
TSO to SC via Symbolic Execution

Heike Wehrheim and Oleg Travkin(B)

Institut für Informatik, Universität Paderborn, 33098 Paderborn, Germany
{wehrheim,oleg82}@uni-paderborn.de

Abstract. Modern multi-core processors equipped with weak memory
models like TSO exhibit executions which – due to store buffers – seem-
ingly reorder program operations. Thus, they deviate from the commonly
assumed sequential consistency (SC) semantics. Analysis techniques for
concurrent programs consequently need to take reorderings into account.
For TSO, this is often accomplished by explicitly modelling store buffers.

In this paper, we present an approach for reducing TSO-verification of
concurrent programs (with fenced or write-free loops) to SC-verification,
thereby being able to reuse standard verification tools. To this end, we
transform a given program P into a new program P ′ whose SC-semantics
is (bisimulation-) equivalent to the TSO-semantics of P . The transforma-
tion proceeds via a symbolic execution of P , however, only with respect
to store buffer contents. Out of the thus obtained abstraction of P , we
generate the SC program P ′ which can then be the target of standard
analysis tools.

1 Introduction

With the advent of multi-core processors we recently see new types of bugs
in concurrent programs coming up1. These bugs are due to the weak memory
semantics of multi-core processors, which in their architectures are streamlined
towards high performance. In executions of concurrent programs, weak memory
causes program statements to seemingly be executed in an order different from
the given program order. TSO (total store order) is one such weak memory
model (of the x86 processors [18]), incorporating characteristics common to a lot
of other weak memory models. On the contrary, concurrent executions adhering
to program order are said to be sequentially consistent (SC) [14].

As concurrent programs are today executed on multi-cores, analysis tech-
niques for concurrent software need to be based on weak memory semantics.
This is often accomplished by an explicit modelling of store buffers, which are
the cause of statement reordering. Store buffers are attached to cores, and values
of variables shared among processes are first written to the corresponding store
buffer before being flushed to main memory. Thereby, a read operation following
a write may seem to overtake it from the point of view of other process. Analy-
sis techniques employing store buffer modelling are for instance model checking
1 See e.g. T. Lane. Yes, waitlatch is vulnerable to weak-memory-ordering bugs, http://

www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us, 2011.

c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 104–119, 2015.
DOI: 10.1007/978-3-319-26287-1 7

http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us
http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us

TSO to SC via Symbolic Execution 105

approaches [19,23], predicate abstraction [11], or interactive proving [20]. The
modelling of store buffers does, however, impose a non-neglectable overhead on
the analysis, might it be automatic, supported by theorem provers or manual.

In this paper, we propose an approach for reducing TSO analysis (i.e., analy-
sis of concurrent programs taking the TSO semantics into account) to SC analy-
sis. The technique is applicable to all programs with fenced or write-free loops,
i.e., programs in which all loops contain at least one fence operation (memory
barrier), or alternatively have no write operations in loops. While this seems
rather restrictive, a lot of concurrent algorithms already possess this property,
e.g., concurrent data structures using compare-and-swap operations (acting as
fences) in loop conditions. Our approach proceeds by translating a program P
into a program P ′ such that P ’s TSO semantics is bisimilar to P ′’s SC semantics.
Like [5], the approach closest to ours, the additional condition (fenced or write-
free loops) guarantee finite (though a priori unknown) store buffer sizes during
execution. Unlike [5], we however only need few additional program variables in
the constructed program P ′, and these are furthermore all local to processes.
As a result, our technique is compositional in that it separately translates the
programs of processes in a parallel composition.

The translation proceeds via a sort of symbolic execution of P [17] which
constructs an abstraction of P symbolically tracking store buffer contents. This
abstraction is transformed into a new program P ′ (by an approach for program
generation out of abstract reachability graphs [22]). For the generated program
we can afterwards re-use established analysis techniques and tools for SC. To
show the practicability of our approach, we apply the technique to four mutual
exclusion algorithms and two concurrent data structures, which we translate into
an SC version and give to the model checker SPIN [13]. In almost all cases, it
can be seen that the number of states generated by SPIN is reduced when going
from a TSO version with explicit store buffer modelling to our SC version.

The paper is structured as follows. We start with a short introduction to
weak memory models and the reorderings they generate. We will then proceed
with defining the syntax and semantics of single processes, both for TSO and
SC. On the semantic domain, we define our notion of equivalence (of programs
viz. their executions). Sections 4 and 5 explain the transformation of a program
into an SC form. We report on experimental results in Sect. 6 and discuss related
work in Sect. 7. Section 8 concludes.

2 Weak Memory Reorderings

Weak memory models describe the semantics of concurrent programs when exe-
cuted on multi-core machines. In general, the execution of memory instructions
on the TSO memory model involves the usage of store buffers local to processes.
A write operation on a shared variable thus first puts its written value into
the store buffer. The contents of store buffers are occasionally flushed into main
memory. Memory barriers (fences) can be used to enforce flushing, because fence
operations can only be executed when the store buffer is empty. All read oper-
ations on shared variables will first examine the contents of the process’ store

106 H. Wehrheim and O. Travkin

buffer: if there is a value for the variable in the store buffer, the read will take
the most recent one, otherwise it reads from main memory.

