the property
(1) means that the same input value after adjustment by the criterion with the lower
validity should be assessed at least as much as after adjustment by the criterion with
the higher validity. We can say that if the criterion is important then the assessment
of variants, due to this criterion, should be taken into account, but if the criterion is
not important (low degree of importance), then the assessment of variants should
not be relevant to the overall assessment of the variant, or, in other words, the
adjusted degree should be, in this case, considered as high. The property (2) means
that the higher input value after adjustment by certain criterion should be assessed
at least as much as the lower input value. The property (3) means that, if the
criterion had a value of zero, regardless of degree of its fulfillment by the variant,
the adjusted value is as high as possible. In practice, the criterion validity of zero is
not taken into account. The property (4) means that, regardless of the criterion
validity, if the variant fulfills it fully, the revised degree is as high as possible. The
property (5) means that, with the highest criterion validity and the lowest degree of
its fulfillment, the adjusted degree is as low as possible.

Taking into account that most of the implications are continuous mappings, we
can roughly formulate the properties (3)—(5) as follows:

e the low value of importance of criterion implies a practical indifference of
adjusted values regardless of the fulfillment of this criterion,

e the very high evaluation of the variant due to certain criterion remains, after
adjustment, very high regardless of the assessment of the criterion validity,

e if the criterion is very important and the evaluation of the variant due to them is
very low then this very low assessment remains after the adjustment, too.

4 The Numerical Example

Suppose that three alternatives were evaluated according to each of the four criteria
by intuitionistic assessment, and these criteria were considered to be either strongly
important or rather important or insignificant or not known type 2, respectively
(Table 2).

Calculated adjusted degrees are contained in Tables 3 and 4.

The ideal and anti-ideal solution in the both cases are:

ISk-p={<Cy,1.0,0.0>, <(,,0,7,0,1>, <C3,0.8,0.0>, <C4,0,7,0,1>}
AlSk_p={<C(C,0.6,04>, <(,,0,3,0,6>, <(C3,0.5,0.0>, <C4,0,5,0,2>}
IS, ={<(C,1.0,0.0>, <(,,0,7,0,0>, <C3,1.0,00>, <C4,1,0,0,0> }
AIS; ={<(,0.6,04>, <(,,0,3,0,3>, <(3,0.8,0.0>, <C4,0,7,0,0> }
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Table 2 The values of degrees of the criteria met by the variants

P. Dworniczak

Criteria C,; C, Cs Cy

Alternatives | Strongly important | Rather important | Insignificant |I do not know, Type 2
X <1.0, 0.0> <0.7, 0.1> <0.3, 0.0> <0.7, 0.2>

X <0.8, 0.0> <0.3, 0.7> <04, 0.3> <04, 0.1>

X3 <0.6, 0.4> <0.6, 0.3> <0.8, 0.0> <0.2, 0.1>

Table 3 The assessments, adjusted by using the Kleene-Dienes implication

Criteria C, C, C; Cy

Alternatives | Strongly important | Rather important | Insignificant | I do not know, Type 2
X1 <1.0, 0.0> <0.7, 0.1> <0.5, 0.0> <0.7, 0.2>

Xo <0.8, 0.0> <0.3, 0.6> <0.5, 0.0> <0.5, 0.1>

X3 <0.6, 0.4> <0.6, 0.3> <0.8, 0.0> |<0.5, 0.1>

Table 4 The assessments, adjusted by using the Lukasiewicz implication

Criteria C; C, C; Cy

Alternatives | Strongly important | Rather important | Insignificant | I do not know, Type 2
X1 <1.0, 0.0> <0.7, 0.0> <0.8, 0.0> |<1.0, 0.0>

X <0.8, 0.0> <0.3, 0.3> <0.9, 0.0> <0.9, 0.0>

X3 <0.6, 0.4> <0.6, 0.0> <1.0, 0.0> |<0.7, 0.0>

Table 5 The Hamming and the Euclidean distances from ideal and anti-ideal solutions

Alternatives | The distance I of alternatives from | The distance gy of alternatives from
ISk.p |AISgp |IS, AIS;, ISk.p |AISxkp |IS AlSy,
Xy 0.100 |0.275 0.050 [0.275 |0.158 [0.320 0.100 |0.308
X2 0.300 |0.125 0.200 [0.175 |0.308 |0.180 0.218 |0.206
X3 0.200 |0.175 0.200 [0.125 |0.240 |0.218 0.255 |0.180

The results presented in Tables 3 and 4 are the basis for calculating of the
distances of assessments of alternatives from the ideal and anti-ideal solutions.

They are given in the Table 5.

The indexes of relative closeness in both cases are given in the Table 6.
Finally, we obtain the rank (from best to worst) of alternatives. In the case of
Kleene-Dienes implication it is xq, X3, X», and in the case of Lukasiewicz implication

X1, X2, X3.
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Table 6 The indexes of relative closeness for different distances and implications

Alternatives | The Hamming distance /g The Euclidean distance glrg
Kleene-Dienes Lukasiewicz Kleene-Dienes Lukasiewicz
implication implication implication implication

X1 0.266 0.154 0.331 0.245

X2 0.706 0.533 0.631 0.514

X3 0.533 0.615 0.524 0.586

The numerical example shows, incidentally, that the choice of implications affect
the result. Unfortunately, such disadvantage have also other methods of decision aid
or inference using the fuzzy or intuitionistic fuzzy implications.

5 Conclusion

Use of IFSs and the IF implications for data processing takes advantage of even
partial information about the degrees of fulfilling (and not-fulfilling) criteria by the
different variants. In the paper a review of TOPSIS-class methods in the intu-
itionistic fuzzy environment is given. The new solution of some step in the
TOPSIS-class method is proposed. The use of the intuitionistic fuzzy implication
are given. The possibility of the applications of the new procedure in the multi-
criteria decision making problems with varying degrees of criteria importance is, in
the numerical example, presented.
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Intuitionistic Fuzzy Dependency
Framework

Boyan Kolev and Ivaylo Ivanov

Abstract This paper proposes an Intuitionistic Fuzzy Dependency Framework
(IFDF) model as a flexible tool for analyzing the cause and effect of events
occurring in systems, where causation dependencies might be partial or vague.
A core data model with basic operations is introduced. A static approach for
dependency analyses is presented using traversals of the dependency graph. A dy-
namic approach using generalized nets as a simulation tool is also presented for the
case of systems with temporal dependencies.

