
On Switching Aware Synthesis
for Combinational Circuits

Jan Lanik(B) and Oded Maler

VERIMAG CNRS and University of Grenoble, Grenoble, France
{jan.lanik,oded.maler}@imag.fr

Abstract. We propose a synthesis algorithm for combinational circuits
which optimizes the expected number of gate switchings induced by typ-
ical sequences of input vectors. Our algorithm, which is based on simple
observations concerning AND gates, performs quite well on sequences
produced by the same probabilistic models used to generate the training
sequences.

1 Introduction

Digital circuit synthesis [3,7,8,15] from higher level descriptions to technol-
ogy dependent standard cells is one of the core activities in Electronic Design
Automation (EDA), well-studied in academic research and implemented in pow-
erful commercial tools. This is the hardware analog of optimizing compilation,
and indispensable tool in producing efficient chips. Traditionally, the major opti-
mization objectives in synthesis have been area and speed, associated with the
depth of the circuit from primary inputs to outputs. In the last decades, power
consumption has become a no less important performance measure for reasons
that need not be repeated here [1,2,4,14]. In this work we develop a new synthesis
algorithm geared toward reducing the expected number of switchings in the cir-
cuit, an important ingredient in its power consumption. This work can be viewed
as part of the trend to apply formal technology (abstract reasoning on Boolean
functions and automata) outside the traditional scope of verification, namely
handling quantitative properties such as timing and power consumption that
were considered non-functional properties, and applying optimization/synthesis
rather than evaluation/verification with respect to them.

Figure 1 sketches a possible logic synthesis flow. Starting from a multi-level
logic specification, the circuit is brought into a form of an And-Inverter Graph
(AIG) consisting solely of and and not gates. This representation is than
mapped into a concrete technology of standard cells admitting physical proper-
ties such as size and electrical characteristics. Syntactically AIGs are composed
from 2and gates but by collapsing together all not-free “cones”, we obtain a
semantically-equivalent function constructed from and gates of unbounded fan-
in (arity). Part of the technology-dependent mapping can be viewed as decom-
posing those ands into networks of 2ands and this is the problem we address
in this paper.
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 276–291, 2015.
DOI: 10.1007/978-3-319-26287-1 17

On Switching Aware Synthesis for Combinational Circuits 277

x1

x2

x3

X = x1 · x2

Y = x̄2 + x3 y

Z = X + Y z

x1

x2

x3

y

z

x1

x2

x3 y

z

2NANDXU37

2NANDXU37

INVBC5
INVBC5

2NORXU6

Fig. 1. A logic synthesis design flow: from multilevel logic specification to And-Inverter
graphs to standard cells.

Dynamic power consumption of Boolean gates is associated essentially with
their switchings between 0 and 1. In this work we consider synchronous combi-
national circuits that process sequences of input vectors. For each input vector, a
circuit propagates values from input to output ports until it stabilizes and then
reads the next input. The overall number of switchings associated with a pair of
inputs is the number of gates whose stable value for one input is different from
their value for the next input. For one such pair it is possible to steer the syn-
thesis process and obtain a circuit with significantly less switchings compared to
other arbitrary circuits that realize the same function. But of course, any circuit
will process during its lifetime a long sequence consisting of diverse consecutive
pairs of input vectors and optimizing synthesis with respect to all those is a
challenging problem.

One natural approach is to define some probability function over sequences of
input sequences, induced, for example, by a Markov chain which generates them.
However, even the evaluation of the expected number of switchings in a given cir-
cuit is an intractable problem for non-trivial probabilistic generators with many
input variables. As an alternative we develop in this paper a switching-aware

278 J. Lanik and O. Maler

synthesis procedure which optimizes the circuit relative to a reference sequence
supposed to represent a typical input. In essence, the algorithm estimates the
expected amount of switchings associated with a conjunction of any pair of input
variables and then solves an optimal perfect matching problem to decide which
variables to pair together as inputs to a 2and gate. The procedure obtains quite a
good switching reduction compared to arbitrary realizations of the same function
by circuits of the same topology.