This usage of store-buffers leads to two kinds of reorderings on TSO: write-
read reorderings and early-reads. These effects can best be understood on exam-
ples. Such small examples exhibiting certain interesting behaviours of multi-
processors are known as litmus tests. Figures 1 and 2 give two such litmus tests.
The first example is a write-read reordering. Both processes first write on a
shared variable and then read from another shared variable into local registers.
Since both writes might first be placed into the local store buffers, both reads
can still see the initial values of x and y, and hence r1 = 0 ∧ r2 = 0 is a possible
final state. It looks as though the writes and reads have changed position.

Initially : x = 0 ∧ y = 0

Process 1

1 : write(x , 1);
2 : read(y , r1);
3 :

Process 2

1 : write(y , 1);
2 : read(x , r2);
3 :

r1 = 0 ∧ r2 = 0 possible

Fig. 1. Litmus test for write-read
reordering

Initially : x = 0 ∧ y = 0

Process 1

1 : write(x , 1);
2 : read(x , r1);
3 : read(y , r2);
4 :

Process 2

1 : write(y , 1);
2 : read(y , r3);
3 : read(x , r4);
4 :

r1 = r3 = 1 ∧ r2 = r4 = 0 possible

Fig. 2. Litmus test for early reads

The litmus test in Fig. 2 exemplifies the phenomenon of early reads (or inter-
processor forwarding). The possible outcome r1 = 1 ∧ r2 = 0 ∧ r3 = 1 ∧ r4 = 0
occurs when both reads from lines 2 read from the process’ own written value
in the store buffer, and thus at the end the processes observe different orders of
writes. It looks as though the reads on lines 3 have happened before both writes.

The basic idea of our approach is now to make these reorderings explicit in a
new version of the program, and give this new version to standard SC verification
tools for analysis.

3 Processes and Their Parallel Composition

Reorderings are being made explicit by transforming – in a concurrent program
[P1|| . . . ||Pn] – the programs Pi of single processes into a form P ′

i such that
the following holds: execution of Pi on TSO is “equivalent” to execution of P ′

i

on SC. We can then use standard SC verification tools for checking properties
on [P ′

1|| . . . ||P ′
n]. In this section, we will first of all explain how programs look

like, and what we mean by “equivalent”. The equivalence should in particular
guarantee that other processes running in parallel cannot distinguish equivalent
programs. We will thus base our equivalence on a notion of bisimulation [16].

TSO to SC via Symbolic Execution 107

As a consequence, our transformation need not be defined on the whole par-
allel program, but can transform programs of single processes in isolation: our
technique is compositional.

For programs, we assume a set Reg of registers local to processes and a
set of variables V ar, shared by processes. For simplicity, both take as values
just natural numbers. Thus the local state of a program is - among others -
represented by a function reg : Reg → N, and the global state by a function
mem : V ar → N. We use the notation mem[x �→ n] to stand for the function
mem′ which agrees with mem up to x which is mapped to n (and similar for
other functions). Processes use local store buffers, i.e., FIFO queues, into which
values for shared variables are first written before being flushed to main memory.
A store buffer sb ∈ (V ar × N)∗ is a sequence of (variable and value) pairs. We
write x ∈ sb to state that there is a pair (x, ·) in the store buffer sb. Program
statements are labelled with locations out of some set L. A variable pc taking
values � ∈ L determines the statements that can be executed next. Thus, the
local state s of some process is characterised by a tuple (�, reg, sb).

We describe the programs of processes by predicates, one predicate stating
conditions on the initial state and a set of predicates for operations (indexed by
i ∈ I). Thus a program P of a process is given as (Init, (COpi)i∈I), where Init
is a predicate on pc, reg and sb. Each COpi is a predicate over pc, pc′, reg, reg′,
sb, sb′ and mem,mem′ in which the primed versions refer to the state after
executing the operation. We assume Init to specify sb = 〈 〉 (empty sequence).

Processes are allowed to interact with the memory using pre-defined oper-
ations from the set {write, read, fence, flush}. The latter two are only mean-
ingful in a TSO context. In TSO, their semantics is defined by the following
predicates.

Write: Writing the value of a register or a constant to a variable x:
write(x, n) =̂ sb′ = sb � 〈(x, n)〉, writing constant n
write(x, r) =̂ sb′ = sb � 〈(x, reg(r))〉, writing value from register r

Read: Reading the value of a variable x into register r:

read(x, r) =̂ (x /∈ sb ∧ readmem(x, r)) ∨ (x ∈ sb ∧ readloc(x, r)) where
readmem(x, r) =̂ reg′ = reg[r �→ mem(x)]

readloc(x, r) =̂ reg′ = reg[r �→ latest(x, sb)]
latest(x, sb) = n =̂ ∃sbpre, sbsuf : sb = sbpre

� 〈(x, n)〉 � sbsuf ∧ x
∈ sbsuf

Fence: Memory barrier blocking until store buffer is empty:
fence =̂ sb = 〈 〉

Flush: Flushing single store buffer entries to main memory:
flush =̂ ∃(x, v) ∈ (V ar × N) : sb = 〈(x, v)〉 � sb′ ∧ mem′ = mem[x �→ v]

The operation read has two cases: Reads might be early, reading from the con-
tents of the store buffer (readloc) or - if the store buffer contains no entry for
the variable - read from main memory (readmem). In addition to the above
operations we have thread-local operations LocOp, i.e., operations of the form
r := expr (semantics reg′ = reg[r �→ reg(expr)]), where expr is an expression

108 H. Wehrheim and O. Travkin

build out of constants and register names using e.g. arithmetic operations, or
boolean conditions over registers and constants.

