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Abstract. Security of modern information and communication systems
has become a major concern. This tool paper presents Flinder-SCA, an
original combined tool for vulnerability detection, implemented on top of
Frama-C, a platform for collaborative verification of C programs, and
Search Lab’s Flinder testing tool. Flinder-SCA includes three steps.
First, abstract interpretation and taint analysis are used to detect poten-
tial vulnerabilities (alarms), then program slicing is applied to reduce the
initial program, and finally a testing step tries to confirm detected alarms
by fuzzing on the reduced program. We describe the proposed approach
and the tool, illustrate its application for the recent OpenSSL/Heart-
Beat Heartbleed vulnerability, and discuss the benefits and industrial
application perspectives of the proposed verification approach.
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1 Introduction

The recent Heartbleed bug [6] illustrated once again that critical security flaws
can remain undetected by a static or a dynamic analysis technique alone [8].
This paper presents Flinder-SCA, a novel verification tool for vulnerability
detection using a combination of static and dynamic analyses, as well as a case
study illustrating the capabilities of the proposed combined verification approach
to detect recent vulnerabilities at the source code level with reasonable amounts
of efforts and computing time. This work has been realized in the context of the
STANCE project.
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The STANCE project1 belongs to the European FP7 Research Program
and proposes to design and implement validation and verification (V&V) tools
to ensure security of industrial software in C, C++ or Java. STANCE builds
on the Frama-C [7], Flinder [10] and VeriFast2 toolkits and extends their
capabilities to handle the aforementioned programming languages and perform
security analyses. STANCE studies security properties of industrial applications
provided by partners. These are related to an Aeronautic use case (from Dassault
Aviation, France), Trusted Computing platforms for embedded systems based
on the TPM3 (from Infineon AG, Germany and TU Graz, Austria), and authen-
tication software for complex distributed networks (from Thales COM, France).
The vulnerabilities addressed by STANCE have been classified by using the
CWE classification [1] and keeping those vulnerabilities that (1) can be detected
in the source code, (2) are written in C, C++ or Java, and (3) are related to the
considered application categories.

The original contributions of the present work include

– a new combined verification technique for detection of security vulnerabilities,
– its implementation, Flinder-SCA, realized in the context of the STANCE

project,
– an illustration of its application to the recent Heartbleed vulnerability, and
– a discussion of benefits and application perspectives of the proposed approach.

This paper is structured as follows. Section 2 describes the Heartbleed vulnerabil-
ity. Section 3 provides on overview of the Flinder-SCA tool and the associated
methodology. Sections 4, 5 and 6 describe the tool components and illustrate
them on the case study. Section 7 provides a short tool demo. Section 8 dis-
cusses the difficulties of detecting the Heartbleed vulnerability. Finally, Sect. 9
concludes with the benefits of the approach and some future work.

2 The Heartbleed Vulnerability

The Heartbleed bug [6] was discovered in 2014 in OpenSSL4, the famous crypto-
graphic library widely used to encrypt communications over the Internet. This
bug was identified in the HeartBeat functionality, originally intended to check
whether a given server is still alive and able to encipher TCP/IP packets with
SSL techniques. How HeartBeat operates is straightforward: a client sends a
“keep-alive” message containing a payload (a random array of bytes intended to
be repeated) as well as the payload’s size. In turn, if alive, the server is expected
to send the very same payload back to the client. This ensures that the server is
— at least — able to copy a message previously received and to forward it back
to the sender.
1 See http://www.stance-project.eu/.
2 See http://people.cs.kuleuven.be/bart.jacobs/verifast.
3 See http://www.trustedcomputinggroup.org.
4 See https://www.openssl.org.

http://www.stance-project.eu/
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The security issue comes from the fact that the size of the payload is specified
by the client, and this size is not checked by the server against the effective
payload length — causing it to read past the end of the memory area allocated
to hold the payload, which is a typical buffer over-read vulnerability [1]. For
instance, if the client sends a 3-byte message and indicates 0xFFFF (=65535) as
the fake size, the server will send the following non-padding data back to the
client: the message header and length (1+2 bytes), the 3-byte message itself, then
65532 bytes from the server’s heap memory immediately following the payload at
the time of processing. Since the memory area allocated to the payload changes
with each request, an attacker can repeatedly send such a request and obtain data
stored in many different areas of the heap. Unfortunately, such data may contain
confidential data from other processes (e.g. Apache credentials) as well as any
other compromising information, and most importantly the secret keys used by
OpenSSL itself — which could then be used to impersonate or steal information
from the server. Many commonly-used and important Internet sites and their
services (such as Google, Youtube, Wikipedia, and Reuters) were compromised
by this vulnerability.

