
PANDA: Simultaneous Predicate Abstraction
and Concrete Execution

Jakub Daniel and Pavel Paŕızek(B)

Department of Distributed and Dependable Systems,
Faculty of Mathematics and Physics,

Charles University in Prague, Prague, Czech Republic
{daniel,parizek}@d3s.mff.cuni.cz

Abstract. We present a new verification algorithm, Panda, that com-
bines predicate abstraction with concrete execution and dynamic analy-
sis. Both the concrete and abstract state spaces of an input program are
traversed simultaneously, guiding each other through on-the-fly mutual
interaction.Panda performs dynamic on-the-fly pruning of those branches
in the abstract state space that diverge from the corresponding concrete
trace. If the abstract branch is actually feasible for a different concrete
trace, Panda discovers the covering trace by exploring different data
choices. Candidate spurious errors may also arise, for example, due to over-
approximation of the points-to relation between heap objects. We elimi-
nate all the spurious errors using the well-known approach based on lazy
abstraction refinement with interpolants. Results of experiments with our
prototype implementation show that Panda can successfully verify pro-
grams that feature loops, recursion, and manipulation with objects and
arrays. It has a competitive performance and does not report any spurious
error for our benchmarks.

1 Introduction

Program verification techniques based on predicate abstraction and iterative
refinement have been the subject of extensive research. The set of popular
approaches includes counterexample-guidedabstraction refinement (CEGAR) [11]
and lazy abstraction with interpolants [1,16,18], which are implemented in tools
such asBlast [6] andCPAchecker [8]. Although these approaches are successful
in verifying programs with predominantly acyclic control-flow, programs contain-
ing loops with many iterations and programs with arrays pose a challenge to them.
The initial abstraction is usually too coarse to capture only the feasible executions
of a loop. Therefore, these kinds of approaches are forced to repeatedly refine the
abstraction and effectively unroll the loop. Many of the unrollings are incomplete,
and the corresponding traces are spurious because they exit the loop prematurely.

Each step of abstraction refinement is considerably costly because it usually
involves expensive SMT calls, and therefore use of refinement makes a verifi-
cation procedure rather inefficient in this setting. More recent techniques (e.g.,
Smash [14]) complement the abstraction refinement with some kind of under-
approximating analysis (e.g., testing) in order to rule out spurious traces and
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 87–103, 2015.
DOI: 10.1007/978-3-319-26287-1 6

88 J. Daniel and P. Paŕızek

to focus directly on the complete unrollings with proper number of loop itera-
tions. Some of the recent approaches, such as Dash [5] implemented in the tool
Yogi [20], in fact alternate between predicate abstraction and concrete execu-
tion. Tests always explore a feasible number of loop iterations, and therefore
spurious traces that would otherwise cause refinement are avoided, saving many
calls to SMT. In general, the combination of abstraction with testing preserves
the benefits of each approach while mitigating their respective weaknesses.

Example 1. Consider the small example program in Fig. 1. The function find-

Greater searches the array a of integer values and returns the index of the first
value that is greater than t. If no such value is present in a, then the length of the
array is returned instead. The program further contains a procedure main that
asserts the correct behavior of findGreater. The function loadUnknownArray creates
an array of arbitrary integer values with a statically given length and stores it
into the variable a. After the call of findGreater(a, 10), the procedure main asserts
the desired property of the returned value.

Fig. 1. Example program

Both CEGAR and lazy abstraction, as implemented for example in Blast [6],
would struggle analyzing the loop at lines 8–10 in Fig. 1 provided the array
was large enough. They would iteratively discover spurious traces that exit the
loop prematurely, and rule out the traces one by one in separate refinement
steps by deriving predicates that relate j to a specific constant. On the other
hand, approaches like Dash employ testing in order to find the correct number
of loop iterations. A run of a test always represents a feasible execution and
thus never yields spurious behavior. Furthermore, concrete execution is typically
cheap because it does not use expensive SMT calls.

Based on the same observations, we introduce a new technique that combines
predicate abstraction with concrete execution. We propose a verification algo-
rithm Panda, which performs abstract state space traversal that is augmented
with simultaneous concrete execution in order to eliminate spurious abstract
traces on-the-fly. The predicate abstraction and the concrete execution guide

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 89

each other during the traversal. Usage of concrete execution enables Panda
to faithfully capture the behavior of programs written in mainstream object-
oriented languages, and to support features of such programs that are hard
to model with abstraction predicates. It also allows Panda to prune infeasible
abstract traces that arise due to the overapproximating predicate abstraction,
and thus greatly reduces the number of necessary refinement steps.

The state space is constructed on-the-fly during the systematic traversal by
unrolling the control-flow graph of the program. In each state, all possible outgoing
transitions are determined using the overapproximate abstract information, and
then every transition is explored using both concrete and abstract execution. The
complete reachable state space of a given program is covered in this way.