Keywords Intuitionistic fuzzy -+ Generalized nets - Dependency graph -
Causal analysis « Impact analysis

1 Introduction

In a system, where dependencies exist between components, the problem of analyzing
the cause of an event or the impact it might have on other components is of major
importance. In order to make it possible to perform causation analyses, all depen-
dencies between the possible events that can occur in the system must be preliminarily
identified and kept in a directed graph, where each node represents a particular event
and each arc represents a dependency of the output node from the input node. Having
built the dependency graph, once an event occurs, there exist methods to:

e Determine the effects of this event on causing other events, usually by per-
forming a (breadth first) search in the dependency graph starting from the node,
corresponding to the occurred event;
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e Determine the possible root causes of this event, usually by performing a
(breadth first) search in the dependency graph in reverse direction starting from
the node, corresponding to the occurred event.

The problem of performing analytical tasks in a dependency topology has been
studied in the context of many applications—software build systems, financial data
analytics, problem management in IT infrastructure, medical diagnosing, semantic
networks, etc.

In this paper we will introduce the notion of an Intuitionistic Fuzzy Dependency
Framework (IFDF), based on the assumption that dependencies between events
might be partial or vague. We use intuitionistic fuzzy logic to express dependencies,
considering that the proposition “B depends on A” is no longer Boolean, but has
degrees of truth and falsity according to the theory of intuitionistic fuzzy sets,
proposed by Atanassov in [1] as an extension to the classical fuzzy sets theory. An
intuitionistic fuzzy dependency between A and B means that:

e The occurrence of A will cause partial occurrence of B to some extent,
expressed by the degree of truth, and

e B has a level of resistance against impacts of A, expressed by the degree of
falsity.

In Sect. 2 we will summarize the research that has been made in the field of
intuitionistic fuzzy extensions to ITIL’s configuration management database. In the
following sections we will generalize the proposed concept to fit in a wider range of
applications.

In Sect. 3 we will describe the data structures that comprise the IFDF, a semantic
view of the information they hold and basic operations that can be performed.

In Sect. 4 we will discuss intuitionistic fuzzy dependencies and will introduce
methods for calculating indirect dependencies to estimate the indirect impact that
the occurrence of an event might have over distant nodes. We will also introduce
methods to investigate possible causes for the occurrence of the event by traversing
the dependency graph in reverse direction.

In Sect. 5 we will extend our framework by adding temporal components, thus
allowing the expected impact of an event to be estimated as a function of time. In such
a framework, dependencies between nodes A and B have an additional attribute,
representing the amount of time, after which an occurrence of A will cause occurrence
of B. We will propose a methodology for performing dynamic causation analyses
using the simulation capabilities of intuitionistic fuzzy generalized nets [2, 3].

2 Related Work

Several studies have been made in the area of performing analyses over intu-
itionistic fuzzy dependencies in the IT Service Management domain. In [5] the
authors propose an Intuitionistic Fuzzy Configuration Management Database
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(IFCMDB) model as an extension of the Configuration Management Database
(CMDB), part of the IT Infrastructure Library (ITIL) standard [4]. In the termi-
nology of Configuration Management, IT components and the services provided
with them are known as Configuration Items (CIs), which can include hardware,
software, active and passive network components, servers, documentation, services
and all other IT components and the network can be extended to even include IT
users, IT staff and business units. The authors of [5] introduce a new type of
“dependency relationship” between the Cls that reflects the partial impact that one
CI has on another, expressed by means of intuitionistic fuzzy values.

In [5] a methodology for impact analysis is proposed based on calculations of the
levels of impact that a failure in one CI can have on other Cls that are indirectly
dependent from the failed one.

In [6] a methodology for analyzing the possible candidates for the root cause of a
failure is introduced based on traversing the reverse [FCMDB graph and calculating
the indirect impacts backwards, starting from the failed node.

In [7] the author maps Service Level Agreement (SLA) concepts to the idea
behind component dependencies in an IFCMDB, which makes it possible to pro-
vide an adequate service level management of systems with complex multi-tier
architecture.

The research made so far relies on static analyses of an intuitionistic fuzzy
dependency network in a particular domain. However, our current research is
motivated by the fact that an intuitionistic fuzzy dependency framework is appli-
cable to a much wider range of domains, therefore needs a generalization. More-
over, the framework can be supplemented by adding temporality to the model, thus
making it a robust tool for simulating activities, workloads and problem propaga-
tions among components in complex coherent systems.

3 Intuitionistic Fuzzy Dependency Model

Let E be the set of possible events that can happen within the modeled system. An
intuitionistic fuzzy dependency D is an intuitionistic fuzzy binary relation over E.
The core data structure in the IFDF is an intuitionistic fuzzy directed graph, where
each node corresponds to a possible event and an intuitionistic fuzzy arc from node
a to node b expresses the dependency of b from a:

G=(E, D), where:
D={>(a b), (hp(a.b), p(a,b)) <|aEE, b€E}

and the functions pp (a, b) and vp(a, b) define the degrees of truth and falsity of the
existence of a dependency between the events a and b, meaning “the occurrence of
a will cause occurrence of b”.
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3.1 Indirect Dependencies and Dependency Semantics

The arcs in the core dependency graph represent direct dependencies, i.e. the direct
effect that the occurrence of one event has on causing another event. For the
purpose of causality analyses indirect dependencies must also be obtained, which
expresses the impact that the occurrence of an event will have on distant nodes. The
existence of an indirect dependency is determined by the existence of a path in the
graph. Indirect dependencies are calculated considering the direct ones and
applying a chain of intuitionistic fuzzy logical conjunction and disjunction
operations.

An intuitionistic fuzzy dependency from a to b may have different semantics
depending on the type of uncertainty it represents, examples of which are listed
below:

e The probability of occurrence of b in case of occurrence of a;
o The level of impact that an occurrence of a has on causing occurrence of b;
e Vague information about the dependency.

