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To Professor Krassimir T. Atanassov,
a great researcher, scholar,
friend and human being



Preface

Professor Krassimir Todorov Atanassov is a Bulgarian mathematician with out-
standing contributions in the areas of fuzzy logic and fuzzy mathematics, uncer-
tainty analysis, mathematical modelling, and decision making, as well as some
areas of number theory, notably the arithmetical functions and Fibonacci objects.

In 1982, Professor Atanassov proposed a novel mathematical formalism for the
description, simulation and control of parallel processes, named by him the Gen-
eralized Nets which represents a generalization of the well-known concept of the
Petri Nets and all their hitherto existing extensions and modifications. During the
course of years, Professor Atanassov has developed the main theoretical founda-
tions and analytic tools for the Generalized Nets, and—in collaboration with many
specialists from various fields of science and practice—has stimulated and
developed applications of this mathematical apparatus in various areas of science,
business and technology, notably artificial intelligence, medicine, telecommunica-
tion, transportation, chemical and petrochemical industries, and many more. He
is one of the very few people in Bulgaria who holds two different Doctor of
Sciences degrees, both from the Bulgarian Academy of Sciences; his first D.Sc. in
Technical Sciences was granted to him in 1997 for his research in the area of
Generalized Nets.

Another significant field of Professor Atanassov’s research interests is the theory
of fuzzy sets proposed in 1965 by Professor Lotfi A. Zadeh, who later originated the
idea of soft computing. In 1983, Professor Atanassov proposed an essential and far
reaching extension of the concept of a fuzzy sets, called an intuitionistic fuzzy set, in
which to the degree of membership (belongingness) of an element to a (fuzzy) set,
which is from the unit interval, there is assigned an additional degree that of
non-membership (non-belongingness) of an element to a (intuitionistic fuzzy) set,
which is also from the unit interval. These two degrees, of membership and
non-membership, sum up to a number from the unit interval, not necessarily to 1.
The complement of the sum of the degrees of membership and non-membership to 1
constitutes a third degree, that of uncertainty. This opportunity of rendering account
of the uncertainty makes the concept that Atanassov pioneered a particularly pow-
erful and flexible instrument in the area of uncertainty analysis and decision making.

vii



It is now a globally recognized scientific field on its own which relates to other fields
such as the theory of fuzzy sets, fuzzy logic, mathematical logic, notably
multi-valued logic, etc. His second D.Sc. in Mathematical Sciences was awarded in
2000 for his research on intuitionistic fuzzy sets.

For his contributions in the field, in 2013, the International Fuzzy Sets Asso-
ciation (IFSA) elected Professor Atanassov as the IFSA Fellow; and he is the first
Bulgarian working in Bulgaria, and the second Bulgarian altogether, who has
received this recognition. In 2013, Professor Atanassov was awarded the
‘Pythagoras’ Prize of the Bulgarian Ministry of Education and Science for estab-
lished researcher in the field of engineering sciences. In the same year, he was also
elected the Corresponding Member of the Bulgarian Academy of Sciences.

Professor Atanassov has authored and co-authored 30 monographs, more than
1,000 publications in international journals and conferences, and has served as a
supervisor of more than 20 Ph.D. students. His research is now being followed and
developed in multiple countries around the world by various research groups
including his own numerous Ph.D. students.

This volume is a small token of appreciation for Professor Atanassov on his 60th
anniversary for his great scientific achievement, multifaceted support of research
activities and researchers from all over the world, and his constant enthusiasm and
readiness to undertake new scientific challenges. We also greatly appreciate his
great human qualities and friendship.

We wish to thank all the contributors to this volume for their excellent scientific
works which involve many novel research results, insightful and inspiring analyses,
as well as relevant applications. We wish to thank Dr. Thomas Ditzinger,
Dr. Leontina Di Cecco and Mr. Holger Schaepe from Soringer for their help and
support to prepare this volume.

June 2015 Plamen Angelov
Sotir Sotirov
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Perspectives in Intuitionistic Fuzzy Set



Fuzzy, Intuitionistic Fuzzy, What Next?

Vladik Kreinovich and Bui Cong Cuong

Abstract In the 1980s, Krassimir Atanassov proposed an important generaliza-

tion of fuzzy sets, fuzzy logic, and fuzzy techniques—intuitionistic fuzzy approach,

which provides a more accurate description of expert knowledge. In this paper, we

describe a natural way how the main ideas behind the intuitionistic fuzzy approach

can be expanded even further, towards an even more accurate description of experts’

knowledge.

1 Fuzzy Logic: A Brief Reminder

The main objective of this paper is to describe the main ideas behind intuitionistic

fuzzy logic and to describe how these ideas can be expanded. To do that, we need to

recall the main motivations and the main ideas behind the original fuzzy logic; for

details, see, e.g., [6, 10, 11].

It is important to describe and process expert knowledge. In many practical sit-

uations, from medicine to driving to military planning to decisions on whether to

accept a paper for publication, we rely on expert opinions.

In every field, there are a few top experts. For example, in every medical area,

there are top specialists in this area. In the ideal world, every patient in need of a

surgery would be operated by the world’s top surgeon, and every person would get

an advice from the world’s top financial advisor on how to invest his or her savings.

Since it is not possible for a few top surgeons to perform all the operations and for

top financial advisors to advice everyone, it is desirable to design computer-based

system which would incorporate the advice of the top experts—and thus help other
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4 V. Kreinovich and B.C. Cuong

experts provide a better quality advice. Such computer-based systems are often called

expert systems.
Experts can describe their knowledge in terms of statements S1, S2, . . . (e.g., “if the

P/E ratio of a stock goes above a certain threshold t0, it is recommended to sell it”).

In some situations, when we have a query Q—e.g., whether to sell a given stock—

we can use one of the expert rules. In many other cases, however, none of the expert

rules can lead directly to the desired answer, but a proper combination of the rules

can help. For example, in medical expert systems, we rarely have a rule directly

linking patient’s symptoms with the appropriate treatment, but we have rules which

link symptoms with diseases, and we have rules which link diseases with treatments.

By combining the corresponding rules, we can get an answer to the query. The part of

an expert system which, given a query, tries to deduce the corresponding statement

or its negation from the expert rules, is known as an inference engine.

Uncertainty of expert knowledge. In using expert knowledge, we need to take

into account that experts are usually not 100 % confident that their statements are

universally valid. For example, if a patient sneezes and coughs, a medical doctor will

conclude that it is most probably cold, flu, or allergy, but the doctor also understands

that there is a possibility of some rarer situations with similar symptoms.

A natural way to gauge the experts’ uncertainty is to ask the experts to mark their

uncertainty on a scale from 0 to some integer n (e.g., on a scale from 0 to 5), so that

0 corresponds to no certainty at all, and n correspond to the absolute certainty. If

an expert marks m on a scale from 0 to n, then we claim that the expert’s degree of

certainty in his/her statement is the ratio m∕n.

How to process experts’ uncertainty: towards a precise formulation of the
problem. Since the experts are not 100 % sure in their statements, we are therefore

not sure about the expert system’s conclusion either. It is therefore important to make

sure that the expert system not only provides a “yes” or “no” (or more complex)

answer to a given query, but that the user will also get a degree with which we are

confident in this answer.

For example, if a medical expert system recommends a surgery, and the resulting

confidence is 99 %, then it is probably a good idea to undergo this surgery. However,

if the resulting degree of confidence that this answer is correct is about 50 %, maybe

it is better to perform some additional tests so that we may become clearer on the

diagnosis.

It is thus important, once we have derived a statement Q from the expert knowl-

edge base {S1, S2,…}, to provide the user with the degree d(Q) that the resulting

statement Q is correct. In some cases, there is only one chain of reasoning leading

to the conclusion Q, and this chain involves statements Si1 ,… , Sik . In this case, all

these statements need to be true for Q to be true: if one of the statements in the chain

is false, then the whole chain of reasoning collapses. In these cases, Q is true if the

statement Si1 & … & Sik is true. Thus, to gauge our degree of belief in Q, we must

be able to estimate the degree of belief in a statement Si1 & … & Sik .
In general, we may have several derivations of Q—e.g., we may have several

different observations supporting the same diagnosis. In this case, Q is deduced if
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at least one of the corresponding derivation chains is valid, i.e., if a propositional

formula of the following type holds:

(
Si1 & … & Sik

)
∨
(
Si′1 & … & Si′

k′

)
∨…

Approximate estimation is needed. In other words, we would like to estimate the

degree of belief in different propositional combinations of the original statements Si.
Of course, if we only know the expert’s degrees of belief d(S1) and d(S2) of differ-

ent statements S1 and S2, we cannot uniquely determine the expert’s degree of cer-

tainty d(S1 & S2). For example, if S1 means that a fair coin falls heads, and S2 = S1,

then it is reasonable to take d(S1) = d(S2) = 0.5 and, thus, d(S1 & S2) = d(S1) = 0.5.

On the other hand, if we take S2 = ¬S1, then still d(S1) = d(S2) = 0.5 but now

d(S1 & S2) = 0.

Since we cannot uniquely determine the degrees of certainty in all possible propo-

sitional combinations based only on the degrees d(Si), ideally, we should also find the

degrees of certainty in all these propositional combinations. The problem is that for

N original statements, we need >2N different degrees to describe, e.g., the degrees of

certainty in different combinations Si1 & … Sin (>2N because we have 2N − 1 pos-

sible non-empty subsets {i1,… , in} ⊆ {1,… ,N}).

Even for middle-size N ≈ 100, the value 2N is astronomically high. It is not possi-

ble to elicit all these degrees of certainty from the expert. Thus, no matter how much

information we elicit, we will always have propositional combinations for which we

do not know the corresponding degrees, combinations for which these degrees must

be estimated.

How to estimate the corresponding degrees: fuzzy-motivated idea of
negation-, “and”- and “or”-operations. A general propositional combination is

obtained from the original statement by using the logical connectives ¬ (“not”), &

(“and”), ∨ (“or”). Since we do not know the degrees of all composite statements, we

inevitable face the following problem:

∙ for some statements A and B, we know the expert’s degrees of certainty d(A) and

d(B) in these statements;

∙ we need to estimate the expert’s degree of certainty in the statements ¬A, A&B
and/or A ∨ B.

Negation operations. In this situation, to come up with the desired estimate d(¬A),
the only information that we can use consists of a single number d(A). Let us denote

the estimate for d(¬A) corresponding to the given value d(A) by f¬(d(A)). The cor-

responding function is usually known as an negation operation.

How can we choose this negation operation? Let us first describe some reasonable

properties that this function should satisfy. First, we can take into account that ¬(¬A)
usually means the same as A. By applying the negation operation f¬ to the estimated

degree of certainty d(¬A) ≈ f¬(d(A)), we can estimate the expert’s degree of certainty

in ¬(¬A)) as f¬(f¬(d(A)). It is reasonable to require that this estimate coincide with
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the original value d(A): f¬(f¬(d(A)) = d(A). This equality must hold for all possible

values a = d(A) ∈ [0, 1], so we must have f¬(f¬(a)) = a for all a. In mathematical

terms, this means that the function f¬(a) is an involution.

When A is absolutely false, and d(A) = 0, then ¬A should be absolutely true,

i.e., we should have f&(0) = 1. Similarly, if A is absolute true and d(A) = 1, then

¬A should be absolutely false, i.e., we should have f&(1) = 0. In general, the more

we believe in A, the less we should believe in ¬A, so the function f&(a) must be

decreasing.

The most widely used negation operation is f&(a) = 1 − a, it satisfies all these

properties; there are also other negation operations which are sometimes used in

fuzzy systems.

“And”-operations. To come up with the desired estimate d(A&B), the only infor-

mation that we can use consists of two numbers d(A) and d(B). Let us denote the esti-

mate for d(A&B) corresponding to the given values d(A) and d(B) by f&(d(A), d(B)).
The corresponding function is usually known as an “and”-operation, or t-norm.

How can we choose the “and”-operation? Let us first describe some reason-

able properties that the corresponding function f&(a, b) should satisfy. First, since

A&B means the same as B&A, it is reasonable to require that the two estimates

f&(d(A), d(B)) and f&(d(B), d(A)) corresponding to different orders of A and B should

be the same. This must be true for all possible values of a = d(A) and b = d(B); this

means that we must have f&(a, b) = f&(b, a) for all real values a, b ∈ [0, 1]. In other

words, an “and”-operation must be commutative.
Similarly, A&(B&C) means the same as (A&B)&C. If we follow the first

expression, then, to estimate the corresponding degree of certainty, we first esti-

mate d(A&B) as f&(d(A), d(B)) and then use the “and”-operation to combine this

estimate and the degree of certainty d(C) into an estimate f&(f&(d(A), d(B)), d(C)).
Alternatively, if we follow the second expression, we end up with the estimate

f&(d(A), f&(d(B), d(C)). It is reasonable to require that, since A&(B&C) ≡
(A&B)&C, these two estimates should coincide, i.e., that the “and”-operation be

associative.

The expert’s degree of confidence d(A&B) that both A and B are true should

not exceed the degree of confidence that A is true. Thus, we should have d(A&B) ≤
d(A). It is therefore reasonable to require that f&(a, b) ≤ a—and thus, that

f&(0, a) = 0 for all a.

It is also reasonable to require that when d(A) = 1 (i.e., when we are 100 % certain

in A), then we should have A&B equivalent to B, so f&(1, b) = b for all b. If we

increase our degree of confidence in A and/or B, this should not lead to a decrease in

our confidence in A&B; this means that the “and”-operation should be monotonic:

a ≤ a′ and b ≤ b′ implies f&(a, b) ≤ f&(a′, b′). Finally, small changes in d(A) and

d(B) should not lead to a drastic change in d(A&B), so the “and”-operation must be

continuous.

“Or”-operations. Similarly, if we denote by f∨(d(A), d(B)) the estimate for d(A ∨
B), then the corresponding “or”-operation (also known, for historical reasons, as
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t-conorm) must be commutative, associative, monotonic, continuous, and satisfy the

properties f∨(0, a) = a and f∨(1, a) = 1 for all a.

Selecting different propositional operations: an empirical task. There are many

different negation, “and”-, and “or”-operations which satisfy these properties; for

each application area, we select the operations which best describe the reasoning of

experts in this area, i.e., for which the resulting estimates for the expert’s degrees

of confidence in composite statement are the closest to the estimates for d(¬A),
d(A&B), and d(A ∨ B) produced by the experts.

This idea was first implemented for the world’s first expert system MYCIN—

Stanford’s expert system for diagnosing rare blood diseases; see, e.g., [3]. The

authors of MYCIN tried different possible “and” and “or-operations and found the

one which was the best fit for the actual reasoning of medical experts. It is worth

mentioning that when they tried to apply their expert system to a different applica-

tion area—geophysics—it turned out that the medical-generated “and”- and “or”-

operations did not lead to good results, different operations had to be used.

Common misunderstanding. The reason why in fuzzy techniques (and in expert

systems in general), we estimate the degree of confidence d(A&B) by applying an

“and”-operation to d(A) and d(B) is not because we are under an illusion that the

expert’s degree of confidence in A&B is uniquely determined by his/her degrees

of confidence in A and B. Everyone understands that there is no uniqueness here,

the above example of a coin falling heads or tails is clear. What the “and”-operation

produces is an approximation to the actual expert’s degree of belief in A&B.

We do not use this approximation because we are under some erroneous belief

that “and”- and “or”-operations are truth-functional, but simply because we cannot

realistically elicit all the degrees of confidence in all the propositional combinations

from all the experts, and we therefore need to estimate the unknown degrees of cer-

tainty based on the known ones.

2 From Fuzzy to Intuitionistic Fuzzy

How can we improve the traditional fuzzy approach? One of the main ideas

behind the traditional fuzzy approach is that, since we cannot elicit the expert’s

degrees of confidence in all possible propositional combinations of their original

statements S1, . . . , Sn, we:

∙ extract the degrees of confidence d(Si) in these statements, and then

∙ use negation, “and”-, and “or”-operations to estimate the expert’s degrees of belief

in different propositional combinations.

To make these estimates more accurate, a natural idea is to extract, from the expert,

not just his/her degrees of confidence in the original statements, but also degrees

of confidence in some propositional combinations of these statements—at least the

simplest ones.
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This idea naturally leads to intuitionistic fuzzy logic. Which propositional com-

binations are the simplest? The more original statements are involved in a combina-

tion, the more propositional connectives are used, the more complex the statements.

From this viewpoint, the simplest propositional combinations are the ones which

has the smallest number of the original statements—one—combined by the smallest

possible number of possible connectives: one. There are three possible connectives:

negation, “and”, and “or”. “And” and “or” requires at least two original statements

to combine (since Si & Si and Si ∨ Si mean the same as Si). So, the only way to have

a single original statement is by using negation. Thus, the simplest possible propo-

sitional combinations are negations ¬Si.
Thus, to come up with a more adequate description of expert’s degree of cer-

tainty, a natural next step is not only to elicit the expert’s degrees of confidence

d(Si) in their original statements, but also their degrees of confidence d(¬Si) in their

negations. In other words, to describe the expert’s certainty about his/her statement

Si, instead of a single number d(Si), we now use a pair of numbers d(Si) and d(¬Si).
This is, in a nutshell, the main idea behind Atanassov’s intuitionistic fuzzy logic; see,

e.g., [1, 2] (see also [4]).

This idea makes perfect sense. Intuitively, the above idea makes perfect sense. In

contrast to the traditional fuzzy logic, this idea enables us to distinguish between two

different situations:

∙ a situation when we know nothing about a statement S, and

∙ a situation in which we have some arguments in favor of S and equally strong

arguments in favor of the opposite statement ¬S.

In both situations, we have equally strong arguments in favor of S and in favor of ¬S,

so it is reasonable to conclude that d(S) = d(¬S). In the traditional fuzzy logic, when

we assume that d(¬S) = 1 − d(S), this implies that in both situations, we have d(S) =
d(¬S) = 0.5. In the intuitionistic fuzzy logic, we describe the situation in which we

have no arguments in favor by S by taking d(S) = 0, and similarly d(¬S) = 0. Thus,

this situation is described differently from the second one when d(S) = d(¬S) > 0.

3 Beyond Intuitionistic Fuzzy

Beyond intuitionistic fuzzy logic: a natural next step. To get an even more ade-

quate description of expert’s knowledge, we need to also elicit the expert’s degree of

confidence in some more complex composite statements.

As we have mentioned, the fewer statements are used in a propositional combina-

tion, and the fewer propositional connectives are used, the simpler the combination.

If we use one statement S, then the only possible propositional combination is ¬S –

which is handled in the intuitionistic fuzzy approach. Thus, if we want to go beyond

intuitionistic fuzzy, we need to consider propositional combinations of two original

statements S and S′. Among such combinations, the simplest case if when we use a
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single propositional connective. Thus, the simplest such combinations are combina-

tions of the type S& S′ and S ∨ S′.
So, we arrive at the following natural description of the next step: in addition to

eliciting, from the experts, their degrees of belief in the original statements Si, we

also elicit their degrees of belief in composite statements Si & Sj and Si ∨ Sj. Since

we have already included negation, it thus makes sense to also consider the expert’s

degrees of belief combinations of the type ¬Si & Sj, ¬Si &¬Sj, ¬Si ∨ Sj, and ¬Si ∨
¬Sj.
The idea in more detail. To describe an imprecise (“fuzzy”) property P (e.g.,

“small”), in the traditional fuzzy logic, to each possible value x of the corresponding

quantity, we assign the degree 𝜇P(x)
def
= d(P(x)) to which this quantity satisfies the

property P. The corresponding function 𝜇P(x) from real values to the interval [0, 1]
is known as the membership function, or, alternatively, as the fuzzy set.

In the intuitionistic fuzzy logic, to describe a property P, we need to assign, for

each x, two degrees:

∙ the degree d(P(x)) ∈ [0, 1] that the quantity x satisfies the property P, and

∙ the degree d(¬P(x)) ∈ [0, 1] that the quantity x does not satisfy the property P.

This pair of functions forms an intuitionistic fuzzy set.
In the new approach, to describe an imprecise property P, we need to also assign,

to every pair of values x and x′:

∙ the degree d(P(x)&P(x′)) ∈ [0, 1] that both quantities x and x′ satisfy the property

P;

∙ the degree d(P(x) ∨ P(x′)) ∈ [0, 1] that either the quantity x or the quantity x′ sat-

isfies the property P;

∙ the degree d(¬P(x)&P(x′)) ∈ [0, 1] that the quantity x does not satisfy the prop-

erty P while the quantity x′ satisfies P;

∙ the degree d(¬P(x)&¬P(x′)) ∈ [0, 1] that neither x nor x′ satisfy the property P;

∙ the degree d(¬P(x) ∨ P(x′)) ∈ [0, 1] that either x does not satisfy P or x′ satisfies

P; and

∙ the degree d(¬P(x) ∨ ¬P(x′)) ∈ [0, 1] that either x or x′ does not satisfy the prop-

erty P.

The resulting collection of functions form the corresponding generalization of the

notion of a fuzzy set.

An interesting difference emerges when we want to consider two possible proper-

ties P and P′
. In both traditional fuzzy approach and intuitionistic fuzzy approach, all

we can do is describe these two properties one by one. In the new approach, we also

need to describe the relation between the two properties. For example, for each x and

x′, we can now describe the degree d(P(x)&P(x′)) to which x satisfies the property

P and x′ satisfies the property P′
.

Comment. The idea of describing such degrees was first formulated—in the proba-

bilistic context—in [5]; see also [9].
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This ideas also makes perfect sense. The above idea enables us to describe features

of the properties like “small” which are difficult to describe otherwise. For example,

while different experts may disagree on which values are small and which are not

small, all the experts agree that if x is small and x′ is smaller than x, then x′ is small

as well. In other words, if x′ < x, then it is not reasonable to believe that x is small

but the smaller value x′ is not small. In other words, for P = “small” and x′ < x, the

corresponding degree of belief d(P(x)&¬P(x′)) should be equal to 0.

This possibility is in contrast to the traditional fuzzy logic, where from d(P(x)) >
0 and d(¬P(x′)) = 1 − P(x′) > 0, we would conclude that d(P(x)&¬P(x′)) ≈
f&(d(P(x)), d(¬P(x′))). For most frequently used t-norms such as f&(a, b) = min(a, b)
and f&(a, b) = a ⋅ b, from d(P(x)) > 0 and d(¬P(x′)) > 0, we deduce that the result-

ing estimate for d(P(x)&¬P(x′)) is also positive—and not equal to 0 as common

sense tells us it should.

We can go further. To get an even more adequate representation of expert knowl-

edge, we can also elicit expert;s degrees of belief in composite statements which

combine three or more original statements Si.

4 From Type-1 to Type-2 Fuzzy

Need for type-2: brief reminder. We are interested in situations in which an expert

is not 100 % certain about, e.g., the value of the corresponding quantity. In this case,

we use, e.g., estimation on a scale to gauge the expert’s degree of belief in differ-

ent statements. The traditional fuzzy approach assumes that an expert can describe

his/her degree of belief by a single number.

In reality, of course, the expert is uncertain about his/her degree of certainty—just

like the same expert is uncertain about the actual quantity. In this case, the expert’s

degree of certainty d(P(x)) is no longer a single number—it is, in general, a fuzzy set.

This construction, in which, to each x, we assign a fuzzy number d(P(x)) is known

as a type-2 fuzzy set; see, e.g., [7, 8].

Need to combine intuitionistic and type-2 fuzzy sets. It is known that, in many

practical situations, the use of type-2 fuzzy sets leads to a more adequate description

of expert knowledge. Therefore, to achieve even more adequacy, it is desirable to

combine the advantages of type-2 and intuitionistic fuzzy set.

At first glance, such a combination is straightforward. At first glance, it looks like

the above combination is straightforward: all the above arguments did not depend on

the degree d(Si) being numbers; the exact same ideas— including the possibility to

go beyond the intuitionistic fuzzy sets—can be repeated for the case when the values

d(Si) are themselves fuzzy numbers—or, alternatively, intuitionistic fuzzy numbers.

However, as we will see, the relation between intuitionistic and type-2 fuzzy num-

ber is more complicated.



Fuzzy, Intuitionistic Fuzzy, What Next? 11

Observation: some intuitionistic fuzzy numbers can be naturally viewed as a
particular case of type-2 fuzzy numbers. To explain this unexpected relation, let

us start with the simplest possible extension of the classical two-valued logic, in

which each statement is either true or false. The more possible truth values we add

to the original two, the more complex the resulting logic. Thus, the simplest possible

non-classical logic is obtained if we add, to the two classical truth values “true”

and “false”, the smallest possible number of additional truth values—one. A natural

interpretation of this new truth value is “uncertain”. For simplicity, let us denote the

corresponding truth values by T (“true”), F (“false”), and U (“uncertain”).

To fully describe the resulting 3-valued logic, we need to supplement the known

truth tables for logical operations involving T and F with operations including the

“uncertain” degree U.

For negation, this means adding ¬U. For each truth value X, the meaning of ¬X
is straightforward: if our degree of belief d(S) in a statement S is equal to X, then our

degree of belief in its negation ¬S should be equal to ¬X. For “uncertain”, the truth

value d(S) = U means that we are not sure whether the statement S is true or false.

In this case, we are equally uncertain about whether the negation ¬S is true or false;

thus, d(¬S) = U. In other words, we have ¬U = U.

Similarly, if we are uncertain about S, but we know that S′ is false, then the con-

junction S& S′ is also false; thus, U&F = F. On the other hand, if we know that

S′ is true (or if we are uncertain about S′), then, depending on whether S is actually

true or false, it is possible that the conjunction S& S′ is true and it is also possible

that this conjunction is false. Thus, we have U&T = U&U = U.

If we are uncertain about S, but we know that S′ is true, then the disjunction S ∨ S′
is also true; thus, U ∨ T = T . On the other hand, if we know that S′ is false (or if we

are uncertain about S′), then, depending on whether S is actually true or false, it is

possible that the disjunction S ∨ S′ is true and it is also possible that this disjunction

is false. Thus, we have U ∨ F = U ∨ U = U.

In the spirit of type-2 logic, instead of selecting one of the three truth values T , F,

or U, we can assign degrees of certainty d(T) ≥ 0, d(F) ≥ 0, and d(U) ≥ 0 to these

three values. One possible way to assign such degrees is to distribute the same fixed

amount of degree (e.g., 1) between these three options; in this case, we always have

d(T) + d(F) + d(U) = 1. Because of this relation, the triple (d(T), d(F), d(U)) can be

uniquely described by two values d(T) ≥ 0 and d(F) ≥ 0 for which d(T) + d(F) ≤ 1;

one can easily see that this is exactly the definition of an intuitionistic fuzzy degree

[1, 2].

Moreover, we will show that even some operations on intuitionostic fuzzy degrees

can be thus interpreted. Indeed, if we know the triples (d(T), d(F), d(U)) and (d′(T),
d′(F), d′(U)) describing the expert’s degree of belief in statements S and S′, then

the triple (d′′(T), d′′(F), d′′(U)) corresponding to the composite statements S′′ = ¬S,

S′′ = S& S′, and S′′ = S ∨ S′ can be obtained by using Zadeh’s extension principle.

Let us describe this in detail.
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In the 3-valued logic, S′′ = ¬S is true if and only if S is false, and S′′ = ¬S is false

if and only if S is true. Thus, d′′(T) = d(F) and d′′(F) = d(T)). This is in line with

the usual definition of negation in the intuitionistic fuzzy logic, as f¬((d(T), d(F))) =
(d(F), d(T)).

In the 3-valued logic, S′′ = S& S′ is true if and only if S is true and S′ is true:

S′′ is T ⇔ ((S is T)& (S′ is T)).

We know the degree d(T) to which S is true, and we know the degree d′(T) to which S′
is true. Thus, by applying an appropriate “and”-operation (t-norm), we can conclude

estimate the desired degree d′′(T) that S′′ is true as f&(d(T), d(T ′)). In particular, for

a frequently used “and”-operation f&(a, b) = a ⋅ b, we get d′′(T) = d(T) ⋅ d′(T).
Similarly, S′′ = S& S′ is false if and only if:

∙ either S is false and S′ can take any possible value,

∙ or S′ is false and S can take any possible value.

Thus:

S′′ is F ⇔ (((S is F)& (S′ is T)) ∨ ((S is F)& (S′ is U))∨

((S is F)& (S′ is F)) ∨ ((S is T)& (S′ is F)) ∨ ((S is U)& (S′ is F))).

By using the same “and”-operation and a frequently used “or”-operation f∨(a, b) =
min(a + b, 1), we get the estimate

d′′(F) = min(d(F) ⋅ d′(T) + d(F) ⋅ d′(U) + d(F) ⋅ d′(F) + d(T) ⋅ d′(F) + d(U) ⋅ d′(U), 1).

Substituting d(U) = 1 − d(T) − d(F) into this formula, we conclude that d′′(F) =
d(F) + d′(F) − d(F) ⋅ d′(F). This is in line with the usual definition of an “and”-

operation in the intuitionistic fuzzy case as

f&((d(T), d(F)), (d′(T), d′(F))) = (f&(d(T), d′(T)), f∨(d(F), d′(F))),

where f∨(a, b)
def
= 1 − f&(1 − a, 1 − b)). For f&(a, b) = a ⋅ b, we thus get f∨(a, b) =

a + b − a ⋅ b, and therefore, d′′(T) = f&(d(T), d′(T)) = d(T) ⋅ d(T ′)) and d′′(F) =
d(F) + d′(F) − d(F) ⋅ d′(F), exactly as in the above type-2 formulas.

For S′′ = S ∨ S′, we similarly get

S′′ is F ⇔ ((S is F)& (S′ is F)),
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and thus, d′′(F) = d(F) ⋅ d′(F). Also, we get

S′′ is T ⇔ (((S is T)& (S′ is T)) ∨ ((S is T)& (S′ is U))∨

((S is T)& (S′ is F)) ∨ ((S is F)& (S′ is T)) ∨ ((S is U)& (S′ is T))),

and hence, the degree d′′(T) is equal to

min(d(T) ⋅ d′(T) + d(T) ⋅ d′(U) + d(T) ⋅ d′(F) + d(U) ⋅ d′(T) + d(F) ⋅ d′(T), 1) =

d(T) + d′(T) − d(T) ⋅ d′(T).

This is also in perfect accordance with the intuitionistic fuzzy operation f∨((d(T),
d(F)), (d′(T), d′(F))) = (f∨(d(T), d′(T)), f&(d(F), d′(F))).
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Intuitionistic Fuzzy Logic and Provisional
Acceptance of Scientific Theories:
A Tribute to Krassimir Atanassov
on the Occasion of His Sixtieth Birthday

A.G. Shannon

Abstract This essay attempts to outline some essential features of Atanassov’s
intuitionistic fuzzy logic within the framework of the philosophy of science. In
particular, it aims to highlight the brilliance of Atanassov’s conceptual and sym-
bolic originality. It also illustrates the danger of the univocal caricaturing of sci-
entific terminology.

1 Introduction

It is a pleasure to pay tribute to my friend and colleague on the occasion of his 60th
birthday. We have been research collaborators for almost thirty years, and he has
been a generous host on my twenty visits to his beloved Bulgaria over many years.
He was a pioneer in the now burgeoning field of computational intelligence with its
use of both traditional fuzzy logic [1] and intuitionistic fuzzy logic [2] in a variety
of applications. He has also been an internationally renowned creator of new ideas
and an insightful solver of problems for almost forty years, particularly in discrete
mathematics [3]. These include his work on index matrices [4] and generalized nets
[5]. The latter are a major advance on the first form of neural network [6].

This essay is more discursive and expository, rather than technical, particularly
in relation to empirical sciences [7] in order to demonstrate the range and scope of
Krassimir’s fundamental ideas beyond fuzziness in the development of soft com-
puting alone. “Fuzziness” itself is open to misinterpretation. It goes far beyond
Russell’s notion of vagueness [8] and his study of symbols (which have themselves
been an important part of Atanassov’s research as we shall show). This leads to a
brief discussion on the equivocal misuse of scientific concepts: analogical carica-
tures make a weak argument weaker, not stronger!
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2 Science and Pseudoscience

Media reports of recent empirical challenges to the accepted understanding of the
nature and speed of light have demonstrated the inadequate critical understanding
of the experimental sciences in the popular mind, at a time when that same popular
mind is being asked to make important bioethical and technological decisions
vicariously through their representatives in parliamentary democracies. Recent
public debates to the contrary science is not democratic!

Most science, even mathematics, is conducted in a mode of ‘conventionalism’

[9], which involves provisional acceptance of hypotheses—the ‘probabilism’ hinted
at by Aquinas [10]. It is a purpose of this note to examine the foundations of this
provisional acceptance within the context of intuitionistic fuzzy logic (IFL) [11].

The simplest explanation which fits the facts tends to be the prevailing confir-
mation in science. Scientists, being human, can be prone to disregard facts which do
not fit this prevailing confirmation if their source is from authority less prestigious
than the recognized authorities in their field. Argument from authority in science
has historically hampered its progress. Scientific progress is usually marked by
‘confirmation’ [12] or ‘refutation’ [13], although in practice the working scientist
operates within a framework which contains a collection of hypotheses where there
can be disagreement between empirical data and individual hypotheses without
destroying the theory as a whole [14].

At this working stage of provisional acceptance, somewhere between refutation
and confirmation, the empirical support of the theory prevails over any alleged
counter-example. Such was Einstein’s attitude when he said that “only after a more
diverse body of observations becomes available will it be possible to decide with
confidence whether the systematic deviations are due to a not yet recognized source
of errors or to the circumstances that the foundations of the theory of relativity do
not correspond to the facts” [15].

Public intellectuals like Dawkins and Singer, for instance, at times like to use
their eminence and expertise in one field to assert authority in another, even seeking
though are seeking the truth. Thus I felt in Dawkins’ earlier writings that he was
almost drifting towards St Anselm’s ontological proof for the existence of God. The
god that Dawkins and his disciples are now trying to demolish though is the
anthropomorphic god of the fundamentalists. His misdirected zeal ironically
appeals to anti-theist fundamentalists. Singer too, while more consistently logical,
fails to see in his own thinking the faults he attacks in the thinking of others [16].
Not for them the humility inherent in the title of James Franklin’s recent book [17],
but rather the arrogance of Atkins [18]: “… science has never encountered a barrier,
and the only grounds for supposing that reductionism will fail are pessimism on the
part of scientists and fear in the minds of the religious”. That Dawkins has tried to
use mathematical tools in his argumentation and Singer to dismiss them has
motivated these comments.
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3 Evidence

It is not surprising that moral relativists disparage any “search for certainty”. For
them the only absolute is that there is no absolute. “It is as if to seek certainty
denoted a lack of character, and were a sign of psychological or intellectual
immaturity” [19]. Dawkins makes much of his view that “evidence”, as he defines
it, is missing from religious belief. There are, it is true, some truths, such as the
mystery of the Trinity which are inaccessible to reason in terms of existence and
content. This does not make it unreasonable to believe them. It depends on whose
authority we believe them. In any case a God we could fully understand would not
be God—to extend St Anselm [20]. Yet scientists themselves believe some things
on the basis of their nature rather than observation alone. Thus we believe it is in the
nature of humans to be mortal. While nearly every textbook of introductory logic
has the statement “all humans are mortal”, we know that all humans who have died
must ipso facto be mortal, but we do not know it scientifically that all humans are
mortal, because, as far as we know, most humans who have ever lived are alive
today. We know that we are mortal from the study of natures, which is something
we do in mathematics.

Yet for Dawkins the only evidence is scientific evidence, which itself is a
metaphysical opinion, not a scientific statement. Moreover, Dawkins has no evi-
dence that there is no evidence. Even the more persuasive Hitchens reduces his
evidence to a series of anecdotes [21]. While some might say that these rebuttals are
only playing with words, there are more serious underlying scientific issue relevant
to the context of this paper.

These have been articulated in a series of papers by McCaughan who distin-
guishes extrinsic and intrinsic causes to show that even within science confusion of
efficient and formality can lead to the domination of physics by mathematics to
control all explanation, despite the fact that mathematics can do no more than
predict [22]. Statistics too can disguise the existence of goal directed forces, but
“goal directed forces eliminate blind chance. In following David Hume, scientists
have removed goals or ends from science. This has not eliminated them from nature
but left them unrecognised. Blind faith in blind chance just leads to intellectual
blindness” [23]. We can see this in the way some evolutionary and generic algo-
rithms are used analogously [24].

4 Genetic Algorithms

Genetic Algorithms (GAs) are an adaptive heuristic search algorithm based on
analogies with the evolutionary ideas of natural selection and genetics [25].
Dawkins’ dichotomy is that we can have God or evolution but not both [23: 215]
and so his goal is to use these algorithms to prove that we cannot have God. The
basic techniques of GAs are designed to simulate processes in natural systems
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necessary for evolution, especially those that seem to follow the principles first laid
down by Charles Darwin of “survival of the fittest”. That GAs use evolutionary
terms can be a trap for the unwary.

GAs are implemented in a computer simulation in which a population of abstract
representations of candidate solutions to an optimization problem evolves toward
better solutions [26]. The “evolution” usually starts from a population of randomly
generated individuals and happens in generations. In each generation, the fitness of
every individual in the population is evaluated, multiple individuals are stochasti-
cally selected from the current population (based on their fitness), and modified
(recombined and possibly randomly mutated) to form a new population. The new
population is then used in the next iteration of the algorithm. Commonly, the
algorithm terminates when either a maximum number of generations has been
produced, or a satisfactory fitness (optimal) level has been reached for the popu-
lation. Once the genetic representation and the fitness (optimal) function are
defined, GAs proceed to initialize a population of solutions randomly, then improve
it through repetitive application of selection operators.

For instance, a Generalized Net model (which is essentially a directed graph with
choices at the nodes) [27] when combined with IFL (which provides for
non-membership as well as membership choices) [28], simultaneously evaluates
several “fitness” functions and then ranks the individuals according to their fitness
to choose the best fitness function in relation to what is being optimized. GAs
require only information concerning the quality of the solution produced by each
parameter set (objective function value information). The selection operator could
be, for instance, a roulette wheel [29]!

Thus, a GA is an algorithm which has a beginning and which is goal directed in
order to eliminate blind chance, but Dawkins, for example, has a goal as the end of
his evolutionary algorithm but also, in effect, wants to have no beginning. Hawkins
wants to have a beginning, but like Dawkins uses science to sidestep God [30].

5 Intuition

Like Dawkins, Peter Singer steps across into mathematics when he says: “…can we
really know anything through intuition? The defenders of ethical intuitionism
argued that there was a parallel in the way we know or could immediately grasp the
basic truths of mathematics: that one plus one equals two, for instance. This
argument suffered a blow when it was shown that the self evidence of the basic
truths of mathematics could be explained in a different and more parsimonious way,
by seeing mathematics as a system of tautologies, the basic elements of which are
true by virtue of the meanings of the terms used. On this view, now widely, if not
universally, accepted, no special intuition is required to establish that one plus one
equals two- this is a logical truth, true by virtue of the meanings given to the
integers ‘one’ and ‘two’, as well as ‘plus’ and ‘equals’, So the idea that intuition
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provides some substantive kind of knowledge of right and wrong lost its only
analogue” [31].

The broad and very loose statement denying intuitionism as a valid form of
knowledge in mathematics is difficult to understand and very contradictory, even
without the existence of intuitionism in mathematics [32]. Bertrand Russell a
hundred years ago attempted to reduce mathematics to ‘tautologies’ (logical truths)
but it proved impossible.

Working mathematicians simply do not deny intuition. For example, the stan-
dard presentation of the foundations of mathematics includes the “axiom of infin-
ity”, which says “There exists an infinite set”. You just have to take it (by intuition)
or leave it. In no way is it a logical truth and no-one the least bit informed maintains
it is [33]. Moreover, mathematicians do research by intuitive insights rather than by
“symbol shoving” or even logic, though they justify their conclusions with logic
acceptable to their peers [34].

Likewise, mathematical notation is more than a form of words; it is a tool of
thought [35]. For instance, the relationship between powers and subscripts within
the umbral calculus reveals ideas latent in the original mathematical language [36].
Here too Atanassov’s symbolism has proved to be a powerful tool of thought even
if we were only to judge it by the literature it has spawned. To see this we shall
touch on some features of IFL.

6 Intuitionistic Fuzzy Logic

We shall now briefly outline the salient features of Intuitionistic fuzzy logic
(IFL) by comparison with classical symbolic logic. IFL in many ways is a gener-
alisation of the mathematical intuitionism of Brouwer [32] and the fuzzy sets of
Zadeh [37].

In classical terms, to each proposition p, we assign a truth value denoted by 1
(truth) or 0 (falsity). In IFL we assign a truth value, μ(p) ε[0,1], for the degree of
truth, and a falsity value, v(p) ε[0,1] [4]:

0≤ μðpÞ+ vðpÞ≤ 1

This assignment is provided by an evaluation function V, which is defined over a
set of propositions S,

V : S→ ½0, 1�× ½0, 1�

such that

VðpÞ= < μðpÞ, vðpÞ>
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is an ordered pair. If the values V(p) and V(q) of the propositions p and q are
known, then V can be extended:

Vð¬pÞ= < vðpÞ, μðpÞ>
‵Vðp∧ qÞ= <minðμðpÞ, μðqÞÞ, maxðvðpÞ, vðqÞÞ> ,

Vðp∨ qÞ= <maxðμðpÞ, μðqÞÞ, minðvðpÞ, vðqÞÞ> ,

Vðp⊃qÞ= <maxðvðpÞ, μðqÞÞ, minðμðpÞ, vðqÞÞ> ;

and, for the propositions p, qεS:

¬VðpÞ=Vð¬pÞ,
VðpÞ∩VðqÞ=Vðp∧ qÞ,
VðpÞ∪VðqÞ=Vðp∨ qÞ,
VðpÞ→VðqÞ=Vðp⊃qÞ.

A tautology and an intuitionistic fuzzy tautology (IFT) are then defined respec-
tively by

“A is a tautology” if, and only if, VðAÞ= <1, 0> ;
“A is an IFT” if, and only if, VðAÞ= < a, b> → a≥ b.

Provisional acceptance of a scientific theory means that an individual coun-
terexample of empirical evidence can be related to an individual hypothesis within a
theoretical framework in order to modify some of the individual constituents of the
theory and thus accommodate the disagreement. This can be written as

(a) T1 ≡ ðA⊃CÞ∧¬Cð Þ⊃¬A,
(b) T2 ≡ ðA∧B⊃CÞ∧¬C ∧Bð Þ⊃¬A,
(c) T3 ≡ ðA∧B⊃CÞ∧¬Cð Þ⊃ ¬A∨¬Bð Þ,
for every three propositional forms A, B and C. This leads us to

Theorem T1, T2,T3 are IFTs.

Proof In the interests of brevity, we shall consider (b) only, as it is typical of all
three parts.

V T2ð Þ= < μA, vA > ∧ < μB, vB >ð Þ→ < μC, vC >½ �∧ < vC , μC > ∧ < μB, vB > → < vA, μA >

= <max vA, vB, vCð Þ, min μA, μB, μCð Þ> ∧ <min vC, μBð Þ, max μC, vBð Þ>½ �→ < vA, μA >

= <minðvC , μBÞ, maxðvA, vB, μCÞ, maxðμA, μB, vCÞ> → < vA, μA >

= <max μc, vB, vA, min μA, μB, vCð Þ½ �, min vC , μB, μA, max vA, vB, μCð Þ½ �> ,

□
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and

max μC, vB, vA, min μA, μB, vCð Þ½ �−min vC, μB, μA, max vA, vB, μCð Þ½ �
≥min μA, μB, vCð Þ−min vC, μB, μAð Þ
=0. Therefore, T is an IFT.

7 Concluding Comments

The existence of an additional working modus operandi between refutation and
confirmation can clarify the way the empirical sciences work. Moreover, the
schematic expression of this provisional acceptance of a theory invites an estima-
tion of the truth values in any particular case so that the following type of analysis
can be made. Suppose that for the propositional forms A and B:

VðAÞ≤V ðBÞ if, and only if, ðμA ≤ μBÞ∧ ðvA ≤ vBÞ,
VðAÞ>VðBÞ if, and only if, ðμA > μBÞ∧ ðvA < vBÞ.

If we assume that μA, vA, the intuitionistic fuzzy values of A are fixed, then from
the form of T2 we see that T2 is more reliable as the intuitionistic fuzzy truth of
B increases, that is, the bigger μC and the smaller vc are.

The truth value of T2 can also increase if any of

•

VðAÞ>VðBÞð Þ∨ VðAÞ>Vð¬CÞð Þ, for fixed μA;

•

VðAÞ<VðBÞð Þ∨ VðBÞ<Vð¬CÞð Þ, for fixed vA;

•

VðAÞ<Vð¬CÞð Þ∨ VðBÞ<Vð¬CÞð Þ, for fixed μB.

On the other hand, T2 will not be changed if any of

•

VðAÞ≤VðBÞð Þ∨ VðAÞ≤Vð¬CÞð Þ, for fixed μA;

•

ðVðAÞ≥VðBÞÞ∨ ðVðBÞ≤Vð¬CÞÞ, for fixed vA;

•

VðAÞ≥Vð¬CÞð Þ∨ VðBÞ≥Vð¬CÞð Þ, for fixed μB.
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Nevertheless, science should be no more exempt from moral evaluation than any
other human activity, especially as it lacks the intellectual certitude of metaphysics
and mathematics [38]. The logical analysis of ‘provisional acceptance’ will not
make scientists more logical, but it is important that both scientists and the general
public are aware of the nature and scope, including limitations, of science and
especially the role of models within science. This is a realm open to research in
psychology and philosophical anthropology, namely to relate the conceptual con-
nection between intuition and perception as the link between the internal and
external senses and the intellect. In the terminology of evolution, it is a missing link
in our knowledge of heuristics.
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Part II
Intuitionistic Fuzzy Set



On the Atanassov Concept of Fuzziness
and One of Its Modification

Beloslav Riečan

Abstract The family of intuitionistic fuzzy sets [1–3] is compared with the family

 of interval valued fuzzy sets. Since the spaces are isomorphic, from the measure

theory on the measure theory on can be deduced. In the paper they are mentioned

the state representation [7, 8, 44, 50], the inclusion—exclusion property [6, 22, 23]

and the existence of invariant state [45].

1 Introduction

Any subset A of a given space 𝛺 can be identified with its characteristic function

𝜒A ∶ 𝛺 → {0, 1}

where

𝜒A(𝜔) = 1,

if 𝜔 ∈ A,

𝜒A(𝜔) = 0,

if 𝜔 ∉ A. From the mathematical point of view a fuzzy set is a natural generalization

of 𝜒A (see [60, 61]). It is a function

𝜑A ∶ 𝛺 → [0, 1].
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Evidently any set (i.e. two-valued function on 𝛺,𝜒A → {0, 1}) is a special case of

a fuzzy set (multi-valued function), 𝜑A ∶ 𝛺 → [0, 1]. There are many possibilities

for characterizations of operations with sets (union A ∪ B and intersection A ∩ B).

We shall use so called Lukasiewicz characterization [54]:

𝜒A∪B = (𝜒A + 𝜒B) ∧ 1,

𝜒A∩B = (𝜒A + 𝜒B − 1) ∨ 0.

(Here (f ∨ g)(𝜔) = max(f (𝜔), g(𝜔)), (f ∧ g)(𝜔) = min(f (𝜔), g(𝜔)).) Hence if 𝜑A,

𝜑B ∶ 𝛺 → [0, 1] are fuzzy sets, then the union (disjunction 𝜑A or 𝜑B of correspond-

ing assertions) can be defined by the formula

𝜑A ⊕𝜑B = (𝜑A + 𝜑B − 1) ∧ 1,

the intersection (conjunction 𝜑A and 𝜑B of corresponding assertions) can be defined

by the formula

𝜑A ⊙ 𝜑B = (𝜑A + 𝜑B − 1) ∨ 0.

In the paper we shall work with the Atanassov generalization of the notion of fuzzy

set so-called IF-set (see [2, 3]), what is a pair

A = (𝜇A, 𝜈A) ∶ 𝛺 → [0, 1] × [0, 1]

of fuzzy sets 𝜇A, 𝜈A ∶ 𝛺 → [0, 1], where

𝜇A + 𝜇A ≤ 1.

Evidently a fuzzy set 𝜑A ∶ 𝛺 → [0, 1] can be considered as an IF-set, where

𝜇A = 𝜑A ∶ 𝛺 → [0, 1], 𝜈A = 1 − 𝜑A ∶ 𝛺 → [0, 1].

Here we have

𝜇A + 𝜈A = 1,

while generally it can be 𝜇A(𝜔) + 𝜈A(𝜔) < 1 for some 𝜔 ∈ 𝛺. Geometrically an IF-

set can be regarded as a function A ∶ 𝛺 → 𝛥 to the triangle

𝛥 = {(u, v) ∈ R2 ∶ 0 ≤ u, 0 ≤ v, u + v ≤ 1}.

Fuzzy set can be considered as a mapping 𝜑A ∶ 𝛺 → D to the segment

D = {(u, v) ∈ R2; u + v = 1, 0 ≤ u ≤ 1}
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and the classical set as a mapping 𝜓 ∶ 𝛺 → D0 from 𝛺 to two-point set

D0 = {(0, 1), (1, 0)}.

In the next definition we again use the Lukasiewicz operations.

Definition 1 By an IF subset of a set 𝛺 a pair A = (𝜇A, 𝜈A) of functions

𝜇A ∶ 𝛺 → [0, 1], 𝜈A;𝛺 → [0, 1]

is considered such that

𝜇A + 𝜈A ≤ 1.

We call 𝜇A the membership function, 𝜈A the non membership function and

A ≤ B ⟺ 𝜇A ≤ 𝜇B, 𝜈A ≥ 𝜈B.

If A = (𝜇A, 𝜈A),B = (𝜇B, 𝜈B) are two IF-sets, then we define

A⊕ B = ((𝜇A + 𝜇B) ∧ 1, (𝜈A + 𝜈B − 1) ∨ 0),

A⊙ B = ((𝜇A + 𝜇B − 1) ∨ 0, (𝜈A + 𝜈B) ∧ 1),

¬A = (1 − 𝜇A, 1 − 𝜈A).

Denote by  a family of IF sets such that

A,B ∈  ⟹ A⊕ B ∈  ,A⊙ B ∈  ,¬A ∈  .

Example 1 Let  be the set of all fuzzy subsets of a set 𝛺. If f ∶ 𝛺 → [0, 1] then

we define

A = (f , 1 − f ),

i.e. 𝜈A = 1 − 𝜇A.

Example 2 Let (𝛺,) be a measurable space [53],  a 𝜎-algebra,  the family of all

pairs such that 𝜇A ∶ 𝛺 → [0, 1], 𝜈A ∶ 𝛺 → [0, 1] are measurable. Then  is closed

under the operations ⊕,⊙,¬.

Example 3 Let (𝛺,  ) be a topological space, the family of all pairs such that 𝜇A ∶
𝛺 → [0, 1], 𝜈A ∶ 𝛺 → [0, 1] are continuous. Then  is closed under the operations

⊕,⊙,¬.
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Of course, in any case A⊕ B,A⊙ B,¬A are IF-sets, if A,B are IF-sets. E.g.

A⊕ B = ((𝜇A + 𝜇B) ∧ 1, (𝜈A + 𝜈B − 1) ∨ 0),

hence

(𝜇A + 𝜇B) ∧ 1 + (𝜈A + 𝜈B − 1) ∨ 0

= ((𝜇A + 𝜇B) ∧ 1 + (𝜈A + 𝜈B − 1)) ∨ ((𝜇A + 𝜇B) ∧ 1)

= ((𝜇A + 𝜇B + 𝜈A + 𝜈B − 1) ∧ (1 + 𝜈A + 𝜈B − 1)) ∨ ((𝜇A + 𝜇B) ∧ 1)

≤ ((1 + 1 − 1) ∧ (𝜈A + 𝜈B)) ∨ ((𝜇A + 𝜇B) ∧ 1)

= (1 ∧ (𝜈A + 𝜈B)) ∨ ((𝜇A + 𝜇B) ∧ 1)

≤ 1 ∨ 1 = 1.

2 If Versus IV

If we consider two IF-sets A,B, then B is better than A, if the membership function

𝜇A is larger then the membership function function 𝜇B the non-membership function

𝜇A is smaller then the non-membership function function 𝜇B.

It is a philosophical background of IF-theory based on some problems inspired

by applications [9, 10, 18, 24, 38, 57].

Of course, in the vector space R2
, the usual ordering is given by

(x1, y1) ≤ (x2, y2) ⟺ (x1 ≤ x2, y1 ≤ y2).

It leads to so-called interval valued fuzzy sets.

Definition 2 An interval valued fuzzy subset of 𝛺 is a mapping ̄A = (𝜇̄A, 𝜈̄A) such

that 𝜇̄A ∶ 𝛺 → [0, 1], 𝜈̄A ∶ 𝛺 → [0, 1] and

0 ≤ 𝜇̄A ≤ 𝜈̄A ≤ 1.

If ̄A = (𝜇̄A, 𝜈̄A), ̄B = (𝜇̄B, 𝜈̄B) are two IV-sets, then

̄A ⪯ ̄B ⟺ (𝜇̄A ≤ 𝜇̄B, 𝜈̄A ≤ 𝜈̄B).

If we denote

𝛥 = {(u, v) ∈ R2 ∶ 0 ≤ u, 0 ≤ v, u + v ≤ 1},

̄
𝛥 = {(u, v) ∈ R2 ∶ 0 ≤ u ≤ v ≤ 1},
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then an IF-set is a mapping

A ∶ 𝛺 → 𝛥,

and an IV-set is a mapping

̄A ∶ 𝛺 → ̄
𝛥.

Evidently 𝛥 and ̄
𝛥 are equivalent, e.g.

𝜑 ∶ 𝛥 → ̄
𝛥, 𝜑(u, v) = (u, 1 − v)

realize the equivalence. Denote by  the family of all IF-subsets of 𝛺, and by  the

family of all IV-subsets of 𝛺. If A ∈  ,A = (𝜇A, 𝜈A), and ̄A = 𝜑◦A = (𝜇A, 1 − 𝜈A) =
(𝜇̄A, 𝜈̄A), then ̄A = (𝜇̄A, 𝜈̄A) ∈  . Moreover, if

̄A = 𝜑̄(A) = 𝜑◦A,

then

𝜑̄ ∶  → 

is an equivalence and

A ≤ B ⟺ ̄A ⪯ ̄B.

Indeed, A ≤ B means 𝜇A ≤ 𝜇B, 𝜈A ≥ 𝜈B, hence 1 − 𝜈A ≤ 1 − 𝜈B, and

̄A = (𝜇A, 1 − 𝜈A) ⪯ ̄B = (𝜇B, 1 − 𝜈B)

in  . Recall that in 

(0, 1) ≤ A ≤ (1, 0)

for any A ∈  . On the other hand

(0, 0) ⪯ ̄A ⪯ (1, 1)

for any ̄A ∈  .

In the measure theory the monotone convergence is important [4, 24, 36, 41, 56,

58, 59]. Then in 

An ↗ A ⟺ 𝜇An
↗ 𝜇A, 𝜈An

↘ 𝜈A.

On the other hand in 

̄An ↗ ̄A ⟺ 𝜇An
↗ 𝜇A, 𝜈An

↗ 𝜈A.

We have seen that  and  are isomorphic as lattices. It is natural to define

Lukasziewicz operations on  by such a way that  and  to be isomorph by the

help of the isomorphism 𝜑̄. So
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𝜑̄(A⊕ B) = 𝜑̄((𝜇A + 𝜇B) ∧ 1, (𝜈A + 𝜈B − 1) ∨ 0)

= ((𝜇A + 𝜇B) ∧ 1, 1 − (𝜈A + 𝜈B − 1) ∨ 0)

= ((𝜇A + 𝜇B) ∧ 1, (1 − 𝜈A + 1 − 𝜈B) ∧ 1)

= ((𝜇̄A + 𝜇̄B) ∧ 1, (𝜈̄A + 𝜈̄B) ∧ 1),

𝜑̄(A⊙ B) = 𝜑̄((𝜇A + 𝜇B − 1) ∨ 0, (𝜈A + 𝜈B) ∧ 1)

= ((𝜇A + 𝜇B − 1) ∨ 0, 1 − (𝜈A + 𝜈B) ∧ 1)

= ((𝜇A + 𝜇B − 1) ∨ 0, (1 − 𝜈A + 1 − 𝜈B − 1) ∨ 0|

= ((𝜇̄A + 𝜇̄B − 1) ∨ 0, (𝜈̄A + 𝜈̄B − 1) ∨ 0),

hence we shall define the Lukasziewicz operations on  by the following way.

Definition 3 Let ̄A = (𝜇̄A, 𝜈̄A) ∈  , ̄B = (𝜇̄B, 𝜈̄B) ∈  . Then

̄A ̄
⊕
̄B + ((𝜇̄A + 𝜇̄B) ∧ 1, (𝜈̄A + 𝜈̄B) ∧ 1),

̄A ̄
⊙
̄B = ((𝜇̄A + 𝜇̄B − 1) ∨ 0, (𝜈̄A + 𝜈̄B − 1) ∨ 0).

Evidently the following proposition holds.

Proposition 1 If A,B ∈  , then

𝜑̄(A⊕ B) = 𝜑̄(A) ̄⊕𝜑̄(B),

𝜑̄(A⊙ B) = 𝜑̄(A) ̄⊙𝜑̄(B).

Remark 1 If for real numbers a, b ∈ R we denote a⊕ b = (a + b) ∧ 1, a⊙ b = (a +
b − 1) ∨ 0, then for A,B ∈  we have

A⊕ B = (𝜇A ⊕ 𝜇B, 𝜈A ⊙ 𝜈B),

A⊙ B = (𝜇A ⊙ 𝜇B, 𝜈A ⊕ 𝜈B),

and for ̄A, ̄B ∈  we obtain

̄A ̄
⊕
̄B = (𝜇̄A ̄

⊕𝜇̄B, 𝜈̄A ̄
⊕𝜈̄B),

̄A ̄
⊙
̄B = (𝜇̄A ̄⊙𝜇̄B, 𝜈̄A ̄⊙𝜈̄B).
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Similarly states on  and  resp. can be defined in a convenience [11, 13–15, 21,

31, 34, 40, 42, 43]. Of course we shall consider only functions measurable with

respect to a 𝜎-algebra  of subsets of 𝛺.

Definition 4 A mapping m ∶  → [0, 1] is called a state, if the following properties

are satisfied:

(1.1) m((0, 1)) = 0,m((1, 0)) = 1,
(1.2) A⊙ B = (0, 1) ⟹ m(A⊕ B) = m(A) + m(B),
(1.3) An ↗ A ⟹ m(An) ↗ m(A).

Definition 5 A mapping m̄ ∶  → [0, 1] is called a state, if the following properties

are satisfied:

(2.1) m̄((0, 0)) = 0, m̄((1, 1)) = 1,
(2.2) ̄A ̄

⊙
̄B = (0, 1) ⟹ m̄( ̄A ̄

⊕
̄B) = m̄( ̄A) + m̄(B),

(2.3) ̄An ↗ ̄A ⟹ m̄( ̄An) ↗ m̄( ̄A).

Theorem 1 Let m̄ ∶  → [0, 1] be a state. Define m ∶  → [0, 1] by the formula

m(A) = m̄(𝜑̄(A).

Then m is a state.

Proof Prove first (1.1). By (2.1)

m((1, 0)) = m̄(𝜑̄(1, 0)) = m̄((1, 1) = 1,

m((0, 1)) = m̄(𝜑̄((0, 1)) = m̄((0, 0)) = 0.

Further let A,B ∈  ,A⊙ B = (0, 1). Then

𝜑̄(A) ̄⊙𝜑̄(B) = 𝜑̄(A⊙ B) = 𝜑̄((0, 1)) = (0, 0).

Therefore by (2.2)

m̄(𝜑̄(A) ̄⊕𝜑̄(B)) = m̄(𝜑̄(A)) + m̄(𝜑̄(B))

= m(A) + m(B).

Of course,

m̄(𝜑̄(A) ̄⊕𝜑̄(B)) = m̄(𝜑̄(A⊕ B)) = m(A⊕ B),

hence (1.2) is proved.

Finally, let An ∈  ,A ∈  ,An ↗ A. Then

𝜑̄(An) ∈  , 𝜑̄(A) ∈  , 𝜑̄(An) ↗ 𝜑̄(A),
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and therefore by (2.2)

m(An) = m̄(𝜑̄(An) ↗ m̄(𝜑̄(A) = m(A),

hence (1.3) holds. □

Theorem 2 Let m ∶  → [0, 1] be a state. Define m̄ ∶  → [0, 1] by the formula

m̄( ̄A) = m(𝜑̄−1( ̄A)).

Then m̄ is a state.

Proof By (1.1) and the definition

m̄((0, 0)) = m(𝜑̄−1(0, 0)) = m((0, 1)) = 0,

m̄((1, 1)) = m(𝜑̄−1(1, 1)) = m((1, 0)) = 1,

hence (2.1) holds.

Now let ̄A, ̄B ∈  , ̄A ̄
⊙
̄B = (0, 1). Then A⊙ B = 𝜑̄

−1( ̄A)⊙ 𝜑̄

−1( ̄B) =
𝜑̄

−1( ̄A ̄
⊙
̄B) = 𝜑̄

−1((0, 0)) = (0, 1). Therefore

m(A⊕ B) = m(A) + m(B).

But

m̄( ̄A) = m(𝜑̄−1( ̄A))) = m(A), m̄(𝜑−1( ̄B)) = m(B),

m̄( ̄A ̄
⊕
̄B) = m̄(𝜑̄−1( ̄A⊕

̄B) = m(A⊕ B),

hence

m̄( ̄A ̄
⊕
̄B) = m̄( ̄A) + m̄( ̄B),

and (2.2) holds.

Finally let ̄An ↗ ̄A. Then An = 𝜑̄

−1( ̄An) ↗ 𝜑̄

−1( ̄A) = A, hence

m̄( ̄An) = m(An) ↗ m(A) = m̄( ̄A).

□

3 State Representation

One of he main result of the IF-probability theory is the state representation theorem

[7, 8, 25, 38, 44, 46, 47, 50]. Since IF-probability theory and IV-probability theory

are isomorphic, also IV-state representation theorem holds.
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Recall that a state m̄ ∶  → [0, 1] is considered with respect to the family  =
{ ̄A = (𝜇̄A, 𝜈̄B); 𝜇̄A, 𝜈̄A ∶ 𝛺 → [0, 1] are measurable with respect to a 𝜎-algebra  of

subsets of 𝛺, 𝜇A ≤ 𝜈A}.

Theorem 3 Let m̄ ∶  → [0, 1] be a state, 𝛼 ∈ [0, 1]. Then there exist probability
measures P,Q ∶  → [0, 1] such that

m̄( ̄A) =
∫
𝛺

𝜇̄AdP + 𝛼

∫
𝛺

(𝜈̄A − 𝜇̄A)dQ,

and 𝛼 = m̄((0, 1)).

Proof Construct the state m ∶  → [0, 1] by Theorem 1. Then by [7, 8, 44, 50]

there exist probability measures P,Q ∶  → [0, 1] such that for any A = (𝜇A, 𝜈A) ∈
 there holds

m(A) =
∫
𝛺

𝜇AdP + 𝛼(1 −
∫
𝛺

(𝜇A + 𝜈A)dQ.

By Theorem 2

m̄( ̄A) = m(𝜑̄−1( ̄A)) = m((𝜇A, 1 − 𝜈A))

=
∫
𝛺

𝜇AdP + 𝛼(
∫
𝛺

(1 − 𝜈A − 𝜇A)dQ

=
∫
𝛺

𝜇̄AdP + 𝛼

∫
𝛺

(𝜈̄A − 𝜇̄A)dQ.

Moreover 𝛼 = m((0, 0) = m̄(𝜑̄((0, 0))) = m̄((0, 1)). □

Remark 2 The representation Theorem 3 has been presented by Skřivánek in [56].

4 Inclusion–Exclusion

Inclusion–exclusion principle holds e.g. for any probability measure P ∶  → [0, 1]
defined on a 𝜎-algebra :

P(A ∪ B) = P(A) + P(B) − P(A ∩ B),

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

−P(A ∩ B) − PA ∩ B) − P(B ∩ C) + P(A ∩ B ∩ C),

etc. We shall present the validity of IF-principle in IV-theory for the Godel

operations.
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Definition 6 If ̄A, ̄B ∈  then we define

̄A ∪ ̄B = (𝜇̄A ∪ 𝜈̄B, 𝜈̄A ∪ 𝜈̄B)

̄A ∩ ̄B = (𝜇̄A ∩ 𝜈̄B, 𝜈̄A ∩ 𝜈̄B)

where f ∪ g = max(f , g), f ∩ g = min(f , g).

Theorem 4 Let m̄ ∶  → [0, 1] be a state, ̄A1, ̄A2,… ,
̄An ∈  . Then

m̄(
n⋃

i=1

̄Ai) = 𝛴

n
i=1m̄( ̄Ai) − 𝛴i≠jm̄( ̄Ai ∩ ̄Aj) +⋯ + (−1)(n+1)m̄( ̄A1 ∩ ̄A2 ∩⋯ ∩ ̄An).

Proof Again we use the construction of the state m ∶  → [0, 1] presented in

Theorem 1:

m(A) = m̄(𝜑̄(A)).

Define the operations ∨,∧ in  by the following way

A ∨ B = (𝜇A ∨ 𝜇B, 𝜈A ∧ 𝜈B),

A ∧ B = (𝜇A ∧ 𝜇B, 𝜈A ∨ 𝜈B).

Then

𝜑̄(A ∨ B) = (𝜇A ∨ 𝜇B, 1 − 𝜈A ∧ 𝜈B)

= (𝜇A ∨ 𝜇B, (1 − 𝜈A) ∨ (1 − 𝜈B)

= (𝜇̄A ∨ 𝜇̄B, 𝜈̄A ∨ 𝜈B) = ̄A ∪ ̄B,

𝜑̄(A ∧ B) = (𝜇A ∧ 𝜇B, 1 − 𝜈A ∨ 𝜈B)

= (𝜇A ∧ 𝜇B, (1 − 𝜈A) ∧ (1 − 𝜈B)

= (𝜇̄A ∧ 𝜇̄B, 𝜈̄A ∧ 𝜈B) = ̄A ∩ ̄B.

By [6, 22, 23] we have

m(
n⋁

k=1
Ai) = 𝛴

n
k=1𝛴i1<⋯<ik (−1)

(k+1)m(Ai1 ∧⋯ ∧ Aik ).
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Therefore

m̄(
n⋃

i=1

̄Ai) = m(
n⋁

k=1
Ai) = 𝛴

n
k=1𝛴i1<⋯<ik (−1)

(k+1)m(Ai1 ∧⋯ ∧ Aik )

= 𝛴

n
k=1𝛴i1<⋯<ik (−1)

(k+1)m̄( ̄Ai1 ∩⋯ ∩ ̄Aik ).

□

5 Invariant States

There is well known story about Haar measure [53], such measure 𝜇 in an Abelian

group (G,+) that 𝜇(A + a) = 𝜇(A) for any a ∈ G and any measurable A.

Assume that 𝛺 is a compact Abelian group, and  is the 𝜎-algebra generated

by the family of all compact subsets of 𝛺. Further let  consist of all IV-sets ̄A =
(𝜇̄A, 𝜈̄A) with continuous 𝜇̄A, 𝜈̄A ∶ 𝛺 → [0, 1].
For a given element a ∈ 𝛺 define a mapping 𝜏a ∶  →  by the formula

𝜏a( ̄A) = (𝜇̄
̄A◦T , 𝜈̄ ̄A◦T),

where T ∶ 𝛺 → 𝛺,T(x) = x + a.

Theorem 5 There exists exactly one state m̄ ∶  → [0, 1] such that

m̄(𝜏a( ̄A)) = m̄( ̄A)

for any ̄A ∈  , and any a ∈ 𝛺.

Proof Define 𝜏a ∶  →  by the formula 𝜏a(A) = (𝜇a◦T , 𝜈a◦T). By [45] there exists

exactly one state m ∶  → [0, 1] such that

m(𝜏a(A)) = m(A)

for any A ∈  , and any a ∈ 𝛺. Define m̄ ∶  → [0, 1] by the equality m̄( ̄A) =
m(𝜑̄−1(A)). If ̄A ∈  , then

m̄(𝜏a( ̄A)) = m(𝜑̄−1(𝜏a( ̄A)))

= m(𝜏a(A)) = m(A) = m̄(𝜑̄(A)) = m̄( ̄A),

hence m̄ is invariant. Let 𝜅̄ ∶  → [0, 1] be another invariant state, i.e.

𝜅̄(𝜏a( ̄A)) = 𝜅̄( ̄A).
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Define 𝜅 ∶  → [0, 1] by the equality 𝜅(A) = 𝜅̄(𝜑̄(A)). Then

𝜅(𝜏a(A)) = 𝜅̄(𝜑̄(𝜏a(A))) = 𝜅̄(𝜏a(𝜑̄(A))

= 𝜅̄(𝜑̄(A)) = 𝜅(A),

for any A ∈  , and any a ∈ 𝛺. Since there exists exactly one invariant state m ∶
 → [0, 1], we obtain that 𝜅 = m. Therefore

𝜅̄( ̄A) = 𝜅(𝜑̄−1( ̄A)) = m(𝜑̄−1( ̄A)) = m̄( ̄A)

for any ̄A ∈  . □

6 Conclusion

We have seen that IF-probability theory and IV-probability theory are isomorphs.

Therefore all results of IF-probability theory can be reformulated by the help of

notions of interval valued notions. As an illustration we have presented three impor-

tant results: state representation theorem, inclusion exclusion property and Haar

measure theorem. Of course, also all results of IV-measure theory can be translated

to the IF-measure theory [12, 17, 20, 29, 30, 51, 52].
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Intuitionistic Fuzzy Inclusion Indicator
of Intuitionistic Fuzzy Sets

Evgeniy Marinov, Radoslav Tsvetkov and Peter Vassilev

Abstract In this paper we introduce a measure for inclusion of two IFSs into each

other according to the two main partial orderings in the family of IFSs. This inclu-

sion measure will be observed on few levels. From a set-theoretical point of view,

intuitionistic fuzzy point of view and ordinary fuzzy point of view. We also employ

the notion of the two modal quasi-orderings, the necessity and possibility, known for

intuitionistic fuzzy sets. All of these inclusion measures can be applied in real world

models where intuitionistic fuzzy sets are employed.

1 Introduction to Intuitionistic Fuzzy Sets
and their Orderings

A fuzzy set (FS) in X (cf. Zadeh [10]) is given by

A′ = {⟨x, 𝜇A′ (x)⟩|x ∈ X} (1)

where 𝜇A′ (x) ∈ [0, 1] is the membership function of the fuzzy set A′
. As opposed to

the Zadeh’s fuzzy set, Atanassov (cf. [1, 2]) extended its definition to an intuitionistic

fuzzy set (abbreviated IFS) A, given by

A = {⟨x, 𝜇A(x), 𝜈A(x)⟩|x ∈ X} (2)
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where: 𝜇A ∶ X → [0, 1] and 𝜈A ∶ X → [0, 1] such that

0 ≤ 𝜇A(x) + 𝜈A(x) ≤ 1 (3)

and 𝜇A(x), 𝜈A(x) ∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively. An additional concept for each IFS in X, that

is an obvious result of (2) and (3), is called

𝜋A(x) = 1 − 𝜇A(x) − 𝜈A(x) (4)

a degree of uncertainty or also hesitancy degree of x ∈ A. It expresses a lack of

knowledge of whether x belongs to A or not (cf. Atanassov [1]). It is obvious that

0 ≤ 𝜋A(x) ≤ 1, for each x ∈ X. Uncertainty degree turn out to be relevant for both

applications and the development of theory of IFSs. For instance, distances between

IFSs are calculated in the literature in two ways, using two parameters only (cf.

Atanassov [1]) or all three parameters (cf. Szmidt and Kacprzyk [9]). For a detailed

discussion about distances and similarities for IFSs one may consult Szmidt [8].

For more detailed information regarding modal operators the reader may refer

to [2], Chap. 4.1. “Necessity” and “possibility” operators (denoted □ and ♢, respec-

tively) applied on an intuitionistic fuzzy set A ∈ IFS(X) have been defined as:

□A = {⟨x, 𝜇A(x), 1 − 𝜇A(x) ⟩|x ∈ X}
♢A = {⟨x, 1 − 𝜈(x), 𝜈A(x) ⟩|x ∈ X}

From the above definition it is evident that

⋆∶ IFS(X) ⟶ FS(X) (5)

where ⋆ is the prefix operator ⋆ ∈ {□,♢}, operating on the class of intuitionistic

fuzzy sets and FS(X) denotes the class of fuzzy sets defined over X.
Talking about partial ordering on IFSs, we will by default mean (IFS(X),≤)where

≤ stands for the standard partial ordering in IFS(X). That is, for any two A and

B ∈ IFS(X)∶A ≤ B is satisfied if and only if 𝜇A(x) ≤ 𝜇B(x) and 𝜈A(x) ≥ 𝜈B(x) for any

x ∈ X. On Fig. 1 one may see the triangular representation of the two chosen A and B
in a particular point x ∈ X, where fA(x) stands for the point on the plane with coordi-

nates (𝜇A(x), 𝜈A(x)). That is, A ≤ B means exactly that the point fB(x) must lie in the

trapezoidal area (or on its border) defined by the points ⟨𝜇A(x), 0⟩, ⟨1, 0⟩, f♢A(x), fA(x).
On the other hand, B ≤ A is satisfied exactly when point fB(x) lies in the trapezoidal

figure (or on its border) enclosed by the points fA(x), f□A(x), ⟨0, 1⟩, ⟨0, 𝜈A(x)⟩.
The reader is referred to Marinov [6], where a new partial ordering over the class

of IFSs has been introduced. Namely, the so called 𝜋-ordering, which is actually

only a left lattice but not a right one, i.e. it is not a complete lattice. The notion of

𝜋-ordering has been employed for the introduction of an index of indeterminacy
measuring how far (close) is an IFS from (to) the family of the ordinary FSs on the

same universe X. A few examples of index of indeterminacy have been introduced
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Fig. 1 Triangular

representation of the the

intuitionistic fuzzy sets A
and B ∈ IFS(X) in a

particular point x ∈ X, where

fA(x) stands for the point on

the plane with coordinates

(𝜇A(x), 𝜈A(x)). □A and ♢A
stand for the two modal

operators “necessity” and

“possibility” acting on A

Fig. 2 Triangular

representation of the the

intuitionistic fuzzy sets A
and B ∈ IFS(X) in a

particular point x ∈ X, where

fA(x) stands for the point on

the plane with coordinates

(𝜇A(x), 𝜈A(x)). □A and ♢A
stand for the two modal

operators “necessity” and

“possibility” acting on A

based on the structure and properties of the underlying universe. It has to satisfy

three corresponding axioms and should not be confused with the degree of uncer-

tainty called also index of indeterminacy by some authors. In contrast to the standard

partial ordering A ≤ B between two IFSs A and B, the 𝜋 ordering A ⪯
𝜋

B is satis-

fied iff 𝜇A(x) ≤ 𝜇B(x) and 𝜈A(x) ≤ 𝜈B(x) for all x ∈ X. The triangular representation

on Fig. 2 gives us that A ⪯
𝜋

B iff for all x ∈ X, fB(x) lies within (or on the border

of) the triangular area defined by the points fA(x), f♢A(x) and f□A(x). On the other

hand, B ⪯
𝜋

A is satisfied iff for all x ∈ X, fB(x) lies within (or on the border of) the

rectangular area defined by the points ⟨0, 0⟩, ⟨𝜇A(x), 0⟩, fA(x) and ⟨0, 𝜈A(x)⟩. More-

over, the family of maximal elements of (IFS(X),⪯
𝜋

) consists exactly of the family

of ordinary fuzzy sets FS(X) and there is a unique minimal element 0
𝜋

∶= ⟨0, 0⟩, see

Fig. 2.
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2 Set Theoretical Inclusion Indicator j

For any two intuitionistic fuzzy sets A,B ∈ IFS(X) we now define an inclusion indi-

cator 𝚤(A,B), being itself an intuitionistic fuzzy set, belonging to IFS(U
𝚤

), where

U
𝚤

= {𝜀0, 𝜀𝜋, 𝜀□, 𝜀♢} is the universe for this indicator. In the definition of U
𝚤

, the

meaning of its elements is as follows:

∙ 𝜀0 corresponds to the standard strict inclusion (ordering),

∙ 𝜀
𝜋

corresponds to the strict 𝜋-inclusion (𝜋-ordering),

∙ 𝜀□ corresponds to the quasi □-ordering,

∙ 𝜀♢ corresponds to the quasi ♢-ordering.

For detailed introduction to quasi-ordered sets the reader could consult Birk-

hoff [3], Chap. II.1. And particularly, for the introduction of quasi □-ordering and

quasi ♢-ordering the reader is referred to Atanassov [2], Chap. 4.1 and for a more

detailed discussion to Marinov [7]. A quasi ordering is, by definition, a binary rela-

tion ⪯ in Y , which is reflexive and transitive. Let us take any A,B ∈ IFS(X) and write

A ≤□ B iff 𝜇A ≤ 𝜇B on X, respectively A ≤♢ B iff 𝜈A ≥ 𝜈B on X. Obviously, ≤□ and

≤♢ are both reflexive and transitive. That is, they are both quasi-orderings in IFS(X)

which have been called quasi □-ordering and quasi ♢-ordering, respectively.

We are going to define 𝚤(A,B) to be itself an IFS and that is why we call it IF-
inclusion indicator for intuitionistic fuzzy sets. This indicator expresses the degree

to which A is included in B, for which the sense of the notion ”included” will be

explained further. For its introduction the two partial orderings described in the pre-

vious section will be simultaneously employed. We will obtain 𝚤 = Val◦j as the com-

position of two other mappings (j and Val), each of which having its own interest-

ing properties. In what follows, unless other stated, we will observe finite universe

X. That is, |X| = card(X) < 𝜔, where 𝜔 = card(ℕ). Let us now define two notions,

which turn out to be very important in the sequel. Likewise U
𝚤

, we introduce Uj in

the following way Uj = {𝜀eq, 𝜀0,l, 𝜀𝜋,l, 𝜀□,l, 𝜀♢,l}l∈{𝜇,𝜈}, or more detailed

Uj = {𝜀eq, 𝜀0,𝜇, 𝜀0,𝜈 , 𝜀𝜋,𝜇, 𝜀𝜋,𝜈 , 𝜀□,𝜇

, 𝜀□,𝜈

, 𝜀♢,𝜇, 𝜀♢,𝜈}.

The second important notion deserves to be introduced by a separate definition. For

its introduction we will observe functions like 𝜂 ∶ Uj ⟶ P(X) but from a special

type.

Definition 1 Let us denote the family of all functions with domain Uj and range

P(X) by P(X)Uj . Then, an important subset of P(X)Uj can be defined by

Split(Uj,X) =
{𝜂 ∣ 𝜂 ∈ P(X)Uj & ∪k∈Uj

𝜂(k) = X & (∀k, l ∈ Uj)(k ≠ l ⇒ 𝜂(k) ∩ 𝜂(l) = ∅)}.

Let us remark, that Split(Uj,X) represents exactly the family of all equivalence

relations on X, consisting of at most 9 equivalence classes. Each of this equivalence
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classes turns out to have its own meaning in the terms of the above introduced order-

ings. Some (but not all) of the equivalence classes corresponding to elements of Uj
may prove to be empty subsets of X.

Through the above introduced notions and for any A,B ∈ IFS(X), let us define

the mapping j, which will be used for the introduction of the most important notion

in the current paper, i.e. the IF-inclusion indicator 𝚤. For each mapping g ∶ X ⟶ Y
and any Y1 ⊆ Y , we denote the preimage of Y1 by

g−1Y1 = {x ∣ x ∈ X & g(x) ∈ Y1}.

Definition 2 In the above introduced notations, where A,B ∈ IFS(X), let us define

j∶ IFS(X) × IFS(X) ⟶ Split(Uj,X), (6)

with j(A,B) ∈ Split(Uj,X) in the following way.

1. For 𝜀eq:

∙ j(A,B)(𝜀eq) = (𝜇B − 𝜇A)−1{0} ∩ (𝜈B − 𝜈A)−1{0}.

2. For 𝜀0:

∙ j(A,B)(𝜀0,𝜇) = (𝜇B − 𝜇A)−1(0, 1] ∩ (𝜈A − 𝜈B)−1(0, 1],
∙ j(A,B)(𝜀0,𝜈) = (𝜈B − 𝜈A)−1(0, 1] ∩ (𝜇A − 𝜇B)−1(0, 1].

3. For 𝜀
𝜋

:

∙ j(A,B)(𝜀
𝜋,𝜇

) = (𝜇B − 𝜇A)−1(0, 1] ∩ (𝜈B − 𝜈A)−1(0, 1],
∙ j(A,B)(𝜀

𝜋,𝜈

) = (𝜇A − 𝜇B)−1(0, 1] ∩ (𝜈A − 𝜈B)−1(0, 1].

4. For 𝜀□:

∙ j(A,B)(𝜀□,𝜇

) = (𝜇B − 𝜇A)−1(0, 1] ∩ (𝜈B − 𝜈A)−1{0},

∙ j(A,B)(𝜀□,𝜈

) = (𝜇A − 𝜇B)−1(0, 1] ∩ (𝜈B − 𝜈A)−1{0}.

5. For 𝜀♢:

∙ j(A,B)(𝜀♢,𝜇) = (𝜇B − 𝜇A)−1{0} ∩ (𝜈A − 𝜈B)−1(0, 1],
∙ j(A,B)(𝜀♢,𝜈) = (𝜇B − 𝜇A)−1{0} ∩ (𝜈B − 𝜈A)−1(0, 1].

The reader may easily verify that the above defined j(A,B) is really an element of

Split(Uj,X), corresponding to the family of equivalence relations on X with not more

than 9 equivalence classes.

Let us now, trough the following remark, give a geometrical interpretation of the

above defined subsets of X, j(A,B)(𝜀) for each 𝜀 ∈ Uj.

Remark 1 The image of j(A,B)(𝜀) for each 𝜀 ∈ Uj corresponds to a particular area

(geometrical figure) from the triangular representation (see Figs. 3 and 4). The posi-

tion of the point fA(x) = (𝜇A(x), 𝜈A(x)) for each x splits the triangular area {(t1, t2) ∣
(t1, t2) ∈ [0, 1] × [0, 1] & t1 + t2 ≤ 1} in four main figures some of which can be
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Fig. 3 Illustration of the

triangular representation of

the the intuitionistic fuzzy

set A in a particular point

x ∈ X and the four figures

(splitting the triangular area),

corresponding to 𝜀0,𝜇, 𝜀0,𝜈 ,
𝜀
𝜋,𝜇

, 𝜀
𝜋,𝜈

∈ Uj. The inner

contour, i.e. the segments

Vf♢A(x) and Mf□A(x), is not

included in the

corresponding figures,

although some of the four

figures can degenerate into

segments or points

Fig. 4 Illustration of the

triangular representation of

the the intuitionistic fuzzy

set A in a particular point

x ∈ X and the four segments:

fA(x)f♢A(x),VfA(x),MfA(x),
fA(x)f□A(x), corresponding to

𝜀□,𝜇

, 𝜀□,𝜈

, 𝜀♢,𝜇, 𝜀♢,𝜈 ∈ Uj.

Some of the segments can

degenerate into points

degenerated into lines or points. Actually, from Definition 2 it follows that each of

the equivalence classes of Split(Uj,X), corresponding to j(A,B), proves to be bijec-

tively determined by the position of fB(x) in respect of the position of fA(x). The

geometrical and analytical (Definition 2) interpretations of j(A,B) have the follow-

ing correspondence in terms of the orderings and modal operators for IFSs:

1. For 𝜀eq:

∙ j(A,B)(𝜀eq) corresponds to the elements x ∈ X for which A = B, or fA(x) =
fB(x).

2. For 𝜀0:

∙ j(A,B)(𝜀0,𝜇) corresponds to the elements x ∈ X, for which fA(x) < fB(x),
∙ j(A,B)(𝜀0,𝜈) corresponds to the elements x ∈ X, for which fA(x) > fB(x).
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3. For 𝜀
𝜋

:

∙ j(A,B)(𝜀
𝜋,𝜇

) corresponds to the elements x ∈ X, for which fA(x) ≺𝜋

fB(x),
∙ j(A,B)(𝜀

𝜋,𝜈

) corresponds to the elements x ∈ X, for which fA(x) ≻𝜋

fB(x).

4. For 𝜀□:

∙ j(A,B)(𝜀□,𝜇

) corresponds to the elements x ∈ X, for which fA(x) <□ fB(x) and

fA(x) =♢ fB(x),
∙ j(A,B)(𝜀□,𝜈

) corresponds to the elements x ∈ X, for which fA(x) >□ fB(x) and

A =♢ B.

5. For 𝜀♢:

∙ j(A,B)(𝜀♢,𝜇) corresponds to the elements x ∈ X, for which fA(x) <♢ fB(x) and

fA(x) =□ fB(x),
∙ j(A,B)(𝜀♢,𝜈) corresponds to the elements x ∈ X, for which fA(x) >♢ fB(x) and

fA(x) =□ fB(x).

Let us now, in a very intuitive way, introduce in Split(Uj,X) a binary relation,

denoted by ⪯j .

Definition 3 For any two elements 𝜂1, 𝜂2 of Split(Uj,X), let us define the following

binary relation ⪯j: 𝜂1 ⪯j 𝜂2 iff

1. For 𝜀eq:

∙ 𝜂1(𝜀eq) ⊆ 𝜂2(𝜀eq).

2. For 𝜀0:

∙ 𝜂1(𝜀0,𝜇) ⊆ 𝜂2(𝜀0,𝜇),
∙ 𝜂1(𝜀0,𝜈) ⊇ 𝜂2(𝜀0,𝜈).

3. For 𝜀
𝜋

:

∙ 𝜂1(𝜀𝜋,𝜇) ⊆ 𝜂2(𝜀𝜋,𝜇),
∙ 𝜂1(𝜀𝜋,𝜈) ⊇ 𝜂2(𝜀𝜋,𝜈).

4. For 𝜀□:

∙ 𝜂1(𝜀□,𝜇

) ⊆ 𝜂2(𝜀□,𝜇

),
∙ 𝜂1(𝜀□,𝜈

) ⊇ 𝜂2(𝜀□,𝜈

).

5. For 𝜀♢:

∙ 𝜂1(𝜀♢,𝜇) ⊆ 𝜂2(𝜀♢,𝜇),
∙ 𝜂1(𝜀♢,𝜈) ⊇ 𝜂2(𝜀♢,𝜈).

Let us remark that the above defined binary relation ⪯j can be stated in the following

more compact way. For 𝜂1, 𝜂2 ∈ Split(Uj,X) we have that 𝜂1 ⪯j 𝜂2 iff
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1. For 𝜀eq:

∙ 𝜂1(𝜀eq) ⊆ 𝜂2(𝜀eq).

2. For all k ∈ {0, 𝜋,□,♢}:

∙ 𝜂1(𝜀k,𝜇) ⊆ 𝜂2(𝜀k,𝜇),
∙ 𝜂1(𝜀k,𝜈) ⊇ 𝜂2(𝜀k,𝜈).

The proof of the following theorem is an application of the ordering properties of

the set theoretical partial ordering ⊆.

Theorem 1 The binary relation ⪯j, introduced in Definition 3, is a partial order-
ing in Split(Uj,X). That is, it satisfies the three axioms for ordering: it is reflexive,
transitive and anti-symmetric.

Proof Let us show that the binary relation ⪯j is reflexive. Taking any 𝜂1 ∈
Split(Uj,X), and because of the reflexivity of the set theoretical partial ordering

⊆, we have that 𝜂1(𝜀eq) ⊆ 𝜂1(𝜀eq) and 𝜂1(𝜀k,𝜇) ⊆ 𝜂1(𝜀k,𝜇), 𝜂1(𝜀k,𝜈) ⊇ 𝜂1(𝜀k,𝜈) for all

k ∈ {0, 𝜋,□,♢}. Therefore, from Definition 3 we obtain that 𝜂1 ⪯j 𝜂1. The transi-

tivity of ⪯j is implied directly from the transitivity of ⊆ as well. To show the anti-

symmetric property, suppose that for 𝜂1, 𝜂2 ∈ Split(Uj,X) we have that 𝜂1 ⪯j 𝜂2 and

𝜂2 ⪯j 𝜂1 simultaneously. Therefore, from the anti-symmetric property of ⊆ we get

that 𝜂1(𝜀) = 𝜂2(𝜀) for all 𝜀 ∈ Uj. Hence, 𝜂1 ≡ 𝜂2 on the whole domain of Uj, which

yields that 𝜂1 = 𝜂2. The theorem is proved.

As an easy exercise the following propositions about the newly introduced partial

ordering ⪯j is left to the reader.

Remark 2 Let us classify the minimal and maximal elements of the partially ordered

set (Split(Uj,X),⪯j). The family of the minimal elements of Split(Uj,X) consists of

the elements 𝜂 ∈ Split(Uj,X), satisfying

𝜂(𝜀k,𝜇) = ∅, for all k ∈ {0, 𝜋,□,♢}.

