
A New Refinement Strategy for CEGAR-Based
Industrial Model Checking

Martin Leucker1, Grigory Markin1(B), and Martin R. Neuhäußer2

1 University of Lübeck, Lübeck, Germany
{leucker,markin}@isp.uni-luebeck.de

2 Siemens AG, Nuremberg, Germany
martin.neuhaeusser@siemens.com

Abstract. This paper presents a novel refinement strategy in the set-
ting of counterexample-guided abstraction refinement (CEGAR)-based
model checking. More specifically, the approach shown builds on lazy
abstraction in the context of predicate abstraction. While the concept of
interpolants is typically used for refinement, this paper employs unsatis-
fiability cores together with weakest preconditions. The new refinement
technique is especially applicable in the setting where interpolants are
hard to compute, such as for McCarthy’s theory of arrays or for the the-
ory of fixed-width bit vectors. It is implemented within a model-checking
tool developed for the verification of industrial-critical systems and out-
performs current refinement strategies on several examples.

1 Introduction

Today’s industrial systems are increasingly controlled by software. When these
systems are interconnected and control each other, they often form so-called
cyber-physical systems acting in our physical environment. For such systems,
verification is of major interest as safety and security concerns abound.

In this paper, we are concerned with the verification of industrial software by
means of model checking [1]. To this end, we have developed a model checking
tool for verifying code for programmable logical controllers (PLC code), which
takes a PLC program as well as a reachability property characterizing error
states as input and checks whether an error state can be reached from an initial
state of our program. For testing and comparison, our model checker also accepts
a subset of C programs as input.

As typically no single model checking approach acts as a silver bullet, our
model checker comes with different algorithms. In [2], the last author reports
about a technique following the idea of IC3 [3]. The current paper, however,
describes an approach following the counterexample-guided abstraction refine-
ment (CEGAR) paradigm [4]. Within CEGAR, an abstraction for the system
to verify is continuously checked with respect to a correctness property. When
the a bstract system satisfies the correctness property, the underlying system is
correct as well, while in the case of a counterexample this might be spurious. If
so, the counterexample is used to refine the abstract system and the CEGAR
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 155–170, 2015.
DOI: 10.1007/978-3-319-26287-1 10

156 M. Leucker et al.

loop is continued. Eventually, the underlying system is either verified as correct
or a non-spurious counterexample is found.

Lazy abstraction [5] builds on this scheme, yet refines the abstraction on
demand at locations for which the current abstraction yields a spurious coun-
terexample. In this way, the overall performance of the model checking process
is improved. In [5], the concept of lazy abstraction is introduced in a general set-
ting. In our model checker, we use predicate abstraction [6] as abstract domain.
All (symbolic) computations are considered with respect to a given first-order
theory, and we use the concept of strongest postconditions as well as that of
weakest preconditions to give (partial) semantics to operations, in a way that is
suitable for our approach. We assume the availability of a corresponding SMT
solver allowing to check formulas in the given theory for satisfiability. In fact,
our tool runs with both Microsoft Z3 [7] as well as MathSat [8] as back-end and
the theory of fixed-width bit vectors.

One of the most interesting questions when realizing a lazy abstraction app-
roach with predicate abstraction is how to refine the set of predicates when a
(non-feasible) counterexample is found. In the original work by Henzinger [5],
(negations of) weakest preconditions were used as one example to rule out a
counterexample. Another typical approach is to use interpolants [9–11].

In this paper, we make use of the intermediate results available from the
underlying SMT solver. Whenever a program path is witnessed as spurious, the
encoding of the path as an SMT formula is unsatisfiable. We take a subset of
the clauses of the formula that is already unsatisfiable. Such a subformula is
also called an unsatisfiability core, or unsat core, for short. Actually, we take a
sequence of unsat cores obtained via the infeasible program path and derive new
predicates in this way, forming a new operator called UCB-refinement operator.
Our approach can, in a way, be understood as an improvement of the original
weakest precondition-based approach.

[12–14] also make use of unsat cores in the context of verification, yet none
of the approaches uses unsat core-based techniques to improve lazy abstraction.

We have proven our approach as correct, i.e. that the underlying lazy abstrac-
tion algorithm always terminates with a correct answer when the underlying the-
ory is bounded. Moreover, we have implemented our model checker and evaluated
the performance of our UCB-refinement operator relative to the interpolation-
based refinement strategy. Additionally, we evaluated the performance of the
Lazy Abstraction algorithm in combination with UCB-predicates and inter-
polants relative to an implementation of the IC3 model-checking algorithm
recently presented in [2]. It turns out that our UCB-refinement strategy is
often comparable to the interpolation-based one and in a number of cases, it
allows to solve the verification problems which could not be solved by using the
interpolation-based approach. The Lazy Abstraction algorithm in combination
with UCB-refinement operator typically outperforms the IC3 algorithm and can
solve more problems than the latter. As such, the UCB refinement operator is
valuable as more verification problems can be solved than before. More impor-
tantly, it allows the easy realization of the CEGAR approach for theories and

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 157

SMT solvers not supporting interpolants. However, using other theories in our
model checker than fixed-width bit vectors is future work.

2 Preliminaries

In this section, we give the gist of the standard concepts of logical theories. For
details, we refer the reader to [15].