We assume all operations (predicates) to have the following form (or
equivalent):

COp =̂ pc = � ∧ pc′ = �′ ∧ op

where op is either a memory operation or a local operation, e.g., op = read(x, r).
We define op(COp) =̂ op to state the operational part of COp (similar for

Init), without the part referring to program locations, and pc(COp) to be the
part of the predicate referring to the program counter. When executed on TSO,
we implicitly add the operation COpf =̂ flush to each process. This is the only
operation without location predicates. We let def(op) be the set of registers
assigned to (changed) in an operation op and use(op) to be the registers used.
Process 1 of Fig. 1 would be specified as follows:

Init=̂ pc = 1 ∧ r1 = 0 ∧ sb = 〈 〉
COp1=̂ pc = 1 ∧ pc′ = 2 ∧ write(x, 1)

COp2=̂ pc = 2 ∧ pc′ = 3 ∧ read(y, r1)

COpf =̂ flush

The semantics of programs is given by labelled transition systems. For being
able to compare the semantics of programs run under TSO with those run on
SC, we define a common set of labels:

Lab = {skip, r := expr, bexpr, wr(x, n), rd(x, r) |
x variable, r register, n ∈ N}

For the semantics, we use the convention that all entities (registers, pc, ...)
which are not mentioned in the operation formula keep their values. For pairs
of (global) states (g, g′), g = (�, reg, sb,mem), g′ = (�′, reg′, sb′,mem′) we write
(g, g′) |= COp to say that the predicate COp is satisfied by states g and g′.
Similarly, for predicates p on unprimed variables only and states g, we write
g |= p to say that the predicate p is valid in the state g.

For single processes, we next define an open semantics. It is open in the sense
that we assume other processes, possibly running in parallel, to arbitrary change
shared memory, and thus incorporate into the semantics all steps the process can
do with arbitrary values of mem.

Definition 1. The process-local TSO transition system of a program
P = (Init, (COpi)i∈I), [[P]]tso, is (S,−→, S0) with

– S0 = {s = (�, reg, sb) | s |= Init},
– s −lab−→ s′ with s = (�, reg, sb) and s′ = (�′, reg′, sb′) iff ∃COpi,∃mem,mem′

s.t. ((mem, s), (mem′, s′)) |= COpi, and the label lab is
• r := reg(expr) if op(COpi) = (r := expr),
• reg(bexpr) if op(COpi) = bexpr,

TSO to SC via Symbolic Execution 109

• skip if op(COpi) ∈ {fence, write(x, n), write(x, r), skip},
• wr(x, n) if op(COpi) = flush and sb = 〈(x, n)〉 � sb′,
• rd(x, r) if op(COpi) = read(x, r) and x /∈ sb, and
• r := n if op(COpi) = read(x, r), x ∈ sb and n = latest(x, sb).
For such transitions we use the notation s −lab−→mem,mem′ s′.

– S is the set of all states reachable from S0 by transitions.

The choice of labels reflects what is visible to the environment (i.e., other
processes): a local write to a store buffer looks to the outside as if nothing
happens, hence gets a skip label; a local read from store buffer looks like an
assignment to a register, and hence gets an assignment label; finally, a flush
operation looks to the outside like a proper write on shared memory and thus is
labelled as write. This idea of relabelling transitions according to what effects are
visible to the outside is also the basic principle of our TSO to SC transformation.
For the SC semantics of programs, we slightly restrict the set of operations. In
SC, programs cannot (and do not) have fence operations, and furthermore their
write and read predicates have a different semantics.

Write: Writing the value of a register or a constant to a variable x:
writesc(x, n) =̂ mem′ = mem[x �→ n], writing constant n
writesc(x, r) =̂ mem′ = mem[x �→ reg(r)], writing value from register r

Read: Reading the value of a variable x into register r:
readsc(x, r) =̂ reg′ = reg[r �→ mem(x)]

As we see now, none of the operation predicates is refering to the store buffer.
The local states of the SC transition system are thus of the form (�, reg). Note
that in this case we do not implicity add a flush operation to the set of program
operations.

Definition 2. The process-local SC transition system of a program P =
(Init, (COpi)i∈I), [[P]]sc, is (Q,−→, Q0) with Q0 = {q = (�, reg) | q |= Init}
and q −lab−→ q′ with q = (�, reg) and q′ = (�′, reg′) iff ∃COpi,∃mem,mem′ :
((mem, q), (mem′, q′)) |= COpi and the label lab is

– r := reg(expr) if op(COpi) = (r := expr),
– reg(bexpr) if op(COpi) = bexpr,
– skip if op(COpi) = skip,
– wr(x, n) if op(COpi) ∈ {writesc(x, n), writesc(x, r) and reg(r) = n},
– rd(x, r) if op(COpi) = readsc(x, r).