We then study the question of optimization with respect to inputs gener-
ated by Markov chains of small description size, that is, networks of sparsely-
interacting 2-state probabilistic automata. We use such networks to generate the
reference (training) sequences and then measure the performance gains on other
sequences generated from the same model. We perform experiments on models
of varying degree of variable dependencies and other assumptions on the inputs
and we obtain significant reduction in switching activity. Finally, we introduce
a reduced model of an instruction decoder and evaluate our procedure under
probabilistic assumptions concerning the instruction stream.

2 Problem Statement

Our starting point is a Boolean circuit constructed from unbounded fan-in and
gates and not gates and our goal is to replace the and gates by 2and gates,
yielding a semantically equivalent circuit C. Once we have a good solution for
the and-to-2and problem we can apply it to any and in the AIG and solve the
synthesis problem for the whole circuit. From now on we consider a function f :
(x1, . . . , xn) �→ x1∧· · ·∧xn and a target circuit C which is a properly structured
directed acyclic graph whose nodes are 2ands of the form g : (x1, x2) �→ x1 ∧x2.
We denote the input space B

n by X and the state-space of C, that is, the set of
possible values in the output ports of all its gates, as Y = B

m. The synthesized
circuit C can be viewed as a memoryless transducer from X∗ to Y ∗ such that for
every t, y[t] is the stable state of the circuit after processing x[t]. The amount
of switching in C relative to input x and at time t is

S(C, x, t) = Δ(y[t − 1], y[t])

where Δ is the Hamming distance between Boolean vectors. The total amount
of switching while reading a sequence x ∈ X∗ is

S(C, x) =
|x|∑

t=1

S(C, x, t).

A circuit C is better than C ′ relative to x if S(C, x) < S(C ′, x). We want to
build circuits which are optimal or reasonable in this sense. A major issue is
what to assume about the set of inputs used to evaluate S(C, .). One can think
of two approaches.

On Switching Aware Synthesis for Combinational Circuits 279

1. Assume some probability function P on X∗, or more precisely a family of
probabilities Pk : Xk → [0, 1], defined for example via a Markov chain, and
then attempt to optimize the expected number of switchings per time step

S(C,P) = lim
k→∞

∑

x∈Xk

Pk(x) · S(C, x)/k.

2. Use a long reference sequence x and evaluate C according to S(C, x).

We will use a mixture of these two approaches. We optimize S(C, x) for some
training sequence x generated by a Markov chain and then evaluate the synthe-
sized circuit according to the number of switchings that occur while processing
other sequences generated from the same chain.

3 Input Pairing for and Gates

The principle underlying switching reduction for and gates is simple. Among
all elements of X only a single vector 1 = (1, . . . , 1) satisfies f(x) = 1. Input
transitions of the form x → x′ such that x �= 1 and x′ �= 1 will not change the
primary output. They can change, however, the values of intermediate gates that
realize a conjunction of a subset of the input variables. We call such transitions
useless and our goal is to “abort” them as soon as possible.

x1

x2 x3 x4 x5 x6 x7 x8

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

x1

x2

x3

x4

x5

x6

x7

x8

0 → 0

0 → 1
0 → 1

0 → 1
0 → 1

0 → 1
0 → 1

0 → 1

0 → 0

0 → 1

0 → 1

0 → 1

0 → 0

0 → 1

0 → 0

Fig. 2. For an input transition (0, 0, 0, 0, 0, 0, 0, 0) → (0, 1, 1, 1, 1, 1, 1, 1) a chain real-
izations can abort all switchings but a tree cannot.

280 J. Lanik and O. Maler

There are numerous realizations of f by 2ands, all using n−1 gates. Among
those, one can single out two extreme topologies, the sequential chain, whose
depth is n − 1 and the balanced tree with depth d = log n. Since circuit depth
determines propagation delay from input the output, speed considerations favor
balanced trees and we will focus in this paper on those. Balanced trees bring
some regularity to the problem, allowing us to work recursively on the levels of
the tree from 0 (primary inputs) to d − 1. Note, however, that chains tend to
be more efficient in switching reduction in and gates because they can abort
useless switchings earlier as shown in Fig. 2. We have implemented also a version
of our procedure, not reported here, which does not commit a priori to the circuit
topology and which can be applied when power consumption is considered much
more important than latency.

