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Abstract. Cyber-Physical Systems (CPS) are subject to platform-given
resource constraints upon such resources as CPU, memory, and bus, in
executing their functionalities. This causes the behavior of a verified
application to deviate from its intended timing behavior when the appli-
cation is integrated on a specific platform. For the same reason, a con-
figuration of platforms cannot be independent from applications in most
cases. This paper proposes a new analysis framework of real-time systems
where an application and a platform can be analyzed in a fully indepen-
dent way such that not only the application but also the platform once
verified can be exploited by various applications. The dependent behav-
iors of application and platform are also analyzed by exploiting their
individual models transformed from their independent models. To the
end, we provide a highly configurable platform model that can be para-
meterized by various resource configurations. For analysis of application
and platform models, we use two model checking techniques: symbolic
and statistical model checking techniques of UPPAAL. Our framework is
demonstrated by a case study where a turn indicator system is analyzed
with respect to various platform resource constraints.

1 Introduction

The more control systems close to human lives adopt Cyber-Physical Systems
(CPS), the more important it is to guarantee the safety and integrity of the sys-
tem. For instance, many automotive system components are required to achieve
a designated integrity level through recommended design and analysis methods.
In order to achieve a high level of integrity, it is recommended to formally design
and analyze all possible properties of the system.

In particular, it is important to take into account the composability of appli-
cation and platform in an early design phrase prior to implementation. So that
the application once verified without the concern about its platform should sat-
isfy its functional and performance requirements when being integrated with a
platform. Model-Driven Architecture (MDA) is a model-based approach based
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on the separation of concerns principle. In the approach, an application is cap-
tured by two models, a Platform-Independent Model (PIM) and a Platform-
Specific Model (PSM). Kim et al. in [5,6] present a formal analysis method
utilizing the MDA principle, where the PIM (Platform-Independent Model) and
PSM (Platform-Specific Model) of a medical software system are analyzed using
a symbolic model checking technique. The platform-concerned aspect of the PSM
is abstracted as a delay which postpones the execution time of applications. The
PSM of this work is simple but too specific to be used for various platform set-
tings. Also, the PSM of the MDA does not specify a platform even if a platform
is more often re-used than applications. So far, platform aspects in the MDA
have not been much studied as an independent model so that they are captured
for the composability analysis of applications, analysis of a platform cannot be
thus independent from applications.

In short, not only application requirements should be platform-independent
and define both functional and performance timing requirements, but also a plat-
form should be application-independent. Hence, the development of CPS applica-
tions should be leveraged so that if resource constraints are guaranteed by a plat-
form running the application, then the integration of applications and platforms
will satisfy both functional and performance requirements of applications.

This paper presents a new analysis framework of real-time CPS using formal
analysis techniques, where the platform is verified independently from appli-
cations to guarantee given resource constraints, and the application is evalu-
ated under the verified resource constraints to satisfy its functional and tim-
ing requirements. In our framework, an application model captures a functional
behavior over time, and a platform model captures resource constraints regarding
a shared resource, e.g. CPU, and is represented by a scheduling system that man-
ages limited resources for current tasks. The application model is integrated on
a platform model and checks its functional and timing properties under resource
constraints given by the platform model.

We propose three behavioral models for applications and platforms, as shown
in Fig. 1: Resource-Independent behavioral Model (RIM) models a functional-
ity of the system including application-concerned timing requirements, ignoring
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any platform constraints. Scheduling System Model (SSM) specifies a schedul-
ing mechanism of a given platform. Resource-Specific behavioral Model (RSM)
refines a RIM with platform-given constraints in terms of the best- and worst-
case execution time and communication mechanisms. In terms of MDA, a plat-
form independent model of applications can be presented by a RIM. A platform
specific model is given by both RSM and SSM. For the analysis of platform
independent and platform specific models, a behavior model of each application
component is first captured by RIM. Second, a (shared) resource constraint of
platforms is captured by a SSM. One or more tasks and scheduling mechanisms
constitute a SSM, which is checked in terms of the schedulability. Third, a RSM
is constructed by refining individual operations of a RIM with timing proper-
ties. Finally, a RSM and a SSM are combined into a system model by associating
individual components of the RSM to tasks of the SSM, and the system model
is checked against application’s properties relying on a platform. For the for-
mal analysis, we apply the statistical and symbolic model checking techniques
of UPPAAL.