3.2 Basic Operations

Depending on the semantics behind the intuitionistic fuzziness of the dependencies,
an arbitrary combination of variants of existing conjunction and disjunction oper-
ations may be used in the computation of indirect dependencies. Thus, the
administrator of the system is given the possibility to select the most appropriate
calculation method, according to its relevance with the modeled system. Below are
listed two possible variants of intuitionistic fuzzy conjunction and disjunction
operations (assuming that a = <y,, v,> and b = <, vy> are intuitionistic fuzzy
propositions with p,and v, as the degrees of truth and falsity of a and pyand vy, as
the degrees of truth and falsity of b respectively):

e Conjunctions:
- a&b= <min(p,, W), max(Va, vp) > (1.1)
- ab= <P,My, Va+ Uy — Vally > (1.2)
e Disjunctions:
- aVb= <max(p,, i), min(va, v) > (1.3)

- a+b= <p, +H, — HaHps Vals > (1.4)
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The type of logical operations that can be used within the system is not limited to
this list. The implementer can choose the types of operations that are most
appropriate for each particular use case. In the rest of the paper we will refer to
conjunction and disjunction operations in general, disregarding the chosen variant,
and we will denote them respectively with the symbols & and v.

3.3 Adding Temporality to Dependencies

The intuitionistic fuzzy dependency model can be extended by adding a temporal
component in the dependency measure. Thus, the dependency relation has this
form:

D={<(a, b), (ip(a, b), p(a, b)), t>|a€E, bEE, t R’}

In this notation t denotes the amount of time, after which the occurrence of a
will cause occurrence of b. Temporal dependency models are subjects to dynamic
causation analyses unlike non-temporal models, where the impact as a result of
indirect dependency can be computed by traversing the intuitionistic fuzzy
dependency graph. Both static and dynamic analytical approaches will be covered
in the following two sections.

4 Static Analytical Approach

Static analytical approach is applicable to non-temporal intuitionistic fuzzy
dependency models. The objectives of the causation analysis are:

e Forward analysis (impact analysis): Determine the effects of the occurrence of
an event on causing other events;

e Backward analysis (root cause analysis): Determine the possible root causes for
an occurred event.

Both analytical tasks take into account the direct dependencies and perform
computations by traversing the dependency graph, to discover the indirect depen-
dencies in which the starting node is involved.

Let ddep (a, b) denotes the direct dependency of event b from event a:

<pp(a,b), vp(a,b)>, |(a,b) €D @)
<0,1>, |(a,b)gD

ddep(a, b) = {

Let idep (c, d) denotes the indirect dependency of event d from event c.
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4.1 Forward Analysis

The static forward analysis aims to detect the possible effects from an event by
traversing the graph using a breadth-first search algorithm. At each visited node, the
algorithm computes the node’s dependency from the starting node, taking into
account the already computed dependencies at the previous level, using the
formula:

\/ idep(a,i)&ddep(i,b), la#b

idep(a,b) = { (ib)eD 3)
<1,0>, |la=b

Finally, each traversed node has a computed dependency from the starting one.

4.2 Backward Analysis

The purpose of the backward analysis is to discover the set of possible root causes
for an occurred event. The breadth-first search algorithm now traverses the graph in
reverse direction in order to find which events might have caused the occurred one.
At each visited node, the algorithm computes the dependency of the starting node
from the visited one, taking into account the already computed dependencies at the
previous level, using the following formula, analogous to the one for forward
analysis:

{ \/ idep(i,b)&(a,i), la#b
idep(a,b) =1 (ai)e 4)

<1,0>, la=b

4.3 Algebraic Approach

The purpose of the algebraic analysis is to calculate the dependency between two
nodes regardless of the context in which the analysis is performed—to identify the
effects or to analyze the root cause. To calculate the indirect dependency of b from
a, the following procedure is proposed:

1. The graph is traversed in order to find all paths from a to b.

2. For each path, we calculate the partial indirect dependency by applying a chain
of logical conjunction operations over all the direct dependencies between nodes
along the path.

3. Finally, the indirect impact is the result of applying a logical disjunction
operation over all partial impacts, calculated on the previous step.
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Another way to perform algebraic analysis on the graph G is to find the transitive
closure of D, using the Warshall algorithm proposed in [12]. Then, the indirect
dependency of b from a is the membership of the pair (a, b) to the transitive
closure of D.

In general, a single indirect dependency may have different values when com-
puted using the three different approaches: forward, backward and algebraic.
However, the three methods will produce the same result if the used logical
operations have the following properties: the conjunction is distributive over the
disjunction and the conjunction and disjunction are idempotent; for example the
combination of conjunction (1.1) and disjunction (1.3).

5 Dynamic Analytical Approach

In real life scenarios very often the effects of events are propagated with delays or
the dependency of one event from another is a function of time. Dynamic analytical
approach is applicable to both temporal and non-temporal intuitionistic fuzzy
dependency models. It gives more flexibility to the analytical tasks, by allowing the
propagation of the effects of an occurred event to be simulated, taking into account
propagation delays, associated to each node. Also, this approach allows more than
one event to be involved in the simulation at a time.

In the proposed IFDF we use intuitionistic fuzzy generalized nets [2, 3] as the
simulation tool. Whenever an analytical task is assigned to the framework, it per-
forms the following steps:

1. The framework engine automatically transforms the intuitionistic fuzzy depen-
dency graph into an intuitionistic fuzzy generalized net, using the algorithm,
defined in [8, 9]. For example, let us consider the following sample dependency
graph (the clock symbols denote delayed dependencies):

a C e

The IFDF engine transforms the graph to the following generalized net:

O Qe

Om Oa Oe
O~ Oe
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2. Then, IFDF assigns the intuitionistic fuzzy dependencies to the evaluation
functions of the corresponding predicates. Each transition is given a type to be
activated whenever there is a token in all of the transition’s input places.

3. Each token has a characteristic L., that carries an intuitionistic fuzzy level of
impact (L., consists of two components—the degrees of truth and falsity).
Every time a token passes through a transition and enters a place, the following
actions are taken:

a. Before leaving the old place, the token splits, so that it can move to all output
places, for which the corresponding predicate function is defined.

b. Upon entering the new place, the token’s L., obtains a new value, which
is the result of applying a logical conjunction operation between L., and
the value of the intuitionistic fuzzy predicate.

c. If the new place already contains another token or if more than one token
enters the same place during the same activation of the transition, all the
tokens are merged in one token, whose L., obtains a value, which is the
result of applying a logical disjunction operation over the values of L., of
all merged tokens.

4. Each token has another characteristic T, Which is the representation of the
current moment in time, relative to the time of initialization of the net. T, iS
increased at each transition. Each place, which is the right-hand side of a
delayed dependency (nodes c and f in our example), is substituted with a
single-transition generalized subnet with the following structure:

s

Each token, entering the input place of this transition, is given a numeric
characteristic, according to the delay of the corresponding dependency. The tran-
sition’s predicates and the characteristic function of the intermediate place are
adjusted in a way that a token loops in the intermediate place for an amount of time,
corresponding to the delay.