Throughout this paper let V be a countable set of variables defined over a
non-empty domain. The set of all assignments of elements to variables of the
underlying domain forms the set of all data states, in the following denoted
by S . In our setting the set of variables V comes with an associated first-order
theory T , i.e., a set of closed first-order formulas. We denote by T (V) the set
of formulas that may contain free variables from V . We denote by � and ⊥ the
logical values true and false respectively. When concerned with satisfiability, we
consider such variables as implicitly existentially quantified.

For the rest of this paper, we assume the theory T to be decidable, in practice
by means of an SMT solver. We use the standard definition of conjunctive normal
form (CNF) and we silently assume that every formula is in conjunctive normal
form. We denote the set of all clauses of a CNF formula ϕ as cl(ϕ) and use
formulas in CNF and sets of clauses interchangeably. An unsatisfiable core of
an unsatisfiable CNF formula ϕ is a non-empty subset of clauses of ϕ that is
unsatisfiable. A minimal unsatisfiable core is an unsatisfiability core such that
removing any one of its elements makes the remaining set of clauses satisfiable.
The set of all unsatisfiability cores of ϕ is denoted by UC (ϕ).

An ascending chain is a sequence of formulas ϕ1, . . . such that for all 0 ≤
i < j, ϕj �⇒ ϕi. The ascending chain is called finite, if the sequence is finite.
A theory T is called bounded if all ascending chains from T are finite.

This paper addresses the verification of imperative programs, ranging over
program locations from a set L and performing operations from some given set
Ops. For the sake of generality, we assume the concrete semantics of an operation
op ∈ Ops to be given by its strongest postcondition [16] sp(ϕ, op) ∈ T (V) for
a given precondition ϕ ∈ T (V). In practice, we assume the availability of an
sp-operator that computes for a given precondition ϕ, denoting a set of current
states, the set of successor states. We denote by wp(ϕ, op) the weakest liberal
precondition [16,17] of ϕ with respect to op, representing the largest set of states
from which ϕ is reachable by executing op, if it terminates. Similarly, we assume
the existence of a wp-operator computing the set of predecessor states for a
given ϕ. More specifically we also assume that corresponding sets of successor
and predecessor states can be expressed by formulas of T (V). See [16–18] for
details on weakest preconditions and [9,19,20] for the use of strongest post- and
weakest preconditions in model checking.

Throughout this paper, we follow [11] and use the concept of control flow
automata (CFA) for encoding imperative programs. Hereby, a CFA A is a
directed connected graph where the set of vertices L represents the program
locations and the set of edges E ⊆ L × Ops × L models the execution of opera-
tions from the set Ops (see Fig. 1a for an example).

158 M. Leucker et al.

We focus on the verification of reachability properties of programs. Hence,
we assume a program to be given by its control flow automaton, together with
an initial location and an error location. More precisely, a T -program is tuple
P = (V ,A, lI , lε), where assignments of the variables V form the set of data
states S , A = (L,E) is a CFA that models the control flow of the program and
lI , lε ∈ L model the initial and the error locations, respectively.

A set of data states is called a data region and we restrict to data regions
that can be encoded by a formula ϕ ∈ T (V) as a set of all data states s ∈ S
that entail ϕ. A concrete state of a program is a pair (l , s), where l ∈ L is a
program location and s ∈ S is a data state. A region (l , ϕ) is a set of concrete
states {(l , s) |s ∈ S} such that s |= ϕ.

A program path π is a sequence of program operations π = l0
op1−→ l1

op2−→ · · ·
opn−→ ln, where li ∈ L, i ∈ {0, . . . , n} and opi ∈ Ops, i ∈ [n], where [n] is a
shorthand for {1, . . . , n}. The concrete semantics for a program path π is defined
as sp(ϕ, π) = sp(spn−1, opn) where spi = sp(spi−1, opi) and sp0 = ϕ. A program
path π is feasible when starting from a data region ϕ if sp(ϕ, π) is satisfiable,
otherwise it is infeasible. For brevity, we sometimes only talk of a (in)feasible
program path when the starting region is clear from the context.

Throughout the paper, let {�,⊥} ⊆ P ⊆ T (V) be a finite set of predicates.
A conjunction over the set of predicates P , denoted by

∧
P , is the conjunction of

all predicates from P . The conjunction over an empty set
∧

∅ is identified by �.
The Cartesian abstraction [21] of a formula ϕ ∈ T (V) with respect to P , denoted
by ϕP , is the conjunction of all predicates from P that are (individually) implied
by ϕ, i.e. ϕP =

∧
{p | p ∈ P , ϕ → p}. We also denote by C (P) a conjunction of

predicates that arises from an element of the power set of P . An abstract state is
a region (l , ϕP) computed by the Cartesian abstraction for a region (l , ϕ) with
respect to a set of predicates P .

We define the abstract semantics of an operation op∈Ops by the abstract
strongest postoperator spP defined as spP (ϕ, op) = (sp(ϕ, op))P . Similar to pre-
viously, we extend the abstract semantics to program paths by spP (ϕ, π) =
spP (spP

n−1, opn) where spP
i = spP (spP

i−1, opi) and spP
0 = ϕ.