This paper extends our previous work of [7] where a turn indicator system is
analyzed using UPPAAL tools so that application model of the system is inves-
tigated under platform-given resource constraints. In addition, we propose a
scheduling system model as a way of providing resource constraints of platforms
for composability analysis of applications.

The rest of the paper is organized as follows: Sect. 2 discuss the background of
this work and related work. Section 3 discusses our methodology and proposes a
new analysis framework using formal analysis techniques that supports the MDA
principle. Section provides a brief description of the case study, Turn Indicator (TT)
system, and the properties to be checked. Finally, the paper is concluded in Sect. 5.

2 Backgrounds

This section discusses the formalism of our specification and analysis. We used
Timed Automata (TA) and Stopwatch Automata (SWA) for specification and the
relevant model checking tools, UPPAAL MC and UppPAAL SMC. Timed Automa-
ton (TA) that [1] is a classical formal model for designing real-time systems. It
consists of:

— A set of real-time clocks. The model uses a continuous time semantics meaning
that the clocks are evaluated to real number.

— A set of locations, possibly labeled with an invariant constraint over clocks,
which restricts the time spent in the location.

— A set of transitions between pairs of locations, possibly labeled with a guard
over clocks. This guard specifies from which values of the clocks the transition
may be taken. The transition may also be labeled with a synchronization
channel and an update of clocks.

In case of preemptive real-time systems, it is necessary to keep track of the
execution time of a running process, and SWA comes along with a stopwatch
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Fig. 2. Stopwatch Automata for switch

mechanism where a stopwatch clock keeps the time it stops by a condition so
that it resumes from the moment it freezes.

The TA and SWA of Fig.2 models various quantitative aspect of a simple
Switch with two modes On and Off. Figure 2(a) is a timed automaton model of
the Switch using a clock x to enforce that the time-separation between mode-
switches is between 2 and 4 time-units. In addition an integer variable c counts
the number of time the Switch has been in location On. Figure 2(c) introduces
a stopwatch y which is running only in location On, thus effectively measuring
the accumulated residence-time in On.

Correctness of the system is specified using formal logics that defines which
are the admissible executions of the system. We will use a subset of the Computa-
tional Tree Logic (CTL) as defined by the model-checker UPPAAL. The grammar
of this subset is ¢ ::= A[IP | A<>P | E[1P | E<>P. A and E are paths operators,
meaning respectively “for all the path” and “there exists a path”. [| and <> are
state operators, meaning respectively “all the states of the path” and “there
exists a state in the path”. P is an atomic proposition that is valid in some
state. For example the formula “A[] not deadlock” specifies that in all the paths
and all the states on these paths we will never reach a deadlock state in which
the system is permanently blocked.

Model-checking (MC) is an automated verification technique that explored
all the possible executions of a TA to verify if it satisfies a property expressed in
a logic like CTL. Probabilistic model-checking can also be used to compute the
probability to satisfy a CTL property. However these technique are limited by
state-space explosion problems when the model is too large, which can prevent
the analysis due to a lack of memory.

Another verification method that we adopt here is Statistical Model-Checking
(SMC) [3]. We have two reasons for using SMC analyzing a probabilistic model:
First, it somehow mitigates the limitation of MC, the state-explosion problem.
Basically, SMC, based on numerous traces from simulations, computes a possibil-
ity of system’s satisfaction for a property using statistical methods. The model
that can be checked by SMC must be probabilistic. However, UpPAAL SMC
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accepts a non-probabilistic model and transforms the model into a probabilistic
model by applying the uniform probability distribution so that SMC techniques
is applicable for the model. Using SMC techniques, we can gain a probability of
system’s satisfaction for a property limited by a specific certainty. Although the
100 % certainty cannot be not obtained, SMC can give a quantified evidence of
system’s satisfaction for a property Moreover, SMC can return a counterexample
that disproves a property of a system so that we can find a way how to fix the
identified problem. Second, a non-determinism of timed systems that can not be
modeled in an easy way can be modeled with a probability.