Althoughpruning based on concrete execution eliminates some spurious traces,
it may not prune everything for two reasons: (1) consistency between abstract and
concrete executions is checked only locally, and (2) concrete execution still allows
for non-determinism (see Sect. 3). Therefore, the state space traversal procedure
may still report a spurious error. To address this problem, Panda uses the well-
knownapproach of lazy abstractionwith iterative refinement that is based on inter-
polants computed for the spurious counterexample [16].

In the case of our example program, Panda eliminates the traces that are
spurious due to an infeasible number of the loop body unrollings (at line 8)
without resorting to iterative refinement. The algorithm explores all the feasible
traces — more specifically, one trace returning from the function findGreater at
line 9 for every value of the index j between 0 and the length of the array a, and
one trace returning from findGreater through line 11.

We implemented the Panda approach in a tool with the same name. Unlike
most of the tools we target Java and not C. Panda builds on concrete state
space traversal provided by Java Pathfinder [25], and simultaneously computes
predicate abstraction in such a way that the systematic exploration of a concrete
state space and the predicate abstraction can interact. We also performed exper-
imental evaluation of Panda on small examples from our previous work [21] and
benchmarks taken from the Competition on Software Verification [26], and com-
pared its performance with other tools. Results show that the proposed approach
is promising — our prototype implementation has a competitive performance
and does not report spurious errors.

2 Preliminaries

Here we define more formally basic concepts that are used in the rest of this
paper, and the important terminology.

Program. We model programs using control-flow automata (CFA). A program
P is a tuple (C, linit, lerr), where C is a set of control-flow automata representing
individual methods in the program, linit is the initial location of the whole pro-
gram, and lerr is the error location. The control-flow automaton C for a method
m is a tuple (L,A, len) that encodes a directed graph with a single root node and
labeled edges. Nodes of the graph correspond to the set L of program locations

90 J. Daniel and P. Paŕızek

in the method m, and edges correspond to the set A of actions between locations.
An action a ∈ A from the location l to the location l′, written as (l, a, l′), is repre-
sented by a graph edge that is labeled with the program statement corresponding
to a. The location len ∈ L is the entry point of the method m. We use the sym-
bol vars(C) to denote the set of local variables that appear in statements that
correspond to actions of the control-flow automaton C.

The initial location linit of the whole program corresponds to the entry point
len of some method minit, which is modeled by Cinit ∈ C. Any two distinct
CFA’s may have only the error location lerr in common. It is the destination
location of every action that triggers a possible runtime error.

A program statement can be either an assume, an assignment, a procedure
call, or a return from the current procedure. The assume statements are used to
model the intra-procedural control flow, such as branching and loops. If there
are more actions defined at one location, they all have to be assume statements.
We allow only variables (fields, array elements) of an integer type and references
to heap objects.

Abstraction. The symbol abs denotes a global mapping from program locations
to sets of abstraction predicates. For a given location l, the set abs(l) contains all
predicates associated with the location l, i.e. the set of predicates whose scope
includes l.

States. A program state s is a pair (H,S), where H denotes the heap and S is
the call stack. The heap H is a directed graph. Inner nodes of the graph represent
objects, classes, and arrays. Leaf nodes are associated with the concrete values of
object fields and array elements that have an integer type. In general, edges in the
graph capture the points-to relation between heap objects, and associate objects
with values of their fields, respectively arrays with values of their elements. An
edge (o, f, v) connects a node that represents a heap object o with a node that
represents the possible value v of the field f . Similarly, an edge (o, n, v) connects
a node that represents an array object o with a node that represents the value
v of an element with the index n.

The call stack is a sequence of tuples (li, σi, Φi) that represent method frames.
The symbol li denotes the current program location within the corresponding
method, σi is the assignment of values to all local variables, and Φi is the val-
uation of all abstraction predicates in abs(li). Possible values of each predicate
are ⊥, �, and ∗ representing false, true, and unknown, respectively.

We assume that a program P has a single initial concrete state, and reads
input from the environment during its execution. The initial state s0 has an
empty heap and stack with a single frame. This frame contains the initial location
linit where the program execution starts, initial values σinit of local variables
in the scope of the entry CFA, and the initial valuation Φinit of abstraction
predicates (i.e., unknown). More formally, σinit = {v �→ 0 | v ∈ vars(Cinit)} and
Φinit = {p �→ ∗ | p ∈ abs(linit)}.

Reachability Graph. We use reachability graphs, defined over the set S of
program states and the set T of transitions between states, to model the program

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 91

behavior and state space. A reachability graph R(P) for the program P is a
possibly infinite directed graph R = (S, T). A transition τ ∈ T is an edge (s, a, s′)
labeled with action a in some CFA. We use a single monolithic reachability graph
for the whole program P . It is constructed inductively as fixpoint of a monotonic
sequence Ri, i ≥ 0 of finite approximations, which starts in R0 = ({s0} , {}). An
approximation Rk+1 extends Rk with a new state s′ and a transition τ = (s, a, s′)
such that s is a state already present in Rk but unexpanded and a is the action
executed by τ . The order of state expansions can be arbitrary, although we use
only the depth-first order in this paper for simplicity.