Again, Q is the set of all reachable states.

Processes typically run in parallel with other processes. The semantics for paral-
lel compositions of processes is now a closed semantics already incorporating all
relevant components. We just define it for two processes here; a generalisation
to larger numbers of components is straightforward.

110 H. Wehrheim and O. Travkin

Definition 3. Let Pj = (Initj , (COpi
j)i∈I), j ∈ {1, 2}, be two processes, Init

an additional predicate on mem, and let (Sj ,−→j , S0,j), be their process local
(i.e., open) semantics (TSO or SC).

The closed TSO or SC semantics, respectively, of P1 ||Init P2 is the labelled
transition system (S,−→, S0) with S ⊆ {(mem, s1, s2) | s1 ∈ S1, s2 ∈ S2}, S0 =
{s ∈ S | s |= Init1∧ Init2∧ Init}, and s = (mem, s1, s2) −lab−→ s′ = (mem′, s′

1, s
′
2)

when (s1 −lab−→mem,mem′ s′
1 ∧ s2 = s′

2) or (s2 −lab−→mem,mem′ s′
2 ∧ s1 = s′

1).

Due to the open semantics for processes, we have thus been able to give a com-
positional semantics for parallel composition.

Ultimately, we will be interested in comparing the TSO semantics of one program
with the SC semantics of another. Our notion of equality is based on bisimulation
equivalence [16]. Our definition of bisimulation compares transition systems with
respect to their labels on transitions as well as their local states.

Definition 4. Let T1 = (S,−→tso, S0) be a TSO and T2 = (Q,−→sc, Q0) an SC
transition system.

Transition systems T1 and T2 are locally bisimilar, T1 ≈� T2, if there is a
bisimulation relation R ⊆ S × Q such that the following holds:

1. Local state equality:
∀(s, q) ∈ R, s = (�1, reg1, sb), q = (�2, reg2),∀r ∈ Reg: reg1(r) = reg2(r).

2. Matching on initial states:
∀s0 ∈ S ∃ q0 ∈ Q0 s.t. (s0, q0) ∈ R, and reversely ∀ q0 ∈ Q0 ∃ s0 ∈ S0 s.t.
(s0, q0) ∈ R.

3. Mutual simulation of steps:
if (s1, q1) ∈ R and s1 −lab−→tso s2 then ∃ q2 such that q1 −lab−→sc q2 and (s2, q2) ∈
R, and reversely, if (s1, q1) ∈ R and q1 −lab−→sc q2 then ∃ s2 such that s1 −lab−→tso

s2 and (s2, q2) ∈ R.

Similarly, one can define global bisimilarity for the closed semantics of a parallel
composition, in addition requiring equality of shared memory mem. We use the
notation ≈g to denote global bisimilarity. This lets us state our first result: Local
bisimilarity of processes implies global bisimilarity of their parallel compositions.

Theorem 1. Let P1, P
′
1, P2, P

′
2 be processes such that [[P1]]tso ≈� [[P ′

1]]sc and
[[P2]]tso ≈l [[P ′

2]]sc and let Init be a predicate on mem. Then

[[P1||InitP2]]tso ≈g [[P ′
1||InitP

′
2]]sc.

Proof idea: Let Ri be the bisimulation relations showing [[Pi]]tso ≈� [[P ′
i]]sc.

Then

R := {((mem, s1, s2), (mem, s′
1, s

′
2)) | (s1, s′

1) ∈ R1 ∧ (s2, s′
2) ∈ R2}

is the relation showing global bisimilarity. ��
This result enables us to carry out the transformation from TSO to SC locally,
i.e., transform the programs of processes individually and after that combine
their SC versions in parallel.

TSO to SC via Symbolic Execution 111

4 Symbolic Store-Buffer Graphs

The basic principle behind our verification technique is to transform every pro-
gram P into a program P ′ such that [[P]]tso is locally bisimilar to [[P ′]]sc. The
construction of P ′ proceeds by symbolic execution of P and out of the thus
constructed symbolic states generation of P ′. The symbolic execution tracks -
besides the operations being executed and the program locations reached - store
buffer contents only, and only in a symbolic form. The symbolic form stores
variable names together with either values of N (in case a constant was used
in the write), or register names (in case a register was used). A symbolic store
buffer content might thus for instance look like this: 〈(x, 3), (y, r1), (x, r2), (z, 5)〉.
The symbolic execution thereby generates a symbolic reachability graph, called
store-buffer graph.

Definition 5. A store-buffer (or sb-)graph G = (V,E, v0) consists of a set of
nodes V ⊆ (L × (V ar × (Reg ∪ N))∗), edges E ⊆ V × Labtso × V and initial
node v0 ∈ V where Labtso = {write(x, r), write(x, n), read(x, r), f lush, fence}∪
LocOp.

The store-buffer graph for a program P is constructed by a form of symbolic
execution, executing program operations step by step without constructing the
concrete states of registers. We let tail(list) of a nonempty sequence list denote
the sequence without its first element.