The code snippet in Fig. 1, extracted from the OpenSSL/HeartBeat extension
v1.0.1+, illustrates the Heartbleed bug. The buffer over-read vulnerability clearly
stands in the memcpy call statement (line 7). The payload length variable payload is
indeed specified by the client, possibly an attacker, and determines how many
bytes from the payload pl will be copied into the buffer starting from buffer
pointer bp. A few statements later, after adding additional padding bytes (line
10), the contents of the buffer variable are sent back to the client (line 11),
potentially with a substantial part of the heap.

Fig. 1. Extract from OpenSSL/HeartBeat source code (tls1_process_heartbeat function)

3 Overview of the Flinder-SCA Tool

The Flinder-SCA tool has been realized in the context of two V&V tools: the
Frama-C code analysis platform [7], and the Flinder security testing plat-
form [10]. Frama-C provides a collection of scalable and interoperable tools for
static and dynamic analyses of ISO C99 source code. It is based on a common
kernel that hosts analyzers as collaborating plug-ins that share a common formal
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Fig. 2. (a) Overview of the proposed methodology, and (b) Architecture of the
Flinder tool

specification language. Frama-C includes plug-ins based on abstract interpre-
tation, deductive verification and dynamic analysis, as well as a series of derived
plug-ins which build elaborate analyses upon the former. In addition, the exten-
sibility of the overall platform, and its open-source licensing, have fostered the
development of an ecosystem of independent third-party plug-ins.

The proposed verification methodology is illustrated in Fig. 2a. First, a static
analysis step relying on value and taint analyses (detailed in Sect. 4) is applied
to detect alarms reporting potential vulnerabilities. Second, a program slicing
step (described in Sect. 5) is used to reduce the initial program p and to produce
a smaller one, p′, called a slice. These two steps are realized by Frama-C plug-
ins. Finally, the fuzz testing step (presented in Sect. 6) applies Flinder on p′

to confirm these alarms as actual vulnerabilities. This methodology enhances
the Sante approach [3] that combined value analysis, slicing and structural
testing for detection of runtime errors, and makes it well-adapted for detection
of security flaws. (For more related work, see [3]).

4 Detection of Alarms by Static Analysis

With Frama-C, potential runtime errors (alarms) can be detected and local-
ized by the Value plug-in [7]. It implements an abstract interpretation based
value analysis that computes (over-approximated) domains of possible values
for program variables at each program location. For the memcpy call responsible
for Heartbleed (cf. Fig. 1), Value generates the following assertions (slightly
rewritten here for the sake of clarity):
//@ assert Alarm1: mem_access: \valid(bp[0 .. (payload -1)]);
//@ assert Alarm2: mem_access: \valid(pl[0 .. (payload -1)]);
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These alarms indicate that the tool cannot ensure the validity of pointers bp and
pl in the range of the payload size payload, and therefore dereferencing them may
be dangerous.

As Value is a sound analyzer [7], it guarantees to generate alarms for
all potential runtime errors. It may also generate spurious cases — false pos-
itives —, due to over-approximations, especially when users do not provide it
with a sufficiently accurate initial state for the inputs. As a result, the alarms
of interest with regard to Heartbleed might be raised among numerous other
alarms, with no means — at first glance — to distinguish preeminent assertions.
Of course, more precise analyses could be performed through additional efforts,
for instance on the specification of the initial state, or additional annotations in
the code to reduce non-conclusive over-approximations. These two workarounds
imply a deeper understanding of the application under analysis, and may not be
affordable in terms of required efforts or functional expertise in practice.