5.1 Forward Analysis

When executing a forward analytical task, the IFDF engine puts a token in the
place, corresponding to the occurred event, and starts the GN simulation. If more
events are observed, then more tokens can be involved in the simulation, so that the
simulation can discover the effect propagation of a combination of events. Each
token is given an initial value of L., corresponding to the level of the occurrence
of the observed event. In particular, we can say that if an event definitely occurs,
then its level of occurrence is <1, 0>.
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Since the calculation of the level of occurrence of a particular event in the chain
depends on the level of occurrence of all its preceding events, the corresponding
transition must wait until all its input places are populated. To make the task
achievable, before starting the simulation, the framework puts tokens in all empty
global input places with an initial value of L.,,,, which in the case of absence of
occurrence of the corresponding event is <0, 1>. In case the level of occurrence of
a particular event is completely unknown, it is also possible to put a token in the
corresponding place with initial L., = <0, 0>.

After entering each place:

e the token’s L., contains the level of impact that the initially observed events
has on it and

e the token’s T, contains the amount of time after the occurrence of the initial
event the effect on the corresponding event will be expected.

5.2 Backward Analysis

The backward analytical task is analogous to the forward one, with the following
remark: The dependency graph is first reversed, and then transformed into an
intuitionistic fuzzy generalized net.

Before starting the simulation, analogously, the IFDF puts tokens in the places,
corresponding to the observed events, with initial L.,,, according to the level of
occurrence. The involvement of several initial tokens in the generalized net gives
the possibility for the framework to find a common root cause for several observed
events. Analogously, the input places, not related to any of the observed events,
must be populated with tokens with initial L.,,, denoting that the event is not
observed or information about its state is vague or missing.

After entering each place:

e the token’s L.,,, shows how likely the corresponding event could be the root
cause of the observed ones and

e the token’s T, gives an approximation about the latest time of occurrence of
the root cause.

6 Conclusions

The proposed framework is a robust tool for simulating and analyzing causality
effects in systems, where the occurrences of events and causalities can be partial,
probabilistic or vague.

The work was inspired by our previous research on intuitionistic fuzzy exten-
sions of the configuration management database (IFCMDB), part of the ITIL



186 B. Kolev and I. Ivanov

standard [5, 6]. Having defined the IFDF framework, IFCMDB becomes just one of
the use cases, applicable within IFDF. In the IFCMDB graph, each node corre-
sponds to an item in the infrastructure and the arcs represent dependencies between
items, meaning that the proper work of one item depends on the proper work of
another. Mapping IFCMDB graph to the data model of IFDF can be done by
retaining the same graph topology, but the nodes in IFDF will represent failure
events of the corresponding items and the arcs represent causality of failures of one
node to another. However, IFDF goes beyond the analytical capabilities of the
current [IFCMDB model, because it introduces temporality to the causality links,
thus allowing analyzing the possible effects of a failure of an item in the IT
infrastructure, considering delays in effect propagation, the way they exist in a real
scenario. A typical example of the existence of such delayed causalities appears in a
scenario, where hardware is protected from power failures by a UPS—in the event
of failure in the power supply, the effect is propagated to the hardware with a certain
delay, after the UPS battery is discharged.

More general, the IFDF concept can be applied to a much broader range of
domains, where causality dependencies can be partial or vague and the effects of
event occurrences are propagated throughout the system either immediately or
within a timeframe. As subject to our further research, we will investigate the
application of IFDF in several domains, e.g. business process modeling, intu-
itionistic fuzzy scheduling in business processes, social networks, etc.
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Consistency and Consensus
of Intuitionistic Fuzzy Preference
Relations in Group Decision Making

Huchang Liao and Zeshui Xu

Abstract Intuitionistic fuzzy preference relations (IFPRs) have turned out to be a
useful structure in expressing the experts’ uncertain judgments. In this chapter, we
consider a group decision making problem where all the members of the group use
the IFPRs to express their preferences over the candidate alternatives. Firstly, we
describe such a group decision making problem mathematically in details. Then,
different types of definitions for the consistency of an IFPR are reviewed, which can
be divided into two sorts, i.e., the additive consistency and the multiplicative
consistency. Once all the [FPRs are of acceptable consistency, we then introduce a
consensus measure to depict the consensus degree of the experts. A consensus
reaching procedure is given to help the experts modify their assessments and then
obtain an agreement between the experts as to the choice of a proper decision.
A numerical example is given to show the validation and computational process of
the consensus reaching procedure.

Keywords Intuitionistic fuzzy preference relation « Consistency « Consensus ¢
Consensus reaching procedure « Group decision making

1 Introduction

Group decision making takes place commonly in many domains of our daily life,
including such significant ones as the managerial, financial, engineering, and
medical fields. It has gained prominence owing to the complexity of modern-life
decision problems. For a group decision making problem, a group of experts are
getting together to express their individual opinions over the problem and then yield
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a final decision which is mutually agreeable. Very often, such group decision
making problem involves multiple feasible alternatives, and the objective of the
group decision making problem is to select the best alternative(s) from these
mutually exclusive alternatives based on the preferences provided by the experts. In
many cases, the experts can not determine their preferences in accurate numerical
numbers but fuzzy terms [1]. Fuzzy set (FS) was proposed to represent the rela-
tionship between a set and an element by membership degrees rather than by crisp
membership of classical binary logic. When all the preferences of the experts are
determined by fuzzy numbers which denote the relative intensities between each
pair of alternatives, a set of fuzzy preference relations can be established [2]. Let
X={x1,xp,=,x,} be the set of alternatives under consideration, and
E={ej,ea, ...,es} be the set of decision makers, who are invited to evaluate the

alternatives. The fuzzy preference relations B =(bg))nxn (I=1,2,--s) can be

generated, where Osbfjl) <1 and bgf) +b;[l> =1. bgjl) indicates the degree that the
alternative x; is preferred to x;. Concretely speaking, the case bg) =0.5 indicates that
there is indifference between the alternatives x; and x;; bg) > (.5 indicates that the
alternative x; is preferred to x;, especially, bg) =1 means that the alternative x; is
absolutely preferred to x;; bl(-jl) < 0.5 indicates that the alternative x; is preferred to x;,