2.1 Related Work

This work is a realization of Y-Chart methodology [2,4] targeting at the early
phase timing analysis of CPS. Y-Charts methodology recommends the perfor-
mance check of the combination of platforms and applications. Metropolice [2] is
an analysis environment where a system is designed and analyzed in accordance
with the Y-Chart principle prior to implementation of applications. However, we
are aiming at providing a platform model fully independent from applications
such that it can be utilized for any given applications.

In principle, our model of real-time CPS is similar to conservative scheduling
systems, such as deferrable server and sporadic server scheduling [8,11]. One of the
drawbacks of conservative scheduling systems is to waste some supplied resource
when a client task is idling. However, the separation of our framework between
application and platform executions brings the advantage that analysis of plat-
forms is independent from that of applications. In addition, the separation makes
it possible to provide a verified specification of applications that can be refined
with resource constraints of platforms. The behavior of our application models
depending on a platform model of scheduling systems is compared to a hierarchical
scheduling system, where a scheduling system depends on its nesting scheduling
system [9]. Our focus of this work is on the realization and analysis of various com-
binations of applications and platforms for composability analysis. To the end, we
present highly configurable formal models of applications and platforms.

The most recent relevant work is the work of Kim et al. in [5,6]. In this
work, a CPS is modeled based on Model-Driven Architecture principle. A PSM
is captured by two layers, an application layer and a platform layer, which are
distinguished by Input/Output and Monitor/Control variables individually. In
this work, the computation and communication time of applications depending
on platforms are abstracted by a delay measured physically. Distinguished from
[5,6], we propose a combination of a platform behavior model and an application
model, where the platform model is represented by an scheduling unit. Thus,
the platform layer is so flexible, specified and general as to be adopted by any
platforms.

In terms of application model, TIMMO Project [12] also deals with an exten-
sion of software architecture models with timing but are not supported by any
formal analysis technique. In terms of formal analysis for software architecture,
Sokolsky et al. [10] presented a formal method using a process algebraic method,
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ACSR-VP and the relevant tool for AADL. However, it focuses on schedulability
analysis from application perspective.

To our best knowledges, our work is unique in that we present behavior models
of applications that are completely dependent from platforms but transformed for
a particular platform in ease. Also, we propose a systematic way of combining an
application and a platform that has not been dealt by MDA approaches. Moreover,
we present a highly configurable platform is parameterized with various resource
configurations for analysis of platform-dependent properties of applications.

3 Resource-Parameterized Timing Analysis

To analyze individual applications, platforms, and their combinations, we cap-
ture their individual behaviors and then compose them into a system model. An
application is modeled in accordance with functional and performance require-
ments. A platform is modeled to capture resource constraints in the form of
scheduling systems, which is parameterized with configurations of tasks charac-
terized by real-time attributes e.g. an execution time, a period, and a deadline.

-
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Fig. 3. Our CPS model

Figure 3 shows a Resource-Parameterized Model (RPM) of real-time appli-
cations where a platform is configured according to resource constraints. This
model is composed of two layers, an application layer and a platform layer. The
application layer is composed of a set of components (Comp;) and the platform
layer is composed of one or more scheduling units (SC;). The behavior of an
application component is modeled by one or more functional processes (FF;),
which can be any computation models capable of representing a behavior of
computations and communications over time. Each component Comp; is con-
nected to a specific task T;, which is characterized by real-time attributes, such
as a period(P;), the worst-case execute time (C;), and a deadline (D;). As our
framework is aiming at an early phase timing analysis, the worst-case execution
time of a task is a timing requirement.
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A resource constraint of a platform is denoted by real-time attributes of tasks.
The resource constraint should be guaranteed by the objective platform and the
application should accomplish both functional and performance requirements
under platform-given resource constraints.