In our work we also use the concept of an abstract reachability tree (ART)
to encode abstract models of programs. An ART is a rooted directed tree whose
nodes are labeled by triples (l , ϕ,P) where the set of concrete states (l , ϕ) repre-
sents an abstract state and the set of predicates P is the local precision. For each
ART node (l , ϕ,P), the child nodes are labeled with the abstraction precision
P ′ and successor abstract nodes, computed according to the abstract strongest
postoperator spP . A node n = (l , ϕ,P) is called covered if there is a node
n ′ = (l , ϕ′,P ′) such that ϕ ⇒ ϕ′. An ART tree is called complete if every leaf
node is either covered or all possible abstract successor states are present in
the ART as children of the node. In simple words, an ART is the unwinding of
the CFA. If it is complete, the ART comprises a symbolic representation of all
reachable states of the underlying program.

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 159

Algorithm 1. LazyAbstraction(P, Φ)
Require: A program P = (V ,A, lI , lε) with a CFA A = (L,E) and a refinement

operator Φ : T (V) × E+ → 2T (V).
1: create an ART with a root node n0 = (l0, �, {�, ⊥})
2: while there are unmarked nodes in ART do
3: pick an unmarked node n = (l , ϕ,P)
4: if l = lε then
5: let n′ = (l ′, ϕ′,P ′) be the oldest ancestor of n s.t.

n′ σ−→ n and wp(�, σ) ∧ ϕ′ �≡ ⊥
6: if l ′ = lI then
7: return “error trace”σ
8: else
9: let n′′ = (l ′′, ϕ′′,P ′′) s.t. (l ′′, op, l ′) ∈ E

10: let τ denote the time stamp of n′′

11: relabel n′′ by w = (l′′, ϕ′′,P ′′ ∪ Φ(ϕ′′, op · σ))
12: remove the sub-trees starting from n′′

13: for all covered leaf m that was marked after τ do
14: unmark m
15: else if there exists m = (l , ϕ′,P ′) s.t. ϕ → ϕ′ then
16: mark m as covered
17: else
18: for all l ′ ∈ L s.t. (l , op, l ′) ∈ E do
19: ϕ′ ← spP (ϕ, op)
20: if ϕ′ �|= ⊥ then
21: add a child node n′ = (l ′, ϕ′,P) to the ART

22: mark n as uncovered
23: return ART

3 Lazy Abstraction

The traditional flow for CEGAR-based model checking [4] consists of the fol-
lowing steps: building an abstract model of the program using a chosen set
of predicates; verification of the abstract model; checking the feasibility of the
abstract counterexample, i.e. whether it can be executed in the original pro-
gram; counterexample-driven refinement of the set of predicates. All steps are
repeated until either no counterexample can be found in the abstract model, i.e.
the original program is error-free, or an abstract counterexample is feasible, i.e.
an error state is reachable from an initial state.

As the explicit construction of an abstract model and its verification are
generally time-consuming operations, the lazy abstraction approach optimizes
the CEGAR loop in that it continuously constructs an abstract model and checks
whether an error state is reachable at the same time.

In our work, we consider the lazy abstraction algorithm (Algorithm 1), which
is a slightly modified version of the one originally presented by Henzinger et al.
in [5]. The algorithm constructs an ART which either is complete or contains
a feasible abstract counter example. To this end, it starts by creating a new

160 M. Leucker et al.

reachability tree containing one node: a root node corresponding to the initial
node in the CFA. At any time, each node of the tree is either unmarked, i.e. not
processed, or is marked as covered or uncovered. After the initialization step, the
algorithm iteratively picks an unmarked node and checks whether it is labeled by
an error location. If this is not the case, then the algorithm checks whether there
is already another node that represents a superset of the data region represented
by the current node. If so, it marks the node as covered, and, if not, it marks it
as uncovered and adds its children into the tree.

If the picked node is labeled by an error location, then the algorithm checks
whether this node is reachable from the initial node (in the concrete program). If
the node is reachable, then an error trace is found and the algorithm terminates.
Otherwise the algorithm searches backwards for the node, which abstracts con-
crete states from which an error state can be reached but which are unreachable
from all concrete initial states. Such a node is also called a pivot node (n′′ on
line 9). In this refinement step (line 11) the algorithm uses a refinement operator,
denoted by Φ, to increase the abstraction precision of the pivot node by adding
further predicates. After that, the sub-tree rooted at the pivot node is discarded
and all nodes that were covered after processing the pivot node are unmarked,
so that it will (potentially) be reconstructed using the enriched set of predicates
in later steps of the algorithm.

If an error trace is found or if the constructed ART is complete, i.e. all leaf
nodes are covered, the algorithm terminates.

Our version of the algorithm is in fact a concretization of the more generic
one given in [5]. Henzinger’s algorithm operates on so-called symbolic abstrac-
tion structures, which comprise abstract domains and corresponding abstract
operations (see [5] for details). These operations allow computation of abstract
successor states, and predecessors of concrete data regions.

In our setting, we use predicate abstraction as abstract domain and the
abstract strongest postoperator to compute abstract states. We use the weakest
precondition operator to compute sets of concrete states that are reachable from
a given region. As these operators and the abstract domain are built into the
program, our algorithm only takes a program P and the refinement operator Φ
as its input rather than a symbolic abstraction structure.1

In our version of the algorithm we also always remove the sub-tree rooted
at the pivot node after the refinement step. The original algorithm uses an
additional heuristic to determine whether the sub-tree can be kept. The heuristic
does not affect the correctness but it may affect termination. And because, we

1 Actually, a symbolic abstraction structure also contains an operator for computation
of abstract states that can reach a given abstract state and an operator for compu-
tation of concrete states reachable from a given concrete state. These operators are
required for a backward search, i.e. when the lazy abstraction algorithm constructs
an ART starting from the error region and iteratively checks whether an initial region
is reachable. In this paper we only consider lazy abstraction in combination with the
forward search (Algorithm 1) and refer the reader to [5] for more details on the use
of lazy abstraction in combination with backward search.