Note that R(P) is always specific to a given set of abstraction predicates.
The sets S and T , and therefore also the shape of the reachability graph, are
changed upon refinement. For brevity, we use the symbol R to denote a finite
approximation of R(P) in the rest of the paper.

Alternative Interpretations. Each statement of an input program P is exe-
cuted both concretely and abstractly. The abstract execution of a single state-
ment may give rise to multiple alternative interpretations.

The symbol alt(R, s, a) denotes the set {s′ | (s, a, s′) ∈ R} of all alternative
interpretations for an action a in the state s in R. The set contains all the
already explored transitions from s. Note that although in general there may be
infinitely many alternative interpretations of an action in any given state in the
entire R(P), e.g. interpretations of x = unknown(), the set alt(R, s, a) is always
finite for a given approximation R and it is initially empty.

The symbol alt∗ denotes the set of potential alternative interpretations that
will be expanded later (in future); it is initially defined as:

alt∗(s, a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∅ a is not an action at the current location of s in C
{s′} a is x = unknown() ; s ′is successor for x = 0

{s′
1, . . . , s

′
n} a is x = e ; s ′

i are successors for valuations of e

{s′} a is m(x) , or return x ; s ′ is the only successor
∅ or {s′} a is assume c ; s ′ augments s with the condition c

There are no interpretations defined for actions that are not enabled in the
given state. The initial interpretation of x = unknown() is such that x is assigned
the value 0. The interpretation of a regular assignment may not be deterministic
due to heap abstraction, e.g. in the case of x = a[i], and therefore we consider
the set of alternative interpretations to contain all the choices. Interpretation of
procedure calls and returns is straightforward and affects the call stack compo-
nent of a program state. The interpretation of an assume statement depends on
the valuation of the assumed condition c in the state s. If the fact is satisfiable
there is one interpretation s′, otherwise there is none.

The new alternatives to be expanded later are discovered on-demand, and
in the majority of cases only a small finite subset of alternatives needs to be
expanded. An expansion of an action a in s effectively moves the corresponding
interpretation s′ from alt∗(s, a) to alt(R ⊕ (s, a, s′), s, a). For convenience, we
define a set unexp(s) = {a | alt∗(s, a) �= ∅} of actions that are not completely

92 J. Daniel and P. Paŕızek

expanded. We assume the presence of a special unique state send, for which the
set unexp(send) is always empty.

Traces. An execution trace tr of the program P is a finite path in the reachability
graph R(P) that starts in s0 and can be viewed as an alternating sequence
of states and actions (s0, a1, s1, . . . , an, sn). Every such trace tr is associated
with a trace formula ϕtr that captures the execution of the program P along
the trace. The trace formula ϕtr is a conjunction of constraints that express
the semantics and effects of all executed statements (corresponding to actions
a1, . . . , an). Each constraint is defined using the static-single-assignment form.
We say that an execution trace tr is feasible if the corresponding trace formula
ϕtr is satisfiable. A trace tr that reaches the error state serr is called an error
trace or a counterexample.

3 PANDA Algorithm

We describe the core Panda algorithm in the first part of this section, and then
we provide more details on selected aspects in the following subsections.

The core algorithm is shown in Fig. 2. It takes a program P = (C, linit, lerr)
and the initial map abs as input, and constructs the monolithic reachability
graph R for P through iterative unrolling of control-flow graphs in the set C.
Note that the map abs is usually empty at the start, but the user can provide
some predicates for specific locations in this way. The reachability graph R is
iteratively unrolled in the function unroll by means of an overloaded function
advance and a dual function backtrack that carry out key steps of the search.
When the error location lerr is reached by the last transition τ ′, the Panda
algorithm checks feasibility of the counterexample cex. If the error is real then
it is reported to the user; otherwise Panda performs abstraction refinement in
order to eliminate the spurious counterexample and then restarts the state space
traversal. The verification of a program terminates when all the reachable states
are processed. This happens when Panda backtracks over the initial state s0
and the current trace tr becomes empty (line 4). Note also that the verification
algorithm does not perform state matching. Our definition of the verification
algorithm in Fig. 2 contains several other auxiliary functions (scopes, locs, and
itp) that are described later in this section, and also the function trans that
we first explain as a black box and then provide more details in Sect. 3.1.

The function trans(R, tr, s, a) performs simultaneous concrete and abstract
execution of a given action a in the state s at the end of the trace tr in R. It
returns some transition τ ′ = (s, a, s′) for some candidate successor state s′ ∈
alt∗(s, a). There is always at least one successor state, otherwise a /∈ unexp(s).
See Sect. 3.1 for more details on the selection of s′. New valuation of abstraction
predicates in s′ after the execution of the action a is computed using the standard
approach based on weakest preconditions and decision procedures. In addition,
the abstract interpreter uses knowledge of the abstract heap to determine more
precise valuation of predicates that capture aliasing between reference variables.
However, predicates that help maintain the aliasing relation among variables

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 93

Fig. 2. Panda algorithm

still have to be introduced through refinement. Effects of the action a on the
concrete part of the program state s are determined by concrete semantics of
the statement corresponding to a.