In this work, we use another approach based on taint analysis [5] to iden-
tify code variables and statements concerned with the propagation of taintable,
i.e. potentially corrupted inputs. Taintable inputs may contain information con-
trolled by an attacker, and therefore represent a high risk to introduce malicious
behaviors. Taint analysis allows the user to distinguish which source code state-
ments are concerned with the taintable input flow and are used by a potentially
vulnerable function. Taintable data flows are propagated, for instance, in case of
pointer aliasing, or copy of memory zones. The proposed taint analysis approach
is based on static analysis results computed by Value. We have implemented it
in an experimental Frama-C plug-in.

To apply it on the Heartbleed case, the user specifies the potentially taintable
inputs (rrec.data, the major part of the HeartBeat message sent by the client), and
the vulnerable functions (e.g. libc functions memcpy, strcpy, fgets,. . . that give rise to
a significant number of vulnerabilities [4]). The tool reports that the assertions
related to memcpy call handle the taintable input flow, and the memcpy statement
is identified as vulnerable5. This permits to distinguish security-related alarms
among all alarms generated by Value.

5 Simplification of the Program by Slicing

Program slicing [11,12] consists in computing the set of program instructions,
called program slice, that may influence the program state at some point of
interest, called slicing criterion. Slicing preserves the behaviors of the initial
program at the selected criterion after removing irrelevant instructions. It relies
on dependency analysis, that can in turn use the results of value analysis.

The Slicing plug-in [7] of Frama-C offers various ways to define slicing
criteria, including program statements, function calls and returns, read and write
accesses to selected variables, and logical annotations. Slicing is also able to
handle a conjunction of atomic criteria: by construction, the slice will verify all
criteria simultaneously.
5 For convenience of the reader, taint analysis results are illustrated in Sect. 7.1.
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In this work, we apply Slicing to simplify the code with respect to the set
of alarms produced by static analysis (cf. Sect. 4). For the program with the
Heartbleed vulnerability, initially containing 8 defined functions and 51 lines of
code, using Slicing allows us to simplify the code and to keep only 2 defined
functions and 38 lines in the slice used in the last step.

6 Confirmation of Alarms by Fuzz Testing

Fuzz testing consists of injecting faulty, erroneous or malformed input into a sys-
tem under test, and monitoring the state of the system. Detecting an observable
error state (such as a crash) indicates that the system cannot properly handle
the input in question, confirming the existence of a bug in the code. To be more
efficient, fuzzing must be able to generate syntactically correct, but semantically
invalid input by modifying some (sets of) fields within it. The Flinder fuzz test-
ing framework [10] was originally developed to perform “smart”, syntax-aware
black-box fuzzing : the tester specified the exact format of the input being tested,
provided a valid input sample, and defined which of the fields within the format
should be modified.

Within STANCE, Flinder plays a different role: it is used to determine
whether a certain alarm identified by static analysis is an actual vulnerability.
Flinder accomplishes this via white-box fuzzing: a specific function inside a
program becomes the system under test, and its parameters define individual
input fields to be modified. The main white-box operation steps, labelled (1)–
(5), are shown in Fig. 2b:

(1) Based on the previously-instrumented code (with the potentially vulnerable
callsites detected by e.g. value analysis) and information about the particular
variables to modify in a function (provided by e.g. taint analysis), Flinder
generates a list of fuzzing parameters for each variable to be modified, spec-
ifying what kind of values should be generated for them to look for certain
kinds of vulnerabilities.

(2) The instrumented code is compiled and fed to the Flinder test harness.
(3) Test vectors are generated according to the fuzzing parameters — e.g. strings

of varying length for a string variable to identify buffer overflow problems,
and very small and very large values for an integer variable to identify integer
overflow and array overindexing issues.

(4) Each test vector is sent to the test harness (4a), where its values are used
to replace the values in the variables targeted by the fuzzing at runtime
(4b). The test harness observes the termination of the function (4c), detects
anomalies thanks to the instrumentation, and logs the results (4d).

(5) Based on the presence of anomalies in the logs — such as invalid memory
accesses or crashes — Flinder decides whether the vulnerability is con-
firmed or not.