The family of the maximal elements of Split(Uj,X) consists of the elements 𝜂 ∈
Split(Uj,X), satisfying

𝜂(𝜀k,𝜈) = ∅, for all k ∈ {0, 𝜋,□,♢}.

Remark 3 Let A,B and C be elements of IFS(X) and j(A,B) ⪯j j(B,C). Then we have

that,

j(A,B) ⪯j j(A,C)

More generally, let A1,… ,An ∈ IFS(X) and for all k = 1,… , n − 2 ∶ j(Ak,Ak+1)
⪯j j(Ak+1,Ak+2). Then for any l ∈ {1,… , n − 2} we have that,

j(Al,Al+1) ⪯j j(Al,An)
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In order to introduce the final notion in this paper, i.e. the IF-inclusion indicator

𝚤, we will need the following mapping,

Val ∶ Split(Uj,X) ⟶ IFS(U
𝚤

),

where U
𝚤

has been defined as U
𝚤

= {𝜀0, 𝜀𝜋, 𝜀□, 𝜀♢}. For each 𝜂 ∈ Split(Uj,X) we

have that Val(𝜂) ∈ IFS(U
𝚤

) such that:

1. For 𝜀0:

∙ 𝜇Val(𝜂)(𝜀0) =
|𝜂(𝜀0,𝜇)|

|X|
and 𝜈Val(𝜂)(𝜀0) =

|𝜂(𝜀0,𝜈 )|
|X|

2. For 𝜀
𝜋

:

∙ 𝜇Val(𝜂)(𝜀𝜋) =
|𝜂(𝜀

𝜋,𝜇

)|
|X|

and 𝜈Val(𝜂)(𝜀𝜋) =
|𝜂(𝜀

𝜋,𝜈

)|
|X|

3. For 𝜀□ ∶

∙ 𝜇Val(𝜂)(𝜀□) =
|𝜂(𝜀□,𝜇

)|
|X|

and 𝜈Val(𝜂)(𝜀□) =
|𝜂(𝜀□,𝜈

)|
|X|

4. For 𝜀♢:

∙ 𝜇Val(𝜂)(𝜀♢) =
|𝜂(𝜀♢,𝜇)|

|X|
and 𝜈Val(𝜂)(𝜀♢) =

|𝜂(𝜀♢,𝜈 )|
|X|

Let us remark that the above definition of the mapping Val, that is its image Val(𝜂),
can be stated in the following compact form. For each k ∈ {0, 𝜋,□,♢} we can write:

𝜇Val(𝜂)(𝜀k) =
|𝜂(𝜀k,𝜇)|
|X|

and 𝜈Val(𝜂)(𝜀k) =
|𝜂(𝜀k,𝜈)|
|X|

.

We are going now to show that the so defined Val(𝜂) is indeed an element of

IFS(U
𝚤

). By the definition of Split(Uj,X), for each of its elements 𝜂, we have that⋃
k∈Uj

𝜂(k) = X and for all 𝜀1 and 𝜀2 ∈ Uj, 𝜀1 ≠ 𝜀2 implies that 𝜂(𝜀1) ∩ 𝜂(𝜀2) = ∅.

The above statement yields that
∑

𝜀∈Uj
|𝜂(𝜀)| = |X| and therefore,

|𝜂(𝜀eq)| +
∑

k∈{0,𝜋,□,♢}
|𝜂(𝜀k,𝜇)| +

∑

k∈{0,𝜋,□,♢}
|𝜂(𝜀k,𝜈)| = |X|.

From the above expression, dividing by |X| the two sides of the equation, we get that

|𝜂(𝜀eq)|
|X|

+
∑

k∈{0,𝜋,□,♢}

|𝜂(𝜀k,𝜇)|
|X|

+
∑

k∈{0,𝜋,□,♢}

|𝜂(𝜀k,𝜈)|
|X|

= 1.

The last equation and the definition of the mapping Val provides the following inter-

esting property of the elements from Range(Val) ⊂ IFS(U
𝚤

).
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Remark 4 For all 𝜂 ∈ Split(Uj,X), we have that

0 ≤

∑

k∈{0,𝜋,□,♢}
𝜇Val(𝜂)(𝜀k) +

∑

k∈{0,𝜋,□,♢}
𝜈Val(𝜂)(𝜀k) ≤ 1. (7)

1. The right hand side inequality is equality in the above expression iff |𝜂(𝜀eq)| = 0,

i.e. 𝜂(𝜀eq) = ∅.

2. The left hand side inequality is equality in the above expression iff |𝜂(𝜀eq)| =
|X|, i.e. 𝜂(𝜀eq) = X.

The above remark permits us to state the following theorem.

Theorem 2 The mapping Val ∶ Split(Uj,X) ⟶ IFS(U
𝚤

) is well defined. Its range
is indeed a subset of IFS(U

𝚤

), i.e. for all 𝜂 ∈ Split(Uj,X) we have that

(∀𝜀 ∈ U
𝚤

)(𝜇Val(𝜂)(𝜀) + 𝜈Val(𝜂)(𝜀) ≤ 1).

3 IF-inclusion Indicator 𝒊

The reader may compare the notions, defined in this section with Atanassov [1],

Chap. 18, Definition 1.8. There an indicator of inclusion of IFSs, In(A,B) for any

A,B ∈ IFS(X) has been introduced. In(A,B) being itself an element of IFS(X), for

which

∙ In(A,B) = ⟨1, 0⟩ iff A ≤ B,

∙ In(A,B) = ⟨0, 1⟩ iff B ≤ A.

Another inclusion indicators and inclusion measures of intuitionistic fuzzy sets

can be found in Cornelis [4] and Grzegorzewski [5].

Let us now introduce the most important for this paper notion of IF-inclusion

indicator 𝚤 through the following definition.

Definition 4 (IF-inclusion indicator) The mapping

𝚤 ∶ IFS(X) × IFS(X) ⟶ IFS(U
𝚤

)

will be called IF-inclusion indicator and let us define it as the composition of the

already defined j and Val, i.e. 𝚤 = (Val◦j). That is,

𝚤 ∶ IFS(X) × IFS(X)
j

⟶ Split(Uj,X)
Val
⟶ IFS(U

𝚤

).
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Remark 5 Suppose that 𝜂 = j(A,B) ∈ Split(Uj,X) for some A,B ∈ IFS(X) and let

us explain what really expresses Val(𝜂) = Val(j(A,B)) = 𝚤(A,B) (see Figs. 2 and 3

for the geometrical interpretation).

1. For 𝜀0:

∙ 𝜇
𝚤(A,B)(𝜀0) =

1
|X|

|{x ∣ x ∈ X & fA(x) < fB(x)}|, i.e. the normalized number of

elements x ∈ X, such that fA(x) < fB(x),
∙ 𝜈

𝚤(A,B)(𝜀0) =
1
|X|

|{x ∣ x ∈ X & fA(x) > fB(x)}|, i.e. the normalized number of

elements x ∈ X, such that fA(x) > fB(x) .

2. For 𝜀
𝜋

:

∙ 𝜇
𝚤(A,B)(𝜀𝜋) =

1
|X|

|{x ∣ x ∈ X & fA(x) ≺𝜋

fB(x)}|, i.e. the normalized number of

elements x ∈ X, such that fA(x) ≺𝜋

fB(x),
∙ 𝜈

𝚤(A,B)(𝜀𝜋) =
1
|X|

|{x ∣ x ∈ X & fA(x) ≻𝜋

fB(x)}|, i.e. the normalized number of

elements x ∈ X, such that fA(x) ≻𝜋

fB(x).

3. For 𝜀□ ∶

∙ 𝜇
𝚤(A,B)(𝜀□) =

1
|X|

|{x ∣ x ∈ X & 𝜇A(x) < 𝜇B(x) & 𝜈A(x) = 𝜈B(x)|,
∙ 𝜈

𝚤(A,B)(𝜀□) =
1
|X|

|{x ∣ x ∈ X & 𝜇A(x) > 𝜇B(x) & 𝜈A(x) = 𝜈B(x)|.

4. For 𝜀♢:

∙ 𝜇
𝚤(A,B)(𝜀♢) =

1
|X|

|{x ∣ x ∈ X & 𝜇A(x) = 𝜇B(x) & 𝜈A(x) > 𝜈B(x)|,
∙ 𝜈

𝚤(A,B)(𝜀♢) =
1
|X|

|{x ∣ x ∈ X & 𝜇A(x) = 𝜇B(x) & 𝜈A(x) < 𝜈B(x)|.

As an easy exercise one can induce from the definition of the IF-inclusion indi-

cator following theorem.

Theorem 3 In the above notations with A,B ∈ IFS(X), we have that

𝚤(A,B) = ¬𝚤(B,A).

Remark 6 We note that in (7) for 𝜂 = j(A,B), where A,B ∈ IFS(X), the equality

∑

k∈{0,𝜋,□,♢}
𝜇
𝚤(A,B)(𝜀k) +

∑

k∈{0,𝜋,□,♢}
𝜈
𝚤(A,B)(𝜀k) = 1

is satisfied only if we have that for all x ∈ X, 𝜇A(x) ≠ 𝜇B(x) or 𝜈A(x) ≠ 𝜈B(x).

Some combinations of the elements from the universe U
𝚤

prove to be of inter-

est for practical estimations. Through such combinations we build up estimation

expressions not only for the strict ≤ and ⪯
𝜋

-inclusions, as already done through

𝜇
𝚤(A,B)(𝜀k), 𝜈𝚤(A,B)(𝜀k), k ∈ {0, 𝜋}, but for the non-strict ones as well. As already stated,
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∙ 𝜀0 corresponds to the standard strict inclusion (ordering),

∙ 𝜀
𝜋

corresponds to the strict 𝜋-inclusion (𝜋-ordering),

∙ 𝜀□ corresponds to the quasi □-ordering,

∙ 𝜀♢ corresponds to the quasi ♢-ordering.

Let us now, employing the above introduced IF-index, give some expressions

providing a degree of inclusion (with respect to a partial ordering), for which

∙ {𝜀0, 𝜀□, 𝜀♢} corresponds to the standard inclusion (ordering),

∙ {𝜀
𝜋

, 𝜀□, 𝜀♢} corresponds to the 𝜋-inclusion (𝜋-ordering).

And namely, let us take any two A,B ∈ IFS(X) and define

1. The degree to which A equals B, 𝚤=(A,B) =
|j(A,B)(𝜀eq)|

|X|
2. The degree to which A is ≤-included into B, 𝚤

≤
(A,B) = 𝜇

𝚤(A,B)(𝜀0) + 𝜇
𝚤(A,B)(𝜀□) +

𝜇
𝚤(A,B)(𝜀♢) + 𝚤=(A,B)

3. The degree to which A is strictly ≤-included into B, 𝚤
<

(A,B) = 𝜇
𝚤(A,B)(𝜀0) +

𝜇
𝚤(A,B)(𝜀□) + 𝜇

𝚤(A,B)(𝜀♢)
4. The degree to which A is ⪯

𝜋

-included into B, 𝚤⪯
𝜋

(A,B) = 𝜇
𝚤(A,B)(𝜀𝜋)+𝜇𝚤(A,B)(𝜀□)

+ 𝜈
𝚤(A,B)(𝜀♢) + 𝚤=(A,B)

5. The degree to which A is strictly ⪯
𝜋

-included into B, 𝚤
≺
𝜋

(A,B) = 𝜇
𝚤(A,B)(𝜀𝜋) +

𝜇
𝚤(A,B)(𝜀□) + 𝜈

𝚤(A,B)(𝜀♢)

From (7) it now follows that for each 𝜌 ∈ {≤, <,⪯
𝜋

, ≺
𝜋

,=},

𝚤
𝜌

∶ IFS(X) × IFS(X) ⟶ [0, 1]. (8)

That is, 𝚤
𝜌

for each 𝜌 ∈ {≤, <,⪯
𝜋

, ≺
𝜋

,=}, provides an ordinary fuzzy estimation.

Remark 7 The indicator 𝚤= can be expressed as follows

𝚤=(A,B) = 1 −
( ∑

k∈{0,𝜋,□,♢}
𝜇
𝚤(A,B)(𝜀k) +

∑

k∈{0,𝜋,□,♢}
𝜈
𝚤(A,B)(𝜀k)

)
.

One may easily verify the following theorem.

Theorem 4 For any A,B ∈ IFS(X) the following expressions hold,

𝚤
≤
(A,B) = 1 iff A ≤ B

and
𝚤
≤
(A,B) = 0 iff 𝚤

<

(B,A) = 1 iff B < A



Intuitionistic Fuzzy Inclusion Indicator of Intuitionistic Fuzzy Sets 53

4 Conclusion

In this paper we have introduced a measure for inclusion of two IFSs into each other

according to the two main partial orderings in the family of IFSs. This inclusion

measure has been observed on two levels. From a set-theoretical point of view,

through the introduction of the mapping

j∶ IFS(X) × IFS(X) ⟶ Split(Uj,X),

where Split(Uj,X) corresponds to the family of equivalence relations on X with at

least 9 equivalence classes. And the most important and of practical use IF-inclusion

indicator,

𝚤 ∶ IFS(X) × IFS(X) ⟶ IFS(U
𝚤

),

introduced in Definition 4. The IF-inclusion indicator ranges over IFSs on a spe-

cial universe U
𝚤

. It has been employed in the last section for the introduction of

expressions for a degree of inclusion of A into B according to any of the two main

orderings, where the range now is the interval [0, 1]. That is, these expressions give

us an ordinary fuzzy estimation. They are all applicable in real world models where

intuitionistic fuzzy sets are employed and give a more detailed information about the

inclusion of an IFS into another IFS. Many examples can be found in the literature,

especially for decision making procedures. This work is going to be extended further

for the investigation of the formulas proposed here in a more practical direction.
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One, Two and Uni-type Operators on IFSs
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Abstract Intuitionistic Fuzzy Modal Operator was defined by Atanassov in
(Intuitionistic Fuzzy Sets. Phiysica-Verlag, Heidelberg, 1999, [2], Int J Uncertain
Fuzzyness Knowl Syst 9(1):71–75, 2001, [3]). He introduced the generalization of
these modal operators. After this study, Dencheva (Proceedings of the Second
International. IEEE Symposium: Intelligent Systems, vol 3, pp 21–22. Varna, 2004,
[10]) defined second extension of these operators. The third extension of these was
defined by Atanassov in (Adv Stud Contemp Math 15(1):13–20, 2007, [5]). In
(Atanassov, NIFS 14(1):27–32 2008, [6]), the author introduced a new operator
over Intuitionistic Fuzzy Sets which is generalization of Atanassov’s and Dench-
eva’s operators. At the same year, Atanassov defined an operator which is an
extension of all the operators. The diagram of One Type Modal Operators on
Intuitionistic Fuzzy Sets was introduced first time by Atanassov (Int J Uncertain
Fuzzyness Knowl Syst 9(1):71–75, 2001, [3]). The author expanded the diagram of
One Type Modal Operators on Intuitionistic Fuzzy Sets with the operator Z (alpha
beta gamma). In 2013, the last operators were defined. These operators have
properties which are belong to both first and second type modal operators. So, they
called uni-type operators. After these operators the diagram of modal operators on
intuitionistic fuzzy sets is expanded.
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1 Introduction

The original concept of fuzzy sets in [13], Zadeh was introduced as an extension of
crisp sets by enlarging the truth value set to the real unit interval [0, 1]. In fuzzy set
theory, if the membership degree of an element x is μ(x) then the non-membership
degree is 1 − μ(x) and thus it is fixed.

Intuitionistic fuzzy sets have been introduced by Atanassov in 1983 [1] and form
an extension of fuzzy sets by enlarging the truth value set to the lattice [0, 1] × [0, 1]
is defined as following.

Definition 1 Let L = [0, 1] then L* = fðx1, x2Þ∈ ½0, 1�2: x1 + x2 ≤ 1g is a lattice with

ðx1, x2Þ≤ ðy1, y2Þ:⇔ x1 ≤ y1, x2 ≥ y2

The units of this lattice are denoted by 0L* = ð0, 1Þ and 1L* = ð1, 0Þ.
The lattice ðL*, ≤ Þ is a complete lattice: For each A⊆L*,

supA= ðsupfx∈ ½0, 1�: ðy∈ ½0, 1�Þ, ððx, yÞ∈AÞg,
inffy∈ ½0, 1�: ðx∈ ½0, 1�Þ, ððx, yÞ∈AÞgÞ

and

inf A= ðinffx∈ ½0, 1�: ðy∈ ½0, 1�Þ, ððx, yÞ∈AÞg,
supfy∈ ½0, 1�: ðx∈ ½0, 1�Þ, ððx, yÞ∈AÞgÞ

As is well known, every lattice L* has an equivalent definition as an algebraic
structure ðL*, ∧ , ∨ , ≤ Þ where the meet operator ∧ and the join operator ∨ are
linked the ordering “≤” by the following equivalence, for x, y∈L*,

x≤ y⇔x∨ y= y⇔x∧ y= x

The operators ∧ and ∨ (join and meets resp.) on ðL*
, ≤ Þ are defined as follows,

for ðx1, y1Þ, ðx2, y2Þ∈L*,

ðx1, y1Þ∧ ðx2, y2Þ= ðx1 ∧ x2, y1 ∨ y2Þ
ðx1, y1Þ∨ ðx2, y2Þ= ðx1 ∨ x2, y1 ∧ y2Þ

Definition 2 ([1]) An intuitionistic fuzzy set (shortly IFS) on a set X is an object of
the form A= f<x, μAðxÞ, νAðxÞ> : x∈Xg where μAðxÞ, ðμA: X→ ½0, 1�Þ is called
the degree of membership of x in A, νAðxÞ, ðνA: X→ ½0, 1�Þ is called the degree of
non- membership of x in A, and where μA and vA satisfy the following condition:
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μAðxÞ+ νAðxÞ≤ 1, for all x∈X.

The hesitation degree of x is defined by πA(x) 1 − μA(x) − vA(x)

Definition 3 ([1]) An IFS A is said to be contained in an IFS B (notation A ⊑ B if
and only if, for all x∈X, μAðxÞ≤ μBðxÞ and νAðxÞ≥ νBðxÞ.

It is clear that A = B if and only if A ⊑ B and B ⊑ A

Definition 4 ([1]) Let A ∈ IFS and let A= f<x, μAðxÞ, νAðxÞ> : x∈Xg then the
following set is called the complement of A

Ac = f<x, νAðxÞ, μAðxÞ> : x∈Xg
The notion of Intuitionistic Fuzzy Operators was firstly introduced by Atanassov

[1]. The simplest one among them is presented as in the following definition.

Definition 5 ([2]) Let X be a set and A= f<x, μAðxÞ, νAðxÞ> : x∈Xg∈ IFSðXÞ,
α, β∈ ½0, 1� then

(a) ⊞A= f<x, μAðxÞ2 , νAðxÞ+1
2 > : x∈Xg

(b) ⊠A= f<x, μAðxÞ+1
2 , νAðxÞ2 > : x∈Xg.

After this definition, in 2001, Atanassov, in [3], defined the extension of these
operators as following:

Definition 6 ([3]) Let X be a set and A= f<x, μAðxÞ, νAðxÞ> : x∈Xg∈ IFSðXÞ,
α, β∈ ½0, 1�.

(a) ⊞αA= f<x, αμAðxÞ, ανAðxÞ+1− α> : x∈Xg
(b) ⊠αA= f<x, αμAðxÞ+1− α, ανAðxÞ> : x∈Xg.

In these operators ⊞α and ⊠α; if we choose α= 1
2, we get the operators ⊞, ⊠,

resp. Therefore, the operators ⊞α and ⊠α are the extensions of the operators ⊞, ⊠,
resp. Some relationships between these operators were studied by several authors
[10, 12].

In 2004, the second extension of these operators was introduced by Dencheva in
[10].

Definition 7 ([10]) Let X be a set and A= f<x, μAðxÞ, νAðxÞ> : x∈Xg∈ IFSðXÞ,
α, β∈ ½0, 1�.

(a) ⊞α, βA= f<x, αμAðxÞ, ανAðxÞ+ β> : x∈Xg where α+ β∈ ½0, 1�.
(b) ⊠α, βA= f<x, αμAðxÞ+ β, ανAðxÞ> : x∈Xg where α+ β∈ ½0, 1�.

The concepts of the modal operators are being introduced and studied by dif-
ferent researchers, [3–6, 10–12], etc.

In 2006, the third extension of the above operators was studied by Atanassov. He
defined the following operators in [4].
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Definition 8 ([4]) Let X be a set and A= f<x, μAðxÞ, νAðxÞ> : x∈Xg∈ IFSðXÞ.
Then, for α, β, γ∈ ½0, 1�, maxfα, βg+ γ≤ 1.

(a) ⊞α, β, γðAÞ= f<x, αμAðxÞ, βνAðxÞ+ γ> : x∈Xg
(b) ⊠α, β, γðAÞ= f<x, αμAðxÞ+ γ, βνAðxÞ> : x∈Xg

If we choose α = β and γ = β in above operators then we can see easily that
⊞α,α,γ, = ⊞α,β and ⊠α,α,γ = ⊠α, β Therefore, we can say that ⊞α,α,γ and ⊠α,α,γ are
the extensions of the operators ⊞α,β and ⊠α,β, resp. From these extensions, we get
the first diagram of One Type Modal Operators (OTMOs) over Intuitionistic Fuzzy
Sets (IFSs) as displayed in Fig. 1.

In 2007, after this diagram, the author [7] defined a new operator and studied
some of its properties. This operator is named Eα,β and defined as follows:

Definition 9 ([7]) Let X be a set and A= f<x, μAðxÞ, νAðxÞ> : x∈Xg∈ IFSðXÞ,
α, β ∈ [0,1]. We define the following operator:

Eα, βðAÞ= f<x, βðαμAðxÞ+1− αÞ, αðβνAðxÞ+1− βÞ> : x∈Xg
If we choose α = 1 and write α instead of β we get the operator ⊞α. Similarly, if

β = 1 is chosen and written instead of β, we get the operator ⊠α. In the view of this
definition, the diagram of OTMOs on IFSs is figured below (Fig. 2).

These extensions have been investigated by several authors [5, 6, 9]. In par-
ticular, the authors have made significant contributions to these operators.

Fig. 1

Fig. 2
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In 2007, Atanassov introduced the operator ⊡α,β,γ,δ which is a natural extension
of all these operators in [5].

Definition 10 ([5]) Let X be a set, A ∈ IFS(X), α, β, γ, δ ∈ [0, 1] such that
maxðα, βÞ+ γ+ δ≤ 1 then the operator ⊡α,β,γ,δ defined by

⊡α, β, γ, δðAÞ= f<x, αμAðxÞ+ γ, βνAðxÞ+ δ> : x∈Xg
This operator changed the OTMOs’ diagram (Fig. 3).
At the end of these studies, Atanassov though that this diagram was completed.

However, he realized that it wasn’t totally true since there was an operator which
was also an extension of two type modal operators.

In 2008, he defined this most general operator ⊚α, β, γ, δ, ε, ζ as following:

Definition 11 ([6]) Let X be a set, A ∈ IFS(X), α, β, γ, δ, ε, ζ∈ ½0, 1� such that
maxðα− ζ, β− εÞ+ γ+ δ≤ 1 and minðα− ζ, β− εÞ+ γ+ δ≥ 0 then the operator
⊚α,β,γ,δ,ε,ζ defined by

⊚α, β, γ, δ, ε, ζðAÞ= f<x, αμAðxÞ− ενAðxÞ+ γ, βνAðxÞ− ζμAðxÞ+ δ> : x∈Xg
After this definition, the OTMOs’ diagram is became as in Fig. 4.
In 2010, the author [8] defined a new operator which is a generalization of Eα,β

Definition 12 ([8]) Let X be a set and A= f<x, μAðxÞ, νAðxÞ> : x∈Xg∈ IFSðXÞ,
α, β,ω∈ ½0, 1�. We define the following operator:

Zω
αβðAÞ= f<x, βðαμAðxÞ+ω−ω.αÞ, αðβνAðxÞ+ω−ω.βÞ> : x∈Xg

The diagram of OTMOs over IFSs is displayed in Fig. 5.
We have defined a new OTMO on IFS, that is generalization of the some

OTMOs. The new operator defined as follows:

Fig. 3
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Definition 13 ([8]) Let X be a set and A= f<x, μAðxÞ, νAðxÞ> : x∈Xg∈ IFSðXÞ,
α, β,ω, θ∈ ½0, 1�. We define the following operator,

Zω, θ
α, β ðAÞ= f<x, βðαμAðxÞ+ω−ω.αÞ, αðβνAðxÞ+ θ− θ.βÞ> : x∈Xg

The operator Zω, θ
α, β is a generalization of Zω

α, β , and also, Eα, β, ⊞α,β, ⊠α,β. The
new diagram of OTMOs as in Fig. 6.

Before defining new operators which are generalization of both one type and
second type modal operators, we will recall definitions of second type modal
operators.

Fig. 4

Fig. 5

60 G. Çuvalcioğlu



Definition 14 ([1]) Let X be universal and A ∈ IFS (X), α ∈ [0,1] then

DαðAÞ= f<x, μAðxÞ+ απAðxÞ, νAðxÞ+ ð1− αÞπAðxÞ> : x∈Xg

Definition 15 ([1]) Let X be universal and A ∈ IFS (X), α, β∈ ½0, 1� and α+ β≤ 1
then

Fα, βðAÞ= f<x, μAðxÞ+ απAðxÞ, νAðxÞ+ βπAðxÞ> : x∈Xg

Definition 16 ([1]) Let X be universal and A ∈ IFS (X), α, β∈ ½0, 1� then

Gα, βðAÞ= f<x, αμAðxÞ, βνAðxÞ> : x∈Xg

Definition 17 ([1]) Let X be universal and A ∈ IFS (X), α, β∈ ½0, 1� then
(a) Hα, βðAÞ= f<x, αμAðxÞ, νAðxÞ+ βπAðxÞ> : x∈Xg
(b) H*

α, βðAÞ= f<x, αμAðxÞ, νAðxÞ+ βð1− αμAðxÞ− νAðxÞÞ> : x∈Xg

Definition 18 ([1]) Let X be universal and A ∈ IFS (X), α, β∈ ½0, 1� then
(a) Jα, βðAÞ= f<x, μAðxÞ+ απAðxÞ, βνAðxÞ> : x∈Xg
(b) J*α, βðAÞ= f<x, μAðxÞ+ αð1− μAðxÞ− βνAðxÞÞ, βνAðxÞ> : x∈Xg

Definition 19 ([1]) Let X be universal and A ∈ IFS (X) then (Fig. 7)

(a) □ðAÞ= f<x, μAðxÞ, 1− μAðxÞ> : x∈Xg
(b) ♢ðAÞ= f<x, 1− νAðxÞ, νAðxÞ> : x∈Xg

Fig. 6
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2 The Uni-type Operators Eω, θ
α, β , Bα, β and ⊟α,β

In this section, we give some operators. Some of them satisfy characteristic prop-
erties of one and two type operators. Because of these properties, they will be called
uni-type operators.

Definition 20 ([9]) Let X be a universal, A ∈ IFS (X) and α, β, ω∈ ½0, 1�. We
define the following operator:

(a) ⊞ω
α, βðAÞ= ⟨x, βðμAðxÞ+ ð1− αÞνAðxÞÞ, αðβνAðxÞ+ω−ωβÞ⟩: x∈Xf g

(b) ⊠ω
α, βðAÞ= ⟨x, βðαμAðxÞ+ω−ωαÞ, αðð1− βÞμAðxÞ+ νAðxÞÞ⟩: x∈Xf g

It is clear that;

βðμAðxÞ+ ð1− αÞνAðxÞÞ+ αðβνAðxÞ+ω−ωβÞ
= βðμAðxÞ+ νAðxÞÞ+ αωð1− βÞ
≤ β+ αω− αβω= βð1− αωÞ+ αω≤ 1

It is clear that ⊞ω
α, βðAÞ∈ IFSðXÞ. We can say ⊠ω

α, βðAÞ∈ IFSðXÞ, too.

Fig. 7
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From this definition, we get the following new diagram which is the extension of
the last diagram of intuitionistic fuzzy operators on IFSs in Fig. 8.

Some fundamental properties of these operators are following.

Theorem 1 Let X be a universal, A ∈ IFS (X) and α, β, ω∈ ½0, 1� then
(a) if β≤ α then ⊞ω

α, βð⊞ω
α, βðAÞÞ⊑⊞ω

β, αð⊞ω
β, αðAÞÞ

(b) if β≤ α then ⊠ω
α, βð⊠ω

α, βðAÞÞ⊑⊠ω
β, αð⊠ω

β, αðAÞÞ

Proof

(a) If we use β≤ α then we get,

β≤ α⇒ ðα− βÞðα+ β+2αβÞ≤ 0

⇒ β2ð1− 2αÞ≤ α2ð1− 2βÞ
⇒ β2ð1− 2αÞω≤ α2ð1− 2βÞω

and with this inequality we can say

αβμAðxÞ+ αβð1− βÞνAðxÞ+ βð1− αÞðαβνAðxÞ+ βω− αβωÞ
≤ αβμAðxÞ+ αβð1− αÞνAðxÞ+ αð1− βÞðαβνAðxÞ+ αω− αβωÞ

□

Fig. 8
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On the other hand

β≤ α⇒ ðβ− αÞðαβ− 1Þ≥ 0

⇒ αβ2 + α− αβ≥ α2β+ β− αβ

⇒ αβ2ω+ αω− αβω≥ α2βω+ βω− αβω

with this we can say

α2β2νAðxÞ+ αβ2ω− α2β2ω+ αω− αβω

≥ α2β2νAðxÞ+ α2βω− α2β2ω+ βω− αβω

So we get

⊞ω
α, βð⊞ω

β, αðAÞÞ⊑⊞ω
β, αð⊞ω

α, βðAÞÞ

We can show the property (b) as the same way.

Proposition 1 Let X be a universal, A ∈ IFS (X) and α, β∈ ½0, 1Þ then
(a) ⊞

β
1− α
1, αðAÞ=⊞α, βðAÞ

(b) ⊠
β

1− α
α, 1ðAÞ=⊠α, βðAÞ

Proof It is clear from definition. □

Definition 21 ([10]) Let X be a set and A= f<x, μAðxÞ, νAðxÞ> : x∈Xg
∈ IFSðXÞ, α, β, ω, θ∈ ½0, 1� .We define the following operator:

Eω, θ
α, βðAÞ= f<x, βðð1− ð1− αÞð1− θÞÞμAðxÞ+ ð1− αÞθνAðxÞ+ ð1− αÞð1− θÞωÞ,

αðð1− βÞθμAðxÞ+ ð1− ð1− βÞð1− θÞÞνAðxÞ+ ð1− βÞð1− θÞωÞ> : x∈Xg

Proposition 2 ([10]) Let X be a set and A ∈ IFS (X), α, β, ω, θ∈ ½0, 1�

Eω, θ
α, βðAcÞ=Eω, θ

β, αðAÞc

Proof It is clear from definition. □

Proposition 3 ([10]) Let X be a set and A ∈ IFS (X), α, β, ω, θ∈ ½0, 1� if β≤ α then

Eω, θ
α, βðAÞ⊑Eω, θ

β, αðAÞ
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Proof If we use β≤ α then

β≤ α⇒ βðθðμAðxÞ+ νAðxÞÞ+ωð1− θÞÞ≤ αðθðμAðxÞ+ νAðxÞÞ+ωð1− θÞÞ
⇒ βðθðμAðxÞ+ νAðxÞÞ+ωð1− θÞÞ+ αβðμAðxÞ+ θμAðxÞ− θνAðxÞÞ
≤ αðθðμAðxÞ+ νAðxÞÞ+ωð1− θÞÞ+ αβðμAðxÞ+ θμAðxÞ− θνAðxÞÞ

so we can say Eω, θ
α, βðAÞ⊑Eω, θ

β, αðAÞ □

Proposition 4 ([10]) Let X be a set and A ∈ IFS (X), α, β, ω, θ∈ ½0, 1� if ω≤ θ then

Eω, θ
α, βðAÞ⊑Eθ,ω

α, βðAÞ

Proof It is clear from definition. □

Definition 22 Let X be a set, A ∈ IFS (X) and α, β∈ ½0, 1�. We define the fol-
lowing operator:

Bα, βðAÞ= ⟨x, βðμAðxÞ+ ð1− αÞνAðxÞÞ, αðð1− βÞμAðxÞ+ νAðxÞÞ⟩: x∈Xf g

Definition 23 Let X be a set, A ∈ IFS (X) and α, β, ω∈ ½0, 1� . We define the
following operator:

⊟α, βðAÞ= ⟨x, βðμAðxÞ+ ð1− βÞνAðxÞÞ, αðð1− αÞμAðxÞ+ νAðxÞÞ⟩: x∈Xf g

Theorem 2 Let X be a set, A ∈ IFS (X) and α, β∈ ½0, 1�.

Bα, αðAÞ=⊟α, αðAÞ
Proof It is clear from definition. □

Theorem 3 Let X be a set, A ∈ IFS (X) and α, β, ω∈ ½0, 1�

(a) ⊞ω
α, βðAcÞ=⊠ω

β, αðAÞc
(b) ⊠ω

α, βðAcÞ=⊞ω
β, αðAÞc

(c) ⊟α, βðAcÞ=⊟β, αðAÞc

Proof

(a) From definition of this operators and complement of an intuitionistic
fuzzy set we get those,
⊠ω

β, αðAÞc = f<x, βðð1− αÞμAðxÞ+ νAðxÞÞ, αðβμAðxÞ+ω−ωβÞ> : x∈Xg
and
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⊞ω
α, βðAcÞ= ⟨x, βðνAðxÞ+ ð1− αÞμAðxÞÞ, αðβμAðxÞ+ω−ωβÞ⟩: x∈Xf g

So, we get ⊞ω
α, βðAcÞ=⊠ω

β, αðAÞc.
(b) If we use definitions then we get

⊟α, βðAcÞ= ⟨x, βðνAðxÞ+ ð1− βÞμAðxÞÞ, αðð1− αÞνAðxÞ+ μAðxÞÞ⟩: x∈Xf g
and

⊟β, αðAÞc = ⟨x, βðð1− βÞμAðxÞ+ νAðxÞÞ, αðμAðxÞ+ ð1− αÞνAðxÞÞ⟩: x∈Xf g
□

Theorem 4 Let X be a set and A ∈ IFS (X), α, β∈ ½0, 1�. If α≥ 1
2, β≤ 1

2 then

BαβðBβαðAÞÞ⊑BβαðBαβðAÞÞ

Proof If we use α≥ 1
2 and β≤ 1

2 then we get,

ð1− 2αÞ≤ ð1− 2βÞ⇒ β2ð1− 2αÞðμAðxÞ+ νAðxÞÞ≤ α2ð1− 2βÞðμAðxÞ+ νAðxÞÞ

So,

αβμAðxÞ+ αβð1− βÞνAðxÞ+ β2ð1− αÞ2μAðxÞ+ β2ð1− αÞνAðxÞ
≤ αβμAðxÞ+ αβð1− αÞνAðxÞ+ α2ð1− βÞ2μAðxÞ+ α2ð1− βÞνAðxÞ

and

α2ð1− βÞμAðxÞ+ α2ð1− βÞ2νAðxÞ+ αβð1− αÞμAðxÞ+ αβνAðxÞ
≥ β2ð1− αÞμAðxÞ+ β2ð1− αÞ2νAðxÞ+ αβð1− βÞμAðxÞ+ αβνAðxÞ

with these inequalities BαβðBβαðAÞÞ⊑BβαðBαβðAÞÞ □

Proposition 5 Let X be a set and A ∈ IFS (X), α, β∈ ½0, 1� then

BαβðAcÞ=BβαðAÞc

Proof It is clear from definition. □

Proposition 6 Let X be a set and A ∈ IFS (X), α, β, ω∈ ½0, 1� then
(a) Eω, 0

α, β ðAÞ=Zω
α, βðAÞ

(b) Eω, 1
α, β ðAÞ=Bα, βðAÞ

(c) E0, 0
α, βðAÞ=Gαβ, αβðAÞ
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(d) E1, 0
α, βðAÞ=Eα, βðAÞ

(e) E0, 0
1, 0ðAÞ=∅

(f) E0, 0
0, 1ðAÞ=X

Proof Clear from definition. □

Proposition 7 Let X be a set and A ∈ IFS (X), α, β, ω∈ ½0, 1� then

(a) E1, 0
α, 1ðAÞ=⊠αðAÞ

(b) Eω, 0
α, 1ðAÞ=⊠α,ωð1− αÞðAÞ

(c) Eω, 0
1, β ðAÞ=⊞β,ωð1− βÞðAÞ

(d) Eω, θ
1, 1 ðAÞ=A

(e) E1, 0
1, βðAÞ=⊞βðAÞ

(f) Eω, 1
α, 1ðAÞ=Bα, 1ðAÞ

(g) E1, 1
1, βðAÞ=B1, βðAÞ

Proof Clear from definition. □

From these properties, as in Fig. 9, we get the following new diagram for
intuitionistic fuzzy modal operators,

Fig. 9
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3 The New Operators Xω
αβ and Yω

αβ

In this section, we give two new operators on intuitionistic fuzzy sets. They satisfy
the properties of one type modal operators. So, these operators belong to family of
one type operators.

Definition 24 Let X be a universal, A ∈ IFS (X) and α, β, ω∈ ½0, 1�. We define the
following operators,

(a) Xω
α, βðAÞ= ⟨x, βðμAðxÞ+ ð1− αÞνAðxÞÞ+ αðω−ωβÞ, αβνAðxÞ⟩: x∈Xf g

(b) Yω
α, βðAÞ= ⟨x, αβμAðxÞ, αðð1− βÞμAðxÞ+ νAðxÞÞ+ βðω−ωαÞ⟩: x∈Xf g

It is clear that;

βðμAðxÞ+ ð1− αÞνAðxÞÞ+ αðω−ωβÞ+ αβνAðxÞ
= βðμAðxÞ+ νAðxÞÞ+ αωð1− βÞ
≤ β+ αω− αβω= βð1− αωÞ+ αω≤ 1

and

αβμAðxÞ+ αðð1− βÞμAðxÞ+ νAðxÞÞ+ βðω−ωαÞ
= αðμAðxÞ+ νAðxÞÞ+ βωð1− αÞ
≤ α+ βω− αβω= αð1− βωÞ+ βω≤ 1

Therefore we get Xω
α, βðAÞ, Yω

α, βðAÞ∈ IFSðXÞ.
Proposition 8 Let X be a universal, A ∈ IFS (X) and α, β∈ ½0, 1Þ then

(a) X
β

1− α
1, αðAÞ=⊠α, βðAÞ

(b) Y
β

1− α
α, 1ðAÞ=⊞α, βðAÞ

Proof It is clear from definition. □

Therefore, the last modal operators’ diagram of operators on intuitionistic fuzzy
sets is obtained as following Fig. 10.

Some properties of these operators are following.

Theorem 5 Let X be a universal, A ∈ IFS (X) and α, β, ω∈ ½0, 1� then
(a) If α≤ β then Xω

α, βðXω
β, αðAÞÞ⊑Xω

β, αðXω
α, βðAÞÞ

(b) if β≤ α then Yω
α, βðYω

β, αðAÞÞ⊑Yω
β, αðYω

α, βðAÞÞ
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Proof

(a) If we use α≤ β then,
α≤ β⇒ ðα− βÞð1− α− β+ αβÞ≤ 0

⇒ β2ð1− αÞ+ α≤ α2ð1− βÞ+ β

⇒ω½β2ð1− αÞ+ α�≤ω½α2ð1− βÞ+ β�
and with this inequality we can say

αβμAðxÞ+ αβð1− βÞνAðxÞ+ β2ðω− αωÞ+ αβ2ð1− αÞνAðxÞ+ αω− αβω

≤ αβμAðxÞ+ αβð1− αÞνAðxÞ+ α2ðω− βωÞ+ α2ð1− βÞðβνAðxÞÞ+ βω− αβω
□

On the other hand

α2β2νAðxÞ= α2β2νAðxÞ

So, Xω
α, βðXω

β, αðAÞÞ⊑Xω
β, αðXω

α, βðAÞÞ
We can show the property (b) same way.

Theorem 6 Let X be a set, A ∈ IFS (X) and α, β, ω∈ ½0, 1�.
(a) Xω

α, βðAcÞ=Yω
β, αðAÞc

(b) Yω
α, βðAcÞ=Xω

β, αðAÞc

Fig. 10
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Proof

(a) From definition of this operators and complement of an intuitionistic
fuzzy set we get,
Yω

β, αðAÞc = ⟨x, αðð1− βÞμAðxÞ+ νAðxÞÞ+ βðω−ωαÞ, αβμAðxÞ, ⟩: x∈Xf g
and

Xω
α, βðAcÞ= ⟨x, βðνAðxÞ+ ð1− αÞμAðxÞÞ+ αðω−ωβÞ, αβμAðxÞ⟩: x∈Xf g

□

So, Xω
α, βðAcÞ=Yω

β, αðAÞc.
Property (b) can be shown by the same way.

Proposition 9 Let X be a set, A ∈ IFS (X) and α, β, ω, θ∈ ½0, 1�, ω≤ θ.

(a) Xω
α, βðAÞ⊑Xθ

α, βðAÞ
(b) Yω

α, βðAÞ⊑Yθ
α, βðAÞ

Proof

(a) If we use ω≤ θ then we can see,
ω≤ θ⇒ βð1− αÞω≤ βð1− αÞθ

and through this inequality,

αðð1− βÞμAðxÞ+ νAðxÞÞ+ βðω−ωαÞ≤ αðð1− βÞμAðxÞ+ νAðxÞÞ+ βðθ− θαÞ
□

So, Yω
α, βðAÞ⊑Yθ

α, βðAÞ
Theorem 7 Let X be a set, A ∈ IFS (X) and α, β, ω∈ ½0, 1�.

(a) Xω
α, βð⊞αAÞ⊑Xω

α, βð⊠αAÞ
(b) Yω

α, βð⊞αAÞ⊑Yω
α, βð⊠αAÞ

Proof

(a)
βð1− αÞ2 ≤ βð1− αÞ⇒ βðαμAðxÞ+ αð1− αÞνAðxÞ+ ð1− αÞ2Þ+ αðω−ωβÞ

≤ βðαμAðxÞ+ αð1− αÞνAðxÞ+ ð1− αÞÞ+ αðω−ωβÞ
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and

αβ− α2β≥ 0⇒ α2βνAðxÞ+ αβ− α2β≥ α2βνAðxÞ
Therefore, Xω

α, βð⊞αAÞ⊑Xω
α, βð⊠αAÞ

Similarly, if we use αβð1− αÞ≥ 0 and αð1− αÞ≥ αð1− βÞð1− αÞ we get

Yω
α, βð⊞αAÞ⊑Yω

α, βð⊠αAÞ
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Intuitionistic Fuzzy Relational Equations
in BL−Algebras

Ketty Peeva

Abstract We investigate direct and inverse problem resolution for intuitionistic

fuzzy relational equations in some BL−algebras, when the composition for the

membership degrees is a sup−t−norm and for non-membership degrees is an

inf −s−norm. Criterion for solvability of intuitionistic fuzzy relational equation is

proposed and analytical expressions for maximal solution is given.

Keywords Intuitionistic fuzzy relations ⋅Direct and inverse problems ⋅BL−algebra

1 Introduction

Intuitionistic fuzzy sets (IFS) were introduced by K. Atanassov in 1983 [1]. After

publishing his monograph [2], the interest on IFS was rapidly increasing with many

publications in variety of areas. My interest began about 2000 (see [20]). My atten-

tion was focused on intuitionistic fuzzy relations—direct and inverse problems, their

algorithmical and software resolution [16, 22–24, 27]. Intuitionistic fuzzy relations

are studied for instance in [5, 9, 13, 18–20, 22–24, 26].

Direct and inverse problem resolution for intuitionistic fuzzy linear system of

equations, when the composition is max−min for membership degrees and

min−max for non-membership degrees is studied first in [20–23] and corresponding

software is given in [16, 27].

In this chapter we present direct and inverse problem resolution for intuitionistic

fuzzy relations in some BL−algebras, when the composition ∗BL for the membership

degrees is a sup−t−norm and for non-membership degrees is an inf −s−norm:

A ∗BL B = C.
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Here A, B and C are finite intuitionistic fuzzy matrices. Two of them are given,

one is unknown:

(i) If A and B are given, computing the unknown matrix C is called direct problem

resolution.

(ii) If A and C are given, computing the unknown matrix B is called inverse problem

resolution.

In Sect. 2 we introduce t−norms, BL−algebras, intuitionistic fuzzy sets, intuition-

istic fuzzy relations and intuitionistic fuzzy matrices. Section 3 presents direct prob-

lem resolution for intuitionistic fuzzy matrices in BL−algebras with examples in

Gödel algebra, Goguen algebra and Łukasiewicz algebra. Section 4 covers intuition-

istic fuzzy relational equations in BL−algebras, finding maximal solution and estab-

lishing consistency of the equation, as well as suitable examples. Concluding section

proposes ideas for next development.

Terminology for algebra, orders and lattices is given according to [12, 17], for

fuzzy sets, fuzzy relations and for intuitionistic fuzzy sets—according to [2, 7, 10,

15, 22], for computational complexity and algorithms is as in [11].

2 Basic Notions

Partial order relation on a partially ordered set (poset) P is denoted by the symbol ≤.

By a greatest element of a poset P we mean an element b ∈ P such that x ≤ b for all

x ∈ P. The least element of P is defined dually.

The tree well known couples of t−norms and t−conorms (or s−norms) are given

in Table 1.

2.1 BL−Algebra

BL−algebra [14] is the algebraic structure:

BL = ⟨L,∨,∧, ∗,→, 0, 1⟩ ,

Table 1 t−norms and s−norms

t−norm Name Expression s−norm Name Expression

t3 Minimum,

Gödel t−norm

t3(x, y) =
min {x, y}

s3 Maximum,

Gödel t−conorm

s3(x, y) =
max {x, y}

t2 Algebraic

product

t2(x, y) = xy s2 Probabilistic

sum

s2(x, y) =
x + y − xy

t1 Łukasiewicz

t−norm

t1(x, y) =
max{x + y −
1, 0}

s1 Bounded sum s1(x, y) =
min {x + y, 1}
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where ∨,∧, ∗,→ are binary operations, 0, 1 are constants and:

(i) L = ⟨L,∨,∧, 0, 1⟩ is a lattice with universal bounds 0 and 1;

(ii) L = ⟨L, ∗, 1⟩ is a commutative semigroup;

(iii) ∗ and → establish an adjoint couple:

z ≤ (x → y) ⇔ x ∗ z ≤ y,∀x, y, z ∈ L.

(iv) for all x, y ∈ L

x ∗ (x → y) = x ∧ y and (x → y) ∨ (y → x) = 1.

We suppose in next exposition that L = [0, 1] and x, y ∈ [0, 1].
The following algebras are examples for BL−algebras.

1. Gödel algebra

BLG = ⟨[0, 1],∨,∧,→G, 0, 1⟩ ,

where operations are

(1) Maximum or s3−conorm:

max{x, y} = x ∨ y. (1)

(2) Minimum or t3−norm:

min{x, y} = x ∧ y. (2)

(3) The residuum →G is

x →G y =
{

1 if x ≤ y
y if x > y . (3)

(4) A supplementary operation is useful

x 𝜀 y =
{

y, if x < y
0, if x ≥ y . (4)

It is not difficult to prove that (3) and (4) satisfy:

¬ (x →G y) = ¬ x 𝜀 ¬ y. (5)

2. Product (Goguen) algebra

BLP = ⟨[0, 1],∨,∧, ◦,→P, 0, 1⟩ ,
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where max and min are as (1) and (2), respectively, ◦ is the conventional real

number multiplication (the t2 norm, i. e, t2(x, y) = xy) and the residuum →P is

x →P y =
{

1 if x ≤ y
y
x

if x > y . (6)

Here the supplementary useful operation is:

x𝛾y =
{

0 if x ≥ y
y−x
1−x

if x < y . (7)

It is not difficult to prove that (6) and (7) satisfy:

¬ (x →P y) = ¬ x 𝛾 ¬ y. (8)

3. Łukasiewicz algebra

BLL = ⟨[0, 1],∨,∧, ⊗,→L, 0, 1⟩ ,

where max and min are as (1) and (2), respectively, and

(1) x ⊗ y = 0 ∨ (x + y − 1) ≡ t1(x, y).
(2) The residuum →L is

x →L y = 1 ∧ (1 − x + y). (9)

(3) A supplementary operation is useful

x𝛿y = 0 ∨ (y − x). (10)

It is not difficult to prove that (9) and (10) satisfy:

¬ (x →L y) = ¬ x 𝛿 ¬ y. (11)

2.2 Intuitionistic Fuzzy Sets

Let E ≠ ∅ be a crisp set and A ⊆ E. An intuitionistic fuzzy set [2] ̂A on E is described

as

̂A =
{
⟨x, 𝜇A (x) , 𝜈A (x)⟩ |x ∈ E

}
,



Intuitionistic Fuzzy Relational Equations in BL−Algebras 77

where for each x ∈ E, 𝜇A ∶ E → [0, 1] defines the degree of membership and 𝜈A ∶
E → [0, 1] defines the degree of non-membership, respectively, of the elements x ∈
E to ̂A and for each x ∈ E holds 0 ≤ 𝜇A(x) + 𝜈A(x) ≤ 1.

The class of all intuitionistic fuzzy sets over E is denoted by Int(E).

Remark In [2] IFS is defined with degree of membership 𝜇A ∶ E → [0, 1], degree

of non-membership and 𝜈A ∶ E → [0, 1] and uncertainity degree 𝜋A ∶ E → [0, 1]
of the elements x ∈ E to ̂A and for each x ∈ E holds 𝜇A(x) + 𝜈A(x) + 𝜋A(x) = 1, but

in this chapter we study IFS defined only with degree of membership an degree of

non-membership.

2.3 Intuitionistic Fuzzy Relations and Intuitionistic
Fuzzy Matrices

An intutionistic fuzzy relation (IFR) between two nonempty crisp sets X and Y is an

intutionistic fuzzy set on X × Y , written R ∈ Int(X × Y). X × Y is called support of

R. We write R ⊆ X × Y for the (conventional) fuzzy relation R between X and Y .

Any IFR R ∈ Int(X × Y) is given as follows:

R =
{
⟨(x, y) , 𝜇R (x, y) , 𝜈R(x, y)⟩ ||(x, y) ∈ X × Y , 𝜇R, 𝜈R ∶ X × Y → [0, 1]

}
,

0 ≤ 𝜇R(x, y) + 𝜈R(x, y) ≤ 1

for each (x, y) ∈ X × Y .

The matrix A = (𝜇A
ij , 𝜈

A
ij )m×n with 𝜇

A
ij , 𝜈

A
ij ∈ [0, 1] such that

0 ≤ 𝜇

A
ij + 𝜈

A
ij ≤ 1 for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

is called an intuitionistic fuzzy matrix (IFM) of type m × n.

When the IFR is over finite support, it is representable by IFM, written for con-

venience with the same letter. For instance, if the IFR R ∈ Int(X × Y) is over finite

support, its representative matrix is stipulated to be the matrix R = (𝜇R
xiyj

, 𝜈

R
xiyj

)m×n
such that

𝜇

R
xiyj

= 𝜇R(xi, yj), 𝜈

R
xiyj

= 𝜈R(xi, yj).

According to this stipulation instead of IFRs we consider intuitionistic fuzzy

matrices and operations with them.
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3 Direct Problem

Two finite IFMs A = (𝜇A
ij , 𝜈

A
ij )m×p and B = (𝜇B

ij , 𝜈
B
ij )p×n are called conformable in

this order, if the number of columns in A is equal to the number of rows in B.

Let A and B be finite conformable IFMs.

Definition 1 If A = (𝜇A
ij , 𝜈

A
ij )m×p and B = (𝜇B

ij , 𝜈
B
ij )p×n are finite IFMs, then the

matrix C = (𝜇C
ij , 𝜈

C
ij )m×n is called intuitionistic fuzzy s − t product of A and B in

BL−algebra, written C = A ∗BL B, if for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n it holds:

𝜇

C
ij = s3

p
k=1

(
tr(𝜇A

ik, 𝜇
B
kj)
)
, 𝜈

C
ij = t3

p
k=1

(
sr(𝜈A

ik, 𝜈
B
kj)
)
, (12)

where s3 and t3 are maximum s−norm and minimum t−norm respectively; for r =
1, 2, 3 we have the corresponding sr norm and tr norm, respectively, see Table 1.

Computing the product C = A ∗BL B is called direct problem resolution for ∗BL
composition of the matrices A and B. The resulting product-matrix C = A ∗BL B is

also IFM because of the duality principle.

Direct problem for ∗BL composition of matrices is solvable in polynomial time.

Example 1 Find:

1. Intuitionistic fuzzy Gödel product C = A ∗G B;

2. Intuitionistic fuzzy Goguen product C = A ∗P B;

3. Intuitionistic fuzzy Łukasiewicz product C = A ∗L B,

if

A =
⎛
⎜
⎜
⎝

⟨0.5, 0.4⟩ ⟨0.5, 0.5⟩ ⟨0.9, 0.1⟩ ⟨0.3, 0.6⟩
⟨0.8, 0.1⟩ ⟨0.1, 0.9⟩ ⟨0.7, 0.2⟩ ⟨0.5, 0.5⟩
⟨0.7, 0.3⟩ ⟨0.9, 0.1⟩ ⟨0.3, 0.6⟩ ⟨0.4, 0.5⟩

⎞
⎟
⎟
⎠
, (13)

B =
⎛
⎜
⎜
⎜
⎝

⟨0.7, 0.3⟩ ⟨0.9, 0.⟩ ⟨0.5, 0.5⟩
⟨0.9, 0.1⟩ ⟨0.3, 0.6⟩ ⟨0.2, 0.7⟩
⟨0.5, 0.5⟩ ⟨0.6, 0.3⟩ ⟨1., 0.⟩
⟨0.4, 0.5⟩ ⟨0.7, 0.2⟩ ⟨0.5, 0.5⟩

⎞
⎟
⎟
⎟
⎠

. (14)

1. Intuitionistic fuzzy Gödel product [20, 23] of A and B, written CG = A ∗G B, is

defined by

𝜇

C
ij =

p
∨

k=1
(𝜇A

ik ∧ 𝜇

B
kj), 𝜈

C
ij =

p
∧

k=1
(𝜈A

ik ∨ 𝜈

B
kj). (15)

for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Expression (15) is obtained from (12) for r = 3.

CG = A ∗G B can be computed by software given in [16, 27]—for the member-

ship degrees 𝜇
C
ij =

p
∨

k=1
(𝜇A

ik ∧ 𝜇

B
kj) one can use the max−min product code and for
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the non-membership degrees 𝜈
C
ij =

p
∧

k=1
(𝜈A

ik ∨ 𝜈

B
kj) the min−max product code is

useful:

CG = A ∗G B =
⎛
⎜
⎜
⎝

⟨0.5, 0.4⟩ ⟨0.6, 0.3⟩ ⟨0.9, 0.1⟩
⟨0.7, 0.3⟩ ⟨0.8, 0.1⟩ ⟨0.7, 0.2⟩
⟨0.9, 0.1⟩ ⟨0.7, 0.3⟩ ⟨0.5, 0.5⟩

⎞
⎟
⎟
⎠
. (16)

If the matrices A and B are IFM, then the matrix C = A ∗G B is also IFM, because

(max,min,Ns) is a dual triple [15].

2. Intuitionistic fuzzy Goguen product of A and B, written CP = A ∗P B, if for each

i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n

𝜇

C
ij =

p
∨

k=1
(𝜇A

ik . 𝜇
B
kj), 𝜈

C
ij =

p
∧

k=1
(𝜈A

ik ⊕ 𝜈

B
kj). (17)

In this case expression (17) is obtained from expression (12) for r = 2. The sign

⊕ is used for probabilistic sum, i.e. s2 (x, y) = x + y − xy = x ⊕ y, see Table 1.

The result in this case for (13) and (14) is the max−product for the membership

degrees 𝜇

C
ij =

p
∨

k=1
(𝜇A

ik . 𝜇
B
kj) and the min−probabilistic sum for non-membership

degrees 𝜈
C
ij =

p
∧

k=1
(𝜈A

ik ⊕ 𝜈

B
kj).

If the matrices A and B are IFM, then the matrix CP = A ∗P B is also IFM, because

(max, t2,Ns) is a dual triple [15].

One can find software only for computing the membership degrees as max-

product code in [16, 27].

CP = A ∗P B =
⎛
⎜
⎜
⎝

⟨0.45, 0.55⟩ ⟨0.54, 0.37⟩ ⟨0.9, 0.1⟩
⟨0.56, 0.37⟩ ⟨0.72, 0.1⟩ ⟨0.7, 0.2⟩
⟨0.81, 0.19⟩ ⟨0.63, 0.3⟩ ⟨0.35, 0.6⟩

⎞
⎟
⎟
⎠
. (18)

3. Intuitionistic fuzzy Łukasiewicz product of A and B, written CL = A ∗L B, if for

each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n

𝜇

C
ij =

p
∨

k=1

(
t1(𝜇A

ik, 𝜇
B
kj)
)
, 𝜈

C
ij =

p
∧

k=1

(
s1(𝜈A

ik , 𝜈
B
kj)
)
. (19)

In this case expression (19) is obtained from expression (12) for r = 1.
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The numerical example results:

CL = A ∗L B =
⎛
⎜
⎜
⎝

⟨0.4, 0.6⟩ ⟨0.5, 0.4⟩ ⟨0.9, 0.1⟩
⟨0.5, 0.4⟩ ⟨0.7, 0.1⟩ ⟨0.7, 0.2⟩
⟨0.8, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0.3, 0.6⟩

⎞
⎟
⎟
⎠
. (20)

The result in this case for (13) and (14) is the max−Łukasiewicz product for the

membership degrees 𝜇
C
ij =

p
∨

k=1

(
t1(𝜇A

ik, 𝜇
B
kj)
)

and the min−bounded sum for non-

membership degrees 𝜈
C
ij =

p
∧

k=1

(
s1(𝜈A

ik , 𝜈
B
kj)
)
.

There does not exist software neither for ∗L composition, nor for any of the mem-

bership or non-membership degrees.

If the matrices A and B are IFM, then the matrix CL = A ∗L B is also IFM, because

(max, t1,Ns) is a dual triple [3, 8, 15].

Definition 2 If A = (𝜇A
ij , 𝜈

A
ij )m×p and B = (𝜇B

ij , 𝜈
B
ij )p×n are IFMs, then the matrix

C = (𝜇C
ij , 𝜈

C
ij )m×n is called intuitionistic fuzzy t− →BL product of A and B in

BL−algebra, written C = A →BL B, if for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n it holds:

𝜇

C
ij = t3

p
k=1

(
(𝜇A

ik →BL 𝜇

B
kj)
)
, 𝜈

C
ij = s3

p
k=1

(
(𝜈A

ik
r
→BL 𝜈

B
kj)
)
, (21)

where

s3 and t3 are maximum s−norm and minimum t−norm respectively;
r
→BL= 𝛿 for r = 1, see (10);
r
→BL= 𝛾 for r = 2, see (7);
r
→BL= 𝜀 for r = 3, see (4).

Computing the product C = A →BL B is called direct problem resolution for →BL
composition of the matrices A and B . The resulting product-matrix C = A →BL B is

also IFM because of the duality principle.

Direct problem for →BL composition of matrices is solvable in polynomial time.

We give examples for obtaining intuitionistic t− →BL product of matrices in var-

ious BL−algebras.

Example 2 1. Intuitionistic fuzzy Gödel t− →G product of A and B, written C =
A →G B, if r = 3 in (21):

𝜇

C
ij =

p
∧

k=1
(𝜇A

ik →G 𝜇

B
kj), 𝜈

C
ij =

p
∨

k=1
(𝜈A

ik 𝜀 𝜈

B
kj), (22)

for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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If the matrices A and B are IFM, then the matrix C = A →G B is also IFM,

because (max,min,Ns) is a dual triple [15] and (5) is valid.

As example, we implement (22) to compute At →G CG, where At
is the trans-

posed of A (see (13)) and CG is due to (16).

̂BG = At →G CG =
⎛
⎜
⎜
⎜
⎝

⟨0.7, 0.3⟩ ⟨1., 0.⟩ ⟨0.5, 0.5⟩
⟨1, 0.⟩ ⟨0.7, 0.3⟩ ⟨0.5, 0.5⟩

⟨0.5, 0.4⟩ ⟨0.6, 0.3⟩ ⟨1., 0.⟩
⟨1., 0.⟩ ⟨1., 0.⟩ ⟨1., 0.⟩

⎞
⎟
⎟
⎟
⎠

. (23)

For computing (23) by software given in [16], one computes separately member-

ship degrees, using the code for min−𝛼 product and non-membership degrees

by the code for max−𝜖 product—in [16] it does not exist special code for the

→G intuitionistic product.

2. Intuitionistic fuzzy Goguen t− →P product of A and B, written C = A →P B, if

r = 2 in (21):

𝜇

C
ij =

p
∧

k=1
(𝜇A

ik →P 𝜇

B
kj), 𝜈

C
ij =

p
∨

k=1
(𝜈A

ik 𝛾 𝜈

B
kj) (24)

for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

If the matrices A and B are IFM, then the matrix C = A →P B is also IFM,

because (max, .,Ns) is a dual triple [15] and (8) is valid.

There does not exist software for computing C = A →P B.

As example, we implement (24) to compute At →P CP, where At
is the trans-

posed of A (see(13)) and CP is due to (18).

̂BP = At →P CP =
⎛
⎜
⎜
⎜
⎝

⟨0.7, 0.27⟩ ⟨0.9., 0.⟩ ⟨0.5, 0.3⟩
⟨0.9, 0.09⟩ ⟨0.7, 0.2⟩ ⟨0.3889, 0.5⟩
⟨0.5, 0.45⟩ ⟨0.6, 0.27⟩ ⟨1., 0.⟩
⟨1., 0.⟩ ⟨1., 0.⟩ ⟨0.875, 0.1⟩

⎞
⎟
⎟
⎟
⎠

. (25)

3. Intuitionistic fuzzy Łukasiewicz t− →L product of A and B, written

C = A →L B, if r = 1 in (21):

𝜇

C
ij =

p
∧

k=1
(𝜇A

ik →L 𝜇

B
kj), 𝜈

C
ij =

p
∨

k=1
(𝜈A

ik 𝛿 𝜈

B
kj) (26)

for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

If the matrices A and B are IFM, then the matrix C = A →L B is also IFM, because

(max, t1,Ns) is a dual triple [15] and (11) is valid.

There does not exist software for computing C = A →L B.
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As example, we implement (26) to compute At →L CL, where At
is the transposed

of A (see(13)) and CL is due to (20).

̂BL = At →L CL =
⎛
⎜
⎜
⎜
⎝

⟨0.7, 0.3⟩ ⟨0.9., 0.⟩ ⟨0.6, 0.3⟩
⟨0.9, 0.1⟩ ⟨0.7, 0.2⟩ ⟨0.4, 0.5⟩
⟨0.5, 0.5⟩ ⟨0.6, 0.3⟩ ⟨1., 0.⟩
⟨1., 0.⟩ ⟨1., 0.⟩ ⟨0.9, 0.1⟩

⎞
⎟
⎟
⎟
⎠

. (27)

Hence, if the matrices A and B are IFM, then the matrices A ∗BL B and A →BL B
are also IFM, because of the duality principle.

For finite conformable intuitionistic fuzzy matrices direct problem for ∗BL and

→BL compositions of matrices is solvable in polynomial time, but software is not

developed.

4 Inverse Problem

Let A and B be conformable IFMs.

(i) The equation

C = A ∗BL B, (28)

where one of the matrices on the left side is unknown and the other two matrices

are given, is called ∗BL intuitionistic fuzzy matrix equation.

(ii) The equation

C = A →BL B, (29)

where one of the matrices on the left side is unknown and the other two matrices

are given, is called →BL intuitionistic fuzzy matrix equation.

In (28) and (29) A = (aij)m× p stands for the IFM of coefficients, B = (bij)p×n –

for the IFM of unknowns, C = (cij)m×n is the right-hand side of the equation, aij, bij,

cij ∈ [ 0, 1 ] for each i and each j.
Solving (28) or (29) for the unknown matrix is called inverse problem resolution

for intuitionistic fuzzy matrix equation in BL−algebra. In this chapter we present

inverse problem resolution for (28).

For X = (
⟨
𝜇ij(x), 𝜈ij(x)

⟩
)p×n and Y = (

⟨
𝜇ij(y), 𝜈ij(y)

⟩
)p×n the inequality

X ≤ Y

means 𝜇ij(x) ≤ 𝜇ij(y) and 𝜈ij(x) ≥ 𝜈ij(y) for each i = 1,… , p, j = 1,… , n.

Definition 3 For the IRE A ∗BL B = C∶

(i) The matrix X0
p×m with x0ij ∈ [0, 1], when 1 ≤ i ≤ p, 1 ≤ j ≤ n, is called a

solution of A ∗BL B = C if A ∗BL X0 = C holds.
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(ii) The set of all solutions of (28) is called complete solution set and it is denoted

by 𝕏. If 𝕏 ≠ ∅ then (28) is called consistent, otherwise it is called inconsistent.
(iii) A solution ̌X ∈ 𝕏 is called a lower or minimal solution of (28) if for any X ∈ 𝕏

the relation X ≤ ̌X implies X = ̌X, where ≤ denotes the partial order, induced in

𝕏 by the order of [0, 1]. Dually, a solution ̂X ∈ 𝕏 is called an upper ormaximal
solution of (28) if for any X ∈ 𝕏 the relation ̂X ≤ X implies X = ̂X. When the

upper solution is unique, it is called the greatest or maximum solution. When

the lower solution is unique, it is called the least or minimum solution.

We present finding the greatest solution of intuitionistic fuzzy relational equation

(28), we also give a criterion for its consistency.

Theorem 1 Let A and C be finite IFMs, and let B be the set of all matrices B, such
that A ∗BL B = C. Then:

(i) B ≠ ∅ ⇔ At →BL C ∈B;
(ii) If the equation (28) is solvable for B then At →BL C is its greatest solution.

(iii) There exists polynomial time algorithm for computing At →BL C.

Here At
denotes the transpose of A.

For fuzzy relations (that are not intuitionistic), Theorem 1 is given in [3, 8].

Theorem 1 is valid for intuitionistic fuzzy relational equations R ∗BL Q = T and

R →BL Q = T , when the relations are over finite universal sets.

Corollary 1 The following statements are valid for the equation C = A ∗BL B:

(i) The Equation (28) is solvable iff C = A ∗BL (At →BL C) holds;
(ii) There exists polynomial time algorithm for establishing solvability of the equa-

tion (28) and for computing its greatest solution ̂BBL = At →BL C.

If the matrices are fuzzy (but not intuitionistic), results for the greatest solution

of a system of fuzzy linear equations are obtained in references: for max−min and

max−product composition in [21, 22], for max−Łukasiewicz—in [25], and for the

minimum solution for min−max composition—in [21].

Example 3 The greatest solution of IFRE (28), if A is given by (13):

(i) in Goguen algebra, when C is the IFM (16), is ̂BG = At →G C, already com-

puted in Example 2 (1), see (23);

(ii) in Product algebra, when C is the IFM (18), is ̂BP = At →P C, already computed

in Example 2 (2), see (25);

(iii) in Łukasiewicz algebra, when C is the IFM (20), ̂BL = At →L C, already

computed in Example 2 (3), see (27).

In particular, the results are valid for intuitionistic fuzzy linear systems of

equations.
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5 Conclusions

While finding the greatest solution of IFRE needs polynomial time, finding com-

plete solution set is an open problem and supplementary—it has exponential time

complexity [6, 21].

There do not exist methods and software for solving inverse problem for intuition-

istic fuzzy relational equations.

Inverse problem resolution for (29) is an open problem.
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Intuitionistic Fuzzy Weakly Open
Mappings

Biljana Krsteska

Abstract In this paper, we will introduce and characterize intuitionistic fuzzy
weakly open mappings between intuitionistic fuzzy topological spaces. We will
investigate their properties and relationships with other early defined classes of
intuitionistic fuzzy mappings.

Keywords Intuitionistic fuzzy topology ⋅ Intuitionistic fuzzy weakly open
mapping ⋅ Intuitionistic fuzzy weakly closed mapping

1 Introduction and Preliminaries

After the introduction of fuzzy sets by Zadeh [3], there have been numbers of
generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets
introduced by Atanassov [1] is one among them. Using the notion of intuitionistic
fuzzy sets, Coker [2] introduced the notion of intuitionistic fuzzy topological
spaces. In this paper, we will introduce and characterize intuitionistic fuzzy weakly
open mappings between intuitionistic fuzzy topological spaces and also we study
these mappings in relation to some other types of already known mappings.

Throughout this paper, ðX, τÞ, ðY , σÞ and ðZ, ηÞ, or simply X, Y and Z, are
always means an intuitionistic fuzzy topological spaces [2].

2 Intuitionistic Fuzzy Weakly Open Mappings

Definition 2.1 A mapping f: (X, τ) → (Y, σ) is said to be an intuitionistic fuzzy
weakly open if f(A)≤ Intf(ClA) for each intuitionistic fuzzy open set A in X.
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It is evident that, every intuitionistic fuzzy open mapping is an intuitionistic
fuzzy weakly open. But the converse need not be true in general.

Example 2.1 Let X = fa, b, cg and τ= f0X, A, 1Xg and σ = f0X, B, 1Xg, where
A = ⟨x, ( a

0, 5,
b
0, 3,

c
0, 6), (

a
0, 5,

b
0, 3,

c
0, 5)⟩ and B = ⟨x, ( a

0, 2,
b
0, 4,

c
0, 3), (

a
0, 7,

b
0, 6,

c
0, 7)⟩. Then

the identity function id: ðX, τÞ→ ðX, σÞ is an intuitionistic fuzzy weakly open
mapping which is not an intuitionistic fuzzy open mapping.

Theorem 2.3 Let f: (X, τ) → (Y, σ) be a surjective mapping. The following
conditions are equivalent:

(i) f is an intuitionistic fuzzy weakly open;
(ii) f(IntA))≤ Intf(AÞ for each intuitionistic fuzzy set A of X;
(iii) Intf − 1(B)≤ f − 1(IntB) for each intuitionistic fuzzy set B of Y;
(iv) f − 1(ClB)≤Clf − 1(B) for each intuitionistic fuzzy set B of Y;
(v) f(A) is intuitionistic fuzzy open in Y, for each intuitionistic fuzzy θ− open set A

in X;

Proof

(i) ⇒ (ii) Let A be any intuitionistic fuzzy set of X and x(a,b) be an intuitionistic
fuzzy point in IntA. Then, there exists an intuitionistic fuzzy open
neighbourhood V of x(a,b) such that V≤ClV≤A. Then, we have
f(V)≤ f(ClV)≤ f(A). Since f is intuitionistic fuzzy weakly open,
f(V)≤ Intf(ClV)≤ Intf(A). It implies that f(x(a,b)) is an IFP in Intf(A).
This shows that x(a, b)∈ f − 1(intf(A)). Thus IntθA≤ f − 1(Intf(A)), and
so we obtain f(intA)≤ Intf(A).

(ii) ⇒ (i) Let G be an intuitionistic fuzzy open set in X. As G≤ Intθ(ClG),
f(G)≤ f(Intθ(ClG))≤ Intf(ClG). Hence, f is intuitionistic fuzzy weakly
open.

(ii) ⇒ (iii) Let B be any intuitionistic fuzzy set of Y. Then by (ii),
f(Intθ(f

− 1(B))≤ IntB. Therefore, Intθf − 1ðB)≤ f − 1ðIntB).
(iii) ⇒ (ii) This is obvious.
(iii) ⇒ (iv) Let B be any intuitionistic fuzzy subset of Y. By (iii), we have

1−Clθf − 1(B) = Intθð1− f − 1(B)) = Intθf
− 1(1−B)

≤ f − 1(Int(1−B)) = f − 1ð1−ClBÞ= 1 − f − 1(ClB). Therefore, we
obtain f − 1(ClB)≤Clθf − 1(B).

(iv) ⇒ (iii) It is similar to (iii) ⇒ (iv).
(iv) ⇒ (v) Let A be an intuitionistic fuzzy θ− open set in X. Then 1 − f(A) is

an intuitionistic fuzzy set of Y and by (iv), f − 1(Cl(1− f(A))
≤Clθf − 1ð1− f(A)Þ. Therefore, 1− f − 1(Intf(A))≤Clθ(1−A) = 1−A.
Then, A≤ f − 1(Intf(A)) which implies f(A)≤ Intf(A). Hence f(A) is
intuitionistic fuzzy open in Y.

(v) ⇒ (vi) Let B be any intuitionistic fuzzy set in Y and A be an intuitionistic
fuzzy θ− closed set in X such that f − 1(B)≤A. Since 1 − A is
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intuitionistic fuzzy θ− open in X, by (v), f(1 − A) is intuitionistic
fuzzy open in Y. Let F = 1 − f(1 − A). Then F is intuitionistic fuzzy
closed and also B≤F. Now we have f − 1(F) = f − 1(1 − f(1 − A)) =
1− f − 1(f(A)≤A.

(vi) ⇒ (iv) Let B be any intuitionistic fuzzy set in Y. Then A =Clθ(f − 1(B)) is
intuitionistic fuzzy θ− closed in X and f − 1(B)≤A. Then there exists
an intuitionistic fuzzy closed set F in Y containing B such that
f − 1(F)≤A. Since F is intuitionistic fuzzy closed, we obtain that
f − 1(ClB)≤ f − 1(F)≤Clθf − 1(B). ■

Theorem 2.4 Let f: (X, τ) → (Y, σ) be a mapping. Then the following statements
are equivalent:

(i) f is an intuitionistic fuzzy weakly open mapping;
(ii) for each intuitionistic fuzzy point x(a,b) in X and each intuitionistic fuzzy

open set G of X containing x(a,b), there exists an intuitionistic fuzzy open set
F containing f(x(a,b)) such that F≤ f(ClG).

Proof

(i) ⇒ (ii) Let x(a,b) be an IFP in X and G be an intuitionistic fuzzy open set in X
containing x(a,b). Since f is intuitionistic fuzzy weakly open, f(G) ≤ Intf
(ClG). Let F = Intf(ClG). Hence F ≤ f(ClG), with F containing f(x(a,b)).

(ii) ⇒ (i) Let G be an intuitionistic fuzzy open set in X and let y(a,b) ∈ f(G) By
(ii), F ≤ f(ClG) for some open set F in Y containing y(a,b). Hence we
have, y(a,b)∈F ≤ Intf(ClG). This shows that f(G) ≤ Intf(ClG) and f is
intuitionistic fuzzy weakly open. ■

Theorem 2.5 Let f: (X, τ) → (Y, σ) be a bijective mapping. Then the following
statements are equivalent:

(i) f is intuitionistic fuzzy weakly open;
(ii) Clf(A) ≤ f(ClA) for each intuitionistic fuzzy open set A in X;
(iii) Clf(IntB) ≤ f(B) for each intuitionistic fuzzy closed set B in X.

Proof

(i) ⇒ (iii) Let B be an intuitionistic fuzzy closed set in X. Then we have
f(1−B) = 1 − f(B) ≤ Intf(Cl(1 − B)) and so 1 − f(B) ≤ 1 − Clf(IntB).
Hence Clf(IntB) ≤ f(B).

(iii) ⇒ (ii) Let A be an intuitionistic fuzzy open set in X. Since Cl(A) is an
intuitionistic fuzzy closed set and A ≤ Int(ClA) by (iii), we have Clf
(A) ≤ Clf(Int(ClA)) ≤ fCl(A).
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(ii) ⇒ (iii) Similar to (iii) ⇒ (ii).
(iii) ≤ (i) Clear. ■

The proof of the following theorem is obvious and thus omitted.

Theorem 2.6 For a mapping f: (X, τ) → (Y, σ) the following statements are
equivalent:

(i) f is intuitionistic fuzzy weakly open;
(ii) for each intuitionistic fuzzy closed set B of X, f(IntB) ≤ Intf(B);
(iii) For each intuitionistic fuzzy open set A of X, f(Int(ClA)) ≤ Int(fCl(A));
(iv) for each intuitionistic fuzzy regular open set A of X, f(A) ≤ Intf(ClA);
(v) for every intuitionistic fuzzy preopen set A of X, f(A) ≤ Intf(ClA);
(vi) for every intuitionistic fuzzy θ− open set A of X, f(A) ≤ Intf(ClA).

Theorem 2.7 If f: (X, τ) → (Y, σ) is intuitionistic fuzzy weakly open mapping and
Intf(ClA) ≤ f(A) for every intuitionistic fuzzy open set A of X, then f is intuitionistic
fuzzy open mapping.

Proof Let A be an intuitionistic fuzzy open set of X. Since f is intuitionistic fuzzy
weakly open f(A) ≤ Intf(ClA). However, since Intf(ClA) ≤ f(A) for every intu-
itionistic fuzzy open set A of X, we obtain that f(A) = Intf(ClA) and therefore f(A)
is intuitionistic fuzzy open set. Hence f is intuitionistic fuzzy open mapping. ■

Definition 2.2 A mapping f: (X, τ) → (Y, σ) is said to be intuitionistic fuzzy contra
open (resp. intuitionistic fuzzy contra-closed) if f(A) is an intuitionistic fuzzy closed
set (resp. intuitionistic fuzzy open) set of Y for each intuitionistic fuzzy open
(resp. intuitionistic fuzzy closed) set A in X.

Theorem 2.8

(i) If f: (X, τ) → (Y, σ) is intuitionistic fuzzy preopen and intuitionistic fuzzy
contra open, then f is intuitionistic fuzzy weakly open mapping.

(ii) If f: (X, τ) → (Y, σ) is intuitionistic fuzzy contra closed, then f is an
intuitionistic fuzzy weakly open mapping.

Proof

(i) Let A be an intuitionistic fuzzy open set of X. Since f is intuitionistic
fuzzy preopen f(U) ≤ Int(Clf(A)) and since f is intuitionistic fuzzy
contra-open, f(U) is intuitionistic fuzzy closed. Therefore, f(A) ≤ Int(Clf
(A)) = Intf(A) ≤ Intf(ClA) ≤ Intf(ClA).

(ii) Let A be an intuitionistic fuzzy open set of X. Then, we have f(A) ≤ f
(ClA) ≤ Intf(ClA). ■

Remark 3.9 The converse of Theorem 2.8 does not hold. The mapping f defined on
Example 2.1 is an intuitionistic weakly open mapping but it is not an intuitionistic
fuzzy preopen mapping.
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Is ‘Fuzzy Theory’ An Appropriate Tool
for Large Size Decision Problems?

Ranjit Biswas

Abstract This chapter presents a review work in brief of the work [11] which is on
a recently unearthed domain of the intuitionistic fuzzy set theory of Atanassov
[1-8]. The most useful soft computing set theories [17–23, 25–29, 31, 32] being
used to solve the real life decision making problems are: fuzzy set theory, intu-
itionistic fuzzy set theory (vague sets are nothing but intuitionistic fuzzy sets,
justified and reported by many authors), i–v fuzzy set theory, i-v intuitionistic fuzzy
set theory, L-fuzzy set theory, type-2 fuzzy set theory, and also rough set theory,
soft set theory, etc. While facing a decision making problem, the concerned deci-
sion maker in many cases choose one or more of these soft computing set theories
by his own choice. Corresponding to each element x of all the universes involved in
the decision problem, the value of µ(x) is proposed by the concerned decision
maker by his best possible judgment. In real life situation, most of the decision
making problems are of large size in the sense of the number of universes and the
number of elements in the universes. For example, the populations in Big Data
Statistics, be it R-Statistics or NR-Statistics [10], are all about big data; and decision
analysis in many such cases involve the application of various soft-computing tools.
But there arises a question: Is ‘Fuzzy Theory’ an appropriate tool for solving large
size decision problems? In the work [11] a rigorous amount of mathematical
analysis, logical analysis and justifications have been made to answer this question,
introducing the ‘Theory of CIFS’ (Cognitive Intuitionistic Fuzzy System). In this
chapter we revisit the mathematical analysis of [11] in brief, and discuss only the
important issues of the ‘Theory of CIFS’ presented in [11]. Many of the decision
problems are solved in computers using fuzzy numbers. It is observed that the
existing notion of triangular fuzzy numbers and trapezoidal fuzzy numbers are
having major drawbacks to the decision makers while solving problems using
computer programs or softwares, the issue which is also discussed in this chapter.
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Keywords CIFS ⋅ Atanassov trio functions ⋅ Atanassov initialization ⋅
Atanassov constraint ⋅ Atanassov trio bags ⋅ h-bag ⋅ m-bag ⋅ n-bag ⋅
Atanassov processing time (APT) ⋅ CESFM ⋅ T-fuzzy number ⋅ Z-fuzzy
number ⋅ T-intuitionistic fuzzy number ⋅ Z-intuitionistic fuzzy number

1 Introduction

The ‘Theory of CIFS’ (Cognitive Intuitionistic Fuzzy System) introduced in [11] is
initiated with the most important question (but yet an open unsolved problem) in
the theory of soft-computing which is as mentioned below:

How Does the Cognition System of a Human or of an Animal or Bird (or of
any living thing which has brain) Evaluate the Membership Value µ(x)?

The work in [11] is based on philosophical as well as logical views on the
subject of decoding the ‘progress’ of decision making process in the
Human/Animal cognition systems while evaluating the membership value µ(x) in a
fuzzy set or in an intuitionistic fuzzy set or in any such soft computing set model or
in a crisp set. By ‘cognition system’ it is meant the cognition system of a human
being or of a living animal or of a bird or of any living thing which has brain
(ignoring the machines, robots, or software which have artificial intelligence).
While a hungry lion finds his food like one cow or one buffalo or one deer (or any
other animal of his own food list) in his forest, he decides a lot by his best possible
judgment on a number of significant parameters before he starts to chase and also
even during the real time period of his chasing. Even in many situations he decides
whether it is appropriate to chase, or even after chasing he decides every moment
whether to give up chasing or to continue chasing without any problem of his own
security, etc. No doubt that he takes these real time decisions by his best possible
judgment using his own logic/theory, which is not known to us. But whatever be
the different type of logic/theory be used by different kind of decision makers in
various decision problems, the kernel of their brain executes a unique common
logic of CIFS, irrespective of their intellectual capabilities. This was fact during
stone age period of earth, and will remain so for ever on this earth.

In this chapter we revisit the ‘Theory of CIFS’ [11] in brief, and discuss some of
the important issues of it. At the end we identify major demerits of the existing
notion of triangular fuzzy numbers and trapezoidal fuzzy numbers due to which
computational difficulties are being faced by the decision makers while solving their
problems in computers using softwares.
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2 Theory of CIFS: A Revisit in Brief

The Theory of CIFS (Cognitive Intuitionistic Fuzzy System) in [11] says that a
crisp decision maker or a fuzzy decision maker (or any soft decision maker) can not
decide on any decision making issue without using intuitionistic fuzzy set
(IFS) theory, but he does not necessarily need to have any knowledge of intu-
itionistic fuzzy set theory. The permanent residence of the ‘Theory of IFS’ inside
the brain (CPU) of every living thing (i.e. every decision maker) is a hidden truth,
not by choice of the concerned living thing. In fact the ‘Theory of IFS’ is a
permanent and hidden resident inside the kernel (i.e. at the lowest level) of the
processor/brain of every cognition system (be of human or of animal or of bird or of
any living thing) in the form of like a ‘in-built system-software’ in the Operating
System. This software like system automatically gets executed at the lowest level
based upon the platform of intuitionistic fuzzy theory while evaluating any mem-
bership value µ(x) for a fuzzy set or for any soft-computing set or crisp set. The
evaluated µ(x) is always the output at higher level. Although the execution happens
in a hidden way at the lowest level (like execution of a machine language program
in CPU) but it continuously outputs to update the estimated value of µ(x) at higher
level in the cognition system till some amount of time. But for this, it does not
require that a fuzzy decision maker or a crisp ordinary decision maker must be
aware or knowledgeable about IFS Theory. Consider the case of a FORTRAN
programmer who chooses the tool ‘FORTRAN language’ by his own choice and
executes his program written by him in FORTRAN language corresponding to a
given engineering problem. But for this, it does not require that the programmer
must be aware or knowledgeable about machine language programming!. The
analogous fact is true for a fuzzy decision maker too, who estimates µ(x) using the
domain of his fuzzy knowledge whereas at the lowest level inside his cognition
system the exact execution happens under intuitionistic fuzzy systems only, the
theory which is established in [9, 11].

The fuzzy sets are a special case of intuitionistic fuzzy sets, but the existing
concept that “the intuitionistic fuzzy sets are higher order fuzzy sets” is incorrect
(an example of similar incorrect concept can be imagined if somebody says that
“fuzzy sets can be viewed as higher order crisp sets”!). It is fact that the Theory of
IFS is the most appropriate model for translation of imprecise objects while the
fuzzy sets are ‘lower order’ or ‘lower dimensional’ intuitionistic fuzzy sets as
special case. It is rigorously justified in [11] with examples that it may not be an
appropriate choice to use fuzzy theory if the problem under study involves esti-
mation of membership values for large number of elements. Unfortunately, most of
the real life problems around us consist of many universes where each universe is
having many elements. However, two interesting examples of ‘decision making
problems’ with solutions are presented in [11] out of which one example shows the
dominance of the application potential of intuitionistic fuzzy set theory over fuzzy
set theory, and the other shows the converse i.e. the dominance of the application
potential of fuzzy set theory over intuitionistic fuzzy set theory in some cases
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(where decision makers are pre-selected and most intellectual in the context of the
subject pertaining to the concerned problem).

The following two hypothesis are hidden facts in fuzzy computing or in any soft
computing process, which have been established in the Theory of CIFS [11] with a
detail analysis:-

Fact-1:
A decision maker (intelligent agent) can never use or apply ‘fuzzy theory’ or any
soft-computing set theory without intuitionistic fuzzy system.

Fact-2:
The Fact-1 does not necessarily require that a fuzzy decision maker (or a crisp
ordinary decision maker or a decision maker with any other soft theory models or
a decision maker like animal/bird which has brain, etc.) must be aware or
knowledgeable about IFS Theory!

The Theory of CIFS was initiated in [11] with the fundamental issues like: How
the estimation process of the “membership value µ(x) of an element x to belong to a
fuzzy set A or an IFS A” is initiated in the cognition system at time t = 0 and
completed after time t = T (>0); How does in reality the ‘progress’ of decisionmaking
process for µ(x) actually happen inside the brain with respect to the variable ‘time’.

Suppose that the complete processing time taken by the decision maker to come
to his final judgment about μ(x) is T (>0) unit of time. In [11] we designate this
time of processing for evaluating the membership value μ(x) as “Atanassov Pro-
cessing Time” (APT) for the element x corresponding to this decision maker, and
denoted by the notation APT(x) = T. Thus, the value of μ(x) is proposed by the
decision maker for which the time-cost is T (>0), and hence in fuzzy theory one can
compute υ(x) = 1 − μ(x) by doing an arithmetic just, without any further cost of
time towards decision process. There is in fact no element of soft-computing in
calculating the value of υ(x) in fuzzy theory.

In [11] the Atanassov Trio Functions and Atanassov Constraint are defined as
below:

Let R* be the set of all non-negative real numbers. Consider a pre-fixed fuzzy
decision maker. For any given element x of the set X to belong to the fuzzy set A of
X, the membership value μ(x) is the final output of a hidden “cognitive intuitionistic
fuzzy system” in the brain of the fuzzy decision maker where the following three
functions are co-active:-

(i) h(x, t) called by ‘Hesitation Function’ whose domain is X × R* and range is
[0,1]. For a fixed element x of the set X, h(x, t) is a non-increasing continuous
function of time t.

(ii) m(x, t) called by ‘Membership Function’ whose domain is X × R* and range
is [0,1]. For a fixed element x of the set X, m(x, t) is a non-decreasing
continuous function of time t.

(iii) n(x, t) called by ‘Non-membership Function’ whose domain is X × R* and
range is [0,1]. For a fixed element x of the set X, n(x, t) is a non-decreasing
continuous function of time t.
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These three functions <m(x, t), n(x, t), h(x, t)> are called Atanassov Trio
Functions (AT functions).

These functions are subject to the constraint:

h(x, t) +m(x, t) + n(x, t) = 1 for any time t. Atanassov Constraintð Þ.

Each of the AT functions is to be basically treated as a function of time t,
because it is always considered once an element x be picked up for evaluation by
the decision maker. For a fixed decision maker (intelligent agent), corresponding to
every element x of X to belong to the fuzzy set A, there exists Atanassov Trio
Functions i.e. a set of three AT functions. The value μ(x) in the fuzzy set A comes
at the instant t = T from the function m(x, t). This function m(x, t) finally converges
at the value μ(x) after a course of sufficient growth for a total T amount of time. The
function m(x, t) gets feeding from h(x, t) in a continuous manner starting from time
t = 0 till time t = T. None else feeds m(x, t).