Definition 6. Let P = (Init, (COpi)i∈I) be the program of a process. The sb-
graph of P , sg(P), is inductively defined as follows:

1. v0 := (�0, 〈 〉) with Init ⇒ pc = �0,
2. if (�, ssb) ∈ V , we add a node (�′, ssb′) and

– an edge (�, ssb) −lab−→ (�′, ssb′) if ∃COpi with op(COpi) = lab and
• lab = flush, � = �′ and ssb
= 〈 〉 and ssb′ = tail(ssb), or pc(COpi) =

(pc = � ∧ pc′ = �′) and
∗ lab ∈ LocOp and ssb′ = ssb, or
∗ lab = write(x, r) and ssb′ = ssb � 〈(x, r)〉, or
∗ lab = write(x, n) and ssb′ = ssb � 〈(x, n)〉, or
∗ lab = fence and ssb = ssb′ = 〈 〉, or

– an edge (�, ssb) −readmem(x,r)−−−−−−−−→ (�′, ssb′) and a node (�′, ssb′) if
∃COpi = (read(x, r) ∧ pc = � ∧ pc′ = �′) and ssb′ = ssb ∧ x
∈ ssb, or

– an edge (�, ssb) −readloc(x,r)−−−−−−−→ (�′, ssb′) and a node (�′, ssb′) if
∃COpi = (read(x, r) ∧ pc = � ∧ pc′ = �′) and ssb′ = ssb ∧ x ∈ ssb.

As an example, Figs. 3 and 4 show the store-buffer graphs of process 1 from
Fig. 1 and of process 1 in Fig. 2, respectively. On them, we directly see when the
effects of writes take place in main memory, namely when the corresponding flush
happens. On the left graph, right branch, we thus see the read of y happening
before the “real” write of x (flush) to memory. On the right graph, right branch,
we see the read of x taking place before the write to x (flush). Later we will

112 H. Wehrheim and O. Travkin

Fig. 3. Store buffer graph represent-
ing the reachable store buffer states of
process 1 in Fig. 1.

Fig. 4. Store buffer graph represent-
ing the reachable store buffer states of
process 2 in Fig. 2.

see that all such early reads still read correct values in the SC version of the
program.

Note that store-buffer graphs need not necessarily be finite. They are infinite
if a program has loops with write operations, but no fences in order to enforce
flushing of store buffer content. Since this finiteness of the store buffer graph is
key to our technique, we next define our only restriction on the class of programs
considered: all loops have to be fenced or write-free.

We first define loops. A (syntactically possible) path of a program
P is a sequence �1, �2, ..., �n of locations such that there are operations
COp1, ..., COpn−1 such that pc(COpi) = (pc = �i ∧ pc′ = �i+1). We also write
paths like this: �1 −COp1−−−→ �2 −COp2−−−→ . . . −COpn−1−−−−−→ �n. A loop is a path �1, �2, ..., �n

such that n > 1 and �1 = �n. A loop is write-free if none of the operations on
the loop is a write. A loop is fenced, if at least one of the operations on the loop
is a fence. We furthermore assume that all process programs are in SSA-form
(static single assignment [10]), meaning that all the registers are (statically)
assigned to only once, i.e., for every register r there is at most one operation op
with r ∈ def(op). We furthermore assume that registers are never used before
defined. Both, this and the SSA-form is guaranteed by modern compilers, e.g.,
the LLVM-framework2 which we use for our approach only generates intermedi-
ate code in this form.

Proposition 1. Let P be a process program in which every loop is fenced or
write-free. Then sg(P) is finite.

2 http://www.llvm.org.

http://www.llvm.org

TSO to SC via Symbolic Execution 113

In the generation of a new program out of an sb-graph we transform every edge
of the graph into an operation (predicate). In this, a flush operation in the sb-
graph, flushing a symbolic store buffer content (x, r) (r being a register name),
becomes a writesc(x, r) operation. For this to be sound (w.r.t. the intended
equivalence of old and new program), we need to make sure that the content of
register r at a flush is still the same as the one at the time of writing the pair
(x, r) into the (symbolic) store buffer. This is not necessarily the case. A path
�1 −COp1−−−→ �2 −COp2−−−→ . . . −COpn−1−−−−−→ �n is a write-def chain (wd-chain) if there is an
r ∈ Reg such that op(COp1) = write(., r) and r ∈ def(COpn−1). A wd-chain
is fenced, if one of the operations in between the write and the definition of the
register is a fence. If this is guaranteed, we know that a register occuring with its
name in the symbolic store buffer still has the same value as of the corresponding
write.

Proposition 2. Let P be the program of a process in SSA form with fenced
write-def chains only. Let s = (�, reg, sb) be a state of [[P]]tso such that sb contains
an entry (x, n), n ∈ N. If this value has been put into the store buffer by an
operation write(x, r), r ∈ Reg, then reg(r) = n.

Proof: By the definition of wd-chains: after write(x, r) there is no further oper-
ation defining r before the next fence operation. A fence, however, needs an
empty store buffer in order to execute. ��
As this property is key to our transformation, we next define a way of chang-
ing every program into an equivalent one with fenced wd-chains only. We first
determine all write operations causing unfenced wd-chains, e.g. by a simple
dataflow analysis. Let W be the set of all such write sources of wd-chains,
and Rg(W) ⊆ Reg be the set of registers participating in such writes. For
every register r ∈ Rg(W) we now introduce a new register raux and add it
to Reg (thereby giving a set Regaux). Note that this is the only point in
our program transformation where new variables or registers are introduced.
The registers raux act as auxiliary variables in the programs. Every write
COp ∈ W,COp = (pc = � ∧ write(x, r) ∧ pc′ = �) is now transformed into a
new operation COpaux =̂ (pc = � ∧ writeaux(x, r) ∧ pc′ = �) where

writeaux(x, r) =̂ write(x, r) ∧ reg′ = reg[raux �→ reg(r)]

We let P ′ denote the program P with all such changes.