In fact, an application is the same object as task but they are separated in
our framework as a client and a server, respectively: A task is a server supplying
computation resources to applications and an application is a client requiring
a specific amount of resources. The separation between application and task
enables investigation of applications and platforms in a fully independent way.
Also, the platform model can be used as a resource constraint specification for
composability analysis of applications prior to their integration. Furthermore, it
enables a platform once verified to be used for different applications.

The RPM in Fig. 4 refines the RPM in Fig. 3 in terms of behavior. The task
T;(P;, C;, D;) has a behavior depending on a resource model of CPU. The CPU
resource model schedules jobs of tasks using the EDF scheduling policy. If the
CPU resource model begins to serve at state T;.Server, then the task T; switches
to state Executing by the condition [T,.Serve] and the functional process F'P;
also switches to state Executing by the condition [T,.Executing].

3.1 Response Time of Applications

The separation between applications and tasks is similar to a hierarchical schedul-
ing system and a deferrable scheduling system, where a client task demanding a
resource assignment cooperates with a server task supplying resources to a client
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task. For this reason, the preexisting analysis techniques for such systems can
also be used for the application properties of our framework.

The application behavior in this framework does not necessarily synchronize
with its relevant task of a platform model, the response time of applications rely-
ing on its associated task is hence varying according to the real-time attributes
of the task. Figure 5 depicts that the application with execution time F is served
by a task in the worst-case. The task runs for C' time units every P time units.
The application needs E time units to finish its computations. The worst-case
is that the application begins as soon as the task (the first execution of the
task) finishes one of its executions, and ends with an execution of the task (the
last execution of the task) postponed as long as possible. For a given applica-
tion whose the execution time is E and which relies on a periodic task T(P, C),
the worst-case response time (W) of the application can be computed using the
service time bound function (sbf) [9]:

sbf(E) = (P-C)+ P - {gJ + €5 (1)
_ _C.|E f+—C. | E

o — P-C+FE-C {CJ ift—C {CJ >0 @)

0 otherwise

However, the response time of applications according to the above equation
is the worst-case and not always returned by the actual setting of the system,
thus we present a way of estimating a response time close to the actual response
time using model checking techniques, which we will explain in Sect. 4.2.

3.2 Behavior Models of PIM and PSM

Modeling Aspects of PIM and PSM. The requirements of CPS that we are
concerned about are application requirements and platform constraints. An appli-
cation requirement includes both functional and performance requirements. A plat-
form constraint is a constraint to be imposed upon applications that characterizes
a platform. We distinguish platform constraints by three categories: a resource



198 J.H. Kim et al.

capability, a scheduling mechanism, and a communication mechanism. A resource
capability is a processing capability of resources. In the case of CPU, the resource
capability is represented by an execution time for a computation of applications. A
scheduling mechanism denotes a resource sharing mechanism. A communication
mechanism is a communication protocol supported by a platform.

RIM and RSM in Timed Automata. A RIM captures a functionality of
applications, i.e. computation and communication behavior of applications. A
RSM refines a RIM with the resource capability and the communication mech-
anism of a platform.

ListeningToEventl FireEvent2 Done
Eventl? @ Event2!
Actionl LCJ O
(a) RIM
ReadyToListenEventl ListeningToEventl  Processing ReadyToFireEvent2 Done
© @ Eventl? M x>=BCET (M _ReceptiveEvent2 O
i |
ReceptiveEventlL:‘éue N\ Actionl N Event2!
x<=WCET ReceptiveEvent2=false
&& x'==isRunning(tid)
(b) RSM

Fig. 6. Refinement of RIM to RSM (Color figure online)

Figure 6 shows a RIM and its corresponding RSM modeled using TA. They
have the same functionality, but the RSM includes more information on resource
constraints and communication mechanisms. The RIM of Fig. 6(a) has a simple
behavior: If it receives the event Eventl, then it performs the action Actionl.
Afterwards, it triggers the event Event2. The action performed during a transi-
tion can be any types of actions, such as computations and communications. The
action might need a computation resource and time when it is actually imple-
mented. However, a RIM executes such a resource-consuming action instanta-
neously and it does not need any resources.