The membership value μ(x) for an element x in a fuzzy set A (or in an intu-
itionistic fuzzy set or in a soft computing set) can never be derived without the
activation of AT functions in the cognition system, and this happens to any brain of
human being or animal or of any living thing, irrespective of his education or
knowledge. This was a fact in the stone age of the earth too, and will continue to
remain as a fact for ever. A crisp decision maker or a fuzzy decision maker or any
soft computing decision maker does not need to have knowledge about ‘Intu-
itionistic Fuzzy Set Theory’.

At time t = 0 i.e. at the starting instant of time for evaluating the membership
value μ(x), any decision process in the cognition system starts with AT functions
with the following initial values:-

hðx, 0Þ=1, with mðx, 0Þ=0 and nðx, 0Þ=0.

The clock starts from time t = 0 and the whistle blows from this initialization
only. This initialization <0, 0, 1> is called by ‘Atanassov Initialization’.

It is important to understand that Atanassov Initialization is not initialized by any
choice of the decision maker or by any decision of the decision maker or by any
prior information from the kernel of the cognition system to the outer-sense of the
decision maker. It is never initialized by the decision maker himself, but it gets
automatically initialized at the kernel during the execution of any decision making
process. By decision maker, we shall mean here a human or an animal or a bird or
any living thing which has a brain (we exclude the cases of intelligent robots or
intelligent machines or intelligent software which have artificial intelligence).

During the progress of decision making process with respect to the variable
‘time’ in the brain while evaluating the membership value μ(x), imagine that the
values of AT functions are stored and updated continuously, with respect to time, in
the three bags (imaginary bags): h-bag, m-bag and n-bag. The updating happens
like in computer memory, always replacing their previous values. These three bags
are called by Atanassov Trio Bags (see Fig. 1).
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It is obvious that at time t = 0 each of the Atanassov Trio Bags contains the
value corresponding to Atanassov Initialization, not else. Immediately after that, the
m-bag and n-bag start getting credited with zero or more amount of values con-
tinuously from the h-bag, subject to fulfillment of Atanassov Constraint at every
instant of time t. But there never happens a reverse flow, i.e. the h-bag does never
get credited from any or both of m-bag and n-bag.

While evaluating the membership value μ(x) of an element x, the Atanassov
Initialization happens at time t = 0 at the human cognition system (or at the
cognition system of the animal or bird whoever be the decision maker). At the very
next instant of time, i.e. from time t > 0, the following actions happens simulta-
neously to the AT functions subject to fulfillment of Atanassov constraint (as-
suming that the transaction time from h-bag to any bag is always nil):

(i) h(x, t) starts reducing (at least non-increasing), and
(ii) m(x, t) as well as n(x, t) start increasing (non-decreasing).

After certain amount of time, say after t = T (>0) the processing of the decision
making process stops (converges) at the following state, say:

h(x, T) = πðxÞ, with m(x, T) = μðxÞ and n(x, T) = ϑðxÞ

where πðxÞ+ μðxÞ+ ϑðxÞ=1, and after which there is no further updation happens
to the values of AT functions in the cognition system (Fig. 2).

Thus at the end of the convergence process at Tth instant of time where T is the
value of APT(x), the following results outcome:-

Lt
t→T

mðx, tÞ= μðxÞ, Lt
t→T

nðx, tÞ=ϑðxÞ and Lt
t→T

hðx, tÞ= πðxÞ,

such that μðxÞ+ ϑðxÞ+ πðxÞ=1.
It is fact that the cognition system of a decision maker (fuzzy decision maker or

intuitionistic fuzzy decision maker or crisp decision maker) can not evaluate the
membership value µ(x) of an element x without initiating from the Atanassov

Fig. 1 Atanassov Trio bags
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Initialization “h(x,0) = 1 with m(x,0) = 0 and n(x,0) = 0” by default, irrespective of
his awareness/knowledge of IFS Theory (see Fig. 3).

It is because of the fact that this intuitionistic fuzzy processing happens at the
kernel of the brain (CPU) of the decision maker, analogous to the case of execution
of FORTRAN codes in CPU, irrespective of the awareness/knowledge of the
concept of Machine Language by the concerned ‘higher level language program-
mer’ (see Fig. 4). Here the decision maker may be a fuzzy decision maker or any
kind of decision maker (who may be a layman of IFS theory or of Fuzzy theory, or
who could be even an animal or a living thing having brain).

The four variable parameters m, n, h and t could be viewed to form a
4-dimensional hyperspace in the Theory of CIFS. Since our interest is on the trio m,
n and h only, we consider 3-D geometry with three mutually perpendicular axes
called by m-axis, n-axis and h-axis, forming a 3-D mnh-space.

Fig. 2 Evaluation of μ(x) starting from ‘Atanassov initialization’

Fig. 3 Cognition system of a
decision maker in CIFS, be it
a human or animal or bird or
any living thing which has
brain
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The following proposition is reproduced from [11] to justify the weak situation
to be faced by the decision makers in case the indeterministic part be ignored while
solving large size decision problems using any soft-computing set theory, and then
to propose the next proposition as an extension for the CIFS.

Proposition 1 For any decision maker, be it a human or an animal or any living
thing which has brain, it is impossible that his brain (kernel of his cognitive system)
does always have the indeterministic component (i.e. the hesitation component or
undecided component) h(x, t) to be nil for the element x of the universe X, while
going to propose the corresponding membership value μ(x).

Proof Suppose that APT(x) = T.
Consider the 2-D curve m = m(x, t) on tm-plane (as shown in Fig. 5). Suppose

that Am is the area under the curve m = m(x, t) bounded by the lines t-axis, m-axis

Fig. 4 CPU of a computer with common machine language at the kernel irrespective of any
higher level language of the programmer by his own choice

Fig. 5 The curve m = m(x, t) on tm-plane
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and the line t = T. Clearly, corresponding to a given decision maker the quantity Am

is not a function of t but of the parameter x. □

Now consider the 2-D curve n = n(x, t) on tn-plane (as shown in Fig. 6).
Suppose that An is the area under the curve n = n(x, t) bounded by the lines t-axis,
n-axis and the line t = T.

Also consider the 2-D curve h = h(x, t) on th-plane (as shown in Fig. 7).
Suppose that Ah is the area under the curve h = h(x, t) bounded by the lines

t-axis, h-axis and the line t = T.
Now consider the Atanassov Constraint

m(x, t) + n(x, t) + h(x, t) = 1.

Integrating with respect to time t we get,

ZT

0

mðx, tÞdt +
ZT

0

nðx, tÞdt+
ZT

0

hðx, tÞdt=T

or, Am +An +Ah =T

ð1Þ

Fig. 6 The curve n = n(x, t) on tn-plane

Fig. 7 The curve h = h(x, t) on th-plane
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Now let us agree that in this real world it is quite obvious that nothing can
happen or can be achieved at the cost of zero amount of time. Even for light particle
to travel one nano centimeter, it takes some infinitesimal small amount of time Δt
which is greater than zero. Consequently, in Fig. 5 it is obvious that the curve OVC
does always starts from the origin, for which t = 0 and m = 0.

Thus, from the Fig. 5, it is obvious that

area amount Am <Area of the rectangle OACB.

(There is no chance under any circumstances that the Area amount Am = Area of
the rectangle OACB, unless both are equal to zero).

Therefore, Am <T. μðx) in general, excluding the case μðx) = 0 for which the
equality Am <T. μðx) holds good.

In a similar way it can be established that An <T.ϑ(x) in general, excluding the
case ϑ(x) = 0 for which the equality An <T.ϑ(x) holds good.

And also it is true that Ah >T.πðxÞ in general, excluding the case πðxÞ=1 for
which the equality Ah >T.πðxÞ holds good.

Consider now the following three cases:-

Case(1) µ(x) = 0 and ϑ(x) > 0. and
Case(2) µ(x) > 0 and ϑ(x) = 0
Case(3) µ(x) > 0 and ϑ(x) > 0

It is obvious that for all of these three cases

Am +An < ðT. μðx) +T.ϑðxÞÞ ð2Þ

Now let us prove our proposition by contradiction.
For this, let us suppose that:
For any decision maker, be it a human or an animal or any living thing, it is

possible that his brain (kernel of his cognitive system) does always have the
indeterministic component (i.e. the hesitation component or undecided component)
h(x, t) to be nil while going to propose the membership value μ(x).

Therefore, h(x, t) = 0 for every t ∈ [0,T].
From (1), T = Am + An

Therefore, T < (T. µ(x) + T.ϑ(x)), using (2).
This means that µ(x) + ϑ(x) > 1, which is not possible in any soft-computing set

theory (for instance, not possible in Fuzzy Set theory). Hence the Proposition.

Proposition 2 For any decision maker in the Theory of CIFS, be it a human or an
animal or any living thing which has brain, it is impossible that his brain (kernel of
his cognitive system) does always have the indeterministic component (i.e. the
hesitation component or undecided component) h(x, t) to be nil for the element x of
the universe X, during the progress of decision making process for evaluating µ(x).
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Proof Suppose that APT(x) = T. Consider any arbitrary time τ < T.
Consider the 2-D curve m = m(x, t) on tm-plane (as shown in Fig. 8). Suppose

that am is the area under the curve m = m(x, t) bounded by the lines t-axis, m-axis
and the line t = τ. Clearly, assuming the amount τ now fixed here, the quantity am is
not a function of t but of the parameter x. □

Now consider the 2-D curve n = n(x, t) on tn-plane (as shown in Fig. 9).
Suppose that an is the area under the curve n = n(x, t) bounded by the lines t-axis,
n-axis and the line t = τ.

Also consider the 2-D curve h = h(x, t) on th-plane (as shown in Fig. 10).
Suppose that ah is the area under the curve h = h(x, t) bounded by the lines

t-axis, h-axis and the line t = τ.

Fig. 8 The curve m = m(x, t) on tm-plane

Fig. 9 The curve n = n(x, t) on tn-plane
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Now consider the Atanassov Constraint

m(x, t) + n(x, t) + h(x, t) = 1.

Integrating with respect to time t we get,

Zτ

0

mðx, tÞdt+
Zτ

0

nðx, tÞdt+
Zτ

0

hðx, tÞdt= τ

or, am + an + ah = τ

ð1Þ

Now let us agree that in this real world it is quite obvious that nothing can
happen or can be achieved at the cost of zero amount of time. Even for light particle
to travel one nano centimeter, it takes some infinitesimal small amount of time Δt
which is greater than zero. Consequently, in Fig. 8 it is obvious that the curve OVC
does always starts from the origin, for which t = 0 and m = 0.

Thus, from the Fig. 8, it is obvious that

area amount am <Area of the rectangle OPQR.

(There is no chance under any circumstances that the Area amount am = Area of
the rectangle OPQR, unless both are equal to zero).

Therefore, am < τ. m(x, τ) in general, excluding the case m(x,τ) = 0 for which
the equality am = τ. m(x, τ) holds good.

In a similar way it can be established that an < τ. n(x, τ) in general, excluding the
case n(x, τ) = 0 for which the equality an = τ. n(x,τ) holds good.

Similarly, it is true that ah > τ. h(x, τ) in general, excluding the case h(x,τ) = 1
for which the equality ah = τ. h(x, τ) holds good.

Consider now the following two cases:-

Case(1): m(x, τ) = 0 and n(x, τ) > 0. and
Case(2): m(x, τ) > 0 and n(x, τ) = 0. and
Case(3): m(x, τ) > 0 and n(x, τ) > 0.

Fig. 10 The curve h = h(x, t) on th-plane
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It is obvious that for all of these three cases

am + an < ðτ.mðx, τÞ+ τ.nðx, τÞÞ ð2Þ

Now let us prove our proposition by contradiction.
For this, let us suppose that:
For any decision maker, be it a human or an animal or any living thing, it is

possible that his brain (kernel of his cognitive system) does always have the
indeterministic component (i.e. the hesitation component or undecided component)
h(x, t) to be nil during the progress of decision making process for evaluating µ(x).

Therefore, h(x, t) = 0 for every t ∈ [0, τ].
From (1), τ = am + an
Therefore, τ < (τ. m(x, τ) + τ. n(x, τ)), using (2).
This means that m(x, τ) + n(x, τ) > 1, which is not possible in the Theory of

CIFS. Hence the Proposition.

3 Is ‘Fuzzy Theory’ an Appropriate Tool for Large Size
Decision Problems?

It is observed that 0 ≤ π(x) ≤ 1 for every x of the universe X, whoever be the
decision maker. As a special case, it may happen for one or few elements in the
IFS A that π(x) = 0. But in ground reality, for a decision maker by the best possible
processing in his cognition system, the data ‘π(x) = 0’ can not be true in general for
all and across all the elements x of any universe X while proposing an IFS A of X
(as justified further in Proposition 1 and 2). Even if it be true for one or few or
many elements, it is illogical to believe that it is true for all and across all the
elements of any universe X while proposing an IFS A. Consequently, it is a rare
case that an intuitionistic fuzzy set eventually becomes equivalent to a fuzzy set. It
is not a feasible case that a fuzzy decision maker can ignore π(x) by his own
decision if it is not zero.

Further to that, any real life soft-computing problem on this earth usually occurs
involving more than one universe. There could be r number of universes viz. X1,
X2, ……, Xr in a given problem under consideration by a decision maker. And in
that case it is extremely illogical to believe that ‘π(x) = 0’ is true for all the elements
of all the r universes. Neither any real logical system(s) nor the Nature can force a
decision maker (human being or animal or any living object having a brain) either
to stand strictly at the decision: “π(x) = 0 for every x of every X”, or “to abandon
his decision process otherwise”.

Any decision process for deciding the membership value µ(x) starts with Ata-
nassov’s initialization <0, 0, 1> and then after certain amount of time T (called by
Atanassov Processing Time) it converges to the trio <µ(x), ϑ(x), π(x)> without any
further updation of the AT functions. In general in most of the cases, π(x) ≠ NIL.
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Even if π(x) = NIL for one element x, it is a very rare situation that π(x) will be Nil
for all the elements x of X in the IFS proposed by the decision maker. It is a very
very special case, the following justification will support further to this hypothesis:-

Suppose that, to solve an ill-defined problem we have to consider 20 number of
universes, while in each universe there is at least 200 elements. Suppose that, to
solve this problem an intelligent decision maker (say, a soft computing human
expert) needs to consider more than 30 fuzzy sets of each universe. Clearly, he has
to propose membership values by his best possible judgment for more than
1,20,000 elements. For deciding the membership value for each of these 1,20,000
elements the cognition system of the decision maker by default begins with Ata-
nassov’s initialization <0, 0, 1> and after certain time converges to the decision
about µ(x) for the element. Can we presume that for each of these 1,20,000 ele-
ments his convergence process starting from the Atanassov’s initialization trio <0,
0, 1> will stop at the trio < µ(x), ϑ(x), 0 > with π(x) = 0 for each and every x? Can
we presume that there is not a single element x out of 1,20,000 elements for which
the convergence process ends with some non-zero amount of π(x)?

This surely justifies that it may not be appropriate to use fuzzy theory if the
problem under study involves the estimation of membership values for large
number of elements of one or more universes. For instance the populations in Big
Data Statistics [10, 16], be it R-Statistics or NR-Statistics, are all about big data
expanding in 4Vs very fast; and decision analysis in many such cases involve the
application of various soft-computing tools, but it is most important to have
excellent results only.

In our everyday life, every human being plays the role of a decision maker at
every moment of time (ignoring his sleeping period at night). He is compelled to
decide every day for large number of imprecise problems of various nature. But one
can not be always an excellent and outstanding decision maker for all the unknown
(or known), unpredictable, homogeneous/heterogeneous, precise/imprecise prob-
lems he faces every day without ‘any element of hesitation’ at all.

Consequently, it is well justified in [11] that for a large or moderate size soft
computing problem, it may not be appropriate to use the tool ‘Fuzzy Theory’
in order to get excellent results.

However, there are also a number of real life cases where only the best/excellent
decision makers (in most of the cases being pre-selected or pre-choosen) are
allowed to take decisions who can do the job and are supposed to do the job
‘without any hesitation’ on any issue of the problem under consideration, i.e. the
outcome ‘π(x) = 0’ is to happen to be true everywhere during the execution of the
problem-solving by them. The example of CESFM presented in [11, 14] is a very
ideal example to understand the situation where fuzzy theory is more appropriate
tool than intuitionistic fuzzy theory in some special cases.
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4 Major Failures of the Existing Notion of Fuzzy Numbers
to the Decision Makers

While doing computations to solve real life ill-posed problems in computers using a
program or a software, the decision makers (including academicians, scientists and
engineers) face a serious problem due to the failures of the role of the existing
popular notion of fuzzy numbers [24]: Triangular Fuzzy Numbers and Trapezoidal
Fuzzy Numbers. This failure are frequently observed by the scientists, mathe-
maticians, statisticians, engineers and academicians while they are in many areas of
simple or complex computations. For solving a very precise and well posed
problem in a computer, a decision makers may use crisp numbers only (say, real
numbers) in modeling the problem into a Linear Programming Problem or a
Non-linear Programming Problem or a Game Theory Problem or a Statistical
Problem, etc. In that case he does not face any problem in memory utilization.
A positive real number x can be stored in memory in consecutive four bytes
reserved for x. The addition, subtraction, multiplication, division of two real
numbers x and y are again real numbers and hence can be stored in memory in
consecutive four bytes reserved for z. It is because of the reason that the set R of
real numbers forms a division algebra, and does also form a region [13, 15].
Consequently, decision makers can fluently use real numbers, can fluently store
them and their results in the space of z. But this is not possible [12] if a decision
maker solves an ill defined problem using Triangular Fuzzy Numbers and/or
Trapezoidal Fuzzy Numbers [24]. Both Triangular Fuzzy Numbers and Trapezoidal
Fuzzy Numbers are paralyzed with exactly analogous type of drawbacks. For
example, consider the triangular fuzzy numbers a = <1, 2, 3> and b = <4, 5, 6>
and see carefully that a * b is not a triangular fuzzy number!. Thus after the
multiplication operation on triangular fuzzy numbers a and b be performed, the
result is loosing the data-structure of the two operands! To store the triangular fuzzy
numbers a or b in memory we need six bytes, but how to store the simple multi-
plication result a * b which is not a triangular fuzzy number!.

Similarly it can be noticed that division of two triangular fuzzy numbers is not a
triangular fuzzy number. These are the major drawbacks of triangular fuzzy numbers.
The main problem is that what kind of ADT (Abstract Data Type) is to be considered
in fuzzy arithmetic computing?What kind of storage-structure is to be considered? In
computer science, a programmer knows that if a, b, c are real(float) numbers then
x = a * b + c is also real, and hence the programmers reserves in memory the number
of bytes for x accordingly. If a, b, c, are three dimensional vectors then x = a × b + c is
also a three dimensional vector where Χ denotes cross-product. But if a, b, c are
triangular fuzzy numbers, then x = a * b + c is not a triangular fuzzy number
(although it is a fuzzy number). This serious problem is faced by the fuzzy mathe-
maticians, fuzzy statisticians, and fuzzy experts of all other fields. To solve this crisis,
the notion of T-fuzzy numbers and Z-fuzzy numbers are introduced in this section,
but retaining compatibility with the Tokunaba and Yasunobu’s model [30] of fuzzy
computer, probably the first ever attempt to model fuzzy computers.
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4.1 T-Fuzzy Numbers and Z-Fuzzy Numbers

In this section the existing concept of triangular fuzzy numbers and trapezoidal
fuzzy numbers is updated by introducing T-fuzzy numbers (Triangle Type Fuzzy
Numbers) and Z-fuzzy numbers (Trapezoidal Type Fuzzy Number) respectively.
The ‘triangular fuzzy numbers’ and ‘Triangle Type Fuzzy Numbers’ are not same.
Similarly the ‘trapezoidal fuzzy numbers’ and ‘Trapezoidal Type Fuzzy Numbers’
are not same. The existing notion of triangular fuzzy numbers is a special case of
T-fuzzy numbers and the existing notion of trapezoidal fuzzy numbers is a special
case of Z-fuzzy numbers.

T-Fuzzy Number
A triangle type fuzzy number (T-fuzzy number) ã is of the form

a ̃= <a1, a2, a3, l(x), r(x) >

where the functions l(x): [a1, a2] → [0, 1] and r(x): [a2, a3] → [0, 1] are inversible
(bijective), fuzzy convex and satisfy the following conditions:

(i) l(a1) = 0
(ii) l(a2) = 1 = r(a2)
(iii) r(a3) = 0

The curve y = l(x) is called the left boundary, and the curve y = r(x) is called the
right boundary of the T-fuzzy number ã.

Thus the membership function of a T-fuzzy number ã = <a1, a2, a3, l(x), r(x)>
will be as follows:-

μa ̃ðxÞ=
0 if x≤ a1
lðxÞ if a1 ≤ x≤ a2
rðxÞ if a2 ≤ x≤ a3
0 if x≥ a3

8>><
>>:

Z-Fuzzy Number
A trapezoidal type fuzzy number (Z-fuzzy number) ã is of the form

a ̃= <a1, a2, a3, a4, l(x), m(x), r(x) > ,

where the functions l(x): [a1, a2] → [0, 1], and r(x): [a3, a4] → [0, 1] are inversible
(bijective), fuzzy convex and satisfy the following conditions:

(i) l(a1) = 0
(ii) l(a2) = 1 = r(a3)
(iii) r(a4) = 0 and
(iv) m(x): [a2, a3] → {1} is a constant function.

108 R. Biswas



The curve y = l(x) is called the left boundary, the curve y = r(x) is called the right
boundary, and the curve (straight line) y = m(x) is called the roof-line of the
Z-fuzzy number ã. Thus the membership function of a Z-fuzzy number ã = <a1, a2,
a3, a4, l(x), m(x), r(x)> will be as follows:-

μa ̃ðxÞ=

0 if x≤ a1
lðxÞ if a1 ≤ x≤ a2
1 if a2 ≤ x≤ a3
rðxÞ if a3 ≤ x≤ a4
0 if x≥ a4

8>>>><
>>>>:

In the next part we define the various arithmetic operations over T-fuzzy numbers
and Z-fuzzy numbers.

4.2 Arithmetic of T-Fuzzy Numbers and Z-Fuzzy Numbers

Clearly, the existing concept of triangular fuzzy numbers is a special case of
T-fuzzy numbers. Many authors studied arithmetic of fuzzy numbers and applied in
wide variety of fields viz. Fuzzy Linear Programming, Fuzzy Optimization,
Fuzzy DBMS, Fuzzy Searching Techniques in AI, Neuro-fuzzy Systems, Fuzzy
Pattern Recognition etc. to list a few only. The work of Kaufmann and Gupta [24] is
interesting. They noted that fuzzy numbers can be treated as a generalization of the
concept of the confidence interval. Let ã = (a1, a2, a3) be a triangular fuzzy number,
and suppose that for a given level α of presumption μã (x) ≥ α is true in the interval
[al, au] and not true outside, where [al, au] ⊆ [a1, a3]. Then we say that this fuzzy
number ã has the confidence interval [al, au] corresponding to the level of pre-
sumption α. For adding two triangular fuzzy numbers, we simply add the confi-
dence intervals of them corresponding to the common values of α. In a similar way
the other operations like Subtraction, Multiplication, Division, Scalar Multiplication
etc. can be performed. To study the arithmetic with T-fuzzy numbers, we will
follow an analogous art of Kaufmann and Gupta [24]. In the next part of this section
we present the operations over T-fuzzy numbers. The operations over Z-fuzzy
numbers are to be carried out in a similar manner. We use the notations +, −, *, /
for the operations of Addition, Subtraction, Multiplication and Division respec-
tively of two T-fuzzy numbers.

4.2.1 Addition of two T-Fuzzy Numbers

Consider two T-fuzzy numbers A and B given by
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A= <a1, a2, a3, lAðxÞ, rAðxÞ> , and

B= <b1, b2, b3, lBðxÞ, rBðxÞ> .

For a level of presumption α, suppose that the confidence intervals of A and B
are

Aα = ½Aα
1,A

α
2 � and Bα½Bα

1,B
α
2�.

If C = A + B, (using the symbol ‘+’ to denote the operation of addition of two
T-fuzzy numbers), then using Kaufmann and Gupta’s style we have

Cα =Aα⊕Bα = ½Aα
1 +Bα

1,A
α
2 +Bα

2�.

where ⊕ denotes the symbol for interval-addition.
We will now establish the following proposition:

Proposition 3 The fuzzy number C is also a T-fuzzy number.

Proof The equations of the two boundaries of the T-fuzzy number A could be
viewed as

α= lAðAα
1Þ and α= rAðAα

2Þ.
□

This gives Aα = [l− 1
A ðαÞ, r − 1

A ðαÞ�.
Similarly Bα = [l− 1

B ðαÞ, r − 1
B ðαÞ�.

Therefore, Cα = [Cα
1 ,C

α
2 �= ½l− 1

A ðαÞ+ l− 1
B ðαÞ, r − 1

A ðαÞ+ r − 1
B ðαÞ�.

The left boundary of the T-fuzzy number C is given by the curve α = lC(x) where
α is the solution of the equation x= l− 1

A ðαÞ+ l− 1
B ðαÞ; and the right boundary is

given by the curve α = rC(x), where α is the solution of the equation
x= r − 1

A ðαÞ+ r − 1
B ðαÞ.

We will now verify that

(i) lc, rc are inversible functions, and
(ii) lc, rc are fuzzy convex.

Consider the function α = lC(x).
We see that l− 1

C ðαÞ= l− 1
A ðαÞ+ l− 1

B ðαÞ, which is unique. This shows that lc is an
inversible function. Similarly we can argue for rc.

To prove that lc is fuzzy convex, it is sufficient if we prove that lc is an increasing
function.
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For this, take x2 > x1 and suppose that lC(x2) = γ2 and lC(x1) = γ1.

Now, l− 1
C ðγ2Þ> l− 1

C ðγ1Þ
or, l− 1

A ðγ2Þ+ l− 1
B ðγ2Þ> l− 1

A ðγ1Þ+ l− 1
B ðγ1Þ

which implies that γ2 > γ1.
(Because if γ2 > γ1 is not true, then we must have γ1 ≥ γ2; and in that case we

must have l− 1
A ðγ1Þ+ l− 1

B ðγ1Þ≥ l− 1
A ðγ2Þ+ l− 1

B ðγ2Þ which is not true). Hence lc is an
increasing function.

In a similar way we can prove that rc is a decreasing function.
Now, to find out the values of c1, c2 and c3 we solve the following equations

respectively for x:

(i) lC(x) = 0, (ii) lC(x) = 1, [or, the equation rC(x) = 1], and (iii) rC(x) = 0.

The equation lC(x) = 0 gives

c1 = l− 1
C ð0Þ

= l− 1
A ð0Þ+ l− 1

B ð0Þ
=a1 + b1

Similarly the equation rC(x) = 0 gives c3 = a3 + b3.
The equation lC(x) = 1 gives

c2 = l− 1
C ð1Þ

= l− 1
A ð1Þ+ l− 1

B ð1Þ
=a2 + b2

The equation rC(x) = 1 too gives the same value for c2.
Thus we get that, addition of two T-fuzzy numbers A = <a1, a2, a3, lA(x), rA(x)>

and B = <b1, b2, b3, lB(x), rB(x)> is the T-fuzzy number C given by

C= < a1, a2, a3, lA, rA > + <b1, b2, b3, lB, rB >

= < c1, c2, c3, lC, rC >

where

(i) ci = ai + bi, for i = 1, 2, 3
(ii) lC(x) is the solution of the equation x= l− 1

A ðαÞ+ l− 1
B ðαÞ for unknown α, and

(iii) rC(x) is the solution of the equation x= r − 1
A ðαÞ+ r − 1

B ðαÞ for unknown α.

It is obvious that this addition operation is commutative.
In a similar way we see that the following results are true.
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4.2.2 Subtraction of Two T-Fuzzy Numbers

Subtraction of the T-fuzzy number A = <a1, a2, a3, lA(x), rA(x)> from the T-fuzzy
number B = <b1, b2, b3, lB(x), rB(x)> yields the T-fuzzy number C given by

C= < a1, a2, a3, lA, rA > − <b1, b2, b3, lB, rB > = < c1, c2, c3, lC, rC >

where

(i) ci = ai − bi, for i = 1, 2, 3
(ii) lC(x) is the solution of the equation x= l− 1

A ðαÞ+ l− 1
B ðαÞ for unknown α, and

(iii) rC(x) is the solution of the equation x= r − 1
A ðαÞ+ r − 1

B ðαÞ for unknown α.

4.2.3 Multiplication of Two T-Fuzzy Numbers

Multiplication of two T-fuzzy numbers A = <a1, a2, a3, lA(x), rA(x)> and B = <b1,
b2, b3, lB(x), rB(x)> denoted by A * B is the T-fuzzy number C given by

C= < a1, a2, a3, lA, rA > *< b1, b2, b3, lB, rB > = < c1, c2, c3, lC, rC > .

where

(i) ci = ai . bi, for i = 1, 2, 3
(ii) lC(x) is the solution of the equation x= l− 1

A ðαÞ . l− 1
B ðαÞ for α, and

(iii) rC(x) is the solution of the equation x= r − 1
A ðαÞ . r − 1

B ðαÞ for α.
It is obvious that this multiplication operation is commutative.

4.2.4 Division of Two T-Fuzzy Numbers

Division of the T-fuzzy number A = <a1, a2, a3, lA(x), rA(x)> by the T-fuzzy
number B = <b1, b2, b3, lB(x), rB(x)> denoted by A/B is the T-fuzzy number C
given by

C= < a1, a2, a3, lA, rA > ̸<b1, b2, b3, lB, rB >

= < c1, c2, c3, lC, rC > .

where

(i) c1 = a1/b3, c2 = a2/b2, c3 = a3/b1.
(ii) lC(x) is the solution of the equation x= l− 1

A ðαÞ r̸ − 1
B ðαÞ for α, and

(iii) rC(x) is the solution of the equation x= r − 1
A ðαÞ l̸− 1

B ðαÞ for α.
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4.2.5 Scalar Multiplication

For any scalar k, the scalar multiplication of a T-fuzzy number A = <a1, a2, a3,
lA(x), rA(x)> with k results in the T-fuzzy number C given by
C=k. < a1, a2, a3, lA, rA > = < c1, c2, c3, lC, rC >where

(i) ci = k.ai for i = 1, 2, 3
(ii) lC(x) is the solution of the equation x= k . l− 1

A ðαÞ for α, and
(iii) rC(x) is the solution of the equation x= k . r − 1

A ðαÞ for α.
The membership function of the T-fuzzy number C will be

μC(x) =

0 if x≤ ka1
1ðx k̸Þ if ka1 ≤ x≤ ka2
rðx k̸Þ if ka2 ≤ x≤ ka3
0 if x≥ ka3

8>><
>>:

5 Conclusion

This chapter presents a very brief review exercise of the work of [11] entitled: “Is
‘Fuzzy Theory’ An Appropriate Tool For Large Size Problems?”, in which the
Theory of CISF is introduced. Theory of CISF is basically on the subject of
decoding the ‘progress’ of decision making process in the Human/Animal cognition
systems while evaluating the membership value µ(x) in a fuzzy set or in an intu-
itionistic fuzzy set or in any such soft computing set model or in a crisp set. The
theory of CIFS in [9, 11] explains and well justifies that it may not be an appro-
priate decision to apply fuzzy set theory if the problem under consideration involves
the estimation of membership values for a large number of elements. The two
hidden facts about fuzzy set theory (and, about any soft computing set theory)
established in [11] are:

Fact-1:
A decision maker (intelligent agent) can never use or apply ‘fuzzy theory’ or any
soft-computing set theory without intuitionistic fuzzy system.
Fact-2:

The Fact-1 does not necessarily require that a fuzzy decision maker (or a crisp
ordinary decision maker or a decision maker with any other soft theory models or
a decision maker like animal/bird which has brain, etc.) must be aware or
knowledgeable about IFS Theory!

It has been philosophically and logically justified that whenever fuzzy theory or
any soft computing set theory be applied to any real problem, it happens by the
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mandatory application of intuitionistic fuzzy system inside the brain (CPU), but it is
fact that the decision maker (human being or animal or any living thing having a
brain or processor element) need not be aware of IFS Theory!. The decision maker
is, neither knowingly nor un-knowingly, applying the IFS theory during the pro-
gress of any decision making process by any theory/logic of his own choice;
because of the hidden truth that the cognition system has an in-built system soft-
ware type which spontaneously processes IF philosophy at the kernel.

It is justified in [11] that although fuzzy sets are a special case of intuitionistic
fuzzy sets, but the existing concept that ‘the intuitionistic fuzzy sets are higher order
fuzzy sets” is incorrect (a similar incorrect concept can be imagined if one says
that ‘fuzzy sets can be viewed as higher order crisp sets’). Rather, the fact is that the
IFSs are the most appropriate optimal model for translation of imprecise objects
while the fuzzy sets are ‘lower order’ or ‘lower dimensional’ intuitionistic fuzzy
sets.

Decision making activities of ill-defined problems are a routine work at every
moment for every living agent. The same was true during the period prior to the
discovery of crisp set theory, even starting from the stone age too. Decoding the
‘progress’ of decision making process in the human cognition systems (or, in the
cognition system of any living animal which has a brain or a processor element, be
it of a fuzzy decision maker or an intuitionistic fuzzy decision maker or any
intelligent decision maker) while evaluating the membership value µ(x) to construct
a fuzzy set or an IFS or any such soft computing set model, it is observed that the
exact algorithm processed (analogous to the execution of machine language pro-
gram corresponding to any higher level language program) is absolutely nothing
but intuitionistic fuzzy only, which is not by any choice of the decision maker but
by in-built CIFS.

However, the intuitionistic fuzzy processing in the cognition system of the
membership value µ(x) as a special case many times may converge at fuzzy or at
the crisp output for one or more elements of the universe of discourse.

The Atanassov ‘Theory of IFS’ is purely a choice of the decision maker. The
decision maker must be knowledgeable about the ‘Theory of IFS’ if he wants to use
it for solving any ill-defined problem. But the ‘Theory of CIFS’ is not and never a
choice of the decision maker. It is an in-built in the cognition system of every
decision maker, irrespective of his any knowledge about intuitionistic fuzzy set
theory. Whoever be the decision maker, be it a human or an animal or a bird or any
living thing which has brain, the ‘Theory of CIFS’ is automatically and mandatorily
followed and finally executed inside the kernel of the cognition system, irrespective
of his intellectual capability, irrespective of his any knowledge about intuitionistic
fuzzy set theory.

Pattern Recognition or Object Recognition is one of the earliest and probably the
most important and most executed Decision Making Problem on this earth. This
problem is being solved by every human being, every living animal and every bird
as a routine exercise probably very large (if not infinite) number of times every day
in his real life environment. This problem has converted every human being, every
living animal and every bird into a decision maker. Any problem of pattern
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recognition or object recognition is an impossible task without CISF. When your
eyes are open, you see something and can (or can not) recognize it. Every moment
your brain is recognizing something i.e. Every moment your brain is solving some
kind of pattern recognition problem. For example, at some real instant of time when
you see a chair by your eyes, you immediately (in time t > 0) recognize it and say
that it is ‘chair’ and/or you also may say that it is a furniture, etc. rejecting all other
infinite number of possibilities like: it is a dog, it is a book, it is a banana, car, tiger,
mango, a number 54, a building, table, laptop, etc. When you see a mango by your
eyes, you immediately (in time t > 0) recognize it and say that it is ‘mango’,
rejecting all other infinite number of possibilities like: it is a dog, it is a book, it is a
banana, car, tiger, a number 54, a building, table, laptop, etc.

While a hungry tiger chases a buffalo in a jungle, he decides a lot by his own
logic (the logic which is unknown to us). The tiger does not know fuzzy logic or
intuitionistic fuzzy logic or type-2 fuzzy logic, etc. But he has his own logic by
which he decides and very rightly decides about many issues like:

(i) which buffalo to chase now (out of thousands buffalos available in his prox-
imity). It is also fact that in many occasions he does not choose the buffalo of
his nearest proximity due to some reason, or sometimes he decides to choose to
chase a baby buffalo because he does also optimize the chance of his success in
the real time scenario.

(ii) even sometimes after chasing a particular buffalo for about 300 m, he decides to
give up his run (leading to failure to get his food in this attempt), or sometimes
he decides to shift his target to another buffalo.

All these are real time decision oriented activities done by his best possible
judgement, by his own logic which is unknown to us. This tiger may be illiterate
according to our rich literature or rich logic, but surely he is literate by his own
logic, by his own literature which are unknown to us. Whatever be the logic or
literature being practiced by this tiger, the kernel always executes the algorithms of
CIFS being initiated by Atanassov Initialization, not by any choice of the tiger. The
different logic or literature used by different decision makers are analogous to
higher level language operating in the outer annulus sphere (see Fig. 3) of the
cognition system, but the kernel of every decision maker (be it human being,
animal/bird, or any living thing which has brain) functions by a common machine
language of CIFS irrespective of all kind of the knowledge of the decision maker
which resides at the outer annulus sphere. This logic is well analysed in [11] in
details, justifying that the soft-computing solution of any problem of Object
Recognition can be well solved using the theory of IFS, but can not be so well
solved if fuzzy theory be applied. However by another interesting example of
CESFM on football sports explained in [11], it is shown that for a given problem if
the decision makers of excellent talent be allowed to give their best possible
judgment to the issues (i.e. if they are the best available decision makers on the
subject under consideration), then fuzzy set theory will be more appropriate than
intuitionistic fuzzy set theory. In the theory of CIFS in [11] it is well justified with
several examples that in most of the cases of real life problems Intuitionistic Fuzzy
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Set Theory of Prof. Atanassov will be the more appropriate tool for applications
compared to the Fuzzy Set Theory of Prof. Zadeh. But in the Theory of CESFM in
football sports the decisions are to be taken by the FIFA Referees of best qualities
and of best intellectual capabilities (on the subject) of the world who are expected to
have no element of hesitation while proposing membership values. Hence this is a
particular case of interest where Fuzzy Set Theory is a better tool for the
soft-computing CESFM method compared to the Intuitionistic Fuzzy Set Theory.

It has been noticed well that multiplication or division (andmany other operations)
of two triangular fuzzy numbers (trapezoidal fuzzy numbers) does not yield a fuzzy
number which is a triangular fuzzy number (trapezoidal fuzzy numbers). This leads to
a serious architectureus problem to the computer scientists while attempting to design
fuzzy computers. In particular the programmers, while solving ill-defined engi-
neering problems or fuzzy optimization problems or any soft-computing problems
where multiplication/division operations are involved, have been facing problem
regarding distortion of data structures of the output values. This problem is overcome
by defining T-fuzzy numbers and Z-fuzzy numbers, just by the way they are con-
structed. Various operations are defined on T-fuzzy numbers and Z-fuzzy numbers
compatible with the Tokunaga and Yasunobu’s model [30] of fuzzy computer.

If a, b are two T-fuzzy numbers (Z-fuzzy numbers) then the following are now
true:

(i) a + b is also a T-fuzzy number (Z-fuzzy numbers)
(ii) a − b is also a T-fuzzy number (Z-fuzzy numbers)
(iii) a * b is also a T-fuzzy number (Z-fuzzy numbers)
(iv) a/b is also a T-fuzzy number (Z-fuzzy numbers)
(v) a2 is also a T-fuzzy number (Z-fuzzy numbers)
(vi) an is also a T-fuzzy number (Z-fuzzy numbers)
(vii) 1/a is also a T-fuzzy number (Z-fuzzy numbers) etc.

Consequently, with these revised notion of the fuzzy numbers: T-fuzzy numbers
and Z-fuzzy numbers, a possible way could now be discovered by rigorous future
research work to define methods of fuzzy computing like sqrt(n), en, log n, etc. and
fuzzy trigonometrical terms like sin a, cos a, etc. where n and a are fuzzy numbers.
The Tokunaga and Yasunobu’s model [30] of fuzzy computer will be able to
compute fuzzy arithmetic expression (which is in infix notation) of T-fuzzy num-
bers in two steps:-

Step-1. It will convert the infix form of fuzzy arithmetic expression into postfix
fuzzy arithmetic expression.

Step-2. It will evaluate the fuzzy postfix expression to give the result which is a
T-fuzzy number.

In each step, the fuzzy stack will be the main tool to accomplish the task. But
there is no literature reported so far on fuzzy stacks, possibly because of the
drawback of existing notion of triangular fuzzy numbers. Anyway, in the future
research work the fuzzy experts will concentrate upon the problem how to define

116 R. Biswas



the notion of fuzzy stacks which can be used to evaluate fuzzy arithmetic expres-
sions of T-fuzzy numbers. Attempt may be made to define fuzzy queues and many
other fuzzy data-structures, their applications in fuzzy computing. The notion of
T-intuitionistic fuzzy numbers and Z-intuitionistic fuzzy numbers can also be
introduced in a similar way. Attempt will also be made to explore whether and how
the set of all T-fuzzy numbers (Z-fuzzy numbers) forms a region [13, 15] or at least
forms a division algebra, whether and how the set of all T-intuitionistic fuzzy
numbers (Z-intuitionistic fuzzy numbers) forms a region [13, 15] or at least forms a
division algebra. Otherwise the use of fuzzy numbers and/or intuitionistic fuzzy
numbers will not be fruitful for any kind of complex computation for solving any
mathematical or engineering or optimization or statistical or decision making
problem. Presently it is an important unsolved problem.
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Properties and Applications
of Pythagorean Fuzzy Sets

Ronald R. Yager

Abstract We introduce the concept of Pythagorean fuzzy subsets and discuss its
relationship with intuitionistic fuzzy subsets. We focus on the negation and its
relationship to the Pythagorean theorem. We describe some of the basic set oper-
ations on Pythagorean fuzzy subsets. We look at the relationship between Pytha-
gorean membership grades and complex numbers. We consider the problem of
multi-criteria decision making with satisfactions expressed as Pythagorean mem-
bership grades. We look at the use of the geometric mean and ordered weighted
geometric (OWG) operator for aggregating criteria satisfaction. We provide a
method for comparing alternatives whose degrees of satisfaction to the decision
criteria are expressed as Pythagorean membership grades.

Keywords Intuitionistic fuzzy sets ⋅ Non-standard membership grades ⋅
Pythagorean theorem ⋅ Complex numbers ⋅ Multi-criteria aggregation ⋅
Geometric mean

1 Introduction

Atanassov introduced the idea of intuitionistic fuzzy sets [1]. A considerable body
of research has been devoted to these sets [2]. Intuitionistic fuzzy sets extend the
representational capability of fuzzy sets from being able to represent partial
membership to additional being able to represent lack of commitment or uncertainty
in providing the membership grade. They are an example of what are referred to as
non-standard fuzzy sets. In a standard fuzzy subset A one provides a membership
grade A(x) ∈ [0, 1], indicating the degree of support for the membership of x in A.
Implicit in this situation is the assumption that the degree of support against
membership of x in A is valued as the negation of A(x), typically taken as 1 − A(x).
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Instead of accepting this implicit assumption for the support against membership
intuitionistic fuzzy allows for a separate specification of this value, being only
constrained by the requirement that the sum of the supports for and against doesn’t
exceed one. In adding this capability Atanassov has allowed the providers of
membership grades to be uncertain or hesitant in providing their membership
grades, thus if A+(x) and A−(x) are the degrees of support for and against mem-
bership then the value 1 − (A+(x) + A−(x)) is the amount of uncommitted or
uncertain membership.

Implicit in the use of intuitionistic fuzzy sets is the acceptance of the linear form
of logical negation, Neg(a) = 1 − a. As shown by Sugeno and Yager there are other
possible formations within the field of fuzzy sets for the modeling of negation [3].
One notable example is the negation Neg(a) = (1 − a2)1/2 which Yager has referred
to as the Pythagorean negation. Using this formation for the negation instead of the
linear formulation Yager [4–6] provided a related class of non-standard fuzzy sets
that he referred to as Pythagorean fuzzy sets. Some researchers have begun using
these sets in some applications [7, 8]. Here we look in more detail at the Pytha-
gorean fuzzy sets. In addition to discussing the basic properties of these sets we
provide a formulation in terms of complex numbers [9]. We consider the problem
of multi-criteria decision making when the degrees of satisfaction are expressed as
Pythagorean membership grades. We also provide a formation for comparing
Pythagorean membership grades.

2 Pythagorean Membership Grades

In [4–6] Yager introduced a new class of fuzzy sets called Pythagorean fuzzy sets,
PFS, which are closely related to Atanassov’s intuitionistic fuzzy sets [1, 2]. We
shall refer to the membership grades associated with these sets as Pythagorean
membership grades, PMG’s. In the following we describe the Pythagorean mem-
bership grades.

One way of expressing Pythagorean membership grades is by giving a pair of
values r(x) and d(x) for each x ∈ X. Here r(x) ∈ [0, 1] is called the strength of
commitment at x and d(x) ∈ [0, 1] is called the direction of commitment. Here r(x)
and d(x) are associated with a pair of membership grades AY(x) and AN(x) indi-
cating respectively the support for membership of x in A and the support against
membership of x in A. As we shall see AY(x) and AN(x) are related using the
Pythagorean complement with respect to r(x). In particular the value of AY(x) and
AN(x) are defined from r(x) and d(x) as

AY xð Þ= r xð ÞCosðθ xð ÞÞ
AN xð Þ= r xð ÞSinðθ xð ÞÞ
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where θ(x) = (1 − d(x))π2. Here we see θ(x) is expressed as radians and θ(x) ∈ [0, π2].
Thus we see the closer d(x) to 1, the closer θ(x) to 0, the more the commitment r(x)
is supporting membership of x in A.

We now show that AY(x) and AN(x) are Pythagorean complements with respect
to r(x).

A2
Yðx) +A2

NðxÞ= r2 xð ÞCos2ðθ xð ÞÞ+ r2 xð Þ sin2ðθ xð ÞÞ

and since it is known from the Pythagorean theorem that Cos2(θ) + Sin2(θ) = 1 then
we have that AY

2 (x) + AN
2 (x) = r2(x) and hence AY

2 (x) = r2(x) − AN
2 (x) and

AN
2 (x) = r2(x) − AY

2 (x).
Thus AY and AN are Pythagorean complements with respect to r(x).
Pythagorean membership grades allow some lack of commitment in addition to

imprecision in assigning membership. We see that r(x), which is a value in the unit
interval, is the strength of commitment about membership at point x, the larger r(x)
the stronger the commitment. Let us know understand the meaning of the value d
(x), the direction of the strength. We recall that θ(x) = (1 − d(x))π2. In the case when
d(x) = 1, then θ(x) = 0 and Cos(θ(x)) = 1 and Sin(θ(x)) = 0. Thus AY(x) = r(x) and
AN(x) = 0. On the other hand if d(x) = 0 then θ(x) = π/2 and we get AY(x) = 0 and
AN(x) = 1. Thus we see that d(x) is essentially indicating on a scale of 1 to 0 how
fully the strength r(x) is pointing to membership. If d(x) = 1 the direction of r(x) is
completely to membership while d(x) = 0 the direction of the strength is completely
to non-membership. Intermediate values of d(x) indicate partial support to mem-
bership and non-membership.

Here we note that the Pythagorean membership grade can be expressed either by
providing r(x) and d(x) or by r(x) and θ(x) were we express θ as radians in the range
[0, π

2].
Thus we see that the Pythagorean membership grade provides a type of

imprecise membership grades, generally referred to as type 2. These membership
grades, AY(x) and AN(x), are related by the Pythagorean complement with respect
to strength of commitment, AY

2 (x) + AN
2 (x) = r2(x). Furthermore we have

Cos(θ(x)) = AYðx)
r(x) and hence θ(x) = Arccos(ðAYðx)

r(x) ).

We note that more generally a Pythagorean membership grade A(x) is a pair of
values (a, b) such that a, b ∈ [0, 1] and a2 + b2 ≤ 1. Here a = AY(x), the degree of
support for membership of x is A and b = AN(x) the degree of support against
membership of x in A. We see that for this pair a2 + b2 = r2. Thus a Pythagorean
membership grade is a point on a circle of radius r. We also recall that any point (a,
b) on a circle of radius r2 = a2 + b2 can be expressed as (r Cos(θ), r Sin(θ)). Thus we
see that Cos(θ) = a

r and Sin(θ) = b
r hence θ = arc Cos(a/b) thus d = π − 2θ

π . Thus the
point (a, b) has strength of commitment and direction of commitment pair
r = (a2 + b2)1/2 and d = π − 2θ

π . We emphasize that since we require that a and
b ∈ [0, 1] then θ ∈ [0, π2], a Pythagorean membership grade is a point in the upper
right quadrant.
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Another example of non-standard fuzzy subset is the intuitionistic fuzzy subsets
introduced by Atanassov. An intuitionistic membership grade F(x) = (A+(x),
A−(x)) is also a pair (a, b) such that a, b ∈ [0, 1]. Here A+(x), a, indicates the
amount of guaranteed membership of x in A and A−(x), b, indicates the guaranteed
non-membership in A however here we require that a + b ≤ 1. The expression Hes
(x) = 1 − (A+(x) + A−(x)) is called the hesitancy of x. It is a reflection of lack of
commitment or uncertainty associated with the membership grade at x. We shall
find it convenient to denote S(x) = 1 − Hes(x) = A+(x) + A−1(x). It is a kind of
total commitment.

Thus while both intuitionistic and Pythagorean membership allow for the rep-
resentation of uncertain membership in grades in terms of pairs of values (A+(x),
A−(x)) and (AY(x), AN(y)) there are some important differences between these two
representations. The first is that A+(x) + A−(x) ≤ 1 while AY

2 (x) + AN
2 (x) ≤ 1.

We observe that for a and b ∈ [0, 1] then a2 ≤ a and b2 ≤ b from this we observe
that if a + b ≤ 1 then a2 + b2 ≤ 1. From this we can conclude the following
theorem.

Theorem The set of Pythagorean membership grades is greater than the set of
intuitionistic membership grades.

We see this as follows. First we note that every point (a, b) that is an intu-
itionistic membership grade is also a Pythagorean membership grade. We first
observe that for any a and b ∈ [0, 1] then a2 ≤ a and b2 ≤ b from this we observe
that if a + b ≤ 1 then a2 + b2 ≤ 1. Secondly there are Pythagorean membership

grades that not intuitionistic membership grades. Consider now the point (
ffiffi
3

p
2 , 1

2).

We see that
ffiffi
3

p
2

� �2
+ 1

2

� �2 = 3
4 +

1
4 = 1 thus this is a Pythagorean membership grade.

However since
ffiffi
3

p
2 = 1.72

2 = 0.866 then 0.5 + 0.866 > 1 this is not an intuitionistic
membership grade.

This result can be clearly seen from Fig. 1. Here we observe that intuitionistic
membership grades are all points under the line x + y ≤ 1 and the Pythagorean
membership grades are all points with x2 + y2 ≤ 1. We see then that the Pytha-
gorean membership grades allow for the representation on a larger body of
non-standard membership grades then intuitionistic membership grades.

x2 + y2 =1

x + y = 1

Fig. 1 Comparison of space of Pythagorean and intuitionistic membership grades
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3 On the Negation Operation

Another distinction between Pythagorean and Intuitionistic fuzzy sets relates to
their definitions of complement or negation. Before introducing the negation of
Pythagorean fuzzy sets we need to say something about the complement operator
[3]. A complement C operator is a mapping C: [0, 1] → [0, 1] that satisfies

(1) Boundary Conditions: C(0) = 0 and C(1) = 0
(2) Monotonicity: For all a, b ∈ [0, 1] if a ≤ b then C(a) ≥ C(b)
(3) Continuity
(4) Involution: C(C(a)) = a

We recall that the linear function C(a) = 1 − a is the classic example of a com-
plement operator.

Yager [10, 11] introduced a family of complement operators. The Yager class of
complements is defined by

C að Þ= ð1− aPÞ1 P̸

where P ∈ (0, ∞). We observe that for P = 1 we get the classic linear complement
C(a) = 1 − a. If p = 2 then we get

C að Þ= ð1− a2Þ1 2̸

we note here

C að Þð Þ2 + a2 = 1.

We shall refer to this as the Pythagorean complement.
We know introduce the related idea of complements with respect to r, where

r ∈ [0, 1]. We define C[r]: [0, r] → [0, r] as a complement with respect to r if

(1)
C½r� 0ð Þ= r

C r½ � rð Þ=0
(2) C[r] is monotonic
(3) C[r] is continuous
(4) C[r](C[r](a)) = a Involution

We note that the Yager class of complements is easily extended to be comple-
ments with respect to r,

C r½ � að Þ= ðrP − aPÞ1 P̸

We note here that (C[r](a))
p = rP − aP and hence (C[r](a))

p + aP = rP. It can be
shown these satisfy the required conditions. Two important complements with
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respect to r are the linear complement C[r](a) = r − a and the Pythagorean com-
plement with respect to r, C[r](a) = (r2 − a2)1/2.

We now turn to the idea of set complement. Assume A is an intuitionistic fuzzy
set with intuitionistic membership grades, <A+(x), A−(x)> where
A+(x) + A−(x) ≤ 1. We recall an intuitionistic fuzzy set A has complement Ā with
membership grades [1, 2]

Ā xð Þ= < Ā+ xð Þ, Ā− xð Þ> = <A− xð Þ, A+ xð Þ> .

We have simply interchanged values of degree of support for with of degree of
support against. A more fundamental understanding of this operation can had
recalling that the strength of commitment S(x) = A+(x) + A−(x). Here we see Ā
+(x) = A−(x) = S(x) − A+(x) and Ā−(x) = A+(x) = S(x) − A−(x). Using this we can
express

Ā xð Þ= < Ā+ xð Þ, Ā− xð Þ> = <S xð Þ−A+ xð Þ, S xð Þ−A− xð Þ>

Here then we have that Ā+(x) is the linear complement of A+(x) with respect to S
(x) and Ā−(x) is the linear complement of A−(x) with respect to S(x).

In the case of the Pythagorean fuzzy sets we define the complement in analogous
manner using the Pythagorean complement with respect to the commitment r(x)
[4–6]. Assume a Pythagorean membership grade A(x) = <AY(x), AN(x)> we define
its complement Ā(x) = <ĀY(x), ĀN(x)> such that ĀY(x) = (r2(x) − AY

2 (x))1/2 and
ĀN(x) = (r2(x) − AN

2 (x))1/2 where r2(x) = AY
2 (x) + AN

2 (x). Here then ĀY(x) is the
Pythagorean complement of AY(x) with respect r(x) and ĀN(x) is the Pythagorean
complement of AN(x) with respect r(x). We easily see that ĀY(x) = (r2(x) −
AY
2 (x))1/2 = (AN

2 (x))1/2 = AN(x) and ĀN(x) = (r2(x) − AN
2 (x))1/2 =

(AY
2 (x))1/2 = AY(x). Thus here again we have ĀY(x) = AN(x) and ĀN(x) = AY(x).
We recall that if A and B are two intuitionistic fuzzy sets with intuitionistic

membership grades A(x) = <A+(x), A−(x)> and B(x) = <B+(x), B−(x)> then as
suggested by Atanassov [2] we say A ⊆ B if A+(x) ≤ B+(x) and A−(x) ≥ B−(x) for
all x. We see that since Ā(x) = = <A−(x), A+(x)> and B̄(x) = <B−(x), B+(x)> then
if A ⊆ B we have B̄ ⊆ Ā.

In an analogous manner if E and F are two Pythagorean fuzzy sets with
Pythagorean membership grades E(x) = <EY(x), EN(x)> and F(x) = <FY(x), FN(x)
> we say E ⊆ F if EY(x) ≤ FY(x) and EN(x) ≥ FN(x) for all x. Since Ē(x) = <EN(x),
EY(x)> and F̄(x) = <FN(x), FY(x)> then if E ⊆ F we have F̄⊆ Ē.
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4 Basic Set Operations for Pythagorean Fuzzy Sets

We now turn to the basic operations needed for combining Pythagorean fuzzy sets
Assume A1 and A2 are two fuzzy subsets of X with Pythagorean memberships
grades. For simplicity we denote for A1(x) = (a1, b1) and A2(x) = (a2, b2). Here we
have a1

2 + b1
2 = r1

2 ≤ 1 and a2
2 + b2

2 = r2
2 ≤ 1. Consider now the intersection,

D = A1 ∩ A2. We shall D define D(x) = (d1, d2) where d1 = Min(a1, a2) and
d2 = Max(b1, b2). In order for D to be a Pythagorean fuzzy subset we must have that
d1
2 + d2

2 ≤ 1. We see since d2 = Max(b1, b2) then

d22 =Max b21, b
2
2

� �
=Max r21 − a21, r

2
2 − a22

� �
≤Max r21 − Min a21, a

2
2

� �
, r22 −Min a21, a

2
2

� �� �

d22 ≤Maxð1−Min a21, a
2
2

� �
, 1−Min a21, a

2
2

� �
≤ 1−Min a21, a

2
2

� �

From this we see that d1
2 + d2

2 ≤Min(a1
2, a2

2) + 1 −Min(a1
2, a2

2) ≤ 1. Thus we see that
this satisfies the requirement of being a Pythagorean membership grade.

We now define E = A1 ∪ A2 so that E(x) = (e1, e2) where e1 = Max(a1, a2) and
e2 = Min(b1, b2). In a manner analogous to the preceding we can show that (e1, e2)
is a Pythagorean membership grade.

Thus, as in the case of the intuitionistic fuzzy sets we can define the set oper-
ations of intersection and union using the Max and Min operators. If A1 and A2 are
two Pythagorean fuzzy sets with membership grades A1(x) = (a1, b1) and
A2(x) = (a2, b2) then D = A1 ∩ A2 and E = A2 ∪ A2 are Pythagorean fuzzy sets
such that

d xð Þ= ðd1, d2Þ= ðMinða1, a2Þ, Maxðb1, b2Þ
e xð Þ= ðe1, e2Þ= ðMaxða1, a2Þ, Minðb1, b2Þ

We further define the complement of A1, Ā, such that Ā(x) = ((r1
2 − a1

2)0.5,
(r2
2 − b1

2)0.5). where r1
2 = a1

2 + b1
2 and hence Ā(x) = (b1, a1).

We now look at the more general question of aggregation of Pythagorean fuzzy
sets.

Definition A function Agg: [0, 1]q → [0, 1] is called an aggregation function
[12, 13] if

(1) Agg(0, …, 0) = 0
(2) Agg(1, … 1) = 1
(3) Agg(a1, …, aq) ≥ Agg(b1, …, bq) if aj ≥ bj for all j

Conditions one and two are referred to as boundary conditions and condition three
is a monotonicity requirement.

We now define the dual of an aggregation operator [12, 14].
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Definition Let Agg be any aggregation operator defined on the unit interval I,
Agg: Iq → I, we define the dual of Agg, gAgg as

gAggðx1, . . . , xqÞ=NegðAggðNegðx1Þ, . . . , NegðxqÞÞÞ

where Neg is a complement operator.

Definition Assume A1, …, Aq are collection of PFS, Pythagorean Fuzzy Sets, with
membership grades Aj(x) = (AjY(x), AjN(x)). We define E = Agg(A1, …, Aq) as a
PFS with Pythagorean membership grades E(x) = (EY(x), EN(x)) such that

EY xð Þ=AggðA1Y xð Þ, A2Y xð Þ, . . . , AqY xð ÞÞ
EN xð Þ= gAggðA1N xð Þ, A2N xð Þ, . . . , AqN xð ÞÞ

In the case of the Pythagorean membership grade Neg(a) = (1 − a2)1/2.

For E to be a PFS we require that EY(x) and EN(x) satisfy EY
2 (x) + EN

2 (x) ≤ 1.
Thus if EY

2 (x) + EN
2 (x) ≤ 1 the operator of Agg is closed, it maps the collection of

PFS into a PFS.
We note that Agg is monotonic, Agg(x1, …, xq) ≥ Agg(x1, …, yn) if xj ≥ yj We

now prove the following theorem using the monotonicity.

Theorem If Agg is monotonic then it is always the case that EY
2 (x) + EN

2 (x) ≤ 1.

Proof In the following for notational convince we shall denote the pair (AjY(x),
AjN(x)) as (aj, bj) where each pair (aj, bj) satisfies aj

2 + bj
2 = rj

2 ≤ 1

EY xð Þ=Aggða1, . . . , aqÞ
EN xð Þ= gAggðb1, . . . , bqÞ= ð1− ðAggðð1− b21Þ1 2̸, ð1− b22Þ1 2̸, . . . , ð1− b22ÞÞ2Þ1 2̸

We now recall that since aj
2 + bj

2 ≤ 1 then 1 − bj
2 ≥ aj

2. From this we observe that

EY xð Þ=Aggða1, . . . , aqÞ≤Aggðð1− b21Þ1 2̸, . . . , ð1− b2qÞ1 2̸Þ

We now observe that

E2
YðxÞ+E2

N xð Þ≤ ðAggðð1− b21Þ1 2̸, ð1− b2qÞ1 2̸ÞÞ2 + ðð1− ðAggðð1− b21Þ1 2̸, . . . , ð1− b2qÞÞ2Þ1 2̸Þ2

E2
Y xð Þ+E2

N xð Þ≤ ðAgg(ð1− b21Þ1 2̸, ð1− b2qÞ1 2̸ÞÞ2 + 1− ðAggðð1− b21Þ1 2̸, ð1− b2qÞ1 2̸ÞÞ2

E2
Y xð Þ+E2

N xð Þ≤ 1

Thus we see that if Aj(x) are a collection of PFS, Pythagorean fuzzy sets, then if
we define E = Agg(A1, …, Aq> where such that EY(x) = Aggj(AjY(x)) and
EN(x) = gAggj(AjN(x) then E is a PFS with E(x) = (EY(x), EN(x)). Thus the operation
Agg is closed.
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In [12] authors consider a number of important classes aggregation operators.
We briefly look at these for the case of aggregation Pythagorean fuzzy subsets. Two
important classes of aggregation functions are conjunctive and disjunctive opera-
tors. An aggregation function is said to be a conjunctive type operator if Agg(a1,…,
an) ≤ Min(a1, …, an) and is called a disjunctive type operator if Agg(a1, …,
an) ≥ Max(a1, …, an). The conjunctive operator generalizes the set intersection,
and, operator while the disjunctive operator generalizes the set union, or, operator.
It can be shown that if Agg is a conjunctive type operator then gAgg is disjunctive
and if Agg is disjunctive then gAgg is conjunctive.

An special important type of conjunctive operators are t-norms and a related
special important type of disjunctive operators are t-conorms [15]. We recall that a
t-norm is defined as a binary aggregation operator that has one as an identity, T(a,
1) = a, and is associative T(a, T(b, c)) = T(T(a, b, c)). A conorm is also associative
and has zero as its identity, S(a, 0) = a. It can be shown [12] that if Agg is a t-norm
then gAgg is a t-conorm and also if Agg is a t-conorm then gAgg is a t-norm.

Another important class of Agg operators are mean type aggregation operators.
These operators are defined by their satisfaction of the condition Minj[aj] ≤ Agg(a1,
…, aq) ≤ Maxj[aj]. It can be shown that if Agg is a mean type operator then gAgg is
also mean type operator.

We now consider the following mean aggregation operator

Aggðb1, . . . , bnÞ= ðΣjwjb2j Þ1 2̸

where Σjwj = 1 and wj ∈ [0, 1]. This is an example of a class of mean operators
called weighted power means [12]. We can show its dual

gAggðb1, . . . , bnÞ=NegðAggjðNegðbjÞÞ= ðΣjwjb2j Þ1 2̸

Thus Agg(a1, …, an) = (Σjwjaj
2)1/2 is self dual Agg(a1, …, an) = gAgg(a1, …, an).

Another example of mean of is the geometric mean Agg(b1, …, bn) = ∏n
j = 1 b

wj

j .
It can be easily shown [4–6] that its dual is

gAggðb1, . . . , bnÞ= ð1−Aggðð1− b21Þ, . . . . . . , ð1− b2nÞÞÞ1 2̸

5 Pythagorean Membership Grades and Complex
Numbers

In [4] we showed that for some purposes these types of Pythagorean membership
grades could be effectively expressed using a complex number to represent the
membership grade. We note in [16] Dick and Yager explored this relationship in
considerable detail.
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In anticipation of investigating this relationship between Pythagorean member-
ship grades and complex numbered membership grades we review some ideas
about complex numbers [9].

A complex number z is an ordered pair (x, y) interpreted as z = x + iy where
i =

ffiffiffiffiffiffiffiffi
− 1

p
, the so-called imaginary number. One can view a complex number as a

point in a plane as shown in Fig. 2.
Fundamental to the manipulation of complex numbers is the Euler formula. For

any real number x

eix =Cos xð Þ+ i Sin xð Þ

where x is interpreted as radians. We recall 2π radians is 360°. A useful formula
when using the Euler formula is the Pythagorean theorem, Cos2(x) + Sin2(x) = 1.

Assume any complex number z = a + ib, and let r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p
= |z|. Consider

now a value θ such that Cos(θ) = affiffiffiffiffiffiffiffiffiffiffi
a2 +b2

p . We see that from the Pythagorean

theorem

Sin2ðθÞ=1−Cos2ðθÞ= a2 + b2

a2 + b2
−

a2

a2 + b2
=

b2

a2 + b2

Hence Sin(θ) = bffiffiffiffiffiffiffiffiffiffiffi
a2 +b2

p . Here now we see that from Cos(θ) = a
zj jwe get a = |z| Cos(θ)

and from Sin(θ) = b
zj j we get b = |z| Sin(θ). Using this we can express the complex

number z = a + ib as z = |z| Cos(θ) + i|z| Sin(θ) = |z| (Cos(θ) + i Sin(θ)). Using the
Euler formula we get

z = zj jeiθ = zj jðCosðθÞ+ i SinðθÞÞ.

We see that any complex number z = a + ib can be is alternatively expressed as
z = |z|e iθ where |z| = (a2 + b2)1/2 and θ = ArcCos( a

ða2 +b2Þ1 2̸
), the angle whose

cosine is az. We note θ = ArcSin( b
ða2 +b2Þ1 2̸

). The form z = |z|eiθ is called the polar

(x, y)

i

x

y
*

Fig. 2 Point in complex plane
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representation of the complex number z. Geometrically we see this relationship in
Fig. 3.

The polar representation greatly simplifies many operators involving complex
numbers, especially multiplication. Consider the multiplication of two complex
numbers, z1 = a1 + ib1, and z2 = a2 + ib2. We easily see that
z1z2 = (a1a2 − b1b2) + i(a1b2 + a2b1). Performing this using the polar representation
is much simpler. In this case with z1 = r1 eiθ1 and z1 = r1 eiθ2 . We get z1z2 = r1r2
eiðθ1 + θ2Þ. Another operation that is easy to perform is the polar domain is raising a
complex number to a power. Here if z = a + ib = reiθ then (z)m = rmeimθ = r2 eiθ2 .
We note that r2 = rm and θ2 = mθ, the term θ multiplied by m. Thus we have

zm = rmðCosðmθÞ+ iSinðmθÞÞ.

We see if m = −1 then z−1 = 1
z = 1

r(Cos(−θ) + iSin(−θ)). Recalling that
Cos(−θ) = Cos(θ) and Sin(−θ) = −Sin(θ) then z−1 = 1

r(Cos(θ) − i Sin(θ))
We also observe that if z1 = r1 eiθ1 and z1 = r1 eiθ2 then

z1
z2

=
r1
r2
eiðθ1 − θ2Þ =

r1
r2
ðCosðθ1 − θ2Þ + i Sinðθ1 − θ2Þ

We recall the conjugate of z = a + ib is z ̄= a− ib. If z = r(Cos(θ) + i Sin(θ)) = reiθ then
z ̄ = r(Cos(θ) − i Sin(θ)). Recalling that Cos(−θ) = Cos(θ) and Sin(−θ) = −Sin(θ) we
see that z ̄ = r(Cos(−θ) + i Sin(−θ)) = re−iθ. From this we see z
z ̄ = rre+iθe−iθ = r2 = a2 + b2.

Returning to our discussion of Pythagorean membership grades (a(x), b(x)) =
(r(x) Cos(θ(x)), r(x) Sin(θ(x))). We see that formally we can view these as complex
numbers of the form z(x) = r(x)eiθ(x). However we note that not all complex
numbers of the form z = reiθ are interpretable as Pythagorean membership grades.
As we noted the requirement for a pair (r Cos(θ), r Sin(θ)) to be a Pythagorean
membership grade is that r Cos(θ) and r Sin(θ) be in the unit interval and
r2 Cos2(θ) + r2 Sin2(θ) ≤ 1. These conditions require that r ∈ [0, 1] and θ ∈ [0, π2].
So complex numbers z = reiθ having the properties r ∈ [0, 1] and θ ∈ [0, π

2] are
examples of Pythagorean membership grades, we shall refer to these as Π-i
numbers.

In the preceding we described a number of operations on complex numbers we
now must consider which of these operations are useful in the domain of Π-i

i

a

b
|z|

θ

Fig. 3 Geometric perspective
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numbers. In particular, we must consider which operations allow us to start with Π-i
numbers and end with a Π-i number. We first observe that the conjugate z ̄ = re−iθ is
not a Π-i number, thus care must be taken if we use conjugation.

Assume z = reiθ is a Π-i number we note that if α ∈ [0, 1] is a real number then
αreiθ is a Π-i number. Consider now the multiplication of Π-i numbers. Let
z1 = r1e1

iθ and z2 = r2e2
iθ be two Π-i numbers their product is z = z1z2 = r1 r2eiθ1 + θ2

is a Π-i number if θ1 + θ2 ≤ π
2. Consider division with Π-i numbers

z = z1
z2

= r1
r2 e

iðθ1 − θ2Þ. Here we see that z is a Π-i number if r2 ≥ r1 and θ1 ≥ θ2. The
condition r2 ≥ r1 is expected but the condition θ1 ≥ θ2 is interesting. Assume
z = reiθ is a Π-i number and m ∈ [0, 1] we see that zm = rm eiθm and since r ≤ rm ≤ 1
and 0 ≤ θm ≤ θ then zm is Π-i number. Consider now the operation

z= ðz1z2 . . . znÞm = zm1 z
m
2 . . . . . . zmn = rm1 r

m
2 . . . . . . rmn e

imðθ1 + θ2 + ...+ θnÞ

We see that while r1
mr2

m
……rn

m ∈ [0, 1] if m ∈ [0, 1] to be certain that m∑n
j = 1 θj ≤

π
2

we must have m ≤ 1/n.
Consider now a more complex operation. Let mj ∈ [0, 1] for j = 1 to n and

consider

z = zm1
1 zm2

2 . . . . . . zmn
n = rm1

1 rm2
2 . . . . . . rm2

n eiðm1θ1 +m2θ2 + ...+mnθnÞ

We see that while rm1
1 rm2

2 . . . . . . rm2
n ∈ [0, 1] to be sure that∑n

j = 1 wjθj ≤ π
2 and in turn

to be sure that z is Π-i number we require that ∑n
j = 1 wj ≤ 1.

Let us look at the product and try to understand its semantics. We see
z = z1z2 = r1 r2e

i(θ1+θ2) = r eiθ. We see that r is generally smaller then either r1 or r2,
this a kind of reduction in strength of commitment, an increase in uncertainty. On
the other hand θ is larger then either θ1 or θ2. The larger θ the more of the
committed value r is pushed toward non-membership. One clear effect of this
operation is reduction of support for membership. This seems to be somewhat in the
spirit of and “anding” or conjunction operation.

One can consider some variation of the product of Π-i numbers that will always
assure it is a Π-i number by defining z = z1 ⊗ z2 = r1r2eiððθ1 + θ2Þ∧ π

2Þ here ∧ is the
minimum operation.

6 Geometric Aggregation of Multiple Criteria

We now consider the issue of multiple-criteria decision-making. Assume we have a
finite set X of alternatives and a collection of q criteria that we desire to be satisfied.
We denote these criteria Cj, for j = 1 to q. Furthermore we let Cj(x) indicate the
degree of satisfaction of criteria Cj by alternative x. The problem here is to select
the alternative that best satisfies the collection of criteria. One approach is to
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aggregate the satisfactions to the individual criteria by each alternative and then
select the alternative with the maximum aggregated satisfaction. In [17–20] the
authors discuss the use of the geometric mean to provide an aggregation of these
criteria satisfactions for each x. They also associate with each criteria Cj an
importance weight wj ∈ [0, 1] where ∑q

j = 1 wj = 1. Using this information they
calculate the overall by alternative x, C(x) = ∏q

j = 1 CjðxÞwj , it is the geometric
mean [12].

In these works the authors assume Cj(x) ∈ [0, 1] here we shall extend these ideas
to the case where the Cj(x) are Pythagorean membership grades. Here then
Cj(x) = [CYj(x), CNj(x)] = [rj(x) Cos(θj(x), rj(x) Sin(θj(x))] where CYj(x) ∈ [0, 1]
indicates the degree of support for satisfaction of Cj by x and CNj(x) ∈ [0, 1]
indicates the degree of support against satisfaction of Cj by x. Here we shall find it
convenient to represent Cj(x) as rjðxÞeiθjðxÞ. The use of Pythagorean degrees of
satisfaction allows for the inclusion of imprecision and lack of commitment in
modeling of the criteria satisfactions.

Our problem is to calculate C(x) = ∏q
j=1 CjðxÞwj where Cj(x) = rjðxÞeiθjðxÞ. Here

we have

C xð Þ= ∏
q

j = 1
CjðxÞwj = ∏

q

j = 1
ðrjðxÞeiθjðxÞÞwi = ∏

q

j = 1
ðrjðxÞÞwjei∑wjθjðxÞ

Denoting r(x) = ∏q
j = 1 ðrjðxÞÞwj and θ(x) = ∑q

j = 1 wjθjðxÞ we have C(x) = r(x)eiθ(x).
We see since each rj(x) ∈ [0, 1] and each wj ∈ [0, 1] that r(x) = ∏q

j=1 ðrjðxÞÞwj

∈ [0, 1]. In addition since each θjðxÞ∈ ½0, π
2 � and the wj also satisfy ∑q

j = 1 wj = 1
then we have θðxÞ∈ ½0, π

2 �. Thus we see that C(x) = r(x)eiθ(x) is a Π-i number.

7 Comparing Pythagorean Membership Grades

As we have just seen the result of the aggregation of the criteria satisfactions is the
association of a Pythagorean membership grade (a(x), b(x)) with each alternative x.
The next question we are faced with is selecting the best alternative. Here we shall
suggest a method for comparing Pythagorean membership grades. Let P indicate a
generic Pythagorean membership grade, now we shall introduce a function that
associates with P a value in the unit interval so that the bigger this value the more
preferred the alternative. If P is the set of Pythagorean membership grades we want
a function F: P → [0, 1].

Let us recall then that there are two basic representations of a Pythagorean
membership grade. The first is (a, b) here a ∈ [0, 1] and b ∈ [0, 1] and a2 + b2 ≤ 1.
The second is the polar co-ordinates (r, θ). Their relationship is that r2 = a2 + b2 and
a = r cos(θ) and b = r sin(θ). Here r ∈ [0, 1] and θ ∈ [0, π/2]. Closely related to this
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polar representation is a representation (r, d) with d ∈ [0, 1] and d = 1 − 2θ
π . Thus

when θ = 0 we have d = 1 and when θ = π/2 we have d = 0.
To obtain the desired function F we shall use fuzzy function modeling [21].

Consider Fig. 4, which describes the space of Pythagorean membership grades.
What is clear is that at point A we want our function F to take its largest value of 1,
as this corresponds to the point where an alternative fully satisfies the criteria.
Point B corresponds to a membership grade indicating that the criteria are com-
pletely unsatisfied by the alternative. Here we want our function to take on the
lowest value of zero. Finally the point C is a place where we neither have support
for or against the satisfaction of the criteria. Here we will let our function take a
neutral value of 0.5. We further note that the point A corresponds to the case where
r is one and d is one (θ is zero). The point B corresponds to the case where r is one
and d is zero (θ is π/2). The point C corresponds to the case where r is zero.

Using the above we define our function F using a fuzzy rule base with three rules
[21]

If r is close to one and d is close to one then F is 1.

If r is close to one and d is close to zero then F is 0

If is r close to zero then F is 0.5

We represent close to one for r as a fuzzy subset E1 on unit interval where
E1(r) = r. We represent close to zero for r as a fuzzy subset E2 on unit interval
where E2(r) = 1 − r. We represent close to one for d as a fuzzy subset D1 on unit
interval where D1(r) = d. We represent close to zero for d as a fuzzy subset D2 on
unit interval where D2(r) = 1 − d.

Using the Takagi-Sugeno [22] approach for building functions from fuzzy rule
bases we get

A

B

C

Fig. 4 Function points
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F r, dð Þ= ð1ÞE1ðr)D1ðd) + ð0ÞE1ðr)D2ðd) + ð0.5ÞE2ðr)
E1ðr)D1ðd) +E1ðr)D2ðd) +E2ðr) =

ðd)(r) + 0.5ð1− r)
dr + ðr)(1− d) + ð1− r)

We easily see that d · r + r(1 – d) + (1 – r) = 1 thus we get for our function

F r, að Þ=d r +
1
2

1− rð Þ= 1
2
+ r ðd −

1
2
Þ

Since d = 1 − 2θ
π we can also express the function as

Fðr, θÞ= 1
2
+ rð1

2
−

2θ
π
Þ

Let us look this for some particular instances. We see if r = 1 and θ = 0, point A,
we get F(r, θ) = 1. We see if r = 1 and θ = π/2, point B, then F(r, θ) = 0. We see if
r = 0, point C, then F(r, θ) = 0.5. This function satisfies the three rules. Let us look
further at the performance of this function. If we let r be fixed then we see that

dFðr, θÞ
dθ

= −
2r
π
,

it decreases as θ increases. Thus on a fixed arc of radius r we see that F decreases as
we go from θ = 0 to θ = π/2.

Consider now the case of a fixed value for θ and let us see what happens when r

changes. Here dF(r, θÞ
dr = 1

2 −
2θ
π . We see that for θ < π/4 F increases as r increases.

For θ > π/4 then F decreases as r increases. Finally if θ = π/4 then F(r, π/4) = 0.5. It
remains the same for all r.

We also observe then that if θ = 0, then F(r, θ) = 1
2(1 + r). Thus we see that as r

goes for 0 to one, F(r θ) goes from 0.5 to 1. Similarly if θ = π/2 then F(r, θ) = 1
2 –

r
2.

Here the as r goes from zero to one F goes from 0.5 to zero.
Thus we see if x and y are two alternatives such that their overall satisfaction to

the multiple criteria are be expressed Pythagorean membership grades (r(x), θ(x))
and (r(y), θ(y)) if we calculate F(r(x), θ(x)) and F(r(y), θ(y)) the bigger of these
corresponds to the preferred alternative.

8 Aggregation Using a Ordered Weighted
Geometric Operator

An alternative approach for aggregation of the individual criteria discussed in
[17–19] is the Ordered Weighted Geometric (OWG) operator which is based on the
OWA operator introduced by Yager [23, 24]. We note as discussed in [19] as well
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as in [24] the use of ordered weighted type aggregation provides the capability to
model various different types of user specified aggregation imperatives.

Here again we assume a collection of q criteria that we desire to be satisfied, Ck,
for k = 1 to q. Again we let Ck(x) indicate the degree of satisfaction of criteria Ck by
alternative x. Here we also have a set of weights αj ∈ [0, 1] such that ∑q

j = 1 αj = 1.
However the weight αj rather then being associated with the criteria Cj is associated
with the criteria with the jth largest satisfaction. In [17, 19] the authors assumed
Ck(x) ∈ [0, 1]. From these Ck(x) one obtains an index function, ind, so that ind(j) is
the index of the jth largest Ck(x). Using the ind(j) we obtain the OWG aggregation
of the Ck(x) as C(x) = ∏q

j = 1 CindðjÞðx)αj . Here we emphasize the Cind(j) is the jth
most satisfied criteria by alternative x and Cind(j)(x) is its degree of satisfaction by x.
Here then we have ordered the criteria by there satisfaction under x to obtain ind.

Here we shall extend the use of the OWG operator to the case where the Ck(x)
are Pythagorean satisfaction grades. Here then Ck(x) = [CYk(x), CNk(x)] = [rk(x)
Cos(θk(x), rk(x) Sin(θk(x))] where CYk(x) ∈ [0, 1] indicates the degree of support
for satisfaction of Ck by x and CNk(x) ∈ [0, 1] indicates the degree of support
against satisfaction of Ck by x. Here again we shall find it convenient to represent
Ck(x) as rkðx)eiθkðxÞ. While the situation appears very similar to the earlier situation,
where we extended the geometric mean to the case of Pythagorean membership
grades, there is one substantial difference. Here in the case of the OWG we must
order the satisfactions, the Ck(x). Since the Ck(x), rkðx)eiθkðxÞ, are not scalar num-
bers there is not an implicit ordering of the Ck(x). So as to obtain the requisite
ordering we shall use the function F(r, θ) to induce an ordering on the Ck(x). In
particular for each Ck(x) = rkðx)eiθkðxÞ we calculate a value P(k) = F(rk(x),

θk(x)) = 1
2 + rk(x)(12 −

2θkðx)
π ). Using the P(k)’s we obtain the function ind such ind(j)

is the index of the criteria with jth largest value for P(k). We note that this is in the
spirit of the idea of induced ordering introduced in [25, 26]. Once having the
function ind(j) we are in a position to calculate C(x) =∏q

j = 1 CindðjÞðx)αj as we did in
the earlier case of geometric mean with Pythagorean satisfactions.

9 Conclusion

We introduced the idea of Pythagorean fuzzy subsets and discussed its relationship
with intuitionistic fuzzy subsets. We focused on the negation and its relationship to
the Pythagorean theorem. We described some of the basic set operations on
Pythagorean fuzzy subsets. We looked at the relationship between Pythagorean
membership grades and complex numbers. We considered the problem of
multi-criteria decision making with satisfactions expressed as Pythagorean mem-
bership grades. We looked at the use of the geometric mean and ordered weighted

134 R.R. Yager



geometric (OWG) operator for aggregating criteria satisfaction. We provided a
method for comparing alternatives whose degrees of satisfaction to the decision
criteria are expressed as Pythagorean membership grades.
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Additive Generators Based on Generalized
Arithmetic Operators in Interval-Valued
Fuzzy and Atanassov’s Intuitionistic Fuzzy
Set Theory

Glad Deschrijver and Etienne E. Kerre

Abstract In this paper we investigate additive generators in Atanassov’s
intuitionistic fuzzy and interval-valued fuzzy set theory. Starting from generalized
arithmetic operators satisfying some axioms we define additive generators and we
characterize continuous generators which map exact elements to exact elements in
terms of generators on the unit interval. We give a necessary and sufficient condition
under which a generator actually generates a t-norm and we show that the generated
t-norm belongs to particular classes of t-norms depending on the arithmetic operators
involved in the definition of the generator.

Keywords Atanassov’s intuitionistic fuzzy set · Interval-valued fuzzy set ·
Additive generator · t-norm

1 Introduction

Triangular norms on ([0, 1],≤) were introduced in [1] and play an important role in
fuzzy set theory (see e.g. [2–4] for more details). Additive generators are very useful
in the construction of t-norms: any generator on ([0, 1],≤) can be used to generate
a t-norm. Generators play also an important role in the representation of continuous
Archimedean t-norms on ([0, 1],≤). Moreover, some properties of t-norms which
have a generator can be related to properties of their generator. See e.g. [4–8] for
more information about generators on the unit interval.
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Interval-valued fuzzy set theory [9, 10] is an extension of fuzzy set theory in
which to each element of the universe a closed subinterval of the unit interval
is assigned which approximates the unknown membership degree. Another exten-
sion of fuzzy set theory is intuitionistic fuzzy set theory introduced by Atanassov
[11–13]. In [14] it is shown that the underlying lattice of Atanassov’s intuitionistic
fuzzy set theory is isomorphic to the underlying lattice of interval-valued fuzzy set
theory and that both can be seen as L-fuzzy sets in the sense of Goguen [15] w.r.t.
a special lattice LI . In [16] we introduced additive and multiplicative generators on
LI based on a special kind of addition introduced in [17]. In [18] another addition
was introduced and many more additions can be introduced. Therefore, in this paper
we will investigate additive generators on LI independently of the addition.

2 The Lattice LI

Definition 1 We define LI = (L I ,≤L I ), where

L I = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},
[x1, x2] ≤L I [y1, y2] ⇐⇒ (x1 ≤ y1 and x2 ≤ y2), for all [x1, x2], [y1, y2] in L I .

Similarly as Lemma 2.1 in [14] it can be shown that LI is a complete lattice.

Definition 2 [9, 10] An interval-valued fuzzy set on U is a mapping A : U → L I .

Definition 3 [11–13] An intuitionistic fuzzy set on U is a set

A = {(u, μA(u), νA(u)) | u ∈ U },

where μA(u) ∈ [0, 1] denotes the membership degree and νA(u) ∈ [0, 1] the non-
membership degree of u in A and where for all u ∈ U ,

μA(u) + νA(u) ≤ 1.

An intuitionistic fuzzy set A on U can be represented by the L-fuzzy set A given
by

A : U → L I :
u �→ [μA(u), 1 − νA(u)],

In Fig. 1 the set L I is shown. Note that to each element x = [x1, x2] of L I

corresponds a point (x1, x2) ∈ R
2.

In the sequel, if x ∈ L I , then we denote its bounds by x1 and x2, i.e. x = [x1, x2].
The length x2 − x1 of the interval x ∈ L I is called the degree of uncertainty and is
denoted by xπ . The smallest and the largest element of LI are given by 0LI = [0, 0]
and 1LI = [1, 1]. Note that, for x , y in L I , x <L I y is equivalent to x ≤L I y and
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Fig. 1 The grey area is L I

[0, 0]

[1, 1][0, 1]

x1

x2

x = [x1, x2]

x1

x2

x �= y, i.e. either x1 < y1 and x2 ≤ y2, or x1 ≤ y1 and x2 < y2. We define the
relation 	L I by x 	L I y ⇐⇒ x1 < y1 and x2 < y2, for x , y in L I . We define for
further usage the sets

D = {[x, x] | x ∈ [0, 1]},
L̄ I = {[x1, x2] | (x1, x2) ∈ R

2 and x1 ≤ x2},
D̄ = {[x, x] | x ∈ R};

L̄ I
+ = {[x1, x2] | (x1, x2) ∈ [0,+∞[2 and x1 ≤ x2},

D̄+ = {[x, x] | x ∈ [0,+∞[},
L̄ I

+,0 = {[x1, x2] | (x1, x2) ∈ ]0,+∞[2 and x1 ≤ x2},
L̄ I

∞,+ = {[x1, x2] | (x1, x2) ∈ [0,+∞]2 and x1 ≤ x2},
D̄∞,+ = {[x, x] | x ∈ [0,+∞]}.

Theorem 1 (Characterization of supremum in LI ) [19] Let A be an arbitrary non-
empty subset of L I and a ∈ L I . Then a = sup A if and only if

(∀x ∈ A)(x ≤L I a)

and (∀ε1 > 0)(∃z ∈ A)(z1 > a1 − ε1)

and (∀ε2 > 0)(∃z ∈ A)(z2 > a2 − ε2).

Definition 4 A t-norm on LI is a commutative, associative, increasing mapping
T : (L I )2 → L I which satisfies T (1LI , x) = x , for all x ∈ L I .

A t-conorm onLI is a commutative, associative, increasingmappingS : (L I )2 →
L I which satisfies S(0LI , x) = x , for all x ∈ L I .

Theorem 2 [19–21] Let T1, T2 and T be t-norms on ([0, 1],≤) for which T1(x, y) ≤
T2(x, y), for all x, y in [0, 1], and let t ∈ [0, 1]. The functions TT1,T2 , TT , T ′

T and TT,t

defined by, for all x, y in L I ,
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TT1,T2(x, y) = [T1(x1, y1), T2(x2, y2)],
TT (x, y) = [T (x1, y1),max(T (x1, y2), T (x2, y1))],
T ′

T (x, y) = [min(T (x1, y2), T (x2, y1)), T (x2, y2)],
TT,T (x, y) = [T (x1, y1),max(T (t, T (x1, y1), T (x1, y2), T (x2, y1))],

are t-norms on LI .
The t-norms of type TT1,T2 are called t-representable, the t-norms of type TT are

called pseudo-t-representable of the first kind, the t-norms of type T ′
T are called

pseudo-t-representable of the second kind.

If for a mapping f on [0, 1] and a mapping F on L I it holds that F(D) ⊆ D̄, and
F([a, a]) = [ f (a), f (a)], for all a ∈ L I , then we say that F is a natural extension
of f to L I . E.g. TT,T , TT , TT,t and T ′

T are all natural extensions of T to L I .

Example 1 The following are well-known t-norms and t-conorms on the unit inter-
val: for all x , y in [0, 1],

TL(x, y) = max(0, x + y − 1),

TP(x, y) = xy,

TD(x, y) =
{
min(x, y), if max(x, y) = 1,

0, else,

SL(x, y) = min(1, x + y).

Using these t-norms and the above constructions, we can construct t-norms on LI .
For example, using TL we obtain, for all x , y in L I ,

TTL ,TL (x, y) = [max(0, x1 + y1 − 1),max(0, x2 + y2 − 1)],
TTL (x, y) = [max(0, x1 + y1 − 1),max(0, x1 + y2 − 1, x2 + y1 − 1)].

