
Nir Piterman (Ed.)

 123

LN
CS

 9
43

4

11th International Haifa Verification Conference, HVC 2015
Haifa, Israel, November 17–19, 2015
Proceedings

Hardware and Software:
Verification and Testing

Lecture Notes in Computer Science 9434

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Nir Piterman (Ed.)

Hardware and Software:
Verification and Testing
11th International
Haifa Verification Conference, HVC 2015
Haifa, Israel, November 17–19, 2015
Proceedings

123

Editor
Nir Piterman
University of Leicester
Leicester
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-26286-4 ISBN 978-3-319-26287-1 (eBook)
DOI 10.1007/978-3-319-26287-1

Library of Congress Control Number: 2015953248

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the proceedings of the 11th Haifa Verification Conference (HVC
2015). The conference was hosted by IBM Research Haifa Laboratory and took place
during November 17–19, 2015. It was the 11th event in this series of annual confer-
ences dedicated to advancing the state of the art and state of the practice in verification
and testing. The conference provided a forum for researchers and practitioners from
academia and industry to share their work, exchange ideas, and discuss the future
directions of testing and verification for hardware, software, and complex hybrid
systems. Overall, HVC 2015 attracted 32 submissions in response to the call for papers.
Each submission was assigned to at least three members of the Program Committee and
in some cases additional reviews were solicited from external experts. The Program
Committee selected 17 papers for presentation. In addition to the 17 contributed papers,
the program included five invited talks by Patrice Godefroid (Microsoft Research),
Stephen Bailey (Mentor Graphics), Mooly Sagiv (Tel Aviv University), Bodo Hoppe
(IBM), and Yoav Hollander (Foretellix LTD). On the last day of the conference, the
HVC award was presented to Armin Biere (Yohannes Kepler University Linz) for his
contributions to SAT solving and its usage in verification. On November 16, one day
before the conference, we held a tutorial day.

I would like to extend our appreciation and sincere thanks to local organization team
from IBM Research Haifa Laboratory. In particular, Michael Vinov, the general chair,
Tali Rabetti, the publicity chair, Tamer Salman, the tutorials chair, Revivit Yankovich
the local coordinator, Yair Harry, the webmaster, and the Organizing Committee,
which included Moshe Levinger, Ronny Morad, Avi Ziv, Karen Yorav, Sharon Keidar
Barner, and Laurent Fournier. HVC 2015 received sponsorships from IBM, Qual-
comm, Cadence Design Systems, Sandisk, Mentor Graphics, and Mellanox Tech-
nologies. Submission and evaluation of papers, as well as the preparation of this
proceedings volume, were handled by the EasyChair conference management system.

September 2015 Nir Piterman

Organization

Program Committee

Roderick Bloem Graz University of Technology, Austria
Debapriya Chatterjee IBM Corporation, USA
Hana Chockler King’s College, UK
Flavio M. de Paula IBM Corporation, USA
Rayna Dimitrova MPI-SWS, Germany
M.J. Escalona University of Seville, Spain
Adrian Evans iRoC Technologies, France
Harry Foster Mentor Graphics, USA
Franco Fummi University of Verona, Italy
Alex Goryachev IBM Research - Haifa, Israel
Alberto Griggio Bruno Kessler Foundation, Italy
Aarti Gupta Princeton University, USA
Laura Kovacs Chalmers University of Technology, Sweden
Akash Lal Microsoft Research, India
Martin Leucker University of Lübeck, Germany
João Lourenço NOVA LINCS - Universidade Nova de Lisboa,

Portugal
Annalisa Massini Sapienza University of Rome, Italy
Mayur Naik Georgia Institute of Technology, USA
Jorge A. Navas NASA Ames Research Center, USA
Hiren Patel University of Waterloo, Canada
Pavithra Prabhakar IMDEA Software Institute, Spain
Itai Segall Bell Labs, Israel
Martina Seidl Johannes Kepler University Linz, Austria
Ohad Shacham Yahoo! Labs, Israel
Sharon Shoham The Academic College of Tel Aviv Yaffo, Israel
Eli Singerman Intel Corporation, Israel
Eran Yahav Technion, Israel
Karen Yorav IBM Research - Haifa, Israel

Local Organization (IBM Research – Haifa)