A non-deterministic choice in the state space is created when the result of
abstract execution of a given action a cannot be determined precisely using
information from the program state. Possible sources of non-determinism include
especially predicate valuations at branching statements (e.g., when the condition
is unknown) and overapproximating points-to relation due to weak update. The
effect of an assignment to a reference variable is modeled by weak update when-
ever the destination cannot be determined precisely, and in that case the variable
may point to multiple heap objects. When processing an access to array, Panda
can make choices at two levels to consider all the possibly affected elements and
values — first it has to determine all concrete indices that satisfy constraints
encoded by abstraction predicates, and then for each index it has to find all the
array element values based on the points-to relation.

When executing a procedure call,Panda computes initial valuation of abstrac-
tionpredicates of the new stack frame (i.e., in the callee scope) usingpredicates over
the actual arguments of the call. Upon return, valuation of abstraction predicates
in the scope of the caller procedure is updated using valuation of predicates over
the actual arguments of a reference type and predicates over the returned value.

94 J. Daniel and P. Paŕızek

New abstraction predicates are derived from a spurious counterexample cex
in the function refine by the means of interpolation. We use a variant of the
standard approach based on computing an interpolation-sequence [23] over the
trace formula ϕcex. The trace formula is obtained as a conjunction of clauses that
encode individual statements, heap manipulation (via read and write), and the
non-deterministic choices made during their execution (e.g., choice of a concrete
array index when processing statements like x = a[i]). In our case, interpolants are
generated separately for each method call in ϕcex. To ensure a proper scope of
interpolants within each individual method call on the given trace, Panda uses
a procedure similar to nested interpolants [15]. The function scopes divides the
whole trace formula ϕcex into many fragments, where each of them corresponds
to the scope of execution of some method call. The function locs returns a list
Lscp of locations that appear in the given fragment of the trace formula, i.e. in the
corresponding scope. Note that if a method m is executed several times in cex,
then the function scopes will return a separate fragment ϕscp for each execution
of m, and similarly a location can appear multiple times in Lscp (e.g., due to a
loop in the code). Actual interpolants for every fragment ϕscp are computed by
the function itp(ϕscp, ϕcex, l), which calls an interpolating solver. This approach
respects method call boundaries and variable scopes. In particular, interpolants
generated for locations inside a method m contain only symbols that represent
local variables of m.

3.1 Dynamic Pruning and Discovery of Feasible Covering Paths

A consequence of the simultaneous concrete and abstract execution is that a
transition may reach an inconsistent combined state. This situation occurs when
an action a allows for non-deterministic expansion, i.e. when the abstract pre-
state s induces multiple alternative interpretations in alt∗(s, a), while there is
usually a single successor in the concrete state space. In such a case, the concrete
successor is consistent only with one of the abstract successors.

Figure 3 illustrates dynamic pruning and discovery of feasible covering paths,
the strategy that we propose for resolving such situations. The function
transpruning is the implementation of trans from Sect. 3. First, at line 2, it
selects and executes one interpretation of action a in the state s (there must be
at least one due to the check at line 24 in Fig. 2) and marks it as processed at
line 4. Further, if the abstract part of s′ overapproximates the concrete part, i.e.
when there are no inconsistencies, the function returns a transition leading to s′.
Otherwise, Panda is bound to prune the current trace by returning transition
to send at line 10, because the currently analyzed interpretation is not consis-
tent. Then the main algorithm is forced to backtrack in the next iteration, i.e.
in the next call to unroll. However, there may still exist a concrete trace that
captures different values returned by the unknown statements and conforms to
the same abstract trace. Its existence is checked at lines 6 and 7 by means of
generating a model for the related trace formula, and the corresponding branch
will be explored by Panda under a different combined trace in R. Although we
omit this from the pseudocode of trans in Fig. 3, when Panda searches for the

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 95

Fig. 3. The implementation of trans within Panda

alternative concrete trace, it first tries to reuse the already discovered values
that were returned in statements x = unknown() (in order to minimize backtrack-
ing) and only then it explores new models. Panda extracts new interpretations
(i.e., new values of all unknown statements) from the model and adds them into
respective sets alt∗, so that they are explored later (line 9). Here the operator
· [x ← e] produces a state that differs from its operand only in valuation of
the variable x, which is fixed to the value e. Note that a single value returned
by some unknown may prevent further execution of a trace in combination with
specific values of other unknown statements along the trace, and it may permit
the execution in combination with different values.

Example 2. Now consider the situation depicted in Fig. 4 that illustrate the
whole process. On the left, there is a short code snippet, which first stores a
non-deterministic value into the variable x and then compares this variable with
the constant 1. The rest of the figure shows combined concrete and abstract
traces that are explored by Panda during analysis of the code snippet. Dashed
circles represent abstract states, solid dots represent concrete states, tubes depict
abstract transitions, and finally solid arrows stand for concrete transitions. Each
state label always applies to both the concrete and abstract part of a state, and
the same is true for transitions.