For the fixed balanced tree topology, the synthesis problem reduces to map-
ping input variables to the circuit input ports. The problem can be phrased
recursively as follows. At level i of the tree, 2d−i inputs should be partitioned
into pairs to be mapped into 2d−i−1 2and gates. To understand which input
signals should be paired together, let us look at Table 1-(A) which shows which
transitions are taken by the output as a function of the transitions taken by the
inputs. Table 1-(B) shows the number of output switchings in each case while
Table 1-(C) shows the net switching reduction effect, namely, the number of
input switchings minus the number of output switchings. It is intuitively clear
that for one consecutive pair of inputs, we should pair together variables taking
respective transitions 1 → 0 and 0 → 1. Such transitions cancel each other and
send as inputs to the next level a variable doing 0 → 0 which will not trigger

Table 1. (A) The output transitions of an and-gate as a function of the input tran-
sitions; (B) The number of switchings associated with every pair (u → u′, v → v′) of
input transitions; (C) the net switching reduction: number of input switchings minus
output switching.

On Switching Aware Synthesis for Combinational Circuits 281

x1

x2

x3

x4

x5

x6

x7

x8

0 → 1

0 → 1
0 → 1

0 → 1
1 → 0

1 → 0
1 → 0

1 → 0

0 → 1

0 → 1

1 → 0

1 → 0

0 → 1

1 → 0

0 → 0

x1

x5

x2

x6

x3

x7

x4

x8

0 → 1

1 → 0
0 → 1

1 → 0
0 → 1

1 → 0
0 → 1

1 → 0

0 → 0

0 → 0

0 → 0

0 → 0

0 → 0

0 → 0

0 → 0

)b()a(

Fig. 3. Two pairings for input transition (0, 1, 0, 1, 0, 1, 0, 1) → (1, 0, 1, 0, 1, 0, 1, 0):
(a) a bad pairing with 6 switchings; (b) a good pairing with no switchings.

further switching with any other input it will be paired with Fig. 3 shows two
circuits and their performance differences with respect to a single consecutive
pair of input vectors.

Let Rjk(u, u′, v, v′) be the probability that a pair (xj , xk) of input variables
takes the joint transition (u → u′, v → v′). When the inputs are generated
by a Markov chain, these probabilities can be derived from the steady state
of the chain which is, however, typically too hard to compute. Given a refer-
ence sequence x, we can approximate Rjk(u, u′, v, v′) by computing the number
of occurences of the given transition in the sequence. Denoting the number of
switchings associated with a pair of transition u → u′ and v → v′ (Table 1-(B))
by s(u, u′, v, v′) (always 0 or 1), the expected number of switchings in xj ∧ xk is

μjk =
∑

u,u′,v,v′
Rjk(u, u′, v, v′) · s(u, u′, v, v′).

Let G = (V,E, μ) be a complete graph with n nodes where each edge (j, k) is
labeled by μjk. For the first level of the tree, the problem of finding input pairing
which is optimal in terms of expected total number of switching is equivalent to
the optimization problem known as minimal-weight perfect matching [12] for G.
Once such an optimal pairing is found for level i, the outputs of the gates at this
level serve as inputs for the pairing problem of the next level as summarized in
Algorithm 1. The first polynomial algorithm for the optimal matching problem
dates back to [5] using linear programming. The complexity of the algorithm has
been improved in [10] from O(n4) to O(n3). Thus, together with the computation
of μ from the training sequence the complexity of our procedure is O(n2 ·|x|+n3).