especially, bg) =0 means that the alternative x; is absolutely preferred to x;.
Although fuzzy preference relations can be used to represent the fuzzy and
uncertain preferences of the experts in the process of group decision making, they
still have some flaws due to the limitation of the fuzzy set itself. Since the mem-
bership function of a fuzzy set is only single-valued function, it can’t be used to
express the support and objection evidences simultaneously in many practical sit-
vations [3]. If not possessing a precise or sufficient level of knowledge of the
problem domain in cognition of things due to the complexity of the socio-economic
environment, people usually have some uncertainty in assigning the preference
evaluation values to the objects considered, which makes the judgments of cog-
nitive performance exhibit the characteristics of affirmation, negation and hesita-
tion. In 1983, Atanassov [4] proposed the concept of intuitionistic fuzzy set (IFS),
which is characterized by a membership function, a non-membership function and a
hesitancy function. Such type of fuzzy set extension is essential in representing the
imprecision and hesitation of the experts’ cognition [5]. Till now it has been applied
to many different fields, such as decision making [3, 6], fuzzy logics [7], fuzzy
cognitive maps [8], topological space [9], medical diagnosis [10] and pattern
recognition [11]. Given the underlying set X of objects, an IFS A is a set of ordered
triples, A= {(x,,(x),va(x))|x€X}, where p, and v4 are the membership and
non-membership functions mapping from X into [0, 1] with the condition
0<uy+va <1. For each x € X, u, (x) represents the degree of membership of the
element x in X to the set ACX, and v4(x) gives the non-membership degree. The
number 74(x) =1—py(x) —va(x) is called the hesitant degree or the intuitionistic
index of x to A. The FS do not leave any room for indeterminacy between each
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membership degree and its negation, but, in the realistic recognition of experts, such
“disagreement” and indeterminacy are very common and useful in describing their
opinions in decision making. The introduction of this ignorance statement, which is
represented as the hesitancy function in an IFS, is the most characteristic of the IFS
[12]. In many cases, when the experts are not able to express their preferences
accurately or they are unable or unwilling to discriminate explicitly the degree to
which alternative is better than others especially at the beginning of evaluation [13],
it is suitable to express their preference information in IFS and thus we can get a set
of intuitionistic fuzzy preference relations (IFPRs) [14].

As for group decision making with IFPRs, there are several problems raised, the
first one of which is how to judge whether the IFPRs are consistent or not. Con-
sistency of IFPRs requires that the preferences given by the experts yield no
contradiction. The lack of consistency for IFPRs may lead to inconsistent or
incorrect results for a group decision making problem. Thus it has turned out to be a
very important research topic in decision making with IFPRs, and many scholars
have paid attention to this topic [6, 12, 14-22]. In this chapter, we would give detail
review for the different kinds of consistency of IFPRs. As for those IFPRs without
consistency, how to repair them is also a problem which needs to be solved.
Generally, this can be done by two different kinds of methodologies, which are the
automatic methods and the interactive methods [21, 23].

In the next of this chapter, we would focus on another important issue, i.e., the
consensus of group decision making with IFPRs. The consistency checking process
of IFPRs can be seen as a collection of individual decision making problems and it
is easy to be done by extending the methodology of single expert decision making
problem. While the consensus of group decision making is much more complicated
because of the complexity introduced by the conflicting views of experts and the
varying significance of those views in the decision making process [24]. Some-
times, one expert may determine his/her preferences based on his/her perception,
but the others may not agree with it unless they are confident about the perception
of the former expert. The consensus is very important in group decision making.
Although we can yield a decision for a group decision making problem by
aggregating all individual IFPRs into an overall IFPR, the result derived by this type
of methodologies may be not much reasonable because some experts may not agree
with the final result derived by the weighted averaging methodologies. Consensus is
viewed as a pathway to a true group decision because it considers concerns and
conflicting ideas without hostility and fear [25]. Till now, there is litter research on
the consensus of group decision making with IFPRs. In the following of this
chapter, we would pay attention to this issue and give some basic definitions.

The rest of this chapter is organized as follows: Sect. 2 describes the group decision
making problem mathematically within the context of intuitionistic fuzzy circum-
stance. Section 3 reviews the different types of consistency for IFPRs, including the
additive consistency and multiplicative consistency for IFPRs. The definition of
acceptable consistent IFPR is also given in this Section. In Sect. 4, we present the
difficulties in reaching consensus in the process of group decision making with IFPRs.
Furthermore, we introduce a hard consensus measure to depict the consensus degree
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of the experts. The consensus reaching procedure is given for helping the experts to
reach group agreement. A numerical example is given to validate the procedure in
Sect. 5. Section 6 ends the chapter with some concluding remarks.

2 Group Decision Making with Intuitionistic Fuzzy
Preference Relations

A group decision making problem with intuitionistic fuzzy preference information
can be described as follows: Let X = {x;, x5, ---,x, } be the set of alternatives under
consideration, and E ={ej, ey, ..., es} be a set of experts, who are invited to evaluate
the alternatives and then provide their preferences through pairwise comparison. The
weight vector of the experts ¢/(I=1,2, ...,s) is A=(4, 4o, ...,/1S)T, where
A>0,1=1,2,...,s, and Z‘}zl Ar=1, which can be determined subjectively or
objectively according to the experts’ experience, judgment quality and related
knowledge. In general, they can be assigned equal importance if there is no evidence
to show significant differences among the decision makers or specific preference on
some decision makers [22]. In the existing literature, many techniques have been
developed for determining the decision makers’ weights (for more information, refer
to Refs. [26-28]). In this chapter, we assume that the weights of experts can always be
given.

In many cases, if the problem is very complicated or the experts can not be able
to give explicit preferences over alternatives because of vague information and
incomplete knowledge about the preference degrees between any pair of alterna-
tives, it is suitable to use the IFSs, which express the preference information from
three aspects: “preferred”, “not preferred”, and “indeterminate”, to represent their
opinions. Motivated by the idea of IFS, Szmit and Kacprzyk [29] firstly proposed
the concept of intuitionistic fuzzy preference relation (IFPR). Later, Xu [14] gave
the simple and straightforward notion and expression for it.

Definition 1 [14] An intuitionistic fuzzy preference relation (IFPR) on the set
X={x1,x2, ...,x,} is represented by a matrix R= (7i/)n><n’ where
7= < (x:, %), u(x:,%7), v(xi,x;), m(x;,x;)> forall i,j=1,2, -+, n. For convenience,
we let 7;= (,u,-j, vij,zrij) where yu; denotes the degree to which the object x; is
preferred to the object x;,v; indicates the degree to which the object x; is not
preferred to the object x;, and 7;; =1 —p; —v; is interpreted as an indeterminacy
degree or a hesitancy degree, with the conditions:

wip VG €10, 1], s+ v < 1wy = viis = vy = 0.5, my =1 —py; — vy, for all i,j=1,2, .. .,n

(1)



Consistency and Consensus of Intuitionistic ... 193

Xu [14] also proposed the concept of incomplete IFPR in which some of the
preference values are unknown. There are some algorithms to estimate the missing
values for the incomplete IFPR [30]. For convenience, in this paper we assume that
the experts can provide complete IFPRs.