The process of pruning inconsistent traces and discovering feasible alternative
traces that cover the pruned behavior is divided into three phases. Each of the
phases is illustrated with a subfigure to the right of the code snippet in Fig. 4.

Phase 1. Panda expanded the action b corresponding to x = unknown() in state
s1 to produce the transition τ1 and reach the state s2. The default interpretation
of b is equivalent to x = 0 (recall the definition of alt∗). At this point, the then-
branch is selected first and trans(R, tr, s2, assume x > 1) yields the state s′, which
is not consistent because the abstract state satisfies x > 1 while the concrete
state assigns 0 to x. This is the reason why the solid dot is not included in the
dashed circle for the state s′, and therefore the solid arrow leaves the tube —
representing the inconsistency between concrete and abstract interpretation of

96 J. Daniel and P. Paŕızek

Fig. 4. On-the-fly discovery of feasible covering paths

the action a in the state s2. However, a different interpretation of b in s1 exists
that would produce a consistent transition. It is extracted from the model of
ϕ(s1,b,s2,a,s′). We suppose, for the purpose of the example, that the discovered
interpretation of b is equivalent to x = 2, although many other integer values
could be returned from unknown(). The new interpretation is added to the set
alt∗(s1, b) before trans returns send and forces Panda to backtrack to s1.

Phase 2. After the backtrack, b ∈ unexp(s1) as it was reintroduced in the previ-
ous phase, and so it is selected for expansion. In the middle subfigure, the alterna-
tive interpretation s′

2 of the action b is expanded by Panda in trans(R, tr, s1, b).
As a result, the state s′

2 is added to the reachability graph R.

Phase 3. The search now continues from s′
2. In the right-most subfigure, trans

explores the interpretation of a in state s′
2. This time, it is consistent and yields

the transition τ ′
2 and the state s′′. Thus the abstractly reachable then-branch

is covered also by the concrete execution, although first it has been discovered
with a concrete trace that had no feasible extension entering the branch.

In general, dynamicpruning eliminatesmany infeasible traces fromtheabstract
state space based on the knowledge of concrete states. That is an important benefit
of the simultaneous concrete and abstract execution. Note, however, that usage of
pruning does not guarantee that all the infeasible abstract branches are eliminated,
because it handles only choices introduced by actions that read non-deterministic
values. Although only the feasible concrete execution traces will be explored for
many input programs, iterative abstraction refinement still may be necessary in
the case of choices caused by non-determinism of other kinds (e.g., imprecise heap
abstraction).

3.2 Soundness and Termination

In this section, we discuss soundness of the proposed Panda algorithm, and why
it may not terminate in general. We show that dynamic pruning and discovery
of feasible covering paths is sufficient to guarantee exploration of all the feasible
behaviors of the given program.

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 97

We say that a reachability graph R is complete if every reachable state of
the program P is directly contained in R, and that R is precise if it does not
contain a spurious trace reaching serr.

The proof of soundness of our verification procedure Panda is based on the
following theorem.

Theorem 1. The program P is safe if and only if the error state serr is not
contained in a complete and precise reachability graph R constructed for P .

Proof. We show the two directions of the equivalence separately for some com-
plete precise reachability graph R for P .

⇐) The state serr is not in R, and since R is complete it contains all the reachable
states of P . Therefore, serr is not reachable in P and by definition P is safe.

⇒) Assume that P is safe. Then, serr is unreachable in any execution of P , and
any abstract trace reaching serr is spurious. Because the given R is precise, it
cannot contain spurious abstract trace reaching serr and thus serr is excluded
from R. ��
What remains to be shown is that when Panda does not report an error

in P , it either terminates with a complete precise reachability graph R(P) or
does not terminate at all. Precision of R follows from the abstraction refinement
step of the main algorithm. Panda either does not terminate or there are finitely
many refinement steps, and thus the resulting reachability graph may not contain
spurious error traces and it is precise.

Now assume that Panda terminates on P and the reachability graph R is
not complete, i.e. there is a reachable state s of P that is not contained in R. In
that case, there must be a trace tr from s0 to s and a state

◦
s that is the first

state on that trace not contained in R. Let (
•
s, a,

◦
s) be the transition reaching

◦
s

on the trace tr for the first time, which means that
•
s ∈ R. The only reason for a

consistent reachable state
◦
s to be excluded from R is that it was never included

in alt∗(
•
s, a). Since the heap abstraction and computation of abstract succes-

sors are overappoximating, the sets of alternative interpretations for assignment
statements, branching, looping, function calls, and returns are overappoximating
as well, and they never exclude any abstractly reachable successor unless it is
pruned. Every abstract successor that is being pruned is analyzed (lines 6–9 in
Fig. 4) for feasibility and appropriate enabling interpretations of actions along
the trace are added to alt∗, so that they can be explored later. Consequently, if
the algorithm terminated without processing the alternative that reaches

◦
s, it

could not have been feasible and R is, in fact, complete.