The results of the algorithm may deviate from the optimal expected number
of switchings for three reasons. First, it is not based on the real value of μ but on
its approximation from the training sequence. Secondly, it works by levels in a

282 J. Lanik and O. Maler

Algorithm 1. Synthesizing a balanced-tree circuit for a conjunction of n vari-
ables.
procedure Synthesize(x)

Input: A Boolean sequence x of dimension n = 2d

Output: A balanced-tree circuit C realizing x1 ∧ · · · ∧ xn

i := 0
while i < d − 1 do

x :=Reduce(x, d − i)
i := i + 1

end

function Reduce(x, i)
Input: A Boolean sequence x of dimension m = 2i

Output: An optimal pairing and a Boolean sequence y
of dimension 2i−1

forall j �= k ∈ [1..i] compute μjk

let G = (N, E, μ) be the corresponding weighted graph
M :=optimal match(G) = {(xr1 , xr2), . . . , (xrm−1 , xrm)}
y := (xr1 ∧ xr2 , . . . , xrm−1 ∧ xrm)
return(y)

level-greedy fashion and hence, in principle, it is not guaranteed to produce the
optimal among all circuits. Finally it does only statistics for pairs of variables and
ignores more complex dependencies between three or more variables that may
influence the outcome. However, as the experimental results show, it constitutes
a very effective heuristics. We have implemented the algorithm and evaluated
it empirically on purely synthetic examples and then on a realization of an
instruction decoder. In the current implementation, since we limit the evaluation
to n = 16, we find the optimal matching by enumeration.

4 Evaluation: Synthetic Boolean Models

We evaluate our algorithm against different classes of probabilistic
16-dimensional input generators. To define probabilities over X∗ using arbitrary
Markov chains we need to handle transition matrices of size at least 2n ×2n. For
large n even writing down such a matrix is infeasible, not to mention computing
its steady state probability. As is common in domains such as probabilistic veri-
fication and performance analysis, we use a compositional model consisting of a
network of sparsely-interacting probabilistic automata. A probabilistic automa-
ton A = (Q,Σ, δ) is an input-dependent Markov chain where every input letter
σ ∈ Σ induces a different transition matrix over state-space Q. The probabilistic
transition function is thus of the form δ : Q × Σ × Q → [0, 1] satisfying

∑

q′∈Q

δ(q, σ, q′) = 1

On Switching Aware Synthesis for Combinational Circuits 283

for every q and σ. A Markov chain can be viewed as a degenerate probabilistic
automaton without an alphabet and a transition function of the form δ : Q×Q →
[0, 1].

Let N = {1, . . . , n}. A network of n interacting probabilistic automata is
given as A = (A1, . . . ,An, h) where Ai = (Qi, Σi, δi) and h : N → 2N is an
influence function such that h(i) is the set of the other automata (besides itself)
whose states are observed by Ai and influence its transitions. In our network
each automaton has a state-space encoded by one bit, Qi = B, and an input
alphabet Σi = B

|h(i)| which is the state-space of the influencing automata. The
composition of the automata yields a global Markov chain (Q, δ) with Q =
Q1 × . . . Qn = B

n. The local input letter read by automaton Ai in a global state
q is the projection of q on the variables in h(i) that we denote by πi(q). The
transition function of the global Markov chain is defined as

δ((q1, . . . , qn), (q′
1, . . . , q

′
n))

=
δ1(q1, π1(q), q′

1) · δ2(q2, π2(q), q′
2) · · · δn(qn, πn(q), q′

n).

The structure of h(i) can be used to classify models according to variable
interaction. When the maximum of |h(i)| is small, the system admits a small
description from which random sequences for training and evaluation can be
generated.

For each class of models we draw model instances randomly and measure
the reduction obtained by our algorithm with respect to inputs generated by
the model. All model classes share a tuning parameter α ∈ [0, 1] intended to
quantify the degree of regularity in the input sequences which can be exploited
to come up with good input pairing. Whenever we need to fix a probability while
defining a model instance, we draw it from Iα defined as

Iα =

⎧
⎨

⎩

[0, α] ∪ [1 − α, 1] when α ≤ 1
2

[α − 1
2 , 1 − (α − 1

2)] when α ≥ 1
2

The regularity in the inputs (and the potential effectiveness of our procedure)
is monotone decreasing with α. When α = 0 the probabilities are taken from
{0, 1} and the resulting model is deterministic. When α = 1/2 the probabilities
are drawn from the whole interval [0, 1] and when α = 1 all probabilities in the
model instances are equal to 1/2. In this case there is no regularity in the input,
all sequences of states and transitions are uniformly distributed and no switching
reduction is expected because any input pairing would be as good as another.