Suppose that the expert e; provides his/her preference values for the alternative x;
against the alternative x; as ?Sjl) =( E;),vg)), (4,j=1,2,...,n1=1,2, ...,5) in
l(jl) denotes the degree to which the object x; is preferred to the object x;, vl(»jl)
indicates the degree to which the object x; is not preferred to the object x;, and

EjD =1- ,ufjo - vl(jl) is interpreted as an indeterminacy degree or a hesitancy degree,

subject  to ,ul(jo, v,(-jl) €0, 1],;4[(]-[) +vl(jl) < 1,,14,3-1> =V,(jl),ﬂ,(il) ZVS,'I) =0.5, for all
ij=1,2,...,n,1=1,2, ...,s. The IFPR R = (#j)) for the Ith expert can be

nXxn

which y

T

written as:

e T T
RUV=| 71 T o Ty (2)
i 7

For any a group decision making problem with s decision makers, we can obtain
s individual IFPRs R (1=1,2, ---,5) with the form of (2).

3 Consistency of Intuitionistic Fuzzy Preference Relations

Consistency is a very important issue for any kinds of preference relations, and the
lack of consistency in preference relations may lead to unreasonable conclusions.
There are several different forms of definition for the consistency of IFPRs, which
mainly involve two sorts: the additive consistency and the multiplicative consistency.

3.1 Additive Consistency

The concept of additive consistency of an IFPR was motivated by the additive
transitivity property proposed by Tanino [1] in 1984. It was proposed to represent
the relationship among different preferences. A preference relation R = (ry), ., is
with additive transitivity if it satisfies (r; —0.5)+ (rx —0.5) = (rgx —0.5) for all
i,j,k=1,2,---,n. This can be interpreted as the intensity of preference of the
alternative x; over x; should be equal to the sum of the intensities of preference of x;
over x; and that of x; over x; when (r; —0.5) is defined as the intensity of preference
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of x; over x;. Let w;(i=1,2, ---,n) be the underlying weights of the alternatives and
satisfies Z?:I w;=1,w; €[0,1]. Then, an additive consistent fuzzy preference
relation can be given as [15]: r,;,~=0.5(a)i +wj— 1), for all i,j=1,2,+,n

Based on the additive transitivity of a preference relation, different forms of
definitions for additive consistency of IFPRs have been proposed.

Xu’s additive consistency
For each IFS 7; = (u;,v;), the condition p;; <1—v(i,j=1,2,-,n) always holds.

Thus, the IFPR R= (Fij)uxn can be transformed into an interval-valued comple-

A

mentary judgment matrix R= (%) xn where
Fyp= g7 ) =y, 1L =vgl(ij=1,2, ...,n), and
?i;+r_ﬂ —rU +75 —1r 27 >0,7F >7; >0.5,i,j=1,2, ...,n. Based on the

above transformation, Xu [16] 1ntroduced the definition of addmve consistent IFPR.

Definition 2 [16] Let R = (F;), ., be an IFPR with #; = (uy, v;)(i,j=1,2, ..., n),

if there exists a vector w = (w1, W, ---,a),,) , such that
H; <0.5(w; —wj+1) <1 —vy,forall i,j=1,2, . (3)

where w; €[0,1](i=1,2, ...,n), and Y/, w;=1. Then, R is called an additive
consistent IFPR.

Gong et al.’s additive consistency

Gong et al. [17]’s definition is also based on the transformation between the IFPR
R= (%), % and its corresponding interval-valued complementary judgment matrix
R=(#;),,- As for an interval-valued complementary judgment matrix R = (#;), . ,»
Gong et al. claimed that it is additive consistent if there exists a priority vector
&= (1, @, -+, @) = ([0}, @], [@h, @4], -+, [0, 0!])", such that #;; = 0.5 + 0.2 log 3
w;/— Optw; =[0.5+0.2 log 3?1/~ @i 0.5+ 0.2 log 3@«/~%i] (j,j=1,2, ...,n),
and the priorities @; can be interpreted as the membership degree range of the
importance of the alternative x;. Hence, with the additive consistency condition of

interval-valued complementary judgment matrix R= (741) 5 n» @ new form of defini-
tion for additive consistent IFPR can be given as follows.

Definition 3 [17] Let R = (i) nx, be an IFPR with 7; = (/lij, vi)(i,j=1,2, ...,n),

if there exists a vector @=(dy,dy, - dy,)" = ([0}, @], [wh, 0], -, [0}, 0"])",

such that

p;;=0.5+0.21log 37/~ % y; =0.5+0.2log 37/~ % for all i,j=1,2, ...,n
4)

Then, R is called an additive consistent IFPR.
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Wang’s additive consistency

According to additive transitivity, Wang [18] introduced a definition of additive
consistent IFPR by directly employing the membership and nonmembership
degrees of IFSs.

Definition 4 [18] An IFPR R=(y),,, with Fj=(u;vy)(ij=1,2,...,n) is
called additive consistent if it satisfies the following additive transitivity:

Hik +ﬂjk +ﬂkl:/’tkj+ﬂ]l +//tl~k, for all i,j,k: 1,2, e n (5)

Let &= (@1, @, @) = (o, ), (h, ), -+, (0, @}))" be an underlying
intuitionistic fuzzy priority vector of an IFPR R=(¥#;),,,, Where @&;=(d,d))
(i=1,2,---,n) is an intuitionistic fuzzy value, which satisfies @/, @} €0, 1] and
@ +@!<1. @ and @ indicate the membership and non-membership degrees of
the alternative x; as per a fuzzy concept of “importance”, respectively. The nor-
malization of @ can be done via the following definition:

Definition 5 [18] An intuitionistic fuzzy weight vector @& = (&1, @2, -+, aN)n)T with
@; = (o, @), o, 0] €[0,1] and o} +w) <1 for i=1,2,---,n is said to be nor-
malized if it satisfies the following conditions:

n n
3 a)}‘ga)f,wi-‘+n—22 D a);,for alli=1,2,--,n (6)
j=Tj#i j=li#i

With the underlying normalized intuitionistic fuzzy priority vector @ = (&, @,

<+, @,)", an additive consistent IFPR R = (Fi)uxn can be established as:
S _ (0.5,0.5) if i=j
Fy= (kg vi) = { (0.5 +0.50],0.507 +0.50}) if i#j (7)

n n
where of, 0! €[0,1], 0} + @] <1, Y a)_;‘Sa)iV, and o +n-2> Y wj, for
j=Lj#i Jj=Lj#i
alli=1,2, -, n.