A RSM corresponding to RIM takes into account resource capability and
communication mechanisms in addition to the functionality and communication
of RIM. Thus, the action of a RSM consuming time and resources is guarded by
an execution time, such as WCET and BCET, and the availability of a resource.
In a RSM, a specific communication mechanism replaces a simple communication
of a RIM.

The execution time and the availability of a resource necessary to perform the
action of a RSM is represented by a location, an invariant and a guard outgoing
from the location. In Fig.6(b), the location Processing (in blue) proceeds to
execute the action Actionl, where the WCET of the action is specified as an
invariant in the form of x <= WCET and the availability of the relevant resource
is represented by the function isRunning(). Also, the BCET of the action Actionl
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is labeled on the transition outgoing from location Processing in the form of
x >= BCET. In a RSM, a specific communication mechanism is considered. In
Fig.6(b), the condition ReceptiveEventl is set to true in order to notify that
the event Event2 is allowed to synchronize. Compared to the RIM, the RSM
adds the condition ReceptiveEvent2 to the outgoing transition from the location
ReadyToFireEvent2 in order to specify a specific condition to fire the event Event?2.

SSM in Timed Automata. A scheduling system model (SSM) consisting of
a task model and scheduler model is modeled using SWA.

The scheduling policy models of
EDF (Earliest Deadline First) is shown
in Fig. 7. The scheduling policy model
is triggered by the event (req_sched]i])
from a task process and selects the

place == rq[pid].leng
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insert_at(pid, place, tmp_tid)

©

req_sched[i]?

highest priority task from the ready
queue where tasks are sorted accord-
ing to their priorities.

The task model in Fig. 8 simulates

place = init_pos(i),
tmp_tid= rq[il.qmem[rq[i].leng],
pid =i

C

place < rq[pidl.leng

&& tstat[tmp_tid].deadline+t_rt[rq[pid].gmem[place]]l>=
tstat[rg[pid].gmem([place]].deadline+t_rt[tmp_tid]

place++

a task behavior that depends on the
availability of a CPU. The task model
releases a job at the location Job-
Done by the condition t_rt[tid] >=
tstat[tid].prd that denotes a new period has begun. Then, the released job accesses
to a CPU at the location Executing, where the availability of the resource is
checked by the function isSchedSuped(). The stopwatch clock t_et refers to the
executing time. If a CPU is available to this task, the clock t_et begin its progress.

Fig. 7. TA Scheduler model
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The clock is running as long as the CPU is available. If t_et reaches the BCET
denoted by tstat[tid].bcet, the task model can leave the location Executing and
return to the location JobDone.

4 Case Study: Turn Indication Systems

In this section, a case study is conducted to illustrate our framework, extending
our previous work in [7]. A turn indicator (TI) subsystem is one of automotive
components that indicates the direction of the car when the driver is about to
change the direction of his car. In addition, it indicates the emergency situation
and the status of the door lock/unlock operated by the driver.
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Fig. 9. The architecture of the TI system

Figure 9 shows the software architecture of the TI system model and its data
and control flow between functional processes in individual components. The
architecture model groups TA functional processes into three groups consisting
of five components: Input, Control, and Output. Each component is composed
of one or more functional processes, and a functional process (FP) is a concurrent
process capturing functional and communication behavior of components.

For the simplicity, most of data are manipulated by user-defined functions
that use the UPPAAL type system supporting data variables using a behavioral
description language like C. The interfaces of the components are represented
by channel names, and the connectors are modeled using the communication
primitives of UPPAAL, a broadcasting channel (long dashed arrow) and a 1-to-1
synchronization (short dashed arrow) channel. The data is communicated by
shared data variables (normal arrow).
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Fig. 10. ReadTICmdSig: TI command handler in RIM and RSM (Color figure online)

4.1 PIM Analysis

Firstly, the applications of the TI system are modeled in terms of RIM, and the
platform is also analyzed separately from the application analysis. Figure 10(a)
shows the RIM of ReadTICmdSig. It (1) responds to a TT command from Single
Column Switching, (2) determines the TI operation mode to be activated, and (3)
calls on the functional process that determines the occurrence of the emergency.