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 161

are interested in refinement techniques toward termination, we always discard
the sub-tree rooted at a pivot node, to be on the safe side.

It was shown in [5] that the algorithm terminates with a correct result for
finite-state systems, or, more generally, when (i) the language T (V) is bounded,
i.e. does not contain infinite ascending chains, and (ii) the refinement step yields
semantically equivalent data regions (see explanation below) as well as a superset
of predicates, and (iii) the set of predicates returned in the refinement step is
precise enough to rule out the path’s suffix starting from the pivot node. The
second constraint on the refinement step is needed for correctness. It means, that
the region in node n′′ (line 9), given by ϕ′′, is not changed by the refinement
step. This is clear in our setting, as the new node keeps ϕ′′ (line 11) without any
modification. Hence, correctness is immediate, regardless of which refinement
operator is considered.2 The first and last constraint entail termination of the
algorithm.

The main objective of this paper is to introduce a new refinement operator.
Hence, we concentrate in the next section on refinement methods and their prop-
erties toward termination of the algorithm LazyAbstraction(P, Φ) shown in
Algorithm 1. More precisely, we introduce the notion of a progressive refinement
operator and show the termination of the algorithm when applied with such an
operator. We then introduce our concept of an unsatisfiability-core-based refine-
ment operator and show that it is progressive and hence assure termination of
the lazy abstraction algorithm.

4 Abstraction Refinement

When Algorithm 1 hits an error node, it checks whether the path from the initial
node to the error node represents a valid counterexample, i.e. the path is feasible.
If this is not the case, Algorithm 1 searches for the pivot node along that path
that is the furthermost node from the initial node, representing a set of concrete
states reachable from the set of initial states. As the path is an infeasible path,
no error state is reachable from any concrete state represented by the pivot
node. The algorithm constructs such path in the ART, however, due to the low
abstraction precision of the pivot node. Hence, the goal of the refinement step is
to increase the abstraction precision of the pivot node by adding new predicates
in such a way that the algorithm will not be able to construct the same path’s
suffix leading to the error node in the next iteration.

We introduce the notion of abstract infeasibility of program paths to indicate
whether a path can be constructed by the algorithm.

Definition 1 (Abstract (in)feasibility). Let π be a program path that is
infeasible when starting from a region ϕ. The program path π is abstractly infea-
sible with respect to a set of predicates P when starting from ϕ if spP (ϕ, π) is
unsatisfiable. Otherwise π is called abstractly feasible.

2 Due to page limitations, we refrain from formulating the correctness criteria precisely
here but refer the reader to [5] for more details.

162 M. Leucker et al.

When Algorithm 1 constructs an infeasible program path, it is divided by the
pivot node n = (l , ϕ,P) into the feasible path prefix (feasible when starting from
�) and the path suffix that is infeasible when starting from the data region ϕ
represented by the pivot node. The path suffix is, however, abstractly feasible
with respect to the abstraction precision P when starting from ϕ. Thus, in order
to avoid discovering the same path’s suffix by the algorithm again, the goal for
the refinement operator is to find a set of predicates P ′ such that the path suffix
becomes abstractly infeasible with respect to P ′ when starting from ϕ.

Definition 2 (Progressive refinement operator). Given a refinement oper-
ator Φ : T (V) × E+ → 2T (V). We call the refinement operator Φ progressive if
for every program path π which is infeasible when starting from a data region ϕ,
π is abstractly infeasible with respect to Φ(ϕ, π) when starting from ϕ.

Definitions 1 and 2 reflect the constraint on the refinement step as it relates
to the termination of the lazy abstraction algorithm presented in [5]. Lemma 1
formally states this condition in term of the progressive refinement.

Lemma 1 (Termination with progressive refinement operator). Let
P = (V ,A, lI , lε) be a T -program with a CFA A = (L,E) and let
Φ : T (V) × E+ → 2T (V) be a refinement operator. The execution of
LazyAbstraction(P, Φ) terminates if T (V) is bounded and Φ is progressive.

The proof is, on one hand, immediate from the developments in [5], as the
concepts introduced so far are just an instantiation of Henzinger’s more general
approach. Nevertheless, termination can also be shown in a straightforward fash-
ion, using König’s lemma: The algorithm cannot produce an infinite tree in the
limit, as a finitely-branching, infinite tree would contain an infinite path (accord-
ing to König’s lemma), which would be an infinite ascending chain violating the
boundedness of T (V). Progressiveness ensures that the algorithm does not end
up in an infinite loop producing the very same ART again and again.