In the Heartbleed example, the static analysis step reports to Flinder six
potential bugs, while the slicing step reduces the code and the number of para-
meters of the function tls1_process_heartbeat. Next, the code is instrumented to be
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able to detect memory violation errors. Used in the white-box mode, Flinder
generates test cases for modifying each of the parameters in turn: 10 test cases
for a different-size Heartbeat message buffer, and 32 test cases each for different
Heartbeat message length and sequence number values. The first test case where
the Heartbeat message length is larger than the buffer size causes an invalid mem-
ory read attempt. Captured by the test harness, this operation allows Flinder
to identify the specific Frama-C alarm connected to the test. Flinder ulti-
mately relays this information to Frama-C, which can then change the status
of the corresponding alarms to confirmed (showing them in red in the Frama-C
GUI)6.

7 Tool Demonstration

7.1 Static Analysis Step Applied to the Heartbleed Vulnerability

Figure 3 provides a screenshot illustrating how the first step of Flinder-SCA
allows the verification engineer to detect potential vulnerabilities within the
Frama-C toolset. The culprit memcpy statement is identified as vulnerable, because
it manipulates a taintable data flow. We extended the original Frama-C GUI by
some complementary columns to ease the localization of vulnerable statements in
the source code. In the upper left panel, several columns identify functions compris-
ing taintable data flows, vulnerable statements and alarms. The upper right panel
shows the source code with the taintable data flows and vulnerable statements
highlighted in orange and pink respectively. This provides the verification team
with a user-friendly overview of taint analysis results on the code under review
(especially thanks to the causality with taintable input parameters).

7.2 Fuzz Testing Step Applied to the Heartbleed Vulnerability

In this example, Flinder is applied to the simplified version of the Heartbleed
vulnerability (see Fig. 1). The static analysis step has identified six potential
bugs in the tls1_process_heartbeat function, and the slicing step has simplified the
program to reduce the size and complexity of the code. After appropriately
instrumenting the sliced code at each alarm location where memory issues are
suspected, Flinder determines which fuzzing rules to apply — in this case,
simple integer fuzzing is applied to the two integer parameters of the function
tls1_process_heartbeat, and binary data fuzzing is applied to the string parameter
(see Fig. 4). Fuzzing the first (string) parameter s_s3_rrec_data proves to be incon-
clusive: injecting modified values into the program does not result in crashes or
other incorrect operation. Regardless, fuzzing buffers such as this is important
— in many cases, they can contain important data that can affect the execution
path of the application. Changing the second (integer) parameter s_s3_rrec_length

to a value that is larger than the size of the buffer results in an invalid memory
access, which is then detected by the test harness due to the hooks inserted
6 For convenience of the reader, fuzzing results are illustrated in Sect. 7.2.
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Fig. 3. Frama-C GUI after applying Value and taint analysis. (Color figure online)

into the code. This allows Flinder to confirm the presence of the vulnerability.
Finally, this information is sent back to Frama-C to set the status of the corre-
sponding alarms as confirmed (in other words, the corresponding assertions are
marked in red as invalid, see Fig. 5).

8 Discussion

According to [8], the main difficulties in detecting Heartbleed with static analy-
sis tools were four-fold: the way data is stored and referenced, complexity of
following the execution path, difficulty of identifying the specific parts in the
storage structure that are misused, and resistance to taint analysis heuristics
due to the difficulty of determining whether a specific part within a complex
storage structure has become untainted.

Detecting the bug via dynamic analysis ran into another problem: the custom
memory management used by OpenSSL would prevent dynamic testing frame-
works such as Valgrind [9] from being able to successfully detect a memory
corruption or over-read problem. This — combined with encapsulation of the
heartbeat length field within the payload — made its detection via fuzz testing
infeasible.

In the end, Heartbleed was detected with two main approaches: Neel Mehta
(Google) found it using manual code review7, and Codenomicon found it through
7 as reported by Andrew Hintz, Google vulnerability analyst, see https://news.

ycombinator.com/item?id=7558015.

https://news.ycombinator.com/item?id=7558015
https://news.ycombinator.com/item?id=7558015
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Fig. 4. The results produced by Flinder after applying it to the Heartbleed vulnera-
bility.

the use of a hybrid fuzzer/dynamic analyzer tool. The latter approach is very
interesting from a tool standpoint: instead of relying purely on fuzzing, an addi-
tional mechanism was employed to detect when the output of a system was
semantically incorrect in several ways (bypassing authentication, data leakage,
amplification, and weak encryption) [2]. This approach requires additional man-
ual work in the creation of additional information to describe the output, but
this only needs to be done once for each interface.
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Fig. 5. The final results in the Frama-C GUI after applying Flinder-SCA to the
Heartbleed vulnerability. The last two alarms shown in red are real flaws. (Color figure
online)

This trend of combining fuzz testing tools with other static and dynamic
analysis techniques proves to be an important way of detecting complex and
non-obvious security vulnerabilities, moving forward.