3 Arithmetic Operators on L̄ I

We start from two arithmetic operators ⊕ : (L̄ I )2 → L̄ I and ⊗ : (L̄ I+)2 → L̄ I

satisfying the following properties,

(ADD-1) ⊕ is commutative,
(ADD-2) ⊕ is associative,
(ADD-3) ⊕ is increasing,
(ADD-4) 0LI ⊕ a = a, for all a ∈ L̄ I ,
(ADD-5) [α, α] ⊕ [β, β] = [α + β, α + β], for all α, β in [0,+∞[,
(MUL-1) ⊗ is commutative,
(MUL-2) ⊗ is associative,



Additive Generators Based on Generalized Arithmetic Operators … 141

(MUL-3) ⊗ is increasing,
(MUL-4) 1LI ⊗ a = a, for all a ∈ L̄ I+,
(MUL-5) [α, α] ⊗ [β, β] = [αβ, αβ], for all α, β in [0,+∞[.

The conditions (ADD-1)–(ADD-4) and (MUL-1)–(MUL-4) are natural condi-
tions for any addition and multiplication operators. The conditions (ADD-5) and
(MUL-5) ensure that these operators are natural extensions of the addition and
multiplication of real numbers to L̄ I .

Sometimes we will assume that ⊕ and ⊗ satisfy the following alternative condi-
tions instead of (ADD-5) and (MUL-5):

(ADD-5’) [α, α] ⊕ b = [α + b1, α + b2], for all α ∈ [0,+∞[ and b ∈ L̄ I ,
(MUL-5’) [α, α] ⊗ b = [αb1, αb2], for all α ∈ [0,+∞[ and b ∈ L̄ I+.

Note that from (ADD-3) and (ADD-4) it follows that, for alla,b in L̄ I ,a⊕b ≥L I a,
if b ≥L I 0LI . Similarly, we find that a ⊗ b ≥L I a, if b ≥L I 1LI , for all a, b in L̄ I+.

Define the mapping � by, for all x , y in L̄ I ,

1LI � x = [1 − x2, 1 − x1], (1)

x � y = 1LI � ((1LI � x) ⊕ y). (2)

Define finally the mapping � by, for all x , y in L̄ I+,0,

1LI � x =
[
1

x2
,
1

x1

]
, (3)

x � y = 1LI � ((1LI � x) ⊗ y). (4)

We recall some properties that we need later on; other properties can be found in
[22].

Theorem 3 [22] The mapping � satisfies the following properties, for all α, β in R

and a, b, c in L̄ I ,

(i) [α, α] � [β, β] = [α − β, α − β],
(ii) a � (b � c) = ((1LI � b) ⊕ c) � (1LI � a).

If ⊕ satisfies (ADD-5’), then

(iii) [α, α] � b = [α − b2, α − b1],
(iv) (a ⊕ b) � [α, α] = a ⊕ (b � [α, α]).
The mapping � satisfies the following properties, for all α, β in ]0,+∞[ and a, b,
c in L̄ I+,0,

(v) [α, α] � [β, β] =
[

α

β
,
α

β

]
,

(vi) a � (b � c) = ((1LI � b) ⊗ c) � (1LI � a).

If ⊗ satisfies (MUL-5’), then



142 G. Deschrijver and E.E. Kerre

(vii) [α, α] � b =
[

α

b2
,

α

b1

]
,

(viii) (a ⊗ b) � [α, α] = a ⊗ (b � [α, α]).
Example 2 We give some examples of arithmetic operators satisfying the conditions
(ADD-1)–(ADD-4) and (MUL-1)–(MUL-4).

• In the interval calculus (see e.g. [23]) the following operators are defined: for all
x , y in L̄ I ,

x ⊕ y = [x1 + y1, x2 + y2],
x � y = [x1 − y2, x2 − y1],
x ⊗ y = [x1y1, x2y2], if x, y in L̄ I

+,

x � y =
[ x1

y2
,

x2
y1

]
, if x, y in L̄ I

+,0.

It is easy to see that these operators satisfy (ADD-1)–(ADD-4), (MUL-1)–(MUL-
4), (1), (2), (3) and (4).

• In [17] the following operators are defined: for all x , y in L̄ I ,

x ⊕LI y = [min(x1 + y2, x2 + y1), x2 + y2],
x �LI y = [x1 − y2,max(x1 − y1, x2 − y2)],
x ⊗LI y = [x1y1,max(x1y2, x2y1)], if x, y in L̄ I

+,

x �LI y =
[
min

( x1
y1

,
x2
y2

)
,

x2
y1

]
, if x, y in L̄ I

+,0.

It was proven in [17] that these operators satisfy (ADD-1)–(ADD-4), (MUL-1)–
(MUL-4), (1), (2), (3) and (4).

• In [18] the following operators are defined for all t ∈ ]0, 1]: for all x , y in L̄ I ,

x ⊕t
LI y = [min(1 − t + x1 + y1, x1 + y2, x2 + y1), x2 + y2],

x �t
LI y = [x1 − y2,max(t + x2 − y1 − 1, x1 − y1, x2 − y2)],

x ⊗t
LI y = [x1y1,max(t x2y2, x1y2, x2y1)], if x, y in L̄ I

+,

x �t
LI y =

[
min

( x1
t y2

,
x1
y1

,
x2
y2

)
,

x2
y1

]
, if x, y in L̄ I

+,0.

It was proven in [17] that these operators satisfy (ADD-1)–(ADD-4), (MUL-1)–
(MUL-4), (1) and (2). In [22] it is shown that these operators satisfy (3) and (4).

• Define the following operators, for all x , y in L̄ I ,
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x ⊕′
LI y = [x1 + y1,max(x1 + y2, x2 + y1)],

x �′
LI y = [min(x1 − y1, x2 − y2), x2 − y1],

x ⊗′
LI y = [min(x1y2, x2y1), x2y2], if x, y in L̄ I

+,

x �′
LI y =

[ x1
y2

,max
( x1

y1
,

x2
y2

)]
, if x, y in L̄ I

+,0.

It is easy to verify that these operators satisfy (ADD-1)–(ADD-4), (MUL-1)–
(MUL-4), (1), (2), (3) and (4).

4 The Arithmetic Operators and Triangular Norms
and Conorms on LI

Theorem 4 [22] The mapping S⊕ : (L I )2 → L I defined by, for all x, y in L I ,

S⊕(x, y) = inf(1LI , x ⊕ y), (5)

is a t-conorm on LI if and only if ⊕ satisfies the following condition:

(∀(x, y, z) ∈ (L I )3)((
(inf(1LI , x ⊕ y) ⊕ z)1 < 1 and (x ⊕ y)2 > 1

)
=⇒ (inf(1LI , x ⊕ y) ⊕ z)1 = (x ⊕ inf(1LI , y ⊕ z))1

)
.

(6)

Furthermore S⊕ is a natural extension of SL to L I .

Theorem 4 shows that in order to check whether the mapping S⊕ given by (5) is
a t-conorm, it is sufficient to check the associativity for all x , y, z in L I such that
(inf(1LI , x ⊕ y) ⊕ z)1 < 1 and (x ⊕ y)2 > 1.

Theorem 5 [22] The mapping T⊕ : (L I )2 → L I defined by, for all x, y in L I ,

T⊕(x, y) = sup(0LI , x � (1LI � y)), (7)

is a t-norm onLI if and only if ⊕ satisfies (6). Furthermore, T⊕ is a natural extension
of TL to L I .

The following theoremgives a simpler sufficient condition so thatS⊕ is a t-conorm
and T⊕ is a t-norm on LI .

Theorem 6 [22] Assume that ⊕ satisfies the following condition:

(∀(x, y) ∈ L̄ I
+ × L I )((

([x1, 1] ⊕ y)1 < 1 and x2 ∈ ]1, 2]) =⇒ ([x1, 1] ⊕ y)1 = (x ⊕ y)1
)
.

(8)
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Then the mappings T⊕,S⊕ : (L I )2 → L I defined by, for all x, y in L I ,

T⊕(x, y) = sup(0LI , x � (1LI � y)),

S⊕(x, y) = inf(1LI , x ⊕ y),

are a t-norm and a t-conorm on LI respectively. Furthermore T⊕ is a natural exten-
sion of TL to L I , and S⊕ is a natural extension of SL to L I .

Theorem 7 [22] The mapping T⊗ : (L I )2 → L I defined by, for all x, y in L I ,

T⊗(x, y) = x ⊗ y,

is a t-norm on LI . Furthermore T⊗ is a natural extension of TP to L I .

In the following theorem an alternative way of extending the Łukasiewicz t-norm
on the unit interval to LI using the arithmetic operators on L̄ I is given.

Theorem 8 [22] The mapping T ′⊕ : (L I )2 → L I defined by, for all x, y in L I ,

T ′
⊕(x, y) = sup(0LI , x ⊕ (y � 1LI )), (9)

is a t-norm on LI if and only if ⊕ satisfies the following conditions:

(∀a ∈ L I )(1LI ⊕ (a � 1LI ) = a)

and

(∀(x, y, z) ∈ (L I )3) (10)((
(sup(0LI , x ⊕ (y � 1LI )) ⊕ (z � 1LI ))2 > 0 and (x ⊕ (y � 1LI ))1 < 0

)
=⇒ (sup(0LI , x ⊕ (y � 1LI )) ⊕ (z � 1LI ))2

= (x ⊕ (sup(0LI , y ⊕ (z � 1LI )) � 1LI ))2
)
.

Furthermore T ′⊕ is a natural extension of TL to L I .

Corollary 1 [22]Assume that ⊕ satisfies (ADD-5’). The mapping T ′⊕ : (L I )2 → L I

defined by,1 for all x, y in L I ,

T ′
⊕(x, y) = sup(0LI , x ⊕ y � 1LI ),

is a t-norm onLI if and only if ⊕ satisfies (10). Furthermore T ′⊕ is a natural extension
of TL to L I .

1Since from Theorem 3(iv) it follows that (x ⊕ y) � 1LI = x ⊕ (y � 1LI ), for all x , y in L I , we
will omit the brackets in this formula.
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Lemma 1 Assume that ⊕ satisfies (ADD-5’). Let T⊕ : (L I )2 → L I be the mapping
defined by (7). Then for all x1 ∈ [0, 1] and y ∈ L I ,

T⊕([x1, x1], y) = [max(0, x1 + y1 − 1),max(0, x1 + y2 − 1)].

Proof Using Theorem 3(i) we obtain, for all x1 ∈ [0, 1] and y ∈ L I ,

T⊕([x1, x1], y) = sup(0LI , x � [1 − y2, 1 − y1])
= sup(0LI , [x1 − (1 − y1), x1 − (1 − y2)])
= [max(0, x1 + y1 − 1),max(0, x1 + y2 − 1)]. �

Example 3 We give t-norms T⊕, T⊗ and t-conorms S⊕ on LI defined using the
examples for ⊕ and � given in the previous section.

• Let⊕,� and⊗ be the addition, subtraction and multiplication used in the interval
calculus, then T⊕ = TTL ,TL , T⊗ = TTP ,TP and S⊕ = SSL ,SL . Thus the t-norms T⊕,
T⊗ and the t-conorm S⊕ obtained using the arithmetic operators from the interval
calculus are t-representable.

• Using⊕LI ,�LI and⊗LI weobtain thatT⊕LI = TTL ,T⊗LI = TTP andS⊕LI = SSL .
Thus the t-norms T⊕LI , T⊗LI and the t-conorm S⊕LI are pseudo-t-representable.

• Using ⊕t
LI , �t

LI and ⊗t
LI we obtain that T⊕t

LI
= TTL ,t , T⊗t

LI
= TTP ,t and

S⊕t
LI

= SSL ,t .
• Using ⊕′

LI , �′
LI and ⊗′

LI we obtain that T⊕′
LI

=T ′
TL
, T⊗′

LI
=T ′

TP
and S⊕′

LI
= S ′

SL
.

5 Additive Generators on LI

Definition 5 [2, 4, 6] A mapping f : [0, 1] → [0,+∞] satisfying the following
conditions:

(ag.1) f is strictly decreasing;
(ag.2) f (1) = 0;
(ag.3) f is right-continuous in 0;
(ag.4) f (x) + f (y) ∈ rng( f ) ∪ [ f (0),+∞], for all x , y in [0, 1];
is called an additive generator on ([0, 1],≤).

Definition 6 [4, 6] Let f : [0, 1] → [0,+∞] be a strictly decreasing function. The
pseudo-inverse f (−1) : [0,+∞] → [0, 1] of f is defined by, for all y ∈ [0,+∞],

f (−1)(y) = sup({0} ∪ {x | x ∈ [0, 1] and f (x) > y}).

We extend these definitions to L I as follows.
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Definition 7 Let f : L I → L̄ I∞,+ be a strictly decreasing function. The pseudo-
inverse f(−1) : L̄ I∞,+ → L I of f is defined by, for all y ∈ L̄ I∞,+,

f(−1)(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sup{x | x ∈ L I and f(x) �L I y}, if y 	L I f(0LI );
sup({0LI } ∪ {x | x ∈ L I and (f(x))1 > y1

and (f(x))2 ≥ (f(0LI ))2}), if y2 ≥ (f(0LI ))2;
sup({0LI } ∪ {x | x ∈ L I and (f(x))2 > y2

and (f(x))1 ≥ (f(0LI ))1}), if y1 ≥ (f(0LI ))1.

Note that if f(0LI ) ∈ D̄∞,+, then, for all y ∈ L̄ I∞,+,

f(−1)(y) = supΦy,

where

Φy =

⎧⎪⎨
⎪⎩

{x | x ∈ L I and f(x) �L I y}, if y 	L I f(0LI );
{0LI } ∪ {x | x ∈ L I and (f(x))1 > y1

and (f(x))2 = (f(0LI ))2}, if y2 ≥ (f(0LI ))2.

The set f(Φy) is depicted in Fig. 2 for two possible values of y ∈ L̄ I∞,+.
In the following definition we consider continuity w.r.t. the Euclidean metric d E

in R
2 restricted to L I and L̄ I∞,+. We say that a function f : L I → L̄ I∞,+ is right-

continuous in a ∈ L I if

(∀ε > 0)(∃δ > 0)(∀x ∈ L I )(d E (x, a) < δ ∧ x >L I a =⇒ d E (f(x), f(a)) < ε).

f(Φy)

[0, 0]

f(0LI )

x1

x2

y

f(Φy)

[0, 0]

f(0LI )

x1

x2

y

Fig. 2 The largest possible set f(Φy) in the case that y 	L I f(0LI ) (left) and in the case that
y2 ≥ (f(0LI ))2 (right)
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Definition 8 A mapping f : L I → L̄ I∞,+ satisfying the following conditions:

(AG.1) f is strictly decreasing;
(AG.2) f(1LI ) = 0LI ;
(AG.3) f is right-continuous in 0LI ;
(AG.4) f(x) ⊕ f(y) ∈ R(f), for all x , y in L I , where

R(f) = rng(f) ∪ {x | x ∈ L̄ I
∞,+ and [x1, (f(0LI ))2] ∈ rng(f)

and x2 ≥ (f(0LI ))2}
∪ {x | x ∈ L̄ I

∞,+ and [(f(0LI ))1, x2] ∈ rng(f)

and x1 ≥ (f(0LI ))1}
∪ {x | x ∈ L̄ I

∞,+ and x ≥L I f(0LI )};

(AG.5) f(−1)(f(x)) = x , for all x ∈ L I ;

is called an additive generator on LI .

If f(0LI ) ∈ D̄∞,+, then

R(f) = rng(f) ∪ {x | x ∈ L̄ I
∞,+ and [x1, (f(0LI ))2] ∈ rng(f) and x2 ≥ (f(0LI ))2}

∪ {x | x ∈ L̄ I
∞,+ and x ≥L I f(0LI )}.

An example of how the set R(f) may look like is given in Fig. 3.
In [16] the following three properties are shown. Since their proof does not involve

(AG.4), they are also valid for the current definition of additive generator.

Lemma 2 [16] Let f : L I → L̄ I∞,+ be a mapping satisfying (AG.1), (AG.2), (AG.3)
and (AG.5). Then, for all x ∈ L I such that x1 > 0, it holds that (f(x))2 < (f(0LI ))2
and (f(x))1 < (f(0LI ))1.

Lemma 3 [16] Let f : L I → L̄ I∞,+ be a mapping satisfying (AG.1), (AG.2), (AG.3)
and (AG.5). Then (f([0, 1]))1 = (f(0LI ))1 or (f([0, 1]))2 = (f(0LI ))2.

Fig. 3 An example of the
set R(f) given by the shaded
areas together with the thick
lines

[0, 0]

f(0LI )
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Corollary 2 [16] Let f : L I → L̄ I∞,+ be a mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and f(D) ⊆ D̄∞,+. Then (f([0, 1]))2 = (f(0LI ))2.

Lemma 4 Let f1 be an additive generator on ([0, 1],≤) and let f : L I → L̄ I∞,+ be
a mapping satisfying (AG.1), (AG.2), (AG.3), (AG.5) and, for all x ∈ L I ,

(f(x))1 = f1(x2).

Then, for all y ∈ L̄ I∞,+,

(f(−1)(y))2 = f (−1)
1 (y1).

Proof Let y ∈ L̄ I∞,+. Define the set A by,

A =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{x | x ∈ L I and f1(x2) > y1 and (f(x))2 > y2}, if y 	L I f(0LI );
{0LI } ∪ {x | x ∈ L I and f1(x2) > y1 and (f(x))2 = (f(0LI ))2},

if y2 ≥ (f(0LI ))2;
{0LI } ∪ {x | x ∈ L I and (f(x))2 > y2 and f1(x2) = f1(0)},

if y1 ≥ f1(0).

Then f(−1)(y) = sup A. Let a = [(sup A)1, sup A2], where

A2 = {0} ∪ {x | x ∈ [0, 1] and f1(x) > y1};

We prove that (sup A)2 = a2, then we will have that (f(−1)(y))2 = a2 = f (−1)
1 (y1).

From the characterization of supremum in LI it follows that it is sufficient to prove
that x2 ≤ a2, for all x ∈ A, and that for all ε2 > 0 there exists z ∈ A such that
z2 > a2 − ε2.

If x ∈ A, then f1(x2) > y1 or x2 = 0, taking into consideration that f1(x2) =
f1(0) ⇐⇒ x2 = 0, since f1 is strictly decreasing. So x2 ∈ A2. We obtain that
x2 ≤ sup A2 = a2.

From Lemma 3 and the fact that (f([0, 1]))1 = f1(1) < f1(0) = (f(0LI ))1, since
f1 is strictly decreasing, it follows that (f([0, 1]))2 = (f(0LI ))2.
Let ε2 > 0, then from sup A2 = a2 it follows that there exists a z2 ∈ A2 such

that z2 > a2 − ε2. Then f1(z2) > y1 or z2 = 0. Let z1 = 0. If y 	L I f(0LI ), then
f1(z2) > y1 (even if z2 = 0) and (f([0, z2]))2 ≥ (f([0, 1]))2 = (f(0LI ))2 > y2,
so [0, z2] ∈ A. If y2 ≥ (f(0LI ))2, then (f([0, 1]))2 ≤ (f([0, z2]))2 ≤ (f(0LI ))2, so
(f([0, z2]))2 = (f(0LI ))2. Since either f1(z2) > y1 or z2 = 0 (and so [0, z2] = 0LI ),
we obtain that [0, z2] ∈ A. If y1 ≥ f1(0), then f1(z2) cannot be strictly greater than
y1, so z2 = 0. Thus [0, z2] = 0LI ∈ A.

From the characterization of supremum in LI it now follows that sup A = a. �
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Lemma 5 Let f2 be an additive generator on ([0, 1],≤) and let f : L I → L̄ I∞,+
be a mapping satisfying (AG.1), (AG.2), (AG.3), (AG.5), f(D) ⊆ D̄∞,+ and, for all
x ∈ L I ,

(f(x))2 = f2(x1).

Then, for all y ∈ L̄ I∞,+,

(f(−1)(y))1 = f (−1)
2 (y2).

Proof Let y ∈ L̄ I∞,+. Define the set A by,

A =

⎧⎪⎨
⎪⎩

{x | x ∈ L I and (f(x))1 > y1 and f2(x1) > y2}, if y 	L I f(0LI );
{0LI } ∪ {x | x ∈ L I and (f(x))1 > y1 and f2(x1) = f2(0)},

if y2 ≥ f2(0).

Then f(−1)(y) = sup A. Let a = [sup A1, (sup A)2], where

A1 = {0} ∪ {x | x ∈ [0, 1] and f2(x) > y2};

We prove that (sup A)1 = a1, then we will have that (f(−1)(y))1 = a1 = f (−1)
2 (y2).

From the characterization of supremum in LI it follows that it is sufficient to prove
that x1 ≤ a1, for all x ∈ A, and that for all ε1 > 0 there exists z ∈ A such that
z1 > a1 − ε1.

If x ∈ A, then f2(x1) > y2 or x1 = 0, taking into consideration that f2(x1) =
f2(0) ⇐⇒ x1 = 0, since f2 is strictly decreasing. So x1 ∈ A1. We obtain that
x1 ≤ sup A1 = a1.

Let ε1 > 0, then from sup A1 = a1 it follows that there exists a z1 ∈ A1 such
that z1 > a1 − ε1. Then f2(z1) > y2 or z1 = 0. If y2 ≥ f2(0), then f2(z1) > y2
would imply that f2(z1) > f2(0), which is a contradiction. So z1 = 0, and [z1, z1] =
0LI ∈ A. If y 	L I f(0LI ), then f2(z1) > y2 (even if z1 = 0). Since f(D) ⊆ D̄∞,+,
(f([z1, z1]))1 = f2(z1) > y2 ≥ y1. Hence [z1, z1] ∈ A.

From the characterization of supremum in LI it now follows that sup A = a. �
Theorem 9 Let f be an additive generator on ([0, 1],≤) and let f : L I → L̄ I∞,+
the mapping defined by, for all x ∈ L I ,

f(x) = [ f (x2), f (x1)]. (11)

Then, for all y ∈ L̄ I∞,+,

f(−1)(y) = [ f (−1)(y2), f (−1)(y1)]. (12)

Proof From the fact that f is an additive generator on ([0, 1],≤) it follows that
the mapping f defined by (11) satisfies (AG.1), (AG.2) and (AG.3). Furthermore
f(D) ⊆ D̄∞,+.

Since, for all x ∈ L I ,



150 G. Deschrijver and E.E. Kerre

Φf(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{z | z ∈ L I and f (z2) > f (x2) and f (z1) > f (x1)},
if f (x2) < f (0) and f (x1) < f (0);

{[0, 0]} ∪ {z | z ∈ L I and f (z2) > f (x2) and f (z1) = f (0)},
if f (x1) ≥ f (0)

=
{

([0, x1[ × [0, x2[) ∩ L I , if f (x1) < f (0);
{0} × [0, x2[, if f (x1) = f (0),

we obtain that f(−1)(f(x)) = supΦf(x) = x . So (AG.5) holds. From Lemmas 4 and 5
it follows that f(−1) is given by (12). �

Lemma 6 Let f : L I → L̄ I∞,+ be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and f(D) ⊆ D̄∞,+. Then there exists a continuous additive generator
f on ([0, 1],≤) such that (f(x))1 = f (x2), for all x ∈ L I .

Proof Let x2 ∈ ]0, 1]. Since f is decreasing, (f([x2, x2]))1 ≤ (f([0, x2]))1. Assume
that (f([x2, x2]))1 < (f([0, x2]))1. We first show that (f([y2, y2]))1 ≥ (f([0, x2]))1,
for all y2 < x2. If this were not the case, then from f(D) ⊆ D̄∞,+ it would follow
that [0, x2] ∈ Φf([y2,y2]). Thus [y2, y2] = f(−1)(f([y2, y2])) ≥L I [0, x2], so y2 ≥ x2,
which is a contradiction.

Define the mapping f : [0, 1] → R by f (z2) = (f([z2, z2]))1, for all z2 ∈ [0, 1].
Since f is continuous, f = pr1 ◦f ◦ g is continuous, where g : [0, 1] → L I is
defined by g(z2) = [z2, z2], for all z2 ∈ [0, 1]. From the above it follows that
f (y2) ≥ (f([0, x2]))1, for all y2 ∈ [0, x2[. On the other hand, since f is strictly
decreasing and f(D) ⊆ D̄∞,+, f is strictly decreasing, so f (y2) ≤ f (x2), for
all y2 ∈ [x2, 1]. Hence rng( f ) ⊆ [0, f (x2)] ∪ [(f([0, x2]))1, f (0)], taking into
consideration that (f([0, x2]))1 ≤ (f(0LI ))1 = f (0). It follows from the Mean Value
Theorem that a ∈ rng( f ), for any a ∈ ] f (x2), (f([0, x2]))1[, which is a contradiction.
Hence (f([0, x2]))1 = (f([x2, x2]))1 = f (x2).

From f(1LI ) = 0LI , it follows that f (1) = 0, so from the above it follows that f
is a continuous additive generator. �

Corollary 3 Let f : L I → L̄ I∞,+ be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and f(D) ⊆ D̄∞,+. Then f([0, 1]) = [0, (f(0LI ))2].
Proof This follows immediately from Corollary 2, Lemma 6 and (AG.2). �

Lemma 7 Let f : L I → L̄ I∞,+ be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and f(D) ⊆ D̄∞,+. Then there exists a continuous additive generator
f on ([0, 1],≤) such that (f(x))2 = f (x1), for all x ∈ L I .
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Proof From Corollary 3 it follows that (f([x1, 1]))1 = 0, for all x1 ∈ [0, 1]. Thus,
since f is strictly decreasing and using Corollary 2, (f([x1, 1]))2 < (f([0, 1]))2 =
(f(0LI ))2, for all x1 ∈ ]0, 1].

Let x1 ∈ ]0, 1[. Assume that (f([x1, 1]))2 < (f([x1, x1]))2. Since for any y1 ∈
]x1, 1], from (f([x1, 1]))2 < (f([y1, y1]))2 it would follow that [y1, y1] ∈ Φf([x1,1]),
we obtain similarly as in the proof of Lemma 6 a contradiction. So (f([x1, 1]))2 ≥
(f([y1, y1]))2, for all y1 > x1. Define the mapping f : [0, 1] → R by f (z1) =
(f([z1, z1]))2, for all z1 ∈ [0, 1]. The sequel of the proof is now similar as for
Lemma 6. �
Lemma 8 Let f : L I → L̄ I∞,+ be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and f(D) ⊆ D̄∞,+. Then there exists a continuous additive generator
f on ([0, 1],≤) such that, for all x ∈ L I ,

f(x) = [ f (x2), f (x1)].

Proof FromLemmas 6 and 7 it follows that there exist continuous additive generators
f and f ′ on ([0, 1],≤) such that f(x) = [ f (x2), f ′(x1)], for all x ∈ L I . Since
f(D) ⊆ D̄∞,+, we have that f = f ′. �
Lemma 9 Let f : L I → L̄ I∞,+ be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and f(D) ⊆ D̄∞,+. Then R(f) = L̄ I∞,+ and f satisfies (AG.4).

Proof By Lemma 8, there exists a continuous additive generator f on ([0, 1],≤)

such that f(x) = [ f (x2), f (x1)], for all x ∈ L I . From the Mean Value Theorem it
follows that [0, f (0)] ⊆ rng( f ). Since f(D) ⊆ D̄∞,+, we obtain that {x | x ∈ L̄ I∞,+
and (x1, x2) ∈ [0, f (0)]2} = {x | x ∈ L̄ I∞,+ and x ≤L I f(0LI )} ⊆ rng(f). Hence
R(f) = L̄ I∞,+. It follows immediately that f satisfies (AG.4). �

Theorem 10 A mapping f : L I → L̄ I∞,+ is a continuous additive generator on LI

for which f(D) ⊆ D̄∞,+ if and only if there exists a continuous additive generator
f on ([0, 1],≤) such that, for all x ∈ L I ,

f(x) = [ f (x2), f (x1)]. (13)

Proof From Lemma 8 it follows that if f is a continuous additive generator for which
f(D) ⊆ D̄∞,+, then there exists a continuous additive generator f on ([0, 1],≤)

such that (13) holds for all x ∈ L I .
Let conversely f be a continuous additive generator on ([0, 1],≤) and define the

mapping f by (13) for all x ∈ L I . Then clearly f is continuous, strictly decreasing,
and f(1LI )=0LI . From Theorem 9 it follows that f(−1)(f(x)) = [ f (−1)( f (x1)), f (−1)

( f (x2))] = x , for all x ∈ L I . Obviously, f(D) ⊆ D̄∞,+. From Lemma 9 it follows
that f satisfies (AG.4), so f is an additive generator on LI . �

Theorem10 shows that nomatter which operator⊕ satisfying (ADD-1)–(ADD-4)
is used in (AG.4), a continuous additive generator f on LI for which f(D) ⊆ D̄∞,+
can be represented using an additive generator on ([0, 1],≤).
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The following theorem shows that in order to allow additive generators on LI to
be defined in a componentwise way using an additive generator on the unit interval,
the set R(f) in (AG.4) must indeed be defined as in (AG.4).

Theorem 11 Let f be an additive generator on ([0, 1],≤). Then the mapping f :
L I → L̄ I∞,+ defined by, for all x ∈ L I ,

f(x) = [ f (x2), f (x1)],

is an additive generator on LI associated to ⊕ if and only if, for all x, y in L I ,

f(x) ⊕ f(y) ∈ (rng( f ) ∪ [ f (0),+∞])2.

Proof Since f is strictly decreasing, f is strictly decreasing. From f (1) = 0 it
follows that f([1, 1]) = [0, 0]. Since f is right-continuous in 0, lim

x→0LI

f(x) =
[ lim

x→0LI

f (x2), lim
x→0LI

f (x1)] = [ lim
x2→0

f (x2), lim
x1→0

f (x1)] = [ f (0), f (0)] = f(0LI ),

so f is right-continuous in 0LI . From Theorem 9 it follows that f(−1)(f(x)) =
[ f (−1)( f (x1)), f (−1)( f (x2))] = x , for all x ∈ L I .

Finally we check (AG.4). Since f is decreasing, f (x2) ≤ f (x1), so f(x) ∈ L̄ I∞,+,
for all x ∈ L I . It is easy to see that

rng(f) = (rng( f ))2 ∩ L̄ I
∞,+,

{x1 | x1 ∈ [0,+∞] and [x1, (f(0LI ))U ] ∈ rng(f)} = rng( f ),

[(f(0LI ))U ,+∞] = [ f (0),+∞],
{x | x ∈ L̄ I

∞,+ and x ≥L I f(0LI )} = [ f (0),+∞]2 ∩ L̄ I
∞,+.

SoR(f) = (rng( f ) ∪ [ f (0),+∞])2 ∩ L̄ I∞,+. Hence f is an additive generator on LI

if and only if f(x) ⊕ f(y) ∈ (rng( f ) ∪ [ f (0),+∞])2. �

6 Additive Generators and Triangular Norms on LI

Lemma 10 Let f be an additive generator on LI associated to ⊕. Then the mapping
Tf : (L I )2 → L I defined by, for all x, y in L I ,

Tf(x, y) = f(−1)(f(x) ⊕ f(y)),

is commutative, increasing and Tf(1LI , x) = x, for all x ∈ L I .
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Proof Clearly, since ⊕ is commutative, Tf is commutative. Since f and f(−1) are
decreasing and ⊕ is increasing, Tf is increasing. Finally, from (AG.5) it follows that,
for all x ∈ L I , Tf(1LI , x) = f(−1)(0LI ⊕ f(x)) = f(−1)(f(x)) = x . �

Theorem 12 Let f be a continuous additive generator on LI associated to ⊕ for
which f(D) ⊆ D̄∞,+. The mapping Tf : (L I )2 → L I defined by, for all x, y in L I ,

Tf(x, y) = f(−1)(f(x) ⊕ f(y)),

is a t-norm on LI if and only if ⊕ satisfies the following condition:

(∀(x, y, z) ∈ A3)((
(inf(α, x ⊕ y) ⊕ z)1 < α1 and (x ⊕ y)2 > α1

)
=⇒ (inf(α, x ⊕ y) ⊕ z)1 = (x ⊕ inf(α, y ⊕ z))1

)
,

(14)

where α = f(0LI ) and A = {x | x ∈ L̄ I∞,+ and x ≤L I f(0LI )}.
Proof Let f be a continuous additive generator on LI for which f(D) ⊆ D̄∞,+.
Then from Theorem 10 it follows that there exists a continuous additive generator
f on ([0, 1],≤) such that (13) holds. From Theorem 9 it follows that f(−1)(y) =
[ f (−1)(y2), f (−1)(y1)], for all y ∈ L̄ I∞,+.

Let arbitrarily y ∈ L̄ I∞,+. Then

f(f(−1)(y)) = [ f ( f (−1)(y1)), f ( f (−1)(y2))]
= [min( f (0), y1),min( f (0), y2)]
= inf(f(0LI ), y).

(15)

Define the mapping Tf : (L I )2 → L I by Tf(x, y) = f(−1)(f(x) ⊕ f(y)), for all x ,
y in L I . Assume first that Tf is a t-norm. From the associativity of Tf it follows for
all x , y, z in L I ,

f(−1)
(
f(x) ⊕ f

(
f(−1)(f(y) ⊕ f(z))

)) = f(−1)
(
f
(
f(−1)(f(x) ⊕ f(y))

) ⊕ f(z)
)
. (16)

By applying f on both sides of this equality and taking into account (15), we obtain

inf
(
f(0LI ), f(x) ⊕ inf

(
f(0LI ), f(y) ⊕ f(z)

))
= inf

(
f(0LI ), inf

(
f(0LI ), f(x) ⊕ f(y)

) ⊕ f(z)
)
.

(17)
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Since f is given by (13) and f is continuous, rng(f) = A, where A = {x | x ∈ L̄ I∞,+
and x ≤L I f(0LI )} (see the proof of Lemma 9). Thus, from (17) it follows that for
all x , y, z in A,

inf(α, x ⊕ inf(α, y ⊕ z)) = inf(α, inf(α, x ⊕ y) ⊕ z), (18)

where α = f(0LI ).
Assume conversely that (14) holds. From Lemma 10 it follows that Tf is com-

mutative, increasing and Tf(1LI , x) = x , for all x ∈ L I . We still have to prove
the associativity. Let x , y in L I such that x �= y, then x1 �= y1 or x2 �= y2. Since
f is represented by (13) and f is strictly decreasing, from x1 �= y1 it follows that
f (x1) �= f (y1), so f(x) �= f(y). Similarly, if x2 �= y2, then f(x) �= f(y). Hence, for
all x , y in L I ,

f(x) = f(y) ⇐⇒ x = y.

Thus, if (17) holds, then using (15) we obtain that (16) holds, so Tf is associative.
Note that (17) holds as soon as (18) holds. Since α=f(0LI ) ∈ D̄, the proof that (18)
holds for all x , y, z in A, is similar to the second part of the proof of Theorem 4. �

Taking into consideration the similarity between the conditions (6) and (14), we
consider a conditionwhich is similar to (8) andprove that it is a sufficient condition for
⊕ so that a (not necessarily continuous) additive generator associated to⊕ generates
a t-norm. First we give a lemma.

Lemma 11 Let f be an additive generator on LI associated to ⊕. Assume that ⊕
satisfies the following condition:

(∀(x, y) ∈ L̄ I
+ × A)((

([x1, α2] ⊕ y)1 < α1 and x2 ∈ ]α2, 2α2]
) =⇒ ([x1, α2] ⊕ y)1 = (x ⊕ y)1

)
,

(19)
and

(∀(x, y) ∈ L̄ I
+ × A)((

([α1, x2] ⊕ y)2 < α2 and x1 ∈ ]α1, 2α1]
) =⇒ ([α1, x2] ⊕ y)2 = (x ⊕ y)2

)
,

(20)

where α = f(0LI ) and A = {x | x ∈ L̄ I∞,+ and x ≤L I f(0LI )}. Then, for all x ∈ L I

and y ∈ R(f) such that y ≤L I f(0LI ) ⊕ f(0LI ),

f(x) ⊕ f(f(−1)(y)) ∈ R(f)

and

f(−1)(f(x) ⊕ f(f(−1)(y))) = f(−1)(f(x) ⊕ y). (21)
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Proof Let x ∈ L I and y ∈ R(f) such that y ≤L I f(0LI ) ⊕ f(0LI ). We have the
following cases:

• If y ∈ rng(f), then there exists a z ∈ L I such that f(z) = y, so f(x)⊕ f(f(−1)(y)) =
f(x) ⊕ f(f(−1)(f(z))) = f(x) ⊕ f(z) = f(x) ⊕ y ∈ R(f), using (AG.4) and (AG.5).

• If [y1, (f(0LI ))2] ∈ rng(f) and y2 > (f(0LI ))2, then there exists a z ∈ L I such
that f(z) = [y1, (f(0LI ))2]. Since y2 and (f(z))2 are both greater than or equal to
(f(0LI ))2, we obtain that f(−1)(y) = f(−1)(f(z)) = sup({0LI } ∪ {x ′ | x ′ ∈ L I and
(f(x ′))1 > y1 = (f(z))1 and (f(x ′))2 = (f(0LI ))2}). It follows that f(f(−1)(y)) =
f(f(−1)(f(z))) = f(z), using (AG.5). Thus

f(x) ⊕ f(f(−1)(y)) = f(x) ⊕ f(z) ∈ R(f). (22)

Since (f(z))2 = (f(0LI ))2, we obtain that (f(x) ⊕ f(z))2 ≥ (f(0LI ))2. On the
other hand, (f(x) ⊕ y)2 ≥ y2 ≥ (f(0LI ))2. Note that f(z) = [y1, α2] and y2 ∈
]α2, 2α2]. If (f(x) ⊕ f(z))1 < (f(0LI ))1 = α1, then from (19) it follows that
(f(x) ⊕ f(z))1 = (f(x) ⊕ y)1. If (f(x) ⊕ f(z))1 ≥ (f(0LI ))1, then, since y ≥L I f(z)
and ⊕ is increasing, (f(x) ⊕ y)1 ≥ (f(0LI ))1. It is easy to see that in all cases
Φf(x)⊕f(z) = Φf(x)⊕y = {0LI } ∪ {x ′ | x ′ ∈ L I and (f(x ′))1 > (f(x) ⊕ y)1 and
(f(x ′))2 = (f(0LI ))2}. Using the equality in (22), we obtain that (21) holds.

• If [(f(0LI ))1, y2] ∈ rng(f) and y1 > (f(0LI ))1, then it can be similarly proven that
f(x) ⊕ f(f(−1)(y)) ∈ R(f) and that (21) holds.

• If y ≥L I f(0LI ), then f(−1)(y) = 0LI and f(x)⊕ f(f(−1)(y)) = f(x)⊕ f(0LI ) ∈ {x ′ |
x ′ ∈ L̄ I∞,+ and x ′ ≥L I f(0LI )} ⊆ R(f), so f(−1)(f(x) ⊕ f(f(−1)(y)) = 0LI . Since
y ≥L I f(0LI ), we obtain that f(x) ⊕ y ≥L I f(0LI ), so f(−1)(f(x) ⊕ y) = 0LI =
f(−1)(f(x) ⊕ f(f(−1)(y))). �

Using Lemma 11, the following theorem can be shown.

Theorem 13 Let f be an additive generator on LI associated to ⊕. If ⊕ satisfies
(19) and (20), then the mapping Tf : (L I )2 → L I defined by, for all x, y in L I ,

Tf(x, y) = f(−1)(f(x) ⊕ f(y)),

is a t-norm on LI .

Proof From Lemma 10 it follows that Tf is commutative, increasing and that
Tf(1LI , x) = x , for all x ∈ L I . We still have to prove the associativity of Tf.
Let x , y, z in L I , then Tf(x, Tf(y, z)) = f(−1)

(
f(x) ⊕ f

(
f(−1)(f(y) ⊕ f(z))

))
. From

Lemma 11 it follows that

f(x) ⊕ f
(
f(−1)(f(y) ⊕ f(z))

) ∈ R(f)

f(−1)
(
f(x) ⊕ f

(
f(−1)(f(y) ⊕ f(z))

)) = f(−1)
(
f(x) ⊕ (

f(y) ⊕ f(z)
))

.

From the associativity of ⊕ it now easily follows that Tf is associative. �
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Theorems 10 and 9 show that no matter which operator ⊕ is used in (AG.4), a
continuous additive generator f on LI satisfying f(D) ⊆ D̄∞,+ is representable and
has a representable pseudo-inverse. Therefore it depends on the operator ⊕ which
classes of t-norms onLI can have continuous additive generators that extend additive
generators on ([0, 1],≤).

7 Conclusion

In this paper we presented a more general approach to additive generators in interval-
valued fuzzy andAtanassov’s intuitionistic fuzzy set theory than in [16]. In this paper,
instead of choosing one particular set of arithmetic operators, we allow any set of
arithmetic operators satisfying certain axioms to be used in the construction of addi-
tive generators. We characterized continuous generators which map exact elements
to exact elements in terms of generators on the unit interval. We gave a necessary
and sufficient condition under which a generator actually generates a t-norm and we
showed that the generated t-norm belongs to particular classes of t-norms depending
on the arithmetic operators involved in the definition of the generator.
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On the TOPSIS-Class Methods
in the Intuitionistic Fuzzy Environment

Piotr Dworniczak

Abstract TOPSIS is one of the basic methods of multicriteria decision aid. In the
paper a classical algorithm TOPSIS and its analogies in the intuitionistic fuzzy
environment are presented. The application of intuitionistic fuzzy implication for a
new solution of some step in the method is given. The comments about the new
conversion of the input decision matrix due to the criteria validity are given. The
illustrative example is given.

Keywords Intuitionictic fuzzy sets ⋅ TOPSIS ⋅ Intuitionistic fuzzy implication

1 Introduction

Multi-criteria Decision Making is, despite of many years of research, a field of
presentation of new methods and modifications of the already existing. The intu-
itionistic fuzzy (for shortly: IF) sets theory is a promising tool in this area. Fur-
thermore, due to the tendency to facilitate the opinion expressed by experts, the
linguistic values as evaluation of the variants are being used. Due to the genesis, the
linguistic variables are usually vague (fuzzy). For their processing the IF sets theory
can also be useful.

The intuitionistic fuzzy sets (IFS) have been introduced by K. Atanassov [2,1 3].

Definition 1 (Atanassov [2]) The intuitionistic fuzzy set A on a universe U ≠ ∅ is
understood as

A= fðx, μAðxÞ, νAðxÞÞ: x∈Ug,
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where μA and νA are the function from U to closed interval [0, 1], and for every
x ∈ U holds μA(x) + νA(x) ≤ 1.

The ordered pair <μA(x), νA(x)> is called the IF value or IF pair [6].
The value πA(x) = 1 − μA(x) − νA(x) is called a hesitation margin (or a hesitancy
degree).
The values μA(x) and νA(x) are, respectively, the degree of membership and degree
of non-membership of element x to the set A.

Decision making in the intuitionistic fuzzy environment is an example of an area
of research in which, in light of the above comments, the IFSs can be used even in
those cases where uncertainty or ignorance exists, concerning the evaluation of
options made it difficult or impossible to use other methods for decision support.

Citing Szmidt and Kacprzyk [26] we assume, that IFSs based models may be
adequate mainly in the situations when we face human testimonies, opinions, etc.
involving answers of three types:

• yes,
• no,
• abstaining, i.e. which can not be classified (because of different reasons, e.g. “I

do not know”, “I am not sure”, “I do not want to answer”, “I am not satisfied
with any of the options” etc.).

The applications of the IFSs theory for the decision-making appeared a relatively
long time after the first publication of Atanassov [10]. The first monograph on this
subject was the Szmidt paper [23] where two main approaches for decision support
were presented. The first is the intuitionistic generalization of Bellman–Zadeh’s
approach given by Kacprzyk [18], and the second presented some solution concepts
in group decision making with (individual and social) intuitionistic fuzzy preference
relations.

One of the directions of further research is the adaptation of the TOPSIS method
to the IF environment.

2 The TOPSIS-Class Methods

One of the basic methods of the decision making (decision aid) is the TOPSIS
method. It was presented by Hwang and Yoon [17]. The name of method is the
acronym derived from Technique for Order Preference by Similarity to an Ideal
Solution. It is an important method of ordering of the elements in the multidi-
mensional metric space. This method allows to show the best solution (alternative,
decision), based on some aggregate measure of the distance of the evaluation of the
variants from the ideal- and the anti-ideal solution (positive- and negative-ideal,
ideal- and anti-ideal evaluation).
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In this paper the review the TOPSIS-like methods in the intuitionistic fuzzy
environment is presented. Besides, the idea of simple modification of the method is
given. The methods based mainly on the idea of TOPSIS method we will call
hereafter TOPSIS-class methods.

2.1 The Classical TOPSIS Method

The decision-making problem is to identify the optimal variant or ordering of the set
of variants based on the evaluating criterion or criteria. In the multi-criteria decision
making problem (MCDM), it is very difficult due to the lack of a unequivocal order
in a multidimensional space. The TOPSIS is one of the ways to solve this problem
with a finite number of decision variants and a finite number of criteria.

Let X = {x1, x2, … xn} be a finite set of the variants (alternatives) and C1, C2, …
Ck the set of criteria. The classical TOPSIS method is specified in following steps.

10 It is given the matrix S = [sij]n×k, where sij is the evaluation of the ith variant due
to the jth criterion (or, in other words, the value of the jth attribute of the ith
variant).

On this basis we create the matrix R = [rij]n×k of the normalized values, calculated
by formula

rij =
sij
ffiffiffiffiffiffiffiffiffiffiffi

∑
n

i=1
s2ij

s .

The S matrix is called the decision matrix, where R is called the normalized
decision matrix.
20 We construct the weighted normalized decision matrix T = [tij]n×k, where

tij =wj ⋅ rij.

The value wj, where wj ∈ [0, 1] and ∑
k

j=1
wj =1, is the weight for the jth criterion.

30 We determine the ideal solution x+ = ðt +1 , t +2 , . . . t +k Þ and anti-ideal solution
x− = ðt −1 , t −2 , . . . t −k Þ. For the benefit criteria we take

t +j = max
i=1...n

tij, t −j = min
i=1...n

tij

while for cost criteria

t +j = min
i=1...n

tij, t −j = max
i=1...n

tij.
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40 For the ith variant (i = 1, …, n) we compute the distance d +
i from the ideal

solution and the distance d −
i from the anti-ideal solution

d +
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
k

j=1
ðtij − t +j Þ2

s

and

d −
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
k

j=1
ðtij − t −j Þ2

s

.

50 For the ith variant (i = 1,…, n) we calculate the index of relative closeness to the
ideal solution as

c+i =
d −
i

d +
i + d −

i
∈ ½0, 1�.

60 We order the variants by the rule: the higher is the value c+i , the better is the ith
variant.

Let us note that the normalization, as given in step 10, the weighted normalized
decision matrix determined in step 20, the ideal and anti-ideal solution in step 30,
the distance (here—the Euclidean distance) determined in step 40 and even the
index of relative closeness in 50 can be determined in other ways.

2.2 TOPSIS-Class Methods in the IF Environment—Basic
Solutions

TOPSIS-class methods in the intuitionistic fuzzy environment appeared relatively
late. It is possible that the work of Szmidt and Kacprzyk [24, 25, 27] have estab-
lished finally the standards for determining of the distances, and have opened the
way for important methods using a distance or similarity measure of the IFSs. The
research on the distance of the IFSs were initiated by Atanassov. In the book [4]
Atanassov gives the definition of the Hamming distance and Euclidean distance of
IFSs.

Definition 2 (Atanassov [4]) For IFSs A = {<x, μA(x), νA(x)>: x ∈ U} and B = {<x,
μB(x), νB(x)>: x ∈ U} the Hamming distance is given as

HðA,BÞ= 1
2
∑
x∈U

ðjμAðxÞ− μBðxÞj+ jνAðxÞ− νBðxÞjÞ,
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while the Euclidean distance

EðA,BÞ= ð1
2
∑
x∈U

ððμAðxÞ− μBðxÞÞ2 + ðνAðxÞ− νBðxÞÞ2ÞÞ0, 5.

Szmidt and Kacprzyk [24] proposed the Hamming distance and the Euclidean
distance using also the third parameter—the hesitation degree π.

Definition 3 (Szmidt and Kacprzyk [24]) For the IFSs A = {<x, μA(x), νA(x)>:
x ∈ U} and B = {<x, μB(x), νB(x)>: x ∈ U}, in the finite universe U, the normalized
Hamming distance is the number

l1IFSðA,BÞ=
1
2n

∑
x∈U

ðjμAðxÞ− μBðxÞj+ jνAðxÞ− νBðxÞj+ jπAðxÞ− πBðxÞjÞ,

and the normalized Euclidean distance is

q1IFSðA,BÞ=
1
2n

∑
x∈U

ððμAðxÞ− μBðxÞÞ2 + ðνAðxÞ− νBðxÞÞ2 + ðπAðxÞ− πBðxÞÞ2ÞÞ0, 5.

In the subsequent papers [25, 27] Szmidt and Kacprzyk justify the need of taking
into account the degree of uncertainty, pointing its important role in the assessing of
decisions. The authors emphasize that the degree of uncertainty is an important
measure of the lack of information. This lack of information is strictly associated
with a risk characterizing almost all decisions, and it is clear that the decision
should be assessed otherwise at the changes of the level of risk.

In 2008 Luo and Yu [21] proposed the TOPSIS-class method for the rank of
variants using the inclusion degree of the IFSs characterizing the variant in the IFSs
characterizing the optimal variant (optimal solution). The method of Luo and Yu
addresses the problem by a finite set of variants and a finite set of criteria. This
solution indicates one of the basic directions of using of the inclusion for the
comprehensive evaluation of variants. The main idea is as follows.

Let X = {x1, x2, … xn} be the finite set of variants (alternatives) while {C1, C2,
…, Ck} a finite set of criteria. Each variant xi is characterized by the IFS

Xi = f<C1, μi1, νi1 > , <C2, μi2, νi2 > , . . . <Ck, μik, νik > g.

The μij value is interpreted as the degree to which the xi satisfies the Cj, while the
νij value as the degree to which xi does not satisfy the Cj.

Authors assume that the decision-maker would like to choose a variant, which in
the best way satisfies all criteria C1, C2, …, Ck−1 or the Ck criterion.

In the first step, on the base of sets Xi (for i = 1, …, n) are determined two IFSs,
called the ideal- and the anti-ideal solution. Luo and Yu [21] proposed following
formulas.
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For C1, C2, …Ck−1 criteria, the IFS

IS1 = f<C1, μIS1, νIS1 > , <C2, μIS2, νIS2 > , . . . , <Ck− 1, μISk − 1, νISk− 1 > g
= f<C1, max

i=1...n
μi1, min

i=1...n
νi1 > , <C2, max

i=1...n
μi2, min

i=1...n
νi2 > , . . . ,

<Ck − 1, max
i=1...n

μik − 1, min
i=1...n

νik− 1 > g,

is the ideal solution of MCDM problem, while

AIS1 = f<C1, μAIS1, νAIS1 > , <C2, μAIS2, νAIS2 > , . . . , <Ck− 1, μAISk− 1, νAISk− 1 > g
= f<C1, min

i=1...n
μi1, max

i=1...n
νi1 > , <C2, min

i=1...n
μi2, max

i=1...n
νi2 > , . . . ,

<Ck− 1, min
i=1...n

μik− 1, max
i=1...n

νik− 1 > g

is the anti-ideal solution of the MCDM problem.
For the last criterion Ck the ideal- and anti-ideal solution are, similarly

IS2 = f<Ck , max
i=1...n

μik, min
i=1...n

νik > g,

and

AIS2 = f<Ck, min
i=1...n

μik, max
i=1...n

νik > g.

In the next step the inclusion degrees of the ideal solution in all of the variants
evaluations, and, similarly, the inclusion degrees of all of the variants evaluations in
the anti-ideal solution are defined as

DINC xið Þ=max INCIFS IS1,Xi1ð Þ, INCIFS IS2,Xi2ð Þf g,
dINC xið Þ=min INCIFS Xi1,AIS1ð Þ, INCIFS Xi2,AIS2ð Þf g,

where

Xi1 = f<C1, μi1, νi1 > , <C2, μi2, νi2 > , . . . <Ck− 1, μik − 1, νik− 1 > g,
Xi2 = f<Ck , μik, νik > g,

The INCIFS (A, B) is a real degree of the inclusion of A in B.
Luo and Yu in the cited paper give various ways of the determining of

the inclusion degree of IF sets based on intuitionistic fuzzy implication or on the
cardinality of IF sets.

The value DINC(xi) as well as dINC(xi) is the analogy of the distance from clas-
sical TOPSIS solution.
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In the last step the index pi (for i = 1, …, n) is determined:

pi =
DINCðxiÞ

DINCðxiÞ+ dINCðxiÞ .

The ordering of indexes from largest to smallest determines the ranking of
variants from the best to the worst.

The above sets IS1 (and IS2) can be called the max-min ideal solution. It is the
basic form of the ideal solutions considered in the TOPSIS-class methods.

Further papers concerning the TOPSIS-class methods in the IF environment are
given by Wang and Wei [28] and Xu [31]. The solution given in the first paper is
close to the Luo and Yu solution. Wang und Wei assume also the choice from the
finite set of variants x1, x2, … xn. Each variant is assigned to k attributes (the variant
is evaluated according to k criteria) C1, C2, …Ck. But, unlike as in Luo and Yu
solution, attributes are associated with the weights w1, w2, … wk, where wj ∈ [0, 1]

and ∑
k

j=1
wj =1. Authors do not specify the method of determining of weights.

However, we can suspect that they must be given by the decision maker. Authors
assume also that it must be given the matrix RIFS = [rij]n×k = [<μij, νij>]n×k called
the intuitionistic decision matrix. Each element <μij, νij> of the matrix is the IF
value. The μij value is interpreted as the degree to which the xi satisfies the Cj, while
the νij value as the degree to which xi does not satisfy the Cj. Similarly, as in the
Luo and Yu solution, the ideal solution IS and anti-ideal solution AIS (called in
the paper the positive and the negative ideal) are determined. It is namely

IS= f<C1, μIS1, νIS1 > , <C2, μIS2, νIS2 > , . . . , <Ck , μISk, νISk > g
= f<C1, max

i=1...n
μi1, min

i=1...n
νi1 > , <C2, max

i=1...n
μi2, min

i=1...n
νi2 > , . . . ,

<Ck , max
i=1...n

μik, min
i=1...n

νik > g,

and

AIS= f<C1, μAIS1, νAIS1 > , <C2, μAIS2, νAIS2 > , . . . , <Ck , μAISk, νAISk > g
= f<C1, min

i=1...n
μi1, max

i=1...n
νi1 > , <C2, min

i=1...n
μi2, max

i=1...n
νi2 > , . . . ,

<Ck , min
i=1...n

μik, max
i=1...n

νik > g.

Further the authors compute the weighted Hamming distance (not using the
hesitation degree)

H ri, ISð Þ= 1
2
∑
k

j=1
wj μij − μISj

�
�

�
�+ νij − νISj

�
�

�
�

� �
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and

H ri,AISð Þ= 1
2
∑
k

j=1
wj μij − μAISj

�
�

�
�+ νij − νAISj

�
�

�
�

� �

of the IFSs ri (rows of the RIFS matrix), characterizing each variants, from the ideal
and the anti-ideal solutions. Finally, they compute indexes ci of relative closeness of
the xi to the IS in the form

ci ri, ISð Þ= Hðri,AISÞ
Hðri, ISÞ+Hðri,AISÞ ,

for i = 1, …, n.
In the conclusion the ranking of variants is obtained, wherein a variant having

greater index is considered better.
Similar solution is given by Xu [31]. He proposed to determine the index of

relative similarity

RSim ri, ISð Þ= Simðri, ISÞ
Simðri, ISÞ+ Simðri,AISÞ ,

of each variants to the ideal.
The Sim is a similarity measure of IFSs. It was introduced in the paper earlier.

Xu gives in particular two measures of similarity

SimlðA,BÞ=1− l1IFSðA,BÞ

and

SimqðA,BÞ=1− q1IFSðA,BÞ.

Both measures are based on the distance defined by Szmidt and Kacprzyk.
The larger the RSim(ri, IS) value is, the better is the variant corresponding to the

set ri.
A solutions similar to the work of Wang und Wei and Xu are presented by Liu

[20], Guo and Zhang [15] and Guo et al. [14] but the weights, given by an expert,
are used to the transformation of the intuitionistic decision matrix RIFS and not to
correct the distance measurement.

A similar paper to that of Wang and Wei is presented also by Li and Zhang [19].
In this paper, weights are computed based on the symmetric judgment matrix
relating to preferences of attributes (criteria). Elements of the matrix are IF values
<μij, νij>, where μij is a preference degree of the criterion Ci to the criterion Cj,
while νij is a preference degree of the criterion Cj to the Ci. It is also μij = νji,
νij = μji, μii = νii = 0,5, 0 ≤ μij, νij ≤ 1, 0 ≤ μij + νij ≤ 1.

166 P. Dworniczak



Hung and Chen [16] solution is also similar, but the authors, for the computing
of weights, used the entropy measures of the IFSs which are the columns of the
intuitionistic decision matrix RIFS.

In turn, Boran et al. [9] applying the solution, given in the mainstream by Luo
and Yu, and Wang and Wei, introduce to the method, besides weights of criteria
(given by the experts) also weights of opinion of experts. All the weights are
computed on the basis of IF values equivalent to the linguistic terms for rating the
importance of criteria and the importance of decision makers, like very important,
important, medium etc. Variants can be assessed up to 10, while criteria and
decision makers up to 5 linguistic terms. Every variant is evaluated by l experts.

The mth expert gives the intuitionistic fuzzy decision matrix RðmÞ
IFS = ½rðkÞij �n× k =

½< μij, νij > �n× k . Basing on the linguistic assessments of decision makers authors
compute the weights of the kth decision maker as

λm =
μm + πm

μm
μm + νm

∑
l

m=1
ðμm + πm

μm
μm + νm

Þ
.

Taking into account the above weights it is constructed the aggregated intu-
itionistic fuzzy decision matrix R which elements are calculated using the operator
IFWA proposed by Xu [30].

The element rij of the aggregated matrix is the IF value equal to

rij = < μrij , νrij > = <1− ∏
l

m=1
1− μðmÞij

� �λm
, ∏

l

m=1
νðmÞij

� �λm
> .

Similarly to the weights λm, the weights w1, w2 , …, wl are computed. These
weights wm = < μwm

, νwm > . correspond to the decision makers. Basing on these
values and the aggregated intuitionistic fuzzy decision matrix R authors compute
the aggregated weighted intuitionistic fuzzy decision matrix R′ which elements are

r′ij = < μrij ⋅ μwm
, νrij + νwm − νrij ⋅ νwm > .

The matrix R′ is the basis for next steps. Subsequently are computed, in the
classical form, the max-min positive ideal solution and the negative ideal solution,
and then the separation measures (distances in the Szmidt-Kacprzyk sense) of each
variant from positive and negative ideal solutions. In the last step, the index of
relative closeness (as in the classical TOPSIS method) is computed and the rank of
alternatives is determined.

The method presented above is almost in the same form as presented by Agarwal
et al. [1]. The difference lies in the determination of weights assessed by decision
makers (experts). Authors proposed namely
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λm =
μm + μm

μm + νm

∑
l

m=1
ðμm + μm

μm + νm
Þ
,

without taking into account the hesitation degree.
For the evaluations of variants or experts importance authors proposed up to

10 different linguistic values with corresponding IF values. As the averaging
operator, besides the IFWA operator, is also given the IFWG operator [32].

It means that the element rij of the aggregated intuitionistic fuzzy decision matrix
is the IF value equal to

rij = < μrij , νrij > = < ∏
l

m=1
μðmÞij

� �λm
, 1− ∏

l

m=1
1− νðmÞij

� �λm
> .

The subsequent steps are the same as given by Boran et al.
The solution of Boran et al. [9] has been applied, in the economic problems: in

the personnel selection [8], in a supply chain management process [29], in the
construction safety evaluation [7], in Project and Portfolio Management Informa-
tion System [13].

A simplest version of TOPSIS in the IF environment has been applied by Zhang
and Huang [33] for a supplier selection in information technology service
outsourcing.

Maldonado-Macías et al. [22] applied the TOPSIS-class method for ergonomic
compatibility evaluation of advanced manufacturing technology. They used mainly
the Wang and Wei solution, but the vector of weights of attributes is determined as
the eigenvector of the matrix of the pair-wise comparison of attributes corre-
sponding to the maximal eigenvalue of this matrix. The elements of this comparison
matrix are determined by decision makers according to the 9 point Saaty impor-
tance scale. The distances to the (classical) ideal and anti-ideal solution and the
index of relative closeness are computed based on Euclidean distance q1IFS.

The solutions presented above link directly to the classical method of TOPSIS
joint with the IFSs. However, a lot of papers on IFSs use some parts of the TOPSIS.
The very developed direction, is currently the use of interval valued IFSs in con-
nection with the TOPSIS-class methods. In this paper these works are omitted.

3 The Intuitionistic Fuzzy Implication as a Tool
in the TOPSIS-Class Method

In the intuitionistic fuzzy logic (IFL) the truth-value of variable p is given by ordered
pair <a, b>, where a, b, a + b ∈ [0, 1]. The numbers a and b are interpreted as the
degrees of validity and non-validity of p. We denote the truth-value of p by V(p).
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The variable with truth-value true (in the classical logic) we denote by 1 and the
variable false by 0. For this variables holds also V(1) = <1, 0> and V(0) = <0, 1>.
Important in the IFL is an intuitionistic fuzzy implication. It is, following [11], the
logical connective → fulfilled for any variable p, p1, p2, q, q1, q2 properties:

(1) if V(p1) ≼ V(p2) then V(p1 → q) ≽ V(p2 → q),
(2) if V(q1) ≼ V(q2) then V(p → q1) ≼ V(p → q2),
(3) V(0 → q) = V(1),
(4) V(p → 1) = V(1),
(5) V(1 → 0) = V(0).

where ≼ denotes the (typical) order relation on the set of IF values. Namely, for the
variable p and q with V(p) = <a, b> and V(q) = <c, d> it holds V(p) ≼ V(q) if and
only if a ≤ c and b ≥ d.

In the literature on the subject, about 150 different IF implication were noticed
[5, 6]. Two of the classical are the Kleene-Dienes and the Łukasiewicz implications.

They are given by formulas

Vðp→ KDqÞ= <maxfb, cg, minfa, dg> ,

Vðp→ LqÞ= <minf1, b+ cg, maxf0, a+ d− 1g>

where p and q are the logical variable with V(p) = <a, b>, V(q) = <c, d> and a, b,
c, d, a + b, c + d ∈ [0,1].

Each of IF implication can be used as a tool for the aggregation of the validity of
criteria / attributes and the assessments of variants according to these criteria.

Let us suppose that each variant xi, i = 1, … n, from a finite set of variants
(alternatives) are assigned according to the criteria C1, C2, …Ck. We assume also
that the decision maker gives the intuitionistic decision matrix RIFS = [rij]n×k =
[<μij, νij>]n×k. The values μij, νij are interpreted as the degrees of validity and
non-validity of the judgment the variant xi satisfies the criterion Cj.

Let us assume that the criteria are not equally important and each of them is
assigned to one of the linguistic assessments, as given in the first column of the
Table 1. These assessments must be made by a supervisor, or, in the case of many
experts, must be some aggregation of their opinions. Let the linguistic assessment
of Cj correspond to the intuitionistic fuzzy value IFVj = <cj, dj> as in Table 1.

Based on the application of the implication to the assessments <μij, νij>, using
IFVj from the Table 1, we will evaluate the adjusted degrees of validity of each
variants.

The adjusted degrees of validity we compute as the truth-value of the expression
if the criterion Cj is valid then it is by xi satisfied.

Therefore we compute the IF value V(<cj, dj> → <μij, νij>).
The type of IF implication → affects of course the truth-value obtained after its

application.
The intuitionistic assessment of the variants according to various criteria,

adjusted by degrees of criteria validity, form the matrix TIFS = [<eij, fij>]n×k .
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The ith row of the TIFS matrix is the vector of adjusted evaluations of ith variant
according to all criteria, while the jth column is the vector of evaluations of all
variants according to jth criteron.

Based on elements of TIFS we create, in the usual manner, the IFSs, that are the
ideal and anti-ideal solution. Namely

IS= f<C1, eIS1, fIS1 > , <C2, eIS2, fIS2 > , . . . , <Ck , eISk , fISk > g
= f<C1, max

i=1...n
ei1, min

i=1...n
fi1 > , <C2, max

i=1...n
ei2, min

i=1...n
fi2 > , . . . ,

<Ck, max
i=1...n

eik, min
i=1...n

fik > g,
AIS= f<C1, eAIS1, fAIS1 > , <C2, eAIS2, fAIS2 > , . . . , <Ck, eAISk , fAISk > g

= f<C1, min
i=1...n

ei1, max
i=1...n

fi1 > , <C2, min
i=1...n

ei2, max
i=1...n

fi2 > , . . . ,

<Ck, min
i=1...n

eik, max
i=1...n

fik > g

Using the normalized Hamming distance l1IFS, or the normalized Euclidean
distance q1IFS, for the i-th variant, we compute the distance from the ideal solution
d +
i and the distance from the anti-ideal solution d −

i . In the last step we obtain the
index of relative closeness to the ideal solution as given in the classical TOPSIS
method

c+i =
d −
i

d +
i + d −

i
∈ ½0, 1�

and also, as a consequence, the ranking of variants, and the best variant with the
highest index value.

The new step in this method, mentioned first in [12], is the use of an IF
implication for the transformation of input IF values. The use of an IF implication

Table 1 Linguistic assessments and their intuitionistic counterparts

Linguistic assessments of the criterion Cj IFVj

Strongly important <1.0, 0.0>
Important <0.8, 0.0>
Rather important <0.6, 0.0>
Insignificant <0.0, 0.5>
Almost totally unimportant <0.0, 0.9>
I do not know, Type 1; I have no opinion, I can not regard
this criterion as valid or invalid

<0.0, 0.0>

I do not know, Type 2; some prerequisites suggest that the
criterion is important and some prerequisites, on the contrary

<0.5, 0.5>

Source [12]
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is, in author’s opinion, valuable, although it may still be under discussion. An IF
implication has the properties (1)–(5). In a simplified wording, the property
(1) means that the same input value after adjustment by the criterion with the lower
validity should be assessed at least as much as after adjustment by the criterion with
the higher validity. We can say that if the criterion is important then the assessment
of variants, due to this criterion, should be taken into account, but if the criterion is
not important (low degree of importance), then the assessment of variants should
not be relevant to the overall assessment of the variant, or, in other words, the
adjusted degree should be, in this case, considered as high. The property (2) means
that the higher input value after adjustment by certain criterion should be assessed
at least as much as the lower input value. The property (3) means that, if the
criterion had a value of zero, regardless of degree of its fulfillment by the variant,
the adjusted value is as high as possible. In practice, the criterion validity of zero is
not taken into account. The property (4) means that, regardless of the criterion
validity, if the variant fulfills it fully, the revised degree is as high as possible. The
property (5) means that, with the highest criterion validity and the lowest degree of
its fulfillment, the adjusted degree is as low as possible.

Taking into account that most of the implications are continuous mappings, we
can roughly formulate the properties (3)–(5) as follows:

• the low value of importance of criterion implies a practical indifference of
adjusted values regardless of the fulfillment of this criterion,

• the very high evaluation of the variant due to certain criterion remains, after
adjustment, very high regardless of the assessment of the criterion validity,

• if the criterion is very important and the evaluation of the variant due to them is
very low then this very low assessment remains after the adjustment, too.

4 The Numerical Example

Suppose that three alternatives were evaluated according to each of the four criteria
by intuitionistic assessment, and these criteria were considered to be either strongly
important or rather important or insignificant or not known type 2, respectively
(Table 2).

Calculated adjusted degrees are contained in Tables 3 and 4.
The ideal and anti-ideal solution in the both cases are:

ISK −D = f<C1, 1.0, 0.0 > , <C2, 0, 7, 0, 1 > , <C3, 0.8, 0.0 > , <C4, 0, 7, 0, 1 > g
AISK −D = f<C1, 0.6, 0.4 > , <C2, 0, 3, 0, 6 > , <C3, 0.5, 0.0 > , <C4, 0, 5, 0, 2 > g

ISL = f<C1, 1.0, 0.0 > , <C2, 0, 7, 0, 0 > , <C3, 1.0, 0.0 > , <C4, 1, 0, 0, 0 > g
AISL = f<C1, 0.6, 0.4 > , <C2, 0, 3, 0, 3 > , <C3, 0.8, 0.0 > , <C4, 0, 7, 0, 0 > g
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The results presented in Tables 3 and 4 are the basis for calculating of the
distances of assessments of alternatives from the ideal and anti-ideal solutions.
They are given in the Table 5.

The indexes of relative closeness in both cases are given in the Table 6.
Finally, we obtain the rank (from best to worst) of alternatives. In the case of

Kleene-Dienes implication it is x1, x3, x2, and in the case of Łukasiewicz implication
x1, x2, x3.

Table 2 The values of degrees of the criteria met by the variants

Criteria C1 C2 C3 C4

Alternatives Strongly important Rather important Insignificant I do not know, Type 2

x1 <1.0, 0.0> <0.7, 0.1> <0.3, 0.0> <0.7, 0.2>
x2 <0.8, 0.0> <0.3, 0.7> <0.4, 0.3> <0.4, 0.1>
x3 <0.6, 0.4> <0.6, 0.3> <0.8, 0.0> <0.2, 0.1>

Table 3 The assessments, adjusted by using the Kleene-Dienes implication

Criteria C1 C2 C3 C4

Alternatives Strongly important Rather important Insignificant I do not know, Type 2

x1 <1.0, 0.0> <0.7, 0.1> <0.5, 0.0> <0.7, 0.2>
x2 <0.8, 0.0> <0.3, 0.6> <0.5, 0.0> <0.5, 0.1>
x3 <0.6, 0.4> <0.6, 0.3> <0.8, 0.0> <0.5, 0.1>

Table 4 The assessments, adjusted by using the Łukasiewicz implication

Criteria C1 C2 C3 C4

Alternatives Strongly important Rather important Insignificant I do not know, Type 2

x1 <1.0, 0.0> <0.7, 0.0> <0.8, 0.0> <1.0, 0.0>
x2 <0.8, 0.0> <0.3, 0.3> <0.9, 0.0> <0.9, 0.0>
x3 <0.6, 0.4> <0.6, 0.0> <1.0, 0.0> <0.7, 0.0>

Table 5 The Hamming and the Euclidean distances from ideal and anti-ideal solutions

Alternatives The distance l1IFS of alternatives from The distance q1IFS of alternatives from

ISK-D AISK-D ISL AISL ISK-D AISK-D ISL AISL
x1 0.100 0.275 0.050 0.275 0.158 0.320 0.100 0.308
x2 0.300 0.125 0.200 0.175 0.308 0.180 0.218 0.206
x3 0.200 0.175 0.200 0.125 0.240 0.218 0.255 0.180
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The numerical example shows, incidentally, that the choice of implications affect
the result. Unfortunately, such disadvantage have also other methods of decision aid
or inference using the fuzzy or intuitionistic fuzzy implications.

5 Conclusion

Use of IFSs and the IF implications for data processing takes advantage of even
partial information about the degrees of fulfilling (and not-fulfilling) criteria by the
different variants. In the paper a review of TOPSIS-class methods in the intu-
itionistic fuzzy environment is given. The new solution of some step in the
TOPSIS-class method is proposed. The use of the intuitionistic fuzzy implication
are given. The possibility of the applications of the new procedure in the multi-
criteria decision making problems with varying degrees of criteria importance is, in
the numerical example, presented.
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Intuitionistic Fuzzy Dependency
Framework

Boyan Kolev and Ivaylo Ivanov

Abstract This paper proposes an Intuitionistic Fuzzy Dependency Framework
(IFDF) model as a flexible tool for analyzing the cause and effect of events
occurring in systems, where causation dependencies might be partial or vague.
A core data model with basic operations is introduced. A static approach for
dependency analyses is presented using traversals of the dependency graph. A dy-
namic approach using generalized nets as a simulation tool is also presented for the
case of systems with temporal dependencies.

Keywords Intuitionistic fuzzy ⋅ Generalized nets ⋅ Dependency graph ⋅
Causal analysis ⋅ Impact analysis

1 Introduction

In a system, where dependencies exist between components, the problem of analyzing
the cause of an event or the impact it might have on other components is of major
importance. In order to make it possible to perform causation analyses, all depen-
dencies between the possible events that can occur in the systemmust be preliminarily
identified and kept in a directed graph, where each node represents a particular event
and each arc represents a dependency of the output node from the input node. Having
built the dependency graph, once an event occurs, there exist methods to:

• Determine the effects of this event on causing other events, usually by per-
forming a (breadth first) search in the dependency graph starting from the node,
corresponding to the occurred event;
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• Determine the possible root causes of this event, usually by performing a
(breadth first) search in the dependency graph in reverse direction starting from
the node, corresponding to the occurred event.

The problem of performing analytical tasks in a dependency topology has been
studied in the context of many applications—software build systems, financial data
analytics, problem management in IT infrastructure, medical diagnosing, semantic
networks, etc.

In this paper we will introduce the notion of an Intuitionistic Fuzzy Dependency
Framework (IFDF), based on the assumption that dependencies between events
might be partial or vague. We use intuitionistic fuzzy logic to express dependencies,
considering that the proposition “B depends on A” is no longer Boolean, but has
degrees of truth and falsity according to the theory of intuitionistic fuzzy sets,
proposed by Atanassov in [1] as an extension to the classical fuzzy sets theory. An
intuitionistic fuzzy dependency between A and B means that:

• The occurrence of A will cause partial occurrence of B to some extent,
expressed by the degree of truth, and

• B has a level of resistance against impacts of A, expressed by the degree of
falsity.

In Sect. 2 we will summarize the research that has been made in the field of
intuitionistic fuzzy extensions to ITIL’s configuration management database. In the
following sections we will generalize the proposed concept to fit in a wider range of
applications.

In Sect. 3 we will describe the data structures that comprise the IFDF, a semantic
view of the information they hold and basic operations that can be performed.

In Sect. 4 we will discuss intuitionistic fuzzy dependencies and will introduce
methods for calculating indirect dependencies to estimate the indirect impact that
the occurrence of an event might have over distant nodes. We will also introduce
methods to investigate possible causes for the occurrence of the event by traversing
the dependency graph in reverse direction.

In Sect. 5 we will extend our framework by adding temporal components, thus
allowing the expected impact of an event to be estimated as a function of time. In such
a framework, dependencies between nodes A and B have an additional attribute,
representing the amount of time, after which an occurrence of Awill cause occurrence
of B. We will propose a methodology for performing dynamic causation analyses
using the simulation capabilities of intuitionistic fuzzy generalized nets [2, 3].

2 Related Work

Several studies have been made in the area of performing analyses over intu-
itionistic fuzzy dependencies in the IT Service Management domain. In [5] the
authors propose an Intuitionistic Fuzzy Configuration Management Database
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(IFCMDB) model as an extension of the Configuration Management Database
(CMDB), part of the IT Infrastructure Library (ITIL) standard [4]. In the termi-
nology of Configuration Management, IT components and the services provided
with them are known as Configuration Items (CIs), which can include hardware,
software, active and passive network components, servers, documentation, services
and all other IT components and the network can be extended to even include IT
users, IT staff and business units. The authors of [5] introduce a new type of
“dependency relationship” between the CIs that reflects the partial impact that one
CI has on another, expressed by means of intuitionistic fuzzy values.

In [5] a methodology for impact analysis is proposed based on calculations of the
levels of impact that a failure in one CI can have on other CIs that are indirectly
dependent from the failed one.

In [6] a methodology for analyzing the possible candidates for the root cause of a
failure is introduced based on traversing the reverse IFCMDB graph and calculating
the indirect impacts backwards, starting from the failed node.

In [7] the author maps Service Level Agreement (SLA) concepts to the idea
behind component dependencies in an IFCMDB, which makes it possible to pro-
vide an adequate service level management of systems with complex multi-tier
architecture.

The research made so far relies on static analyses of an intuitionistic fuzzy
dependency network in a particular domain. However, our current research is
motivated by the fact that an intuitionistic fuzzy dependency framework is appli-
cable to a much wider range of domains, therefore needs a generalization. More-
over, the framework can be supplemented by adding temporality to the model, thus
making it a robust tool for simulating activities, workloads and problem propaga-
tions among components in complex coherent systems.

3 Intuitionistic Fuzzy Dependency Model

Let E be the set of possible events that can happen within the modeled system. An
intuitionistic fuzzy dependency D is an intuitionistic fuzzy binary relation over E.
The core data structure in the IFDF is an intuitionistic fuzzy directed graph, where
each node corresponds to a possible event and an intuitionistic fuzzy arc from node
a to node b expresses the dependency of b from a:

G= ðE, DÞ, where:
D= > ða, bÞ, μDða, bÞ, νDða, bÞð Þ< ja∈ E, b∈ Ef g

and the functions µD (a, b) and νD(a, b) define the degrees of truth and falsity of the
existence of a dependency between the events a and b, meaning “the occurrence of
a will cause occurrence of b”.
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3.1 Indirect Dependencies and Dependency Semantics

The arcs in the core dependency graph represent direct dependencies, i.e. the direct
effect that the occurrence of one event has on causing another event. For the
purpose of causality analyses indirect dependencies must also be obtained, which
expresses the impact that the occurrence of an event will have on distant nodes. The
existence of an indirect dependency is determined by the existence of a path in the
graph. Indirect dependencies are calculated considering the direct ones and
applying a chain of intuitionistic fuzzy logical conjunction and disjunction
operations.

An intuitionistic fuzzy dependency from a to b may have different semantics
depending on the type of uncertainty it represents, examples of which are listed
below:

• The probability of occurrence of b in case of occurrence of a;
• The level of impact that an occurrence of a has on causing occurrence of b;
• Vague information about the dependency.

3.2 Basic Operations

Depending on the semantics behind the intuitionistic fuzziness of the dependencies,
an arbitrary combination of variants of existing conjunction and disjunction oper-
ations may be used in the computation of indirect dependencies. Thus, the
administrator of the system is given the possibility to select the most appropriate
calculation method, according to its relevance with the modeled system. Below are
listed two possible variants of intuitionistic fuzzy conjunction and disjunction
operations (assuming that a = <µa, va> and b = <µb, vb> are intuitionistic fuzzy
propositions with µaand va as the degrees of truth and falsity of a and µband vb as
the degrees of truth and falsity of b respectively):

• Conjunctions:

− a&b= < min μa, μbð Þ, maxðνa, νbÞ> ð1:1Þ

− a.b= < μaμb, νa + νb − νaνb > ð1:2Þ

• Disjunctions:

− a∨ b= < maxðμa, μbÞ, minðνa, νbÞ> ð1:3Þ

− a+ b= < μa + μb − μaμb, νaνb > ð1:4Þ

180 B. Kolev and I. Ivanov



The type of logical operations that can be used within the system is not limited to
this list. The implementer can choose the types of operations that are most
appropriate for each particular use case. In the rest of the paper we will refer to
conjunction and disjunction operations in general, disregarding the chosen variant,
and we will denote them respectively with the symbols & and v.

3.3 Adding Temporality to Dependencies

The intuitionistic fuzzy dependency model can be extended by adding a temporal
component in the dependency measure. Thus, the dependency relation has this
form:

D= f< ða, bÞ, ðμDða, bÞ, νDða, bÞÞ, t> ja∈ E, b∈ E, t∈ R+ g

In this notation t denotes the amount of time, after which the occurrence of a
will cause occurrence of b. Temporal dependency models are subjects to dynamic
causation analyses unlike non-temporal models, where the impact as a result of
indirect dependency can be computed by traversing the intuitionistic fuzzy
dependency graph. Both static and dynamic analytical approaches will be covered
in the following two sections.

4 Static Analytical Approach

Static analytical approach is applicable to non-temporal intuitionistic fuzzy
dependency models. The objectives of the causation analysis are:

• Forward analysis (impact analysis): Determine the effects of the occurrence of
an event on causing other events;

• Backward analysis (root cause analysis): Determine the possible root causes for
an occurred event.

Both analytical tasks take into account the direct dependencies and perform
computations by traversing the dependency graph, to discover the indirect depen-
dencies in which the starting node is involved.

Let ddep(a, b) denotes the direct dependency of event b from event a:

ddepða, bÞ= < μDða, bÞ, νDða, bÞ> , ða, bÞj ∈ D

< 0, 1> , ða, bÞj ∉D

�

ð2Þ

Let idep(c, d) denotes the indirect dependency of event d from event c.
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4.1 Forward Analysis

The static forward analysis aims to detect the possible effects from an event by
traversing the graph using a breadth-first search algorithm. At each visited node, the
algorithm computes the node’s dependency from the starting node, taking into
account the already computed dependencies at the previous level, using the
formula:

idepða, bÞ=
⋁

ði, bÞ∈D
idepða, iÞ&ddepði, bÞ, a≠ bj

< 1, 0> , a= bj

(

ð3Þ

Finally, each traversed node has a computed dependency from the starting one.

4.2 Backward Analysis

The purpose of the backward analysis is to discover the set of possible root causes
for an occurred event. The breadth-first search algorithm now traverses the graph in
reverse direction in order to find which events might have caused the occurred one.
At each visited node, the algorithm computes the dependency of the starting node
from the visited one, taking into account the already computed dependencies at the
previous level, using the following formula, analogous to the one for forward
analysis:

idepða, bÞ=
⋁

ða, iÞ∈
idepði, bÞ&ða, iÞ, a≠ bj

< 1, 0> , a= bj

(

ð4Þ

4.3 Algebraic Approach

The purpose of the algebraic analysis is to calculate the dependency between two
nodes regardless of the context in which the analysis is performed—to identify the
effects or to analyze the root cause. To calculate the indirect dependency of b from
a, the following procedure is proposed:

1. The graph is traversed in order to find all paths from a to b.
2. For each path, we calculate the partial indirect dependency by applying a chain

of logical conjunction operations over all the direct dependencies between nodes
along the path.

3. Finally, the indirect impact is the result of applying a logical disjunction
operation over all partial impacts, calculated on the previous step.
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Another way to perform algebraic analysis on the graph G is to find the transitive
closure of D, using the Warshall algorithm proposed in [12]. Then, the indirect
dependency of b from a is the membership of the pair (a, b) to the transitive
closure of D.

In general, a single indirect dependency may have different values when com-
puted using the three different approaches: forward, backward and algebraic.
However, the three methods will produce the same result if the used logical
operations have the following properties: the conjunction is distributive over the
disjunction and the conjunction and disjunction are idempotent; for example the
combination of conjunction (1.1) and disjunction (1.3).

5 Dynamic Analytical Approach

In real life scenarios very often the effects of events are propagated with delays or
the dependency of one event from another is a function of time. Dynamic analytical
approach is applicable to both temporal and non-temporal intuitionistic fuzzy
dependency models. It gives more flexibility to the analytical tasks, by allowing the
propagation of the effects of an occurred event to be simulated, taking into account
propagation delays, associated to each node. Also, this approach allows more than
one event to be involved in the simulation at a time.

In the proposed IFDF we use intuitionistic fuzzy generalized nets [2, 3] as the
simulation tool. Whenever an analytical task is assigned to the framework, it per-
forms the following steps:

1. The framework engine automatically transforms the intuitionistic fuzzy depen-
dency graph into an intuitionistic fuzzy generalized net, using the algorithm,
defined in [8, 9]. For example, let us consider the following sample dependency
graph (the clock symbols denote delayed dependencies):

The IFDF engine transforms the graph to the following generalized net:
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2. Then, IFDF assigns the intuitionistic fuzzy dependencies to the evaluation
functions of the corresponding predicates. Each transition is given a type to be
activated whenever there is a token in all of the transition’s input places.

3. Each token has a characteristic Lcurr that carries an intuitionistic fuzzy level of
impact (Lcurr consists of two components—the degrees of truth and falsity).
Every time a token passes through a transition and enters a place, the following
actions are taken:

a. Before leaving the old place, the token splits, so that it can move to all output
places, for which the corresponding predicate function is defined.

b. Upon entering the new place, the token’s Lcurr obtains a new value, which
is the result of applying a logical conjunction operation between Lcurr and
the value of the intuitionistic fuzzy predicate.

c. If the new place already contains another token or if more than one token
enters the same place during the same activation of the transition, all the
tokens are merged in one token, whose Lcurr obtains a value, which is the
result of applying a logical disjunction operation over the values of Lcurr of
all merged tokens.

4. Each token has another characteristic Tcurr, which is the representation of the
current moment in time, relative to the time of initialization of the net. Tcurr is
increased at each transition. Each place, which is the right-hand side of a
delayed dependency (nodes c and f in our example), is substituted with a
single-transition generalized subnet with the following structure:

Each token, entering the input place of this transition, is given a numeric
characteristic, according to the delay of the corresponding dependency. The tran-
sition’s predicates and the characteristic function of the intermediate place are
adjusted in a way that a token loops in the intermediate place for an amount of time,
corresponding to the delay.

5.1 Forward Analysis

When executing a forward analytical task, the IFDF engine puts a token in the
place, corresponding to the occurred event, and starts the GN simulation. If more
events are observed, then more tokens can be involved in the simulation, so that the
simulation can discover the effect propagation of a combination of events. Each
token is given an initial value of Lcurr, corresponding to the level of the occurrence
of the observed event. In particular, we can say that if an event definitely occurs,
then its level of occurrence is <1, 0>.
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Since the calculation of the level of occurrence of a particular event in the chain
depends on the level of occurrence of all its preceding events, the corresponding
transition must wait until all its input places are populated. To make the task
achievable, before starting the simulation, the framework puts tokens in all empty
global input places with an initial value of Lcurr, which in the case of absence of
occurrence of the corresponding event is <0, 1>. In case the level of occurrence of
a particular event is completely unknown, it is also possible to put a token in the
corresponding place with initial Lcurr = <0, 0>.

After entering each place:

• the token’s Lcurr contains the level of impact that the initially observed events
has on it and

• the token’s Tcurr contains the amount of time after the occurrence of the initial
event the effect on the corresponding event will be expected.

5.2 Backward Analysis

The backward analytical task is analogous to the forward one, with the following
remark: The dependency graph is first reversed, and then transformed into an
intuitionistic fuzzy generalized net.

Before starting the simulation, analogously, the IFDF puts tokens in the places,
corresponding to the observed events, with initial Lcurr according to the level of
occurrence. The involvement of several initial tokens in the generalized net gives
the possibility for the framework to find a common root cause for several observed
events. Analogously, the input places, not related to any of the observed events,
must be populated with tokens with initial Lcurr denoting that the event is not
observed or information about its state is vague or missing.

After entering each place:

• the token’s Lcurr shows how likely the corresponding event could be the root
cause of the observed ones and

• the token’s Tcurr gives an approximation about the latest time of occurrence of
the root cause.

6 Conclusions

The proposed framework is a robust tool for simulating and analyzing causality
effects in systems, where the occurrences of events and causalities can be partial,
probabilistic or vague.

The work was inspired by our previous research on intuitionistic fuzzy exten-
sions of the configuration management database (IFCMDB), part of the ITIL
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standard [5, 6]. Having defined the IFDF framework, IFCMDB becomes just one of
the use cases, applicable within IFDF. In the IFCMDB graph, each node corre-
sponds to an item in the infrastructure and the arcs represent dependencies between
items, meaning that the proper work of one item depends on the proper work of
another. Mapping IFCMDB graph to the data model of IFDF can be done by
retaining the same graph topology, but the nodes in IFDF will represent failure
events of the corresponding items and the arcs represent causality of failures of one
node to another. However, IFDF goes beyond the analytical capabilities of the
current IFCMDB model, because it introduces temporality to the causality links,
thus allowing analyzing the possible effects of a failure of an item in the IT
infrastructure, considering delays in effect propagation, the way they exist in a real
scenario. A typical example of the existence of such delayed causalities appears in a
scenario, where hardware is protected from power failures by a UPS—in the event
of failure in the power supply, the effect is propagated to the hardware with a certain
delay, after the UPS battery is discharged.

More general, the IFDF concept can be applied to a much broader range of
domains, where causality dependencies can be partial or vague and the effects of
event occurrences are propagated throughout the system either immediately or
within a timeframe. As subject to our further research, we will investigate the
application of IFDF in several domains, e.g. business process modeling, intu-
itionistic fuzzy scheduling in business processes, social networks, etc.
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Consistency and Consensus
of Intuitionistic Fuzzy Preference
Relations in Group Decision Making

Huchang Liao and Zeshui Xu

Abstract Intuitionistic fuzzy preference relations (IFPRs) have turned out to be a
useful structure in expressing the experts’ uncertain judgments. In this chapter, we
consider a group decision making problem where all the members of the group use
the IFPRs to express their preferences over the candidate alternatives. Firstly, we
describe such a group decision making problem mathematically in details. Then,
different types of definitions for the consistency of an IFPR are reviewed, which can
be divided into two sorts, i.e., the additive consistency and the multiplicative
consistency. Once all the IFPRs are of acceptable consistency, we then introduce a
consensus measure to depict the consensus degree of the experts. A consensus
reaching procedure is given to help the experts modify their assessments and then
obtain an agreement between the experts as to the choice of a proper decision.
A numerical example is given to show the validation and computational process of
the consensus reaching procedure.