The whole experimental protocol is summarized in Algorithm 2. For each
model class and value of α, we draw randomly a set {M1, . . . ,M50} of model
instances. For each instance Mi we generate a training sequence xi of length
10000, apply our algorithm and synthesize an optimized circuit Ci. We generate
an evaluation sequence xi of length 10000 and let Si be the number of switchings
it induces in Ci. Then we draw a set {Ci1, . . . Ci20} of arbitrary circuits, let Si be
the average number of switchings induced by xi in these circuits and let Ri be

284 J. Lanik and O. Maler

Algorithm 2. Average switching reduction evaluation for a class of probabilistic
input generators.
Input: A class of probabilistic input generators
Output: An estimation R of the average switching

reduction obtained by our algorithm
for i := 1 to 50

draw a model Mi

generate a training sequence xi of length 10000
Ci :=Synthesize(xi)
generate an evaluation sequence xi of length 10000
Si := S(Ci, x)
for j = 1 to 20

draw a circuit Cij

Sij := S(Cij , x)
end
Si :=averagej Sij

Ri := (Si − Si)/Si

end
R :=averagei Ri

the relative improvement in Si relative to Si. Finally R is the average reduction
over all model instances of the same class.

Independent Inputs. We start by evaluating the switching reduction for two
simple cases where the input variables are independent of each other. The first
is the case where the value of each xi is drawn according to a stateless Bernoulli
process with parameter ai while in the second model each bit is generated by an
independent Markov chain with parameters ai and bi. The respective transition
matrices are:

(
ai 1 − ai

ai 1 − ai

)
and

(
ai 1 − ai

1 − bi bi

)

For these models μjk is computed analytically (see Table 2) without a training
sequence. Figure 4-(a) shows for these two model classes the average reduction
obtained by our algorithm as a function of α. In both cases the reduction is
around 70 % when the system is close to deterministic and 30 % when probabil-
ities are taken from [0, 1].

Cascades. Next we explore the class of cascade structures where the automata
are ordered and each automaton observes the state of some of its predecessors.
A network is a cascade of depth k if h(i) = {i − k, . . . , i − 1} and the number
transition matrices for each automaton is 2k. The results for cascades of depth
1 and 2 are plotted in Fig. 4-(b). For depth 1 the reduction ranges from 70 % for
close to deterministic inputs to 15 % for α = 1/2 while for depth 2 the range is
from 50 % to 10 %.

On Switching Aware Synthesis for Combinational Circuits 285

Table 2. (a) The probabilities of transition pairs for two sequences generated by:
(a) Bernoulli processes with parameters aj and ak; (b) independent Markov chains
with parameters aj , bj and ak, bk.

Partitioned Variables. Next we applied our procedure to a network where
the variables are partitioned into clusters of size 2 and 4 and each automaton
observes only the states of the automata in its cluster. The results are plotted
in Fig. 4-(c). For 2-clusters the range or reduction is between 65 % for almost
deterministic inputs and 15 % for α = 0.5, while for 4-clusters the corresponding
reductions are less than 50 % and 10 %.

Arbitrary Sparse Network. In the last class of examples we consider arbi-
trary networks where each automaton observes the states of k randomly chosen
other automata. Figure 4-(d) shows the results obtained for k = 2 and 4. In the
former case we obtain 45 % for α = 0.05 and around 5 % for α = 0.5, while
for the latter we obtain the worst results: less than 10 % for quasi-deterministic
inputs and less than 5 % when probabilities are drawn anywhere in [0, 1].

286 J. Lanik and O. Maler

)b()a(

)d()c(

Fig. 4. The average switching reduction as a function of the uniformity parameter
α for different input models: (a): Independent inputs – Bernoulli (dashed red) and
Markov processes. (b): Variables are arranged in a cascade structure of depth 1 (dashed
red) and 2 (c): Variables are partitioned into mutually-dependent clusters of size 2
(dashed red) and 4 (d): Each variable depends on 2 (dashed red) and 4 other arbitrary
variables(Color figure online).