RIM Analysis. For the verification of safety and liveness properties of the T1
system, we construct some additional templates that monitor the violation of
system’s behavior against required properties. The detailed description of our
PIM models can be found from [7].

Table 1 shows the verification results of the safety, liveness, and deadlock-
freedom properties checked by UpPAAL MC. The first property UP.001 is proven
to show that the system is safe from deadlock. The safety property SP.001.01
is proven to show that only one turn indicator group exclusively flashes when a
normal mode or the Tip blinking mode is engaged. The last liveness property
LP.001 is also proven to show that one of the turn indicator lamp groups is
operated eventually by any command from the driver.
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Table 1. CTL properties and model checking results

Property ID | CTL Results | Analysis time (second)
UP.001 AT[] not deadlock Satisfied | 1.05
SP.001 AT[] not FailSafetyReq001.SReq001_1 | Satisfied | 0.29
LP.001 E<> LivenessReq001.LReq001_1 Satisfied | 0.02

Table 2. Assignments of shared resources

Applications Resource Configuration 1 | Resource Configuration 1
Comp, | FP; Precedence | T;(ExeTime, | CPU; T;(ExeTime, | CPU;
Period) Period)

Cy ReadEmgSig 1 T1(3,20) CPU, Ty(2,10) CPU,
Read TICmdSig 2
ReadDefSig 3

Ca CheckEmgSig 1 T>(3,20) T2(2,10) CPU,
CheckDefSig 2

C3 SetFlashCount 1 T5(2,20) CPU, Ts(1,10)
SetTIOutputSig | 2

Cy FlashTISig 1 T4(3, 20) T4(2, 10) CPU;

Cs FlashKombiTISig | 1 T5 (3, 20) T5(2, 10)

SSM Analysis. A platform is parameterized by resource configurations. Table 2
shows two resource configurations to be given the TI applications. The first
configuration (Resource Configuration 1) deploys five tasks exploiting 2 CPUs
while the second one (Resource Configuration 2) exploits three CPUs. We check
the schedulability of each resource configuration using the statistical and the
symbolic model checkers of UPPAAL.

Table 3. Results of schedulability analysis for platform configurations

Property ID Property specifications Results

Probabilistic Pr[<= SimLimit] (<> error) (228 runs) Pr( <> ...) in [0,0.0199955]

schedulability with confidence 0.99. (Verification time
used: 14.7's)

Schedulability | A[ ] not error Satisfied  (Verification time used:
77.93s)

Table 3 exhibits the results of schedulability analysis for the resource config-
urations. Firstly, we conduct a quick analysis consuming a relative short time
(14.7s) by means of a small hammer, the statistical model checker of UPPAAL
(SMC). As a result, we obtained the probabilistic results regarding the schedu-
lability with 99 % certainty. SMC simulates a given model numerous times and
returns a probabilistic answer on how many traces satisfy a given property. After-
wards, we applied a big hammer, the symbolic model checker of UPPAAL, that
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consumes 77.93s to return 100 % certainty for the schedulability of the resource
configurations.

4.2 PSM Analysis

RSM Construction. Figure 10(b) shows a RSM of the TI system that is refined
from its corresponding RIM. Note that some actions in Fig. 10(b) are refined
to denote the consumption of time and resources using a resource-consuming
location (in blue) given a WCET and associated with a stopwatch clock (run[cid])
that stops and resumes by the function isRunning(). Similar to the task model
of Fig. 8, the resource-consuming action of the RSM depends on the associating
task, i.e. the action is performed only while the task is running.