Proposition 3. The program P ′ has no unfenced wd-chains.

The label of this new operation writeaux in the TSO semantics is raux := n for
n = reg(r) (see Definition 1). Note that the number of new registers needed is
bounded by the number of registers used in loops. For each COpaux operation, we
add an edge (�, ssb) −lab−→ (�′, ssb′) to the sb-graph, where lab = write(x, raux) ∧
reg′ = reg[raux �→ reg(r)] and ssb′ = ssb � 〈(x, raux)〉. Note that we use raux

in the symbolic store buffer, although the value of r is used in the transition
system.

114 H. Wehrheim and O. Travkin

5 SC Program Generation

The store-buffer graph presents an abstraction of the actual TSO transition
system of a program. The basic idea behind the generation of new programs out
of store-buffer graphs is now to take the store-buffer graph as the control flow
graph of the new program. We do so by using the nodes in the sb-graph as new
program locations, i.e., program locations become pairs of (location, symbolic
store buffer contents). If we would simply take the operations on edges as they
are, we would arrive at a new program P ′ which is equivalent to P w.r.t. the
TSO semantics. However, instead of using the operations as they are written
on the edges, we make changes analogous to the relabelling used in the TSO
semantics: The generated operation in the SC program should reflect the visible
effect of an TSO operation, e.g. flush operations become writes and local reads
become local assignments. For the latter, we use the fact that the symbolic store
buffer contents contains names of registers, not just their values.

Definition 7. Let G = (V,E, v0) be an sb-graph of a program P with init pred-
icate Init. The new SC program of G, prog(G), (Init′, (COpi)i∈I′) is defined as
follows:

– We use Init′ =̂ pc = v0 ∧ op(Init),
– for every edge v −lab−→ v′, we define an operation COpi =̂ pc = v ∧ pc′ =

v′ ∧ opsc(lab), where opsc maps the edges of the sb-graph to the behaviorally
equivalent steps in an SC setting:

opsc(lab) =̂ skip iff lab ∈ {fence, write(x, r), write(x, n)}
opsc(lab) =̂ writesc(x, r) iff lab = flush ∧ v = (�, ssb)

∧ ssb = 〈(x, r)〉 � tail(ssb)
opsc(lab) =̂ raux := r iff lab = (write(x, raux)

∧ reg′ = reg[raux �→ reg(r)])
opsc(lab) =̂ readsc(x, r) iff lab = readmem(x, r)

opsc(lab) =̂ r := rsrc iff lab = readloc(x, r) ∧ v = (�, ssb)
∧ rsrc = latest(x, ssb)

opsc(lab) =̂ lab else

The transformation of a program into its SC form is then defined as

tso2sc(P) =̂ prog(sg(P))

As a preparatory step to this, we might need to bring P into a form without
unfenced wd-chains as described in the previous section. For process 1 of Fig. 1
and its store buffer graph in Fig. 3, its SC version is the following:

Init =̂ pc = (1, 〈 〉)
COp1 =̂ pc = (1, 〈 〉) ∧ pc′ = (2, 〈(x, 1)〉) ∧ skip

TSO to SC via Symbolic Execution 115

COp2 =̂ pc = (2, 〈(x, 1)〉) ∧ pc′ = (2, 〈 〉) ∧ writesc(x, 1)
COp3 =̂ pc = (2, 〈 〉) ∧ pc′ = (3, 〈 〉) ∧ readsc(y, r1)
COp4 =̂ pc = (2, 〈(x, 1)〉) ∧ pc′ = (3, 〈(x, 1)〉) ∧ readsc(y, r1)
COp5 =̂ pc = (3, 〈(x, 1)〉) ∧ pc′ = (3, 〈 〉) ∧ writesc(x, 1)

In parallel with the SC version of process 2, this can then be given to standard SC
verification tools. Our approach is compositional: transformations of processes
can be done without considering other parallel processes (see Theorem 1); we
can reuse transformation results when processes are combined in different ways.

Our main result showing the soundness of this approach is the equivalence
of P and tso2sc(P) with respect to local bisimulation.

Theorem 2. Let P be a program with fenced or write-free loops only and with
no unfenced wd-chains. Then

[[P]]tso ≈� [[tso2sc(P)]]sc.

Proof sketch: The proof proceeds by defining a relation on the states of [[P]]tso

and [[tso2sc(P)]]sc. For this, we need some concretisation function for symbolic
store buffer contents, concretising the value of a symbolic store buffer ssb with
respect to the current state s:

concs(〈 〉) = 〈 〉
concs(〈(x, n)〉 � ssb) = 〈(x, n)〉 � concs(ssb) for n ∈ N

concs(〈(x, r)〉 � ssb) = 〈(x, s(reg)(r))〉 � concs(ssb) for r ∈ Reg

The relation proving bisimilarity is then:

R = {(s, q) | first(q(pc)) = s(pc)
∧concs(second(q(pc))) = s(sb)
∧∀r ∈ Reg : s(reg)(r) = q(reg)(r)}

where first((�, ssb)) = � and second((�, ssb)) = ssb. ��
This result allows us to re-use standard verification techniques for SC programs,
might these be automatic or interactive.