Table 3 shows the average number of absolute switching elimination per gate
in one time step. Upon closer inspection we observe that the results become
consistently worse as the number of variables observed by an automaton becomes
larger, quite independently of the interaction pattern. This may be an artifact
of the way we generate model instances. The reason is that when an automaton
has several transition matrices, the values of an entry (u, v) in different matrices
may be taken from opposite sides of Iα, cancel each other an render the behavior
of the variables more random and less regular.

5 Evaluation: A Mini Instruction Decoder

Finally, we synthesize a mini instruction decoder, where we apply our procedure
to a full AIG. We consider a very simple hand-held calculator whose instructions
are listed in Table 4. The instruction are encoded using 4 bits although 3 bits
would suffice, to reflect the fact that in a real application often not all the possible
input combinations are used.

On Switching Aware Synthesis for Combinational Circuits 287

Table 3. The absolute reduction in number of switching per gate per time step for all
the models.

α Bern iMar casc1 casc2 part2 part4 spar2 spar4

0.05 0.115 0.110 0.117 0.102 0.118 0.060 0.093 0.020

0.10 0.106 0.104 0.105 0.076 0.091 0.041 0.075 0.017

0.15 0.095 0.097 0.089 0.060 0.081 0.037 0.057 0.015

0.20 0.093 0.091 0.079 0.050 0.074 0.029 0.047 0.013

0.25 0.084 0.088 0.066 0.041 0.061 0.023 0.040 0.011

0.30 0.084 0.081 0.063 0.032 0.055 0.019 0.032 0.009

0.35 0.071 0.071 0.048 0.029 0.049 0.016 0.027 0.008

0.40 0.065 0.067 0.040 0.022 0.043 0.013 0.023 0.007

0.45 0.063 0.061 0.037 0.021 0.036 0.012 0.021 0.006

0.50 0.054 0.057 0.036 0.019 0.031 0.011 0.018 0.005

0.55 0.040 0.044 0.026 0.013 0.024 0.008 0.014 0.004

0.60 0.031 0.031 0.018 0.010 0.017 0.006 0.010 0.002

0.65 0.023 0.024 0.013 0.007 0.013 0.004 0.006 0.002

0.70 0.016 0.017 0.009 0.005 0.009 0.002 0.004 0.001

0.75 0.010 0.011 0.006 0.003 0.005 0.001 0.003 0.001

0.80 0.007 0.007 0.003 0.002 0.003 0.000 0.001 0.000

0.85 0.003 0.003 0.001 0.000 0.001 0.000 0.000 0.000

0.90 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4. The instruction set of the calculator.

Instruction Code Meaning

LOAD 1001 Loading from numerical keys

LOADM 1010 Loading from memory

SET ADD 1100 Pressing ‘+’

SET SUB 1101 Pressing ‘−’

SET MUL 1110 Pressing ‘×’

SET DIV 1111 Pressing ‘÷’

EVAL 0000 Pressing ‘=’

STORE 0101 Saving result to memory

We assume that the typical use of the calculator will be just to perform an
operation (add, subtract, multiply, divide) on two numbers entered from the
numeric keypad. More sophisticated users might perform more complex opera-
tions, say add three numbers at once, but with a lower probability. The Markov
model for instruction sequences is depicted in Fig. 5 and explained below:

288 J. Lanik and O. Maler

start set op op set loaded

store

plm:LOADM

1−plm:LOAD

padd:SET ADD

psub:SET SUB

pmul:SET MUL

pdiv:SET DIV

plm:LOADM

1−plm:LOAD

psm:EVAL

1−psm:EVAL

STORE

Fig. 5. The probabilistic model of the instruction generator.

1. With probability plm load an argument previously stored in memory, other-
wise just type in some number as the first argument.

2. Press one of {+,−,×,÷} with respective probabilities {padd, psub, pmul, pdiv}.
3. Load the second argument either from memory (probability plm) or by typing

the number.
4. Evaluate by pressing ‘=’ and then with probability Psm store the result in

memory.

For the experiment we set the parameters of the model as follows:

plm = 0.1 padd = 0.4 psub = 0.3
pmul = 0.2 pdiv = 0.1 psm = 0.1

Fig. 6. A comparison of the number of switchings in the optimized instruction com-
pared to 20 other arbitrary realizations. The height of bars shows how much switching
can be saved using the optimized circuit compared to that realization.