For each ART node, Algorithm 1 computes a corresponding data region using
the abstract strongest postoperator. If we consider a path in the ART, then
the data regions represented by the nodes along that path form a sequence. In
the following we introduce the notions of an approximating sequence and an
infeasibility witness for a path, which are sequences of data regions of the path’s
length, where each element over-approximates the corresponding data region
computed by the algorithm. The idea behind it is that if a refinement operator
constructs a sequence of data regions for an infeasible path such that it is also
an infeasibility witness, then the elements of that sequence can be used as new
predicates and it will guarantee abstract infeasibility of that path.

Definition 3 (Approximating sequence and infeasibility witness).
Given a program path π = l0

op1−→ l1
op2−→ · · · opn−→ ln, a data region ϕ0 and a set of

predicates P, we call a sequence of formulas ϕ1, . . . , ϕn, ϕi ∈ C (P) for i ∈ [n],
a P -approximating sequence for π if sp(ϕi−1, opi) |= ϕi for all i ∈ [n]. We call
a P-approximating sequence a P -infeasibility witness if ϕn ≡ ⊥.

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 163

As is evident, an approximating sequence for a path forms a sequence of
data regions such that each data region ϕi over-approximates a data region that
is reachable from the predecessor data region ϕi−1 by executing the operation
opi. The first element of each sequence over-approximates the data region that
is reachable from the given data region ϕ0 by executing the first operation of
the path. If the last data region of the sequence is empty, i.e. ϕn ≡ ⊥, the
approximating sequence forms an infeasibility witness.

We define an approximating sequence and an infeasibility witness with
respect to a set of predicates P in order to determine whether a set of pred-
icates is precise enough to show that a path is abstractly infeasible.

First we show that each element of a P -approximating sequence for a path
over-approximates the corresponding data region constructed by Algorithm1.

Lemma 2. Given a program path π = l0
op1−→ l1

op2−→ · · · opn−→ ln, a data region ϕ0

and a set of predicates P. For every P-approximating sequence ϕ1, . . . , ϕn it
holds that spP (ϕ0, op1 . . . opi) |= ϕi for all i ∈ [n].

Now we prove the necessary and sufficient condition of abstract infeasibility
of an infeasible program path with respect to a set of predicates in terms of an
infeasibility witness.

Lemma 3. Given a set of predicates P and a program path π, which is infeasible
when starting from a data region ϕ. The program path π is abstractly infeasible
with respect to P when starting from ϕ iff there is a P-infeasibility witness for π.

Corollary 1 (Termination and infeasibility witness). Given a T -program
P and a refinement operator Φ, whereby T is bounded. If, for every program path
π that is infeasible when starting from a data region ϕ, the refinement operator
Φ yields an infeasibility witness, then LazyAbstraction(P, Φ) terminates.

One of the examples of a set of predicates that forms an infeasibility wit-
ness for an infeasible path is the set of negated weakest preconditions computed
on that path. Consider a path π = l0

op1−→ l1
op2−→· · · opn−→ ln, which is infeasible

when starting from a data region ϕ. Let wpi = wp(�, opi+1 . . . opn), i ∈ [n] and
wpn = � to denote a weakest precondition for location li. Each wpi represents
the largest data region from which an error state can be reached by executing
opi+1 . . . opn. But as the considered path is infeasible when starting from ϕ,
wpi cannot be reached from ϕ by executing op1, . . . , opi−1. Thus, each ¬wpi

represents the largest data region from which no error state can be reached by
executing op1, . . . , opi−1. Moreover, ¬wp1 is reachable from ϕ and each ¬wpi

is reachable from ¬wpi−1 by executing op1 and opi respectively. It follows that
the sequence W = (¬wp1, . . . ,¬wpn−1,¬wpn = ⊥) is a W -infeasibility witness.
Hence, a refinement operator yielding weakest preconditions for an infeasible
path would be progressive and would fulfill the termination criterion for refine-
ment operators.

Weakest preconditions are used for the refinement operator in the original
work to lazy abstraction [5]. Though the use of weakest preconditions are suffi-
cient to guarantee the termination of the algorithm, they often encode too much

164 M. Leucker et al.

information and hence are represented by quite complex formulas. Each formula
encoding a weakest precondition would contain all variables from a path suffix,
regardless of whether a variable has any impact on infeasibility of that path.

In the following, we present a novel method for computation of new predi-
cates from infeasible paths. It is also based on weakest preconditions but tries
to discard as much information as possible that does not affect infeasibility. It
results in much simpler formulas as well as, in some cases, in generation smaller
number of predicates needed to prove or disprove a property using lazy abstrac-
tion algorithm. All these can significantly improve overall performance of the
lazy abstraction algorithm. The computation of new predicates makes use of
unsatisfiability cores and weakest preconditions.

Definition 4 (Unsat-core-based (UCB) predicates). Let π = l0
op1−→ l1

op2−→ · · · opn−→ ln be a program path that is infeasible with respect to a data region
ϕ. We call a sequence of predicates p1, . . . , pn unsat-core based predicates if
pi = ¬(ϕi \ cl(ψi)) where ϕi ∈ UC (ψi ∧ wpi), ψi = sp (pi−1, opi), p0 = ϕ, and
wpn = � and wpi = wp(�, opi+1 . . . opn).