6 Experimental Results

In our experiments we wanted to see whether the possibility of using standard
SC tools for verification, opened up by our transformation technique, might now
have to be paid by an increase in time and space usage of the tools. Our exper-
imental setup was as follows. We used SPIN [13] as model checking tool, both
for the SC semantics and for the TSO semantics. SC semantics are provided by
SPIN. For TSO, we manually enhanced programs with store buffers and flush
and fence operations, mimicking the TSO semantics (see [19] for details). The

116 H. Wehrheim and O. Travkin

experiments all started with a C or C++ program which was compiled to an
intermediate representation (IR) with the LLVM compiler. The IR code was then
translated to Promela code (input to SPIN) with store buffers. Furthermore,
we constructed the sb-graph automatically and out of this the transformed SC
program, manually. Implementations of manual steps are on the way. The trans-
formation is linear in the size of the sb-graph and hence, negligible compared to
the actual verification effort. The latter depends on a model checker’s ability to
explore state space or the program complexity in case of a formal proof.

For our experiments we considered a number of mutual exclusion algo-
rithms with two processes each (Dekker, Peterson, Lamport Bakery, Szymanski)
and two concurrent data structures, a work-stealing queue by Arora et al. [3]
and a stack implementation by Treiber [21]. The latter two allow for differ-
ent instances in which the processes execute different operations. An instance
UO||TT e.g. describes two processes, one doing operations pushBottom followed
by popBottom and the other executing two popTop operations. The mutual
exclusion algorithms are known to be incorrect under weak memory models and
hence, we used both the original unfenced and the correct fenced version. Only
one of the examples did not fall into the category of programs with fenced or
write-free loops (the unfenced version of Dekker’s algorithm). The other exam-
ples either just have reading loops, or have implicit fence operations. An implicit
fence is for instance generated by a CAS instruction (an atomic compare and
swap), which is often used as the only synchronisation primitive in otherwise
lock-free data structures. All tests were performed on a virtual machine, Ubuntu
Linux, Intel Core i5, 2.53 GHz and 3 GB dedicated to SPIN 6.2.3. All models
used for the verification can be found in our repositories at Github3.

Table 1 provides our verification results giving verification time and number
of states generated by SPIN for both the TSO and transformed SC programs. It
also gives the number of nodes in the store buffer graph (for the processes viz.
operations in the program). The experiments show that our transformation can
in a lot of cases actually reduce the state space and verification time. Besides
being able to use an SC tool, we can thus furthermore gain time and space when
applying the TSO to SC transformation. Compared to the work of [5], who also
used a transformation technique and in their experiments looked at these mutual
exclusion algorithms, we can moreover state that the runtime of our approach
is significantly smaller. The results are, however, not directly comparable since
they used different verification tools.

In our previous work [20], we proved linearizability [12] of the Burns mutual
exclusion algorithm [8] under TSO using an interactive theorem prover. Par-
ticularly, we compared the proof effort of (1) a program encoding TSO with
explicit store buffers against (2) a transformed program version using SC seman-
tics (based on the idea that we formalized in this paper). For the Burns mutex,
the transformation reduced complexity (invariant size) and proof effort (number
of proof steps) approximately by half. Our transformation technique can thus
also be helpful in interactive proving.

3 https://github.com/oleg82upb.

https://github.com/oleg82upb

TSO to SC via Symbolic Execution 117

Table 1. Verification results for case studies.

Algorithm TSO Model Transformed SC Program

(each for 2 processes) states time [s] states time [s] nodes#

Dekker (fenced) 655 ≈ 0 147 ≈ 0 17

Dekker (unfenced) 540 ≈ 0 unfenced writing loop

Peterson (fenced) 709 ≈ 0 270 ≈ 0 14

Peterson (unfenced) 805 ≈ 0 1,271 0.01 28

Lamport Bakery (fenced) 2,907 0.01 405 0.01 24

Lamport Bakery (unfenced) 16,087 0.17 163 ≈ 0 75

Szymanski (fenced) 2,778 0.01 1,741 ≈ 0 30/32

Szymanski (unfenced) 923 0.01 171 ≈ 0 55

Work-Stealing Queue 73,703 0.32 86,566 0.23 13/46/18

(fenced) UOUOUOU‖TTT

=̂ pushBottom, O =̂ popBottom, T =̂ popTop (stealing process)

Treiber-Stack 1,913,313 8.93 1,821,426 4.68 29/15

UUUOOO ‖ OOOUUU

U =̂ push, O =̂ pop

7 Related Work

In the last years, several approaches were proposed in order to deal with software
verification under the influence of weak memory models, ranging from theoretical
results to practical techniques.