Keywords Intuitionistic fuzzy preference relation ⋅ Consistency ⋅ Consensus ⋅
Consensus reaching procedure ⋅ Group decision making

1 Introduction

Group decision making takes place commonly in many domains of our daily life,
including such significant ones as the managerial, financial, engineering, and
medical fields. It has gained prominence owing to the complexity of modern-life
decision problems. For a group decision making problem, a group of experts are
getting together to express their individual opinions over the problem and then yield
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a final decision which is mutually agreeable. Very often, such group decision
making problem involves multiple feasible alternatives, and the objective of the
group decision making problem is to select the best alternative(s) from these
mutually exclusive alternatives based on the preferences provided by the experts. In
many cases, the experts can not determine their preferences in accurate numerical
numbers but fuzzy terms [1]. Fuzzy set (FS) was proposed to represent the rela-
tionship between a set and an element by membership degrees rather than by crisp
membership of classical binary logic. When all the preferences of the experts are
determined by fuzzy numbers which denote the relative intensities between each
pair of alternatives, a set of fuzzy preference relations can be established [2]. Let
X = fx1, x2,⋯, xng be the set of alternatives under consideration, and
E= fe1, e2, . . . , esg be the set of decision makers, who are invited to evaluate the

alternatives. The fuzzy preference relations BðlÞ = ðbðlÞij Þn× n ðl=1, 2,⋯sÞ can be

generated, where 0≤ bðlÞij ≤ 1 and bðlÞij + bðlÞji =1. bðlÞij indicates the degree that the

alternative xi is preferred to xj. Concretely speaking, the case b
ðlÞ
ij =0.5 indicates that

there is indifference between the alternatives xi and xj; b
ðlÞ
ij >0.5 indicates that the

alternative xi is preferred to xj, especially, b
ðlÞ
ij =1 means that the alternative xi is

absolutely preferred to xj; b
ðlÞ
ij <0.5 indicates that the alternative xj is preferred to xi,

especially, bðlÞij =0 means that the alternative xj is absolutely preferred to xi.
Although fuzzy preference relations can be used to represent the fuzzy and

uncertain preferences of the experts in the process of group decision making, they
still have some flaws due to the limitation of the fuzzy set itself. Since the mem-
bership function of a fuzzy set is only single-valued function, it can’t be used to
express the support and objection evidences simultaneously in many practical sit-
uations [3]. If not possessing a precise or sufficient level of knowledge of the
problem domain in cognition of things due to the complexity of the socio-economic
environment, people usually have some uncertainty in assigning the preference
evaluation values to the objects considered, which makes the judgments of cog-
nitive performance exhibit the characteristics of affirmation, negation and hesita-
tion. In 1983, Atanassov [4] proposed the concept of intuitionistic fuzzy set (IFS),
which is characterized by a membership function, a non-membership function and a
hesitancy function. Such type of fuzzy set extension is essential in representing the
imprecision and hesitation of the experts’ cognition [5]. Till now it has been applied
to many different fields, such as decision making [3, 6], fuzzy logics [7], fuzzy
cognitive maps [8], topological space [9], medical diagnosis [10] and pattern
recognition [11]. Given the underlying set X of objects, an IFS Ã is a set of ordered
triples, A ̃= x, μAðxÞ, vAðxÞð Þjx∈Xf g, where μA and vA are the membership and
non-membership functions mapping from X into [0, 1] with the condition
0≤ μA + vA ≤ 1. For each x∈X, μAðxÞ represents the degree of membership of the
element x in X to the set A⊆X, and vAðxÞ gives the non-membership degree. The
number πAðxÞ=1− μAðxÞ− vAðxÞ is called the hesitant degree or the intuitionistic
index of x to A. The FS do not leave any room for indeterminacy between each
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membership degree and its negation, but, in the realistic recognition of experts, such
“disagreement” and indeterminacy are very common and useful in describing their
opinions in decision making. The introduction of this ignorance statement, which is
represented as the hesitancy function in an IFS, is the most characteristic of the IFS
[12]. In many cases, when the experts are not able to express their preferences
accurately or they are unable or unwilling to discriminate explicitly the degree to
which alternative is better than others especially at the beginning of evaluation [13],
it is suitable to express their preference information in IFS and thus we can get a set
of intuitionistic fuzzy preference relations (IFPRs) [14].

As for group decision making with IFPRs, there are several problems raised, the
first one of which is how to judge whether the IFPRs are consistent or not. Con-
sistency of IFPRs requires that the preferences given by the experts yield no
contradiction. The lack of consistency for IFPRs may lead to inconsistent or
incorrect results for a group decision making problem. Thus it has turned out to be a
very important research topic in decision making with IFPRs, and many scholars
have paid attention to this topic [6, 12, 14–22]. In this chapter, we would give detail
review for the different kinds of consistency of IFPRs. As for those IFPRs without
consistency, how to repair them is also a problem which needs to be solved.
Generally, this can be done by two different kinds of methodologies, which are the
automatic methods and the interactive methods [21, 23].

In the next of this chapter, we would focus on another important issue, i.e., the
consensus of group decision making with IFPRs. The consistency checking process
of IFPRs can be seen as a collection of individual decision making problems and it
is easy to be done by extending the methodology of single expert decision making
problem. While the consensus of group decision making is much more complicated
because of the complexity introduced by the conflicting views of experts and the
varying significance of those views in the decision making process [24]. Some-
times, one expert may determine his/her preferences based on his/her perception,
but the others may not agree with it unless they are confident about the perception
of the former expert. The consensus is very important in group decision making.
Although we can yield a decision for a group decision making problem by
aggregating all individual IFPRs into an overall IFPR, the result derived by this type
of methodologies may be not much reasonable because some experts may not agree
with the final result derived by the weighted averaging methodologies. Consensus is
viewed as a pathway to a true group decision because it considers concerns and
conflicting ideas without hostility and fear [25]. Till now, there is litter research on
the consensus of group decision making with IFPRs. In the following of this
chapter, we would pay attention to this issue and give some basic definitions.

The rest of this chapter is organized as follows: Sect. 2 describes the group decision
making problem mathematically within the context of intuitionistic fuzzy circum-
stance. Section 3 reviews the different types of consistency for IFPRs, including the
additive consistency and multiplicative consistency for IFPRs. The definition of
acceptable consistent IFPR is also given in this Section. In Sect. 4, we present the
difficulties in reaching consensus in the process of group decisionmakingwith IFPRs.
Furthermore, we introduce a hard consensus measure to depict the consensus degree
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of the experts. The consensus reaching procedure is given for helping the experts to
reach group agreement. A numerical example is given to validate the procedure in
Sect. 5. Section 6 ends the chapter with some concluding remarks.

2 Group Decision Making with Intuitionistic Fuzzy
Preference Relations

A group decision making problem with intuitionistic fuzzy preference information
can be described as follows: Let X = fx1, x2,⋯, xng be the set of alternatives under
consideration, and E= fe1, e2, . . . , esg be a set of experts, who are invited to evaluate
the alternatives and then provide their preferences through pairwise comparison. The
weight vector of the experts elðl=1, 2, . . . , sÞ is λ= ðλ1, λ2, . . . , λsÞT , where
λl >0, l=1, 2, . . . , s, and ∑s

l=1 λl =1, which can be determined subjectively or
objectively according to the experts’ experience, judgment quality and related
knowledge. In general, they can be assigned equal importance if there is no evidence
to show significant differences among the decision makers or specific preference on
some decision makers [22]. In the existing literature, many techniques have been
developed for determining the decision makers’ weights (for more information, refer
to Refs. [26–28]). In this chapter, we assume that the weights of experts can always be
given.

In many cases, if the problem is very complicated or the experts can not be able
to give explicit preferences over alternatives because of vague information and
incomplete knowledge about the preference degrees between any pair of alterna-
tives, it is suitable to use the IFSs, which express the preference information from
three aspects: “preferred”, “not preferred”, and “indeterminate”, to represent their
opinions. Motivated by the idea of IFS, Szmit and Kacprzyk [29] firstly proposed
the concept of intuitionistic fuzzy preference relation (IFPR). Later, Xu [14] gave
the simple and straightforward notion and expression for it.

Definition 1 [14] An intuitionistic fuzzy preference relation (IFPR) on the set
X = fx1, x2, . . . , xng is represented by a matrix R̃= r ̃ij

� �

n× n, where
rĩj = < ðxi, xjÞ, μðxi, xjÞ, vðxi, xjÞ, πðxi, xjÞ> for all i, j=1, 2,⋯, n. For convenience,
we let rĩj = μij, vij, πij

� �
where μij denotes the degree to which the object xi is

preferred to the object xj, vij indicates the degree to which the object xi is not
preferred to the object xj, and πij =1− μij − vij is interpreted as an indeterminacy
degree or a hesitancy degree, with the conditions:

μij, νij ∈ ½0, 1�, μij + vij ≤ 1, μij = vji, μii = vii =0.5, πij =1− μij − vij, for all i, j=1, 2, . . . , n

ð1Þ
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Xu [14] also proposed the concept of incomplete IFPR in which some of the
preference values are unknown. There are some algorithms to estimate the missing
values for the incomplete IFPR [30]. For convenience, in this paper we assume that
the experts can provide complete IFPRs.

Suppose that the expert el provides his/her preference values for the alternative xi
against the alternative xj as r ̃ðlÞij = ðμðlÞij , vðlÞij Þ, ði, j=1, 2, . . . , n, l=1, 2, . . . , sÞ in

which μðlÞij denotes the degree to which the object xi is preferred to the object xj, v
ðlÞ
ij

indicates the degree to which the object xi is not preferred to the object xj, and

πðlÞij =1− μðlÞij − vðlÞij is interpreted as an indeterminacy degree or a hesitancy degree,

subject to μðlÞij , v
ðlÞ
ij ∈ ½0, 1�, μðlÞij + vðlÞij ≤ 1, μðlÞij = vðlÞij , μ

ðlÞ
ii = vðlÞii =0.5, for all

i, j=1, 2, . . . , n, l=1, 2, . . . , s. The IFPR R
ð̃lÞ
= r ̃ðlÞij
� �

n× n
for the lth expert can be

written as:

R ̃ðlÞ =

rð̃lÞ11 r ̃ðlÞ12 ⋯ r ̃ðlÞ1n
r ̃ðlÞ21 r ̃ðlÞ22 ⋯ r ̃ðlÞ2n
⋮ ⋮ ⋱ ⋮
rð̃lÞn1 r ̃ðlÞn2 ⋯ r ̃ðlÞnn

0

B
B
B
@

1

C
C
C
A

ð2Þ

For any a group decision making problem with s decision makers, we can obtain

s individual IFPRs R̃
ðlÞðl=1, 2,⋯, sÞ with the form of (2).

3 Consistency of Intuitionistic Fuzzy Preference Relations

Consistency is a very important issue for any kinds of preference relations, and the
lack of consistency in preference relations may lead to unreasonable conclusions.
There are several different forms of definition for the consistency of IFPRs, which
mainly involve two sorts: the additive consistency and the multiplicative consistency.

3.1 Additive Consistency

The concept of additive consistency of an IFPR was motivated by the additive
transitivity property proposed by Tanino [1] in 1984. It was proposed to represent
the relationship among different preferences. A preference relation R= ðrijÞn× n is
with additive transitivity if it satisfies ðrij − 0.5Þ+ ðrjk − 0.5Þ= ðrik − 0.5Þ for all
i, j, k=1, 2,⋯, n. This can be interpreted as the intensity of preference of the
alternative xi over xk should be equal to the sum of the intensities of preference of xi
over xj and that of xj over xk when ðrij − 0.5Þ is defined as the intensity of preference
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of xi over xj. Let ωiði=1, 2,⋯, nÞ be the underlying weights of the alternatives and
satisfies ∑n

i=1 ωi =1,ωi ∈ ½0, 1�. Then, an additive consistent fuzzy preference
relation can be given as [15]: rij =0.5ðωi +ωj − 1Þ, for all i, j=1, 2,⋯, n.

Based on the additive transitivity of a preference relation, different forms of
definitions for additive consistency of IFPRs have been proposed.

Xu’s additive consistency
For each IFS rĩj = ðμij, vijÞ, the condition μij ≤ 1− vijði, j=1, 2,⋯, nÞ always holds.
Thus, the IFPR R̃= ðrĩjÞn× n can be transformed into an interval-valued comple-
mentary judgment matrix R ̂= ðr ̂ijÞn× n where
rîj = ðr ̂−ij , r ̂+ij Þ= ½μij, 1− vij�ði, j=1, 2, . . . , nÞ, and
r ̂−ij + r ̂+ji = r ̂+ij + r ̂−ji =1, r ̂+ij ≥ r ̂−ji ≥ 0, r ̂+ii ≥ r ̂−ii ≥ 0.5, i, j=1, 2, . . . , n. Based on the
above transformation, Xu [16] introduced the definition of additive consistent IFPR.

Definition 2 [16] Let R̃= ðrĩjÞn× n be an IFPR with r ̃ij = ðμij, vijÞði, j=1, 2, . . . , nÞ,
if there exists a vector ω= ðω1,ω2,⋯,ωnÞT , such that

μij ≤ 0.5ðωi −ωj +1Þ≤ 1− vij, for all i, j=1, 2, . . . , n ð3Þ

where ωi ∈ ½0, 1�ði=1, 2, . . . , nÞ, and ∑n
i=1 ωi =1. Then, R ̃ is called an additive

consistent IFPR.

Gong et al.’s additive consistency
Gong et al. [17]’s definition is also based on the transformation between the IFPR
R̃= ðrĩjÞn× n and its corresponding interval-valued complementary judgment matrix
R̂= ðr ̂ijÞn× n. As for an interval-valued complementary judgment matrix R̂= ðr ̂ijÞn× n,
Gong et al. claimed that it is additive consistent if there exists a priority vector
ω ̂= ðω1̂,ω2̂,⋯,ωn̂ÞT = ð½ωl

1,ω
u
1�, ½ωl

2,ω
u
2�,⋯, ½ωl

n,ω
u
n�ÞT , such that r ̂ij =0.5+ 0.2 log 3

ωi ̸− 0ptωj = ½0.5+ 0.2 log 3ωil ̸− 0ptωju , 0.5 + 0.2 log 3ωiu ̸− 0ptωjl � ði, j=1, 2, . . . , nÞ,
and the priorities ωî can be interpreted as the membership degree range of the
importance of the alternative xi. Hence, with the additive consistency condition of
interval-valued complementary judgment matrix R ̂= ðrîjÞn× n, a new form of defini-
tion for additive consistent IFPR can be given as follows.

Definition 3 [17] Let R̃= ðrĩjÞn× n be an IFPR with r ̃ij = ðμij, vijÞði, j=1, 2, . . . , nÞ,
if there exists a vector ω ̂= ðω1̂,ω2̂,⋯,ωn̂ÞT = ð½ωl

1,ω
u
1�, ½ωl

2,ω
u
2�,⋯, ½ωl

n,ω
u
n�ÞT ,

such that

μij =0.5+ 0.2 log 3ωil ̸− 0ptωju , vij =0.5+ 0.2 log 3ωjl ̸− 0ptωiu , for all i, j=1, 2, . . . , n

ð4Þ

Then, R̃ is called an additive consistent IFPR.
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Wang’s additive consistency
According to additive transitivity, Wang [18] introduced a definition of additive
consistent IFPR by directly employing the membership and nonmembership
degrees of IFSs.

Definition 4 [18] An IFPR R ̃= ðrĩjÞn× n with rĩj = ðμij, vijÞði, j=1, 2, . . . , nÞ is
called additive consistent if it satisfies the following additive transitivity:

μik + μjk + μki = μkj + μji + μik, for all i, j, k=1, 2,⋯, n ð5Þ

Let ω ̃= ðω1̃,ω2̃,⋯,ωñÞT = ððωμ
1,ω

v
1Þ, ðωμ

2,ω
v
2Þ,⋯, ðωμ

n,ω
v
nÞÞT be an underlying

intuitionistic fuzzy priority vector of an IFPR R̃= ðrĩjÞn× n, where ω ̃i = ðω ̃μi ,ωṽ
i Þ

ði=1, 2,⋯, nÞ is an intuitionistic fuzzy value, which satisfies ω ̃μi ,ωṽ
i ∈ ½0, 1� and

ω ̃μi +ωṽ
i ≤ 1. ω ̃μi and ω ̃vi indicate the membership and non-membership degrees of

the alternative xi as per a fuzzy concept of “importance”, respectively. The nor-
malization of ω ̃ can be done via the following definition:

Definition 5 [18] An intuitionistic fuzzy weight vector ω ̃= ðω1̃,ω2̃,⋯,ωñÞT with
ωĩ = ðωμ

i ,ω
v
i Þ, ωμ

i ,ω
v
i ∈ ½0, 1� and ωμ

i +ωv
i ≤ 1 for i=1, 2,⋯, n is said to be nor-

malized if it satisfies the following conditions:

∑
n

j=1, j≠ i
ωμ
j ≤ωv

i ,ω
μ
i + n− 2≥ ∑

n

j=1, j≠ i
ωv
j , for all i=1, 2,⋯, n ð6Þ

With the underlying normalized intuitionistic fuzzy priority vector ω ̃= ðω1̃,ω2̃,

⋯,ωñÞT , an additive consistent IFPR R̃
*
= ðr*̃ijÞn× n can be established as:

r ̃*ij = μij, vij
� �

=
ð0.5, 0.5Þ if i= j

ð0.5ωμ
i +0.5ωv

j , 0.5ω
v
i +0.5ωμ

j Þ if i≠ j

�

ð7Þ

where ωμ
i ,ω

v
i ∈ ½0, 1�,ωμ

i +ωv
i ≤ 1, ∑

n

j=1, j≠ i
ωμ
j ≤ωv

i , and ωμ
i + n− 2≥ ∑

n

j=1, j≠ i
ωv
j , for

all i=1, 2,⋯, n.

3.2 Multiplicative Consistency

The additive consistency is, to some extent, inappropriate in modeling consistency
due to that its consistency condition is sometimes in conflict with the ½0, 1� scale
used for providing the preference values [31]. However, the multiplicative
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consistency does not have this limitation [32]. The main idea of multiplicative
consistency is based on the multiplicative transitivity of a preference relation
R= ðrijÞn× n, which is characterized as rij r̸ji = rik r̸kið Þ ⋅ rkj r̸jk

� �
for all i, j, k=

1, 2,⋯, n. This relationship can be interpreted as the ratio of the preference intensity
for the alternative xi to that of xj should be equal to the multiplication of the ratios of
preferences when using an intermediate alternative xk, in the case where rij r̸ji
indicates a ratio of the preference intensity for the alternative xi to that of xj. In other
words, xi is rij r̸ji times as good as xj. Inspired by the multiplicative transitivity and
the relationship between the IFPR and its corresponding preference relations,
several distinct definitions of multiplicative consistency were proposed for IFPRs.

Xu’s multiplicative consistency of IFPR
Based on the transformation relationship between the IFPR R̃= ðrĩjÞn× n and its
corresponding interval complementary judgment matrix R̂= ðrîjÞn× n, Xu [16]
proposed the definition of multiplicative consistent IFPR.

Definition 6 [24] Let R̃= ðrĩjÞn× n with r ̃ij = ðμij, vijÞði, j=1, 2, . . . , nÞ be an IFPR,

if there exists a vector ω= ðω1,ω2,⋯,ωnÞT , such that

μij ≤
ωi

ωi +ωj
≤ 1− vij, for all i=1, 2, . . . , n− 1; j= i+1, . . . , n ð8Þ

where ωi ≥ 0, ði=1, 2, . . . , nÞ, ∑
n

i=1
ωi =1. Then, we call R̃ a multiplicative consis-

tent IFPR.

Gong et al.’s multiplicative consistency of IFPR
Based on the transformation between an IFPR and its corresponding interval-valued
fuzzy preference relation, Gong et al. [19] introduced a definition of multiplicative
consistent IFPR.

Definition 7 [19] Let R̃= ðrĩjÞn× n be an IFPR with r ̃ij = ðμij, vijÞði, j=1, 2, . . . , nÞ, if
there exists a vector ω ̂= ðω1̂,ω2̂,⋯,ωn̂ÞT = ð½ωl

1,ω
u
1�, ½ωl

2,ω
u
2�,⋯, ½ωl

n,ω
u
n�ÞT , such

that

μij =
ωil

ωil +ωju
, vij =

ωjl

ωjl +ωiu
, for all i, j=1, 2, . . . , n ð9Þ

Then, R̃ is called a multiplicative consistent IFPR.
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Xu et al.’s multiplicative consistency of IFPR
Xu et al. [30] proposed another definition of multiplicative consistent IFPR, which
was based on the membership and non-membership degrees of IFSs, shown as
follows:

Definition 8 [30] An IFPR R ̃= ðrijÞn× n with rij = ðμij, vijÞði, j=1, 2, . . . , nÞ is
multiplicative consistent if

μij =
0, ðμik, μkjÞ∈ 0, 1ð Þ, 1, 0ð Þf g

μikμkj
μikμkj + ð1− μikÞð1− μkjÞ , otherwise

(

, for all i≤ k≤ j, ð10Þ

vij =
0, ðvik, vkjÞ∈ 0, 1ð Þ, 1, 0ð Þf g

vikvkj
vikvkj + ð1− vikÞð1− vkjÞ , otherwise

�

, for all i≤ k≤ j. ð11Þ

Liao and Xu’s multiplicative consistency of IFPR
Liao and Xu [20] pointed out that the definition of Xu et al. [30] was not reasonable
in some cases because with the above consistency conditions, the relationship
μij ⋅ μjk ⋅ μki = μik ⋅ μkj ⋅ μji (for all i, j, k=1, 2,⋯, n) can not be derived any more.
Then, they introduced a general definition of multiplicative consistent IFPR, shown
as follows:

Definition 9 [20] An IFPR R̃= ðrĩjÞn× n with rĩj = ðμij, vijÞ is called multiplicative
consistent if the following multiplicative transitivity is satisfied:

μij ⋅ μjk ⋅ μki = vij ⋅ vjk ⋅ vki, for all i, j, k=1, 2,⋯, n. ð12Þ

Liao and Xu [20] further clarified that the conditions in Definition 8 satisfy (12),
which implies the consistency measured by the conditions given in Definition 8 is a
special case of multiplicative consistency defined as Definition 9 for an IFPR.
Hence, in general, Definition 8 is not sufficient and suitable to measure the mul-
tiplicative consistency of an IFPR.

With the underlying normalized intuitionistic fuzzy priority weight vector

ω ̃= ðω1̃,ω2̃,⋯,ωñÞT , a multiplicative consistent IFPR R ̃* = ðr*̃ijÞn× n can be estab-
lished as [20]:

r ̃*ij = μij, vij
� �

=
ð0.5, 0.5Þ if i= j

ð 2ωμ
i

ωμ
i −ωv

i +ωμ
j −ωv

j +2 ,
2ωμ

j

ωμ
i −ωv

i +ωμ
j −ωv

j +2Þ if i≠ j

(

ð13Þ

where ωμ
i ,ω

v
i ∈ ½0, 1�,ωμ

i +ωv
i ≤ 1, ∑

n

j=1, j≠ i
ωμ
j ≤ωv

i , and ωμ
i + n− 2≥ ∑

n

j=1, j≠ i
ωv
j , for

all i=1, 2,⋯, n.
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3.3 Acceptable Consistency of IFPR

Due to the complexity of the problem and the limited knowledge of the experts, the
experts often determine some inconsistent IFPR. Perfect consistent IFPR is
somehow too strict for the experts to construct especially when the number of
objects is very large. Since in practical cases, it is impossible to get the consistent
IFPRs, Liao and Xu [22] introduced the concept of acceptable consistent IFPR.

Definition 10 [22] Let R̃= ðr ̃ijÞn× n be an IFPR with r ̃ij = ðμij, vij, πijÞði, j=
1, 2,⋯, nÞ. We call R an acceptable consistent IFPR, if

dðR ̃,R*̃Þ≤ ξ, ð14Þ

where dðR̃, R̃*Þ is the distance measure between the given IFPR R̃ and its corre-

sponding underlying consistent IFPR R̃
*
, which can be calculated by

dðR ̃,R*̃Þ= 1
ðn− 1Þðn− 2Þ ∑

n

1≤ i< j< n
μij − μ*ij

�
�
�

�
�
�+ vij − v*ij

�
�
�

�
�
�+ πij − π*ij

�
�
�

�
�
�

�� �

, ð15Þ

and ξ is the consistency threshold. The corresponding underlying consistent IFPR

R̃
*
can be yielded by (7) or (13).

As for those IFPRs of inconsistency, there are many procedures to improve the
inconsistent IFPRs into acceptable consistent IFPRs (For more details, please refer
to [21, 23]).

If all the IFPRs are of acceptable consistency, we can aggregate these IFPRs into
an overall IFPR and then derive the ranking of the alternatives. Liao and Xu [22]
proposed a simple intuitionistic fuzzy weighted geometric (SIFWG) operator to

fuse the IFPRs. For s IFPRs R ̃ðlÞ = r ̃ðlÞij
� �

n× n
ðl=1, 2,⋯, sÞ, their fused IFPR

R̄= ðrījÞn× n with r ̄ij = ðμ ̄ij, vīj, π ̄ijÞ by the SIFWG operator is also an IFPR, where

μ ̄ij = ∏
s

l=1
μðlÞij

� �λl
, vīj = ∏

s

l=1
vðlÞij

� �λl
, π ̄ij =1− μ̄ij − vīj, i, j=1, 2, . . . , n. ð16Þ

Liao and Xu [22] further proved that if all the individual IFPRs are of acceptable
multiplicative consistency, then their fused IFPR by the SIFWG operator is also of
acceptable consistency. This is a good property in group decision making with
IFPRs because with this property there is no need to check the consistency of the
fused IFPR and we can use it to derive the decision making result directly.
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4 Consensus of Group Decision Making with IFPRs

4.1 Difficulties in Reaching Consensus

With all the above mentioned different types of consistency and the corresponding
inconsistency repairing methods, we can get a set of consistent or acceptable
consistent IFPRs. This is the precondition of deriving a reasonable solution for a
group decision making problem. The group decision making problem is very
complicated owing to the complexity introduced by the conflicting opinions of the
experts. As to a group decision making problem with IFPRs, how to find a final
solution which is accepted by all the experts is a great challenge. The consensus is
very important in any group decision making problems. It can be defined as “a
decision that has been reached when most members of the team agree on a clear
option and the few who oppose it think they have had a reasonable opportunity to
influence that choice. All team members agree to support the decision.” [25]
Consensus is a pathway to a true group decision and it can guarantee that the final
result been supported by all the group members despite their different opinions.

However, to find such a consensus result is very difficult because of some
inherent differences in value systems, flexibility of members, etc. Generally, if all
experts are wise and rational, they should agree with each other. But, in reality,
disagreement among the experts is inevitable. In fact, the disagreement is just the
valuation of group decision making.

In the process of group decision making, the target is to find a solution which is
accepted by all the experts. Initially, the experts should be with no consensus, and
thus they need to communicate with each other and modify their judgments. That is
to say, the consensus reaching process should be an iterative procedure and it
should be converge finally. In addition, a group decision making problem with too
many times of iteration does not make sense because it wastes too many resources
and is not worthy to be investigated by the experts.

4.2 Consensus Measures for Group Decision Making
with IFPRs

The consensus reaching process refers to how to obtain the maximum degree of
consensus or agreement between the set of experts [33]. To do so, we should first
know how to measure the consensus degree among the experts. Although there is
litter research focused on the consensus of IFPRs [34], we still can found many
approaches to model consensus process in group decision making with other
preference relations, such as fuzzy preference relation [35], incomplete fuzzy
preference relation [37], and linguistic preference relation [36]. These consensus
measures involve two parts: hard consensus measure and soft consensus measure.
The hard consensus measure uses a number in the interval [0, 1] to represent the
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consensus degree of the experts, while the soft consensus measure employs a
linguistic label such as “most” to describe the truth of a statement such as “most
experts agree on almost all the alternatives.” As to group decision making with
IFPRs, Szmidt and Kacprzyk [34] used an interval-valued measure of distance to
represent the consensus of experts. They took the membership degrees and the
hesitance degrees as two separate matrices and then used these two matrices to
derive the upper bound and lower bound of the interval-valued consensus measure.
Their work can be seen as the first attempt to measure the consensus of group
decision with IFPRs. However, they did not include any procedures to reaching
consensus. In the following, we would define a hard consensus measure of experts
whose opinions are represented by IFPRs.

For a set of IFPRs R̃
ðlÞ
= r ̃ðlÞij
� �

n× n
ðl=1, 2,⋯, sÞ given by s independent experts

elðl=1, 2, . . . , sÞ, since it is known that if all individual IFPRs are of acceptable
consistency, their fused IFPRs R ̄= ðrījÞn× n with the SIFWG operator is also of
acceptable consistency, then, motivated by the distance measure of two IFPRs given
as (15), we can introduce a hard consensus measure of the experts with IFPRs.

Definition 11 For a set of IFPRs R̃
ðlÞ
= r ̃ðlÞij
� �

n× n
ðl=1, 2,⋯, sÞ with

rðlÞij = ðμðlÞij , vðlÞij , πðlÞij Þðl=1, 2,⋯, sÞ given by s independent experts elðl=1, 2, . . . , sÞ,
whose weight vector is λ= ðλ1, λ2,⋯, λsÞT with 0≤ λl ≤ 1, ∑s

l=1 λl =1, then the
consensus of the lth expert is defined as

Cl =1−
1

ðn− 1Þðn− 2Þ ∑
n

1≤ i< j< n
μðlÞij − μ ̄ij
�
�
�

�
�
�+ vðlÞij − vīj

�
�
�

�
�
�+ πðlÞij − π ̄ij

�
�
�

�
�
�

�� �

, ð17Þ

where R ̄= ðrījÞn× n with r ̄ij = ðμ̄ij, vīj, π ̄ijÞ, μīj = ∏
s

l=1
μðlÞij

� �λl
, vīj = ∏

s

l=1
vðlÞij

� �λl
, π ̄ij =

1− μīj − vīj is the overall IFPR derived by the SIFWG operator.

4.3 Consensus Reaching Procedure with IFPRs

With the above consensus measure, the consensus reaching procedure for helping
the experts, whose preferences are given as IFPRs, to reach consensus can be given
as follows:

• Establish s IFPRs R̃
ðlÞ
= r ̃ðlÞij
� �

n× n
ðl=1, 2,⋯, sÞ for s independent experts

elðl=1, 2, . . . , sÞ;
• Check the consistency of each IFPR: for those IFPRs of unacceptable consis-

tency, repair them until acceptable;
• Compute the consensus degree of each experts;
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• Determine the minimum consensus bound of the experts, τ. For Cl < τ, ask the
expert el to modify the IFPR. A suggestion for the expert el to modify the IFPR
is to change the preferences by the following formulas:

μðlÞ′ij = μðlÞij
� �ζ

⋅ μ ̄ij
� �1− ζ, ð18Þ

vðlÞ′ij = vðlÞij
� �ζ

⋅ vīj
� �1− ζ, ð19Þ

πðlÞ′ij =1− μðlÞ′ij − vðlÞ′ij . ð20Þ

• Articulate the decision via aggregating all the IFPRs whose consensus degrees
are greater than the threshold τ into an overall IFPR.

5 Numerical Example

The following example concerning the selection of the global suppliers (adapted
from [22]) can be used to illustrate the consensus reaching procedure for group
decision making with IFPRs.

Example The current globalized market trend identifies the necessity of the
establishment of long term business relationship with competitive global suppliers
spread around the world. This can lower the total cost of supply chain; lower
the inventory of enterprises; enhance information sharing of enterprises; improve
the interaction of enterprises and obtain more competitive advantages for enter-
prises. Thus, how to select different unfamiliar international suppliers according to
the broad evaluation is very critical and has a direct impact on the performance of
an organization. Suppose a company invites three experts e1, e2 and e3 from dif-
ferent field to evaluate four candidate suppliers x1, x2, x3 and x4. The weights of the
experts are 0.3, 0.4, 0.3, respectively, which is established by the decision making
committee according to the experts’ expertise and reputation. Global supplier
development is a complex problem which includes much qualitative information. In
such a case, it is straightforward for the experts to compare the different suppliers in
pairs and then construct some preference relations to express their preferences.
Since the experts do not have precise information of the global suppliers, it is
reasonable for them to use the IFSs to describe their assessments, and then three
IFPRs can be established:
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R
ð̃1Þ

=

ð0.5, 0.5Þ ð0.5, 0.2Þ ð0.7, 0.1Þ ð0.5, 0.3Þ
ð0.2, 0.5Þ ð0.5, 0.5Þ ð0.6, 0.2Þ ð0.3, 0.6Þ
ð0.1, 0.7Þ ð0.2, 0.6Þ ð0.5, 0.5Þ ð0.3, 0.6Þ
ð0.3, 0.5Þ ð0.6, 0.3Þ ð0.6, 0.3Þ ð0.5, 0.5Þ

0

B
B
B
@

1

C
C
C
A
,

R
ð̃2Þ

=

ð0.5, 0.5Þ ð0.6, 0.1Þ ð0.8, 0.2Þ ð0.6, 0.3Þ
ð0.1, 0.6Þ ð0.5, 0.5Þ ð0.5, 0.1Þ ð0.3, 0.7Þ
ð0.2, 0.8Þ ð0.1, 0.5Þ ð0.5, 0.5Þ ð0.4, 0.6Þ
ð0.3, 0.6Þ ð0.7, 0.3Þ ð0.6, 0.4Þ ð0.5, 0.5Þ

0

B
B
B
@

1

C
C
C
A
,

R
ð̃3Þ

=

ð0.5, 0.5Þ ð0.6, 0.2Þ ð0.8, 0.1Þ ð0.7, 0.2Þ
ð0.2, 0.6Þ ð0.5, 0.5Þ ð0.6, 0.1Þ ð0.2, 0.7Þ
ð0.1, 0.8Þ ð0.1, 0.6Þ ð0.5, 0.5Þ ð0.2, 0.3Þ
ð0.2, 0.7Þ ð0.7, 0.2Þ ð0.3, 0.2Þ ð0.5, 0.5Þ

0

B
B
B
@

1

C
C
C
A
.

Using the fractional programming models constructed by Liao and Xu [20], the
underlying intuitionistic fuzzy weights for these three individual IFPRs are

ωð̃1Þ = ðð0.3951, 0.4221Þ, ð0.1354, 0.8397Þ, ð0.0451, 0.8894Þ, ð0.2370, 0.6298ÞÞT ,
ωð̃2Þ = ðð0.4137, 0.5517Þ, ð0.1552, 0.7069Þ, ð0.0862, 0.9138Þ, ð0.2069, 0.6897ÞÞT .
ωð̃3Þ = ðð0.4686, 0.4143Þ, ð0.1406, 0.7891Þ, ð0.0586, 0.9414Þ, ð0.1538, 0.6700ÞÞT .

According to (13), the corresponding multiplicative consistent IFPRs can be
generated:

R
ð̃1Þ*

=

ð0.5000, 0.5000Þ ð0.6228, 0.2134Þ ð0.7001, 0.0799Þ ð0.5001, 0.3000Þ
ð0.2134, 0.6228Þ ð0.5000, 0.5000Þ ð0.5999, 0.1998Þ ð0.2999, 0.5250Þ
ð0.0799, 0.7001Þ ð0.1998, 0.5999Þ ð0.5000, 0.5000Þ ð0.1182, 0.6213Þ
ð0.3000, 0.5001Þ ð0.5250, 0.2999Þ ð0.6213, 0.1182Þ ð0.5000, 0.5000Þ

0

B
B
B
@

1

C
C
C
A
,

R
ð̃2Þ*

=

ð0.5000, 0.5000Þ ð0.6315, 0.2369Þ ð0.7999, 0.1667Þ ð0.5999, 0.3000Þ
ð0.2369, 0.6315Þ ð0.5000, 0.5000Þ ð0.5001, 0.2778Þ ð0.3215, 0.4286Þ
ð0.1667, 0.7999Þ ð0.2778, 0.5001Þ ð0.5000, 0.5000Þ ð0.2500, 0.6001Þ
ð0.3000, 0.5999Þ ð0.4286, 0.3215Þ ð0.6001, 0.2500Þ ð0.5000, 0.5000Þ

0

B
B
B
@

1

C
C
C
A
,

R
ð̃3Þ*

=

ð0.5000, 0.5000Þ ð0.6667, 0.2000Þ ð0.8000, 0.1000Þ ð0.6093, 0.2000Þ
ð0.2000, 0.6667Þ ð0.5000, 0.5000Þ ð0.6000, 0.2501Þ ð0.3366, 0.3683Þ
ð0.1000, 0.8000Þ ð0.2501, 0.6000Þ ð0.5000, 0.5000Þ ð0.1950, 0.5118Þ
ð0.2000, 0.6093Þ ð0.3683, 0.3366Þ ð0.5118, 0.1950Þ ð0.5000, 0.5000Þ

0

B
B
B
@

1

C
C
C
A
.
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Thus, via (15), we can obtain dðR̃ð1Þ
, R̃

ð1Þ*Þ=0.1382, dðR̃ð2Þ
, R̃

ð2Þ*Þ=0.2569, and

dðRð̃3Þ
,R ̃ð3Þ*Þ=0.2837. Suppose ξ=0.3, then all these three individual IFPRs are of

acceptable multiplicative consistency. Thus, with the SIFWG operator, the overall
IFPR of the group can be aggregated as

R̄=

ð0.5000, 0.5000Þ ð0.5681, 0.1516Þ ð0.7686, 0.1320Þ ð0.5950, 0.2656Þ
ð0.1516, 0.5681Þ ð0.5000, 0.5000Þ ð0.5578, 0.1231Þ ð0.2656, 0.6684Þ
ð0.1320, 0.7686Þ ð0.1231, 0.5578Þ ð0.5000, 0.5000Þ ð0.2980, 0.4874Þ
ð0.2656, 0.5950Þ ð0.6684, 0.2656Þ ð0.4874, 0.2980Þ ð0.5000, 0.5000Þ

0

B
B
@

1

C
C
A

By (16), we can calculate the consensus of each expert, which are C1 = 0.8114,
C2 = 0.8160, and C3 = 0.8292, respectively. That is to say, the experts have at least
80 % consensus. If the minimum consensus bound τ of the experts is 0.8, then, we
can say that all the experts in this decision making problem reach the group
consensus.

On the other hand, if the consensus threshold given by the decision maker is
much higher, for instance, τ=0.85, then, the experts need to modify there
assessments to reach a much higher consensus.

Let ζ=0.6, with (18)–(20), the suggested IFPRs are

R
ð̃1Þ′

=

ð0.5000, 0.5000Þ ð0.5262, 0.1790Þ ð0.7267, 0.1117Þ ð0.5360, 0.2857Þ
ð0.1790, 0.5262Þ ð0.5000, 0.5000Þ ð0.5827, 0.1647Þ ð0.2857, 0.6265Þ
ð0.117, 0.7267Þ ð0.1647, 0.5827Þ ð0.5000, 0.5000Þ ð0.2992, 0.5521Þ
ð0.2857, 0.5360Þ ð0.6265, 0.2857Þ ð0.5521, 0.2992Þ ð0.5000, 0.5000Þ

0

B
B
B
@

1

C
C
C
A

R
ð̃2Þ′

=

ð0.5000, 0.5000Þ ð0.5870, 0.1181Þ ð0.7873, 0.1694Þ ð0.5980, 0.2857Þ
ð0.1181, 0.5870Þ ð0.5000, 0.5000Þ ð0.5224, 0.1087Þ ð0.2857, 0.6872Þ
ð0.1694, 0.7873Þ ð0.1087, 0.5224Þ ð0.5000, 0.5000Þ ð0.3556, 0.5521Þ
ð0.2857, 0.5980Þ ð0.6872, 0.2857Þ ð0.5521, 0.3556Þ ð0.5000, 0.5000Þ

0

B
B
B
@

1

C
C
C
A

R
ð̃3Þ′

=

ð0.5000, 0.5000Þ ð0.5870, 0.1790Þ ð0.7873, 0.1117Þ ð0.6559, 0.2240Þ
ð0.1790, 0.5870Þ ð0.5000, 0.5000Þ ð0.5827, 0.1087Þ ð0.2240, 0.6872Þ
ð0.1117, 0.7873Þ ð0.1087, 0.5827Þ ð0.5000, 0.5000Þ ð0.2346, 0.3643Þ
ð0.2240, 0.6559Þ ð0.6872, 0.2240Þ ð0.3643, 0.2346Þ ð0.5000, 0.5000Þ

0

B
B
B
@

1

C
C
C
A

Since R̃
ðlÞ′ðl=1, 2, 3Þ is simple geometric aggregated by R

ð̃lÞ*ðl=1, 2, 3Þ and R̄

respectively, according to the theorem of Liao and Xu [17], the new IFPRs R̃
ðlÞ′

ðl=1, 2, 3Þ should be still of acceptable consistency. Then we aggregate them
together with the SIFWG operator and yield an overall IFPR:
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R ̄′ =

ð0.5000, 0.5000Þ ð0.5681, 0.1516Þ ð0.7686, 0.1320Þ ð0.5950, 0.2656Þ
ð0.1516, 0.5681Þ ð0.5000, 0.5000Þ ð0.5578, 0.1231Þ ð0.2656, 0.6684Þ
ð0.1320, 0.7686Þ ð0.1231, 0.5578Þ ð0.5000, 0.5000Þ ð0.2980, 0.4874Þ
ð0.2656, 0.5950Þ ð0.6684, 0.2656Þ ð0.4874, 0.2980Þ ð0.5000, 0.5000Þ

0

B
B
@

1

C
C
A,

which is the same as R ̄ (It can be proven that R ̄′ is always the same as R̄ with our
aggregation methodology). Then, by (16), the consensus of each expert are cal-
culated as C1 = 0.8875, C2 = 0.8936, and C3 = 0.8732, respectively. Since each
consensus degree of the experts is greater than the threshold τ=0.85, the group
reaches the consensus.

6 Conclusion

IFPR is a powerful tool to express the experts’ opinions in the process of group
decision making. In this chapter, we have discussed the consistency of the IFPRs
and the consensus of the experts in group decision making with IFPRs. Firstly, we
have described the group decision making problem with IFPRs in details. Then, we
have reviewed all the different kinds of definitions for the consistency of IFPRs,
which involves two sorts, i.e., the additive consistency and the multiplicative
consistency. Based on the consistency, the definition of acceptable consistency can
be given. For those IFPRs which are of unacceptable consistency, the consistency
repairing process should be employed to modify them. Once all the IFPRs are of
acceptable consistency, we have introduced a hard consensus measure to depict the
consensus degree of the experts within the group decision making. Furthermore, we
have given a simple procedure for aiding the experts to reach group consensus.
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Differential Calculus on IF Sets

Alžbeta Michalíková

Abstract This contribution summarizes the theory of differential calculus on IF
sets. First the definition of the function is given. Then the absolute value and limit of

the function are defined and the properties of these functions are studied. By using

the limit of the function the derivative of the function is define and Lagrange mean

value theorem is proved. Since the main aim of this contribution is to proof the

Taylor’s theorem the polynomial function and Taylor polynomial are defined. Finally

the Taylor’s theorem is proved and some examples are given.

1 Introduction

The idea of Fuzzy sets was first time presented in the year 1965 by professor Zadeh

[1]. Fuzzy sets were presented like the structures which could be use for computing

with the natural language. These structures find their applications in many spheres

of the research, e.g. decision making, prediction, classification, image processing,

expert systems, etc. Mathematically we can write

A = {⟨x, 𝜇A(x)⟩|x ∈ 𝛺} 𝜇A ∶ 𝛺 → [0, 1]

where 𝜇A is called the membership function. The membership function assigns the

value which is called the degree of membership function to each element x which

belongs to the set A.

Example 1 Let us assume that the average summer temperature in some area is

35
◦
C. Consider that the summer temperatures achieve the values from the interval

[10, 50] and let us think about low temperature in summer in this area. The temper-

ature is sure low if its value is from the interval [10, 20] and it is definitely not low if

its value is from the interval [30, 50]. Let us connect these two function by the line
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on the interval [20, 30] then the fuzzy set A—Low temperature could be describe by

the following membership function

𝜇A(x) =
⎧
⎪
⎨
⎪
⎩

1, if x ∈ [10, 20]
30−x
10

, if x ∈ [20, 30]
0, if x ∈ [30, 50]

We can see that for each x ∈ [10, 50] the degree of membership function is from

unit interval. For example if x = 25 ◦
C than the degree of membership function is

30−25
10

= 0.5.

Now let us determine the fuzzy set B—High temperature. It could be describe for

example by the function

𝜇B(x) =
⎧
⎪
⎨
⎪
⎩

0, if x ∈ [10, 25]
x−25
15

, if x ∈ [25, 40]
1, if x ∈ [40, 50]

Let us compare the sets A,B. From mathematical point of view the set B could repre-

sent the complement of the set A but there is a problem how to describe the function

by which we get set B from the set A. Of course in fuzzy set theory there exists the

definition of the negations. For example standard negation has the form

𝜇¬A = 1 − 𝜇A .

But human thinking doesn’t work on this principle. The values of the membership

functions of the sets A and B could be independent. We feel that the sum of the

membership functions of the sets A and B for one element could be less then or

equal to one. And exactly these examples from the real life led to define new structure

which name is intuitionistic fuzzy set.

2 Intuitionistic Fuzzy Sets

First publication about Intuitionistic fuzzy sets (IF sets in short) was publish in the

year 1986 by professor Atanassov [2]. The set A = {⟨x, 𝜇A(x), 𝜈A(x)⟩|x ∈ 𝛺} is an

IF set if for each x ∈ 𝛺 it holds

0 ≤ 𝜇A(x) + 𝜈A(x) ≤ 1 .

Function 𝜇A ∶ 𝛺 → [0, 1] is called membership function and the function 𝜈A ∶ 𝛺 →
[0, 1] is called nonmembership function.
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Since the year 1986 there was a large development of the theory and applications

in the area of intuitionistic fuzzy sets therefore we deemed necessary to build theory

of differential calculus on these structures.

For any IF set we will use following shorter notation A = (𝜇A, 𝜈A). Denote by 

the family of all IF sets. On  we shall define two binary operations ⊕,⊙ and one

unary operation ¬

A ⊕ B = (min(𝜇A + 𝜇B, 1),max(𝜈A + 𝜈B − 1, 0))

A ⊙ B = (max(𝜇A + 𝜇B − 1, 0),min(𝜈A + 𝜈B, 1))

¬A = (1 − 𝜇A, 1 − 𝜈A)

A partial ordering on  is given by

A ≤ B ⟺ 𝜇A ≤ 𝜇B, 𝜈A ≥ 𝜈B

Consider the set A = (𝜇A, 𝜈A), where 𝜇A, 𝜈A ∶ 𝛺 → IR. It is not difficult to construct

an additive group  ⊃  with an ordering such that  is a lattice ordered group, also

called 𝓁-group, where

A + B = (𝜇A + 𝜇B, 𝜈A + 𝜈B − 1)

with the neutral element 0 = (0
𝛺

, 1
𝛺

) and

A ≤ B ⟺ 𝜇A ≤ 𝜇B, 𝜈A ≥ 𝜈B .

Lattice operations are given by

A ∧ B = (𝜇A ∧ 𝜇B, 𝜈A ∨ 𝜈B)

A ∨ B = (𝜇A ∨ 𝜇B, 𝜈A ∧ 𝜈B) .

Evidently

A − B = (𝜇A − 𝜇B, 𝜈A − 𝜈B + 1)

and

−A = (−𝜇A, 2 − 𝜈A) .

The operations on  can be derived from operations on  if we use the unit

u = (1
𝛺

, 0
𝛺

). Then

A ⊕ B = (A + B) ∧ u

A ⊙ B = (A + B − u) ∨ 0

¬A = u − A .
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In our contribution also the following two operations will be used

A.B = (𝜇A.𝜇B, 𝜈A + 𝜈B − 𝜈A.𝜈B)

and if 𝜇B ≠ 0, 𝜈B ≠ 1 then

A
B

=
(
𝜇A

𝜇B
, 1 −

1 − 𝜈A

1 − 𝜈B

)
.

3 Definition of the Function and Its Properties

We will study the functions which are defined on the 𝓁-group . From the previous

text it follows that these results could be easily applied also for IF sets. The function

on the 𝓁-group  is defined by the following way

̃f (X) = (f (𝜇X), 1 − f (1 − 𝜈X))

where f ∶ IR → IR and X ∈  [4].

To compare the results of classical analysis with our result we will give some

example in the text. For these examples we choose function

̃sinX = (sin(𝜇X), 1 − sin(1 − 𝜈X))

as a template function.

In the first step we will look better on the domain of the function ̃f . Since

̃f (X) = (f (𝜇X), 1 − f (1 − 𝜈X))

where f ∶ IR → IR then if the domain of the function ̃f is an interval [A,B] then it

must hold

A ≤ B ⟺ 𝜇A ≤ 𝜇B and 𝜈A ≥ 𝜈B

and therefore

[𝜇A, 𝜇B] ∪ [𝜈B, 𝜈A] ⊂ Domf .

First special function which we will study is absolute value. Following definition

was first mentioned in [6].

Definition 1 Let A ∈ . Then absolute value of A is defined by following formula

|A| = (|𝜇A|, 1 − |1 − 𝜈A|) .
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Lemma 1 Let |A| be the absolute value of A. Then |A| = A for each A ≥ (0, 1) and
|A| = −A for each A < (0, 1).

Proof Let A ≥ (0, 1) i.e. 𝜇A ≥ 0 and 𝜈A ≤ 1. Then 1 − 𝜈A ≥ 0 and

|A| = (|𝜇A|, 1 − |1 − 𝜈A|) = (𝜇A, 1 − 1 + 𝜈A) = (𝜇A, 𝜈A) = A .

Let A < (0, 1) i.e. 𝜇A < 0 and 𝜈A > 1. Then 1 − 𝜈A < 0 and

|A| = (|𝜇A|, 1 − |1 − 𝜈A|) = (−𝜇A, 1 + 1 − 𝜈A) = (−𝜇A, 2 − 𝜈A) = −A .

□

Lemma 2 For each A,B ∈  it holds

1. |A.B| = |A|.|B|
2. |A − B| = |B − A|
3. |A + B| ≤ |A| + |B|
4. |A − B| ≥ |A| − |B|
5. ||A| − |B|| ≤ |A − B|

Proof Let A = (𝜇A, 𝜈A),B = (𝜇B, 𝜈B) then it holds

1.

|A|.|B| =
(
|𝜇A|, 1 − |1 − 𝜈A|

)
.

(
|𝜇B|, 1 − |1 − 𝜈B|

)

= (|𝜇A.𝜇B|, 1 − |1 − 𝜈A| + 1 − |1 − 𝜈B| − (1 − |1 − 𝜈A|).(1 − |1 − 𝜈B|))

=
(
|𝜇A.𝜇B|, 1 − |1 − 𝜈A − 𝜈B + 𝜈A.𝜈B|

)
= |A.B| .

2.

|A − B| =
(
|𝜇A − 𝜇B|, 1 − |𝜈B − 𝜈A|

)
= |B − A| .

3.

|A + B| =
(
|𝜇A + 𝜇B|, 1 − |2 − 𝜈A − 𝜈B|

)

|A| + |B| =
(
|𝜇A| + |𝜇B|, 1 − |1 − 𝜈A| − |1 − 𝜈B|

)
.

Since

|𝜇A + 𝜇B| ≤ |𝜇A| + |𝜇B|

and

|2 − 𝜈A − 𝜈B| = |(1 − 𝜈A) + (1 − 𝜈B)| ≤ |1 − 𝜈A| + |1 − 𝜈B|

then also

|A + B| ≤ |A| + |B| .
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4. Similarly

|A − B| =
(
|𝜇A − 𝜇B|, 1 − |1 − 𝜈A + 1 − 𝜈B|

)

|A| − |B| =
(
|𝜇A| − |𝜇B|, 1 − |1 − 𝜈A| + |1 − 𝜈B|

)
.

It holds

|𝜇A − 𝜇B| ≥ |𝜇A| − |𝜇B|

and also

|(1 − 𝜈A) − (1 − 𝜈B)| ≥ |1 − 𝜈A| − |1 − 𝜈B|

therefore

|A − B| ≥ |A| − |B| .

5.

||A| − |B|| =
(
||𝜇A| − |𝜇B||, 1 − |1 − (1 − |1 − 𝜈A| + |1 − 𝜈B|)|

)
.

It holds

||𝜇A| − |𝜇B|| ≤ |𝜇A − 𝜇B|

and

||1 − 𝜈A| − |1 − 𝜈B|| ≤ |(1 − 𝜈A) − (1 − 𝜈B)|

therefore

||A| − |B|| ≤ |A − B| .

□

Lemma 3 Let A,B ∈  and let ̃
𝛿 = (𝛿, 1 − 𝛿). Then

|A − B| < ̃
𝛿 ⟺ A − ̃

𝛿 < B < A + ̃
𝛿 .

Proof The inequality |A − B| < ̃
𝛿 holds if and only if

(|𝜇A − 𝜇B|, 1 − |𝜈A − 𝜈B|) < (𝛿, 1 − 𝛿)

and it holds when

|𝜇A − 𝜇B| < 𝛿 and |𝜈A − 𝜈B| < 𝛿

and that is

𝜇A − 𝛿 < 𝜇B < 𝜇A + 𝛿 and 𝜈A − 𝛿 < 𝜈B < 𝜈A + 𝛿 .

On the other hand A − ̃
𝛿 < B if and only if

(𝜇A − 𝛿, 𝜈A + 𝛿) < (𝜇B, 𝜈B)
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and that is

𝜇A − 𝛿 < 𝜇B and 𝜈A + 𝛿 > 𝜈B .

Similarly B < A + ̃
𝛿 if and only if

(𝜇B, 𝜈B) < (𝜇A + 𝛿, 𝜈A − 𝛿)

and that is

𝜇B < 𝜇A + 𝛿 and 𝜈B > 𝜈A − 𝛿 .

Therefore it holds

𝜇A − 𝛿 < 𝜇B < 𝜇A + 𝛿 and 𝜈A − 𝛿 < 𝜈B < 𝜈A + 𝛿 .

□

Definition 2 Let A0,A, ̃𝛿 = (𝛿, 1 − 𝛿) be from the 𝓁-group . A point A is in the

̃
𝛿-neighborhood of a point A0 if it holds

|A − A0| < ̃
𝛿 .

We will use the definition of the neighborhood of the point a lot of times therefore

it is useful denote it by ̃ (A0). Then the notation A ∈ ̃ (A0) means that

A ∈ (A0 − ̃
𝛿,A0 + ̃

𝛿) .

Lemma 4 Let A0,A, ̃𝛿 = (𝛿, 1 − 𝛿) be the elements from the 𝓁-group . The element
A = (𝜇A, 𝜈A) belongs to ̃ (A0) if and only if

𝜇A ∈ (𝜇A0
− 𝛿, 𝜇A0

+ 𝛿)

and at the same time
𝜈A ∈ (𝜈A0

− 𝛿, 𝜈A0
+ 𝛿) .

Proof Since

̃ (A0) = (A0 − ̃
𝛿,A0 + ̃

𝛿)

then

A0 − ̃
𝛿 = (𝜇A0

− 𝛿, 1 + 𝜈A0
− (1 − 𝛿)) = (𝜇A0

− 𝛿, 𝜈A0
+ 𝛿)

and on the other hand

A0 + ̃
𝛿 = (𝜇A0

+ 𝛿, 1 + 𝜈A0
− (1 + 𝛿)) = (𝜇A0

+ 𝛿, 𝜈A0
− 𝛿) .
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Therefore

A = (𝜇A, 𝜈A) ∈ ̃ (A0) ⟺ A0 − ̃
𝛿 < A < A0 + ̃

𝛿 .

From the previous inequality it follows

𝜇A0
− 𝛿 < 𝜇A < 𝜇A0

+ 𝛿

𝜈A0
+ 𝛿 > 𝜈A > 𝜈A0

− 𝛿 .

Therefore

𝜇A ∈ (𝜇A0
− 𝛿, 𝜇A0

+ 𝛿)

and

𝜈A ∈ (𝜈A0
− 𝛿, 𝜈A0

+ 𝛿) .

□

Definition 3 Function ̃f is bounded on the interval [A,B] if there exist such H ∈ 

that for each X ∈ [A,B] it holds

|̃f (X)| ≤ H .

Now we are ready to define the limit of the function on 𝓁-group .

Definition 4 Denote 𝜀̃ = (𝜀, 1 − 𝜀) and ̃
𝛿 = (𝛿, 1 − 𝛿). Let ̃f be a function defined

on the 𝓁-group  and let X0,X,L, 𝜀̃, ̃𝛿 be from . For a function ̃f of a variable X
defined on a ̃

𝛿-neighborhood of a point X0 except possibly the point X0 itself, for each

𝜀̃ > (0, 1) there exists ̃
𝛿 > (0, 1) such that |̃f (X) − L| < 𝜀̃ holds whenever (0, 1) <

|X − X0| < ̃
𝛿. Then we say that the function ̃f (X) tends to the limit L as X approaches

X0 and we write

lim
X→X0

̃f (X) = L .

Lemma 5 Let lim
X→X0

̃f (X) = L. Then for the point X0 there exist such ̃
𝛿 > (0, 1) that

the function ̃f is bounded on the set (0, 1) < |X − X0| < ̃
𝛿.

Proof Since lim
X→X0

̃f (X) = L then for 𝜀̃ = (1, 0) there exist such ̃
𝛿 > (0, 1) that for

each X
(0, 1) < |X − X0| < ̃

𝛿

it holds

|̃f (X) − L| < (1, 0)

or else (Lemma 3)

L − (1, 0) < ̃f (X) < L + (1, 0) .
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Therefore ̃f is the bounded function on

(0, 1) < |X − X0| < ̃
𝛿 .

□

Theorem 1 Let lim
X→X0

̃f (X) = L and lim
X→X0

g̃(X) = K. Then there are satisfied the fol-

lowing properties

1. lim
X→X0

̃f (|X|) = |L|

2. lim
X→X0

(̃f (X) + g̃(X)) = L + K

3. lim
X→X0

(̃f (X).g̃(X)) = L.K

4. If 𝜇K ≠ 0 and 𝜈K ≠ 1 then lim
X→X0

̃f (X)
g̃(X)

= L
K

Proof 1. Since lim
X→X0

̃f (X) = L then for each 𝜀̃ > (0, 1) there exists such ̃
𝛿 > (0, 1)

that for each X ∈ , (0, 1) < |X − X0| < ̃
𝛿 holds |̃f (X) − L| < 𝜀̃. However

||̃f (X)| − |L|| ≤ |̃f (X) − L| < 𝜀̃

and therefore

lim
X→X0

̃f (|X|) = |L| .

2. Since lim
X→X0

̃f (X) = L then for each 𝜀̃ > (0, 1) there exists such ̃
𝛿1 > (0, 1) that for

each X ∈ , (0, 1) < |X − X0| < ̃
𝛿1 it holds

|̃f (X) − L| < 𝜀̃

2
.

And since lim
X→X0

g̃(X) = K then for each 𝜀̃ > (0, 1) there exists such ̃
𝛿2 > (0, 1) that

for each X ∈ , (0, 1) < |X − X0| < ̃
𝛿2 it holds

|g̃(X) − L| < 𝜀̃

2
.

Put

̃
𝛿 = ̃

𝛿1 ∧ ̃
𝛿2 = (𝛿1 ∧ 𝛿2, (1 − 𝛿1) ∨ (1 − 𝛿2))

and consider such X that it holds (0, 1) < |X − X0| < ̃
𝛿. Then from Lemma 2 it

holds

|̃f (X) + g̃(X) − (L + K)| ≤ |̃f (X) − L| + |g̃(X) − K| < 𝜀̃

2
+ 𝜀̃

2
= 𝜀̃ .
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3. Since lim
X→X0

g̃(X) = K, then from Lemma 5 follows that there exist such ̃
𝛿1 > (0, 1)

and such M ∈ , M > (0, 1) that for each X ∈ , (0, 1) < |X − X0| < ̃
𝛿1 it holds

|g̃(X)| ≤ M .

Put N = M ∨ |L| then

|̃f (X).g̃(X) − L.K| = |̃f (X).g̃(X) − L.g̃(X) + L.g̃(X) − L.K|

= |(̃f (X) − L).g̃(X) + L.(g̃(X) − K)| ≤ |(̃f (X) − L)|.|g̃(X)| + |L|.|(g̃(X) − K)|

≤ N.(|(̃f (X) − L)| + |(g̃(X) − K)|) .

Put

𝜀̃

′ = 𝜀̃

2N

and find such ̃
𝛿2 > (0, 1), ̃𝛿3 > (0, 1) such for each X ∈ , (0, 1) < |X − X0| < ̃

𝛿2
it holds

|̃f (X) − L| < 𝜀̃

′

and for X ∈ , (0, 1) < |X − X0| < ̃
𝛿3 it holds

|g̃(X) − K| < 𝜀̃

′
.

Then for ̃
𝛿 = ̃

𝛿1 ∧ ̃
𝛿2 ∧ ̃

𝛿3 it holds

N.(|(̃f (X) − L)| + |(g̃(X) − K)|) < N.(𝜀̃′ + 𝜀̃

′) = 𝜀̃ .

4. For each L,K ∈  where 𝜇K ≠ 0 and 𝜈K ≠ 1 it holds

L
K

= L. (0, 1)
K

therefore it is suffice to prove that it holds

lim
X→X0

(1, 0)
g̃(X)

= (1, 0)
K

.

From the point 1. of this Theorem it follows

lim
X→X0

g̃(|X|) = |K| >
||||
K
2
||||
> (0, 1) .
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Therefore there exists such ̃
𝛿1 that for each X ∈ , (0, 1) < |X − X0| < ̃

𝛿1 it holds

|g̃(X)| > K
2

and

||||
(1, 0)
g̃(X)

− (1, 0)
K

||||
=
||||
K − g̃(X)
g̃(X).K

||||
=

|K − g̃(X)|
|g̃(X)|.|K|

<

|g̃(X) − K|
|||

K
2
||| .|K|

=
|g̃(X) − K|

|||
K2

2
|||

.

Put

𝜀̃

′ = K2
.𝜀̃

2
.

Since 𝜀̃ > (0, 1) then also 𝜀̃

′
> (0, 1) and there exist such ̃

𝛿2 that for each X ∈ ,

(0, 1) < |X − X0| < ̃
𝛿2 it holds

|g̃(X) − K| < 𝜀̃

′
.

Then for ̃
𝛿 = ̃

𝛿1 ∧ ̃
𝛿2 it holds

|g̃(X) − K|
|||

K2

2
|||

<

𝜀̃

′

K2

2

= 𝜀̃

and

lim
X→X0

(1, 0)
g̃(X)

= (1, 0)
K

.

From these results we get

lim
X→X0

̃f (X)
g̃(X)

= lim
X→X0

(
̃f (X). (1, 0)

g̃(X)

)

= lim
X→X0

̃f (X). lim
X→X0

(1, 0)
g̃(X)

= L. (1, 0)
K

= L
K

.

Theorem 2 Let X = (𝜇X , 𝜈X), X0 = (𝜇X0
, 𝜈X0

), L = (𝜇L, 𝜈L) be the elements from
𝓁-group  and ̃f (X) = (f (𝜇X), 1 − f (1 − 𝜈X)). Then

lim
X→X0

̃f (X) = L

if and only if
lim

𝜇X→𝜇X0

f (𝜇X) = 𝜇L
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and at the same time
lim

𝜈X→𝜈X0

f (1 − 𝜈X) = 1 − 𝜈L .

Proof Let lim
X→X0

̃f (X) = L. Then it holds (0, 1) < |X − X0| < ̃
𝛿 if and only if 0 <

|𝜇X − 𝜇X0
| < 𝛿 and 0 < |𝜈X − 𝜈X0

| < 𝛿. Similarly |̃f (X) − L| < 𝜀̃ if and only if |f (𝜇X)
− 𝜇L| < 𝜀 and |f (1 − 𝜈X) − (1 − 𝜈L)| < 𝜀. Therefore

lim
𝜇X→𝜇X0

f (𝜇X) = 𝜇L

and

lim
𝜈X→𝜈X0

f (1 − 𝜈X) = 1 − 𝜈L .

□

Example 2 In the classical calculus it holds lim
x→0

sin x
x

= 1. Let X ∈  then function

̃sinX is defined by the following way ̃sinX = (sin𝜇X , 1 − sin(1 − 𝜈X)). Therefore we

could show that for each X ∈  it holds

lim
X→(0,1)

̃sinX
X

= (1, 0) .

Proof We have

̃sinX
X

=
(
sin𝜇X

𝜇X
, 1 −

sin(1 − 𝜈X)
1 − 𝜈X

)
.

Of course

lim
𝜇X→0

sin𝜇X

𝜇X
= 1 .

Since

lim
1−𝜈X→0

sin(1 − 𝜈X)
1 − 𝜈X

= lim
𝜈X−1→0

sin(1 − 𝜈X)
1 − 𝜈X

= lim
𝜈X→1

sin(1 − 𝜈X)
1 − 𝜈X

= 1

then

lim
𝜈X→1

1 −
sin(1 − 𝜈X)
1 − 𝜈X

= 1 − 1 = 0 .

Therefore

lim
X→(0,1)

̃sinX
X

= (1, 0) .

□
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Definition 5 The function ̃f is continuous at the point X0 if it holds

lim
X→X0

̃f (X) = f (X0) .

Function ̃f is continuous if it is continuous at each point of its domain.

Remark 1 Function ̃f = (f (𝜇X), 1 − f (1 − 𝜈X)) is continuous on the interval [A,B]
if and only if f is continuous on the interval [𝜇A, 𝜇B] and at the same time on the

interval [𝜈B, 𝜈A].

Theorem 3 If function ̃f is continuous on an interval [A,B] then ̃f is also bounded
on interval the [A,B].

Proof We need to show that there exist such K,L ∈ IR that it holds

|̃f (X)| = (|f (𝜇X)|, 1 − |f (1 − 𝜈X)|) ≤ (K, 1 − L) .

Let take some fix point X0 ∈ [A,B]. Let X = (𝜇X , 𝜈X) ∈ ̃ (X0) and let ̃f be continu-

ous on an interval [A,B]. Then from the previous definitions it holds

̃f (X) = (f (𝜇X), 1 − f (1 − 𝜈X)) ∈ ̃(̃f (X0)) .

Therefore

f (𝜇X) ∈ (f (𝜇X0
) − 𝜀, f (𝜇X0

) + 𝜀)

but

(f (𝜇X0
) − 𝜀, f (𝜇X0

) + 𝜀) = |f (𝜇X0
) − 𝜀| = K0

and therefore

|f (𝜇X)| ≤ K0 .

Similarly

f (1 − 𝜈X) ∈ (f (1 − 𝜈X0
) − 𝜀, f (1 − 𝜈X0

) + 𝜀)

but

(f (1 − 𝜈X0
) − 𝜀, f (1 − 𝜈X0

) + 𝜀) = |f (1 − 𝜈X0
) − 𝜀| = L0 .

Therefore

|f (1 − 𝜈X)| ≤ L0 .

Then

|̃f (X)| = (|f (𝜇X)|, 1 − |1 − (1 − f (1 − 𝜈X))|)

= (|f (𝜇X)|, 1 − |f (1 − 𝜈X)|) ≤ (K0, 1 − L0) .
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This relations hold for each X0 ∈ [A,B]. Therefore we could take such X1, X2,… ,Xk
that it hold

k⋃

i=1
(𝜇Xi

− 𝛿, 𝜇Xi
+ 𝛿) ⊃ [𝜇A, 𝜇B]

and
k⋃

i=1
(𝜈Xi

− 𝛿, 𝜈Xi
+ 𝛿) ⊃ [𝜈B, 𝜈A] .

Then for any X ∈ [A,B] it holds

|f (𝜇X)| ≤ max{KX1
,KX2

, ...,KXk
} = K

and similarly

|f (1 − 𝜈X)| ≤ max{LX1
,LX2

, ...,LXk
} = L

where KXi
,LXi

, i = 1, 2, ..., k are the values appertaining to Xi. Therefore there exist

such K,L ∈ IR that for each X ∈ [A,B] it hold

|̃f (X)| = (|f (𝜇X)|, 1 − |f (1 − 𝜈X)|) ≤ (K, 1 − L)

i.e. ̃f is bounded on interval [A,B]. □

4 Derivative of the Function

Like in the classical calculus we can also define the derivative of the function with

the help of the limit of the function [7].

Definition 6 Let X0,H,
̃
𝛿 = (𝛿, 1 − 𝛿) be from  and let ̃f be the function defined

for such H that it hold (0, 1) < |H − X0| < ̃
𝛿. Let

lim
H→(0,1)

̃f (X0 + H) − ̃f (X0)
H

exist. Then this limit is the derivative of the function ̃f at the point X0 and we can

denote it as ̃f ′(X0).

Remark 2 If we denote X = X0 + H then of course H = X − X0 and since H → (0, 1)
then X → X0. Then the definition of the derivative of the function can have also

following form

̃f ′(X0) = lim
X→X0

̃f (X) − ̃f (X0)
X − X0

.
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Theorem 4 Let the function ̃f has the derivative at the point X0. Then the function
̃f is continuous at the point X0.

Proof First we will prove that

̃f (X) − ̃f (X0) =
̃f (X) − ̃f (X0)

X − X0
(X − X0) .

̃f (X) − ̃f (X0)
X − X0

(X − X0)

=

(
f (𝜇X) − f (𝜇X0

)
𝜇X − 𝜇X0

,

f (1 − 𝜈X) − f (1 − 𝜈X0
) − 𝜈X + 𝜈X0

−𝜈X + 𝜈X0

)

.(𝜇X − 𝜇X0
, 1 + 𝜈X − 𝜈X0

)

= (f (𝜇X) − f (𝜇X0
), 1 + f (1 − 𝜈X) − f (1 − 𝜈X0

)) = ̃f (X) − ̃f (X0) .

Then

̃f (X) = ̃f (X0) +
̃f (X) − ̃f (X0)

X − X0
(X − X0)

and therefore

lim
X→X0

̃f (X) = ̃f (X0) + lim
X→X0

̃f (X) − ̃f (X0)
X − X0

. lim
X→X0

(X − X0)

= ̃f (X0) + ̃f ′(X0).(0, 1) = ̃f (X0) .
□

Theorem 5 Let the functions ̃f , g̃ have the derivatives ̃f ′, g̃′ at the point X0. Then
there also exist the derivatives of the functions ̃f + g̃, ̃f − g̃, ̃f .g̃ and ̃f

g̃
at the point X0

and it holds

1. (̃f + g̃)′(X0) = ̃f ′(X0) + g̃′(X0)
2. (̃f − g̃)′(X0) = ̃f ′(X0) − g̃′(X0)
3. (̃f .g̃)′(X0) = ̃f ′(X0).g̃(X0) + ̃f (X0).g̃′(X0)
4. If g(𝜇X) ≠ 0 and g(1 − 𝜈X) ≠ 1 then

(
̃f
g̃

)′
(X0) =

̃f ′(X0).g̃(X0)−̃f (X0).g̃′(X0)
g̃2(X0)

.

Proof From the definition of the derivative and from the properties of the limit of

functions it holds

1.

(̃f + g̃)′(X0) = lim
X→X0

(̃f (X) + g̃(X)) − (̃f (X0) + g̃(X0))
X − X0

= lim
X→X0

̃f (X) − ̃f (X0)
X − X0

+ lim
X→X0

g̃(X) − g̃(X0)
X − X0

= ̃f ′(X0) + g̃′(X0) .
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2. The proof of the second property is similar like the proof of the point 1.

3.

(̃f .g̃)′(X0) = lim
X→X0

̃f (X).g̃(X) − ̃f (X0).g̃(X0)
X − X0

= lim
X→X0

̃f (X).g̃(X) − ̃f (X0).g̃(X) + ̃f (X0).g̃(X) − ̃f (X0).g̃(X0)
X − X0

= lim
X→X0

̃f (X) − ̃f (X0)
X − X0

.g̃(X0) + lim
X→X0

g̃(X) − g̃(X0)
X − X0

.
̃f (X0)

= ̃f ′(X0).g̃(X0) + ̃f (X0).g̃′(X0) .

4. Let g(𝜇X) ≠ 0 and g(1 − 𝜈X) ≠ 1 then

(
̃f
g̃

)′

(X0) = lim
X→X0

̃f (X)
g̃(X)

−
̃f (X0)
g̃(X0)

X − X0
= lim

X→X0

̃f (X).g̃(X0) − ̃f (X0).g̃(X)
g̃(X).g̃(X0).(X − X0)

= lim
X→X0

̃f (X)−̃f (X0)
X−X0

.g̃(X) − g̃(X)−g̃(X0)
X−X0

.
̃f (X0)

g̃(X).g̃(X0)
=

̃f ′(X0).g̃(X0) − ̃f (X0).g̃′(X0)
g̃2(X0)

.

□

Remark 3 Let for each X ∈ [A,B] there exist ̃f ′(X) then it holds

̃f ′(X) = (f ′(𝜇X), 1 − f ′(1 − 𝜈X)) .

5 Lagrange Mean Value Theorem

Our main aim is to proof the Taylor’s theorem. Of course before we do this we need

to prove some more theorems. Lagrange mean value theorem is one of them. The

results which are mentioned in this section were published in the paper [8].

Theorem 6 Let ̃f be continuous on [A,B] and differentiable on (A,B). Then there
exists C ∈ (A,B) such that

̃f (B) − ̃f (A) = ̃f ′(C)(B − A) .

Proof By the definition

̃f (B) − ̃f (A) = (f (𝜇B), 1 − f (1 − 𝜈B)) − (f (𝜇A), 1 − f (1 − 𝜈A))

= (f (𝜇B) − f (𝜇A), f (1 − 𝜈A) − f (1 − 𝜈B) + 1) .
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In the classical calculus for each function f ∶ IR → IR which is continuous on [a, b]
and differentiable on (a, b) there exists such c ∈ (𝜇A, 𝜇B) that it holds

f (b) − f (a) = f ′(c)(b − a) .

Since these assumptions hold we could put a = 𝜇A, b = 𝜇B and c = 𝜇C. Then 𝜇C ∈
(𝜇A, 𝜇B) and

f (𝜇B) − f (𝜇A) = f ′(𝜇C)(𝜇B − 𝜇A) .

Similarly there exists such 𝜈C ∈ (𝜈B, 𝜈A) that 1 − 𝜈A ≤ 1 − 𝜈C ≤ 1 − 𝜈B and

f (1 − 𝜈A) − f (1 − 𝜈B) = f ′(1 − 𝜈C)(1 − 𝜈A − (1 − 𝜈B))

= f ′(1 − 𝜈C)(𝜈B − 𝜈A) .

Define C = (𝜇C, 𝜈C). Then 𝜇A ≤ 𝜇C ≤ 𝜇B, 𝜈A ≥ 𝜈C ≥ 𝜈B, hence A ≤ C ≤ B.

Moreover

̃f ′(C) = (f ′(𝜇C), 1 − f ′(1 − 𝜈C)) .

Therefore

̃f (B) − ̃f (A) = (f (𝜇B) − f (𝜇A), f (1 − 𝜈A) − f (1 − 𝜈B) + 1)

= (f ′(𝜇C)(𝜇B − 𝜇A), f ′(1 − 𝜈C)(𝜈B − 𝜈A) + 1) .

On the other hand

̃f ′(C)(B − A) = (f ′(𝜇C), 1 − f ′(1 − 𝜈C))(𝜇B − 𝜇A, 𝜈B − 𝜈A + 1)

= (f ′(𝜇C)(𝜇B − 𝜇A), 1 − (1 − (1 − f ′(1 − 𝜈C)))(1 − (𝜈B − 𝜈A + 1)))

= (f ′(𝜇C)(𝜇B − 𝜇A), 1 − f ′(1 − 𝜈C)(𝜈A − 𝜈B))

= (f ′(𝜇C)(𝜇B − 𝜇A), f ′(1 − 𝜈C)(𝜈B − 𝜈A) + 1) = ̃f (B) − ̃f (A) .
□

6 Polynomial Functions

In this section the definition of the polynomial function is given. In previous text we

prove that it holds

̃f ′(X) =
(
f ′(𝜇X), 1 − f ′(1 − 𝜈X)

)
.

It is easy to prove (see [9]) that for the nth derivative it holds
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̃f (n)(X) =
(
f (n)(𝜇X), 1 − f (n)(1 − 𝜈X)

)
.

Definition 7 Let n ∈ IN, let X=(𝜇X , 𝜈X) be the variable and Ai ∈ IR2
,Ai = (𝜇Ai

, 𝜈Ai
),

i = 0, 1, 2,… , n be the constants, An ≠ (0, 1). Then

p̃n(X) = A0 + A1X + A2X2 +⋯ + AnXn

is called the polynomial function.

Theorem 7 Let n ∈ IN, let X = (𝜇X , 𝜈X) be the variable, Ai ∈ IR2
,Ai = (𝜇Ai

, 𝜈Ai
),

i = 0, 1, 2,… , n be the constants and p̃n be a polynomial function. Then it holds

p̃n((𝜇X , 𝜈X)) = (𝜇A0
+ 𝜇A1

𝜇X + 𝜇A2
𝜇

2
X +⋯ + 𝜇An

𝜇

n
X ,

𝜈A0
+ (𝜈A1

− 1)(1 − 𝜈X) + (𝜈A2
− 1)(1 − 𝜈X)2 +⋯ + (𝜈An

− 1)(1 − 𝜈X)n)

Proof From the definitions it follows

Xn = ((𝜇X)n, 1 − (1 − 𝜈X)n) .

For clarification of the next text we will use shorter notation

Xn = (𝜇n
X , 1 − (1 − 𝜈X)n) .

Then

AXn = (𝜇A𝜇
n
X , 𝜈A + (1 − (1 − 𝜈X)n) − 𝜈A(1 − (1 − 𝜈X)n)) .

The second component could be modified by the following way

𝜈A + (1 − (1 − 𝜈X)n) − 𝜈A(1 − (1 − 𝜈X)n) − 1 + 1

= 𝜈A(1 − (1 − (1 − 𝜈X)n)) − 1(1 − (1 − (1 − 𝜈X)n)) + 1

= (𝜈A − 1)(1 − 𝜈X)n + 1 .

Therefore

AXn = (𝜇A𝜇
n
X , (𝜈A − 1)(1 − 𝜈X)n + 1) .
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Then we obtain

A0 = A0X0 = (𝜇A0
𝜇

0
X , (𝜈A0

− 1)(1 − 𝜈X)0 + 1) = (𝜇A0
, 𝜈A0

) = B0

A1X1 = (𝜇A1
𝜇

1
X , (𝜈A1

− 1)(1 − 𝜈X)1 + 1) = B1

A2X2 = (𝜇A2
𝜇

2
X , (𝜈A2

− 1)(1 − 𝜈X)2 + 1) = B2

⋮

AnXn = (𝜇An
𝜇

n
X , (𝜈An

− 1)(1 − 𝜈X)n + 1) = Bn

Therefore

p̃n(X) =
n∑

i=0
Bi =

( n∑

i=0
𝜇Ai

𝜇

i
X ,

n∑

i=0

(
((𝜈Ai

− 1)(1 − 𝜈X)i + 1) − 1
)
+ 1

)

=
( n∑

i=0
𝜇Ai

𝜇

i
X ,

n∑

i=0
(((𝜈Ai

− 1)(1 − 𝜈X)i) + 1)
)

=
(
𝜇A0

+ 𝜇A1
𝜇X + 𝜇A2

𝜇

2
X +⋯ + 𝜇An

𝜇

n
X ,

𝜈A0
+ (𝜈A1

− 1)(1 − 𝜈X) + (𝜈A2
− 1)(1 − 𝜈X)2 +⋯ + (𝜈An

− 1)(1 − 𝜈X)n
)

. □

Remark 4 We could use also the approach that polynomial function is a special type

of a function. Then

p̃n((𝜇X , 𝜈X)) = (pn(𝜇X), 1 − pn(1 − 𝜈x))

where

pn(𝜇X) = 𝜇A0
+ 𝜇A1

𝜇X + 𝜇A2
𝜇

2
X +⋯ + 𝜇An

𝜇

n
X ,

and

1 − pn(1 − 𝜈X) = 1 − [(1 − 𝜈A0
) + (1 − 𝜈A1

)(1 − 𝜈X)

+(1 − 𝜈A2
)(1 − 𝜈X)2 +⋯ + (1 − 𝜈An

)(1 − 𝜈X)n]

= 𝜈A0
+ (𝜈A1

− 1)(1 − 𝜈X) + (𝜈A2
− 1)(1 − 𝜈X)2 +⋯ + (𝜈An

− 1)(1 − 𝜈X)n
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7 Taylor Polynomial and Taylor’s Theorem

In the previous section there was proved that Lagrange mean value theorem could

be established also on the 𝓁-group . Since this theorem holds we could answer the

question if it possible to prove Taylor’s theorem on the 𝓁-group . Let us start with

the definition of the nth-order Taylor polynomial.

Definition 8 Let n ∈ IN, X = (𝜇X , 𝜈X) be the variable and X0 = (𝜇X0
, 𝜈X0

), X0 ∈
IR2

be the fixed point. Let ̃f (X) = (f (𝜇X), 1 − f (1 − 𝜈X)) be a function defined on

𝓁-group . Let the derivatives ̃f (i)(X) = (f (i)(𝜇X), 1 − f (i)(1 − 𝜈X)) exist for i = 1, 2,
… , n. Then the nth-order Taylor polynomial at the point X0 has the following form

̃Tn(X) = ̃f (X0) +
̃f (1)(X0)

1!
(X − X0) +

̃f (2)(X0)
2!

(X − X0)2 +⋯ +
̃f (n)(X0)

n!
(X − X0)n .

Theorem 8 Let the assumptions of the previous definition hold. Function ̃Tn is
the nth-order Taylor polynomial at the point X0 = (𝜇X0

, 𝜈X0
) if and only if for any

X = (𝜇X , 𝜈X) it holds

̃Tn((𝜇X , 𝜈X)) =
(

f (𝜇X0
) +

f (1)(𝜇X0
)

1!
(𝜇X − 𝜇X0

) +⋯ +
f (n)(𝜇X0

)
n!

(𝜇X − 𝜇X0
)n,

1 − (f (1 − 𝜈X0
) +

f (1)(1 − 𝜈X0
)

1!
(𝜈X0

− 𝜈X) +⋯ +
f (n)(1 − 𝜈X0

)
n!

(𝜈X0
− 𝜈X)n)

)
.

Proof Since

Xn = (𝜇n
X , 1 − (1 − 𝜈X)n)

X − X0 = (𝜇X − 𝜇X0
, 𝜈X − 𝜈X0

+ 1)
̃f (n)(X0) = (f (n)(𝜇X0

), 1 − f (n)(1 − 𝜈X0
))

cX = (c𝜇X , 1 − c(1 − 𝜈X))

where c is any real number. Then

(X − X0)n = ((𝜇X − 𝜇X0
)n, 1 − (1 − (𝜈X − 𝜈X0

+ 1))n)

= ((𝜇X − 𝜇X0
)n, 1 − (𝜈X0

− 𝜈X)n)

and

̃f (n)(X0)(X − X0)n = (f (n)(𝜇X0
)(𝜇X − 𝜇X0

)n,

1 − f (n)(1 − 𝜈X0
) + 1 − (𝜈X0

− 𝜈X)n − ((1 − f (n)(1 − 𝜈X0
))(1 − (𝜈X0

− 𝜈X)n))) .

After the modification of the second part we obtain
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1 − f (n)(1 − 𝜈X0
) + 1 − (𝜈X0

− 𝜈X)n − ((1 − f (n)(1 − 𝜈X0
))(1 − (𝜈X0

− 𝜈X)n)))

= 1 − f (n)(1 − 𝜈X0
) + 1 − (𝜈X0

− 𝜈X)n

−1 + (𝜈X0
− 𝜈X)n + f (n)(1 − 𝜈X0

) − f (n)(1 − 𝜈X0
)(𝜈X0

− 𝜈X)n

= 1 − f (n)(1 − 𝜈X0
)(𝜈X0

− 𝜈X)n .

Therefore

̃f (n)(X0)(X − X0)n = (f (n)(𝜇X0
)(𝜇X − 𝜇X0

)n, 1 − f (n)(1 − 𝜈X0
)(𝜈X0

− 𝜈X)n) .

Finally for any c ∈ IR it holds

c̃f (n)(X0)(X − X0)n = (cf (n)(𝜇X0
)(𝜇X − 𝜇X0

)n,

1 − c(1 − (1 − f (n)(1 − 𝜈X0
)(𝜈X0

− 𝜈X)n)))

hence

c̃f (n)(X0)(X − X0)n = (cf (n)(𝜇X0
)(𝜇X − 𝜇X0

)n, 1 − c(f (n)(1 − 𝜈X0
)(𝜈X0

− 𝜈X)n)) .

Put ci =
1
i!

for i = 1, 2,… , n then

̃f (i)(X0)
i!

(X − X0)i =

(
f (i)(𝜇X0

)
i!

(𝜇X − 𝜇X0
)i, 1 −

f (i)(1 − 𝜈X0
)

i!
(𝜈X0

− 𝜈X)i
)

is the ith member of the Taylor polynomial. After the summation of all members of

Taylor polynomial we get

̃Tn((𝜇X , 𝜈X))

=

( n∑

i=0

f (i)(𝜇X0
)

i!
(𝜇X − 𝜇X0

)i,
n∑

i=0

(

1 −
f (i)(1 − 𝜈X0

)
i!

(𝜈X0
− 𝜈X)i − 1

)

+ 1

)

=

( n∑

i=0

f (i)(𝜇X0
)

i!
(𝜇X − 𝜇X0

)i,
n∑

i=0

(

−
f (i)(1 − 𝜈X0

)
i!

(𝜈X0
− 𝜈X)i

)

+ 1

)
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=
(

f (𝜇X0
) +

f (1)(𝜇X0
)

1!
(𝜇X − 𝜇X0

) +⋯ +
f (n)(𝜇X0

)
n!

(𝜇X − 𝜇X0
)n,

1 −
(
f (1 − 𝜈X0

) +
f (1)(1 − 𝜈X0

)
1!

(𝜈X0
− 𝜈X) +⋯ +

f (n)(1 − 𝜈X0
)

n!
(𝜈X0

− 𝜈X)n
))

. □

Theorem 9 Let ̃f be a function that has continuous derivatives ̃f (i), i = 0, 1, 2,… , n
defined on interval [X0,X], let there exists derivative ̃f (n+1) on interval (X0,X) and
̃Tn be the nth-order Taylor polynomial appertaining to ̃f in the point X0. Then there
exist such function ̃Rn and such C = (𝜇C, 𝜈C),C ∈ (X0,X) that it holds

̃f (X) = ̃Tn(X) + ̃Rn(X) .

The function ̃Rn is usually called remainder and it could have following form

̃Rn(X) =
̃f (n+1)(C)
(n + 1)!

(X − X0)n+1

(Lagrange’s form).

Proof In the first step we will specify the remainder

̃Rn(X) =
̃f (n+1)(C)
(n + 1)!

(X − X0)n+1

by using membership and nonmembership functions.

̃Rn((𝜇X , 𝜈X)) =
(

f (n+1)(𝜇C)
(n + 1)!

(𝜇X − 𝜇X0
)n+1, 1 −

f (n+1)(1 − 𝜈C)
(n + 1)!

(𝜈X0
− 𝜈X)n+1

)
.

It is also important not to forget that if C ∈ (X0,X) then it holds

𝜇X0
≤ 𝜇C ≤ 𝜇X

and

𝜈X0
≥ 𝜈C ≥ 𝜈X .

Then from equality

̃f (X) = ̃Tn(X) + ̃Rn(X)

for membership function it follows

f (𝜇X) = f (𝜇X0
) +

f (1)(𝜇X0
)

1!
(𝜇X − 𝜇X0

) +⋯+
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+
f (n)(𝜇X0

)
n!

(𝜇X − 𝜇X0
)n +

f (n+1)(𝜇C)
(n + 1)!

(𝜇X − 𝜇X0
)n+1

and for nonmembership function it follows

f (1 − 𝜈X) = f (1 − 𝜈X0
) +

f (1)(1 − 𝜈X0
)

1!
(𝜈X0

− 𝜈X) +⋯+

+
f (n)(1 − 𝜈X0

)
n!

(𝜈X0
− 𝜈X)n +

f (n+1)(1 − 𝜈C)
(n + 1)!

(𝜈X0
− 𝜈X)n+1 .

Since 𝜇X0
, 𝜇X , 𝜇C are the real numbers 𝜇X0

≤ 𝜇C ≤ 𝜇X and in addition Lagrange’s

theorem holds then for membership function we get the formula which is equal with

Taylor’s theorem in classical calculus. Therefore also the proof of this part has the

same steps as in real numbers calculus.

On the other hand 𝜈X0
, 𝜈X , 𝜈C are also real numbers and it holds 𝜈X0

≥ 𝜈C ≥

𝜈X . This inequality is the same as 1 − 𝜈X0
≤ 1 − 𝜈C ≤ 1 − 𝜈X . Denote 1 − 𝜈X0

= y0,

1 − 𝜈X = y and 1 − 𝜈C = c. Then

𝜈X0
− 𝜈X = 1 − 𝜈X − (1 − 𝜈X0

) = y − y0 .