Theorem 2. Panda soundly verifies safety of programs.

Proof. Follows directly from the discussion above. ��
The whole Panda algorithm may not terminate. The reachability graph may

be infinite due to unbounded loops and recursion that admit infinite number of
concrete traces of different lengths. Also, the abstraction refinement loop may
diverge for input programs with possibly infinite state spaces [16].

98 J. Daniel and P. Paŕızek

4 Implementation

We implemented the proposed verification algorithm in the tool called Panda,
which is built upon Java Pathfinder (JPF) [25] and accepts programs in Java.
JPF is responsible for concrete execution of Java bytecode instructions and sys-
tematic traversal of the concrete state space, and it also provides concrete values
taken from dynamic program states. Predicate abstraction and lazy refinement
are performed with the help of SMT solvers. The current version of Panda
uses CVC4 [4] and Z3 [19]. The complete source code of our implementation,
including examples and benchmark programs, is available at https://github.
com/d3sformal/panda.

In the rest of this section, we describe several optimizations of the core algo-
rithm in Fig. 2 that apply to the restart of state space traveral after refinement.

The basic variant of the function reset backtracks to the initial state, and
drops all information about the state space fragment explored before the spuri-
ous error was hit. However, in this case Panda would explore again the fragment
of the program state space that has already been proven safe. A more efficient
approach, heavily inspired by lazy abstraction [16] used in Blast [6], is the fol-
lowing: (1) determine which locations and states on the spurious error trace are
affected by the refinement, (2) backtrack only to the last state of the longest
unaffected prefix of the error trace, and (3) then resume state space exploration
from that point with the refined abstraction. Location l is affected by the refine-
ment when new predicates were added to abs(l).

Another limitation of the basic Panda algorithm is repeated exploration of
certain safe fragments of the program state space. We designed an optimization
that is based on recording information about explored state space branches.
During the traversal, Panda remembers all safe branches for each choice on the
current trace, and when the traversal resumes with the more precise abstraction
it skips the recorded branches.

5 Evaluation

We performed experiments on three groups of Java programs in order to evaluate
Panda. A brief description of each group of benchmarks follows.

The first group contains 7 benchmarks from the categories loops and arrays
of the Competition on Software Verification (SV-COMP) [26]. Four benchmarks
in this group (Array, Invert String, Password, and Reverse Array) use arrays
whose content is based on non-deterministic input, Eureka 01 computes aggre-
gate properties of data structures based on the values of corresponding elements
of multiple arrays, TREX 03 involves loops with a possibly large number of iter-
ations but without a single explicit control variable, and the benchmark Two
Indices maintains a relation over array elements at different indices. We had to
translate all of them from C into Java, and we also reduced the sizes of arrays
in both language variants, because the current version of Panda is not yet opti-
mized for programs with large arrays.

https://github.com/d3sformal/panda
https://github.com/d3sformal/panda

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 99

The second group contains 4 example programs that we used in previous
work [21], namely Data-flow Analysis, Cycling Race, Image Rendering, and
Scheduler. These benchmark programs are more realistic; they involve manipu-
lation with arrays (sorting), field accesses on heap objects, and loops.

The third group contains variants of two benchmarks from the CTC reposi-
tory [24]: Alarm Clock and Producer-Consumer. We translated the original con-
current programs into sequential programs using an approach similar to context-
bounded reduction [22].

As the benchmark programs in the second and third group are relatively
larger, we used them to find whether Panda is competitive in terms of scalability.
Note also that source code of all the programs contains assertions but the cor-
responding error states are not reachable.

We ranPanda and selected other tools – namelyBlast [6],CPAchecker [8],
Ufo [1], and Wolverine [17] – on all the benchmark programs in order to find
whether our proposed approach is competitive with respect to the ability of ver-
ifying program safety and the running time. We used CPAchecker in the ver-
sion from SV-COMP’15, Blast and Ufo in the versions from SV-COMP’14, and
Wolverine from the year 2012. Table 1 contains results of the experiments.

For Panda, we report the total running time (t), size of the reachable state
space (|S|), number of refinement steps, maximum number of abstraction pred-
icates at some location, and the total number of satisfiability queries executed
by Panda. For the other tools, we report only the total running time in case the
respective tool provided a correct answer. Other possible outcomes are expressed
by specific symbols. We use the symbol ✗ to denote that a tool reported a spuri-
ous error (i.e., a wrong answer), the symbol ? to indicate that a tool says “don’t