3.2 Multiplicative Consistency

The additive consistency is, to some extent, inappropriate in modeling consistency
due to that its consistency condition is sometimes in conflict with the [0, 1] scale
used for providing the preference values [31]. However, the multiplicative
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consistency does not have this limitation [32]. The main idea of multiplicative
consistency is based on the multiplicative transitivity of a preference relation
R=(rij), «,» Which is characterized as ry/fj = (ru/ri)- (rkj /rjk) for all i,j,k=
1,2, -+, n. This relationship can be interpreted as the ratio of the preference intensity
for the alternative x; to that of x; should be equal to the multiplication of the ratios of
preferences when using an intermediate alternative xi, in the case where rj/j;
indicates a ratio of the preference intensity for the alternative x; to that of x;. In other
words, x; is 7 /j; times as good as x;. Inspired by the multiplicative transitivity and
the relationship between the IFPR and its corresponding preference relations,
several distinct definitions of multiplicative consistency were proposed for IFPRs.

Xu’s multiplicative consistency of IFPR
Based on the transformation relationship between the IFPR R= (7;),,, and its
corresponding interval complementary judgment matrix R:(?U) Xu [16]

proposed the definition of multiplicative consistent IFPR.

nxn’

Definition 6 [24] Let R = (74) with 7 = (/4,] vi)(i,j=1,2, ...,n) be an IFPR,

if there exists a vector w = (w1, w», ~--,a)n)T, such that

nxn

w;

w; + w;j

Hyj < <l-vwgforalli=1,2,...,n—1; j=i+1,...,n (8)

where w; >0, (i=1,2, ...,n), Y, w;=1. Then, we call R a multiplicative consis-
i=1
tent IFPR.

Gong et al.’s multiplicative consistency of IFPR

Based on the transformation between an IFPR and its corresponding interval-valued
fuzzy preference relation, Gong et al. [19] introduced a definition of multiplicative
consistent IFPR.

Definition 7 [19] Let R= (;),, be an IFPR with 7 = (u;, vy) (i.j= 1,2, ..., n), i

nXxn
there exists a vector @& = (@, @y, -, )" = ([0}, @], [}, @], -+, [0}, @*])", such
that
py=— vy= — forallij=1,2, ...,n (9)

> Vij
Wi+ wjy Wji + Wiy

Then, R is called a multiplicative consistent IFPR.
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Xu et al.’s multiplicative consistency of IFPR

Xu et al. [30] proposed another definition of multiplicative consistent IFPR, which
was based on the membership and non-membership degrees of IFSs, shown as
follows:

Definition 8 [30] An IFPR R=(ry)
multiplicative consistent if

ﬂ,:{o’ (Mir i) €1(0, 1), (1,0)}

with rij:(uij,v,-j)(i,jzl,2, .., s

nxn

Ml ; Joralli<k<j,  (10)
i T (=) (=g Otherwise

Vik Vij : Jforall i<k <j. 11
m, otherwise J (11)

v,:{o’ (vie> vij) €4(0,1), (1,0)}

Liao and Xu’s multiplicative consistency of IFPR

Liao and Xu [20] pointed out that the definition of Xu et al. [30] was not reasonable
in some cases because with the above consistency conditions, the relationship
Hij " ik Mg = Mg - Hyg + ;. (For all 4, j,k=1,2,---,n) can not be derived any more.
Then, they introduced a general definition of multiplicative consistent IFPR, shown
as follows:

Definition 9 [20] An IFPR R= (Fy), ., With F;= (u;, v;) is called multiplicative
consistent if the following multiplicative transitivity is satisfied:

Hij * Hie * Mg = Vij * Vi - Vi, for all i, j,k=1,2, -+, n. (12)

Liao and Xu [20] further clarified that the conditions in Definition 8§ satisfy (12),
which implies the consistency measured by the conditions given in Definition 8 is a
special case of multiplicative consistency defined as Definition 9 for an IFPR.
Hence, in general, Definition 8 is not sufficient and suitable to measure the mul-
tiplicative consistency of an IFPR.

With the underlying normalized intuitionistic fuzzy priority weight vector
~k
@ = (@1, @2, ~~,a~)n)T, a multiplicative consistent IFPR R = (7 can be estab-

ij)n Xn
lished as [20]:

i (0.5,0.5) if i=j
7= (s vig) = { 20/ 20, (13)

i = e
(m‘i‘ —(1);'+(u/‘.‘—a)/?'+2 > of —(u}'+a);.‘ —wj‘.’+2) lf ]

n n
where o, 0] €[0,1], 0} + @} <1, ¥ of <o}, ando+n-2> ¥ o, for
j=Lj#i j=1,j#i
alli=1,2,-,n.
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3.3 Acceptable Consistency of IFPR

Due to the complexity of the problem and the limited knowledge of the experts, the
experts often determine some inconsistent IFPR. Perfect consistent IFPR is
somehow too strict for the experts to construct especially when the number of
objects is very large. Since in practical cases, it is impossible to get the consistent
IFPRs, Liao and Xu [22] introduced the concept of acceptable consistent IFPR.
Definition 10 [22] Let R=(F;),,, be an IFPR with F;=(u;, vy,7)(i.j=
1,2,---,n). We call R an acceptable consistent IFPR, if

dR.R) <, (14)

where d(R, R*) is the distance measure between the given IFPR R and its corre-

sponding underlying consistent IFPR R*, which can be calculated by

LT (

1<i<j<n

+

V,’j—Vf +’ﬂij—ﬂ';~), (15)

.
Hij = Hij ij

and ¢ is the consistency threshold. The corresponding underlying consistent IFPR
R can be yielded by (7) or (13).

As for those IFPRs of inconsistency, there are many procedures to improve the
inconsistent IFPRs into acceptable consistent IFPRs (For more details, please refer
to [21, 23]).