Definition 4 can be seen as an algorithm for computing new predicates. In
the first pass, the algorithm computes the weakest preconditions wp1, . . . ,wpn

for program locations l1, . . . , ln. Then, starting from the location l1, it iteratively
computes for each location li the data region ψi that is reachable from the
data region pi−1 by executing corresponding operation opi. The data region ψi

over-approximates the set of states that are reachable from ϕ, and thus has no
common states with the weakest precondition because the given path is infeasible
with respect to ϕ. Using this fact, we compute an unsatisfiability core of the
conjunction of ψi and wpi and select all clauses from the unsatisfiability core
that are only included in the weakest precondition. The resulting formula over-
approximates the weakest precondition wpi, which represents the largest set of
states from which an error state can be reached by executing the path’s suffix
opi . . . opn. Hence, we take the negation of that formula as a new predicate
pi, which represents an under-approximation of ¬wpi, which is the largest set
of states from which no error state can be reached by executing the path’s
suffix. At the same time, pi represents an over-approximation of the data region
that is reachable from the given data region ϕ by executing the path’s prefix
op1 . . . opi−1.

Intuitively, the properties of UCB predicates described above allow us to use
them for the abstraction refinement. Though each UCB predicate pi represents
in general a smaller data region than the corresponding ¬wpi, they contain
much more precise information about the reason of unsatisfiability than the
corresponding weakest precondition.

Let us sketch how to prove that the use of UCB predicates computed accord-
ing to Definition 4 in the refinement step guarantees termination of Algorithm1.

First one shows that each UCB-predicate pi as well as ψi represent the sets
of states that are disjointed from the set of states represented by wpi. As wpi

represents the set of all states from which the path suffix opi+1 . . . opn can be

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 165

0

1

2

3 4

5

6 ε

i := 0

x := k

i = 0

x := 0

i �= 0

y := 0

x = 0 x �= 0

(a)

0

1

2

5

6 ε

i := 0

x := k

(i = 0 ∧ x := 0)∨
(i �= 0 ∧ y := 0)

x = 0 x �= 0

(b)

0 {false}

1 {i �= 0 ∧ k �= 0}

2 {i �= 0 ∧ x �= 0}

5 {x �= 0}

ε {true}

i := 0

x := k

(i = 0 ∧ x := 0) ∨ (i �= 0 ∧ y := 0)

x �= 0

(c)

Fig. 1. A CFA of a simple imperative program (a). The optimized CFA (b) after
merging “if-then-else” block. An infeasible path (c) from the optimized CFA, where
nodes are labeled by the corresponding weakest preconditions (curly brackets).

executed, we show that pi and ψi under-approximate the set of states represented
by ¬wpi: (i) pi → ¬wpi and ψi → ¬wpi for all i ∈ [n]. Now we show that pi over-
approximates the data region reachable from pi−1, which we use to show that
the sequence p1, . . . , pn forms an approximating sequence: (ii) sp(pi−1, opi) → pi

for all i ∈ [n]. Now we can show that a sequence of UCB predicates computed
according to Definition 4 forms an infeasibility witness. (iii) Given a path π
that is infeasible when starting from a data region ϕ then a sequence of UCB
predicates U computed for π is an U -infeasibility witness for π.

We sum up our developments with the following theorem, which follows easily
from the items (i)–(iii) stated above.

Theorem 1 (Termination with UCB predicates). Let P be a T -program
and let Φ be the refinement operator yielding the UCB predicates for an infeasible
path. If T is bounded, then LazyAbstraction(P, Φ) terminates.

4.1 Path Projection

One of the commonly used techniques to simplify the refinement based on unsat-
isfiability cores, is the refinement of a path formula based on an unsatisfiability
core and the following predicate extraction on the refined path. As a path formula
of an infeasible path is unsatisfiable, one can construct a path “projection”, which
will only contain the information included in the unsatisfiability core and then
apply some predicate extraction technique, e.g. weakest precondition-based or
interpolation-based techniques, on that path. The path projection is achieved by
removing clauses from the encoding of program operations that are not included
in the unsatisfiability core.

Unfortunately, the choice of the predicate extraction techniques in such app-
roach strongly depends on the encoding of program operations as well as on
other components of the Lazy Abstraction algorithm, such as the abstract post-
operator.

166 M. Leucker et al.

0
{false} [true]

1
{i �= 0 ∧ x �= 0} [i = 0 ∨ x = 0]

2
{i �= 0 ∧ x �= 0} [i = 0 ∨ x = 0]

5
{x �= 0} [x = 0]

ε
{true} [false]

i := 0

true

(i = 0 ∧ x := 0) ∨ (i �= 0 ∧ y := 0)

x �= 0

(a)

0
{false} [true]

1
{i �= 0 ∧ x �= 0} [i = 0]

2
{i �= 0 ∧ x �= 0} [i = 0]

5
{x �= 0} [x = 0]

ε
{true} [false]

i := 0

true

(i = 0 ∧ x := 0) ∨ (i �= 0 ∧ y := 0)

x �= 0

(b)

Fig. 2. The projected paths, where nodes are labeled by weakest preconditions (curly
brackets) as well as by extracted predicates (square brackets): negated weakest precon-
ditions (a) and UCB predicates (b).

In our model-checking tool we use the large-block encoding (LBE) technique
[22] and Cartesian abstraction as the abstract postoperator. In the following we
show by means of an example that in our configuration the combination of the
weakest precondition-based predicate extraction and path projection does not
guarantee termination of the Lazy Abstraction algorithm.