Table 1. Experimental results and comparison with other tools

Benchmark Panda Blast CPA Ufo Wolverine

t |S| #ref |abs| #sat

Array 4 s 38 0 7 1802 2 s 2 s 1 s 1 s

Eureka 01 23 s 741 0 53 11462 ✗ ? ✗ timeout

TREX 03 21 s 1425 0 9 14371 ✗ ✗ 1 s 1 s

Invert String 6 s 126 0 18 2728 ✗ 6 s ✗ 9 s

Password 22 s 870 0 19 12837 23 s 3 s ✗ 4 s

Reverse Array 5 s 135 0 18 2358 ✗ 3 s ✗ 3 s

Two Indices 4 s 55 0 15 1921 ✗ 2 s ✗ 1 s

Data-flow Analysis 379 s 508 0 64 8159 ? ? ✗ ✗

Cycling Race 5 s 87 0 28 2151 6 s 3 s 2 s 2 s

Image Rendering timeout - 44 s - ✗

Scheduler 5 s 108 0 35 2185 ? 4 s ✗ 4 s

Alarm Clock 970 s 21200 0 20 87628 ? ✗ ✗ -

Producer-Consumer timeout ? ✗ - ✗

100 J. Daniel and P. Paŕızek

know”, and the character “-” when a tool fails for some other reason (e.g., miss-
ing support for a particular language feature). We put the limit of two hours on
the running time for all experiments.

The results show that Panda did not have to perform abstraction refinement
in the case of all our benchmarks for which verification finished before the time
limit. In addition, Panda did not report a spurious error for any benchmark
program, unlike some of the other tools. This observation supports our claim
that simultaneous abstract and concrete execution is very precise and avoids
spurious behaviors.

Regarding performance, the results are mixed — Panda is faster than other
tools for some of the programs and slower in other cases, but its running times
are competitive for all the benchmarks. Data for the benchmarks Alarm Clock,
Image Rendering, and Producer-Consumer show that Panda has limited scal-
ability, but the other tools failed on these benchmarks with the exception of
CPAchecker on Image Rendering. By manual inspection of execution logs, we
found the following main reasons for the long running times and state explosion
in the case of these three programs.

1. Each trace contains many non-deterministic data choices (unknown state-
ments) for which multiple concrete values have to be explored.

2. Some of the more complex SMT queries executed byPanda, in particular those
used to derive new return values for unknown statements, take a very long time
to answer — for example, even up to 200 seconds in the case of Image Rendering.

On the other hand, Panda successfully verified the programs Alarm Clock, Data-
flow Analysis, and Eureka 01, for which all the other tools failed or reported a
wrong answer.

6 Related Work

Many verification techniques based on the CEGAR principle [11] have been
proposed in the past. However, we are not aware of any existing approach that
combines abstraction with concrete execution in the same way as Panda does.
We provide details about selected techniques and highlight the main differences.

The Panda algorithm extends the approach to lazy predicate abstraction,
which was originally proposed by Henzinger et al. [16] and implemented in
Blast [6]. Simultaneous combination of abstraction with concrete execution
allows Panda to prune many infeasible execution paths and spurious errors on-
the-fly during the state space traversal, thus avoiding many expensive steps of
abstraction refinement. In the more recent work of McMillan [18] and Alberti
et al. [3], lazy abstraction is done using only interpolants without predicate
abstraction, but in this case it is more difficult to check whether a given state
was already covered during traversal. Ufo [1] is another verification technique
that combines abstraction, unrolling of a control flow graph, and interpolants.
It captures multiple error traces with a single formula in order to reduce the
number of necessary refinement steps.

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 101

CPAchecker [8] is a tool that performs multiple custom analyses simul-
taneously, using the framework proposed by Beyer et al. [7]. For example, it
enables users to combine predicate abstraction with shape analysis. The defini-
tion of each program analysis consists of an abstract domain, transfer relation,
merge operator, and an operator that performs the covering check. It might be
possible to implement the Panda algorithm in CPAchecker, assuming that
different analyses can exchange the necessary information during a run of the
tool. Concrete execution would have to be expressed as one of the analyses.

Charlton [9] proposed another framework that supports combination of multi-
ple analyses and verification techniques. The analyses are executed in steps by the
overall worklist algorithm. In each iteration, they exchange computed facts about
the program behavior using logic formulas, and they can also query each other.

The Dash algorithm [5] combines testing with abstraction in an iterative
manner to achieve better precision and performance. In each iteration, it explores
the current abstract state space in order to search for a possible error trace.
Then, if there is an abstract error trace, Dash attempts to find a corresponding
concrete trace by creating and running new tests. Based on their results, it can
either confirm the presence of a real error or extend the current forest of tests.
Only when such a test cannot be found, the abstraction is refined by predicates
that are derived from the first infeasible transition on the given error trace. Like
in the case of Panda, use of concrete execution (testing) saves many refinement
steps and helps to avoid many SMT queries, especially if the input program
contains loops with many iterations. The main difference is that Dash performs
the individual phases, i.e. concrete execution and changes of the abstraction,
consecutively (in turns), while Panda unrolls the reachability graph on-the-
fly using both concrete execution and predicate abstraction simultaneously (in
tandem). This enables Panda to refine multiple regions of the abstraction in
each iteration, achieving faster convergence.