On Switching Aware Synthesis for Combinational Circuits 289

We generate from the model a training sequence of size 20000 and use it to
synthesize an optimized circuit denoted by OC. For evaluation purposes we gen-
erate an input sequence of length 100000 and compare the number of switchings
it induces in OC with 20 randomly drawn implementations of the decoder. The
results are shown in Fig. 6. Note that there is a large variation in the number of
switchings among the different realizations. Circuit OC was always better than
any of the other circuits and on the average achieved a reduction of 16.49 %.
Naturally these results are also sensitive to the uniformity of the probabilities.
For example when we set plm = 0.25 and Psm = 0.2 we obtained a smaller
reduction of 12.53 %.

6 Discussion

The interest in switching reduction and in the evaluation of circuit behavior
against probabilistic models in general [6] is not new. Concerning switching
reduction we can distinguish between an abstract approach like ours which
focuses only on the number of transitions as an approximate indicator of power
consumption and more physical approaches that map abstract circuits onto a
concrete technology where power consumption can be measured more accurately.
The work of [16] which belongs to the second category, mentions the abstract
problem that we solve here as a suggestion for future work that could be plugged
upstream to their own work on power-aware mapping using a real technology
library. The work of [19] is also of this type, mapping abstract AIGs to real gates.
The input is specified as a set of input vectors (patterns) and simulation with
these patterns is used to estimate power consumption for different mappings
alternatives onto real gates from a library.

The work of [17,18] applies a similar reasoning concerning input pairing
for 2and gates and uses a variant of Huffman’s algorithm for constructing a
binary tree with minimal average weighted path length [9]. However, this work is
restricted to the case were variables are assumed to be generated by independent
Bernoulli processes while our approach is applicable to any small-description
Markov process or any user-provided training sequence. Moreover, they use a
greedy pairing algorithm such that at each step of the algorithm one pair of vari-
ables, the one which induces the least expected number of switching is selected
as an input to an and gate. Experiments show that our scheme which treats
at once a complete level of the tree via optimal matching is significantly more
efficient.

The work of [11] also uses Huffman’s algorithm but in a different way that
seems to yield a random balanced tree. They do not give any explicit proba-
bilistic model but introduce some delay assumptions and claim their algorithm
to be optimal in terms of reducing only the switching activity which is due to
glitches. This is the place to mention that as we do not model gate delays, we
cannot detect glitches but one may argue that their importance in balanced trees
structures is less pronounced. The work of [18] is extended significantly in [20]
who give an optimal algorithm for unbounded depth 2and synthesis, restricted

290 J. Lanik and O. Maler

to a Bernoulli input model. Their algorithm tends to produce deep circuits with
long delays.

To summarize, we devised a novel procedure for an early step in the synthesis
flow for digital circuits/functions. The major novelty of the algorithm is its ability
to approximate in a tractable manner, polynomial in the number of inputs to an
and gate, the minimal average-case number of switchings, based on a training
input sequence. The approach can be applied, in principle to any probabilistic
model of the input but, of course, formal guarantees of approximation quality
can be given only in restricted cases.

For synthetic empirical evaluation we developed an original framework based
on sparsely interacting networks of probabilistic automata and ran extensive
experiments under various probabilistic models of the input. The reduction
obtained on these synthetic examples were quite impressive, reaching, in some
cases, dozens of percents. Two major open questions remain concerning their
transfer to real life:

1. Can such reduction be pushed downstream to the more physical steps of
synthesis? This question has two versions: can it be done using existing com-
mercial tools that carry a lot of legacy, or can it done in principle by new
tools if this type of optimization criterion is considered important.

2. How do real applications look like in terms of circuit structure and input
model?

We made a preliminary exploration of the second question using the instruction
decoder model and the results seem encouraging. We believe the behavior of
real circuits is much more regular than arbitrary Markov chains. In the future
we intend to attack larger industrial-scale examples and follow them, as far as
possible, down to technology-dependent mapping, being able to detect timing
effects and measure real power consumption. It has already been observed that
synthesis is an old technology and the outcome of commercial synthesis tools is
sensitive to many syntactic features [13] and we hope that this work will bring
a fresh look on the topic.