Atig et al. [4] have shown that the reachability problem for programs in a TSO
or PSO environment is decidable via reduction to lossy channel machines. How-
ever, for other relaxed memory models like RMO, the problem is undecidable.
Bouajjani et al. [7] determined the complexity (PSpace) of deciding robustness
of programs against TSO. Two recent approaches [1,6] provide underapproxi-
mating techniques for checking program correctness under TSO.

Several approaches [2,5,9,15] propose reduction techniques, which allow for
a reuse of verification techniques developed for SC. The approach closest to us
is the one by Atig et al. [5]. Similar to us, they provide a translation from a
TSO program to an equivalent SC program, but assuming an age bound k. The
bound k stems from the observation that store buffer entries can stay for at
most k steps in the store buffer until they are eventually flushed to the memory.
Their approach is, thus, to model the store buffer behavior as part of the new
SC program by introducing k vectors of shared variable copies as part of the
local state. Hence, rather than getting rid of the complexity of store buffers,
store buffers are replaced with auxiliary vectors in the SC program. The bound
results in some sort of bounded verification; if the program exceeds the bound
(e.g., in case of loops without fences), the bound needs to be increased and
verification restarted.

In our approach (auxiliary) variable copies are only used if they are indeed
required, i.e., when the symbolic store buffer entry of a write source of a wd-chain
can be redefined between write and flush. We have at most one new variable per

118 H. Wehrheim and O. Travkin

register in the program. This is enough since we consider a restricted class of
programs (fenced loops only) for which we can then carry out a (non-bounded)
verification. In summary, our approach works for a restricted class of programs,
but for this carries out a full verification, whereas Atig et al.’s technique works
for all programs, however, sometimes only with an underapproximating analysis.
For the class of programs with fenced-loops our approach furthermore generates
fewer auxiliary variables, and – as the experiments show – may speed up verifi-
cation. We thus see our approach as an excellent alternative to Atig et al.’s, in
case the program falls into our category of fenced-loop programs.

8 Conclusion

In this paper, we have presented a simple and practical reduction of program
verification under the influence of TSO to an SC setting via program transfor-
mation. Consequently, the transformed program can be verified using common
techniques assuming a sequential consistent memory model.

Our transformation exploits that most of the non-determinism inherent to
TSO can be computed statically, which is captured by a store buffer graph in our
approach. By encoding the store buffer graph into an equivalent SC program, we
completely get rid of store buffers and the burden of reasoning about them. Our
experiments show that the transformation can even simplify verification (using
a model checker and a theorem prover) of programs under TSO.

Our approach is restricted to programs with at least one fence in loops con-
taining writes. The reason to restrict ourselves to this class of programs is that
they can be represented by a finite store buffer graph. We could extend our
approach to also deal with unfenced writing loops in a setting of bounded store
buffers. However, we would then have to introduce multiple copies of register
variables in the new program corresponding to different loop iterations in the
original program. In principle, we would then arrive at a technique similar to [5].

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015)

2. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

3. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. Theor. Comput. Syst. 34(2), 115–144 (2001)

4. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: Hermenegildo, M.V., Palsberg, J. (eds.)
POPL 2010, pp. 7–18. ACM (2010)

5. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011)

TSO to SC via Symbolic Execution 119

6. Bouajjani, A., Calin, G., Derevenetc, E., Meyer, R.: Lazy TSO reachability. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 267–282. Springer,
Heidelberg (2015)

7. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store
ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 428–440. Springer, Heidelberg (2011)

8. Burns, J., Lynch, N.A.: Mutual exclusion using indivisible reads and writes. In:
18th Allerton Conference on Communication, Control, and Computing, pp. 833–
842 (1980)

9. Cohen, E., Schirmer, B.: From total store order to sequential consistency: a prac-
tical reduction theorem. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 403–418. Springer, Heidelberg (2010)

10. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

11. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol.
7935, pp. 84–104. Springer, Heidelberg (2013)

12. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

13. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

14. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

15. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying pro-
grams on relaxed memory models. In: van de Pol, J., Weber, M. (eds.) Model
Checking Software. LNCS, vol. 6349, pp. 212–226. Springer, Heidelberg (2010)

16. Milner, R. (ed.): A Calculus of Communicating Systems. Springer, Heidelberg
(1980)

17. Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. STTT 11(4), 339–353 (2009)

18. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

19. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under
weak memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol.
8244, pp. 311–326. Springer, Heidelberg (2013)

20. Travkin, O., Wehrheim, H.: Handling TSO in mechanized linearizability proofs.
In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 132–147. Springer, Heidelberg
(2014)

21. Treiber, R.K.: Systems programming: coping with parallelism. Technical report RJ
5118, IBM Almaden Res. Ctr. (1986)

22. Wonisch, D., Schremmer, A., Wehrheim, H.: Programs from proofs – a PCC alter-
native. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 912–927.
Springer, Heidelberg (2013)

23. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: UMM: an operational memory model
specification framework with integrated model checking capability. Concurrency
Comput. Pract. Experience 17(5–6), 465–487 (2005)

	TSO to SC via Symbolic Execution
	1 Introduction
	2 Weak Memory Reorderings
	3 Processes and Their Parallel Composition
	4 Symbolic Store-Buffer Graphs
	5 SC Program Generation
	6 Experimental Results
	7 Related Work
	8 Conclusion
	References