If all the IFPRs are of acceptable consistency, we can aggregate these IFPRs into
an overall IFPR and then derive the ranking of the alternatives. Liao and Xu [22]
proposed a simple intuitionistic fuzzy weighted geometric (SIFWG) operator to

fuse the IFPRs. For s IFPRs R" = (7“)) (I=1,2,,5), their fused IFPR
nxn

;
R=(F§),x, With 7; = (fiz, v, 7;;) by the SIFWG operator is also an IFPR, where

nxn

T (N s T (WO m iy h 5 il
fig=T1 (wy' ) 2vi= 1 (v ) ~@y=1—fy—vpij=12,....n.  (16)
=1 =1

Liao and Xu [22] further proved that if all the individual IFPRs are of acceptable
multiplicative consistency, then their fused IFPR by the SIFWG operator is also of
acceptable consistency. This is a good property in group decision making with
IFPRs because with this property there is no need to check the consistency of the
fused IFPR and we can use it to derive the decision making result directly.
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4 Consensus of Group Decision Making with IFPRs

4.1 Difficulties in Reaching Consensus

With all the above mentioned different types of consistency and the corresponding
inconsistency repairing methods, we can get a set of consistent or acceptable
consistent IFPRs. This is the precondition of deriving a reasonable solution for a
group decision making problem. The group decision making problem is very
complicated owing to the complexity introduced by the conflicting opinions of the
experts. As to a group decision making problem with IFPRs, how to find a final
solution which is accepted by all the experts is a great challenge. The consensus is
very important in any group decision making problems. It can be defined as “a
decision that has been reached when most members of the team agree on a clear
option and the few who oppose it think they have had a reasonable opportunity to
influence that choice. All team members agree to support the decision.” [25]
Consensus is a pathway to a true group decision and it can guarantee that the final
result been supported by all the group members despite their different opinions.

However, to find such a consensus result is very difficult because of some
inherent differences in value systems, flexibility of members, etc. Generally, if all
experts are wise and rational, they should agree with each other. But, in reality,
disagreement among the experts is inevitable. In fact, the disagreement is just the
valuation of group decision making.

In the process of group decision making, the target is to find a solution which is
accepted by all the experts. Initially, the experts should be with no consensus, and
thus they need to communicate with each other and modify their judgments. That is
to say, the consensus reaching process should be an iterative procedure and it
should be converge finally. In addition, a group decision making problem with too
many times of iteration does not make sense because it wastes too many resources
and is not worthy to be investigated by the experts.

4.2 Consensus Measures for Group Decision Making
with IFPRs

The consensus reaching process refers to how to obtain the maximum degree of
consensus or agreement between the set of experts [33]. To do so, we should first
know how to measure the consensus degree among the experts. Although there is
litter research focused on the consensus of IFPRs [34], we still can found many
approaches to model consensus process in group decision making with other
preference relations, such as fuzzy preference relation [35], incomplete fuzzy
preference relation [37], and linguistic preference relation [36]. These consensus
measures involve two parts: hard consensus measure and soft consensus measure.
The hard consensus measure uses a number in the interval [0, 1] to represent the
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consensus degree of the experts, while the soft consensus measure employs a
linguistic label such as “most” to describe the truth of a statement such as “most
experts agree on almost all the alternatives.” As to group decision making with
IFPRs, Szmidt and Kacprzyk [34] used an interval-valued measure of distance to
represent the consensus of experts. They took the membership degrees and the
hesitance degrees as two separate matrices and then used these two matrices to
derive the upper bound and lower bound of the interval-valued consensus measure.
Their work can be seen as the first attempt to measure the consensus of group
decision with IFPRs. However, they did not include any procedures to reaching
consensus. In the following, we would define a hard consensus measure of experts
whose opinions are represented by IFPRs.

For a set of IFPRs R = (?fjl)) (I=1,2,-,s) given by s independent experts
nxn

e(l=1,2, ...,s), since it is known that if all individual IFPRs are of acceptable
consistency, their fused IFPRs R= (7;),,, with the SIFWG operator is also of
acceptable consistency, then, motivated by the distance measure of two IFPRs given
as (15), we can introduce a hard consensus measure of the experts with IFPRs.

Definition 11 For a set of IFPRs §(1)=(7’(1)) (I=1,2,---,5) with
nXxn

ij
rfjl) = (,ug>, vf]-l),ﬂ,(-;))(l: 1,2, --,s) given by s independent experts ¢;(I=1,2, ...,s),

whose weight vector is 1= (4;,4s, -~-,/13)T with 0<4, <1, Yj_, 4=1, then the
consensus of the /th expert is defined as

h_ - [
ﬂ,(j) ~Hij ”,(“)

+ ij

+

v vy ) (17)

G=1-—1 % ((

(n— 1)(n_2)15i<j<n

5_ (3 P I O SR A ) A
where R=(7y),,,., with 7= (1, vyj» ). iy = 1 (ﬂij) =11 (Vij> 7=
=1 =1
1 — ji;; — v;; is the overall IFPR derived by the SIFWG operator.

4.3 Consensus Reaching Procedure with IFPRs

With the above consensus measure, the consensus reaching procedure for helping
the experts, whose preferences are given as IFPRs, to reach consensus can be given
as follows:

o Establish s IFPRs R = (?Ejl)) (I=1,2,-,s) for s independent experts
nXxXn
e(l=1,2,...,s);
o Check the consistency of each IFPR: for those IFPRs of unacceptable consis-

tency, repair them until acceptable;
e Compute the consensus degree of each experts;
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e Determine the minimum consensus bound of the experts, 7. For C; <7, ask the
expert ¢; to modify the IFPR. A suggestion for the expert ¢; to modify the IFPR
is to change the preferences by the following formulas:

/ ¢ _
wg" = () - () (18)

, ¢ _
W= () ) (19)

D (20)

N

T l(j) =1—p; ij

e Articulate the decision via aggregating all the IFPRs whose consensus degrees
are greater than the threshold 7 into an overall IFPR.

S Numerical Example

The following example concerning the selection of the global suppliers (adapted
from [22]) can be used to illustrate the consensus reaching procedure for group
decision making with IFPRs.

Example The current globalized market trend identifies the necessity of the
establishment of long term business relationship with competitive global suppliers
spread around the world. This can lower the total cost of supply chain; lower
the inventory of enterprises; enhance information sharing of enterprises; improve
the interaction of enterprises and obtain more competitive advantages for enter-
prises. Thus, how to select different unfamiliar international suppliers according to
the broad evaluation is very cr