Smash [14] combines may analysis (abstraction) with must analysis (concrete
execution in the form of dynamic test generation) using a compositional approach
based on procedure summaries. In each step, it can update either the may sum-
mary of some procedure or the must summary, but not both of them simulta-
neously. The key feature of Smash is the alternation (interplay) of testing and
abstraction such that intermediate analysis results are exchanged between the
two. Both theDash and Smash algorithms are implemented in theYogi tool [20].

Panda resembles also mixed symbolic and concrete execution, implemented
in tools such as DART [13] and KLEE [10]. However, in Panda the concrete
execution and predicate abstraction are performed simultaneously in such a way
that they guide each other, while in DART, for example, they do not interact
during the traversal of one path. In addition, Panda uses predicates that are
more expressive than path constraints in DART, because it generates new predi-
cates by applying interpolation to trace formulas (i.e. not just by extraction from
the program code). It is also more efficient because it can prune several infeasible
paths in one step. The main practical limitation of symbolic execution is that
users must put a bound on the number of explored paths and their depth. Tools

102 J. Daniel and P. Paŕızek

based on this approach are therefore used mainly for dynamic test generation
and bug hunting, while Panda can explore all paths in the reachability graph
of a given program to check whether it is safe.

Some work has been done also on combining symbolic execution with predi-
cate abstraction and iterative refinement. The approach proposed by
Albarghouthi et al. [2] uses symbolic execution to explore the underapproxi-
mation of a program behavior, and in each iteration checks whether the abstract
model created by symbolic execution is also an overapproximation of the con-
crete state space. Abstraction refinement is performed to add new predicates
that would enable the verification procedure to cover more feasible execution
paths.

7 Conclusion

In this paper we presented the Panda algorithm that combines predicate abstrac-
tion with simultaneous concrete execution. Dynamic pruning, the method that
we proposed for solving inconsistencies between concrete and abstract execution,
eliminates many spurious execution paths on-the-fly. A consequence of this com-
bination is a higher analysis precision that allows Panda to keep the number
of necessary refinement steps to a minimum. Specifically, Panda did not have
to perform abstraction refinement for any of the benchmark programs that we
used in our experiments.

In future, we plan to optimize our prototype implementation and we would
also like to use a different abstract representation of the program heap. Our long
term goals include support for data containers, concurrency, and predicates over
data shared between threads, most probably through adaptation of some already
known techniques [12,21].

Acknowledgements. This work was partially supported by the Grant Agency of
the Czech Republic project 13-12121P and by Charles University institutional funding
SVV-2015-260222.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-
approximations and back. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 157–172. Springer, Heidelberg (2012)

2. Albarghouthi, A., Gurfinkel, A., Wei, O., Chechik, M.: Abstract analysis of sym-
bolic executions. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol.
6174, pp. 495–510. Springer, Heidelberg (2010)

3. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstrac-
tion with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18
2012. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012)

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

5. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
Proceedings of ISSTA. ACM (2008)

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 103

6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST. STTT 9(5–6), 505–525 (2007)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

8. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011)

9. Charlton, N.: Program verification with interacting analysis plugins. Form. Aspects
Comput. 19(3), 375–399 (2007)

10. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of OSDI.
USENIX (2008)

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
154–169. Springer, Heidelberg (2000)

12. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg
(2011)

13. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of PLDI. ACM (2005)

14. Godefroid, P., Nori, A., Rajamani, S.K., Tetali, S.: Compositional may-must pro-
gram analysis: unleashing the power of alternation. In: Proceedings of POPL. ACM
(2010)

15. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Proceedings of
POPL. ACM (2010)

16. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of POPL. ACM (2002)

17. Kroening, D., Weissenbacher, G.: Interpolation-based software verification with
Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 573–578. Springer, Heidelberg (2011)

18. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

19. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

20. Nori, A.V., Rajamani, S.K., Tetali, S.D., Thakur, A.V.: The Yogi project: software
property checking via static analysis and testing. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009)

21. Parizek, P., Lhotak, O.: Predicate abstraction of java programs with collections.
In: Proceedings of OOPSLA. ACM (2012)

22. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: Proceedings of PLDI.
ACM (2004)

23. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: Pro-
ceedings of FMCAD. IEEE (2009)

24. Concurrency Tool Comparison. https://facwiki.cs.byu.edu/vv-lab/index.php/
Concurrency Tool Comparison

25. Java Pathfinder. http://babelfish.arc.nasa.gov/trac/jpf
26. Competition on Software Verification. http://sv-comp.sosy-lab.org/2015/

https://facwiki.cs.byu.edu/vv-lab/index.php/Concurrency_Tool_Comparison
https://facwiki.cs.byu.edu/vv-lab/index.php/Concurrency_Tool_Comparison
http://babelfish.arc.nasa.gov/trac/jpf
http://sv-comp.sosy-lab.org/2015/

	PANDA: Simultaneous Predicate Abstraction and Concrete Execution
	1 Introduction
	2 Preliminaries
	3 PANDA Algorithm
	3.1 Dynamic Pruning and Discovery of Feasible Covering Paths
	3.2 Soundness and Termination

	4 Implementation
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