Some event channels are also protected by the associated condition vari-
ables. For instance, the location ExeActl has the invariant run[cid] <= 3 and the
transition from the location has the guard run[cid] >= 2. In the expressions, 3
and 2 are the WCRT and the BCET, respectively, to perform the actions tem-
pCMD=ti_cmd, exe[cid]=false on the transition leaving ExeActl. In this way, the
action to consume time and resource is refined with a logical time.

Composability Analysis: End-to-End Delay Analysis. The RSM of the
TT system is composed with a SSM varying resource configurations and checked
to see if the TT model satisfy its end-to-end delay requirement. Table 2 maps indi-
vidual components and their associated tasks. For this case study, we provide two
resource configurations for the TT applications. We checked the end-to-end delay
requirement that any driver commands for TT operations should be responded
within 20 ms.

The end-to-end delay is estimated by a new
e2e_input? TA template in Fig.11: The clock e2e_clock
egeclock =0 begins to progress when the event end2end_input

occurs, stops when the event e2e_output occurs,
and is reset when a new TI command arrives.
The events end2end_input and e2e_output can be
annotated upon any transitions of the TT model
that denote the start and the end of an opera-
tion. The following SMC query is given SMC to
check the end-to-end delay:

e2e_input?
e2e clock =0

e2e_clock'==

e2e output?

Fig. 11. TA environment model
for end-to-end delay analysis

E[<=100000;1000](max:e2e_clock)

It requires UPPAAL SMC to return a probability distribution on the average
of the maximum value of the clock e2e_clock from 1,000 individual simulation
traces, of which each runs for 100,000 time units.

Asresults, we obtained two probability distributions, as shown in Fig. 12, from
SMC. Figure 12(a) is the probability distribution concerning the first resource con-
figuration and shows that the maximum end-to-end delay is 99.86 ms (Span of
display sample [0, 99.86]) and the average of the maximum end-to-end delay over
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Probability Distribution Probability Distribution

Sievet count=a2
emaining

Mean from displayed sample: 15.17 + 1.86 (95% CI) sarru\ 12.08 + 1.43 (95% CI)

(a) (b)

Fig. 12. Probability distributions of the end-to-end delay of the TI system

all produced traced is 15.17 ms. Meanwhile, the end-to-end delay for the second
resource configuration is 69.6 ms, as shown in Fig. 12(a), and its average of the
maximum end-to-end delay is 12.08. It is because the second configuration oper-
ates the TI system using more CPUs than the first one. By checking these config-
urations, we concluded that, in terms of the end-to-end delay, the performance of
the second configuration is 30 % better than the first configuration.

5 Conclusions

In developing safe and reliable real-time CPS, one of significant issues is how
to correctly integrate applications with a given platform such that application
behavior does not deviate from any requirements. To the end, the application
should be developed such that its behavior is correct with respect to resource
constraints of a given platform that are guaranteed by the platform.

This paper presented a design and analysis framework for real-time systems.
In this framework, the application model and the platform model are analyzed
independently from each other, and the application model is then transformed
into a platform-concerned application model so that its composability against a
given platform is formally analyzed.

To the end, we presented formal behavior models of applications and plat-
forms and a transformation method to refine a platform-independent application
model into the corresponding platform-specific application model for compos-
ability check. For a platform resource constraint given applications, we proposed
a platform model that is a scheduling system model capable of being parame-
terized with configurations of tasks and showed how the platform model can be
associated to an application model for composability check.

This paper contributes to the design and analysis of safe and reliable real-
time CPS with:

— A model of real-time systems that distinguishes between task and application
such that platform properties are analyzed independently from applications,

— A platform-independent behavior model of applications extensible for its analy-
sis against platform-concerned properties,
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— A platform model that can be used as a resource constraint specification and

be composed with an application model to check platform-concerned proper-
ties of applications.

This framework leverages the analysis of an integration of applications and

platforms in advance of their implementation to obtain more functionally correct
applications in terms of platforms. In this paper, we realized these models using
TA and SWA and checked using the statistical and the symbolic model checker
of UPPAAL and conducted a case study to illustrate our framework.
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