On the theoretical side we intend see under what assumptions our level-
greedy algorithm is optimal and to give bounds on its deviation from the opti-
mum when it is not. Another potential direction for exploration is to present
trade-offs between speed and switching reduction by being less committed to
the circuit topology. Although typically the number of inputs to a single and
cone need not be very large, it would be interesting to explore how far we can go
with the number of inputs using the polynomial algorithm for optimal match-
ing. Finally we intend to extend this work to sequential machines and to explore
the application of switching-oriented reasoning to the encoding of states and
symbolic inputs.

On Switching Aware Synthesis for Combinational Circuits 291

References

1. Bellaouar, A., Elmasry, M.I.: Low-power digital VLSI design: Circuits and Systems.
Springer, US (1995)

2. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-
level dynamic power management. IEEE Trans. VLSI 8(3), 299–316 (2000)

3. Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-Vincentelli, A.: Logic
Minimization Algorithms For VLSI Synthesis. The Springer International Series in
Engineering and Computer Science, vol. 2. Springer, US (1984)

4. Anantha, P., Chandrakasan, A.P., Brodersen, R.W.: Low Power Digital CMOS
Design. Springer, US (1995)

5. Edmonds, J.: Maximum matching and a polyhedron with 0, l-vertices. J. Res. Nat.
Bur. Stand. B 69, 125–130 (1965)

6. Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Markovian analysis of large finite
state machines. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(12),
1479–1493 (1996)

7. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Springer,
US (1996)

8. Kohavi, Z., Jha, N.K.: Switching and Finite Automata Theory. Cambridge Uni-
versity Press, Cambridge (2010)

9. Larmore, L.L., Hirschberg, D.S.: A fast algorithm for optimal length-limited huff-
man codes. J. ACM 37(3), 464–473 (1990)

10. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Dover
Publications, New York (1976)

11. Murgai, R., Brayton, R.K., Sangiovanni-Vincentelli, S.: Decomposition of logic
functions for minimum transition activity. In: Proceedings of the 1995 European
Conference on Design and Test, pp. 404. IEEE Computer Society (1995)

12. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Courier Dover Publications, New York (1998)

13. Puggelli, A., Welp, T., Kuehlmann, A., Sangiovanni-Vincentelli, A.: Are logic syn-
thesis tools robust? In: 2011 48th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), pp. 633–638, June 2011

14. Rabaey, J.M., Pedram, M. (eds.): Low Power Design Methodologies. The Springer
International Series in Engineering and Computer Science. Springer, US (1996)

15. Sasao, T.: Switching Theory for Logic Synthesis, vol. 1. Springer, US (1999)
16. Tiwari, V., Ashar, P., Malik, S.: Technology mapping for low power. In: 30th

Conference on Design Automation, pp. 74–79. IEEE (1993)
17. Tsui, C.-Y., Pedram, M., Despain, A.M.: Technology decomposition and mapping

targeting low power dissipation. In: Proceedings of the 30th International Design
Automation Conference, pp. 68–73. ACM (1993)

18. Tsui, C.-Y., Pedram, M., Despain, A.M.: Power efficient technology decomposition
and mapping under an extended power consumption model. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 13(9), 1110–1122 (1994)

19. Yeh, C., Chang, C.-C., Wang, J.-S.: Technology mapping for low power. In: Pro-
ceedings of the ASP-DAC 1999 Design Automation Conference, Asia and South
Pacific, pp. 145–148. IEEE(1999)

20. Zhou, H., Wong, DF: An exact gate decomposition algorithm for low-power tech-
nology mapping. In: Proceedings of the 1997 IEEE/ACM International Conference
on Computer-Aided Design, pp. 575–580. IEEE Computer Society (1997)

	On Switching Aware Synthesis for Combinational Circuits
	1 Introduction
	2 Problem Statement
	3 Input Pairing for and Gates
	4 Evaluation: Synthetic Boolean Models
	5 Evaluation: A Mini Instruction Decoder
	6 Discussion
	References