After substitution the values and rewriting the formula for nonmembership function

we get

f (y) = f (y0) +
f (1)(y0)
1!

(y − y0) +⋯ +
f (n)(y0)

n!
(y − y0)n +

f (n+1)(c)
(n + 1)!

(y − y0)n+1

what is again the formula equal with formula in classical calculus. □

Remark 5 From the proof of previous theorem it is easy to see that for remainder

holds

lim
n→∞

̃Rn(X) = (0, 1) .

Therefore we could define Taylor series for the elements from 𝓁-group .

Definition 9 Let n ∈ IN, X = (𝜇X , 𝜈X) be the variable and X0 = (𝜇X0
, 𝜈X0

), X0 ∈ IR2

be the fixed point. Let ̃f (X) = (f (𝜇X), 1 − f (1 − 𝜈X)) be a function defined on 𝓁-group

. Let ̃f be infinitely differentiable at the point X0. Then the Taylor series at the point

X0 has the following form

̃T(X) = ̃f (X0) +
̃f (1)(X0)
1!

(X − X0) +
̃f (2)(X0)
2!

(X − X0)2 +⋯ +
̃f (n)(X0)

n!
(X − X0)n … .

Since

lim
n→∞

̃Rn(X) = (0, 1)
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then it holds

̃f (X) ≈ ̃T(X) .

Example 3 Since Definition 9 holds then each function ̃f can be replaced by corre-

sponding Taylor series. For example let ̃f (X) = ̃sin(X) = (sin(𝜇X), 1 − sin(1 − 𝜈X))
and X0 = (0, 1). Then 1 − 𝜈X0

= 1 − 1 = 0 and therefore

f (𝜇X0
) = f (1 − 𝜈X0

) = sin 0 = 0

f (1)(𝜇X0
) = f (1)(1 − 𝜈X0

) = cos 0 = 1

f (2)(𝜇X0
) = f (2)(1 − 𝜈X0

) = − sin 0 = 0

f (3)(𝜇X0
) = f (3)(1 − 𝜈X0

) = − cos 0 = −1
⋮

Then

̃sin(X) ≈ ̃T((𝜇X , 𝜈X))

=
( 1
1!
𝜇X − 1

3!
𝜇

3
X +⋯ + (−1)n

(2n + 1)!
𝜇

2n+1
X … ,

1 −
( 1
1!
(1 − 𝜈X) −

1
3!
(1 − 𝜈X)3 +⋯ + (−1)n

(2n + 1)!
(1 − 𝜈X)2n+1 …

))
.

8 Conclusion

In this contribution the basic structures of differential calculus for 𝓁-groups  were

defined. Since we showed that each operation defined on IF set can be derived from

the operation defined on 𝓁-group  we could use these results also for IF sets.
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Recognizing Imbalanced Classes
by an Intuitionistic Fuzzy Classifier

Eulalia Szmidt, Janusz Kacprzyk and Marta Kukier

Abstract The recognition of imbalanced classes is not an easy task for classifiers.

Imbalanced classes are classes that are considerably smaller than other classes but

not necessarily small ones. Most often smaller classes are more interesting from the

user’s point of view but more difficult to be derived by a classifier. In this paper,

which is a continuation of our previous works, we discuss a classifier using some

inherent features of Atanassov’s intuitionistic fuzzy sets (A-IFSs, for short) making

them a good tool for recognizing imbalanced classes. We illustrate our considerations

on benchmark examples paying attention to the behavior of the classifier proposed

(several measures in addition to the most popular accuracy are examined). We use

a simple cross validation method (with 10 experiments). Results are compared with

those obtained by a fuzzy classifier known as a good one from the literature. We also

consider a problem of granulation (a symmetric or asymmetric granulation, and a

number of the intervals used) and its influence on the results.

Keywords Classification ⋅ Imbalanced classes ⋅ Intuitionistic fuzzy sets ⋅
Intuitionistic fuzzy classifier ⋅ Granulation

1 Introduction

The construction of a good classifier for imbalanced classes is a difficult task. An

imbalanced class need not be a small class—it may be a class with lots of ele-

ments but still far less that other class. Usually, a two-category problem (Duda [16]),
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positive∕negative, called also the legal∕illegal classification problem with a

relatively small class is considered. The construction of a classifier for such classes

is both an interesting theoretical challenge and a problem often met in different types

of real tasks like, e.g., medical diagnosis, medical monitoring, fraud detection, bioin-

formatics, text categorization (cf. Fawcett and Provost [17], Japkowicz [19], Kubat

et al. [20], Lewis and Catlett [21], Mladenic and Grobelnik [22], He and Garcia [18]).

To solve the imbalance classes problems usually up-sampling and down-sampling

are used but both methods interfere with the structure of the data, and in the case of

overlapping classes even the artificially obtained balance does not solve the problem

(some data points may appear as valid examples in both classes).

This paper is a continuation of our previous works (cf. Szmidt and Kukier

[37–39]) on intuitionistic fuzzy approach to the problem of classification of imbal-

anced and overlapping classes. We consider a two–class classification problem

(legal—a relatively small class, and illegal—a much bigger class).

The concept of a classifier using the A-IFSs has its roots in the fuzzy set approach

proposed by Baldwin et al. [11]. In that approach classes are represented by fuzzy

sets generated from relative frequency distributions representing data points used as

examples of the classes [11]. In the process of generating fuzzy sets a mass assign-

ment based approach is adopted (Baldwin et al. [8, 11]). For the model obtained

(fuzzy sets describing the classes), using the chosen classification rule, a testing

phase is performed to evaluate the performance of the proposed method.

In the case of the intuitionistic fuzzy classifier we perform the same steps as in

the case of the above mentioned fuzzy classifier. The main difference is in the use

of the A-IFSs for the representation of classes, and in taking advantage of the use of

the A-IFSs to obtain a classifier which better recognizes relatively small classes.

The crucial step of the method is the representation of classes by the A-IFSs

(first, in the training phase). The A-IFSs are generated from the relative frequency

distributions representing the data considered according to the procedure given by

Szmidt and Baldwin [27]. Trying to recognize the smaller class as good as possible,

we use information about the hesitation margins making it possible to improve the

results of data classification in the (second) testing phase.

The results obtained in the testing phase are examined using confusion matri-

ces making it possible to explore the behavior of the classifier in a broader sense,

not only in the sense of the widely used error/accuracy evaluation. We have used a

simple cross validation method (with 10 experiments). the results obtained are com-

pared with those obtained by a fuzzy classifier. Several benchmark data sets are used,

exemplified by the “Glass”, and “Wine” (cf. [44]).

We have also taken into account other measures of classifier errors, namely, the

geometric mean, and the so called F-value (Sect. 3.1). The last two measures were

used to assess the influence of the parameters used in one of the important steps

while constructing the classifier, namely, granulation. We compared results for the

symmetric and asymmetric granulation, and for an increasing number of intervals.

The influence of granulation on the results has been verified using some data sets,

notably “Glass”, and “Wine”, “Heart” and “Breast Cancer” (cf. [44]).
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2 A Brief Introduction to the A-IFSs

One of the possible generalizations of a fuzzy set in X (Zadeh [42]) given by

A′ = {< x, 𝜇A′ (x) > |x ∈ X} (1)

where 𝜇A′ (x) ∈ [0, 1] is the membership function of the fuzzy set A′
, is the A-IFS

(Atanassov [1, 3, 4]) A is given by

A = {< x, 𝜇A(x), 𝜈A(x) > |x ∈ X} (2)

where: 𝜇A ∶ X → [0, 1] and 𝜈A ∶ X → [0, 1] such that

0<𝜇A(x) + 𝜈A(x)<1 (3)

and 𝜇A(x), 𝜈A(x) ∈ [0, 1] denote a degree of membership and a degree of non-

membership of x ∈ A, respectively. (An approach to the assigning memberships and

non-memberships for A-IFSs from data is proposed by Szmidt and Baldwin [28]).

Obviously, each fuzzy set may be represented by the following A-IFS:

A = {< x, 𝜇A′ (x), 1 − 𝜇A′ (x) > |x ∈ X}.

An additional concept for each A-IFS in X, that is not only an obvious result of

(2) and (3) but which is also relevant for applications, will be called (Atanassov [3])

a hesitation margin of x ∈ A, written

𝜋A(x) = 1 − 𝜇A(x) − 𝜈A(x) (4)

which expresses a lack of knowledge of whether x belongs to A or not (cf. Atanassov

[3]). It is obvious that 0<𝜋A(x)<1, for each x ∈ X.

The hesitation margin turns out to be important while considering the distances

(Szmidt and Kacprzyk [29, 30, 34], entropy (Szmidt and Kacprzyk [31, 35]), simi-

larity (Szmidt and Kacprzyk [36]) for the A-IFSs, etc. i.e., the measures that play a

crucial role in virtually all information processing tasks (Szmidt [24]).

The hesitation margin turns out to be relevant for applications—in image process-

ing (cf. Bustince et al. [12, 13]) and the classification of imbalanced and overlapping

classes (cf. Szmidt and Kukier [37–39]), group decision making (e.g., [5]), negotia-

tions, voting and other situations (cf. Szmidt and Kacprzyk papers).

In our further considerations we will use the D
𝛼

(A) operator (Atanassov [3]) with

𝛼 ∈ [0, 1]:

D
𝛼

(A) = {⟨x, 𝜇A(x) + 𝛼𝜋A(x), 𝜈A(x) + (1 − 𝛼)𝜋A(x)⟩ |x ∈ X} (5)

Operator D
𝛼

(A) makes it possible to better “see” imbalanced classes (information

about the hesitation margins is most important here).
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3 An Intuitionistic Fuzzy Classifier

The main idea of the intuitionistic fuzzy classifier in the sense discussed here has

been proposed by Szmidt and Kukier [37–39]. Here we present in detail the consec-

utive steps of the algorithm.

While constructing a classifier, the data are to be divided into two subsets—a

training subset (used in a learning phase), and a testing subset (used in a testing

phase).

The first, training (called also learning) phase, using a training subset, generates

decision rules: IF <condition> THEN <conclusion>, where <condition> means

aggregated membership of each attribute of an instance considered to an interval

chosen.

The algorithm

1. Training phase (input: learning data, output: decision rules)

∙ granulation (discretization of the universes of the attributes),

∙ construction of histograms for the discretized universes of the attributes,

∙ representation of classes via the intuitionistic fuzzy sets with characteristics

derived on the basis of the histograms,

∙ validation, tuning (adjusting) of the classifier parameters.

2. Testing phase (input: a new instance to classify, output: assignment of instance

to a class)

∙ finding a granule for each new instance,

∙ applying decision rules to classify a new instance to a class.

Finally, it is necessary to measure the quality of the classifier.

3.1 Classifier Error Measures

The most often used measure of a classifier error is called an accuracy being the

percentage of instances that are correctly classified. Another measure called an error
is the percentage of incorrectly classified instances (unseen data). Unfortunately, for

the imbalanced classes or for not equal misclassification costs, neither the accuracy

nor the error are sufficient.

Confusion Matrix
The confusion matrix (Table 1) is often used to evaluate a two–class classifier. One

class consists of so called legal instances, i.e., instances we are especially interested

in, another class consists of so called illegal instances, i.e., instances from other class

or classes considered together (multicategory classification problems can be reduced

to the two-category cases—see Duda [16]).
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Table 1 The confusion

matrix
Tested legal Tested illegal

Actual legal a b

Actual illegal c d

The meaning of the symbols in Table 1 is

a—the number of correctly classified legal instances,

b—the number of incorrectly classified legal instances,

c—the number of incorrectly classified illegal instances,

d—the number of correctly classified illegal instances,

As a result, the most often used measures for the evaluation of a classifier are:

Acc =
legalls and illegals correctly classified

total
= a + d

a + b + c + d
(6)

TPR =
legalls correctly classified

total legalls
= a

a + b
(7)

FPR =
illegals incorrectly classified

total illegals
= c

c + d
(8)

The geometric mean (Kubat et al. [20]) is another, often used measure of error:

GM =
√
TPR ∗ PPV (9)

where PPV = legalls correctly classified
total legalls

= a
a+c

. Both TPR and PPV are “treated” in the

same way (neither is more important) in GM.

If one of the TPR and PPV is most important from the point of view of evaluation,

another measure, a so called F-value can be used:

FV = (1 + 𝛽

2)TPR ∗ PPV
𝛽
2PPV ∗ TPR

(10)

To better recognize relatively small classes, parameter 𝛽 should be greater than 1.

In the following the main problems to solve while constructing an intuitionistic

fuzzy classifier are presented.

3.2 Granulation

One of the problems to solve for the classification tasks with continuous attributes

is granulation (discretization), i.e., the partitioning of universes of the attributes.

The idea of replacing a continuous domain with a discrete one has been extended
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Fig. 1 Example of a

symmetric granulation

(upper part of the figure) and

an asymmetric granulation

(bottom part of the figure)

to fuzzy sets by Ruspini [23]. It is possible to apply the symmetric or asymmetric

granulation. In the symmetric granulation (example presented at the upper part of

Fig. 1) an attribute universe is partitioned using evenly spaced triangular fuzzy sets

(a symmetric fuzzy partition). The asymmetric fuzzy partition (example presented

at the bottom part of Fig. 1) is performed with unevenly spaced triangular fuzzy sets

which imply each partition to contain an equal number of data instances [23]. For

both kinds of granulation the partitioning of triangular fuzzy sets are such that for

any attribute value the sum of memberships of the partitioning fuzzy sets is 1.

Another problem, in addition to choosing the sort of granulation, is pointing out

the number of used intervals. This problem is discussed in Sect. 4.

3.3 The Core of the Intuitionistic Fuzzy Classifier

In the case of an intuitionistic fuzzy classifier, data is presented via the A-IFSs.

After expressing data by relative frequency distributions, the algorithm presented

by Szmidt and Baldwin [25–27] is applied to describe smaller, so called legal, and

bigger, so called illegal, classes in the space of all the attributes. As a result, a data

instance e is described as an intuitionistic fuzzy element (all three terms are taken

into account: the membership value 𝜇, non-membership value 𝜈, and hesitation mar-

gin 𝜋), i.e.,

e ∶ (𝜇e, 𝜈e, 𝜋e) (11)

To enhance the possibility of a proper classification of instances belonging to a

smaller (legal) class, while training the intuitionistic fuzzy classifier, hesitation mar-

gins which assign the (width of) intervals where the unknown values of memberships

lie, are used. Namely, the D
𝛼

(A) operator (5) is applied making it possible to see as

well as possible the elements of the class we are interested in. To be more precise,
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the values of the hesitation margins are divided so as to “see” better the smaller

class—each instance e (11) was expressed as

e ∶ (𝜇e + 𝛼𝜋e, 𝜈e + (1 − 𝛼)𝜋e) (12)

where 𝛼 ∈ (0.5, 1) is a parameter. To guarantee the best behavior of the intuitionistic

fuzzy classifier, the parameter 𝛼 is chosen separately for each attribute, and next, the

results are aggregated (see Szmidt and Kukier [37–39]).

It is worth emphasizing that:

∙ for 𝛼 = 0.5 we obtain a fuzzy classifier;

∙ the case 𝛼 = 1 does not produce the best results.

The above model is built for each attribute separately, and then the obtained results

are aggregated (cf. Szmidt and Kukier [37–39]).

The following aggregation operation is used

Agg1 ∶ AggCLASS1 (e) =
n∑

k=1
wk𝜇

k
CLASS(e) (13)

where e—an examined instance from a database,

wk =
nk
n∑

k=1
nk

for k = 1,… , n is a set of weights for each attribute: nk is the number of

correctly classified training data by the kth attribute.

Knowing the Agg1 aggregation operator, the classification of an instance exam-

ined is done by

D1(e) = argmax[AggCLASS1 (e),CLASS ∈ {legal, illegal}] (14)

4 Results Obtained

It is worth emphasizing that a whole array of the measures assessing how good is a

classifier for recognizing imbalanced classes results from the fact that it is not pos-

sible to attain the best behavior of a classifier with respect to all interesting criteria.

In the case of imbalanced classes the most important seems to be to attain as good

as possible a value of TPR (i.e., seeing as good as possible a smaller class) and at

the same time not loosing much from the accuracy of a classifier. The goal can be

achieved by a proper assignment of the parameters of the intuitionistic fuzzy classi-

fier which can operate with two types of granulation, different number of intervals,

different values of the parameter 𝛼, types of aggregation, etc. We will examine the

influence of the parameters chosen on the results obtained by the intuitionistic fuzzy

classifier.

First, the results obtained by a fuzzy classifier (for parameter 𝛼 = 0.5 and intu-

itionistic fuzzy classifier are compared.
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Table 2 Results obtained by the intuitionistic fuzzy classifier and the fuzzy classifier: “Glass”,

𝛼 = 0.7, a symmetric granulation

No class Acc FS Acc IFS TPR FS TPR IFS FPR FS FPR IFS

1 Average 71.5 60.3 0.25 0.94 0.05 0.57

Standard deviation 2.8 3.2 0.13 0.06 0.04 0.05

2 Average 73.0 54.0 0.46 0.91 0.11 0.67

Standard deviation 2.6 3.2 0.14 0.07 0.07 0.07

3 Average 89.4 44.4 0.06 0.84 0.03 0.59

Standard deviation 2.6 4.1 0.09 0.12 0.04 0.05

5 Average 94.0 92.4 0.56 0.74 0.03 0.06

Standard deviation 2.2 3.3 0.2 0.15 0.02 0.04

6 Average 96.2 94.3 0.48 0.64 0.01 0.04

Standard deviation 1.5 2.6 0.22 0.22 0.01 0.03

7 Average 94.7 92.5 0.8 0.86 0.03 0.07

Standard deviation 1.9 1.5 0.12 0.1 0.02 0.02

Table 3 Results obtained by the intuitionistic fuzzy classifier and the fuzzy classifier: “Glass”,

𝛼 = 0.7, an asymmetric granulation

No class Acc FS Acc IFS TPR FS TPR IFS FPR FS FPR IFS

1 Average 79.4 76.3 0.56 0.9 0.09 0.31

Standard deviation 3.3 3.3 0.12 0.04 0.05 0.05

2 Average 74.8 60.9 0.48 0.85 0.48 0.85

Standard deviation 3.6 4.2 0.11 0.09 0.11 0.09

3 Average 90.8 84.9 0 0.21 0.01 0.09

Standard deviation 1.0 3.7 0 0.14 0.01 0.04

5 Average 93.3 93.3 0.09 0.17 0.01 0.01

Standard deviation 1.0 1.2 0.09 0.12 0.01 0.01

6 Average 95.6 97.0 0.12 0.42 0 0

Standard deviation 1.2 1.1 0.18 0.23 0 0

7 Average 92.7 94.7 0.44 0.68 0.01 0.02

Standard deviation 1.4 1.7 0.14 0.17 0.01 0.01

In Tables 2–3 there is a comparison of the results obtained by both classifiers with

respect to several evaluating measures for the database “Glass” (cf. [44]). It is the

database with 214 instances, 7 classes (4th class is empty), 10 attributes. We use

the simple cross validation method (with 10 experiments). For each experiment the

mean of the measures examined, and their standard deviation are calculated.

Table 2 presents results for the database “Glass”, with a symmetric granulation,

and parameter 𝛼 = 0.7. For a symmetric granulation applied to classes 1–3, the intu-

itionistic fuzzy classifier has a lower accuracy AccIFS than the corresponding fuzzy

classifier AccFS. However, the values of TPRIFS are considerably better than the

counterpart values of TPRFS. Better values of TPRIFS, i.e., better recognition of

relatively smaller class by the intuitionistic fuzzy classifier, accompany worse (big-
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ger) values of FPRIFS. The results mean that the intuitionistic fuzzy classifier with

a symmetric granulation better recognizes relatively small classes at the expense of

the general accuracy and a worse recognition of other classes.

In Table 3 there are results for an asymmetric granulation with the same 𝛼 = 0.7.

Accuracy (6) of the fuzzy classifier AccFS is better than that of the intuitionistic

fuzzy classifier AccIFS for classes 1–3, is the same for both classifiers for class 5,

and is better for the intuitionistic fuzzy classifier for classes 6–7. The same time,

for all the cases considered, the TPRIFS is better than TPRFS which means that the

intuitionistic fuzzy classifier “sees” better the smaller class we are interested in. We

can observe that the improvement of TPR for the intuitionistic fuzzy classifier is at

the expense of bigger values of FPR for classes 1–3. However, in the case of classes

5–7 we obtain both a better accuracy and a better TPR for the intuitionistic classifier

whereas FPR remains practically the same.

More results illustrating the influence of the discretization applied (symmetri-

cal or asymmetrical) on accuracy and TPR for other classes chosen from the same

repository (cf. [44]) are given in Figs. 2 and 3. We use 10 intervals, (in the literature

usually ca. 10 intervals are used for discretization), assuming 𝛼 = 0.5.

Accuracy (Fig. 2) is a little better for the asymmetric discretization. The asym-

metric discretization gives in general better values of TPR, i.e., results in a better

recognition of an interesting class (Fig. 3).

It is interesting to analyze the distribution of the membership and non-membership

values in the successive intervals for both types of discretization. Typical shapes

of the symmetric, and the asymmetric granulations are presented in Figs. 4 and 5,

respectively (for the data base “Wine”, second attribute, class 2). We can see that

in the case of the symmetric granulation, usually the maximal values of the mem-

berships and non-memberships are close (e.g., Fig. 4) whereas for the asymmetric

granulation the maximal values are more distant (e.g., Fig. 5). As a result the effects

of classification may be worse for the symmetric discretization as a more substan-

tial concentration of the largest membership values and non-membership values may

cause that small differences in the values decide to which class an instance is clas-

Fig. 2 Accuracy for a

symmetric and asymmetric

granulation, 10 intervals

Wine 2
Sym Asym

BreastCan 2
Sym Asym Sym Asym Sym Asym Sym Asym

Glass 1 Glass 2 Diabetic 2

20

40

60

80
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Wine 2
Sym Asym Sym Asym Sym Asym Sym Asym Sym Asym

BreastCan 2 Glass 1 Glass 2 Diabetic 2

0.2

0.4

0.6

0.8

Fig. 3 TPR for a symmetric and asymmetric granulation, 10 intervals
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Fig. 4 Typical distributions of the membership and non-membership values in 10 intervals with a

symmetric granulation—data base “Wine”, second attribute, class 2
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0.8

1.0

non membership

membership

Fig. 5 Typical distributions of the membership and non-membership values in 10 intervals with

an asymmetric granulation—data base “Wine”, second attribute, class 2

sified (it concerns especially instances from relatively smaller classes which may

be worse seen by a classifier). These regularities seem most general but the type of

granulation should be chosen carefully for each data base as it happens for some data

that a symmetric granulation works better.



Recognizing Imbalanced Classes by an Intuitionistic Fuzzy Classifier 243

4.1 Number of Intervals

The results discussed are obtained for the discretization with the same number of

intervals (in each case 10 intervals). But it seems worthwhile to verify the influence

of the number of intervals on the results obtained by the intuitionistic fuzzy classifier.

In the following we compare several measures characterizing a classifier as a function

of the number of the intervals used.

Figures 6 and 7 present the accuracy obtained for the symmetric and asymmetric

granulation, respectively. The accuracy increases with the number of intervals so

having in mind the accuracy only, we could come to a conclusion that the more

intervals the better.

The values of TPR as a function of the number of intervals used for the symmetric

and asymmetric granulation are in Figs. 8 and 9, respectively. The effects are differ-

ent from those obtained for accuracy—we may observe that the more intervals the

smaller values of TPR which means that relatively smaller classes are worse recog-

nized. In general, the accuracy increases with the number of the intervals (as shown

above) but at the expense of a worse recognition of relatively smaller classes (bigger

classes are better seen).
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60
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80

90

Glass 5

Heart 2

Wine 3

Fig. 6 Accuracy as a function of the number of intervals; a symmetric granulation
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80

90

Breast Cancer 1

Glass 3
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Fig. 7 Accuracy as a function of the number of intervals; an asymmetric granulation
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Fig. 8 TPR as a function of

the number of intervals; a

symmetric granulation
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Fig. 9 TPR as a function of

the number of intervals; an

asymmetric granulation
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Fig. 10 GM as a function of

the number of intervals; a

symmetric granulation
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Fig. 11 GM as a function of

the number of intervals; an

asymmetric granulation
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The results for measure GM (9) are illustrated in Figs. 10 and 11. An increas-

ing number of the intervals applied does not result in increasing values of the mea-

sure GM. It is especially visible for the data “Glass 3” (Fig. 11). In other words, an

increase of the number of intervals does not lead to a better recognition of a smaller

class.
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Fig. 12 FV as a function of

the number of intervals; a

symmetric granulation
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Fig. 13 FV as a function of

the number of intervals; an

asymmetric granulation
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The same result is also obtained for measure FV (10); 𝛽 = 2 which means that a

relatively smaller class is slightly preferred (Figs. 10 and 11). To be more precise,

when the number of the intervals increases, we can see increasing values of FV but

after obtaining a maximal value, they start to decrease. Having in mind the results for

TPR, we come to conclusion, that with an increasing number of intervals a smaller

class is worse visible (Figs. 12 and 13).

In general and in conclusion, an increase of the number of intervals during the

granulation is not the best practice while constructing a classifier for recognizing

imbalanced classes. It results from the fact that while using more intervals during

the granulation, instances from relatively smaller classes are even more substantially

dominated in a separate interval (worse “visible”). On the other hand, as each data

base, and each class in a data base is specific, the only solution is a careful process

of assigning the number of the intervals while constructing the classifier considered.

5 Conclusions

An effective although simple intuitionistic fuzzy classifier has been tested on some

imbalanced data. Some experiments confirm that the intuitionistic fuzzy classifier

fulfills our main demand, i.e., recognizes better relatively smaller classes. The com-

parison of the results was done with a fuzzy classifier known from literature to be

good for recognizing imbalanced classes.

However, the price is a lower accuracy of recognizing all instances because bigger

classes might be seen worse. But it is not a rule as sometimes both relatively smaller
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class and bigger classes are recognized better by the intuitionistic fuzzy classifier

than by its counterpart fuzzy classifier.

Results obtained by the intuitionistic fuzzy classifier have been also assessed from

the point of view of the number of intervals applied in the process of granulation. We

have tested several measures. It turns out that by increasing the number of intervals

we do not necessarily improve the results obtained by the classifier as the elements

of the smaller classes can be even more dominated in very narrow intervals.
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IT Business Service-Level-Management—
An Intuitionistic Fuzzy Approach

Roland Schuetze

Abstract Bridging from IT-centric service levels, written in IT technical terms, to
business-oriented service achievement is a hot topic in today’s service research. The
proposed ‘IFSFIA’ methodology will help for Service Level Agreements (SLAs) to
relate metrics for business applications into measurable parameters for technical
services that can be defined and reported against a SLA and monitored under
Service Level Management. It allows assessing the complex dependency and
impact relationships of low-level backend components to the quality of the frontend
service. This work defines dependency couplings in a practical and feasible manner
in order to satisfy aspects of the distributed nature of SLAs in a multi-tier-
architectural environment. The concept starts from the idea of naturally approaching
impact relationships by separately envisaging positive and negative aspects with the
notion of bipolarity. Performing a multi-level impact analysis by means of intu-
itionistic fuzzy-mathematical models it unveils business insights into how service
accounts as a whole can improve quality and allows pro-actively tracking measures
of backend components to gather the overall SLA quality status of a business
service.
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1 The Complexity of Multi-Layered Service Level
Requirements

In an increasingly service-oriented world, “best effort” service delivery is not good
enough. But how does the business know whether it is getting an adequate service?
Service level requirements are set to ensure that the business goals underlying IT
services are met. The Service Level Agreements (SLAs) incorporate the expecta-
tions and the obligations about the properties of a service. The most significant part
of a SLA is the range of the duties of a service. The SLA objectives are mostly the
concerns that are associated with the Quality of a Service (QoS). To guarantee
business-focused SLAs results in optimization problem solving across multiple
domains (e.g. networking, computer systems, and software engineering). The
landscape of today’s IT service providers is inherently integrated. It consists of all
kinds of elements, namely networks, servers, storage, and software stacks. The
fulfilment of any higher-level objective requires proper enforcements on multiple
resources at several levels.

The challenge with such enterprise SLAs is translating metrics for business
applications into measurable parameters for technical services that can be defined
and reported against an SLA and monitored under Service Level Management
(SLM). Service compositions, translation and mappings lies therefore in the core of
SLA management, in that it correlates metrics and parameters within and across
layers [2]. For example, in order to guarantee certain bounds on the response times
for ERP-type, it involves the ERP software, the application and database servers,
the network configuration, and more [3]. When knowing the relation and depen-
dency of this backend service to the end-user service (or composite service), service
administrators can then pro-actively track and verify these dependencies by peri-
odically polling the measures of individual services and gathering the overall
quality status of the end-user service. This will allow administrators responsible for
the functioning of a service to monitor its quality based on the measurements
typically already done for the infrastructure components.

2 SLA Dependency Mapping

2.1 The Concept of Key Quality and Performance Indicators

Open Group [4] defined a concept of key quality- and performance indicators
(KQI/PI). Service Level Specification parameters can be one of two types: Key
Quality Indicators (KQIs) and (most technical) Service Performance Indicators (PIs).
At the highest level, a KQI or group of KQIs are required to monitor the quality of
the business service offered to the end-user. These KQIs will often form part of the
contractual SLA, whereas the monitoring instrumentation is established for the lower
level components to ensure the fulfillment of the service quality objectives (Fig. 1).
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The KQI is derived from a number of sources, including performance metrics of
the service or underlying support services with PIs. Different PIs may be assembled
to calculate a particular KQI. The mapping between the PI and KQI may be simple
or complex, empirical or formal. The automated process of translating and corre-
lating high-level requirements and policies for all kinds down to infrastructure level
creates a set of related PIs, which is termed now a KQI/PI hierarchy. While the
association relationship only relates adjacent sets of KQIs/PIs, the hierarchy
establishes associations across the whole stack in a distributed multi-tier architec-
ture. In the following a Coupling C association is defined, which can be constructed
in a practical and feasible manner in order to satisfy aspects of the different types of
component interdependencies.

2.2 Dependence Coupling as Measurement

Dependence Coupling is a measure that we propose to capture how dependent the
component or service is on other services or resources for its delivery. The goal is to
build components that do not have tight dependencies on each other, so that if one
service component were to die (fail), sleep (not respond) or remain busy (slow to
respond) for some reason, the other components in the system are built to still
continue to work. Loose coupling describes an approach where integration inter-
faces are developed with minimum assumptions between the sending/receiving
parties, thus reducing the risk that failure in one module will affect others. Loose
coupling isolates the components of an application so that each component interacts

Fig. 1 KQI, PI & SLA relationship [5]
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asynchronously and treats others as a “black box”. E.g. in the case of web appli-
cation architecture, the application server can be isolated from the web server and
from the database.

Two new types of a logical relationship are now introduced which expresses the
level of inter-dependency between components: ‘is tightly coupled’ and ‘is loosely
coupled’. The tightly coupled measurement can be seen as an indicator of the risk
resulting from interdependencies where the loosely coupled aspect refers to the
mitigation and resilience capabilities of a service. Loose coupling indicates that the
service does not have to depend on other services or resources to complete delivery
of its service. Tight coupling on the other hand indicates that successful delivery of
other services or availability of resources is a prerequisite for the completion of a
service. When the dependency is between a service and some resource it uses,
coupling will essentially be a function of how often the resource is used. For
instance, the dependence of a service on the network layer might be measured by
how often it is making a socket call, or how much data it is transferring. For
web-services we can examine environmental coupling which is caused by calling
and being called. Traditional components are more tightly and statically integrated
and measurements are related mostly to procedural programming languages e.g.
proposed by Dhama [5] or Fenton and Melton [6]. More advanced are
object-oriented coupling measures [7] and further several metrics are proposed to
evaluate the coupling level real-time by runtime monitoring, introduced as dynamic
coupling metrics [8].

2.3 Application Dependency Discovery Management
(ADDM)

Application discovery is the process of automatically analyzing artefacts of a
software application and physical elements that constitute a network (e.g., servers,
firewalls, etc.). ADDM products [9] deliver a powerful enabler that minimize IT
organizations expend on the information assimilation function and can also provide
a basis for further higher level, logical dependency assessments. According to [10]
these tool assert networks mainly based on three different approaches: middleware
or instrumenting applications; analyzing program configuration files or analyzing
application traffic. ADDM products deliver a point-in-time view of the “truth” and
unveil dependencies, but do not measure a granular truth value of an impact two
service components may have on each other. Dependency graphs created by an
automated discovery tool can be leveraged as a great starting point for advanced
methods to calculate granular degrees of dependence.

An inductive approach can also be chosen by calculating couplings between
servers or services based on historical data collected from the actual server network.
As opposite a deductive method would be applicable, where dependencies are not
calculated based on data the system produces, but rather the system itself, for
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example plans system architects make or comparisons to other systems, which have
a similar layout (Fig. 2).

For inductive coupling measurements statistical methods can be applied or an
expert can determine coupling effects based on the given data-series and his
experience.

2.4 Bi-Polar Coupling Aspects

A key principle of the following proposed impact assessment method is the idea of
naturally envisaging positive and negative instances of the dependency relation and
simultaneous consideration by pulling both strengths together. For a complex IT
system the risk are the dependencies through interactions, the controversy mitiga-
tion ability are the built-in system resilience capabilities. The simultaneous and free
play of contrary forces, dependence and resilience together will define the overall
system behavior and the expected impact to the business. Considering and judging
positive and negative aspects isolated will not lead to reliable assessments. This
leads to the question whether traditional impact analysis methods can be applied for
such integrated model. In general the ITIL v3 methods already cover both aspects
[11]. Fault Tree Analysis (FTA), like the word fault tree indicates, work in the
“failure space” and looks at system failure combinations. So the FTA method
covers the aspect of negative risk of interdependencies and negative impacts on
failure. On the other side, the ITIL Component Failure Impact Analysis (CFIA)
approach [12] is assessing on the mitigation, restoration and resilience capabilities,
which represents the positive aspect of independence.

There are several scenarios how an incident may interfere indirectly with other
components which is mainly resulting out of the combination of the contrary forces.
IT systems try to implement strategies that the resilience capabilities of each
component should pro-actively limit the inference and impact of the incident to
related components or the business services. In praxis impacts are complex which
constitutes uncertainty. They involve a multitude of effects that cannot be easily
assessed and may involve complex causalities, non-linear relationships as well as
interactions between effects [13]. This may render it difficult to determine exactly
what may happen.

Fig. 2 Inductive coupling assessment between database and application performance
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3 Applying the Model of Intuitionistic Fuzzy Sets

3.1 Coupling Statements as Intuitionistic Fuzzy Sets

Let E be a fixed universe and A is a subset of E. The set A* = {(x, μA(x), νA(x))| x ∈
E} where 0 ≤ μA(x) + νA (x) ≤ 1 is called Intuitionistic Fuzzy Set (IFS) [14]. Every
element has a degree of membership (validity, etc.) μA(x): E→ [0,1]and a degree of
non-membership (non-validity, etc.) νA(x): E → [0,1]. Intuitionistic Fuzzy Sets
have only loosely related membership and non-membership values unlike classical
(Zadeh) [16] fuzzy sets. An IFS is a generalization of the classical fuzzy set which
defines another degree of freedom into the set description, the independent judg-
ment of validity and non-validity. This two-sided view, including the possibility to
represent formally also a third aspect of imperfect knowledge could be used to
describe many real-world problems in a more adequate way—by independent rating
of both, positive and negative aspects—for each variable in the model. For each
IFS A in E, π(x) = 1 − μA(x) − νA(x) is called the intuitionistic index of x in A
which represents the third aspect, the degree of uncertainty, indeterminacy, limited
knowledge etc. In the following approach let now a be the intuitionistic fuzzy
logical statement of tightly coupling and b of loosely coupling with estimations
respectively < μa, νa > and < μb, νb >. The tightly coupling a degree of truth
is < μa > and the degree of falsity < νa >. The same assessment is done for loosely
coupling b where < μb, νb > represent the degrees of truth and falsity. This maps
service quality impacts to the idea behind intuitionistic fuzzy service dependencies,
where the level of tightly coupling between service components corresponds to the
intuitionistic fuzzy degrees of truth and falsity of the dependency impact and the
loosely coupling index assesses the resilience capabilities of a service.

3.2 Defining the Fuzzy Intuitionistic Direct Coupling
Between Components

The validities (membership degrees) for tightly and loosely couplings are inde-
pendently estimated by separate approaches, for ‘tightly’ using the described
inter-modular coupling metrics and for ‘loosely’ applying assessed intrinsic com-
ponent resilience capabilities. In praxis dependencies are naturally expressed by
positive forms (membership) only, which is also the way human assessments work.
Thus, the proposed method does only require the experts to judge on the validity of
the tightly and loosely coupling and to specify a level of certainty of these state-
ments (Fig. 3).

The vagueness is expressed in linguistic terms and mapped into a crisp number
with regard to the applied complement function, omitting that λ > = 0 (Sugeno) or
w <= 1 (Yager). The non-validity is then automatically set by the fuzzy comple-
ment function (Fig. 4).
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To define now the direct Coupling C association between two components the
intuitionistic fuzzy logical statements of tightly coupling and loosely coupling are
pulled together in a single IFS. Several operations over IFS are possible. As tightly
and loosely couplings have contrary effects a meaningful operation for building the
combined IFS C is for instance A@¬B by adding membership ‘tightly’ with
non-membership ‘loosely’ and vice versa divided by 2. The combined degrees are
further referred as μD and νD for direct coupling index and are called the intu-
itionistic fuzzy probabilistic direct impact between two related components.

μcombinedðxÞ=
μAðxÞ+ νBðxÞ

2
and νcombinedðxÞ= νAðxÞ+ μBðxÞ

2
ð1Þ

It implements the idea that although the coupling effects and component resi-
lience are independent, only the simultaneous consideration of both strengths
together defines the impact. This implies a beforehand a normalization of the
positive and negative effects (even there are independent measurements used) for
getting comparable weights, which is a key challenge to get accurate results
applying the proposed method.

Fig. 3 Certainty mappings to define Sugeno and Yager complements

Fig. 4 Sugeno and Yager fuzzy complements
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The direct coupling from component x to component y can now be defined
where V is the described evaluating function of the intuitionistic fuzzy coupling
statement.

Vðdirdcplðx, yÞÞ= < μDðx, yÞ, νDðx, yÞ> , if < x, y> ∈ D
<1, 0> , if < x, y>∉D

�

ð2Þ

The defined IFS is further called the fuzzy intuitionistic direct coupling index
between the two components x and y.

3.3 Calculation of Indirect Coupling Impacts

In order to satisfy aspects of the distributed nature of SLAs in a multi-tier envi-
ronment, after assessing the direct couplings the indirect impacts can automatically
be calculated. This concept was developed within the Fault Tree Analysis by
Kolev/Ivanov in 2009 [16]. The indirect coupling from component x to service
y can be defined as follows where i is the component directly coupled to y on the
path from x to y.

Vðindcplðx, yÞÞ= ∨
i, y∈D indcplðx, iÞ∧ dircplði, yÞ, if x≠ y
<1, 0> , if x= y

�

ð3Þ

Within the KQI/KPI hierarchy model the methodology for calculating the
indirect coupling follows the forward dependency direction (Forward Coupling
Calculation FCC). In case of an incident this means starting from the failed node in
the hierarchy and traversing through its direct or indirect dependants to the business
service. Vice versa a root cause analysis is a top down approach and requires the
reverse task to be solved, i.e. “To which components is the business application B
coupled to (depends on)” The second method implies the definition of methodology
for calculating indirect impacts starting from the dependant and traversing through
its impact arcs in the reverse direction. We refer to this method as Reverse Coupling
Calculation (RCC).

Vðindcplðx, yÞÞ= ∨
x, i∈D dircplðx, iÞ∧ indcplði, yÞ, if x≠ y

<1, 0> , if x= y

�

ð4Þ

The possibility of both, a classical, probabilistic interpretation of the logical
operations conjunction (∧) and disjunction (∨) is a key concept in the indirect
impact calculations. The partial impact between the component PI and business KPI
is now expressed by means of intuitionistic fuzzy values carrying probabilistic
information. These IFS operations are proposed for classical, moderate, worst and
best case impact analysis [16]:
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Worst Case Vðp∧ qÞ= ⟨minðμðpÞ, μðqÞÞ, maxðvðpÞ, vðqÞÞ⟩
Vða∨ bÞ= ⟨μðaÞ, μðbÞ− μðaÞ.μðbÞ, vðaÞ.vðbÞ⟩ ð5Þ

Moderate Case Vðp∧ qÞ= ⟨μðpÞ.μðqÞ, νðpÞ+ νðqÞ− νðpÞ.νðqÞ⟩
Vða∨ bÞ= ⟨μðaÞ+ μðbÞ− μðaÞ.μðbÞ, νðaÞ.νðbÞ⟩ ð6Þ

Best Case Vðp∧ qÞ= ⟨μðpÞ.μðqÞ, νðpÞ+ νðqÞ− νðpÞ.νðqÞ⟩
Vða∨ bÞ= ⟨maxðμðaÞ, μðbÞÞ, minðνðaÞ, νðbÞÞ⟩ ð7Þ

FuzzyClassical Vðp∧ qÞ= ⟨minðμðpÞ, μðqÞÞ, maxðvðpÞ, νðqÞÞ⟩
Vða∨ bÞ= ⟨maxðμðaÞ, μðbÞÞ, minðνðaÞ, νðbÞÞ⟩ ð8Þ

Depending on which operations are applied, classical or probabilistic, the results
will be greater or smaller. The indirect intuitionistic fuzzy dependencies between
components may have different kinds of semantics (functional and probabilistic)
depending on the type of information they represent. Combinations of classical and
probabilistic applications of the logical operations can as result be interpreted either
as a probabilistic indirect dependency between component PI and the business KQI
(means the probability that a KQI breaches the SLA in case the component PI fails)
or an ordinary indirect fuzzy dependency (means that the KQI is partially out of
specification or degraded in functioning in case the component PI fails).

4 Intuitionistic Fuzzy Service Failure Impact Analysis
(IFSFIA)

A complete methodical assessment approach, which is practically usable in data-
centre environments, includes several sequential steps to be processed. It starts from
automated exploring the details of the managed resources and backend components,
the grouping of components to impacted frontend services and the enrichment in
several tasks and calculation steps up to the gradual business impact assessments,
including monetary cost-of-failure information and business objectives. The overall
frame for incorporating all data is the CFIA grid (described in step 3). This matrix
can be freely extended with different kind of variables showing failure modes,
reliability parameters, financial data, operational capabilities and techniques and
extends the pure system view to include also the processes, tools and people (e.g.
helpdesk) that are necessary for functioning of a distributed information system.
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4.1 IFSFIA Structured Step-by-Step Approach

Step 1: Auto-Discovery by ADDM Tools
All infrastructure component items and technical dependencies of a defined scope
will be auto-discovered using ADDM (Application Dependency Discovery Man-
agement) tools. This provides trust that the discovered information is real by
automatically discovering interdependencies among applications and underlying
systems and minimize IT organizations expend on the complex information
assimilation. The discovered components with corresponding relations can be
extracted by commercial ADDM tools in a structured data format e.g. XML for
further automated processing. For the later use cases IBM’s Tivoli Application
Dependency Discovery Manager (TADDM) is chosen as auto-discovery solution
that provides in depth automated application dependency mapping and configura-
tion auditing [21].

Step 2: Defining the Business Service
The in-scope discovered component items are grouped to form the business
applications, as the top level in the component hierarchy is the business service.
A business service is the way to group the different kinds of IT resources into a
logical group which acts together as one unit to provide the service. Business
services can contain any number of the lower-level resources. This grouping step
creates implicitly the fault tree to the business service by chaining all directly and
indirectly linked components. In case an incident occurs, a list of possible com-
ponents which may be the root cause of the incident can now be identified.

Step 3: Creating the CFIA Grid
After auto-discovering of the in-scope infrastructure components, there relationships
and the configurations, the next step is to create a grid with components on one axis
and the IT services which have a dependency on the component. This matrix is
called CFIA (Component Failure Impact Analysis). This enables the identification of
critical components (that could cause the failure of multiple IT services) and fragile
IT services (that have multiple single points of failure). A basic CFIA will target a
specific section of the infrastructure; just looking at simple binary choices (e.g. if we
lose component x, will a service stop working? More advanced CFIAs can be
expanded to include a number of variables, such as likelihood of failure, repair and
recovery time, recovery procedures, organizational assignments and integration into
wider service management processes and also can also consider and evaluate for
different component failure modes. So within the IFSFIA method in the matrix all
data is added which is relevant for the loosely coupling assessment including the
business recovery time objectives. The grid is complemented with the evaluated
degrees for loosely and tightly coupling. The tightly coupling index is defined as
inter-modular coupling metric, which calculate the coupling between each pair of
directly related components. For loosely coupling an intrinsic coupling metric is
chosen as this refers to the individual components’ resilience capabilities. The CFIA
will also verbally indicate the assessed level of certainty.
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Step 4: Define the Fuzzy Intuitionistic Direct Impact
As next step for the two independent loosely-and tightly coupling indexes a
combined representation into an integrated Intuitionistic Fuzzy Set (IFS) is created.
This requires the two coupling indexes A and B to be normalized and combined by
IFS operations (we may choose the basic IFS operation A@¬B). The result of step
4 is the fuzzy intuitionistic direct coupling impact between two components. The
direct coupling IFS can be now added to the CFIA grid (Fig. 5).

Step 5: Calculating the Fuzzy Intuitionistic Indirect Couplings
Based on the direct couplings, described as inter-modular IFS, the indirect impacts
can be calculated. By involving different probabilistic variants of the logical
operations when calculating the indirect impacts, the strength of the impact trans-
ferred throughout the distributed and multi-tiered system can be modelled. For
impact analysis the Forward Coupling Calculation (FCC) is applied which follows
the forward dependency direction from the component where the incident occurs
and traversing through its direct or indirect dependants. In the KQI/KPI Hierarchy a
forward looking coupling calculation means a bottom-up direction. Vice versa a
root cause analysis is a top down approach and requires the reverse task to be
solved, i.e. “to which components is the business application coupled to (depend
on)” as Reverse Coupling Calculation (RCC).

In the following example using the forward (FCC) approach for impact
assessments in case a component C2 fails to the business service B0:

indcpl(C2,B0) = (dircpl(C2,C3) ∨ (dircpl(C2,C4) ∧ dircpl(C4,C3))) ∧ dircpl(C3,
B0). Using classical operations the indcplclassic(C2,B0) = (0.60,0.30), moderate
impact indcplmoderate(C2,B0) = (0.43,0.43), worst case impact indcplworst(C2,
B0) = (0.60,0.30) and best case impact assessment indcplbest(C2,B0) = (0.36,0.51).

Fig. 5 Directed graph with direct couplings as IFS
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The result of step 5 is the fuzzy intuitionistic coupling index of each component
to the business service represented as indirect coupling IFS (Fig. 6).

Step 6 (Optional): Extending the Business View
The IFSFIA may be optional extended with additional logical dependencies and
business impact information. For operation of IT systems we need to know also
about dependencies to e.g. IT users and roles, supporting processes or maintenance
services. This can be expressed with a coupling relationship like—is coupled to: a
procedure, a Service Level Agreement (SLA).

Also business and monetary information can be added to the service like hourly
cost of failure or impacted users [18]. This can enable cost calculations based on the
number of users concerned and/or amount of lost user processing time or even total
cost of unavailability. However, the number of user workstations does not neces-
sarily equate to the number of users at one point in time. So other measurements of
costs of failure should complement these numbers, like SLA penalties when service
providers fail to deliver the pre-agreed quality, estimation of the financial impact of
IT failure against transaction volumes (related to the vital business functions)
normally processed during the period of failure. For certain businesses a conse-
quence of IT failure may be even external claims for financial compensation by
impacted customers or business partners (Fig. 7).

The created CFIA matrix is expanded to include fields related to the Business
Value and the Cost of Failure of a Service. These fields can simply show the hourly
failure cost to the business or can map the number of users supported by each
business service.

Fig. 6 One-Level dependency map as star schema
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Step 7: Performing Business Impact and Root Cause Analysis
A high tightly coupling index indicates a higher risk to the affected business ser-
vice, which means this infrastructure component, is vital to business. A high loosely
coupling index for a component indicates a strong resilience capability which
allows smaller buffer overhead in the individual component’s capacity planning and
sizing.

The IFSFIA can be used in two principal ways, bottom-up as impact assessment
or top-down for root cause analysis.

7(a) Business Impact Analysis (BIA)
Business Impact Analysis identifies vital business functions and their dependencies.
These dependencies may include suppliers, business processes, IT Services etc.
BIA defines as an output the requirements which include recovery time objectives
and minimum Service Level Targets for each IT Service. The impact analysis using
the IFSFIA can answer the question “Which are the indirect dependant business
services of a particular component x and to which level are they tightly or loosely
coupled?” starting from the low-level infrastructure component in the dependency
hierarchy and traversing through its direct or indirect dependants to the business
application services. The same BIA estimate used during operation to assess the
business impact of incidents, can also be used to justify IT Infrastructure
improvements by quantifying the total cost to the organization of an IT Service
failure(s). These costs can then be used to support a business case for additional IT
Infrastructure investment and provide an objective ‘cost versus benefit’ assessment.

Fig. 7 Extended directed graph with couplings including it enabled services
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Since the coupling measurements to the business applications are defined the
cost can be computed where n is the number of business applications i, CCI denotes
the hourly cost of a of the component item Ci, μA(x)i is the degree of membership
of tightly coupling of the component up to the business application i and Ci denotes
the hourly cost of a failure of the business application i.

CCI = ∑
n

i=1..n
μAðxÞi*Ci ð9Þ

The calculated total cost of failure per component can then be added as column
to the IFCIA grid which allows assessing at one glance the monetary impact
(Fig. 8).

In praxis business impact is hard to measure, as it could have several conse-
quences, from financial impact to fuzzy aspects like feeling of dissatisfaction if IT
service problems occur. Measurements on business impact of a failure are hard to
quantify in monetary value, like “user productivity loss” or “lost business cost” etc.

7(b) Root Cause Analysis (RCA)
A root cause analysis (RCA) is a top down approach and requires the reverse task
then the impact analysis to be solved, i.e. “To which components is the business
application B coupled to (depends on)”. The IFSFIA analysis procedure takes into
account direct and indirect impacts of other components over the failed compo-
nents. The result of the analysis is an intuitionistic fuzzy distribution of components
giving an ordered set of possible root causes. Having the IFSFIA grid created, we
simply can sort for the highest level of IFS coupling to get an order for the
probability of possible root causes. The infrastructure component with the highest
coupling is most likely and should therefore first being considered for causing the
impact on a higher business service [17].

RCA implies the calculating of indirect impacts starting from the top and
traversing through its impact arcs in the reverse direction. For RCA the Reverse

Fig. 8 Extended IFSFIA matrix with couplings and cost of failure
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Coupling Calculation (RCC) index in the IFSFIA grid is chosen which may differ
from the Forward Coupling Calculation (FCC) index which is applied for
bottom-up impact calculations.

Step 8 (Optional): Applying Intuitionistic Fuzzy Reasoning
As final step the IFSFIA allows the application for two-sided (intuitionistic) fuzzy
reasoning by combining both aspects including the vagueness of the fact into
inference rules and logics. Thresholds can be used as natural limits to assign fuzzy
linguistic variables to performance values (Fig. 9).

Using two-sided fuzzy logic, the complex system behaviour can be closely
analysed by considering both contrary coupling aspects simultaneously. Two-sided
fuzzy if-then rules can consider different interpretations of fuzzy implications, by
applying bi-polar operations and interpretations. Once we have determined the
fuzzy rules to define the performance measures, we can create linguistic rules for
the service that will help to predict the impact to the front-stage service quality
(QoS).

E.g.: If {“Component Service” is (tightly coupled > 0.5) and (loosely cou-
pled < 0.4) to “Business Service” and (“Component Service Performance” is LOW
or “Component Service Reliability” is LOW)} then “Business Service” perfor-
mance is LOW.

4.2 Impact Analysis for Gradual Failure Modes

To reduce the complexity compliance for technical performance parameters will in
praxis mostly measured bi-modal (either they operate correctly or they fail). This
model can now be extended for granular failure impacts or service degradation
effects and the consideration of several parallel incidents which causes the total
impact. Thus a forecast can be given on the effect of e.g. 80 % SLA achievement or
60 % compliance to performance specifications. The direct coupling dependencies
can be visualized within a directed graph representing the direct fuzzy intuitionistic

Fig. 9 Mapping of thresholds into linguistic variables
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impacts. The map consists of nodes and arcs between nodes. Each node represents a
quality characteristic of the system. In the IT landscape model these characteristics
could indicate the level of compliance to the SLA quality targets. Each service level
specification parameter described as Key Quality Indicator (KQI) represents a node.
Each KQI is characterized by a number Ai that represents its value and it results
from the transformation of the SLA compliance level for which this node stands, in
the interval [0,1]. The tightly coupling model describes the causal relationships
between two nodes. A decrease in the value of a quality parameter (QoS) or SLA
compliance level would yield a corresponding decrease at the nodes connected to it
via tightly coupling relationships, thus soft effects of partial functioning or degraded
SLA compliance between IT components can be directly modeled by the same
approach. This concept is briefly derived from the mathematical model of cognitive
maps. In 1986 Bart Kosko [19] introduced the notion of fuzziness to cognitive maps
and created the theory of Fuzzy Cognitive Maps (FCMs). A Fuzzy cognitive map is
a cognitive map within which the relations between the elements (e.g. components,
IT resources) can be used to compute the “strength of impact” of these elements.
FCMs are used in a much wider range of applications [20] which all have to deal
with creating and using models of impacts in complex processes and systems. In the
IT landscape scenario FCMs can be used to describe mutual dependencies between
infrastructure and higher level IT components. The activation level of a quality
parameter indicates in this extended model the level of SLA compliance The model
of the classical FCM is now leveraged to compute the value of each quality
parameter that influenced by the values of the coupled quality indicator with the
appropriate weights and by its previous value.

Ai = f ð ∑
n

j=1
j≠ i

AjWjiÞ+Aold
i ð10Þ

So the value Ai for each quality indicator KQIi can be calculated by the rule
where Ai is the activation level of quality parameter KQIi at time t + 1, Aj is the
activation level of quality parameter KQIj at time t, Ai old is the activation level of
quality parameter KQIi at time t, and Wji is the weight of the dependence coupling
between KQIj and KQIi, and f is a threshold function. The weights of the depen-
dencies between the KQIi and KQIj could be positive (Wji > 0) which means that an
increase in the value of KQIi leads to the increase of the value of KQIj, and a
decrease in the value of KQIi leads to the decrease of the value of KQIj. In case of a
negative causality (Wji < 0) which means that an increase in the value of KQIi leads
to the decrease of the value of KQIj and vice versa (Fig. 10).

By adding also the activation levels of the KQIs, each KQI is characterized by a
number Ai that represents its value and it results from the transformation of the SLA
compliance level for which this KPI stands, in the interval [0,1].
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As example: Using the Forward Coupling Calculation (FCC) method (applicable
for Impact Analysis) of indcpl(C2,B0) depicted in the example graph shows the
indirect coupling dependency of the Business Application B0 on the Component
C2.

• indcplclassic(C2,B0) = (0.60,0.30)
• indcplmoderate(C2,B0) = (0.43,0.43)
• indcplworst(C2,B0) = (0.60,0.30)
• indcplbest(C2,B0) = (0.36,0.51)

Now the calculation of the KQI Activation Level for B0 at time t + 1 can be done
as follows using an activation level of KQIT B0 = 0.8 at point in time t.

• KQIT+1 B0 classic = (0.8 − 0.3 * 0.6) = 0.62
• KQIT+1 B0 moderate = (0.8 − 0.3 * 0.43) = 0.671
• KQIT+1 B0 worst = (0.8 − 0.3 * 0.6) = 0.62
• KQIT+1 B0 best = (0.8 − 0.3 * 0.36) = 0.692

In case the performance indicator C2 decreases of 0.3, an impact between a
decrease 0.108 and 0.18 to the quality indicator KQI B0 is estimated. This simple
approach can be helpful where it is required to consider how several smaller
improvements at different infrastructure components (e.g. improvements in per-
formance or throughput) in total will impact a business service performance
parameter KQI. All impacts will be pulled together so all single impacts are
aggregated to the total effect on the business.

Fig. 10 Couplings related to KQI activation levels
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5 Data Center Use Cases

Several real world datacenter use cases have been developed for the IFSFIA
framework [21]. These comprise Business Impact Analysis, Root Cause Analysis,
Advanced Service Level Monitoring and Capacity Optimization which have been
developed as use cases for the business application “Logistics Management”
(Fig. 11).

5.1 Performing the IFSFIA Analysis

In the use case the IBM Tivoli Application Dependency Discovery Manager
(TADDM) component affinity report extracts all related components which have a
dependency (IP dependency, transactional dependency or configuration depen-
dency) on those components which are directly related to the in-scope business
services. It creates a table of all servers within the specified scope that are sources of
relationships, and the connections from those servers to other server and middle-
ware applications [17] (Fig. 12).

The Intuitionistic Coupling Index is now determined with regard to an appro-
priate formula (e.g. Dhama’s metric) or alternatively assessed by the experts via
inductive monitoring of relevant performance indicators. The tightly coupling index
is defined as inter-modular coupling metric, which calculate the coupling between
each pair of directly related components. For loosely coupling an intrinsic coupling
metric is chosen as this refers to the individual components’ resilience capabilities.
Both index are normalized and pulled together into a single IFS, the fuzzy intu-
itionistic direct impact (Fig. 13).

The methodology for calculating the indirect coupling follows the forward
dependency direction. Following it the indirect dependants of the failed component
x are determined, starting from the node x in the dependency graph and traversing

Fig. 11 Logistics management application physical topology
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through its direct or indirect dependants. Different types of impact analysis involve
the usage of classical or probabilistic variants of the logical operations conjunction
and disjunction in calculation of indirect impacts. Depending on which combination
of operations will be used, the indirect impacts may be greater or smaller. Within a
grid all data relevant for the loosely coupling assessment is shown including the
business repair time targets and estimated cost of failures. In the following IFSFIA
grid two attitudes are expressed leading to an optimistic (best case) or moderate
(mediate case) assessment of the impact caused by an incident situation (Fig. 14).

The result of the IFSFIA analysis is an intuitionistic sorted fuzzy distribution of
the components, providing an ordered set by the probability of incident root causes.
It can be now a guide for discovering roots for SLA violations and to justify IT
investments.

Fig. 12 TADDM Server affinity report

Fig. 13 Logistics management intuitionistic application dependency map
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5.2 Indirect Impact Calculation and Visualization Using
Python and Neo4j

As an opposite to the widely known SQL databases, graph databases like Neo4j do
not store their information in tables, but rather use graphs consisting of edged and
vertices i.e. nodes and relationships to store information. While this approach is not
appropriate for all kinds of data, it is a lot more convenient and easier to use, when
it comes to graph data that does already consist of data objects and relationships
between them. For calculating indirect dependencies in a server networks, graph
databases suit perfectly well, since the given data is already in shape of a connected
network and actions like path-finding, which are required for the impact calcula-
tions, are already implemented in the used graph database Neo4j.

The following image shows the discovered servers of the Logistics Management
application including the fuzzy intuitionistic direct impact loaded into the Neo4j
database (Fig. 15).

Being able to calculate the indirect dependency index for the discovered net-
work, the impact of any component to any other can be expressed as fuzzy intu-
itionistic indirect impact by either getting the direct coupling for adjacent servers or
calculating the indirect coupling based on the chosen IFS operations. To present the
results to the user, the Neo4j browser is used, where a temporary graph is inserted
into the database, which forms a star showing the chosen service in the center and
all other components connected to it with the calculated indirect coupling levels
(Fig. 16).
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6 Conclusions and Ongoing Work

Managing the quality of virtualized, distributed and multi-tiered services is a key
challenge in today’s service management. Traditional approaches are measured
bi-modal (means either operate correctly or fail) and concentrate on local technical
IT performance measurements rather than with business-oriented service achieve-
ment. There are some more advanced approaches [22], including proposed models
of QoS ontologies [23] or works that are based on Fuzzy Rules [3] e.g. Performance
Relation Rules and Artificial Intelligence. The novelty of our approach lies in an
integrated step-wise methodology, including automated information assimilation,
support of gradual failures or service degradations (e.g. predicting a percentual SLA

Fig. 15 Loaded components and direct dependencies into Neo4j

Fig. 16 Star representation of indirect dependencies
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achievement) and bi-polar fuzzy intuitionistic impact assessments. Combining
academic research with practice oriented business scenarios by expanding IT reli-
ability engineering with fuzzy mathematical models provides high value to the
service business, especially as the framework is general enough to be applied to any
type of IT service. In this paper we presented an intuitionistic fuzzy methodical
framework, which can be used to granularly relate performance metrics of the
backstage in a service orchestration to the metrics used within Service Level
Agreements. This model about a set of fuzzy-related components to a business
service with corresponding performance parameters can be utilized to support
Service Management to predict on impacts of monitored back-end component
failures to business services. Further, it can be a guide in the process of discovering
the root cause of SLA violations and may help to provide more accurate analyses
that are needed to make appropriate adjustment decisions at runtime. Within ITIL
v3 best practices IFSFIA can help Configuration Management and Problem Man-
agement processes can benefit from advanced root cause determination and impact
assessments. The proposed IFSFIA framework enables transformation of avail-
ability and performance data into knowledge about the real-time status of business
services that allows understanding and communicating the true impact of incidents
on the business and vice versa.

In the ongoing work, we seek to validate the framework by applying it to larger
amounts of historical and monitored usage data of datacenter environments com-
pared to frontend quality parameters and business SLA’s. Also these research ideas
are implemented with prototypes that supports the steps of data assimilations, the
indirect impact calculations and the visualization of the couplings within the
dependency graph. Further the prototype can be extended to solicit rules based on
the derived impacts to predict effects of incidents on the business services.
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Part III
Generalized Nets



Modifications of the Algorithms
for Transition Functioning in GNs, GNCP,
IFGNCP1 and IFGNCP3 When Merging
of Tokens is Permitted

Velin Andonov and Nora Angelova

Abstract Modifications of the algorithms for transition functioning in Generalized

Nets (GNs), Generalized Nets with Characteristics of the Places (GNCP), Intuitionis-

tic Fuzzy Generalized Nets with Characteristics of the Places of type 1 (IFGNCP1)

and type 3 (IFGNCP3) are proposed. We consider GNs for which the merging of

tokens is permitted. In the standard algorithm for transition functioning no tokens

can be transferred to output place of a given transition if it has reached its capac-

ity. The algorithms described in this paper allow the transfer of a token to full output

place if it can merge with some of the tokens there. Two versions of the characteristic

function 𝛹 in IFGNCP1 and IFGNCP3 are discussed.

1 Introduction

Generalized Nets (GNs) [5, 6] are extensions of Petri Nets [9]. They are defined in

a way that is principally different from the ways of defining the other types of Petri

nets. Each part of the net which looks like the one shown on Fig. 1, is called transition
(more precisely graphic representation of transition).

Formally, every transition is described by a seven-tuple:

Z = ⟨L′,L′′, t1, t2, r,M,□⟩,

where:

(a) L′ and L′′ are finite, non-empty sets of places (the transition’s input and output

places, respectively); for the transition in Fig. 1 these are
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Fig. 1 Transition

L′ = {l′1, l
′
2,… , l′m}

and

L′′ = {l′′1 , l
′′
2 ,… , l′′n };

(b) t1 is the current time-moment of the transition’s firing;

(c) t2 is the current value of the duration of its active state;

(d) r is the transition’s condition determining which tokens will transfer from the

transition’s inputs to its outputs. Parameter r has the form of an IM:

r =

l′′1 … l′′j … l′′n
l′1
⋮ ri,j
l′i (ri,j − predicate)
⋮ (1 ≤ i ≤ m, 1 ≤ j ≤ n)
l′m

;

where ri,j is the predicate which expresses the condition for transfer from the ith
input place to the jth output place. When ri,j has truth-value “true”, then a token

from the ith input place can be transferred to the jth output place; otherwise, this

is impossible;

(e) M is an IM of the capacities of transition’s arcs:

M =

l′′1 … l′′j … l′′n
l′1
⋮ mi,j
l′i (mi,j ≥ 0 − natural number or ∞)
⋮ (1 ≤ i ≤ m, 1 ≤ j ≤ n)
l′m

;
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(f) □ is called transition type and it is an object having a form similar to a Boolean

expression. It may contain as variables the symbols that serve as labels for tran-

sition’s input places, and it is an expression constructed of variables and the

Boolean connectives ∧ and ∨ determining the following conditions:

∧(li1 , li2 ,… , liu )—every place li1 , li2 ,… , liu must contain at least

one token,

∨(li1 , li2 ,… , liu )—there must be at least one token in the set of places

li1 , li2 ,… , liu , where {li1 , li2 ,… , liu} ⊂ L′.

When the value of a type (calculated as a Boolean expression) is “true”, the tran-

sition can become active, otherwise it cannot.

The ordered four-tuple

E = ⟨⟨A, 𝜋A, 𝜋L, c, f , 𝜃1, 𝜃2⟩, ⟨K, 𝜋K , 𝜃K⟩, ⟨T , t0, t∗⟩, ⟨X, 𝛷, b⟩⟩

is called a Generalized Net if:

(a) A is a set of transitions (see above);

(b) 𝜋A is a function giving the priorities of the transitions, i.e., 𝜋A ∶ A →  ;

(c) 𝜋L is a function giving the priorities of the places, i.e., 𝜋L ∶ L →  , where

L = pr1A ∪ pr2A

and obviously, L is the set of all GN-places;

(d) c is a function giving the capacities of the places, i.e., c ∶ L →  ;

(e) f is a function that calculates the truth values of the predicates of the transition’s

conditions;

(f) 𝜃1 is a function giving the next time-moment, for which a given transition Z can

be activated, i.e., 𝜃1(t) = t′, where pr3Z = t, t′ ∈ [T ,T + t∗] and t ≤ t′; the value

of this function is calculated at the moment when the transition terminates its

functioning;

(g) 𝜃2 is a function giving the duration of the active state of a given transition Z, i.e.,

𝜃2(t) = t′, where pr4Z = t ∈ [T ,T + t∗] and t′ ≥ 0; the value of this function is

calculated at the moment when the transition starts functioning;

(h) K is the set of the GN’s tokens. In some cases, it is convenient to consider this

set in the form

K =
⋃

l∈QI

Kl,

where Kl is the set of tokens which enter the net from place l, and QI
is the set

of all input places of the net;

(i) 𝜋K is a function giving the priorities of the tokens, i.e., 𝜋K ∶ K →  ;

(j) 𝜃K is a function giving the time-moment when a given token can enter the net,

i.e., 𝜃K(𝛼) = t, where 𝛼 ∈ K and t ∈ [T ,T + t∗];
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(k) T is the time-moment when the GN starts functioning; this moment is deter-

mined with respect to a fixed (global) time-scale;

(l) t0 is an elementary time-step, related to the fixed (global) time-scale;

(m) t∗ is the duration of the GN functioning;

(n) X is a function which assigns initial characteristics to every token when it enters

input place of the net;

(o) 𝛷 is a characteristic function that assigns new characteristics to every token

when it makes a transfer from an input to an output place of a given transition;

(p) b is a function giving the maximum number of characteristics a given token can

receive, i.e., b ∶ K → N.

For the algorithms of transition and GN functioning the reader can refer to [6, 8].

Generalized Nets with Characteristics of the Places (GNCP) is one of the most

recent extensions of GNs. It is introduced in [1] and again there it is proved that

𝛴CP—the class of all GNCP—is conservative extension of the class 𝛴 of the ordi-

nary GNs. The connection between GNCP and the Intuitionistic Fuzzy General-

ized Nets of type 1 (IFGN1) and type 2 (IFGN2) is studied in [2]. It is proved

that 𝛴CP ≡ 𝛴IFGN1 and 𝛴CP ≡ 𝛴IFGN2. In [10] some possible applications of GNCP

are discussed. In particular, GNCP can be used for evaluation of the work of the

places based on the characteristics of the tokens and also to simplify the graphical

representation of the net. Two new extensions are defined in [3]. The first one—

Intuitionistic Fuzzy Generalized Nets with Characteristics of the places of type

1 (IFGNCP1)—combines the characteristics of GNCP and IFGN1. The second—

Intuitionistic Fuzzy Generalized Nets with Characteristics of the Places of type 3

(IFGNCP3)—combines the characteristics of GNCP and IFGN3. It is proved that

𝛴IFGNCP1 ≡ 𝛴 and 𝛴IFGNCP3 ≡ 𝛴.

In GNCP the places can obtain characteristics at the end of a time step if tokens

have have entered the place, i.e. if something related to the place has happened.

Assigning characteristics to the places is a convenient way to keep the data which is

relevant to the places. Formally, GNCP E is the ordered four-tuple

E = ⟨⟨A, 𝜋A, 𝜋L, c, f , 𝜃1, 𝜃2⟩, ⟨K, 𝜋K , 𝜃K⟩, ⟨T , t0, t∗⟩, ⟨X,Y , 𝛷, 𝛹, b⟩⟩ .

All other components with the exception of Y and 𝛹 have the same meaning as in

the definition of the standard GN. Here Y is a function which assigns initial charac-

teristics to some of the places. Initial characteristics can be assigned also to places in

which no tokens enter in the initial time moment. 𝛹 is a function which assigns char-

acteristics to some of the output places of the transitions when tokens enter them. Not

all places of the net can receive characteristics. We consider that for every place l that

does not receive characteristics during the functioning of the net we have 𝛹l = }}∅”.

The algorithm for transition functioning in GNCP is proposed in [4]. Algorithms

for transition functioning in IFGNCP1 and IFGNCP3 are proposed in [3]. We shall

shortly discuss these algorithms and propose a modification related to the charac-

teristic function 𝛹 . Here, we also propose algorithms for transition functioning in

GNCP, IFGNCP1 and IFGNCP3 when merging of tokens is permitted. The idea is
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when an output place of a given transition has reached its capacity but the current

token in some input place can merge with some of the tokens in that same output

place the transfer will happen when the other conditions allow it.

IFGNCP1 have the same components as GNCP but their meaning is slightly dif-

ferent. In analogy to the Intuitionistic Fuzzy Generalized Nets of type 1 (IFGN1),

in IFGNCP1 the function f evaluates the truth value of the predicates in the form

of Intuitionistic Fuzzy Pairs (IFP) (see [7]). To every predicate ri,j the function f
assigns the ordered couple ⟨𝜇i,j, 𝜈i,j⟩ where 𝜇i,j is the degree of truth of the predicate

ri,j and 𝜈i,j is the degree of falsity. They satisfy the conditions 𝜇i,j, 𝜈i,j ∈ [0, 1] and

𝜇i,j + 𝜈i,j ≤ 1. The number 𝜋i,j = 1 − 𝜇i,j − 𝜈i,j is the degree of uncertainty. The char-

acteristic function 𝛷 which in the ordinary GNs assigns characteristics to the tokens

now adds to these characteristics the degrees of truth and falsity of the predicate

corresponding to the input and output places. In this way when the token finishes

its transfer in the net we can determine the degrees of validity and non-validity of

the transfer. In [3] the characteristic function 𝛹 assigns characteristic to the output

places of a given transition for every token that has entered them in the form “value
of 𝛹 for the respective place, ⟨𝜇i,j, 𝜈i,j⟩”. In the algorithm for transition function-

ing which we present here, the way the characteristics are assigned to the places is

changed to be analogous to the algorithm of transition functioning in GNCP.

IFGNCP3 are defined in analogy to the Intuitionistic Fuzzy Generalized Nets of

type 3 (IFGN3). IFGN3 have the same components as IFGN1 but now the charac-

teristic function 𝛷 assigns characteristics to the tokens in the form

x𝛼cu = ⟨x𝛼cu, 𝜇(ri,j), 𝜈(ri,j), 𝜇(x
𝛼

cu), 𝜈(x
𝛼

cu)⟩

where x𝛼cu is the standard characteristic of the token in the sense of GNs, 𝜇(ri,j) and

𝜈(ri,j) are the degrees of truth and falsity of the corresponding predicate and 𝜇(x𝛼cu)
and 𝜈(x𝛼cu) are estimations in intuitionistic fuzzy sense of the characteristics of the

tokens. The pair ⟨𝜇(x𝛼cu), 𝜈(x
𝛼

cu)⟩ represents the validity and non-validity of the char-

acteristics and through them the model determines its status. IFGNCP3 has the same

components as IFGNCP1 but the characteristic functions 𝛷 and 𝛹 have different

meaning. 𝛷 assigns characteristics to the tokens as in the case of IFGN3. The tokens

obtain characteristics only when the estimations of the characteristics satisfy one of

the following conditions:

C1 𝜇(x𝛼cu) = 1, 𝜈(x𝛼cu) = 0 (the case of ordinary GN) ;

C2 𝜇(x𝛼cu) >
1
2
(> 𝜈(x𝛼cu)) ;

C3 𝜇(x𝛼cu) ≥
1
2
(≥ 𝜈(x𝛼cu)) ;

𝐂𝟒 𝜇(x𝛼cu) > 𝜈(x𝛼cu) ;

𝐂𝟓 𝜇(x𝛼cu) ≥ 𝜈(x𝛼cu) ;
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𝐂𝟔 𝜇(x𝛼cu) > 0 ;

𝐂𝟕 𝜈(x𝛼cu) < 1 .

𝛹 assigns characteristics to the places in the form

𝜓

l
cu = ⟨𝜓 l

cu, 𝜇(ri,j), 𝜈(ri,j), 𝜇(𝜓
l
cu), 𝜈(𝜓

l
cu)⟩ ,

where 𝜇(𝜓 l
cu), 𝜈(𝜓

l
cu) ∈ [0, 1] and 𝜇(𝜓 l

cu) + 𝜈(𝜓 l
cu) ≤ 1. 𝜓

l
cu is the standard charac-

teristic of the place in the sense of GNCP. The places obtain characteristics only

when the estimations of the characteristics satisfy one of the following conditions:

𝐂𝟏∗ 𝜇(𝜓 l
cu) = 1, 𝜈(𝜓 l

cu) = 0 (the case of ordinary GN) ;

𝐂𝟐∗ 𝜇(𝜓 l
cu) >

1
2
(> 𝜈(𝜓 l

cu)) ;

𝐂𝟑∗ 𝜇(𝜓 l
cu) ≥

1
2
(≥ 𝜈(𝜓 l

cu)) ;

𝐂𝟒∗ 𝜇(𝜓 l
cu) > 𝜈(𝜓 l

cu) ;

𝐂𝟓∗ 𝜇(𝜓 l
cu) ≥ 𝜈(𝜓 l

cu) ;

𝐂𝟔∗ 𝜇(𝜓 l
cu) > 0 ;

𝐂𝟕∗ 𝜈(𝜓 l
cu) < 1 .

2 Algorithm for Transition Functioning in GNs When
Merging of Tokens is Permitted

We consider that the tokens with which an arbitrary token 𝛼 can merge are part of its

initial characteristic. For instance, x𝛼′0 = }}⟨{𝛽1,… , 𝛽k}, x𝛼0⟩
′′

, where {𝛽1,… , 𝛽k} is

the set of tokens that can merge with 𝛼 and x𝛼0 is the standard initial characteristic of

the token. We shall denote the modified algorithm for transition functioning in GNs

when merging of tokens is allowed by Algorithm A.

Algorithm A.

(A01) The input places are sorted by priority in descending order.

(A02) Sort the tokens from the input places by their priorities. The tokens from

a given input place are divided into two groups. The first one contains those tokens

that can be transferred to the transition’s outputs, the second contains the rest. In the

beggining, the second group is empty.
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(A03) An empty index matrix R
∗
, which corresponds to the index matrix of the

predicates of the given transition R, is generated. We put values “0” (corresponding

to value “false”) of all of the elements of this index matrix which:

(a) are placed in a row, corresponding to an empty input place, i.e. the input place

doesn’t contain tokens that can be transferred to the transition’s outputs.

(b) are placed in (i, j)th position, for which mi,j = 0, i.e. the current capacity of the

arc between ith input and jth output place is zero.

(A04) The sorted places are passed sequentially by their priority, starting with the

place having the highest priority, which has at least one token and through which no

transfer has occurred on the current time-step. For the highest priority token (from

the first list) we determine whether it can split or not. If it can split, then the algo-

rithm proceeds to Step (A05), else if it can’t split, then the algorithm proceeds to

Step (A06).

(A05)

(a) Get a predicate corresponding to the relevant row of the index matrix R which is

not checked on the current time-step. If there isn’t a predicate, then the algorithm

proceeds to Step (e). In the opposite case it proceeds to Step (b).

(b) If the output place is full, then the algorithm proceeds to step (c). In the opposite

case it proceeds to Step (d).

(c) If the selected token can be merged with other token in the full output place,

then the algorithm proceeds to step (d). In the opposite case we put value “0”

(corresponding to value “false”) of the element of R
∗

and the algorithm returns

to Step (a).

(d) The predicate corresponding to the relevant row of the index matrix R
∗

is

checked. If the calculated value is truth, then we put value “1” of the element of

R
∗
. In the opposite case we put value “0”. The algorithm proceeds to Step (a).

(e) If the values are only “0”, then Step (A05) stops and the algorithm proceeds

to Step (A07).

If the row contains at least one “1”, then the corresponding token splits as

many times as necessary. These tokens are moved to the output places. The

values of the characteristic function for the corresponding output places are

assigned as a next token characteristic. Step (A05) stops and the algorithm pro-

ceeds to Step (A08)

(A06)

(a) The predicates corresponding to the relevant row of the index matrix R which is

not check on the current time-step are passed sequentially. If there isn’t a predi-

cate, then the algorithm proceeds to Step (A07). In the opposite case it proceeds

to Step (b).

(b) If the output place is full, then the algorithm proceeds to step (c). In the opposite

case it proceeds to Step (d).
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(c) If the selected token can be merged with other token in the full output place,

then the algorithm proceeds to step (d). In the opposite case we put value “0”

(corresponding to value “false”) of the element of R
∗

and the algorithm return

to step (a).

(d) The predicate corresponding to the relevant row of the index matrix R
∗

is

checked. If the calculated value is truth, then the algorithm proceeds to step

(e). In the opposite case we put value"0" and the algorithm returns to Step (a).

(e) The token is moved to the output places. The values of the characteristic function

for the corresponding output place are assigned as a next token characteristic.

Step (A06) stops and the algorithm proceeds to Step (A08).

(A07) If one token cannot pass through a given transition on this time interval, it

is moved to the second group of tokens of the corresponding input place.

(A08) The current number of tokens for all places in which a token has entered

and has not merged with any of the tokens there increment with 1.

(A09) The current number of tokens for all places from which a token has left

decrement with 1. If the number of tokens for a given input place has reached 0, the

elements of the corresponding row of the index matrix R
∗

are made “0”.

(A10) The capacities of all arcs through which a token has passed decrement

with 1.

(A11) If there are still input places with lower priority from which the tokens have

not been transferred, the algorithm proceeds to Step (A04). In the opposite case it

proceeds to Step (A12).

(A12) The current model time t is increased with t
o
.

(A13) Is the current time moment equal to or greater than t1 + t2?

(A14) If the answer to the question Step (A13) is “no”, then return to Step (A04),

otherwise “Termination of the transition functioning”.

3 Algorithm for Transition Functioning in GNCP When
Merging of Tokens is Permitted

We denote the modified algorithm for transition functioning in GNCP when merging

of tokens is allowed by Algorithm A’.

Algorithm A’.

(A’01) The input and output places are ordered by their priorities.

(A’02) For every input place two lists are compounded. One with all tokens in the

place ordered by their priorities and an empty list.

(A’03) An empty index matrix R which corresponds to the index matrix of the

predicates r is generated. A value “0” (corresponding to truth-value “false”) is

assigned to all elements of R which:
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– are in a row corresponding to empty input place;

– are placed in a position (i, j) for which the current capacity of the arc between the

ith input and jth output place is 0.

(A’04) The places are passed sequentially by order of their priorities starting with

the place with the highest priority for which transfer has not occurred on the current

time step and which has at least one token. For the token with highest priority from

the first group the capacities of the output places are checked. If the current capacity

of the output place is 0 and the current token cannot merge with any of the tokens in

the output place, value “0” is assigned to the corresponding element of R.

(A’05) For the token with the highest priority in the current place it is determined

if it can split or not. The predicates in the row corresponding to the current input

place are checked. If the token cannot split the checking of the predicates stops with

the first predicate whose truth value is not “0”. If the token can split, the truth values

of all predicates in the row for which the elements of R are not equal to 0 are eval-

uated. Value 0 is assigned to the elements in the current row of R corresponding to

predicates whose truth-value is “false”. Value “1” is assigned to the elements in the

current row of R corresponding to predicates whose truth-value is “true”.

(A’06) Depending on the execution of the operator for permission or prohibition

of tokens’ splitting, the token from (A’05) is transferred either to all permitted output

places or to the only output place which corresponds to the element in the row with

value “1”. If a token cannot be transferred at the current time step, it is moved to

the second group of the corresponding input place. The tokens which have been

transferred are moved into the second group of the output places. The tokens which

have entered the input place after the activation of the transition are moved to the

second group too.

(A’07) If transfer of the token is possible, the number of tokens in the input place

is decreased by 1. If there are no tokens in the input place, the elements in the cor-

responding row of R are assigned value “0”.

(A’08) The current number of tokens in every output place is increased with 1

for each token that has entered the place at the current time step and has not merged

there with other token. The current number of tokens in the output places in which

token has entered and merged with other token remains the same.

(A’09) The capacities of all arcs through which a token has passed decrement

with 1. If the current capacity of an arc has reached 0, value “0” is assigned to the

element from the index matrix R that corresponds to this arc.

(A’10) The values of the characteristic function 𝛷 for the corresponding output

places (one or more) in which tokens have entered according to (A’05) are calculated.

These values are assigned to the tokens.

(A’11) If there are more input places (with lower priority) at the current time step

from which tokens can be transferred, the algorithm proceeds to (A’04), otherwise

it proceeds to (A’12).

(A’12) The values of the characteristic function 𝛹 for all output places to which

tokens have been transferred are calculated. These values are assigned to the places.

(A’13) The current model time t is increased with t0.
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(A’14) Is the current time moment equal or greater than t1 + t2? If the answer to

the question is “no”, go to (A’04). Otherwise, go to step (A’15).

(A’15) Termination of the transition’s functioning.

The novelty of the proposed algorithm can be seen in steps (A’03), (A’04), (A’08)

and (A’12). In comparison to the algorithms for transition functioning proposed in

[4, 6, 8] value “0” is assigned only to the elements of R corresponding to empty

input places and arcs with current capacity 0. In the standard algorithm this is also

done for all elements in a column corresponding to full output place. Step (A’04)

is where the capacities of the output places are checked. The proposed modification

allows the transfer of tokens to output places which has reached their capacity if they

can merge with some of the tokens in the output place. If splitting of tokens is not

allowed, the evaluation of the predicates stops with the first predicate whose truth-

value allows the transfer. Step (A’08) is also new as the current number of tokens in

the output places is increased only when the entering token does not merge with any

of the tokens in the place.

4 Algorithm for Transition Functioning in IFGNCP1
and IFGNCP3 When Merging of Tokens is Permitted

In the algorithm for transition functioning in IFGNCP1 as suggested in [3], the char-

acteristic function of the places 𝛹 is evaluated for every token that has entered output

place of the transition. Here we modify this algorithm so that the function 𝛹 is eval-

uated after all input places of the transition have been passed. The other modification

of the algorithm is with regard to the merging of tokens. A token can be transferred

from input to output place even when the output place has reached its capacity if it

can merge with some of the tokens in the output place.

Algorithm A’

(A’01) The input and output places are ordered by their priorities.

(A’02) For every input place two lists are compounded. One with all tokens in the

place ordered by their priorities and an empty list.

(A’03) An empty index matrix R which corresponds to the index matrix of the

predicates r is generated. A value “⟨0, 1⟩” is assigned to all elements of R which:

– are in a row corresponding to empty input place;

– are placed in a position (i, j) for which the current capacity of the arc between the

ith input and jth output place is 0.

(A’04) The places are passed sequentially by order of their priorities starting with

the place with the highest priority for which transfer has not occurred on the current

time step and which has at least one token. For the token with highest priority from

the first group the capacities of the output places are checked. If the current capacity

of the output place is 0 and the current token cannot merge with any of the tokens in

the output place, value “⟨0, 1⟩” is assigned to the corresponding element of R.
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(A’05) For the token with the highest priority in the current place it is determined

if it can split or not. The predicates in the row corresponding to the current input place

are checked. If the token cannot split the checking of the predicates stops with the

first predicate whose truth value is not ⟨0, 1⟩. If the token can split, the truth values

of all predicates in the row for which the elements of R are not equal to “⟨0, 1⟩” are

evaluated.

(A’06) Depending on the execution of the operator for permission or prohibition

of tokens’ splitting, the token from (A’05) is transferred either to all permitted output

places or to the place with the highest priority. The transfer depends on one of the

following conditions:

𝐂𝟏 𝜇(ri,j) = 1, 𝜈(ri,j) = 0 (the case of ordinary GN) ;

𝐂𝟐 𝜇(ri,j) >
1
2
(> 𝜈(ri,j))

𝐂𝟑 𝜇(ri,j) ≥
1
2
(≥ 𝜈(ri,j)) ;

𝐂𝟒 𝜇(ri,j) > 𝜈(ri,j) ;

𝐂𝟓 𝜇(ri,j) ≥ 𝜈(ri,j) ;

𝐂𝟔 𝜇(ri,j) > 0 ;

𝐂𝟕 𝜈(ri,j) < 1 , i.e. at least𝜋(ri,j) > 0, where𝜋(ri,j) = 1 − 𝜇(ri,j) − 𝜈(ri,j) is the degree

of uncertainty (indeterminacy) and f (ri,j) = ⟨𝜇(ri,j), 𝜈(ri,j)⟩.

The condition for transfer of the tokens which will be used is determined for every

transition before the firing of the net. If a token cannot be transferred at the current

time step, it is moved to the second group of the corresponding input place. The

tokens which have been transferred are moved into the second group of the output

places. The tokens which have entered the input place after the activation of the

transition are moved to the second group too.

(A’07) If transfer of the token is possible, the current number of tokens in the

input place is decreased by 1. If there are no tokens in the input place, the elements

in the corresponding row of R are assigned value “⟨0, 1⟩”.

(A’08) The current number of tokens in every output place is increased with 1

for each token that has entered the place at the current time step and has not merged

there with other token. The current number of tokens in the output places in which

token has entered and merged with other token remains the same.

(A’09) The capacities of all arcs through which a token has passed decrement

with 1. If the current capacity of an arc has reached 0, value “⟨0, 1⟩” is assigned to

the element from the index matrix R that corresponds to this arc.
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(A’10) The values of the characteristic function 𝛷 for the output places (one or

more) in which tokens have entered according to (A’06) are calculated. The token

obtains the next characteristic in the form:

“value of𝛷 for the current token, ⟨𝜇i,j , 𝜈i,j⟩”

(A’11) If there are still tokens in the input places that can be transferred and there

are arcs with non-zero capacities, then the algorithm proceeds to Step (A’04) other-

wise it proceeds to Step (A’12).

(A’12) The values of the characteristic function 𝛹 for all output places to which

tokens have been transferred are calculated. These values are assigned to the places.

(A’13) The current model time t is increased with t0.

(A’14) Is the current time moment equal to or greater than t1 + t2? If the answer

to the question is no, return to Step (A’04), otherwise go to Step (A’15).

(A’15) Termination of the transition’s functioning.

As in the algorithm for transition functioning in GNCP, the novelty of the pro-

posed algorithm can be seen in steps (A’03), (A’04), (A’08) and (A’12). In com-

parison to the algorithm for transition functioning proposed in [3] value “⟨0, 1⟩” is

assigned only to the elements of R corresponding to empty input places and arcs with

current capacity 0. In the standard algorithm this is also done for all elements in a col-

umn corresponding to full output place. The proposed modification allows the trans-

fer of tokens to output places which have reached their capacity if they can merge

with some of the tokens in the output place. If splitting of tokens is not allowed, the

evaluation of the predicates stops with the first predicate whose truth-value allows

the transfer. Step (A’08) is also new as the current number of tokens in the output

places is increased only when the entering token does not merge with any of the

tokens in the place.

The other novelty is with regard to the characteristics of the places which are

evaluated in step (A’12). In the algorithm proposed in [3] the function 𝛹 assigns

characteristics to the output places after each transfer of token. Here this is done after

all input places have been passed. Therefore, we have two possibilities of preserving

the IFPs corresponding to the predicates. The first is to define 𝛹 so that it assigns to

the output places characteristic in the form:

“𝜓
lj
cu, ⟨𝛼1, 𝜇(ri1,j), 𝜈(ri1,j)⟩,… , ⟨𝛼k, 𝜇(rik ,j), 𝜈(rik ,j)⟩” ,

where 𝛼1,… , 𝛼k are the tokens that have entered the output place lj and the IFPs

⟨𝜇(ri1,j), 𝜈(ri1,j)⟩,… , 𝜇(rik ,j), 𝜈(rik ,j) are the truth-values of the predicates.