Consider a CFA (Fig. 1a) of a simple imperative program assigning a value
to either variable x or y according to the value of the variable i assigned in the
first step. Figure 1b presents the CFA after applying the optimization step that
merges the “if-then-else” block into one transition. If we start the algorithm with
an empty set of predicates, it will find a counterexample (Fig. 1c) in the first iter-
ation, which is obviously infeasible. Due to infeasibility, one can simplify it using
an unsatisfiability core. The example of such projection is presented in Fig. 2a
and b. After simplification step, we can apply a predicate extraction algorithm.
Figures 2a and b show the predicates that were constructed by negating the cor-
responding weakest preconditions (Fig. 2a) and by computing UCB predicates
(Fig. 2b) as described in Definition 4. Unfortunately, the predicates, which were
constructed using negation of weakest preconditions, do not form an approx-
imating sequence for the original path and thus, do not fulfill the necessary
condition for termination of the algorithm. The problem lies on the simplified
transition between nodes 1 and 2. On one hand, the transition was simplified by
removing the superfluous assignment x := k but on the other hand, the variable
x still appears in the predicate. This leads to the problem at program location
2, namely, there is no predicate, which under-approximates the negated weakest
precondition i = 0 ∨ k = 0 from the original path, which represents the largest
set of states from which the error state is unreachable. As one can see, there is
no such problem when using the UCB predicates, as all superfluous variables are
removed from predicates as well.

We have to note that in order to use the UCB predicates in such configu-
ration, one has to ensure that only minimal unsatisfiability cores are used in
the computation of UCB predicates. The reason for that is that by applying
path projection it is necessary that no superfluous variables will remain in the

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 167

resulting predicate, which can be guaranteed by using minimal unsatisfiability
cores. Also note, that the interpolation-based technique to predicate construction
also has this property and hence can be used in combination with projection. We
also consider successfully such an additional projection in our setting (see Sect. 5
(Results)). A formal proof of the previous remarks require a precise definitions
of the notion of projection etc. and is, due to space constraints, left to a full
version of the paper.

5 Implementation and Experimental Results

Implementation. We implemented the Lazy Abstraction algorithm in combina-
tion with the UCB-based as well as the interpolation-based refinement strate-
gies on top of an existing proprietary model-checking framework. This frame-
work makes use of LLVM project to parse C programs and translate them into
the intermediate representation (IR). We apply some static analysis and opti-
mization techniques on this IR, e.g. Steensgaard’s pointer analysis and model
minimization [23–25], as well large block encoding [22]. We use the bit-precise
memory model that supports limited pointer operations including array-element
and record-field addressing. While the Lazy Abstraction algorithm in combina-
tion with the UCB-based refinement strategy is fully theory unaware and can
be used for infinite-domain theories, such as linear real arithmetic (LRA) we use
the finite-domain theory of bit vectors. Our tool supports the Z3 and MathSAT
SMT solvers, but as the Z3 solver does not support computation of interpolants
for the theory of interest we executed all benchmarks using the MathSAT solver.

Besides the refinement algorithms we implemented and evaluated two opti-
mizations which may improve performance of the Lazy Abstraction algorithm
in some cases. The first one is the path projection described in the previous
section and the second one is the limitation of number of extracted predicates.
The intention behind it is that the fewer predicates are extracted the less SMT
queries has to be done by the abstract postoperator and in some cases not all
predicates extracted from an infeasible path are necessary to prove or disprove
a property. It does not affect the correctness, as in the worst case, the algorithm
will need to refine paths multiple times.

We additionally compared our implementation to an improvement of the
IC3 model-checking approach that is currently one of the most actively stud-
ied model-checking algorithms. The improved version of the IC3 algorithm was
recently presented in [2] and is implemented within the same model-checking
framework. Hence, all preprocessing and optimization steps are identical to our
implementation.

Experiments. We have evaluated our algorithms on 178 C programs taken from
the SV competition and enriched by some of our own programs. For 89 programs,
none of the algorithms has terminated within the given time or memory bound.
In the following, we discuss the behavior of the algorithms on the remaining 89
examples, for which at least configuration of one algorithm terminated.

168 M. Leucker et al.

10−3 10−2 10−1 100 101 102 103

10−3

10−2

10−1

100

101

102

103

UCB-1-np

IC
3

(a)

10−3 10−2 10−1 100 101 102 103

10−3

10−2

10−1

100

101

102

103

UCB-1-np

IT
P

-m
ax

-n
p

(b)

Algorithm # solve solve t
UCB-1-np 70 1234
ITP-1-np 77 3471
UCB-max-np 68 1474
ITP-max-np 79 5947
UCB-1-p 58 1777
ITP-1-p 67 2750
UCB-max-p 61 1268
ITP-max-p 70 4356
IC3 63 1249

(c)

Algorithm # solve
UCB 75
ITP 85
IC3 63

(d)

Fig. 3. Performance comparison of UCB (best configuration) with IC3 and interpolants
(best configuration) (a), (b). Number of solved problems by each algorithm in each
configuration (1/max denotes the number of extracted predicates and p/np whether
the path projection is applied (p) or not (np)) (c). Number of solved problems by
algorithms for all configurations (d).

All experiments have been executed on a cluster using a single core running
at 2.1 GHz, a memory limit of 4GB per file and a timeout of 3600 s.