To summarize, complex vulnerabilities such as Heartbleed present significant
challenges to state-of-the-art static and dynamic analysis tools. While manual
code review can always be effective, it is not always a viable solution due to the
sheer volume of source code to be inspected in some cases. Thus, new approaches
— such as the one proposed in the present work — that combine existing methods
are essential in their capacity to detect vulnerabilities automatically without
requiring significant manual effort.

9 Conclusion and Future Work

The difficulties of detecting the Heartbleed vulnerability by a static or a dynamic
analysis technique alone have been identified and discussed in [8]. To address such
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vulnerabilities, this work proposes an innovative combined approach whose dif-
ferent steps are complementary and offer a very promising synergy. First, value
analysis reports potential errors as alarms, while taint analysis identifies a sub-
set of alarms that are most likely to lead to attacks. Notice that static analysis
alone reports several alarms and cannot precisely find the security flaw. Second,
slicing reduces the source code by removing statements that are irrelevant w.r.t.
the identified subset of alarms. In this case study, slicing reduced the program
by 25 %, while in earlier experiments on runtime error detection with Sante [3],
the average rate of program reduction by slicing was about 32 %. These two steps
help to focus on security-relevant alarms in the last step and avoid wasting time
by analyzing safe or irrelevant statements. Finally, a fuzz testing step is applied
on the reduced code in order to try to confirm the selected alarms. In the present
case study, fuzz testing with Flinder without a preliminary static analysis step
could be applied only in a black-box manner and would not be able to find
the Heartbleed bug either. Similarly, only using static analysis techniques could
not confirm the validity of any identified alarms. Another important benefit for
industrial applications of the method is its capacity to detect bugs with reason-
able efforts, e.g. without the tester having to provide a detailed specification of
the input state or additional annotations in the code.

We implemented this method in the Flinder-SCA tool, aiming to connect
several new plug-ins developed on top of the Frama-C platform: a taint analysis
tool, and a fuzz testing prototype currently being developed within the STANCE
project. The originality of the present work with respect to Sante [3] lies in using
taint analysis for identifying the most security-relevant alarms, and fuzz test-
ing for efficient detection of vulnerabilities. That enhances the Sante method,
adapts it to detection of security flaws and makes it effective for such subtle
vulnerabilities as Heartbleed.

Flinder-SCA is currently used to analyze other proprietary or open-source
pieces of software, with negligible adaptations; however, it is important to note
that much of the intended vulnerability detection functionality of Flinder-
SCA is still under active development within the STANCE project. Several
improvements are planned to enlarge the scope of applications. This concerns
in particular the Flinder tool to address more types of vulnerabilities, and
a better integration with taint analysis to be able to apply fuzzing techniques
to any control point in the potentially vulnerable workflow under analysis and
better identify which parts of the code are the best candidates for fuzzing.

Future improvements also include the investigation of complex input that
cannot be represented by variable types — such as a string variable contain-
ing an entire SSL3 record consisting of several distinct pieces of data. This can
be achieved by adapting Flinder’s already existing structure-aware fuzz test-
ing capabilities and employing static analysis methods to help users create the
inner structure for such variables as necessary — or in some cases, generating it
automatically.

These future developments will permit to apply the methods and tools dis-
cussed in this paper to several application candidates, sub-parts of the STANCE
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project use cases. They could range from basic Apache resource libraries, for which
the feasibility can be considered as acquired, to more sophisticated functions
(possibly from SingleSignOn software for instance). It is also expected to expand
these applications to critical infrastructures in future projects, coupling dynamic
and static approaches, in which fuzzing will remain one of the key techniques for
verification of complex security properties in complement to classical static analy-
sis methods.
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and the anonymous referees for many helpful comments.
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