The other possibility is to assign only one IFP to the output places:

“𝜓
lj
cu, ⟨𝜇lj , 𝜈lj⟩” ,
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where

𝜇lj =

k∑

t=1
𝜇(rit ,j)

k
,

𝜈lj =

k∑

t=1
𝜈(rit ,j)

k
.

The algorithm for transition functioning in IFGNCP3 when merging of tokens is

permitted is the same as the above proposed algorithm for IFGNCP1. Again 𝛹 is

evaluated after all input places have been passed while in the algorithm suggested

in [3] this is done after each transfer of token. As in IFGNCP1, we can preserve the

truth-values in two ways. The first is to assign to the output place lj together with the

standard characteristic of the place 𝜓
lj

a list of all tokens and the IFPs corresponding

to the predicates in the form:

“𝜓
lj
cu, ⟨𝛼1, 𝜇(ri1,j), 𝜈(ri1,j)⟩,… , ⟨𝛼k, 𝜇(rik ,j), 𝜈(rik ,j)⟩, ⟨𝜇(𝜓

lj
cu), 𝜈(𝜓

lj
cu)⟩” ,

where 𝛼1,… , 𝛼k are the tokens that have entered the output place lj, the IFPs

⟨𝜇(ri1,j), 𝜈(ri1,j)⟩,… , 𝜇(rik ,j), 𝜈(rik ,j) are the truth-values of the predicates correspond-

ing to each transfer and the IFP ⟨𝜇(𝜓 lj
cu), 𝜈(𝜓

lj
cu)⟩ is evaluation of the characteristic

of the place. The second way is to assign only one IFP taking the average of the

truth-values of the predicates:

“𝜓
lj
cu, ⟨𝜇lj , 𝜈lj⟩, ⟨𝜇(𝜓

lj
cu), 𝜈(𝜓

lj
cu)⟩” .

5 Conclusion

The proposed modifications of the algorithms for transition functioning in the stan-

dard GNs, GNCP, IFGNCP1 and IFGNCP3 take into account the possibility of some

tokens to merge after the transfer from input to output place. Up to now, in the algo-

rithms for transition functioning in GNs this has not been considered. The new algo-

rithms would allow more tokens to be transferred during one time step. The same

result can be achieved by increasing the capacity of some output places in which

tokens can merge. However, when a token merges with other token in output place

the current number of tokens in the place remains the same and thus increasing the

capacity to allow such transfer is artificial way to treat the problem. Also, greater

capacity may allow the transfer of other tokens which cannot merge with any of the

tokens in the output place. In future we shall discuss analogous algorithms for other

GN extensions.
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Generalized Net Model for Monitoring
the Degree of Disability in Patients
With Multiple Sclerosis Based
on Neurophysiologic Criteria

Lyudmila Todorova, Valentina Ignatova, Stefan Hadjitodorov
and Peter Vassilev

Abstract Multiple sclerosis (MS) is a chronic disease of the central nervous system,

which affects most often the young age. The disease has a social importance, as it

leads to disability in active age. The course of the disease is individual and requires

an adequate approach in selecting the appropriate treatment strategy. This requires

periodic monitoring of the patients for early registration of the disease progression.

Most commonly used tests are clinical investigation, brain MRI and other paraclin-

ical methods, including neurophysiological assessment (usually evoked potentials).

Evoked potential (EP) is a reliable method for quantifying the severity of damage to

the white matter in patients with MS. The aim of this study is to develop a model for

Generalized NET (GN)-registration of the direction of the course of disease based

on neurophysiological evaluation of multimodal evoked potentials. Also, to make a

comparison of the results obtained by the EP with the degree of disability as mea-

sured by the scale of Kurtzke (Expanded disability Status Scale-EDSS). We have

followed up 48 patients with clinically definite MS over a period of 1 year. The

patients were tested both clinically and neurophysiologically at Clinic of Neurology

in MHAT- NHH, Sofia. The three main modalities evoked potentials were applied:

visual evoked potentials with reversive pattern (VEPRP); Brainstem auditory evoked

potentials (BAEP); Somatosensory evoked potentials (SSEP), taken during stimu-

lation of median nerve. As a result it is established that the abnormalities of EP

correlate significantly with the clinical findings. Based on the obtained results is
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developed a GN-model generating candidate predictive rules for the progression of

the illness. In the end it has been found that abnormalities of EP significantly corre-

lated with clinical findings. Based on the obtained results a GN model was developed.

The model has a high sensitivity (SEN), specificity (SPE), PPV (Positive predictive

value) and NPV (Negative predictive value) for the disease progression.

1 Introduction

Multiple sclerosis (MS) is an autoimmune, inflammatory, chronic and demyelinat-

ing degenerative disease of the central nervous system affecting young age [1]. The

largest number of the patients is between 30 and 40 years of age. The onset of the dis-

ease was recorded in childhood in approximately 10 % of the patients. Susceptibility

of the female to the disease is twice as much. Most affected are Caucasian subjects

[2, 3]. The highest incidence of MS is set at the Orkney Islands north of Scotland-

250/100, 000. A similar incidence of the disease is found in North America, Canada

and New Zealand [4]. The incidence of MS is lowest in Japan 6/100 000 and in the

other parts of Asia, sub-Saharan Africa and the Middle East. MS is a disease with

social significance. The disease is chronic, with a duration of 10–15 years depending

on the clinical form [5]. It was found a genetically predisposition, which in combina-

tion with certain environmental factors, leads to cascade of immune responses and

disruption of the blood-brain barrier (BBB). As a result an inflammatory demyeli-

nation of the white matter in the CNS occurs due to activation of T-lymphocytes and

macrophages. Impaired conduction of nerve impulses in the CNS, leading to clini-

cal manifestation of the neurological deficit, appears [5]. Four different pathogenic

mechanism of the disease are known, one of which is typical for each of the patients.

This mechanism can be changed in time, which perhaps associated with different

severity of disease [1, 6].

The disease is manifested clinically with multiple neurological dysfunctions from

different systems (e.g., visual and sensory disturbances, weakness at limbs, gait dis-

turbance, bowel and bladder disorders), followed by recovery or reinforcing of the

disability.

According to the time profile of the disease, four major clinical forms of MS are

distinguished.

(1) Relapsing-remitting form—affects approximately 65–85 % of the patients

with MS. It is characterized with well identifiable attacks, expressed with neu-

rological symptoms, which resolve for a period of few weeks or could lead to

slow increase of disability. There is no progression between the attacks.

(2) Secondary-progressive form—when gradual accumulation of irreversible

disability with or without separate attacks it occurs. After 6–10 years of the

MS onset 4–70 % of patients with RRMS are passing into SPMS.

(3) Primary-progressive form—at about 10 % of the patients. When the

symptoms of the disease got worse constantly and slowly from the beginning
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without distinct attacks, although there may be observed also plates and tempo-

rary improvement. Usually this form is related to early development of severe

disability

(4) Progressive-remitting form—affects 5 % of the patients with MS. It is char-

acterized by combination of attacks and progression in the early periods of the

disease. There are pronounced attacks with or without full recovery. A gradual

progression between relapses occurs. This form has a poor prognosis [5, 7].

Evoked potentials are routinely used in patients with MS [8–11]. They are included

in supporting revised diagnostic criteria of MacDonald revision since 2005

[7, 12, 13]. EP are a reliable method for assessing the integrity of afferent and effer-

ent pathways and to quantify the severity of damage of the white matter in MS [14].

It has been found that abnormalities of EP significantly correlates with clinical find-

ings, while the majority of MRI-lesions are not associated with symptoms of the

disease. Transverse and longitudinal studies have demonstrated that changes in the

EP in MS are more closely associated with disability than MRI lesions [15]. This

assumes that the EP could be useful in monitoring evolution of the disease and to

serve as surrogate endpoints in clinical studies.

While MRI provides information on the spatial distribution of lesions at white

matter, neurophysiological tests reflect their impact on the functions of the nervous

system [16]. Neurodegeneration correlates with progression of MS and sensitive

marker for its evaluation are still in process of searching.

Most often used EP modalities are: visual, somatosensory and brainstem auditory

Abnormal visual evoked potentials with reversal pattern (VEPRP) typical for MS, are

characterized with delayed latencies and less often- with altered waveforms [17, 18].

Brainstem auditory evoked potentials (BAEP) give information about the brainstem

functioning. In MS, they are usually characterized with prolonged interpeak latencies

(IPL) and/or abnormal amplitude ratios (AR) [19]. Somatosensory evoked potentials

(SSEP) provide information about the presence of sensory damage as well as the

topic of damage along the medial lemnisc system [20]. The values latencies in them-

selves do not carry information about the function of brain circuitry, but longitudinal

changes in latencies during patient’s follow up shows deterioration of neurological

dysfunction.

Importance of EP in monitoring the MS patients over the course of the disease is

still a an object of investigation. Need to further investigate the role of multimodal

EP in follow up the MS subjects is determined by insufficient data from previous

studies.

2 Materials and Methods

For the purposes of this work 48 patients with clinically definite MS were tested

twice at Clinic of Neurology at MHAT-NHH-Sofia. Demographic data concerning

our sample are given on the following table:



292 L. Todorova et al.

Examined twice with multimodal EP and EDSS 48
Mean age 39.4 ± 9.6
Male patients 17 35 %

Female patients 31 65 %

EDSS ≤ 3.5 18 37 %

EDSS > 3.5 30 63 %

The following 3 modalities EP were followed up:

✓ Visual evoked potentials with reverse pattern (VEPRP)

✓ Brainstem auditory evoked potentials (BAEP)

✓ Somatosensory EP, elicited by stimulation of mediane nerve (SSEP)

The reason for the this choice is the frequent involvement of the three sensory

modalities in MS and possibility for an objective neurophysiological monitoring of

their changes in the course of the disease. The main indicators that were taken into

account in the analysis of the EP in this work are:

✓ latency, i.e. time from the stimulus to the wave response registration

✓ amplitudes, measuring the distance from peak to peak (especially informative in

SSEP)

✓ configuration violations.

2.1 Visual Evoked Potentials (VEP)

VEP were performed with two-channel installation by applying reversive pattern in

order to improve the the objectivity the results. Checkerboard pattern is used with

frequency reversion 1 Hz, low-pass filter—1 Hz, high-pass filter—100 Hz, a band

filter 50 Hz. Administration of sequential monocular foveolar (15’) and peripheral

(60’) retinal stimulation for objectifying the function of the visual pathways starting

from foveolar and peripheral retinal neurons. The epoch of analysis is 300 ms. One

hundred averaging in each assay were done. The following parameters were recog-

nized: Delayed latencies of N75 and P100 (L N75, L P100), Configuration viola-

tions, Interocular and interhemisphere asymmetry (IO A, IH A). On the next figure

are given the graphical interpretation of VEP—examinations a healthy control and

a patient with pathologically changed result (Fig. 1).

2.2 Brainstem Auditory Evoked Potentials (BAEP)

In BAEP stimulation monaural square click stimulus was used which lasts 100 µs.
The frequency of stimulation was 10 Hz, the intensity −90 dB nHL and masking

noise to the contralateral ear of 40 dB was applied. Polarity of stimulus:
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Fig. 1 On the left the healthy control result (44 aged woman); on the right the pathologically

changed result (51 aged woman)

Fig. 2 On the left the healthy control result (47 aged woman); on the right the pathologically

changed result (45 aged woman)

rarefaction-condensation. Band filter was used within the range of 100–2000 Hz.

Epoch analysis is 10 ms. In each stimulation 2000 averaging were carried out. Two-

channel apparatus was used. The following parameters were analyzed: interpeak

latencies (IPL), amplitude ratios (AR), also mono-and binaural impairment was

taken into account during interpretation of the results. Hearing impairment was

excluded in all of the patients. The montage which we used is approved by the Rec-

ommended Standard for short latency EP of American Society of Clinical Neuro-

physiology (2009). On the following figure are given graphic results of BAEP-tests

of healthy control and of a patient with pathologically changed result (Fig. 2).

2.3 Somatosensory Evoked Potentials at Stimulation
of Median Nerve

The functional state of the pathways of deep sensibility in the tested sample with

MS was monitored by examining SSEP, elicited from sequential bilateral stim-

ulation of mediane nerve. For this purpose, 4-channel montage was used which
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followed the requirements of the consensus of the American Association of Clinical

Neurophysiology and the European standard for SSEP: epoch analysis −60 ms, filter

bandwidth: 20–2000 Hz, frequency of stimulation −5 Hz, duration of the stimulus

−0.2 ms. We performed consistently stimulation median nerve on the left and on

the right side, and the number of the averaged stimuli was 600. Were carried out

two examinations in each side in order to obtain replication of the curves and greater

reliability of results. In the analysis of the results we have considered latencies of the

individual wave components at SSEP, which corresponds to the conduction veloc-

ity of the nerve impulses along the sensory pathways at certain levels, respectively:

peripheral nerve structures, cervical myelon (posterior lemniscus and/or rear pos-

terior horns for surface sensitivity), lemniscus medialis along the brainstem, thala-

mus, the primary somatosensory representation of the cortex. Were were taken into

account latency of N9, N11, N13, P14, N20, that the order of listing correspond to the

different levels of the system of deep sensation. For greater objectivity of the SSEP

interpretation we have used interpeak latencies (IPL), as they minimize the impact

of anthropometric factors. In the analysis of the data we have used IPL N9–N13,

N13–N20 and N9–N20. Prolonged IPL were associated with impaired conduction

within the range formed between the generators.

The following figure shows the graphic results of SSEP-examination of the control

and of a patient with MS with deviations (Fig. 3).

For more objective assessment of the SSEP we have used total EP-score, which

was calculated from individual EP scores from different modalities EP. Neurophysio-

logical assessment is based on total EP score, which is a sum of the individual EP-

scores of the three types of modalities.

Fig. 3 On the left the healthy control result (58 aged woman); on the right the pathologically

changed result (38 aged man)
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VEP-score BAEP-score SSEP-score

0 Normal result Normal result Normal result

1 Configuration abnormalities/

Interocular asymmetry/

interhemispheral asymmetry

but preserved conduction

time

At least one abnormal

amplitude ratio (AR) at

unilateral monoaural

stimulation

Prolongation of 1 IPL at

unilateral stimulation of

median nerve

2 Prolonged latencies up to 20

ms

Prolonged IPL at monoaural

unilateral stimulation and/or

bilaterally impaired

Prolongation of ≥2 IPL and/or

bilateral stimulation

3 Prolonged latencies within

20–40 ms

Both bilaterally impaired IPL

at monoaural bilateral

stimulation

Prolongation of 3 IPL at

unilateral median nerve

stimulation and abnormality of

1 IPL at contralateral

stimulation, or lack of

identification of 1 wave

4 Prolonged latencies >40 ms Severe abnormalities and

difficult identification of

waves in up to 2 leads

Prolongation of both 3 IPL at

unilateral median nerve

stimulation and ≥2 IPL at

contralateral stimulation, or

impossible identification of 2

waves

5 Severe abnormalities and

difficult identification of the

waves

Severe abnormalities and

impossible identification of

waves bilaterally in all the

leads

Severe abnormalities and

impossible identification of

waves bilaterally

3 Generalized Net Model

The Generalized nets (GN) were introduced by Atanassov as an extension of the

Petri nets see [21, 22]. We have used the previously established values for the Visual

Evoked Potentials (see [23]). For the SSEP, the most indicative in the preliminary

investigation proved to be the number of lesions and the interpeak latencies (IPL).

The IPL N9–N13, N13–N20 and N9–N20 were investigated in the model. The BAEP

were investigated mainly for the IPL III-V cross simulation and I/III amplitude ratio.

We have adopted the approach taken in [23]. In fact the rule established there for

the VEPs is used here unchanged. The setup of the Generalized net is the following:

the patients, represented by 𝛼-tokens, are placed at L4. The candidate rules repre-

sented by 𝛽-tokens are placed in places L1, L2 and L3 and are initially passed to L9
where they form a 𝛾-token with characteristic “list of current rules; counter for each

of the current rules”. Places L6, L7, L8 are used to supply the current rules to the next

transition and to split the 𝛼-tokens representing the patients into three for estimation

in the next transition. The next transition corresponds to the satisfaction of the rules

and separating the patients in three possible classes (EDSS ≤ 3.5), (EDSS > 3.5)

and failed to be classified, and also also assigning a score to all used rules (L19), and

sending feedback for the following rules to be created (Fig. 4).
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Fig. 4 The generalized net

model

The rules are of the kind: ∧p ∗ ∨¬p ∗ ∧q ∗ with p ∈ P, q ∈ Q and p* being con-

junctions of predicates from P and q* being conjunctions of predicates from Q for

the first class (EDSS ≤ 3.5), while for the second they are from the type ¬p ∗ ∧¬q ∗,

where P is the set of predicates of the kind “Parameter value less or equal to a thresh-

old value” and Q is the set of predicates of the kind “Parameter value greater or equal

to a threshold value”.

For every parameter we consider the predicates p (or q) for 120 possible threshold

values (i.e. p ≤ ((k + 1)/2)*MEAN(PARAM_VALUE)/60, with k = 0, 1… , 119).

The generated rules were scored based on the values of calculated sensitivity and

specificity.

The model has three transitions, nineteen places and three types of tokens—𝛼, 𝛽

and 𝛾.

Below is a formal description of the transitions of the net.

Z1 = ⟨{L1,L2,L3,L4,L9,L13,L18}, {L5,L6,L7,L8,L9},

L5 L6 L7 L8 L9
L1 true false false false true
L2 false true false false true
L3 false false true false true
L4 false false false false true
L9 false false false W9,8 true
L13 false false false false true
L14 false false false false true
L18 false false false false true

⟩,
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where W9,8 = “New candidate rules are needed and not all rules have been tried.”

Z2 = ⟨{L5,L6,L7,L8,L14}, {L10,L11,L12,L13,L14},

L10 L11 L12 L13 L14
L5 W5,10 false false false false
L6 false W6,11 false true false
L7 false false W7,12 true false
L8 W8,10 W8,11 false true true
L14 W14,10 W14,11 W14,12 W14,13 true

⟩,

where

W5,10 = “there is no 𝛽 token in place L10”

W6,11 = “there is no 𝛽 token in place L11”

W7,12 = “there is no 𝛽 token in place L12”

W8,10 = “there is no 𝛼 token in place L10 ∨ the current 𝛽-token needs to be replaced”

W8,11 = “there is no 𝛼 token in place L11 ∨ the current 𝛽-token needs to be replaced”

W8,12 = “there is no 𝛼 token in place L12 ∨ the current 𝛽-token needs to be replaced”

W14,10 = “the current 𝛽-token in place L10 has to be replaced”

W14,11 = “the current 𝛽-token in place L11 has to be replaced”

W14,12 = “the current 𝛽-token in place L12 has to be replaced”

W14,13 = “new 𝛼-token is required”

Z3 = ⟨{L10,L11,L12,L13,L14,L19}, {L15,L16,L17,L18,L19},

L15 L16 L17 L18 L19
L10 W10,15 W10,16 W10,17 false true
L11 W11,15 W11,16 W11,17 false true
L12 W12,15 W12,16 W12,17 false true
L19 false false false W19,18 true

⟩,

where

W10,15 = “the current 𝛼 token satisfies the current BAEP rule for belonging to the

class (EDDS ≤ 3.5)”

W10,16 = “the current 𝛼 token satisfies the current BAEP rule for belonging to the

class (EDDS > 3.5)”

W10,17 = “¬W10,15 ∧W10,16”

W11,15 = “the current 𝛼 token satisfies the current SSEP rule for belonging to the

class (EDDS ≤ 3.5)”

W11,16 = “the current 𝛼 token satisfies the current SSEP rule for belonging to the

class (EDDS > 3.5)”

W11,17 = “¬W11,15 ∧W11,16”

W12,15 = “the current 𝛼 token satisfies the current VEP rule for belonging to the class

(EDDS ≤ 3.5)”

W12,16 = “the current 𝛼 token satisfies the current VEP rule for belonging to the class
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(EDDS > 3.5)”

W12,17 = “¬W12,15 ∧W12,16”

W19,18 = “the generation of new rules is required (i.e. the number of identified by the

current rules 𝛼-tokens is divisible by 48.)”

The derived rules from the work of the net (all rules that fail to separate the

patients in two classes were discarded) were the following:

For the SSEP:

EDSS> 3.5 if p = (Number of spinal lesions >3) ∧ (IPL N13–N20 > 5.7 ms)

∨ ((Number of spinal lesions ≤3) ∧ (IPL N9–N20 > 13.5 ms))

EDSS≤ 3.5 if ¬p.

For the BAEP:

EDSS> 3.5 if p = (IPI III-V under cross stimulation > 2.18 ms) ∨ ((IPI III-V cross

stimulation ≤ 2.18 ms) ∧ (I/III amplitude ratio > 6.75))

EDSS≤ 3.5 if ¬p.

For the VEP:

EDSS≤ 3.5 if q = ((Foveolar stimulation L N75 ≤ 86.56) ∧ (Foveolar stimulation

I 100 ≤ 7.25)) ∨ ((Foveolar stimulation L N75 > 86.56) ∧ (Peripheral stimulation

IH N75 ≤ 1.9) ∧ (Foveolar stimulation IH 100 ≤ 3.65) ∧ (Foveolar stimulation IH

N75 ≤ 3.65)) ∨ ((Foveolar stimulation L N75 > 86.56) ∧ (Peripheral stimulation

IH N75 > 1.9) ∧ (Foveolar stimulation I N75 ≤ 0.275))

EDSS< 3.5 if ¬q.

4 Results

The results from both clinical and neurophysiological examination from the base-

line and follow up study were compared. The dynamics of the grade of disability is

presented at the following figure:

The figure visualizes a linear relationship between the values of the total EP score

and EDSS-score in both studies. It is evident that the higher the neurophysiological

damage is associated with higher degree of disability. In the follow up study, the

tangent-line trend is higher, which corresponds to largest values of the monitored

scores, i.e. with deterioration of the patients (Figs. 5 and 6).

Following the suggestion of the GN model, if there are more than 3 demyelinating

lesions in the cervical myelon (visualized by MRI study) and when IPL N13–N20

is greater than 5.7 ms, practically all patients from our sample are with high degree

of disability, i.e. they belong to class 1 EDSS (EDSS > 3.5). At presence of MRI

lesions in the cervical myelomas, while IPL N13–N20 is <5.7 ms, the classification

of patients according to the severity of the disability is not reliable. At presence of

less than three spinal lesions in MRI study whilst IPL N9–N20 is > 13.4 ms, almost

all patients in our sample have a high degree of disabled, i.e. they belong to class 1
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Fig. 5 EDSS versus EP score

Fig. 6 EDSS versus EP score

EDSS (EDSS> 3.5). If there are less than 3 spinal lesions, also IPL N9–N20 is≤13.4
ms, the majority of patients are with low degree of disability according to EDSS—

class 0 (EDSS ≤ 3.5). The sensitivity (SEN), specificity (SPE), positive predictive

value (PPV) and negative predictive value (NPV) of the elected rule were calculated.

The calculation is made according to following formulas

SEN = TP
TP + FN

;

SPE = TN
TN + FP

;

PPV = TP
TP + FP

;

NPV = TN
TN + FN

,
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where

TN (true negatives) the number of patients with low degree of disability defined as

patients with low degree of disability (EDSS ≤ 3.5) in the course of the statistical

analysis of the BAEP-results;

TP (true positives)—number of patients with high degree of disability (EDSS >

3.5) statistically defined as patients with high disability (EDSS > 3.5);

FP (false positives)—number of patients with low disability (EDSS ≤ 3.5) statis-

tically defined as patients with high degree of disability (EDSS > 3.5);

FN (false negatives)—number of patients with high degree of disability (EDSS

> 3.5) identified in the statistical processing of BAEP results as patients with low

disability (EDSS ≤ 3.5).

Statistical analysis defined as true positive (TP) 17 patients from our sample.

These are subjects whose pathological SSEP changes are associated with EDSS

>3.5. Twenty two patients were classified as true negative (TN) their EDSS was

≤3.5, and SSEP study revealed no abnormalities or minimal neurophysiological

changes. As false positives (FP) are defined 0 of 48 patients studied, i.e. we did not

find patients with a low level of disability and pathologically changed SSEP-scores

above definitions in the course of statistical processing threshold. Statistical analysis

classified 9 of the subjects as false negative (FN)—these are the patients with a high

degree of disability, in which SSEP were normal or slightly disturbed).

Below are presented indicators sensitivity, specificity, positive predictive value,

negative predictive value, calculated based on the above mentioned formulas

SEN SPE PPV NPV

SSEP 61 % 70 % 71 % 67 %

Statistical analysis of the results from the examined patients identified as lead-

ing neurophysiological criteria for prediction the severity of disability the following

indicators: IPL III-V under cross-stimulation and AR I / III under ipsilateral stimu-

lation. As “Class 0” are categorized the patients with a low degree of disability, i.e.

with EDSS ≤ 3.5 and as a “Class 1”—patients with a high degree of disability, i.e.

with EDSS > 3.5. In cases where the IPL III-V under cross stimulation is higher than

2.18 ms, 80 % of the patients have a high degree of disability. Where IPL III-V under

cross stimulation is ≤2.18 ms, the majority of cases have a low degree of disability

(60 %). When IPL III-V under cross stimulation is ≤2.18 ms and AR I/III under ipsi-

lateral stimulation is >6.75, 100 % of the patients express high degree of disability

(EDSS > 3.5). In cases when IPL III-V under cross stimulation is <2.18 ms, whilst

AR I/III under ipsilateral stimulation is ≤6.75, 72 % of the examined revealed low

degree of disability, i.e. their EDSS was less or equal to 3.5.
Below are presented indicators sensitivity, specificity, positive predictive value,

negative predictive value, calculated based on the above mentioned formulas
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SEN SPE PPV NPV

BAEP 70 % 81 % 77 % 75 %

We have developed a classification based on N75 latency under foveolar

stimulation (respectively less or more than 86.6 ms) combined with other

neurophysiological VEPRP-abnormalities can be predictive indicator to the degree

of invalidity in the patients, respectively, low level (EDSS ≤ 3.5) and high (EDSS

> 3.5). In the analysis of our results the greatest responsiveness of the latency of the

early wave component N75 as a marker identifying the severity of the disease has

been established, which was confirmed by other authors. Cuypers et al. found that

N75 latency is more sensitive marker than P100 latency, when classifying the sever-

ity of MS, despite its great influence of age, gender and stimulus pattern [24]. The

chart shows that if N75 latency under foveolar stimulation is >86.6 ms and interoc-

ular asymmetry of N75 (IOA N75) in peripheral stimulation is >1.9 ms, the patient

probably has a disability over 3.5 points on the scale of Kurtzke. If N75 latency

under foveolar stimulation is <86.6 ms , and interhemisphere asymmetry of P100

(IHA P100) at foveolar stimulation is ≤1.9 ms, the probability of predicting dis-

ability is reduced. If N75 latency at foveolar stimulation is ≤86.6 ms and interocular

asymmetry of P100 (IOA P100) is >7.25 ms, most likely the patient belongs to Class

1, i.e. EDSS score is >3.5 If N75 latency at foveolar stimulation is ≤86.6 ms, while

interocular asymmetry of P100 (IOA P100) is ≤7.25 ms, most likely the patient has

a low degree of disability (EDSS score ≤ 3.5).

The following table shows the values for the VEP rule:

SEN SPE PPV NPV

VEPRP 100 % 76 % 83 % 100 %

5 Discussion

For the predictive value of pathologically changed VEPRP concerning the degree of

disability in patients with MS it is possible to use lower threshold margins, e.g.:

✓ patients with low grade of disability (EDSS < 3)

✓ patients with high grade of disability (EDSS ≥ 3)

The threshold set in relation to severity of disability assessed by EDSS may be

chosen lower in VEPRP, as SSEP have changed earliest from all other modalities EP

and often they register deterioration before reaching of significant clinical disability.

Parameters sensitivity and specificity of VEP calculated in the present work are

close to the results obtained by other authors. Grover et al. set sensitivity 84.2 % and

specificity 90 % VEP-study, using size to the boxes 60’ [25]. Ko calculated sensitivity

to 100 % VEP [26]. Balnyte et al. determined 90.5 % sensitivity and 82.5 % speci-

ficity of VEP [27]. Gnezditskiy and Korepina calculated 72 % sensitivity and 100 %

specificity of VEP [28]. Our study confirms the conclusion of most researchers that
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VEP are extremely sensitive method for assessing the degree of disability in MS and

for prediction the course of the disease.

Regarding the sensitivity of the BAEP, the results in the literature are controver-

sial. Burina et al. [29] revealed 95 % sensitivity of BAEP in terms of detection of

brainstem lesions in a study of 60 patients. Berger and Blum [30] registered 46 %

sensitivity of BAEP. The divergences are probably due to differences in method-

ology as well as various parameters for the evaluation; the majority of researchers

prefer IPL measurement as a decisive criterion for evaluation. In our study the higher

percentage of BAEP abnormalities includes mostly damaged AR and less frequent

prolonged IPL. We assume that abnormal ARs are an early marker of brainstem

abnormality and this may be a result from gray matter damage.

All of the above suggest using VEPs as leading method in the assessment of the

progression of the disease with the other two EP used as an auxiliary tool to dimin-

ish the error in the estimate. Further investigation in this direction is currently in

progress.

6 Conclusion

Safety, non invasiveness, relatively low cost of the study and the possibility of con-

tinuous monitoring make this neuropsychological test appropriate in assessing pro-

gression of the disease and the degree of involvement of different sensory systems.

The study is informative in follow up the effect of immunomodulatory therapy, also

the recovery after attack. The utilized Generalized net models allows for fast, cost

efficient way of electing candidate rules to be reviewed and evaluated by the doctors

in the course of their practice. If such rules prove to be reliable and have predictive

nature, they can be used to alleviate some of the problems the patients experience.
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Generalized Net Models of Basic Genetic
Algorithm Operators

Tania Pencheva, Olympia Roeva and Anthony Shannon

Abstract Generalized nets (GN) are applied here to describe some basic operators
of genetic algorithms, namely selection, crossover and mutation and different
functions for selection (roulette wheel selection method and stochastic universal
sampling), different crossover techniques (one-point crossover, two-point cross-
over, and “cut and splice” technique), as well as mutation operator (mutation
operator of the Breeder genetic algorithm). The resulting GN models can be con-
sidered as separate modules, but they can also be accumulated into a single GN
model to describe a whole genetic algorithm.

1 Introduction

Genetic algorithms (GA) originated from the studies of cellular automata, con-
ducted by John Holland and his colleagues at the University of Michigan. Holland’s
book [12], published in 1975, is generally acknowledged as the beginning of the
research of GA. The GA is a model of machine learning which derives its behavior
from a metaphor of the processes of evolution in nature [11]. The basic techniques
of GA are designed to simulate the processes in natural systems which are neces-
sary for evolution, especially those which follow the principles first laid down by
Charles Darwin of “survival of the fittest”. GA are based on an analogy with the
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genetic structure and behaviour of chromosomes within a population of individuals
using the following foundations [9, 14]:

• individuals in a population compete for resources and mates;
• those individuals most successful in each “competition” will produce more

offspring than those individuals that perform poorly;
• genes from “good” individuals propagate throughout the population so that two

good parents will sometimes produce offspring that are better than either parent;
• thus each successive generation will become more suited to their environment.

The GA maintains a population of chromosomes (solutions) with associated
fitness values. Parents are selected to mate, on the basis of their fitness, producing
offspring via a reproductive plan. Consequently highly fit solutions are given more
opportunities to reproduce, so that offspring inherit characteristics from each parent.
After the random generation of an initial population, the algorithm evolves through
operators:

• selection which equates to survival of the fittest;
• crossover which represents mating between individuals;
• mutation which introduces random modifications.

The key features of the genetic operators are briefly listed below [14]:
Selection operator

• key idea: give a preference to better individuals, allowing them to pass on their
genes to the next generation;

• the goodness of each individual depends on its fitness;
• fitness may be determined by an objective function or by a subjective

judgement.

Crossover operator

• prime distinguished factor of GA from other optimization techniques;
• two individuals are chosen from the population using the selection operator;
• a crossover site along the bit strings is randomly chosen;
• the values of the two strings are exchanged up to this point;
• the two new offspring created from this mating are put into the next generation

of the population;
• by recombining portions of good individuals, this process is likely to create even

better individuals.

Mutation operator

• with some low probability, a portion of the new individuals will have some of
their bits flipped;

• its purpose is to maintain diversity within the population and inhibit premature
convergence;

• mutation alone induces a random walk through the search space.
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The effects of the basic genetic operators could be summarized as follows [14]:

• using selection alone will tend to fill the population with copies of the best
individual from the population;

• using selection and crossover operators will tend to cause the algorithms to
converge on a good but sub-optimal solution;

• using mutation alone induces a random walk through the search space;
• using selection and mutation creates a parallel, noise-tolerant, hill-climbing

algorithm.

Based on the operators’ key features and advantages, recently GA have estab-
lished themselves as an important component from the field of artificial intelligence.
GA are quite popular and are applied in many domains, such as industrial design,
scheduling, network design, routing, time series prediction, database mining,
control systems, artificial life systems, as well as in many fields of science [1, 6, 10,
16, 17, 26, 27, 32].

On the other hand, up until now the approach of Generalized nets (GN) has
mainly been used as a tool for the description of parallel processes in several areas
—economics, transport, medicine, computer technologies, etc. [2, 4, 15]. That is
why the idea of using GN for the description of GA has appeared. A few GN
models regarding GA performance have been developed [3, 23–25, 28–31]. For
instance, the GN model in [28] describes the GA search procedure. The model
simultaneously evaluates several fitness functions, ranks the individuals according
to their fitness and provides the opportunity to choose the best fitness function for a
specific problem domain. In [3] a GN model for GA learning has also been
proposed.

The aim of this current research is to present some GN models of basic GA
operators—selection, crossover and mutation. Some of the most used techniques
and functions are considered, namely roulette wheel selection, stochastic universal
sampling; one-, two-point crossover, as well as “cut and splice” techniques; and
mutation operator of the Breeder genetic algorithm [8, 22].

The simple genetic algorithm (SGA), described by Goldberg [11], is used here to
illustrate the basic components of a GA. A pseudo-code outline of the SGA is
shown in Fig. 1. The population at time t is represented by the time-dependent
variable Pop, with the initial population of random estimates being Pop(0). The GA
maintains a population of individuals, PopðtÞ= yt1, . . . , ytn for generation t. Each
individual represents a potential solution to the problem and is implemented as
some data structure U. Each solution is evaluated to give some measure of its
“fitness”. The fitness of an individual is assigned proportionally to the value of the
objective function of the individuals. Then, a new population (generation t + 1) is
formed by selecting more fit individuals (selected step). Some members of the new
population undergo transformations by means of “genetic” operators to form a new
solution.

Following the outline of a GA (Fig. 1), further major elements of a GA (genetic
operators of selection, crossover and mutation) will be described.
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2 Basic Genetic Algorithm Operators

2.1 Selection Operator

The selection of individuals to produce successive generations plays an extremely
important role in a GA. A probabilistic selection is performed based upon the
individual’s fitness such that the better individuals have an increased chance of
being selected. An individual in the population can be selected more than once with
all individuals in the population having a chance of being selected to reproduce into
the next generation. There are several schemes for the selection process: roulette
wheel selection and its extensions, scaling techniques, tournament, elitist models,
ranking methods, stochastic universal sampling, and so on [5, 11, 13, 19].

A common selection approach assigns a probability of selection, Pj, to each
individual j based on its fitness value. A series of N random numbers is generated
and compared against the cumulative probability of the population:

Ci = ∑
i

j=1
Pj. ð1Þ

The appropriate individual, i, is selected and copied into the new population if
Ci−1 < U(0, 1) ≤ Ci. Various methods exist to assign probabilities to individuals:
roulette wheel, linear ranking and geometric ranking.

2.1.1 Roulette Wheel Selection

Roulette wheel, developed by Holland [12], is the first selection method. The
probability, Pi, for each individual is defined by [13]:

Fig. 1 A simple genetic algorithm
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P Individual i is chosen½ �= Fi

∑
k

j=1
Fj

ð2Þ

where Fi represents the fitness of individual i, and k is the population size. The use
of roulette wheel selection limits the GA to maximization since the evaluation
function must map the solutions to a fully ordered set of values on ℜ+. Extensions,
such as windowing and scaling, have been proposed to allow for minimization and
negativity.

Ranking methods only require the evaluation function to map the solutions to a
partially ordered set, thus allowing for minimization and negativity. Ranking
methods assign Pi based on the rank of solution i when all solutions are sorted.
Normalized geometric ranking, [13] defines Pi for each individual by:

P Selecting the ith individual½ �= q0ð1− qÞr− 1, ð3Þ

where q is the probability of selecting the best individual, and r is the rank of the
individual, where 1 is the best; and

q0 =
q

1− ð1− qÞk . ð4Þ

Tournament selection, like ranking methods, only requires the evaluation
function to map solutions to a partially ordered set, however, it does not assign
probabilities. Tournament selection works by selecting j individuals randomly, with
replacement, from the population, and inserts the best of the j into the new popu-
lation. This procedure is repeated until N individuals have been selected.

2.1.2 Stochastic Universal Sampling

Stochastic universal sampling (SUS) developed by Baker [5] is a single-phase
sampling algorithm with minimum spread and zero bias. Instead of the single
selection pointer employed in roulette wheel methods, SUS uses N equally spaced
pointers, where N is the number of selections required. The population is shuffled
randomly and a single random number pointer1 in the range [0, 1/N] is generated.
The N individuals are then chosen by generating the N pointers, starting with
pointer1 and spaced by 1/N, and selecting the individuals whose fitness spans the
positions of the pointers. If et(i) is the expected number of trials of individual i,
⌊etðiÞ⌋ is the floor of et(i) and ⌈etðiÞ⌉ is the ceiling, then an individual is thus
guaranteed to be selected a minimum of times ⌊etðiÞ⌋ and no more than ⌈etðiÞ⌉,
thus achieving minimum spread. In addition, as individuals are selected entirely on
their positions in the population, SUS has zero bias. For these reasons, SUS has
become one of the most widely used selection algorithms in current GA.
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2.2 Crossover Techniques

In GA, crossover is a genetic operator used to vary the programming of a chro-
mosome (or chromosomes) from one generation to the next. It is analogous to
reproduction and biological crossover, upon which GA are based. Many crossover
techniques exist for organisms which use different data structures to store them-
selves. Here the focus is on the one-point, two-point crossover as well as the
technique of “cut and splice”.

2.2.1 One-Point Crossover

A single crossover point on both parents’ organism strings is selected. All data
beyond that point in either organism string is swapped between the two parent
organisms. The resulting organisms are the children (Fig. 2) [11].

2.2.2 Two-Point Crossover

Two-point crossover calls for two points to be selected on the parent organism
strings. Everything between the two points is swapped between the parent organ-
isms, producing two child organisms (Fig. 3) [11].

Fig. 2 One-point crossover

Fig. 3 Two-point crossover
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2.2.3 “Cut and Splice” Technique

Another crossover variant, the “cut and splice” technique, results in a change in the
length of the children strings. The reason for this difference is that each parent string
has a separate choice of crossover point (Fig. 4) [11].

2.3 Mutation Operator

Mutation is a genetic operator that alters one ore more gene values in a chromosome
from its initial state. This can result in entirely new gene values being added to the
gene pool. With these new gene values, the GA may be able to arrive at a better
solution than previously possible. Mutation is an important part of the genetic
search as it helps to prevent the population from stagnating at any local optima.
Mutation occurs during evolution according to a user-definable mutation proba-
bility. This probability should usually be set fairly low. If it is set too high, the
search will turn into a primitive random search.

There are many ways to perform mutation. Some examples of mutation
according to the type of encoding are: binary encoding—binary mutation (bit
inversion); permutation encoding—order changing mutation; value encoding—
adding a small number (for real value encoding); tree encoding—changing oper-
ator; number—selected nodes are changed. If different genome types have been
considered, the following mutation types are suitable: bit string mutation, flip bit,
boundary, non-uniform, uniform, Gaussian.

In this paper, a mutation operator of the Breeder genetic algorithm
(BGA) [8, 22], based on the science of breeding, is considered. The BGA is
inspired by artificial selection as performed by human breeders. But mutation and
crossover are based on mathematical search techniques. The BGA mutation scheme
is able to optimize many multimodal functions [20–22].

Fig. 4 “Cut and splice” technique
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2.3.1 Mutation Operator of the Breeder Genetic Algorithm

The goal of a mutation operator is to modify one or more parameters of zi (indi-
viduals or chromosomes) so that the modified objects (that is, offspring) appear in
the landscape within a certain distance of unmodified objects (that is, parents). The
mutation operator is defined as follows [21].

A chromosome xi is selected with probability pm for mutation. The BGA nor-
mally uses pm = 1/n. At least one variable will be mutated. A value out of an
interval [−rangei, rangei] is added to the selected variable. rangei defines the
mutation range. It is normally set to a · search-intervali, where a is a constant.
search-intervali (upper-bound, lower-bound) is the domain of definition of variable
xi.

The new value zi (new chromosome) is computed according to

zi NewChromð Þ = xi ðOldChromÞ±rangei ⋅ δ, ð5Þ

where

range=0.5 upper− bound− lower− boundð Þ. ð6Þ

The (+) or (−) sign is chosen with a probability 0.5 (see Eqs. (5) and (6)). δ is
computed from a distribution which prefers small values. This is realized as follows

δ= ∑
accur − 1

i=0
αi2− i, αi ∈ ½0, 1�, ð7Þ

where

αi = rand accur, 1ð Þ<1 a̸ccur. ð8Þ

The standard BGA mutation operator is able to generate any point in the
hypercube with center x defined by xi ± rangei. But it tests much more often in the
neighborhood of x. In Eq. (7), “accur” (precision of mutation steps) is a parameter
originally related to the machine precision, that is, the numbers of bits used to
represent a real variable in the machine we are working with; traditionally the
values of 8 and 16 were used.

Before mutation the value of αi = 0 is set. Then each αi is mutated to 1 with
probability pδ = 1/accur. Only αi = 1 contributes to the sum. On the average there
will be just one αi with value 1, say αj. Then δ is given by

δ=2− j ð9Þ

The mutation operator is similar in spirit to that used by the parallel GA [21], but
the BGA operator is much easier to understand. Furthermore, it is independent of
the location in phenotype space.
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3 GN Models of Basic Genetic Algorithm Operators

3.1 GN Model of Selection Operator

3.1.1 Roulette Wheel Selection

The widely used Matlab Toolbox for GA contains two functions for the selection
function, namely roulette wheel selection (also known as stochastic sampling with
replacement (SSR)), and stochastic universal sampling. Figure 5 presents the
Matlab code of the rws.m function of the GA Toolbox of Matlab [7, 18].

A GN model, described the roulette wheel selection (RWS), as described in the
function rws.m, is presented in Fig. 6.

The token α enters GN in place l1 with an initial characteristic “pool of possible
parents”. The token α is split into new tokens β and γ, which take on corresponding
characteristics “identify the population size (Nind) and assign fitness values of the
individuals in the population (FitnV)” in place l2 and “number of individuals to be

Fig. 5 Matlab function rws.m
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selected (Nsel)” in place l3. The form of the first transition of the GN model is as
follows:

Z1 = <{l1}, {l2, l3}, r1, ∧(l1)> 

l2 l3 
r1 =

l1 true true

The token β is split into two new tokens δ and ε, which gain corresponding
characteristics “identify the population size (Nind)” in place l4 and “calculation of
the function cumfit = cumsum(FitnV)” in place l5, according to Fig. 5. The token γ
retains its characteristic “number of individuals to be selected (Nsel)” in place l6.
The form of the second transition of the GN model is as follows:

Z2 = <{l2, l3}, {l4, l5, l6}, r2, ∧(l2, l3)>,

l4 l5 l6
r2 =

l2   true true false 

 l3   false false true 

Further, the token δ keeps its characteristic “identify the population size (Nind)”
in place l7.

The token ε is split into two new tokens μ and η, which obtain corresponding
characteristics “calculation of the function Mf = cumfit(:, ones(1, Nsel))” in place l8
and “calculation of the function cumfit(Nind)”, in place l9, according to Fig. 5. The
token γ is also split into new tokens θ and π, which are given the corresponding
characteristics “calculation of the function rand(Nsel, 1)” in place l10 and keeps
characteristic “number of individuals to be selected (Nsel)” in place l11. The form of
the third transition of the GN model is as follows:

l2

l6

l4

l3

Z2

l7

l10

l13

Z5Z1

l1

Z3 Z6

l17
l5

l11

l8

l9
Z4

l12

l14

l15

l16

Fig. 6 GN model of roulette wheel selection
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Z3 = <{l4, l5, l6}, {l7, l8, l9, l10, l11}, r3, ∧( l4, l5, l6)> 

 l7 l8 l9 l10 l11
r3 = 

l4 true false true false false

 l5 false true true false false 

 l6 false true false true true 

The tokens η and θ are combined in a new token λ in place l12 with a charac-
teristic “calculation of the function trials = cumfit(Nind). * rand(Nsel, 1)”,
according to Fig. 5. The form of the fourth transition of the GN model is as follows:

Z4 = <{l9, l10}, {l12}, r4, ∧(l9, l10)> 

l12
r4 =

l9 true 

 l10 true 

In the next step, the token λ obtains a characteristic “calculation of the function
Mt = trials(:, ones(1, Nind))′” in place l15, according to Fig. 5, while the remaining
tokens δ, μ and π keep their characteristics as described above, correspondingly in
places l13, l14 and l16. The form of the fifth transition of the GN model is as follows:

Z5 = <{l7, l8, l11, l12}, {l13, l14, l15, l16}, r5, ∧(l7, l8, l11, l12)> 

l13 l14 l15 l16 
r5 = 

l7 true false true false

 l8 false true false false

 l11 false false false true 

 l12 false false true false

At the final step, all tokens δ, μ, λ and π are combined in a new token σ, which
according to Fig. 5 has a characteristic in place l17 “calculation of the function

[NewChrIx, ans] = find(Mt < Mf & [zeros(1, Nsel); Mf(1: Nind − 1, :)] <= Mt)”.
The form of the sixth transition of the GN model is then:
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Z6 = <{l13, l14, l15, l16}, {l17}, r6, ∧(l13, l14, l15, l16)> 

l17 
r6 =

l13 true 

 l14 true 

 l15 true 

 l16 true 

In the place l17 the new chromosome is created and the selection function,
performing roulette wheel selection, is completely fulfilled.

3.1.2 Stochastic Universal Sampling

Another implemented selection function in Matlab Toolbox for GA is stochastic
universal sampling. Figure 7 lists the Matlab code of the sus.m function of the GA
Toolbox of Matlab [7, 18].

The GN model, which should describe the SUS, could be obtained based on the
GN model for RWS, with very slight additions. The GN model of SUS is presented
in Fig. 8.

The GN model of the SUS function is identical to the GN model of the RWS
function up to the fourth transition. In contrast to the GN model of the RWS
function, there is one additional input. The token π from place l11 together with η
and θ, as in RWS, are combined in a new token λ. This token takes on a charac-
teristic “calculation of the function

trials= cumfitðNindÞ N̸sel*ðrand + ð0:Nsel− 1Þ′Þ

” in place l12, according to Fig. 7. The token θ passes through the transition,
obtaining a new characteristic “calculation of the function sort(rand(Nsel, 1))” in
place l13, while the token π passes through the transition, keeping its characteristic
“number of individuals to be selected (Nsel)”. Then the form of the fourth transition
of the GN model is as follows:

Z4 = <{l9, l10, l11}, {l12, l13, l14}, r4, ∧(l9, l10, l11)> 

l12 l13 l14 
r4 =

l9 true false false

 l10 true true false

 l11 true false true 
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The form of the fifth transition of the GN model is as follows:

Fig. 7 Matlab function sus.m

 l15 l16 l17 l18 l19 
r5 = 

l7 true false true false false

 l8 false true false false false

 l12 false false true false false

 l13 false false false true false

 l14 false true false false true 

Z5 = <{l7, l8, l12, l13, l14}, {l15, l16, l17, l18, l19}, r5, ∧(l7, l8, l12, l13, l14)> 
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After this transition the tokens characteristics are as follows:

• δ in place l15 keeps its characteristic “identify the population size (Nind)”;
• μ in place l16 keeps its characteristic “calculation of the function

Mf = cumfit(:, ones(1, Nsel))”;
• λ in place l17 obtains a new characteristic “calculation of the function

Mt = trials(:, ones(1, Nind))′ ”;
• θ in place l18 keeps its characteristic “calculation of the function

sort(rand(Nsel, 1))”;
• π in place l19 keeps its characteristic “number of individuals to be selected

(Nsel)”.

At the next step the tokens δ, μ, λ and π are combined in a new token σ, which in
place l20, according to Fig. 7, gain a characteristic “calculation of the function
[NewChrIx, ans] = find(Mt < Mf & [zeros(1, Nsel); Mf(1: Nind − 1, :)] <= Mt)”.
The token θ keeps its characteristic in places l21. Then the form of the sixth
transition of the GN model is as follows:

l15

Z5 Z6

l20Z4

l12

l16

l17

l19

…
identical 

to GN model 
of RWS method l13 l18 l21

Z7

l22

l14

Fig. 8 GN model of stochastic universal sampling

Z6 = <{l15, l16, l17, l18, l19}, {l20, l21}, r6, ∧(l15, l16, l17, l18, l19)> 

l20 l21 
r6 =

l15 true false

 l16 true false

 l17 true false

 l18 false true 

 l19 true false
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At the final step, the tokens σ and θ are combined in a new token χ with a
characteristic “shuffle new population” in place l22, according to Fig. 7. The form of
the seventh transition of the GN model is as follows:

Z7 = <{l20, l21}, {l22}, r7, ∧(l20, l21)> 

l22 
r7 =

l20 true 

 l21 true 

In the place l22 the new chromosome is created and the selection function,
performing stochastic universal sampling, is completely fulfilled.

3.2 GN Model of Crossover Operator

GN models of three of the most common used techniques of crossover (one-, two-
point crossover, as well as “cut and splice”) have been developed [25]. Here they
are combined in a “generalized” GN model, as presented in Fig. 9.

The token α enters GN in place l1 with an initial characteristic “parameters of
GA”. The token β enters GN in place l2 with an initial characteristic “pool of
possible parents”. Tokens α and β are combined and appear as a token γ in place l3
with a characteristic “parent 1” and as a token δ in place l4 with a characteristic
“parent 2”. The form of the first transition of the GN model is as follows:

Z1 = <{l1, l2, l11}, {l3, l4 }, r1, ∧(l1, l2)> 

l3 l4 
r1 =

l1 true true 

 l2 true true 

 l11 true true 

l3

l6,j

l5,i

l4

Z2

l7

l8

l9

Z4Z1

l1

l2

Z3

…

…

Z5
l10

l11

Fig. 9 GN model of crossover techniques
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Each of tokens γ and δ is split into a few new tokens, respectively γi, (i = 1 ÷ 3)
and δj (j = 1 ÷ 3). The values of i and j depends on the type of the chosen crossover
operator.

In the case of one-point crossover i = j = 2, and the tokens will obtain char-
acteristics as follows:

• γ1 in place l5,1 “first string of parent 1”;
• γ2 in place l5,2 “second string of parent 1”;
• δ1 in place l6,1 “first string of parent 2”;
• δ2 in place l6,2 “second string of parent 2”.

In the case of two-point crossover i = j = 3, and the tokens will obtain char-
acteristics as follows:

• γ1 in place l5,1 “first string of parent 1”;
• γ2 in place l5,2 “second string of parent 1”;
• γ3 in place l5,3 “third string of parent 1”;
• δ1 in place l6,1 “first string of parent 2”;
• δ2 in place l6,2 “second string of parent 2”;
• δ3 in place l6,3 “third string of parent 2”.

In both cases the form of the second transition of the GN model is as follows:

Z2 = <{l3, l4}, {l5,i, l6,j}, r2, ∧(l3, l4)> 

l5,i l6,j 
r2 =

l3 true true 

 l4 true true 

In the case of one-point crossover, tokens γ1 and δ2 are further combined in a
token ε in place l7 with a characteristic “offspring 1”. By analogy, tokens δ1 and γ2
are further combined in a token σ in place l8 with a characteristic “offspring 2”. The
form of the third transition of the GN model in that case is as follows:

 l7 l8 
r3 =

l5,1 true false 

 l5,2 false true 

 l6,1 false true 

 l6,2 true false 

Z3 = <{l5,1, l5,2, l6,1, l6,2}, {l7, l8}, r3, ∧(l5,1, l5,2, l6,1, l6,2)>

In the case of two-point crossover, tokens γ1, δ2 and γ3 are further combined in a
token ε in place l7 with a characteristic “offspring 1”. By analogy, tokens δ1, γ2 and

320 T. Pencheva et al.



δ3 are further combined in a token σ in place l8 with a characteristic “offspring 2”.
The form of the third transition of the GN model in that case is as follows:

Z3 = <{l5,1, l5,2, l5,3, l6,1, l6,2, l6,3}, {l7, l8}, r3, ∧(l5,1, l5,2, l5,3, l6,1, l6,2, l6,3)> 

 l7 l8 
r3 =

l5,1 true false 

 l5,2 false true 

 l5,3 true false 

 l6,1 false true 

 l6,2 true false 

 l6,3 false true 

Tokens ε and σ are then combined in a token η in place l9 with a characteristic
“new population”. The form of the fourth transition of the GN model is as follows:

l 9  

Z4 = <{l7, l8}, {l9},  l7 true , ∧(l7, l8)> 

 l8 true  

After the creation of the new population in place l9, the token η could pass to
place l10 with a characteristic “bad individual” or in place l10 with a characteristic
“good individual”. The form of the fifth transition of the GN model is as follows:

l 10 l11  

Z5 = <{l9}, {l10, l11}, l9 W9,10 W9,11 , ∧(l9)>, 

where W9,10 is “fit the fitness function” and W9,11 = ¬ W9,10.

As it was explained in [25], the GN model for describing one-point crossover
could be also used for a description of the technique “cut and splice”. The GN
model to describe the “cut and splice” technique is not explicitly presented here
because it is equivalent to the GN model which describes one-point crossover. The
tokens, characteristics, as well as the transitions will be absolutely the same. The
main difference between these crossover techniques is the length of the offspring
individuals that are obtained, because of the different crossover point in both
parents. While in the one-point crossover the offspring individuals obtained have a
length equal to that of their parents, in the case of the “cut and splice” technique the
offspring individuals obtained have different lengths. However, this fact will not be
reflected in the structure of the GN model which describes these techniques.
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3.3 GN Model of Mutation Operator

The GN model of the mutation operator of the BGA is shown in Fig. 10. The
proposed GN model generates a matrix “Chrom” with the real representation of the
individuals in the current population, mutates the individuals with given mutation
probability (pm) and returns the resulting population (NewChrom)—the same
number of randomly initialized real valued individuals.

The transition Z1 has the following definition:

 l3 l4 l5 r1 = 
l1 W1 false W3 
l2 false W2 false

Z1 = <{l1, l2}, {l3, l4, l5}, r1, ∧(l1, l2)>

where W1 = “estimation of the parameter range”;W2 = “evaluation of uniformly
distributed random numbers αi”; W3 = “generation of a matrix Chrom”.

After the transition Z1 the tokens take on the following characteristics in position:

• l1 the preliminary parameters are given: individuals number (Nvar) and matrix
of the boundaries of each individual—upper-bound and lower-bound;

• l2 the initial parameters for mutation operator: probability for mutation of a
variable (pm); mutation type—added (+) or subtracted (–) and accur;

• l3 the value of the range is evaluated (according to Eq. (6));
• l4 the values of the αi parameters are evaluated (according to Eq. (8));
• l5 the matrix Chrom is formed.

l1

Z1 Z3

l3

Z2

l4 l6

l5

l9

Z5

l2

l7

Z4

l8
l10

Fig. 10 Generalized net model of mutation operator
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The form of the transition Z2 is:

Z2 = <{l4}, {l6}, r2, ∧(l4)>, 

 l6 r2 =
l4 W4 

where W4 = “δ value evaluation”.
In position l6 the δ value is obtained (according to Eq. (6)).
The transition Z3 has the following formal definition:

Z3 = <{l3, l5, l6, l10}, {l7}, r3, ∧(l3, l5, l6)>,

 l7 

r3 = l3 W5 

l5 W5 

l6 W5 

l10 W6 

where W5 = “mutation, based on standard BGA mutation operator”; W6 = “muta-
tion, based on standard BGA mutation operator, if boundaries are not satisfied”.

In position l7 the matrix of NewChrom is obtained. The matrix has the same
format asOldChrom and contains the chromosomes of the population aftermutation.

The next transition Z4 provides control of the variable boundaries validity,
compared to lower and upper boundaries. The form of the transition Z4 is:

Z4 = <{l7}, {l8}, r4, ∧(l7)>, 

 l8 r4 =
l7 W7 

where W7 = “control of variable boundaries”.
The form of the transition Z5 is:

Z5 = <{l8}, {l9, l10}, r5, ∧(l8)>, 

 l9 l10 r5 =
l8 W8 ¬W8

where W8 = “end of mutation process”.
In position l9 the new chromosome is ready for further examination of the GA, if

the boundaries of the chromosome are in the appropriate range. Otherwise, if the
boundaries of the new chromosome are not in the appropriate range, the result is
returned to the transition Z3 for a new mutation operation.
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4 Conclusions

Generalized nets developed here have been applied to a description of basic GA
operators, namely selection, crossover and mutation. GN models of two selection
functions – roulette wheel selection method and stochastic universal sampling have
also been developed. It was shown that both GN models are very similar and it
might be possible for them to be combined into a “generalized” GN model of the
selection function. Such a “generalized” GN model was presented here to describe
three crossover techniques—one-point crossover, two-point crossover as well as
the technique “cut and splice”. The identical logic for the different techniques of
crossover operator permits the development of such a “generalized” GN model of
crossover operator. A GN model has been also constructed to realize the mutation
operation of a GA. This proposed GN model performs mutation, based on the
standard Breeder genetic algorithm mutation operator. The resulting GN models of
the three basic genetic operators, namely selection, crossover and mutation, could
be considered as separate modules, but they can also be accumulated into one GN
model for modelling a whole GA.
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Generalized Nets in Medicine: An Example
of Telemedicine for People with Diabetes

Maria Stefanova-Pavlova, Velin Andonov, Violeta Tasseva,
Antoaneta Gateva and Elissaveta Stefanova

Abstract In the present paper, an overview of the Generalized Nets (GNs) models

in medicine and telecare/telehealth is given. The apparatus of GNs has been used

in the modelling of physiological processes, diagnostics of diseases, organisational

and administrative processes in hospitals. Recently, in a series of papers, GNs have

been used to model telecare/telehealth services. On the basis of these models, a GN

model of telemedicine for patients with diabetes is proposed. The sensors included

in the model are blood pressure monitor, weight scale, pulse oximeter and blood

glucose monitor. Smart filtering of false positive alarm messages is included which

reduces the number of events for which the health care person has to take a decision.

The GN model can be used to develop a decision support tool for telemedicine for

people with diabetes.
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1 Introduction

Generalized Nets (GNs) are powerful tool for Discrete Event Simulation (DES)

and parallel processes flow representation. For the formal definition of GN see the

Appendix. The apparatus of GNs is equally well suited for modelling simple sys-

tems and for modelling large, complex systems. DES is a method used to model

real world systems able to be decomposed into a set of logically separate processes

autonomously progressing through time. A major strength of discrete event simula-

tion is its ability to model random events and to predict the effects of the complex

interactions between these events. GN-models could be used as a quick method of

analyzing and solving complex problems. This reduces the risk and uncertainty asso-

ciated with important decision making, and increases confidence by supporting the

decision with forecasted data. Up to now generalized nets are applied to healthcare

delivery systems, general and internal medicine. Many GN models were built which

represent various types of organizational and patient workflows, diseases, symptoms

and treatments, organs or states of human body. This is possible due to the existence

of a proof that every dynamical system and every collection of dynamical systems

can be described by a GN (see [7]). GNs have been used as a modelling tool in expert

systems and artificial intelligence; computer science; economics, industry and trans-

port; medicine (see [1, 6, 17, 28, 80–82]).

As it is shown in [8, 29, 86, 101, 102, 113] the GN-models in medicine can be

used for:

∙ simulation of real processes with educational aims;

∙ control of the corresponding hospital processes in real time;

∙ prognosis of the actual processes in hospital for the purposes of the hospital admin-

istration. These models can also help:

∙ specialists in studying the logic of the processes related to diagnoses;

∙ medical students and new specialists in acquiring knowledge and diagnostic skills;

∙ lecturers in medical students examinations with real-time simulations;

∙ administrative personnel in taking decisions related with planning, management,

organization and allocation of the available resources (materials, specialized

apparatuses, personnel) and scheduling of the medical specialists.

Up to now, processes in medicine in several directions are modelled with the

apparatus of GNs.

2 Modelling of Physiological Processes

Living organisms are featured by a variety of processes flowing in parallel. Some of

them, taken separately, are already described by specific mathematical tools, mostly

by means of systems theory. These mathematical tools however do not reflect ade-

quately the parallel flow of the processes. In [86], for example, are considered some
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parallel endocrine processes. These processes are related with production of insulin

by the pancreas, introduction of artificial insulin, processing of both types of insulin

in the organism, as well as with possible new conditions of production of insulin by

the pancreas.

Some other models of physiological processes are presented in [11, 31, 37–39,

41, 52, 71, 72, 80–84, 95–97, 114, 116–118, 123, 124, 127, 134].

3 GN Interpretations of Informational Models of Diseases
and Human Body Systems

Modern ideas in every new science with new principles and laws manifestly modify

the medical science as well. The attempt to peace together medical informatics and

clinical medicine meets some difficulties but as a whole has a lot of benefits.

As it is written in [94] the category “information” in medicine is used for the

description of the activities of sensory organs, in genetics, and partly in physiology,

pathophysiology and biochemistry. It is found rarely in endocrinology, neurology

and psychiatry (where there is a notion of informational disease, illustrating a neu-

rosis due to sensory overloading). In clinical works, the information exchange of the

organism is of a very narrow practical significance. Usually, the description of dis-

eases contains morphological changes, dysfunction, etiopathogenesis, metabolism

and energy exchange, and relation of symptoms. The fundamental medical sciences

seem to support such an approach. The development of GN interpretations of infor-

mational model brings medical informatics closer to clinical disciplines and hence

raises their effectiveness.

The informational model of diseases proposed by Ivan Dimitrov [52] is based on

the following:

1. Cells and organs of the living organism represent a common mechanism, in which

they function jointly and in mutual coordination. To achieve this, the elements of

the organism communicate, i.e.; exchange of information is carried out among

them.

2. In disease, the exchange of information is modified.

3. In the description of diseases, along with metabolism and the exchange of energy,

the exchange of information should be included as well.

The development of such an informational model could bring medical informatics

closer to clinical disciplines and hence raise their effectiveness. On the other hand,

this could enable clinical medicine to improve its models, and perhaps the treatment

and prevention of diseases. Undoubtedly, diagnostics can be supported in a decisive

way through a profound investigation of information exchange disorders in an organ-

ism. The generalized net interpretations of these models are shown in [94]. The basic

systems of the human body are:
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∙ Central neurological system;

∙ Cardiovascular system;

∙ Respiratory system;

∙ Gastrointestinal system;

∙ Endocrine system;

∙ Hematopoetic system;

∙ Musculoskeletal system;

∙ Renal and urological system;

∙ Reproductive system.

When building a GN model of the human body (see [32]) each of the listed sys-

tems can be represented by a transition. These transitions have the simplest form:

one input, one output and one input-output place. The last one depicts the interior

processes of the respective organ/ system, and contains a token which will have as a

current characteristic the status of the corresponding organ/ system.

For completeness of the model input and output places which represent separate

organs related to the inputs and outputs of the human body (derma, nose, mouth and

tongue, eyes, ears) are added. The tokens which correspond to the exterior factors

move through the net and have as characteristics type of the effect and its parameters

(power, continuity, volume, etc.).

4 Diagnostics of Diseases

So far GN models are built for diagnostics in nephrology and adult and child neurol-

ogy. The GN-models in neurology use as a basis some previously made models [53,

138] of the processes in this area.

Decision graphs for diagnostics of isolated (136 in total) neurological diseases are

described in [138]. As a whole, the charts in [138] have the form of binary graphs—

an initial node (representing the arrival of a patient with a neurological symptom)

with two successors representing the alternatives (the patient has/does not have a

given symptom). Each arc leads to another node again giving rise to successors cor-

responding to the presence or absence of symptoms, etc. The graphs make it possible

to trace the individual steps of each of these processes. These charts can be used for

training of students or professionals. In this sense, the role of the graphs is similar to

that of expert systems in subject-oriented areas of medicine [24].

The so made models are used as a basis for construction of GN models, describing

the diagnostic processes in adult and child neurology [10, 12–20, 34–36, 44–51,

64–66, 120–122, 125].

At the beginning of the medical diagnostic reasoning or decision making process

the practitioner must recognize if a sign or a symptom is significant. As a first step,

a detailed patients personal and family history, and complete physical examination

are of paramount importance, both in determining their medical significance and in

directing evaluation.
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Next, the physician begins to sort the data, keeping some pieces of information

and ignoring others. The practitioner must first cluster or link some or all of the

collected signs and symptoms, and determine any emerging patterns, meaningful

groups, and formulate hypotheses. This phase is often referred to as hypothesis for-

mulation (initial, preliminary diagnosis). The formulation of hypotheses or tentative

conclusions helps focus further data collection efforts on a manageable group of

possibilities.

During the next stage of diagnostic reasoning, the physician focuses on gathering

data (laboratory tests, X-ray pictures, and so on) to support or reject the previously

generated hypotheses. Once the physician is satisfied that all reasonable explanations

for the initial set of signs and symptoms have been thoroughly investigated, each

hypothesis must be evaluated in the light of the new evidence that has been collected

and a final diagnosis or conclusion reached.

Depending on the course of the final phase of decision making the practitioner

determines which explanation has the most supporting data and chooses this hypoth-

esis as the diagnosis. In some cases, however, the clinician can only eliminate

hypotheses until only the one with the highest probability remains. A global GN-

model for the purpose of diagnosing a definite disease entity is fully described in [17].

Using binary graphs for medical information representation has some advantages.

This form of description is very easy for understanding and close to the medical spe-

cialists thinking. GNs offer convenience when the specialist’s answer is not definitely

“yes” or “no”. They adequately represent the parallel flow of the processes. In this

sense GN-models give possibility for simultaneously examination of several decision

paths. This leads to minimization of the times for examinations and decision mak-

ing. The tokens collect and store in their characteristics all the data that is related to

the corresponding examination or patient status. In every moment the whole neces-

sary information is stored in the generalized net and in case of need could easily be

obtained. Other models of diseases diagnostic are presented in [21–23, 25–27, 33,

43, 56–62, 64–66, 74–79, 85, 87–90, 92, 93, 98, 103–112, 119, 126, 135, 136].

5 Organisational and Administrative Processes
in Hospital Institutions

Modelling such processes with GN offers:

∙ understanding of the patient flow;

∙ optimization of the duration of stay of patients in hospital institutions in order to

avoid bad-blockage and queuing;

∙ planning/reassigning of the tasks and activities of medical staff (especially during

emergency events epidemics, disasters etc.);

∙ tracing and monitoring of the treatment of each patient, his/her redirection to

another hospital institution;

∙ detecting bottlenecks in the workflow of the health care structure;

∙ help in resource planning and allocation, etc.
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Medicine is a profession concerned with preserving and improving patients lives.

The considerations are thus obvious: the approach has to be patient—centred, and not

merely for the convenience of the healthcare providers or administrators. In general,

it is difficult to deny the benefits of a more efficient information management system.

However, at a less macroscopic level, such generic benefits cannot be assumed for

all healthcare delivery systems. Confounding factors such as technical competency

of staff, acceptance and adoption by doctors and patients, and intrinsic design—

related features can impair rather than facilitate medical care and doctor—patient

relationship in some settings.

The automated planning of the resources (necessary equipment and specialists),

medical staff working schedules, patients’ reception, vastly facilitate the health care

units’ administration. The store and the processing of the patients’ personal data and

examination results in data bases and expert systems aids the decision making. The

appearance of the electronic health care improves the people informativeness in a

low price.

The construction of models of the parallel processes which flow in medicine

allows their full and correct understanding. This leads to minimization of the waiting

times and the times for decision making. The simulation of the made models with

real experimental data allows status evaluations, prognosis for critical moments and

situations, planning of the medical personnel, material equipment and specialized

apparatuses allocation. Examination of different what-if analyses of real situations

give possibility for finding of the healthcare system’s bottlenecks.

The GN-models of the organizational and administrative processes in hospital

institutions are in several directions:

1. patient flow modelling;

2. information flow modelling;

3. modelling of the resources allocation.

Some of these models represent the processes in a specific health care unit—for

example patient flow in a clinic. Thus the GN allows accumulation of data, which

concern particular patient—used materials and specialized apparatuses, made exam-

inations, engaged medical stuff in the rehabilitation process and so on, all traced into

the time. Using the results of the GNs work it is possible to make conclusions about

the dynamics of the process, number of the treated patients, case history, economical

assessment of outlays. These results could be used in the process of decision making

and further diagnostics.

5.1 Patient Flow Modelling

Planning of hospital resources has always been a matter of great importance. One of

the major elements in improving efficiency in the delivery of health care services is

optimizing the patient flow and length of stay. Modelling patient flow in health care

systems is considered to be vital in understanding the operation of the system and
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may therefore prove to be useful in improving the functionality of the health care

system. Better understanding of system operation is needed to predict and support

health care activities in every medical clinic. The understanding and modelling of

patient flow can offer information to health care providers about the patients disease

progression or recovery status. The effective resource allocation and capacity plan-

ning is dependant on patient flow because it is equivalent to the need of health care

services. If there is an understanding of patient flows, this knowledge can be used to

improve and optimize the activities of health care system. And the resource planning,

scheduling and utilization optimization can affect the quality of health care services

and patient flow.

In [54] it is proved, with no doubt, the big need of simulation models of health care

institutions. The aim of this paper is to asses the benefits of a model that examines

the impact of bed blockage, occupancy and emptiness on patient flow in a geriatric

inpatient unit. Departments of geriatric medicine provide an acute, rehabilitative and

long-stay service for older people with complex medical and social needs. Simula-

tion modelling gives an opportunity for predicting the situation of bed crisis in some

months of the year or for epidemics [137]. That is why when there is insufficient

amount of beds available to admit ill people in hospitals, queues are formed. This

may be fatal for some patients. The movement of patients through hospitals can be

seen to occur in streams. Wards such as acute, rehabilitation and long stay are depen-

dent on the dimensions of time and performance. But the availability of hospital beds

for admission depends on patients leaving the system. In [137] it is demonstrated

using simulation model that the cause of the crisis is a breakdown in the discharge

of dependent patients from the medium-stay stream. Clinically, bed blocking occurs

when patients are kept waiting in one ward or hospital until free beds are available in

a more suitable ward or hospital. For instance, rehabilitation or long—stay patients

can be kept waiting in the acute wards until beds become available elsewhere, effec-

tively blocking the availability of the beds for other patients.

A patient flow begins when a patient needs health consultation and goes to his/her

personal doctor, who gives him/her diagnose, or when the patient is admitted to

a health care system. Similarly, when the patient is discharged from a health care

unit this is the patient flow exit. Between these two points there is a set of condi-

tions, activities, services, or locations that the patient may pass. Within these points,

the patient requires a variety of health care resources (e.g., beds, examining rooms,

physicians, nurses, medical apparatuses and procedures). That is why the patient

flow can be depicted as a network. The basic network elements represent the patient

statuses in health care system (nodes) and indicate the flow between nodes (arcs).

An important characteristic of the patient flow is its random nature [55]. For a given

health care service, not all of the elements may be applicable to all patients. And the

time that patients spend at each node and in the whole network also contains a degree

of randomness. Once patients state is estimated it is possible to assign what resources

(for instance medical staff and equipment) will be required. Of course health care

clinic has capacity and resource limitations, so queuing for services occurs. Queu-

ing characteristics, such as time in the system and traffic intensity, correspond to the

patient flow characteristic.
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The study of problems with patient flow distribution has priority importance

because it is one of the major elements in improving efficiency in the delivery of

health care services. GNs are quite promising for representing patient flow and cases

history. Understanding of patient flow is needed to support health care activities in

every medical clinic. The effective resource allocation and capacity planning are

dependant on the patient flow because it is equivalent to the need of health care ser-

vices. The patient flow optimization can affect quality of health care services and

can have positive effects on patient and clinical staff satisfaction.

Some other GN-models of patient flow are presented in [128–132] .

5.2 Information Flow Modelling

Although confidentiality issues have long existed before the arrival of the computer

and the Internet, the use of IT that is capable of transmitting large amounts of data

in very short time intervals, and of bypassing the conventional physical barriers and

safeguards, certainly heightens public anxiety. Based on the medical needs of an indi-

vidual, several medical professionals (of different specialties) may have been visited

by him for medical care. Each of the medical professionals visited keeps information

about their patients. Similarly, hospitals keep all the records for patients that require

hospitalization for treatment. In addition, the patients fill their prescriptions at dif-

ferent pharmacies. All the bits and pieces of information that are scattered at various

places may be necessary for providing effective healthcare to an individual. There

are several ways of keeping this information handy and ready for use when needed. It

is not practical for every individual to carry this information with him in paper form

all the time. Also, legal aspects associated with the medical records require that the

medical information should not be altered. Therefore, all mechanisms used for gath-

ering, disseminating, or transporting medical information must adhere to all the legal

requirements. Advances in information technology have provided many options for

individuals to have their medical history available whenever it is needed.

The information systems and computer networks allow the information of the

patient to be accessible for short periods of time even on long distances and they

facilitate the putting of diagnose. For that purpose the development of secure and

fast connection is required. Personal computers in a specific healthcare unit have

to be connected in a local network and connection between healthcare units is also

needed. Building a network in a healthcare unit can improve integration of clinical,

financial, and administrative data for the various stakeholders, improve patient out-

comes, increase administrative efficiency and can reduce the likelihood of medical

errors and lower overall costs.

The purpose of the modelling of the information flows is gaining knowledge about

the happening inside the health care system. The need for concise and accurate

capture or representation of the patient flow and length of stay information assets

are important for the delivery of effective and in time healthcare services. Mod-

elling of the processes in the healthcare domain offers the opportunity to detect
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bottlenecks and to suggest effective changes in case of critical condition. In this way

the knowledge and the experience gained from experts could become available to all

stakeholders concerned in the quality and effectiveness of healthcare services and

contribute towards more effective resource allocation and use.

A GN-model for representation of links and interactions between particular wards

in a hospital as well as separate sections in a single ward are described in [99, 100].

The GN-model of the information net is needed, because as the investigations shows

it is important that health policy makers and doctors have accurate information about

a safety net and the data considering their patients. With such an information system

the whole available data for the diseases, symptoms, case history of the patients—

their disease progression or recovery status as well as test results, will be easily

accessible for the specialists who work in the health care sphere. It is clear that this

information play a critically important role in decision making and making primary

care available. Information GNs could be a software tool for modelling and simu-

lating real time parallel processes witch runs in a single health care unit as well as

in a whole hospital system. The purpose is to develop information technology with

which we could easily represent and simulate complex health care systems and apply

to medicine and pharmacy.

There exist different ways for the construction of a network architecture in the

frames of particular healthcare unit and between the separate medical institutions.

Having in mind the area which is to be covered, the optimal trade off between cost

and quality has to be derived. This includes decision making for: number and para-

meters of the servers, their disposal, the connections between them, the communica-

tion protocol, the time intervals for updating the information, etc. On that basis are

developed two GN-models that represent a process of information exchange (insert-

ing and requesting data) between several healthcare units [99] and within particular

medical centre [100]. In [99] there is one global server-repository as in the case of

data warehouses, which will save all the data for the patients. Every unit works on

its own server-source, which communicates with the central one and sends the data

to it.

5.3 Modelling of the Resources Allocation

Health care technology is subject to constant improvement. This is often accom-

panied by complex interactions between result, efficiency, staff training, equipment

maintenance, patient risk and cost of treatment. Implementation of novelties is a

complex task requiring the evaluation of the specifics and the benefits and risks

related to the most part of medical technology.

Modelling of the processes which flow in the health care system could be used for

planning of the resources allocation (buildings, equipment and specialists), as well

as for determination of the bottlenecks in the system. Beds, personnel work load

and available apparatuses determine the capacity of a given unit. Built model of the

system could answer to the question if there is a free position for a new patient or no.
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A GN-model of Intensive Care Unit (ICU) workflow is presented in [132]. The

goal of the workflow organization in an ICU is to assign a medical team and spe-

cialized equipment to each patient. At any moment the department is in a certain

state with respect to available beds, patients condition, available staff and equip-

ment. This information is stored in the unit’s databases. The medical staff database

contains information on the qualifications and work load of the staff. The hierar-

chy is respected when making a decision in the unit the decision is made by the

highest-ranking authority present at the moment. For example, if the head of the

unit is absent, the responsibility is transferred to the department head, while if he is

in turn not available to the on duty or in charge physician. Despite this strict hierar-

chy, there are cases when the decision could only be made by the department or unit

head. Dedicated databases are used to store the protocols with recommendations for

specific actions, as well as past treatments and conditions of the patients.

The description so far reflects the limitation on staff workload only that is, bed

or equipment availability were assumed sufficient. However, the amount of beds is

actually always limited. It may be necessary to discharge a patient in an unstable

status with high risk due to the need to accept another. A decision of this type could

only be made by the head of the unit or the department. In most cases, equipment is

also limited. This influences the work flow in the department and may lead to difficult

decisions. The GN-models describing the process of resource allocation could be

used to determine the optimum level of staff and equipment [30, 40, 63, 69, 91,

115, 130, 133].

6 Modelling of Telecare/Telehealth

Telehealth is the remote monitoring of patients’ vital signs and symptoms in their

own home—proven to enhance the quality of life and clinical outcomes for people

with long-term conditions. It also helps people understand and manage their health,

enabling them to stay out of hospital and enjoy life with their family and friends.

The evaluation of telehealth/telecare solutions of UK Department of Health’s

Whole System Demonstrator Program shows the following results:

Commissioning benefits:

∙ 45% reduction in mortality rates;

∙ 20% reduction in emergency admissions;

∙ 15% reduction in A&E visits;

∙ 14% reduction in elective admissions;

∙ 14% reduction in bed days;

∙ 8% reduction in tariff costs.

Clinical benefits:

∙ Encourages self-management;

∙ Enables early identification of exacerbations;
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∙ Aids medication compliance;

∙ Identifies trends over time to aid proactive care planning;

∙ Helps clinicians make more informed medication management decisions;

∙ Supports efficient caseload management (Tunstall Healthcare, see [143]).

GNs have been used as a tool for modeling processes in telecare and telemedicine

[2–4, 70]. A GN model of telecare is presented in [3]. It can be used as a decision

support tool to enhance the work of the specialists in the telehealth center. Smart

filtering of alarm messages is proposed in [4]. In the model developed in [70] traces

the logical stages of the final part of the process of communication between the

sensors connecting mobile adult patients and the staff of the respective hospital unit.

The developed model can be used for simulation of the processes of decision making

of the appropriate specialists, who must either visit the respective adult patient or

transport him/her to the hospital unit. The model permits simulation of different

scenarios e.g. the situation, in which many patients simultaneously require medical

assistance. Finally, the model in [2] is an example of telemedicine based on body

temperature sensors.

7 GN Model of Telemedicine for People with Diabetes

Diabetes mellitus (DM) includes a group of metabolic diseases, characterized by

high blood glucose, either because the pancreas does not produce enough insulin

(absolute insulin deficiency), or because cells do not respond to the insulin that is

secreted (insulin resistance) or both. There are two main types of DM:

Type 1 DM results from the body’s failure to produce insulin because of autoim-

mune destruction of insulin producing cells in the pancreas and requires insulin injec-

tions at least 4 times daily or a use of insulin pump. Hypoglycemia and weight gain

are the most common adverse effects of insulin therapy.

Type 2 DM results from insulin resistance, a condition in which cells fail to use

insulin properly because of metabolic disturbances, most frequently caused by obe-

sity. In the early disease stages, insulin production is normal or increased in absolute

terms, but disproportionately low for the degree of insulin sensitivity, which is typi-

cally reduced. However the ability of the pancreatic 𝛽-cells to release insulin in phase

with rising glycemia, are profoundly compromised [142]. In the beginning type 2

diabetes is treated with oral medications which either decrease insulin resistance or

increase insulin secretion. Treatment choices depend on many factors, most impor-

tant of which are body weight and concomitant diseases. Some of the oral antidi-

abetic drugs can also induce hypoglycemia. At the end stage of the disease when

absolute insulin deficiency is developed, patients usually need insulin injections

1–4 times daily. Weight reduction improves glycemic control and other cardiovas-

cular risk factors in patients with type 2 diabetes. Modest weight loss (5–10 %) con-

tributes meaningfully to achieving improved glucose control. Accordingly, estab-

lishing a goal of weight reduction, or at least weight maintenance, is recommended
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[141]. On the other hand most of the drugs used to treat diabetes, including insulin

can lead to significant weight gain. This warrants individualisation of treatment

choices, especially in patients with obesity.

Ideally, the principle of diabetes treatment is the achievement of as normal a

glycemic profile as possible without unacceptable weight gain or hypoglycemia. The

American Diabetes Assotiation Standards of Medical Care in Diabetes recommends

lowering HbA 1c to 7.0 % in most patients to reduce the incidence of microvascu-

lar disease. This can be achieved with a mean plasma glucose of 8.3−8.9mmol∕l
(150−160mg∕dL); ideally, fasting and premeal glucose should be maintained at

<7.2mmol∕l (<130mg∕dL) and the postprandial glucose at <10mmol∕l
(<180mg∕dL) [139]. Plasma glucose <3.9mmol∕l in patients with diabetes is gen-

erally considered hypoglycemia. Patients on insulin therapy and oral agents that can

cause hypoglycemia should be instructed in techniques for self-monitoring of blood

glucose. Initially, blood glucose levels should be checked at least four times a day in

patients taking multiple insulin injections. Generally, these measurements are taken

before each meal and at bedtime. In addition, patients should be taught to check

their blood glucose level whenever they develop symptoms that could represent a

hypoglycemic episode [140].

Acute complications of diabetes.

Hypoglycemia is a life-threatening acute complication of antidiabetic treatment.

Clinical hypoglycemia is, by definition, a plasma glucose concentration low enough

to cause symptoms or signs, including impairment of brain function. The glycemic

thresholds for symptoms and signs of hypoglycemia are dynamic; for example, they

shift to lower plasma glucose concentrations in patients with recurrent hypoglycemia

and to higher concentrations in those with poorly controlled diabetes. All of the man-

ifestations of hypoglycemia are rapidly relieved by glucose administration. Patients

with symptoms of hypoglycemia who are conscious and able to swallow should eat

or drink orange juice, glucose tablets, or any sugar-containing beverage or food. In

patients that are unconscious the preferred treatment is 50 mL of 50 % glucose solu-

tion given rapidly over 3–5 min intravenously. If trained personnel are not available

to administer intravenous glucose, the treatment of choice is for a family member

or friend to administer 1 mg of glucagon intramuscularly, which usually restores

the patient to consciousness within 10–15 min [141]. If a patient develops severe

hypoglycemia after use of long-acting antidiabetic medications, that induce insulin

secretion, he should be observed in hospital for at least 24 h to prevent recurrent

hypoglycemia.

Diabetic ketoacidosis and diabetic hyperosmolar coma are acute complications

of diabetes, that require hospital treatment. As opposed to the acute onset of hypo-

glycemic coma, diabetic ketoacidosis is usually preceded by a day or more of

polyuria and polydipsia associated with marked fatigue, nausea, and vomiting. Even-

tually, mental stupor ensues and can progress to frank coma. High blood glu-

cose (usually >15−18mmol∕l), ketonuria, ketonemia, low arterial blood pH, and

low plasma bicarbonate (5−15mEq∕L) are typical laboratory findings in diabetic
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Fig. 1 GN model of telemedicine for people with diabetes

ketoacidosis. The onset of the hyperglycemic, hyperosmolar, nonketotic state may be

preceded for days or even weeks by symptoms of weakness, polyuria, and polydipsia.

A history of reduced fluid intake is common, whether due to inappropriate absence

of thirst, gastrointestinal upset, or, in the case of elderly or bedridden patients, lack

of access to water. In diabetic hyperosmolar state there are no ketones in the urine

but the blood glucose is very high (>25−30mmol∕l).
The telehealth package for people living with diabetes consists of a blood pressure

monitor, weight scale, pulse oximeter and blood glucose monitor. Intelligent health

interview is also a necessity (LifeLink Telehealth, see [144]).

Telemedicine has been widely used to bring healthcare to patients living in distant

locations. In [42] it is demonstrated how modem technologies can be used as a tool

for providing telemedicine for people with diabetes. This approach has been proven

to be cost—effective [67, 68]. On the basis of the models presented in [2–4, 70], here

we propose a GN model of telemedicine for people with diabetes. The GN consists

of ten transitions (see Fig. 1). They have the following meaning:

∙ Z1 represents the patients.

∙ Z2 represents the collecting of data from the sensors.

∙ Z3 represents the process of taking a health interview from the patient.

∙ In Z4 the signals from the sensors are checked for correctness.

∙ Z5 represents the database with the patients’ history and the decisions taken by the

specialists in the telemedicine center.

∙ Z6 represents the differentiation of the signals depending on the glucose level.
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∙ In transitions Z7, Z8 and Z9 all data which is required for the telemedicine special-

ists to take a decision is gathered.

∙ Z10 represents the process of decision making in the telemedicine center.

Eight different types of tokens are used.

∙ Tokens 𝜋1, 𝜋2,… , 𝜋n represent the n patients who are monitored by the telemedi-

cine center. They stay in place l5 in the initial time moment with initial character-

istic “name of the patient, location”.
∙ Tokens 𝜈1, 𝜈2,… , 𝜈n represent the blood pressure monitors. In the initial time

moment they stay in place l7 with initial characteristic “name of the patient, data
about the device”.

∙ Tokens 𝛾1, 𝛾2,… , 𝛾n represent the glucose meters. In the initial time moment they

stay in place l8 with initial characteristic “name of the patient, data about the
device”.

∙ Tokens 𝜔1, 𝜔2,… , 𝜔n represent the weight scales. In the initial time moment they

stay in place l9 with initial characteristic “name of the patient, data about the
device”.

∙ Token 𝜁 stays in place l12 with initial characteristic “health interview”.
∙ Token 𝛼 stays in place l16 with initial characteristic “criterion for the correctness
of the signals”.

∙ Token 𝛽 stays in place l18 with initial characteristic “database with data about the
patients and the decisions taken by the telemedicine person”.

∙ Tokens 𝛿1, 𝛿2,… , 𝛿k represent the telemedicine specialists (telemedicine nurses)

who make decisions in the telemedicine center. They stay in place l30 in the initial

time moment with characteristic “name, decisions taken, duration of the shift”.

During the functioning of the net new 𝜋-tokens may enter the net through place l1.
These new tokens represent the new patients who are included in the model. Also,

some of the 𝜋-tokens in place l5 may leave the net through place l4 which reflects

the fact that the patients corresponding to these tokens are no longer monitored by

the system.

The proposed GN is a reduced one, i.e. not all of the components from the defin-

ition of GN are present (see [5]). What follows is a description of the transitions of

the net.

Z1 = ⟨{l1, l5}, {l2, l3, l4, l5}, r1,□1⟩ ,

where

r1 =
l2 l3 l4 l5

l1 true false false true
l5 W2,5 W5,3 W5,4 W5,5

and

W5,2 =“sensor data about the current patient must be sent to the telemedicine
center”;

W5,3=“health interview with the current patient has to be conducted”;
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W5,4=“the current patient must leave the system”;

W5,5 = ¬W5,4 .

Here and below ¬Wi,j is the negation of the predicate Wi,j.

□1 = ∨(l1, l5) .

When the truth value of the predicate W5,2 becomes true the current 𝜋-token in place

l5 splits into two identical tokens—the original that remains in l5 and a new one 𝜋

′

which enters l2 without new characteristic. The new 𝜋-token in l1 splits into two

identical tokens one of which enters place l5 with characteristic “name of the patient,
location”.The other one enters place l2 with characteristic “name of the patient, data
about the sensors”. When the truth value of W5,3 is true the 𝜋-token splits into two

identical tokens—the original which stays in l5 and a new 𝜋

′′
which enters l3 without

new characteristic.

Z2 = ⟨{l2, l7, l8, l9, l10, l13}, {l6, l7, l8, l9, l10}, r2,□2⟩ ,

where

r2 =

l6 l7 l8 l9 l10
l2 false W2,7 W2,8 W2,9 W2,10
l7 W7,6 true false false false
l8 W8,6 false true false false
l9 W9,6 false false true false
l10 W10,6 false false false W10,10
l13 false false false false true

and

W2,7= “the current 𝜋′ -token represents a new patient”;

W2,8 = W2,9 = W2,7;

W2,10 = ¬W2,7;

W7,6=“the blood pressure of the current patient has been measured”;

W8,6=“for the current 𝛾-token there is corresponding 𝜋

′-token in place l10” & “the
glucose level of the patient corresponding to the current 𝛾-token has been mea-
sured”;

W9,6=“the weight of the patient corresponding to the current 𝜔-token has been mea-
sured”;

W10,6=“the glucose level of the current patient has been measured”;

W10,10 = ¬W10,6.