We briefly compare the performance of the Lazy Abstraction algorithm in
combination with UCB-based and interpolation-based refinement in its best con-
figurations (w.r.t number of solved problems) as well the IC3 implementation
from [2]. We also compare the number of solved problems by different approaches.

Results. From the results in Fig. 3 we can come to the following conclusions.
First, the best configuration of the interpolation-based approach solved more
problems out of 89 than others (Fig. 3c). At the same time, our results which
are not presented in tables, shows that there are 4 problems which could only
be solved by the UCB-based and IC3 algorithms. The best configuration of the
UCB-based algorithm solved 8 problems more than the IC3 algorithm and the
latter solved one problem which the best of UCBs could not solve. The best
configuration of the interpolation-based approach solved 15 problems more than
the best configuration of UCBs but at the same time the latter solved 6 problems
which the best interpolation-based could not solve.

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 169

Second, application of the path projection and limitation of the number of
predicates allow to solve problems which can not be solved otherwise, increasing
thereby the total number of solved problems (Fig. 3c) and thus, also play an
important role in Lazy Abstraction approach. While interpolation-based app-
roach solved the most problems without any optimization, the UCB-based app-
roach was most efficient by only taking one predicate during the refinement. The
difference arises from the fact that for the computation of all UCB-predicates one
needs to make as many SMT queries as the path’s length, while an SMT-solver
computes all interpolants from one query. At the same time, applying path pro-
jection may simplify the consequent queries but as we can see, in many cases it
introduces the superfluous computation which decreases the overall performance.

Finally, the best configuration of the UCB-based approach outperforms the
IC3 approach in most cases (Fig. 3a) and is comparable to the best configuration
of the interpolation-based approach (Fig. 3b).

Summarizing our results we can conclude that the best results in our current
setting can be achieved by combining the UCB-based and interpolation-based
approaches for example by running them in parallel.

6 Conclusion

This paper studied a new refinement technique within the CEGAR-based app-
roach to model checking. More specifically, we build on lazy abstraction, where
the refinement step is usually carried out using weakest preconditions on pro-
gram paths or using techniques like interpolants.

As interpolants are sometimes not available by the underlying SMT solver,
we have developed a new refinement step that makes use of unsatisfiable cores
to improve refinement and which can be used with any SMT solver (that can
compute unsatisfiability cores). We have shown that our refinement step is pro-
gressive in the sense that the lazy abstraction approach terminates when veri-
fying finite state systems. Moreover, we have implemented the strategy within
our own model-checking tool. We have shown that UCB-based refinement nearly
always outperforms one of the implementation of IC3 model-checking algorithms
in our setting. Regarding interpolation-based refinement, UCB-based is often
comparable but also allows to verify programs which can not be solved by using
interpolants. As such, the papers presents a new valuable refinement strategy.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Lange, T., Neuhäußer, M.R., Noll, T.: IC3 software model checking on control flow

automata. In: Formal Methods in Computer-Aided Design, FMCAD 2015 (2015)
3. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,

Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

170 M. Leucker et al.

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

5. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. ACM SIG-
PLAN Not. 37, 58–70 (2002). ACM

6. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013)

9. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs.
ACM SIGPLAN Not. 39(1), 232–244 (2004)

10. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

11. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST. Int. J. Softw. Tools Technol. Transf. (STTT) 9(5), 505–525 (2007)

12. Jain, H., Kroening, D., Sharygina, N., Clarke, E.M.: Word-level predicate-
abstraction and refinement techniques for verifying RTL Verilog. IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 27(2), 366–379 (2008)

13. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Cegar-based formal hardware verifi-
cation: a case study. Ann Arbor 2007, 48109–2122 (1001)

14. Yang, Z., Al-Rawi, B., Sakallah, K., Huang, X., Smolka, S., Grosu, R.: Dynamic
path reduction for software model checking. In: Leuschel, M., Wehrheim, H. (eds.)
IFM 2009. LNCS, vol. 5423, pp. 322–336. Springer, Heidelberg (2009)

15. Kroening, D., Strichman, O.: Decision Procedures, vol. 5. Springer, New York
(2008)

16. Gries, D.: The Science of Programming. Springer, Heidelberg (1981)
17. Dijkstra, E.W.: A Discipline of Programming, vol. 1. Prentice-Hall, Englewood

Cliffs (1976)
18. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-

grams. Commun. ACM 18(8), 453–457 (1975)
19. Jager, I., Brumley, D.: Efficient directionless weakest preconditions. Technical

report, CMU-CyLab-10-002, Carnegie Mellon University, CyLab (2010)
20. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288

(2005)
21. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model

checking C programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol.
2031, pp. 268–283. Springer, Heidelberg (2001)

22. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Formal Methods in Computer-Aided
Design, FMCAD 2009, pp. 25–32. IEEE (2009)

23. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984)
24. Lange, T., Neuhäußer, M.R., Noll, T.: Speeding up the safety verification of pro-

grammable logic controller code. In: Bertacco, V., Legay, A. (eds.) HVC 2013.
LNCS, vol. 8244, pp. 44–60. Springer, Heidelberg (2013)

25. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
New York (1999)

	A New Refinement Strategy for CEGAR-Based Industrial Model Checking
	1 Introduction
	2 Preliminaries
	3 Lazy Abstraction
	4 Abstraction Refinement
	4.1 Path Projection

	5 Implementation and Experimental Results
	6 Conclusion
	References