□2 = ∨(l2, l7, l8, l9, l10, l13).

If the current 𝜋
′
-token in place l2 represents a new patient, then it splits into three

tokens 𝜈i, 𝛾i, 𝜔i which enter places l7, l8 and l9 respectively with characteristic “name
of the patient, data about the respective sensor”.

When the glucose level the patient has been measured the current 𝛾-token in l8
splits into two tokens—the original and a new identical one 𝛾

′
which enters place l6

where it obtains the characteristic“glucose level of the patient”. When the glucose
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level of the patient corresponding to the 𝜋
′
-token in l10 has been measured, this same

𝜋

′
-token enters place l6 where it merges with the 𝛾-token into a new 𝜋

′
-token.

When the truth value of the predicate W7,6 becomes true the current 𝜈-token in

l7 splits into two tokens—the original which remains in l7 and new identical one 𝜈

′

which enters l6 with characteristic “blood pressure of the corresponding patient”.

When the truth value of the predicateW9,6 becomes true the current𝜔-token splits

into two tokens—the original which remains in l9 and new identical one 𝜔

′
which

enters place l6 with characteristic “weight of the corresponding patient”.

Z3 = ⟨{l3, l12}, {l11, l12}, r3,□3⟩ ,

where

r3 =
l11 l12

l3 true false
l12 false true

□3 = ∧(l3, l12).

In l11 the 𝜋

′′
-tokens obtain the characteristic “answers to the interview ques-

tions”.

Z4 = ⟨{l6, l16}, {l13, l14, l15, l16}, r4,□4⟩ ,

where

r4 =
l13 l14 l15 l16

l6 W6,13 W6,14 W6,15 false
l16 false false false true

and

W6,13 = “the criterion shows that the signal has to be confirmed”;

W6,14 =“the criterion shows that the signal is correct”;

W6,15 =“the criterion shows that the signal is incorrect”.

□4 = ∧(l6, l16).

In places l13, l14 and l16 the tokens do not obtain new characteristics. In place l15
the tokens obtain the characteristic “incorrect signal”.

Z5 = ⟨{l14, l18, l29}, {l17, l18}, r5,□5⟩ ,

where

r5 =

l17 l18
l14 W14,17 W14,18
l18 false true
l29 false true
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and

W14,18 =“the current token in l14 is of type 𝜔”;

W14,17 = ¬W14,18.

□5 = ∨(∧(l14, l18), l29) .

The 𝜔-token in place l14 enters l18 where it unites with the 𝛽-token. The other type

of tokens enter l17 with characteristic “data about the current patient”.

Z6 = ⟨{l11, l17}, {l19, l20, l21, l22}, r6,□6⟩ ,

where

r6 =
l19 l20 l21 l22

l11 W11,19 W11,20 W11,21 false
l17 W17,19 W17,20 W17,21 W17,22

and

W11,19 =“there is 𝜋′ token in place l24 which is corresponding to the current 𝜋′′ in
place l11”;

W11,20 =“there is 𝜋′ token in place l26 which is corresponding to the current 𝜋′′ in
place l11”;

W11,21 =“there is 𝜋′ token in place l28 which is corresponding to the current 𝜋′′ in
place l11”;

W17,19 =“the glucose level of the current patient is less than or equal to 4 mmol/l”;

W17,20 =“the glucose level of the current patient is greater than 4 mmol/l and less
than or equal to 10 mmol/l”;

W17,21 =“the glucose level of the current patient is greater than 10 mmol/l and less
than or equal to 18 mmol/l”;

W17,22=“the glucose level of the current patient is greater than or equal to 18 mmol/l”.

□6 = ∨(l11, l17) .

In places l19, l20, l21 and l22 the tokens obtain characteristic “time of arrival of the
signal”.

Z7 = ⟨{l19, l24}, {l23, l24}, r7,□7⟩ ,

where

r7 =
l23 l24

l19 W19,23 W19,24
l24 W24,23 W24,24

and

W19,23 =“the current patient is unconscious”;

W19,24 = ¬W19,23;

W24,23 =“all required data about the patient has been collected or the maximum time
of waiting has been reached”;
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W24,24 = ¬W24,23.

□7 = ∨(l19, l24).

In place l24 the tokens obtain the characteristic “waiting for blood pressure mea-
surement and/or results from the health interview; duration of the waiting”. In place

l23 the tokens do not obtain new characteristic.

Z8 = ⟨{l20, l26}, {l25, l26}, r8,□8⟩ ,

where

r8 =
l25 l26

l20 W20,25 W20,26
l26 W26,25 W26,26

and

W20,25 =“the current patient is unconscious”;

W20,26 = ¬W20,25;

W26,25 =“all required data about the patient has been collected or the maximum time
of waiting has been reached”;

W26,26 = ¬W26,25.

□8 = ∨(l20, l26).

In place l26 the tokens obtain the characteristic “waiting for blood pressure mea-
surement and/or results from the health interview; duration of the waiting”. In place

l25 the tokens do not obtain new characteristic.

Z9 = ⟨{l21, l28}, {l27, l28}, r9,□9⟩ ,

where

r9 =
l27 l28

l21 W21,27 W21,28
l28 W28,27 W28,28

and

W21,27 =“the acetone of the current patient is positive”;

W21,28 = ¬W21,27;

W28,27 =“all required data about the patient has been collected or the maximum time
of waiting has been reached”;

W28,28 = ¬W28,27.

□9 = ∨(l21, l28).

In place l28 the tokens obtain the characteristic “waiting for interview results;
duration of the waiting”. In place l27 the tokens do not obtain new characteristic.

Z10 = ⟨{l22, l23, l25, l27, l30}, {l29, l30}, r10,□10⟩ ,



Generalized Nets in Medicine: An Example of Telemedicine for People with Diabetes 345

where

r10 =

l29 l30
l22 true false
l23 true false
l25 true false
l27 true false
l30 false true

and

□10 = ∧(∨(l22, l23, l25, l27), l30). In places l24, l26 and l28 the 𝜋
′′

-tokens, the 𝛾
′
-tokens

and the 𝜋

′
-tokens corresponding to one and the same patient merge into a new

𝜋

′
-token. In place l29 the tokens obtain the characteristic “decision taken by the

telemedicine person”. In place l30 the 𝛿-tokens obtain the characteristic “decision
taken, duration of the shift”.

8 Conclusion

The modelling and the simulation of the processes in the health care system as a

whole allow better description, control in real time and prognosis. The usage of GNs

in medicine holds out an opportunity for a new approach toward modelling and simu-

lation of the information, patient and work-load flows in health care units and health

care system. The so made simulation models give a new look over the problems

related with restructuring, managing, planning and organization of the health care

services. The GN models developed in medicine contribute to:

∙ early finding of pathological deviations and determining of the reasons;

∙ start from simpler methods (disease history, thorough examination, simple labo-

ratory tests), available to every physician at each level of the health-care system

and if necessary, proceed to newer and more expensive methods;

∙ showing (using) the most informative methods of study and treatment at a given

stage of treatment. This, depending on the level of the physician, facilitates the

generation of diagnosis or approximation to the most probable one;

∙ avoiding redundant studies, assist the decision of using more expensive methods;

direct the patient to the corresponding specialist or hospital for precise assessment

of his/her status; timely initiation and proper carrying out of the treatment and

follow-up;

∙ determining the bottlenecks for the process of providing health care services and

evaluating how changes to clinic design increase or reduce queues, time in sys-

tem, and number of patients in the clinic (the different what-if scenarios could

provide useful information to the hospital administrators for making management

decision).

On the basis of the GN model of telemedicine for people with diabetes described

in this paper a decision support tool can be developed. The model can be easily
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extended to include estimations of the costs of the telemedicine center. Computer

simulation of the model can be used to determine the optimal number of specialists

in the telemedicine center.

Appendix: Short Remark on Generalized Nets

GNs [5, 9] are extensions of Petri Nets [73]. They are defined in a way that is princi-

pally different from the ways of defining the other types of Petri nets. We shall first

give an example of a GN and make remarks about the notation. A GN is shown

in Fig. 2. The places are marked with
�

. Each part of the net which looks like

the one shown on Fig. 3., is called transition (more precisely graphic structure of

transition). Transition’s conditions are denoted by

�
. GNs, like other nets, con-

tain tokens which are transferred from place to place. Every token enters the net

with an initial characteristic. During each transfer, the token receives new character-

istics. So, they accumulate their “history”. This is the first essential difference with

the other types of Petri nets.

Every GN-place has at most one arc entering and at most one arc leaving it. The

places with no entering arcs are called input places for the net (l1, l2 on Fig. 2.) and

those with no leaving arcs are called output places (l14 and l15 on Fig. 2.). The input
places are always at the transition’s left, and the output places are always at the

Fig. 2 Generalized net
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Fig. 3 Transition

transition’s right side. When tokens enter the input place of a transition, it becomes

potentially fireable and at the moment of their transfer towards the transition’s output

places, it is being fired. The transition becomes active at a given time-moment and

remains active up to another predefined moment.

The second basic difference between GNs and the ordinary Petri nets is the

“place—transition” relation. Here, transitions are objects of a more complex nature.

A transition may contain m input and n output places where m, n ≥ 1.

The third basic difference is related to the time during which the GN functions.

The time can be determined from some global time-scale and in this case the net is

not invariant about the time-parameters. When we have GN models of some (dif-

ferent, but connected) processes that flow in parallel at time, we can use many

time-scales or a single one, accounting the moments of the separate events in the

processes. In the present form of the GN-definition, time is discrete. It increases with

discrete steps. We can see the status of the GN model in each current time-moment.

Formally, every transition is described by a seven-tuple:

Z = ⟨L′,L′′, t1, t2, r,M,□⟩,

where:

(a) L′ and L′′ are finite, non-empty sets of places (the transition’s input and output

places, respectively); for the transition in Fig. 3 these are

L′ = {l′1, l
′
2,… , l′m}

and

L′′ = {l′′1 , l
′′
2 ,… , l′′n };

(b) t1 is the current time-moment of the transition’s firing;

(c) t2 is the current value of the duration of its active state;

(d) r is the transition’s condition determining which tokens will transfer from the

transition’s inputs to its outputs. Parameter r has the form of an IM:
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r =

l′′1 … l′′j … l′′n
l′1
⋮ ri,j
l′i (ri,j − predicate)
⋮ (1 ≤ i ≤ m, 1 ≤ j ≤ n)
l′m

;

where ri,j is the predicate which expresses the condition for transfer from the ith input

place to the jth output place. When ri,j has truth-value “true”, then a token from the

ith input place can be transferred to the jth output place; otherwise, this is impossible;

(e) M is an IM of the capacities of transition’s arcs:

M =

l′′1 … l′′j … l′′n
l′1
⋮ mi,j
l′i (mi,j ≥ 0 − natural number or ∞)
⋮ (1 ≤ i ≤ m, 1 ≤ j ≤ n)
l′m

;

(f)□ is called transition type and it is an object having a form similar to a Boolean

expression. It may contain as variables the symbols that serve as labels for transi-

tion’s input places, and it is an expression constructed of variables and the Boolean

connectives ∧ and ∨ determining the following conditions:

∧(li1 , li2 ,… , liu ) − every place li1 , li2 ,… , liu must contain at least

one token,

∨(li1 , li2 ,… , liu ) − there must be at least one token in the set of places

li1 , li2 ,… , liu , where {li1 , li2 ,… , liu} ⊂ L′.

When the value of a type (calculated as a Boolean expression) is “true”, the tran-

sition can become active, otherwise it cannot.

The ordered four-tuple

E = ⟨⟨A, 𝜋A, 𝜋L, c, f , 𝜃1, 𝜃2⟩, ⟨K, 𝜋K , 𝜃K⟩, ⟨T , t0, t∗⟩, ⟨X, 𝛷, b⟩⟩

is called a Generalized Net if:

(a) A is a set of transitions (see above);

(b) 𝜋A is a function giving the priorities of the transitions, i.e., 𝜋A ∶ A →  ;

(c) 𝜋L is a function giving the priorities of the places, i.e., 𝜋L ∶ L →  , where

L = pr1A ∪ pr2A

and obviously, L is the set of all GN-places;

(d) c is a function giving the capacities of the places, i.e., c ∶ L →  ;
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(e) f is a function that calculates the truth values of the predicates of the transi-

tion’s conditions;

(f) 𝜃1 is a function giving the next time-moment, for which a given transition

Z can be activated, i.e., 𝜃1(t) = t′, where pr3Z = t, t′ ∈ [T ,T + t∗] and t ≤ t′; the

value of this function is calculated at the moment when the transition terminates its

functioning;

(g) 𝜃2 is a function giving the duration of the active state of a given transition Z,

i.e., 𝜃2(t) = t′, where pr4Z = t ∈ [T ,T + t∗] and t′ ≥ 0; the value of this function is

calculated at the moment when the transition starts functioning;

(h) K is the set of the GN’s tokens. In some cases, it is convenient to consider this

set in the form

K =
⋃

l∈QI

Kl,

where Kl is the set of tokens which enter the net from place l, and QI
is the set of all

input places of the net;

(i) 𝜋K is a function giving the priorities of the tokens, i.e., 𝜋K ∶ K →  ;

(j) 𝜃K is a function giving the time-moment when a given token can enter the net,

i.e., 𝜃K(𝛼) = t, where 𝛼 ∈ K and t ∈ [T ,T + t∗];
(k) T is the time-moment when the GN starts functioning; this moment is deter-

mined with respect to a fixed (global) time-scale;

(l) t0 is an elementary time-step, related to the fixed (global) time-scale;

(m) t∗ is the duration of the GN functioning;

(n) X is a function which assigns initial characteristics to every token when it

enters input place of the net;

(o) 𝛷 is a characteristic function that assigns new characteristics to every token

when it makes a transfer from an input to an output place of a given transition;

(p) b is a function giving the maximum number of characteristics a given token

can receive, i.e., b ∶ K → N.

For the algorithms of transition and GN functioning the reader can refer to [9].
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Differential Evolution with Fuzzy Logic
for Dynamic Adaptation of Parameters
in Mathematical Function Optimization

Oscar Castillo, Patricia Ochoa and José Soria

Abstract The proposal described in this paper uses the Differential Evolution
(DE) algorithm as an optimization method in which we want to dynamically adapt
its parameters using fuzzy logic control systems, with the goal that the fuzzy system
gives the optimal parameter of the DE algorithm to find better results, depending on
the type of problems the DE is applied.

1 Introduction

The use of fuzzy logic in evolutionary computing is becoming a common approach
to improve the performance of the algorithms. Currently the parameters involved in
the algorithms are determined by trial and error. In this aspect we propose the
application of fuzzy logic which is responsible in performing the dynamic adjust-
ment of mutation and crossover parameters in the Differential Evolution (DE)
algorithm. This has the goal of providing better performance to the Differential
Evolution algorithm.

Fuzzy logic or multi-valued logic is based on fuzzy set theory proposed by
Zadeh in 1965 which helps us in modeling knowledge, through the use of if-then
fuzzy rules. The fuzzy set theory provides a systematic calculus to deal with lin-
guistic information, and that improves the numerical computation by using lin-
guistic labels stipulated by membership functions [12]. Differential Evolution
(DE) is one of the latest evolutionary algorithms that have been proposed. It was
created in 1994 by Price and Storn in, attempts to resolve the problem of Cheby-
chev polynomial. The following year these two authors proposed the DE for
optimization of nonlinear and non- differentiable functions on continuous spaces.

The DE algorithm is a stochastic method of direct search, which has proven
effective, efficient and robust in a wide variety of applications such as learning of a
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neural network, a filter design of IIR, aerodynamically optimized. The DE has a
number of important features which make it attractive for solving global opti-
mization problems, among them are the following: it has the ability to handle
non-differentiable, nonlinear and multimodal objective functions, usually converges
to the optimal uses with few control parameters, etc.

The DE belongs to the class of evolutionary algorithms that is based on popu-
lations. It uses two evolutionary mechanisms for the generation of descendants:
mutation and crossover; finally a replacement mechanism, which is applied between
the vector father and son vector determining who survive into the next generation.
There exist works where they currently use fuzzy logic to optimize the performance
of the algorithms, to name a few articles such as:

Optimization of Membership Functions for Type-1 and Type 2 Fuzzy Con-
trollers of an Autonomous Mobile Robot Using PSO [1], Optimization of a Fuzzy
Tracking Controller for an Autonomous Mobile Robot under Perturbed Torques by
Means of a Chemical Optimization Paradigm [2], Design of Fuzzy Control Systems
with Different PSO Variants [4], A Method to Solve the Traveling Salesman
Problem Using Ant Colony Optimization Variants with Ant Set Partitioning [6],
Evolutionary Optimization of the Fuzzy Integrator in a Navigation System for a
Mobile Robot [7], Optimal design of fuzzy classification systems using PSO with
dynamic parameter adaptation through fuzzy logic [8], Dynamic Fuzzy Logic
Parameter Tuning for ACO and Its Application in TSP Problems [10], Bio-inspired
Optimization Methods on Graphic Processing Unit for Minimization of Complex
Mathematical Functions [15].

Similarly as there are papers on Differential Evolution (DE) applications that
uses this algorithm to solve real problems. To mention a few:

A fuzzy logic control using a differential evolution algorithm aimed at modelling
the financial market dynamics [5], Design of optimized cascade fuzzy controller
based on differential evolution: Simulation studies and practical insights [11],
Eliciting transparent fuzzy model using differential evolution [3], Assessment of
human operator functional state using a novel differential evolution optimization
based adaptive fuzzy model [14].

This paper is organized as follows: Sect. 2 shows the concept of the differential
evolution algorithm as applied to the technique for parameter optimization. Sec-
tion 3 describes the proposed methods. Section 4 shows the simulation results.
Section 5 offers the conclusions.

2 Differential Evolution

Differential Evolution (DE) is an optimization method belonging to the category of
evolutionary computation applied in solving complex optimization problems.
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DE is composed of 4 steps:

• Initialization.
• Mutation.
• Crossover.
• Selection.

This is a non-deterministic technique based on the evolution of a vector popu-
lation (individuals) of real values representing the solutions in the search space. The
generation of new individuals is carried out by differential crossover and mutation
operators [13].

The operation of the algorithm is explained below:

2.1 Population Structure

The differential evolution algorithm maintains a pair of vector populations, both of
which contain Np D-dimensional vectors of real-valued parameters [8].

Px, g = ðxi, gÞ, i = 0, 1, . . . , Np, g = 0, 1, . . . , gmax ð1Þ

xi, g = ðxj, i, gÞ, j = 0, 1, . . . , D− 1 ð2Þ

where:
Px = current population.
gmax = maximum number of iterations.
i = index population.
j = parameters within the vector.

Once the vectors are initialized, three individuals are selected randomly to
produce an intermediate population, Pv,g, of Np mutant vectors, vi,g.

Pv, g = vi, g
� �

, i = 0, 1, . . . , Np− 1, g= 0, 1, . . . , gmax ð3Þ

vi, g = ðvj, I, gÞ, j = 0, 1, . . . , D− 1 ð4Þ

Each vector in the current population are recombined with a mutant vector to
produce a trial population, Pu, the NP, mutant vector ui,g:

Pv, g = ui, g
� �

, i = 0, 1, . . . , Np− 1, g= 0, 1, . . . , gmax ð5Þ

ui, g = uj, I, g
� �

, j = 0, 1, . . . , D− 1 ð6Þ
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2.2 Initialization

Before initializing the population, the upper and lower limits for each parameter
must be specified. These 2D values can be collected by two initialized vectors,
D-dimensional, bL y bU, to which subscripts L and U indicate the lower and upper
limits respectively. Once the initialization limits have been specified number gen-
erator randomly assigns each parameter in every vector a value within the set range.
For example, the initial value (g = 0) of the j-th vector parameter is ith:

xj, i, 0 = randj 0, 1ð Þ ⋅ bj,U − bj, L
� �

+bj, L ð7Þ

2.3 Mutation

In particular, the differential mutation adds a random sample equation showing how
to combine three different vectors chosen randomly to create a mutant vector.

vi, g = xr0, g + F ⋅ xr1, g − xr2, g
� � ð8Þ

The scale factor, F ∈ (0,1) is a positive real number that controls the rate at
which the population evolves. While there is no upper limit on F, the values are
rarely greater than 1.0.

2.4 Crossover

To complement the differential mutation search strategy, DE also uses uniform
crossover. Sometimes known as discrete recombination (dual). In particular, DE
crosses each vector with a mutant vector:

Ui, g = ðuj, i, gÞ= vj, i, g if randj 0, 1ð Þ ≤ Cr or j= jrand
� �

xj, i, g otherwise.

� �

ð9Þ

2.5 Selection

If the test vector, Ui,g has a value of the objective function equal to or less than its
target vector, Xi,g. It replaces the target vector in the next generation; otherwise, the
target retains its place in population for at least another generation [2].
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Xi, g+1 =
Ui, g if f Ui, g

� �
≤ f Xi, g

� �

Xi, g otherwise.

� �

ð10Þ

The process of mutation, recombination and selection are repeated until the
optimum is found, or terminating pre criteria specified is satisfied. DE is a simple,
but powerful search engine that simulates natural evolution combined with a
mechanism to generate multiple search directions based on the distribution of
solutions in the current population. Each vector i in the population at generation G,
xi,G, called at this moment of reproduction as the target vector will be able to
generate one offspring, called trial vector (ui,G). This trial vector is generated as
follows: First of all, a search direction is defined by calculating the difference
between a pair of vectors r1 and r2, called “differential vectors”, both of them
chosen at random from the population. This difference vector is also scaled by using
a user defined parameter called “F ≥ 0”. This scaled difference vector is then added
to a third vector r3, called “base vector”. As a result, a new vector is obtained,
known as the mutation vector. After that, this mutation vector is recombined with
the target vector (also called parent vector) by using discrete recombination (usually
binomial crossover) controlled by a crossover parameter 0 ≤ CR ≤ 1 whose value
determines how similar the trial vector will be with respect to the target vector.
There are several DE variants. However, the most known and used is
DE/rand/1/bin, where the base vector is chosen at random, there is only a pair of
differential vectors and a binomial crossover is used. The detailed pseudocode of
this variant is presented in Fig. 1 [9].

Fig. 1 “DE/rand/1/bin”
pseudocode rand [0, 1) is a
function that returns a real
number between 0 and 1.
Randint (min, max) is a
function that returns an
integer number between min
and max. NP, MAX GEN, CR
and F are user-defined
parameters n is the
dimensionality of the problem
[9]
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2.6 Illustrative Example of the Classic DE Algorithm

A simple numerical example adopted is presented to illustrate the classic DE
algorithm. Let us consider the following objective function for optimization:

Minimize f xð Þ=x1 + x2 + x3

The initial population is chosen randomly between the bounds of decision
variables, in this case x1, x2 and x3 ϵ [0, 1]. The population along with its respective
objective function values is shown in Table 1. The first member of the population,
“Individual 1”, is set as the target vector. In order to generate the mutated vector,
three individuals (“Individual 2”, “Individual 4” and “Individual 6”) from the
population size are selected randomly (ignoring “Individual 1”, since it is set as the
target vector). The weighted difference between “Individual 2” and “Individual 4”
is added to the third randomly chosen vector “Individual 6” to generate the mutated
vector. The weighting factor F is chosen as 0.80 and the weighted difference vector
is obtained in Table 2 and the mutated vector in Table 3 [16].

The mutated vector does a crossover with the target vector to generate the trial
vector, as shown in Table 4. This is carried out by (1) generating random numbers
equal to the dimension of the problem (2) for each of the dimensions: if random
number > CR; copy the value from the target vector, else copy the value from the
mutated vector into the trial vector. In this example, the crossover constant CR is
chosen as 0.50.

Table 1 An illustrative example [16]

Population size NP = 6 (user define), D = 3
Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6

x1 0.68 0.92 0.22 0.12 0.40 0.94
x2 0.89 0.92 0.14 0.09 0.81 0.63
x3 0.04 0.33 0.40 0.05 0.83 0.13
f(x) 1.61 2.17 0.76 0.26 2.04 1.70

Table 2 Calculation of the weighted difference vector for the illustrative example [16]

Individual 2 Individual 4 Difference vector Weighted difference
vector

x1 0.92 0.12 =0.80 =0.64
x2 0.92 0.09 =0.83 xF (F = 0.80) =0.66
x3 0.33 0.05 =0.28 =0.22
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The objective function of the trial vector is compared with that of the target
vector and the vector with the lowest value of the two (minimization problem)
becomes “Individual 1” for the next generation. To evolve “Individual 2” for the
next generation, the second member of the population is set as target vector (see
Table 5) and the above process is repeated. This process is repeated NP times until
the new population set array is filled, which completes one generation. Once the
termination criterion is met, the algorithm ends.

3 Proposed Method

The Differential Evolution (DE) Algorithm is a powerful search technique used for
solving optimization problems. In this paper a new algorithm called Fuzzy Dif-
ferential Evolution (FDE) with dynamic adjustment of parameters for the opti-
mization of controllers is proposed. The main objective is that the fuzzy system will
provides us with the optimal parameters for the best performance of the DE
algorithm. In addition the parameters that the fuzzy system optimizes are the
crossover and mutation, as shown in Fig. 2.

Table 3 Calculation of the mutated vector for the illustrative example [16]

Weighted difference vector Individual 6 Muted vector

x1 0.64 0.94 =1.58
x2 0.66 + 0.63 =1.29
x3 0.22 0.13 =0.35

Table 4 Generation of the trial vector for the illustrative example [16]

Target vector Mutated vector Trial vector

x1 0.68 1.58 =1.58
x2 0.89 Crossover 1.29 =0.89
x3 0.04 (CR = 0.50) 0.35 =0.04
f(x) 1.61 3.22 2.51

Table 5 New populations for the next generation in the illustrative example [16]

New population for the next generation
Individual 1 Individual 2 Individual 3 Individual 4 Individual 5 Individual 6

x1 0.68
x2 0.89
x3 0.04
f(x) 1.61
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4 Simulation Results

This paper presents the current results obtained from the experiments using the
scale factor F from the Differential Evolution (DE) algorithm. This helps us visu-
alize how the algorithm performs modifications to this variant which helps create
mutations. This helps us visualize how the algorithm performs modifications to this
variant which helps create mutations. The Rosenbrock mathematical function was
used to carry out these experiments. Rosenbrock is a classic optimization problem,
also known as banana function or the second function of De Jong. The global
optimum lies inside a long, narrow, parabolic shaped flat valley. To find the valley
is trivial, however convergence to the global optimum is difficult and hence this
problem has been frequently used to test the performance of optimization algo-
rithms. Function has the following definition (Fig. 3).

f ðxÞ= ∑
n− 1

i=1
100 xi+1 − x2i

� �2
+ 1− xið Þ2

h i

. ð11Þ

Test area is usually restricted to hypercube −2.048 ≤ xi ≤ 2.048, i = 1,…, n.Its
global minimum equal f(x) = 0 is obtainable for xi = 0, i = 1,…,n.

Fig. 2 The proposed is an algorithm of differential evolution (DE) by integrating a fuzzy system
to dynamically adapt parameters
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30 experiments were done each one 30 times, using the following parameters:

where:
D = Vector Dimension
NP = Size of population
F = scale factor
CR = crossover
GEN = Maximum number of generations
L = Lower Limits
H = Upper Limits

Table 6 shows the simulation results when F = 0.01. Table 7 shows the results
when F = 0.02. The experiments with F = 0.03 and 0.04 are shown on Tables 8 and 9,
respectively.

Fig. 3 Rosenbrock’s in 2D, f(x,y) = 100(y − x2)2 + (1 − x)2

Parameters:

D = 50
NP = 250
F = 0.1
CR = 0.1
GEN = 6000
L = −500
H = 500
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Table 6 Demonstrates the
results with F = 0.01

Experimento Promedio Mejor Peor

1 0.01099565 5.3599E-07 0.03150259
2 0.01131575 4.47E-12 0.1149224
3 0.00889237 1.77E-08 0.06249856
4 0.01571152 1.86E-09 0.08654202
5 0.01677769 9.11E-08 0.1480454
6 0.02614949 5.00E-10 0.37007527
7 0.01057668 7.23E-07 0.09474443
8 0.01099565 5.36E-07 0.16184713
9 0.01131575 4.47E-12 0.1149224
10 0.00889237 1.77E-08 0.06249856
11 0.01571152 1.86E-09 0.08654202
12 0.01677769 5.14E-07 0.1480454

13 0.02614949 3.48E-08 0.09871141
14 0.01099565 5.79E-07 0.16184713
15 0.01131575 4.47E-12 0.1149224
16 0.00889237 4.47E-06 0.06249856
17 0.01571152 1.86E-09 0.08654202
18 0.01677769 9.11E-08 0.06250744
19 0.02614949 5.00E-10 0.37007527
20 0.01099565 5.79E-07 0.16184713
21 0.01131575 4.47E-12 0.1149224
22 0.00889237 1.77E-08 0.06249856
23 0.01571152 1.43E-11 0.08654202
24 0.01677769 9.11E-08 0.1480454
25 0.02614949 5.00E-10 0.11850916
26 0.01057668 7.23E-07 0.09474443
27 0.01931193 4.17E-08 0.10814125
28 0.01402754 3.80E-09 0.03090101
29 0.01099565 5.79E-07 0.16184713
30 0.01131575 4.47E-12 0.1149224
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Table 7 Demonstrates the
results with F = 0.02

Experimento Promedio Mejor Peor

1 0.01099565 5.3599E-07 0.03150259
2 0.01131575 4.47E-12 0.1149224
3 0.00889237 1.77E-08 0.06249856
4 0.01571152 1.86E-09 0.08654202
5 0.01677769 9.11E-08 0.1480454
6 0.02614949 5.00E-10 0.37007527
7 0.01057668 7.23E-07 0.09474443
8 0.01099565 5.36E-07 0.16184713
9 0.01131575 4.47E-12 0.1149224
10 0.00889237 1.77E-08 0.06249856
11 0.01571152 1.86E-09 0.08654202
12 0.01677769 5.14E-07 0.1480454

13 0.02614949 3.48E-08 0.09871141
14 0.01099565 5.79E-07 0.16184713
15 0.01131575 4.47E-12 0.1149224
16 0.00889237 4.47E-06 0.06249856
17 0.01571152 1.86E-09 0.08654202
18 0.01677769 9.11E-08 0.06250744
19 0.02614949 5.00E-10 0.37007527
20 0.01099565 5.79E-07 0.16184713
21 0.01131575 4.47E-12 0.1149224
22 0.00889237 1.77E-08 0.06249856
23 0.01571152 1.43E-11 0.08654202
24 0.01677769 9.11E-08 0.1480454
25 0.02614949 5.00E-10 0.11850916
26 0.01057668 7.23E-07 0.09474443
27 0.01931193 4.17E-08 0.10814125
28 0.01402754 3.80E-09 0.03090101
29 0.01099565 5.79E-07 0.16184713
30 0.01131575 4.47E-12 0.1149224
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Table 8 Demonstrates the
results with F = 0.03

Experimento Promedio Mejor Peor

1 6.66E-04 1.73E-17 0.01785224
2 1.39E-02 5.39E-18 0.01226117
3 1.06E-02 3.04E-14 0.00209507
4 2.62E-03 5.02E-13 0.05327532
5 6.66E-04 1.73E-17 0.01785224
6 1.15E-03 1.59E-17 0.01705839
7 1.34E-03 5.49E-17 0.01487419
8 1.39E-02 1.61E-20 0.38046604
9 9.61E-03 6.21E-15 0.17429945
10 6.36E-03 8.17E-17 0.06436387
11 1.06E-02 3.06E-15 0.31396925
12 9.78E-04 9.51E-15 0.02470255

13 6.66E-04 1.73E-17 0.01785224
14 2.62E-03 4.85E-16 0.05327532
15 1.39E-02 6.56E-17 0.38046604
16 1.06E-02 7.07E-13 0.31396925
17 2.62E-03 4.85E-16 0.05327532
18 6.66E-04 1.73E-17 0.01785224
19 1.15E-03 1.59E-17 0.01705839
20 1.39E-02 5.39E-18 0.01226117
21 1.06E-02 3.06E-15 0.31396925
22 2.62E-03 4.85E-16 0.05327532
23 1.15E-03 1.59E-17 0.01705839
24 1.34E-03 5.49E-17 0.01487419
25 1.39E-02 6.56E-17 0.38046604
26 9.61E-03 6.21E-15 0.17429945
27 6.36E-03 8.17E-17 0.06436387
28 1.06E-02 3.06E-15 0.31396925
29 9.78E-04 9.37E-15 0.02470255
30 3.73E-04 4.85E-17 0.00940052
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5 Conclusions

To conclude this paper, the preliminary results will help us better understand with
more clarity the Differential Evolution (DE) algorithm. In the same way we can
discover the way of exploring and then exploitating the algorithm. The results will
be observed to see if the majority are good although in very few cases the errors are
very high. We can tentatively conclude when Fuzzy logic is applied we can get
better results from Differential Evolution (DE) avoiding high errors, like those
obtained when trial and error is used.

Table 9 Demonstrates the
results with F = 0.04

Experimento Promedio Mejor Peor

1 0.01179166 4.34E-13 0.12649579
2 0.00689591 3.79E-11 0.07022387
3 0.00884897 8.91E-16 0.02545798
4 0.00786076 3.11E-12 0.08015746
5 0.01261989 4.97E-11 0.27651624
6 0.01652249 2.22E-10 0.25001424
7 0.01179166 4.34E-13 0.12649579
8 0.00884897 8.91E-16 0.17181307
9 0.00786076 3.11E-12 0.08015746
10 0.01261989 4.97E-11 0.27651624
11 0.01652249 3.49E-11 0.25001424
12 0.02675393 5.16E-13 0.17059178

13 0.00347209 1.08E-13 0.02806518
14 0.04041566 1.80E-15 0.74575319
15 0.00468022 9.61E-13 0.05179923
16 0.01471826 1.73E-12 0.21308918
17 0.01179166 4.34E-13 0.06084437
18 0.00884897 8.91E-16 0.02545798
19 0.00786076 3.11E-12 0.08015746
20 0.01652249 3.49E-11 0.25001424
21 0.02675393 5.16E-13 0.3559589
22 0.00347209 1.08E-13 0.02806518
23 0.04041566 1.80E-15 0.36500605
24 0.00468022 9.61E-13 0.05179923
25 0.01471826 3.93E-09 0.21308918
26 0.00247429 7.88E-13 0.01730106
27 0.02497659 2.84E-10 0.0582611
28 0.00639566 3.73E-13 0.04982843
29 0.0372501 6.99E-11 0.61885365
30 0.00866303 7.95E-12 0.11939131
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Ensemble Neural Network with Type-1
and Type-2 Fuzzy Integration for Time
Series Prediction and Its Optimization
with PSO

Patricia Melin, Martha Pulido and Oscar Castillo

Abstract This paper describes the design of ensemble neural networks using
Particle Swarm Optimization (PSO) for time series prediction with Type-1 and
Type-2 Fuzzy Integration. The time series that is being considered in this work is
the Mackey-Glass benchmark time series. Simulation results show that the
ensemble approach produces good prediction of the Mackey-Glass time series.

Keywords Ensemble neural networks ⋅ Particle swarm ⋅ Optimization ⋅ Time
series prediction

1 Introduction

Time Series is defined as a set of measurements of some phenomenon or experi-
ment recorded sequentially in time. The first step in analyzing a time series is to plot
it, this allows: to identify the trends, seasonal components and irregular variations.
A classic model for a time series can be expressed as a sum or product of three
components: trend, seasonality and random error term.

Time series predictions are very important because based on them we can
analyze past events to know the possible behavior of futures events and thus we can
take preventive or corrective decisions to help avoid unwanted circumstances.

The contribution of this paper is the proposed approach for ensemble neural
network optimization using particle swarm optimization. The proposed models are
also used as a basis for statistical tests [1–4, 9, 10, 12, 14, 15, 19–22].

The rest of the paper is organized as follows: Sect. 2 describes the concepts of
optimization, Sect. 3 describes the concepts of particle swarm optimization, Sect. 4
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describes the concepts of Fuzzy Systems as Methods of integration, Sect. 5
describes the problem and the proposed method of solution, Sect. 6 describes the
simulation results of the proposed method, and Sect. 7 shows the conclusions.

2 Optimization

Regarding optimization, we have the following situation in mind: there exists a
search space V, and a function:

g:V →ℝ

and the problem is to find

argmin g.
v∈V

Here, V is vector of decision variables, and g is the objective function. In this
case we have assumed that the problem is one of minimization, but everything we
say can of course be applied mutatis mutandis to a maximization problem.
Although specified here in an abstract way, this is nonetheless a problem with a
huge number of real-world applications.

In many cases the search space is discrete, so that we have the class of com-
binatorial optimization problems (COPs). When the domain of the g function is
continuous, a different approach may well be required, although even here we note
that in practice, optimization problems are usually solved using a computer, so that
in the final analysis the solutions are represented by strings of binary digits (bits)
[32].

There are several optimization techniques that can be applied to neural networks,
some of these are: evolutionary algorithms [18], ant colony optimization [5] and
Particle swarm [7].

3 Particle Swarm Optimization

The Particle Swarm Optimization algorithm maintains a swarm of particles, where
each particle represents a potential solution. In analogy with evolutionary compu-
tation paradigms, a swarm is a population, while a particle is similar to an individual.
In simple terms, the particles are “flown” through a multidimensional search space
where the position of each particle is adjusted according to its own experience and
that of their neighbors. Let xi(t) denote the position of particle i in the search space at

376 P. Melin et al.



time step t unless otherwise selected, t denotes discrete time steps. The position of
the particle is changed by adding a velocity, vi(t) to the current position i.e.

xi t+1ð Þ= xiðtÞ+ vi t+1ð Þ ð1Þ

with xið0Þ∼U Xmin,Xmaxð Þ.
It is the velocity vector the one that drives of the optimization process, and reflects
both the experimental knowledge of the particles and the information exchanged in
the vicinity of particles. The experimental knowledge of a particle which is gen-
erally known as the cognitive component, which is proportional to the distance of
the particle from its own best position (hereinafter, the personal best position
particles) that are from the first step. Socially exchanged information is known as
the social component of the velocity equation.

For the gbest PSO, the particle velocity is calculated as:

vijðt+1Þ= vijðtÞ+ c1r1 yijðtÞ− xijðtÞ
� �

, + c2r2ðtÞ yĵðtÞ− xijðtÞ
� � ð2Þ

where vij(t) is the velocity of the particle i in dimension j at time step t, c1 y c2 are
positive acceleration constants used to scale the contribution of cognitive and social
skills, respectively, y r1j(t), y r2j(t) ∼ U(0, 1) are random values in the range [0, 1].

The best personal position in the next time step t + 1 is calculated as:

yiðt+1Þ= yi tð Þ if f ðxi xi t+1ð Þð Þ≥ f yi tð ÞÞ
xi t+1ð Þ if f xi xi t+1ð Þð Þ> f yi tð Þð Þ

�

ð3Þ

where f :ℝnx →ℝ is the fitness function, as with EAs, measuring fitness with the
function will help find the optimal solution, for example the objective function
quantifies the performance, or the quality of a particle (or solution).

The overall best position, y ̂(t) at time step t, is defined as:

y ̂ðtÞ ϵ y0ðtÞ, . . . , ynsðtÞf gf yðtÞð Þ=min f y0ðtÞð Þ, . . . f ynsðtÞð Þ,f g ð4Þ

where nS is the total number of particles in the swarm. Importantly, the above
equation defining and establishing y ̂ the best position is uncovered by either of the
particles so far as this is usually calculated from the best position best personal
[5, 6, 10].

The overall best position may be selected from the actual swarm particles, in
which case:

y ̂ðtÞ=min f xoðtÞð Þ, . . . f xnsðtÞð Þ,f g ð5Þ
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4 Fuzzy Systems as Methods of Integration

Fuzzy logic was proposed for the first time in the mid-sixties at the University of
California Berkeley by the brilliant engineer Lofty A. Zadeh., who proposed what
it’s called the principle of incompatibility: “As the complexity of system increases,
our ability to be precise instructions and build on their behavior decreases to the
threshold beyond which the accuracy and meaning are mutually exclusive char-
acteristics.” Then introduced the concept of a fuzzy set, under which lies the idea
that the elements on which to build human thinking are not numbers but linguistic
labels. Fuzzy logic can represent the common knowledge as a form of language that
is mostly qualitative and not necessarily a quantity in a mathematical language [29].

Type-1 Fuzzy system theory was first introduced by Zadeh [13] in 1965, and has
been applied in many areas such as control, data mining, time series prediction, etc.

The basic structure of a fuzzy inference system consists of three conceptual
components: a rule base, which contains a selection of fuzzy rules, a database (or
dictionary) which defines the membership functions used in the rules, and reasoning
mechanism, which performs the inference procedure (usually fuzzy reasoning) [14].

Type-2 Fuzzy systems were proposed to overcome the limitations of a type-1
FLS, the concept of type-1 fuzzy sets was extended into type-2 fuzzy sets by Zadeh
in 1975. These were designed to mathematically represent the vagueness and
uncertainty of linguistic problems; thereby obtaining formal tools to work with
intrinsic imprecision in different type of problems; it is considered a generalization
of the classic set theory. Type-2 fuzzy sets are used for modeling uncertainty and
imprecision in a better way [15–17].

5 Problem Statement and Proposed Method

The objective of this work is to develop a model that is based on integrating the
responses of an ensemble neural network using type-1 and type-2 fuzzy systems
and their optimization. Figure 1 represents the general architecture of the proposed
method, where historical data, analyzing data, creation of the ensemble neural
network and integrate responses of the ensemble neural network with type-2 fuzzy
system integration and finally obtaining the outputs as shown. The information can
be historical data, these can be images, time series, etc., in this case we show the
application to time series prediction of the Dow Jones where we obtain good results
with this series.

Figure 2 shows a type-2 fuzzy system consisting of 5 inputs depending on the
number of modules of the neural network ensemble and one output. Each input and
output linguistic variable of the fuzzy system uses 2 Gaussian membership func-
tions. The performance of the type-2 fuzzy integrators is analyzed under different
levels of uncertainty to find out the best design of the membership functions and
consist of 32 rules. For the type-2 fuzzy integrator using 2 membership functions,
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Fig. 1 General architecture
of the proposed method
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which are called low prediction and high prediction for each of the inputs and
output of the fuzzy system. The membership functions are of Gaussian type, and we
consider 3 sizes for the footprint uncertainty 0.3, 0.4 and 0.5 to obtain a better
prediction of our time series.

In this Fig. 3 shows the possible rules of a type-2 fuzzy system.

Pronostico1 (2)

Pronostico2 (2)

Pronostico3 (2)

Pronostico4 (2)

Pronostico5 (2)

Pronostico (2)

Mackey-Glass

(mamdani)

32 rules

Fig. 2 Type-2 fuzzy system for the Mackey Glass time series

Fig. 3 Rules of the type-2 fuzzy inference system for the Dow Jones time series
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Figure 4 represents the Particle Structure to optimize the ensemble neural net-
work, where the parameters that are optimized are the number de modules, number
of layers, number of neurons.

Data of the Mackey-Glass time series was generated using Eq. (6). We are using
800 points of the time series. We use 70 % of the data for the ensemble neural
network trainings and 30 % to test the network.

The Mackey-Glass Equation is defined as follows:

x ̇ðtÞ= 0.2xðt− τÞ
1+ x10ðt− τÞ − 0.1xðtÞ ð6Þ

where it is assumed x(0) = 1.2, τ=17, τ=34, and 68 x(t) = 0 for t < 0. Figure 5
shows a plot of the time series for these parameter values.

Number
of

Modules

Number
of

Layers 1
Neurons 1

Neurons
... n

Fig. 4 Particle structure to optimize the ensemble neural network
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Fig. 5 Mackey Glass time series
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This time series is chaotic, and there is no clearly defined period. The series does
not converge or diverge, and the trajectory is extremely sensitive to the initial
conditions. The time series is measured in number of points, and we apply the fourth
order Runge-Kutta method to find the numerical solution of the equation [10, 11].

6 Simulation Results

In this section we present the simulation results obtained with the integration of the
ensemble neural network with type-2 fuzzy integration and its optimization with the
genetic algorithm for the Mackey-Glass time series.

Table 1 shows the particle swarm optimization where the best prediction error is
of 0.0063313.

Table 1 Particle swarm results for the ensemble neural network τ=17

No. Iterations Panicles Number
modules

Number
layers

Number
neurons

Duration Prediction
error

1 100 100 4 2 20, 14
13, 16
17, 8
6, 26

02:23:18 0.0076048

2 100 100 2 2 12, 16
12, 26

01:45:45 0.0063313

3 100 100 2 3 17, 5, 18
6, 25, 24

01:28:42 0.0018838

4 100 100 4 2 7, 24
14, 22
1, 8
15, 23

02:40:20 0.0073005

5 100 100 4 2 14, 9
11, 26
27, 16
11, 13

02:11:34 0.0081418

6 100 100 4 2 16, 16
9, 19
6, 6
9, 12

01:34:05 0.0087983

7 100 100 2 3 11, 23, 26
15, 15, 5

02:09:17 0.0076315

8 100 100 2 2 14, 10
14, 21

01:23:28 0.0061291

9 100 100 3 2 9, 5
23, 20
22, 13

02:17:06 0.0053679

10 100 100 3 3 23, 14, 16
19, 10, 23
22, 12, 11

02:20:04 0.0061983
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Fuzzy integration is performed initially by implementing a type-1 fuzzy system
in which the best result was in the experiment of row number 5 of Table 2 with an
error of: 0.1521.

Fuzzy integration is performed by implementing a type-1 fuzzy system in which
the results were as follows: for the best evolution with a degree of uncertainty of 0.3
a forecast error of 0.1785 was obtained, and with a degree of uncertainty of 0.4 a
forecast error of 0.1658 and with a degree of uncertainty of 0.5 a forecast error of
0.3134 was obtained, as shown in Table 3.

Table 4 shows the particle swarm optimization where the best prediction error is
of 0.0019726.

Fuzzy integration is performed by implementing a type-1 fuzzy system in which
the best result was in the experiment of row number 2 of Table 5 with an error of:
0.4586.

Table 2 Results of Type-1 fuzzy integration for τ=17

Experiment Prediction error with fuzzy integration Type-1

Experiment 1 0.1879
Experiment 2 0.1789
Experiment 3 0.2221
Experiment 4 0.1888
Experiment 5 0.1521
Experiment 6 0.2561
Experiment 7 0.1785
Experiment 8 0.1942
Experiment 9 0.2536
Experiment 10 0.1965

Table 3 Results of Type-2 fuzzy integration for τ=17

Experiment Prediction error
0.3
Uncertainty

Prediction error
0.4
Uncertainty

Prediction error
0.5
Uncertainty

Experiment 1 0.2385 0.2385 0.3952
Experiment 2 0.2489 0.2231 0.3909
Experiment 3 0.2482 0.2226 0.3642
Experiment 4 0.2214 0.1658 0.3856
Experiment 5 0.2658 0.2234 0.3857
Experiment 6 0.2756 0.2592 0.3134
Experiment 7 0.1785 0.2352 0.3358
Experiment 8 0.1825 0.2546 0.4561
Experiment 9 0.2018 0.2373 0.3394
Experiment 10 0.2076 0.2003 0.3687
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Table 4 Particle swarm results for the ensemble neural network for τ=34

No. Iterations Particles Number
modules

Number
layers

Number
neurons

Duration Prediction
error

1 100 100 4 3 12, 23, 12
9, 19, 7

02:45:14 0.0019726

2 100 100 4 3 19, 11, 11
16, 11, 14
15, 24, 19
22, 13, 27

01:28:06 0.0063623

3 100 100 3 2 4, 9
9, 20
10, 11
23, 20

02:03:06 0.0046644

4 100 100 4 2 14, 18
12, 19
20, 17
10, 6

03:22:13 0.0072153

5 100 100 3 2 7, 6
10, 15
12, 16

01:39:13 0.0075658

6 100 100 3 3 14, 20, 18
15, 21, 12
19, 17, 26

03:08:02 0.0047515

7 100 100 2 2 4, 24
9, 26

02:00:10 0.003601

8 100 100 2 2 24, 17
14, 23

02:27:21 0.0065506

9 100 100 3 3 7, 11, 8
23, 21, 21
17, 8, 11

02:03:12 0.0037758

10 100 100 2 3 20, 28, 15
15, 12, 24

02:04:18 0.0066375

Table 5 Results of Type-1
fuzzy integration for τ=34

Experiment Prediction error with fuzzy
integration Type-1

Experiment 1 0.9587
Experiment 2 0.4586
Experiment 3 0.5871
Experiment 4 1.2569
Experiment 5 0.9517
Experiment 6 1.556
Experiment 7 1.0987
Experiment 8 1.9671
Experiment 9 1.698
Experiment 10 1.4626
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Table 6 Results of Type-2 fuzzy integration for τ=34

Evolution Prediction error
0.3
Uncertainty

Prediction error
0.4
Uncertainty

Prediction error
0.5
Uncertainty

Evolution 1 0.6036 0.8545 0.4570
Evolution 2 1.5862 1.0021 1.3533
Evolution 3 0.8002 0.6943 0.3893
Evolution 4 1.4032 0.9617 0.9665
Evolution 5 0.8658 0.8299 0.6358
Evolution 6 1.3986 0.1052 1.2354
Evolution 7 1.465 1.3566 0.6646
Evolution 8 1.7453 0.8966 0.8241
Evolution 9 0.9866 0.6524 0.6661
Evolution 10 1.4552 0.9956 0.7557

Table 7 Particle swarm results for the ensemble neural network for τ=68

No. Iterations Particles Number of
modules

Number of
layers

Number of
neurons

Duration Prediet
ion error

1 100 100 2 3 17, 5, 18
6, 25, 19

02:05:53 0.0019348

2 100 100 2 2 7, 8
6, 20

04:1936 0.0041123

3 100 100 2 3 21, 11, 16
5, 10, 10

02:23:02 0.0042367

4 100 100 4 3 15, 7, 4
11, 22, 5
24, 19, 22
4, 14, 11

02:37:06 0.0050847

5 100 100 3 2 22, 23
2, 21
10, 2

01:5 0.0037132

6 100 100 4 3 10, 13, 22
24, 8, 17
13, 16, 20
7, 24, 17

02:10:27 0.0057235

7 100 100 2 2 8, 20
15, 23

0.0033082

8 100 100 3 2 28, 6
2, 16
18, 10

01:40:18 0.0057402

9 100 100 3 2 22, 17
10, 10
21, 12

02:45:31 0.0047309

10 100 100 2 3 22, 11, 18
27, 7, 14

01:35:13 0.0044649
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Fuzzy integration is performed by implementing a type-2 fuzzy system in which
the results were as follows: for the best evolution with a degree of uncertainty of 0.3
a forecast error of 0.6036 was obtained, and with a degree of uncertainty of 0.4 a
forecast error of 0.6524 and with a degree of uncertainty of 0.5 a forecast error of
0.3893 was obtained, as shown in Table 6.

Table 7 shows the particle swarm optimization where the prediction error is of
0.0019348.

Fuzzy integration is performed by implementing a type-1 fuzzy system in which
the best result was in the experiment of row number 4 of Table 8 with an error of:
0.32546.

Fuzzy integration is also performed by implementing a type-2 fuzzy system in
which the results were as follows: for the best evolution with a degree of uncer-
tainty of 0.3 a forecast error of 0.6825 was obtained, and with a degree of uncer-
tainty of 0.4 a forecast error of 0.7652 and with a degree of uncertainty of 0.5 a
forecast error of 0.6581 was obtained, as shown in Table 9.

Table 8 Results of Type-1
fuzzy integration for τ=68

Experiment Prediction error with fuzzy
integration Type-1

Experiment 1 0.8753
Experiment 2 0.3625
Experiment 3 0.6687
Experiment 4 0.3254
Experiment 5 0.5489
Experiment 6 1.3183
Experiment 7 1.8972
Experiment 8 1.6977
Experiment 9 1.5879
Experiment 10 0.9652

Table 9 Results of Type-2 fuzzy integration for τ=68

Evolution Prediction error
0.3
Uncertainty

Prediction error
0.4
Uncertainty

Prediction error
0.5
Uncertainty

Evolution 1 0.7895 0.9631 0.7365
Evolution 2 0.9875 1.2365 1.564
Evolution 3 0.9874 0.7965 0.6581
Evolution 4 1.5325 0.9874 0.9723
Evolution 5 0.7763 0.9723 0.9858
Evolution 6 0.8694 0.9235 1.3697
Evolution 7 0.6825 1.4263 0.6646
Evolution 8 1.336 0.8963 0.8288
Evolution 9 0.9852 0.7652 0.7234
Evolution 10 1.365 1.4224 1.5984
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7 Conclusions

Using the technique of PSO particle we can reach the conclusion that this algorithm
is good for reducing the execution time compared to other techniques such as
genetic algorithms, and also architectures for ensemble neural network are small
and they applied to the time series, as in this case the time series of Mackey-Glass.
Also the outputs results obtained integrating the results of the neural network with
type-1 and type-2 fuzzy systems and integrated type-2 the best results with type 2
are very good.
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A Generalized Net Model for Evaluation
Process Using InterCriteria Analysis
Method in the University

Evdokia Sotirova, Veselina Bureva and Sotir Sotirov

Abstract In the paper is constructed a generalized net model which describes the
process of evaluation of objects using a set of criteria. For calculating evaluations is
used InterCriteria analysis method that detects possible correlations between pairs
of criteria. The objects can be lecturers, students, Ph.D. candidates, problems solved
by students, disciplines, and so on. The model can be used for monitoring and
analysis of the process of assessment.

Keywords Generalized net ⋅ Intercriteria analysis ⋅ Intuitionistic fuzziness ⋅
Index matrices ⋅ University

1 Introduction

The present paper is a continuation of previous investigations into the modelling of
an information flow in a university. In a series of research, the authors study some
of the most important processes of functioning of universities [1–13]. For modelling
are used Generalized Nets (GNs, see [14, 15]). For assessment the processes is used
theory of intuitionistic fuzzy sets (IFSs, [16, 17]). In [3] is constructed generalized
net model of e-learning evaluation with intuitionistic fuzzy estimations. In papers
[6, 7] is modelled the process of lecturers’ evaluation of student work with intu-
itionistic fuzzy estimations. In [8] is described the process of ordering of university
subjects. In [9, 10] theories of generalized nets and intuitionistic fuzzy sets are
applied for evaluation of lecturers and student’s course. In [11] is proposed
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a method for evaluation of the rating of the university subjects using intuitionistic
fuzzy estimations. The main focus in [12] is to analyse the processes in the
preparation of Ph.D. candidates. In [13] is investigated how to apply some data
mining techniques for clustering and classification the assessment of the different
publications and articles. The aim of [18] is to use the techniques of self-organizing
map in the process of e-learning to assess the students’ knowledge on relevant
topics in intuition-istic fuzzy form.

In this paper we construct a generalized net model for evaluation process of
objects in typical university using a set of criteria. The objects can be lecturers,
students, Ph.D. candidates, problems solved by students, disciplines, and so on. For
calculating evaluations is used a new approach named InterCriteria Analysis
(ICA) [2]. It is based on theory of intuitionistic fuzzy sets [16, 17] and index
matrices [19, 20].

Via InterCriteria Analysis method we can reduce a number of criteria through
calculating a correlations for each pair of criteria in the form of intuitionistic fuzzy
pairs of values [1, 21]. The intuitionistic fuzzy pairs of values are the intuitionistic
fuzzy evaluation in the interval [0, 1] of the relations that can be established
between any two criteria Cw and Ct.

2 Realization

Let us have a number of Ei experts, i=1, . . . , p; a number of Cj criteria,
j=1, . . . , q; and a number of Ok objects, k=1, . . . , s. So we use the following sets:
a set of criteria Cj = fC1, . . . ,Cqg, a set of objects Ok = fO1, . . . ,Osg, and a set of
experts Ei = fE1, . . . ,Epg.

The experts evaluate the objects using the criteria. As a result we obtain an index
matrix that contains two sets of indexes, one for rows and another for columns [19,
20]:

ð1Þ

The next step is applying the InterCriteria Analysis method for calculating
evaluations. Now we obtain a new index matrix M* with intuitionistic fuzzy pairs
⟨μCw,Ct

, νCw,Ct⟩ that represents an intuitionistic fuzzy evaluation of the relations
between every pair of criteria Cw and Ct:
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ð2Þ

If we work with many criteria, we can use some Data Mining technique for
analysis the obtained estimations, for example classification or clusterization.

The GN-model (Fig. 1) contains 7 transitions and 24 places, collected in five
groups and related to the five types of the tokens that will enter respective types of
places:

Z1

a3

Z2

Z4

Z5

b4

a4

Z6

Z7

a7

e2

a9

b5

a1 a2

b3

b1 b2

d3

d1 d2

c5

Z3

c3

c1 c2

c4

d4

a8

a5

e1

Fig. 1 GN Model for evaluation process using InterCriteria Analysis method
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• α-tokens and a-places represent the experts and their activities,
• β-tokens and b-places represent the objects and connected with them tasks,

functions, activities,
• γ-tokens and c-places represent the criteria and their correlations,
• φ-tokens and d-places represent the Data Mining techniques for analysis of the

intuitionistic fuzzy pairs of values representing correlations for each pair of
criteria,

• δ-tokens and e-places represent the InterCriteria analysis method and algorithms
for forecasting.

• For brevity, we shall use the notation α-, β-, γ-, φ- and δ-tokens instead of αi-,
βj-, γk-, φl- and δm- tokens, where i, j, k, l, m are numerations of the respective
tokens.

• Initially the α-, β-, γ-, φ- and δ-tokens remain, respectively, in places a3, b3, c3
d3 and e2 with initial characteristics:

xα0 = “list of experts with their names and specialties”,
xβ0 = “names of the objects and their current characteristics”,

xγ0 = “name and current evaluations of a criteria”,
xφ0 = “name and current status of a Data Mining techniques”,
xδ0 = “InterCriteria analysis method and algorithms for forecasting”.

Let xαcu, x
β
cu, x

γ
cu, x

φ
cu and xδcu be the current characteristics of the α-, β-, γ-, φ- and

δ-tokens, respectively. The forms of the transitions are the following.
Let xαcu, x

β
cu, x

γ
cu, x

φ
cu and xδcu be the current characteristics of the α-, β-, γ-, φ- and

δ-tokens, respectively. The forms of the transitions are the following.

where:

Wa
3, 2 =“The expert must evaluate”

Wa
3, 3 = ¬Wa

3, 2

The α-tokens do not obtain new characteristic in place a3 and they obtain the
characteristic

xαcu = “expert, list of the objects that have to be evaluated, list of criteria” in place a2
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where:

Wb
3, 2 = “The objects are included in xαcu”,

Wb
3, 3 = ¬Wb

3, 2

The β-tokens do not have new characteristic in place b3 and they obtain the
characteristic

xβcu = “current objects that have to be evaluated” in place b2

where:

Wc
3, 2 = “The criteria are included in xαcu”,

Wc
3, 3 = ¬Wc

3, 2

The γ-tokens do not have new characteristic in place c3 and they obtain the
characteristic

xγcu = “current evaluating criteria for the evaluated objects” in place c2

where:

Wd
3, 2 = “The intuitionistic fuzzy pairs for correlations of criteria must be evaluated

by Data mining technique”,
Wd

3, 3 = ¬Wd
3, 2
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The φ-tokens do not obtain new characteristic in place d3 and they obtain the
characteristic

xφcu = “Data mining technique” in place d2

where:

Wa
5, 4 = “All objects are evaluated via criteria by the current expert”,

Wa
5, 5 = ¬Wa

5, 4

The β- and γ-tokens do not have new characteristic in places b4 and c4,
respectively, while α-tokens obtain characteristic

“The index matrix M with evaluation of the Ok objects using a set of criteria Cj”

in place a5.

where:

Wa
4, 7 = “The matrix with intuitionistic fuzzy pairs is obtained”

The δ-tokens do not obtain new characteristic in places e2. The α-tokens that
enter place a7 obtain characteristics

“The index matrix M* with degrees of correspondence between the criteria C1,
…, Cq”.

Wa
7, 8 = “There is a token in place d2 and xφcu is included in xαcu”,

Wa
7, 9 = ¬Wa

7, 8,
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Wa
8, 9 = “The intuitionistic fuzzy pairs of values are evaluated with Data mining

technique”

The α-, β-, γ- and φ-tokens do not obtain new characteristic in places a8, b5, c5
and d4.
The α-tokens that enter place a9 obtain characteristics

“Results from analysis of the intuitionistic fuzzy pairs”

3 Implementation of the InterCriteria Analysis Method

As an input data of the InterCriteria Analysis method we use the students’ marks for
81 students.

Realization 1. Correlations between different disciplines.
In this section are discussed students’ marks obtained in 9 disciplines (Table 1).

Here we use 81 × 9 table and a software application that implements the
InterCriteria Analysis algorithm and returns the results in the form of two index
matrices in Tables 2 and 3, containing the membership and the non-membership
parts of the intuitionistic fuzzy correlations detected between each pair of criteria
(36 pairs). In this way we construct matrix M* that gives the relations among the
criteria. From practical considerations, it has been more flexible to work with two
index matrices Mμ and Mν, rather than with the index matrix M* of intuitionistic
fuzzy pairs.

From the Tables 1 and 2 we obtain the following correlations, based on the
membership coefficient μ in descending order (Table 4).

The analysis can help for logical ordering of the study subjects, accounting on
the needs of the students’ university training. The correlations can be used for
proper constructing of an academic curriculum with connected couples of disci-
plines, and providing opportunity for easier assimilation of the obtained material
and continuity from one semester to another. Through properly analysis of the
relations among disciplines can be obtained sustainability of the knowledge.

Table 1 Evaluated
disciplines

I. Mathematics 1
II. Mathematics 2
III. Mathematics 3
IV. Discrete structures
V. Informatics 1
VI. Informatics 2
VII. Programming and using of computers
VIII. Synthesis and analysis of algorithms
IX. Programming languages
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The precise distribution of the order of the university subjects is very important for
the quality of the training process and costs a lot of time and resources.

Realization 2. Correlations for level of significance of the different disciplines in
average grade.

In this section are discussed students’ marks obtained in the same 9 disciplines
from Table 1 and the average grade (row X in Table 5). We work with data for 81
students, obtained against 10 criteria. We use 81 × 10 table and a software appli-
cation that implements the InterCriteria Analysis algorithm and returns the results in
the form of two index matrices in Tables 5 and 6, containing the membership and
the non-membership parts of the intuitionistic fuzzy correlations detected between
each pair of criteria (45 pairs).

From the Tables 5 and 6 we obtain the following correlations between average
grade and disciplines, based on the membership coefficient μ in descending order
(Table 7).

The correlations between disciplines and average grade based on membership
coefficient μ can be called sensitization of the training process. The students have to
choose one or more subjects during their study. Some of them prefer to choose a

Table 2 Membership part of the intuitionistic fuzzy pairs, giving the InterCriteria correlations

μ I II III IV V VI VII VIII IX

I 1.000 0.795 0.754 0.569 0.467 0.467 0.344 0.610 0.426
II 0.795 1.000 0.836 0.487 0.446 0.467 0.405 0.508 0.426
III 0.754 0.836 1.000 0.549 0.467 0.508 0.344 0.569 0.467
IV 0.569 0.87 0.549 1.000 0.569 0.549 0.528 0.856 0.651
V 0.467 0.446 0.467 0.569 1.000 0.836 0.590 0.569 0.774
VI 0.467 0.467 0.508 0.549 0.836 1.000 0.487 0.569 0.672
VII 0.344 0.405 0.344 0.528 0.590 0.487 1.000 0.508 0.774
VIII 0.610 0.508 0.569 0.856 0.569 0.569 0.508 1.000 0.672
IX 0.426 0.426 0.467 0.651 0.774 0.672 0.774 0.672 1.000

Table 3 Non-membership part of the intuitionistic fuzzy pairs, giving the InterCriteria
correlations

ν I II III IV V VI VII VIII IX

I 0.000 0.000 0.000 0.082 0.246 0.164 0.205 0.103 0.185
II 0.000 0.000 0.000 0.123 0.185 0.123 0.144 0.123 0.144
III 0.000 0.000 0.000 0.062 0.123 0.082 0.164 0.062 0.103
IV 0.082 0.123 0.062 0.000 0.041 0.062 0.082 0.000 0.021
V 0.246 0.185 0.123 0.041 0.000 0.000 0.041 0.062 0.000
VI 0.164 0.123 0.082 0.062 0.000 0.000 0.103 0.062 0.062
VII 0.205 0.144 0.164 0.082 0.041 0.103 0.000 0.123 0.000
VIII 0.103 0.123 0.062 0.000 0.062 0.062 0.123 0.000 0.062
IX 0.185 0.144 0.103 0.021 0.000 0.062 0.000 0.062 0.000
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few specific subjects, the other choose subjects that answer their needs. Usually
students can choose subjects from list with available subjects for the current
semester. When disciplines with a high coefficient of sensitization are chosen and
successfully completed, students can raise their average grade.

Table 4 Correlation between disciplines based on membership part of the intuitionistic fuzzy
pairs

IV—Discrete structures VIII—Synthesis and analysis of algorithms
V—Informatics 1 VI—Informatics 2
IV—Discrete structures III—Mathematics 3
I—Mathematics 1 II—Mathematics 2
I—Programming and using of computers II—Programming languages

Table 5 Membership part of the intuitionistic fuzzy pairs, giving the InterCriteria correlations

μ I II III IV V VI VII VIII IX X

I 1.000 0.795 0.754 0.569 0.467 0.467 0.344 0.610 0.426 0.713
II 0.795 1.000 0.836 0.487 0.446 0.467 0.405 0.508 0.426 0.549
III 0.754 0.836 1.000 0.549 0.467 0.508 0.344 0.569 0.467 0.549
IV 0.569 0.487 0.549 1.000 0.569 0.549 0.528 0.856 0.651 0.774
V 0.467 0.446 0.467 0.569 1.000 0.836 0.590 0.569 0.774 0.631
VI 0.467 0.467 0.508 0.549 0.836 1.000 0.487 0.569 0.672 0.569
VII 0.344 0.405 0.344 0.528 0.590 0.487 1.000 0.508 0.774 0.528
VIII 0.610 0.508 0.569 0.856 0.569 0.569 0.508 1.000 0.672 0.754
IX 0.426 0.426 0.467 0.651 0.774 0.672 0.774 0.672 1.000 0.631
X 0.713 0.549 0.549 0.774 0.631 0.569 0.528 0.754 0.631 1.000

Table 6 Non-membership part of the intuitionistic fuzzy pairs, giving the InterCriteria
correlations

ν I II III IV V VI VII VIII IX X

I 0.000 0.000 0.000 0.082 0.246 0.164 0.205 0.103 0.185 0.123
II 0.000 0.000 0.000 0.123 0.185 0.123 0.144 0.123 0.144 0.082
III 0.000 0.000 0.000 0.062 0.123 0.082 0.164 0.062 0.103 0.041
IV 0.082 0.123 0.062 0.000 0.041 0.062 0.082 0.000 0.021 0.000
V 0.246 0.185 0.123 0.041 0.000 0.000 0.041 0.062 0.000 0.082
VI 0.164 0.123 0.082 0.062 0.000 0.000 0.103 0.062 0.062 0.103
VII 0.205 0.144 0.164 0.082 0.041 0.103 0.000 0.123 0.000 0.062
VIII 0.103 0.123 0.062 0.000 0.062 0.062 0.123 0.000 0.062 0.000
IX 0.185 0.144 0.103 0.021 0.000 0.062 0.000 0.062 0.000 0.021
X 0.123 0.082 0.041 0.000 0.082 0.103 0.062 0.000 0.021 0.000
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4 Conclusions

The constructed generalized net model of the process of evaluation represents an
InterCriteria analysis method that detects possible correlations between pairs of
criteria. It can be applied for monitoring and analysis of the process of assessment
in a university. The evaluated objects can be lecturers, students, PhD candidates,
problems solved by students, disciplines, and so on. Two implementations based on
membership part of the intuitionistic fuzzy pairs are given. In the first correlations
between different disciplines are found for proper constructing of an academic
curriculum. In the second correlations for level of significance of the different
disciplines in average grade are analyzed. The two realizations can be helpful for
achieving of the sustainability and sensitization of the learning process.
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Ituitionistic Fuzzy Estimation
of the Generalized Nets Model
of Spatial-Temporal Group Scheduling
Problems
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Stanislav Simeonov, Wolfram Hardt and Neli Simeonova

Abstract A cyber-physical system (CPS) is a system of collaborating computational
elements controlling physical entities. Nowadays cyber-physical systems can be found
in areas as diverse as robotics, automotive, chemical processes, civil infrastructure,
energy, healthcare, manufacturing, transportation, entertainment, and consumer appli-
ances. In this paper, we address the problem of spatial-temporal group scheduling using
Generalized nets (GN). We use GN in order to model the spatial, temporal, ordered and
concurrent character of our mobile, distributed system. Our model is based on a discrete
topology in which devices can change their location by moving from cell to cell. Using
the GN, we model movement in a heterogeneous terrain as well as task execution or
access to other resources of the devices. Intuitionistic Fuzzy Logic (IFL) are defined as
extensions of ordinary fuzzy sets. All results which are valid for fuzzy sets can be
transformed here too. Also, all research, for which the apparatus of fuzzy sets can be
used, can be used to describe the details of IFL. In this paper we use it to obtain the
Intuitionistic Fuzzy Estimation (IFE) for obtaining the degree of effectiveness, the
degree of ineffectiveness of the robot and uncertainty during the robot movement.
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1 Introduction

Cyber-Physical Systems (CPS) [1] are integrations of computation, networking, and
physical processes. Embedded computers and networks monitor and control the
physical processes, usually with feedback loops where physical processes affect
computations and vice versa. The potential of such systems is greater than what has
been realized. There are considerable challenges, particularly because the physical
components of such systems introduce safety and reliability requirements qualita-
tively different from those in general-purpose computing. Moreover, the standard
abstractions used in computing do not fit the physical parts of the system well.

Some researchers [2] are focused on the challenges of modeling cyber-physical
systems that arise from the intrinsic heterogeneity, concurrency, and sensitivity to
timing of such systems. It uses a portion of an aircraft vehicle management systems
(VMS), specifically the fuel management subsystem, to illustrate the challenges,
and then discusses technologies that at least partially address the challenges.
Specific technologies described include hybrid system modeling and simulation,
concurrent and hetero-geneous models of computation, the use of domain-specific
ontologies to enhance modularity, and the joint modeling of functionality and
implementation architectures.

Applications of CPS arguably have high potential [1]. They include high con-
fidence medical devices and systems, assisted living, traffic control and safety,
advanced automotive systems, process control, energy conservation, environmental
control, avionics, instrumentation, critical infrastructure control (electric power,
water resources, and communications systems for example), distributed robotics
(telepresence, telemedicine), defense systems, manufacturing, and smart structures.
Networked autonomous vehicles could dramatically enhance the effectiveness and
could offer substantially more effective disaster recovery techniques. In commu-
nications, cognitive radio could benefit enormously from distributed consensus
about available band-width and from distributed control technologies. Distributed
real-time games that integrate sensors and actuators could change the (relatively
passive) nature of on-line social interactions.

By focusing on the physical world it becomes obvious that non-computational
processes (physical actions) are strongly distributed and concurrent. Thus,
designing and programming those systems have to cope with those issues. Since
thinking in distributed and concurrent terms is complexity-introducing and often
error-prone [3], we have studied this problem and proposed a suitable programming
model [4–6] that both abstracts from distribution and concurrency by allowing the
programmer to develop sequential object-oriented program code. Besides the
imperative code fragments, declarative annotations can be integrated into the source

402 S. Sotirov et al.



code for defining spatial-temporal constraints that are glued to imperative code
fragments and restrict its execution. All this requires a coordination of resources in
space and time.

The aim in this paper is to address the problem of spatial-temporal group
scheduling by using Generalized nets [7, 8] and Intuitionistic Fuzzy Logic and
based on the [9]. Our concept is to map space to time and describe physical
locations based on durations needed to change locations. The computation of a
schedule is based on those timed transitions.

Intuitionistic Fuzzy Logic (IFL) [10] are defined as extensions of ordinary fuzzy
sets. All results which are valid for fuzzy sets can be transformed here too. Also, all
research, for which the apparatus of fuzzy sets can be used, can be used to describe
the details of IFL. In this paper we use it to obtain the Intuitionistic Fuzzy Esti-
mation (IFE) for obtaining the degree of effectiveness, the degree of ineffectiveness
of the robot and uncertainty during the robot movement.

2 Assumptions

In our understanding, a task is associated with duration and, e.g., a deadline at
which the task has to be completed depending on hard or soft deadlines. Thus, tasks
may have temporal constraints. In this paper, we extend the classical view by a new
dimension: space.

A task t is described by a set of properties {d, p, p′, r, T′}, with d indicating the
duration of the task and p and p′ the beginning and ending location of the task,
respectively. A task may also bound to a fixed location—in that case p and p′ are
identical. A location is a physical position on a 2D surface. In addition, we address
the problem of performing tasks jointly, i.e., a given amount of robots r ∈ R, with |
R| denote the total number of robots, is required to perform a task that have to be
coordinated in space and time. For simplification, we assume tasks are
non-interruptable. Finally, the execution of t depends on the result of the set of
predecessor tasks T′ that need to be executed prior to t.

The 2D surface in which the robots operate is discretized and mapped to a
specific topology. Each cell ci in the topology indicate a space in which an arbitrary
amount of robots can be placed: ci ∈ {x ∈ N |0 ≤ x ≤ |R|} and ci = |R|. We support
different topologies as shown in Fig. 1 with respect to the geometry of the surface,
the discretization (cell shape) and the multi-plicity of movements. A robot can
change its location by moving in discrete steps to a neighboring cell along the
indicated arrows. On the left hand side of the figure a cell is represented by a square
and exhibits four possible movements of a robot. The middle topology doubles the
degree of freedom by allowing diagonal movements. Finally, the topology on the
right shows a discretization that is based on hexagons which allows for six different
types of movements. During each time step a robot has different options:
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• Stay in the current cell (idle)
• Move along the arrows towards a neighboring cell
• Execute a task (if the task involves movement, the robot moves towards the

tasks’ ending location while executing it at the same time).

The movement model is based on a binary state: The robot does not move (idle)
or simply moves (speed is not incorporated in the model). If a robot decides to
move to a neighboring cell, the cell transition is associated with a given amount of
time required for reaching the other cell (this again represents the worst case time
needed for moving the robot). The topology does not have a homogeneous terrain,
thus, times between cell transitions may vary. With this, we are able to model
accessible and non-accessible obstacles. Driving uphill takes more time to process
the transition than driving downhill. On the other hand, a solid formation, e.g.
rocks, are not accessible and, thus, the robots have to take the longer way in terms
of geographic distance. Altogether, this approach allows us to model the important
properties of robots moving in a terrain without the need to deal with the physics of
the actual movement actions—these are represented by the time needed for tran-
sitions between the cells.

Now, the overall goal is to find a schedule with minimal makespan such that all
tasks ti are executed according to their requirements of beginning and ending
location and the number of robots which includes physical positioning of robots.

3 Intuitionistic Fuzzy Logic

Intuitionistic Fuzzy Logic [10] (IFL) are defined as extensions of ordinary fuzzy
sets. All results which are valid for fuzzy sets can be transformed here too. Also, all
research, for which the apparatus of fuzzy sets can be used, can be used to describe
the details of IFL.

On the other hand, there have been defined over IFL not only operations similar
to those of ordinary fuzzy sets, but also operators that cannot be defined in the case
of ordinary fuzzy sets.

Fig. 1 Examples for discrete topologies

404 S. Sotirov et al.



Let a set E be fixed. An IFS A in E is an object of the following form:

A= f< x, μA xð Þ, νA xð Þ> j x∈Eg,

where functions μA : E → [0, 1] and νA : E → [0, 1] define the degree of membership
and the degree of non-membership of the element x ∈ E, respectively, and for every
x ∈ E:

0≤ μA xð Þ+ νA xð Þ≤ 1,

For every x ∈ E, let

πA xð Þ=1− μA xð Þ− νA xð Þ.

Therefore, the function π determines the degree of uncertainty.
Obviously, for every ordinary fuzzy set πA(x) = 0 for each x ∈ E, these sets have

the form:

f< x, μA xð Þ, 1− μA xð Þ> j x∈Eg.

Let a universe E be given. One of the geometrical interpretations of the IFL uses
figure F on Fig. 2.

Fig. 2 Geometrical
interpretation of one IFS

Ituitionistic Fuzzy Estimation of the Generalized Nets Model … 405



4 Generalized Net Model

The GN-model (see Fig. 3) contains 3(r + 1) transitions and 9(r + 1) places,
collected in two groups and related to the three types of the tokens that will enter
respective types of places:

s0

s

Z2

Z1

b1

a1

ar+3

ar+2

Z4+r-1

a4+r-1,1

Z4+r-1,1

Z4+r-1,2

a3

Z3

b2+r+1

b2+r-1

b2

…

b2+r

a2

a4+r-1,2

a4+r-1,3

Z4

a4.4

a4,2

Z4,1 a4,5

Z4,2

a4,9

a4,3

a4,7

a4,10

a4,1

b4,1

b4+r-1,1

a4+r-1,4

a4+r-1,5

a4+r-1,7

a4+r-1,9

a4+r-1,10

.
:

…

…

a4,6

a4,8

Z4,3

a4,11

a4,12

a4+r-1,6

a4+r-1,8

Z4+r-1,3

a4+r-1,11

a4+r-1,12

Fig. 3 Generalized net model
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• α-tokens and a-places represent the robots and its positions;
• β-tokens and b-places represent the tasks of the robots;
• γ-tokens and S-places represent the functions of the intelligent system.

For brevity, we shall use the notation α- and β-tokens instead of αi- and
βj- tokens, where i and j are numerations of the respective tokens.

In the beginning α-, β- and γ- tokens stay, respectively, in places ar+3, b2+r+1 and
s with initial characteristics:

xα0 = “robot ri, position of the robot ri (initial position p and end positions p′)” in
place ar+3,
xβ0 = “task t for the robot ri; duration d of the task”, in place b2+r+1,
for i ∈ [1, …, r],
xγ0 = “intelligent system”, in place s.

Via place s0 enter γ-token with initial characteristics:

xγ0 = “robot ri, position of the robot ri (initial position p and end positions p′),
task t for the robot ri; duration d of the task, predecessor tasks T′”.

Let xαcu, x
β
cu and xγcu be current α-, β-, and γ-tokens’ characteristics, respectively.

Generalized net is presented by a set of transitions:

A= Z1,Z2,Z4,Z4, 1,Z4, 2,Z4, 3, . . . ,Z4+ r− 1,Z4+ r− 1, 1, Z4+ r− 1, 2,Z4, 3,Z4+ r− 1, 3f g,

where transitions describe the following processes:

• Z1—Task of the intelligent system for control of the robots;
• Z2—Activity of the robots;
• Z3—Task performed of the robots;
• Z4—Choice of action for the robot 1;

…

• Z4+r−1—Choice of action for the robot r;
• Z4,1—Movement of the robot 1;
• Z4,2—Execution of a task of the robot 1;
• Z4,3—Calculating the intuitionistic fuzzy estimation of the execution of a task of

the robot 1;

…

• Z4+r−1,1—Movement of the robot r;
• Z4+r−1,2—Execution of a task of the robot r.
• Z4+r−1,3—calculating the intuitionistic fuzzy estimation of the execution of a

task of the robot r.
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The forms of the transitions are the following.

Z1 = ⟨ a2, a4, 12, a4+ r− 1, 12, b2+ r, s0, sf g, a1, b1, sf g,R1, ∨ ða2, a4, 12, a4+ r− 1, 12, b2+ r, s0, sÞ⟩

where:

and

• Ws, a1 = “The tasks are ordered in the proper way”,
• Ws, b1 =Ws, a1.

The α-token obtains characteristic “robot ri, initial position p and the end
positions p′ of the robot ri” in place a1. The β-token obtains characteristic “task t for
the robot ri; duration d of the task, predecessor tasks T′” in place b1.

The β-token obtains characteristic “task t for the robot ri; duration d of the task,
predecessor tasks T′” in place b1.

Initially when still no information for robot tasks has been obtained, all esti-
mations are given initial values of <0, 0>. When k ≥ 0, the (k + 1)-st estimation for
the effectiveness of the system is calculated on the basis of the previous estimations
according to the recurrence relation

< μk+1, νk+1 > = <
μkk+m
k+1

,
νkk+ l
k+1

> ,

where:

• m=
∑
r

i=1
mi

r ,

• n=
∑
r

i=1
ni

r
• < μk, νk > is the previous estimation, and <m, l> is the estimation of the latest

measurement, for m, l ∈ [0, 1] and m + l ≤ 1.

Z2 = ⟨ a4, 1, a1, a4+ r− 1, 3, ar + 3f g, a2, a3, . . . , ar + 2, ar + 3f g,R2, ∨ ða4, 1, a1, a4+ r− 1, 3, ar + 3Þ⟩
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where:

and

• Wr+3, a2 = “There is a feedback from robot ri”,
• Wr+3, a3 = “There is a task for robot r1”, …
• Wr+3, r+2 = “There is a task for robot rr”.

The α-token obtains characteristic “robot ri, end positions p′ of the robot ri” in
place a2. The α-token obtains characteristic “robot r1, end positions p′ of the robot
r1” in place a3. The α-token obtains characteristic “robot rn, end positions p′ of the
robot rr” in place ar+2. The α-token obtains characteristic “robot ri, end positions p′
of the robot ri” in place ar+3.

Z3 = ⟨ b4, 2, b1, b4+ r− 1, 1, b2+ r + 1f g, b2, . . . , b2+ r− 1, b2+ r, b2+ r + 1f g,R3, ∨ ðb4, 2, b1, b4+ r− 1, 1, b2+ r + 1Þ⟩

where:

and

• W2+ r+1, b2 = “There is a task for robot r1 for time d”, …
• W2+ r+1, 2+ r− 1 = “There is a task for robot rr for time d”.
• W2+ r+1, 2+ r = “There is a feedback from robot ri”,

The β-token obtains characteristic “task for robot r1, time d” in place b2. The
β-token obtains characteristic “task for robot rr, time d” in place b2+r−1. The
β-token obtains characteristic “task for robot ri, time d” in place b2+r.

Z4 = ⟨ a4, 5, a4, 7, a3, b2, a4, 4f g, a4, 1, b4, 1, a4, 2, a4, 3, a4, 4f g,R4, ∨ ða4, 5, a4, 7, ∨ a3, b2ð Þ, a4, 4Þ⟩
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where:

and

• W4, 4, a4, 1 = “There is a feedback from robot r1”,
• W4, 4, b4, 1 = “The current task for robot r1 is executed”.
• W4, 4, a4, 2 =”There is a command for movement for robot 1”
• W4, 4, a4, 3 =”There is a task for robot 1”

The α-token obtains characteristic “robot r1, end positions p′” in place a4,1. The
β-token obtains characteristic “robot r1, executed task” in place b4,1. The α-token
obtains characteristic “robot r1, end positions p′ of the robot r1” in place a4,2. The
α-token obtains characteristic “task for the robot r1” in place a4,3.

Z4, 1 = ⟨ a4, 2, a4, 7f g, a4, 5, a4, 6, a4, 7f g,R4, 1, ∨ ða4, 2, a4, 6, a4, 7Þ⟩

where:

and W4, 7, 4, 5 =W4, 7, 4, 6 “The robot 1 performed the movement to positions p′”.
The α-tokens obtain characteristic “the result of the performans of the movement

to positions p′” in places a4,5 and a4,6.

Z4, 2 = ⟨ a4, 3, a4, 10f g, a4, 8, a4, 9, a4, 10f g,R4, 2, ∨ ða4, 8, a4, 9, a4, 10Þ⟩

where:

and W4, 10, 4, 8 =W4, 10, 4, 9 “The robot 1 performed the task”.
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The α-tokens obtain characteristic “the result of the execution of the task” in
places a4,8 and a4,9.

Z4, 3 = ⟨ a4, 6, a4, 8f g, a4, 11, a4, 12f g,R4, 3, ∨ ða4, 11, a4, 12Þ⟩

where:

and W4, 8, 4, 12 = “The ituitionistic fuzzy estimation was calculated”,
The α-tokens obtain characteristic: “intuitionistic fuzzy estimation ⟨m1, l1⟩”.
The estimations ⟨m1, l1⟩ ∈ [0, 1] × [0, 1] reflects the degree of effectiveness (m1)

and the degree of ineffectiveness of the first robot (l1) for a time t.

m1 =
p1
n1

, l1 =
s1
n1

,

where:

• p1 is the number of successfully movements and tasks performans of the robot 1,
• s1 is the number of unsuccessfully movements and tasks performans of the robot 1,
• n1 is the total number of movements and tasks performans of the robot 1.

The degree of uncertainty π1 = 1 − m1 − n1 reflects the cases when the robot
have not completed a movement or task, which is the number of α-tokens in both
places a4,7 and a4,10.

Z4+ r− 1 = ⟨a4+ r− 1, 5, a4+ r− 1, 7, ar+2, b2+ r− 1, a4+ r− 1, 4g,
a4+ r− 1, 1, a4+ r− 1, 2, a4+ r− 1, 3, b4+ r− 1, 1, a4+ r− 1, 4f g,

R4+ r− 1, ∨ ða4+ r− 1, 5, a4+ r− 1, 7, ∨ ar+2, b2+ r− 1ð Þ, a4+ r− 1, 4Þ⟩

where:
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and

• W14, 11 = “There is a feedback from robot rr”,
• W14, 11 = “The current task for robot rr is executed”.
• W14, 13 = “There is a task for movement for robot r”
• W14, b11 = “There is a task for robot r”

The α-token obtains characteristic “robot rr, end positions p′” in place a4+r−1,1.
The β-token obtains characteristic “robot rr, executed task” in place b4+r−1,1.
The α-token obtains characteristic “robot rr, end positions p′ of the robot r1”
in place a4+r−1,3. The α-token obtains characteristic “task for the robot rr” in place
a4+r−1,2.

Z4+ r− 1, 1 = ⟨ a4+ r− 1, 1, a4+ r− 1, 6f g, a4+ r− 1, 5, a4+ r− 1, 6, a4+ r− 1, 7f g,
R4+ r− 1, 1, ∨ ða4+ r− 1, 5, a4+ r− 1, 6, a4+ r− 1, 7Þ⟩

where:

and W17, 15 = W17, 16 = “The robot n performed the movement to positions p′”.
The α-tokens obtain characteristic “performed movement to positions p′” in

places a4+r−1,5 and a4+r−1,6.

Z4+ r− 1, 2 = ⟨ a4+ r− 1, 2, a4+ r− 1, 10f g, a4+ r− 1, 8, a4+ r− 1, 9, a4+ r− 1, 10f g,
R4+ r− 1, 2, ∨ ða4+ r− 1, 8, a4+ r− 1, 9, a4+ r− 1, 10Þ⟩

where:

and W110, 18 = W110, 19 = “The robot r performed the task”. The α-tokens obtain
charac-teristic “performed task” in places a4+r−1,8 and a4+r−1,9.

Z4+ r− 1, 3 = ⟨ a4+ r− 1, 6, a4+ r− 1, 8f g, a4+ r− 1, 11, a4+ r− 1, 12f g,R4+ r− 1, 3, ∨ ða4+ r− 1, 11, a4+ r− 1, 12Þ⟩
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where:

and W4, 8, 4, 12 = “The ituitionistic fuzzy estimation was calculated”.
The α-tokens obtain characteristic: “intuitionistic fuzzy estimation ⟨mr, lr⟩”.
The estimations ⟨mr, lr⟩ ∈ [0, 1] × [0, 1] reflects the degree of effectiveness (mr)

and the degree of ineffectiveness of the robot with number n (lr) for a time t.

mr =
pr
nr

, lr=
sr
nr

,

where:

• pr is the number of successfully movements and tasks performans of the robot n,
• sr is the number of unsuccessfully movements and tasks performans of the robot

n,
• nr is the total number of movements and tasks performans of the robot n.

The degree of uncertainty πr = 1 − mr − nr reflects the cases when the robot have
not completed a movement or task, which is the number of α-tokens in both places
a4+r−1,7 and a4+r−1,10.

5 Conclusion

The proposed GN introduces model the spatial, temporal, ordered and concurrent
character of mobile, distributed system. The model is based on a discrete topology
in which devices can change their location by moving from cell to cell. With GN,
we model movement in a heterogeneous terrain as well as task execution or access
to other resources of the devices.

On the other side a cyber-physical system (CPS) is a system of collaborating
computational elements controlling physical entities. Nowadays cyber-physical
systems can be found in areas as diverse as robotics, auto-motive, chemical pro-
cesses, civil infrastructure, energy, healthcare, manufacturing, transportation,
entertainment, and consumer appliances. In this paper, we address the problem of
spatial-temporal group scheduling using Generalized nets (GN). The IFE is used to
estimate the degree of effectiveness, the degree of ineffectiveness of the robot and
uncertainty during the robot movement.
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