Michael Vinov General Chair
Tali Rabetti Publicity Chair
Tamer Salman Tutorial Chair
Revivit Yankovich Local Coordinator
Yair Harry Web Master

Moshe Levinger Organizing Committee
Ronny Morad Organizing Committee
Avi Ziv Organizing Committee
Karen Yorav Organizing Committee
Sharon Keidar Barner Organizing Committee
Laurent Fournier Organizing Committee

Additional Reviewers

Bingham, Brad D.
Chimento, Jesus Mauricio
Goldstein, Maayan
Harder, Jannis
Ivrii, Alexander
Karbyshev, Aleksandr

Khsidashvili, Zurab
Lavin, Mark
Mari, Federico
Meshman, Yuri
Mover, Sergio
Roveri, Marco

Salvo, Ivano
Scheffel, Torben
Tronci, Enrico
Zwirchmayr, Jakob

VIII Organization

Invited Talks

Between Testing and Verification:
SoftwareModel Checking via Systematic Testing

Patrice Godefroid

Microsoft Research
pg@microsoft.com

Abstract. Dynamic software model checking consists of adapting model
checking into a form of systematic testing that is applicable to industrial-size
software. Over the last two decades, dozens of tools following this paradigm
have been developed for checking concurrent and data-driven software. Com-
pared to traditional software testing, dynamic software model checking provides
better coverage, but is more computationally expensive. Compared to more
general forms of program verification like interactive theorem proving, this
approach provides more limited verification guarantees, but is cheaper due to its
higher level of automation. Dynamic software model checking thus offers an
attractive practical trade-off between testing and formal verification.

This talk will review 20 years of research on dynamic software model
checking. It will highlight some key milestones, applications, and successes. It
will also discuss limitations, disappointments, and future work.

Fight for the Future of Verification;
Live in it Today

Stephen Bailey

Mentor Graphics
stephen_bailey@mentor.com

Abstract. Functional verification is arguably the #1 challenge in the semicon-
ductor and, therefore, EDA industries today. The pressure to verify ever larger,
more complex systems within the context of schedules squeezed by market
demands is tremendous. While it is impossible to predict specific inventions or
innovations to come, it is possible to identify the challenges they must solve by
understanding what is or will be consuming the most verification time. Specific
areas of exploration include moving beyond chip to system level verification,
SoC architectural implications on verification cycels and methodology and tying
big data into verification automation.

Between Art and Craft: The Self-conception
of a Verification Engineer

Bodo Hoppe

IBM Deutschland Research & Development
bohopp@de.ibm.com

Abstract. In the early days of verification, people wrote tests manually. This
was done mostly by the designers themselves. The 90s marked the creation of
software of automatic test generation. However, it was realized that stimuli
generation, reference modeling and result prediction required dedicated skills.

With the progress of the field the required skills for contributing to the
verification team became broader and included skills such as constraint solving,
acceleration, and formal verification. Even more importantly, the verification
engineer became independent. The opposite pole to logic design. And the job of
a verification engineer became a career path.

Nowadays the boundaries fade again. A logic designer is expected to do
formal analysis of his design, creating assertions and interesting coverage events
and, last but not least, perform designer simulation to increase the initial quality
of the logic delivery.

What are the most valuable talents for an engineer to have to be hired for
hardware verification? The art of debugging? Thinking Logically? System
Analysis? Programming? Creativity?

Going into the future, there is a strong need to rethink the self-conception of
verification engineers and how they team up with the logic designers working in
an agile environment.

Reasoning About Program Data Structure
Shape: From the Heap to Distributed Systems

Mooly Sagiv

Tel Aviv University
msagiv@post.tau.ac.il

Abstract. Shape analysis is a static program-analysis technique that discovers
and verifies properties of a program’s dynamically allocated data structures. For
example, shape analysis can infer that a linked list is acyclic, and prove that a
program cannot free an element more than once. More generally, shape analysis
provides a method to establish properties of systems whose states can be
modeled as relations that evolve over time. A shape analyzer discovers quan-
tified invariants of the elements of such systems.

In this talk, I will describe the road from analyzing dynamically allocated
data structures to analyzing network protocols and other distributed systems.
The survey includes both sound techniques and complete techniques. Some
of these fundamental techniques inspired tools that are deployed in industry.

Contents

Hybrid Systems

XSpeed: Accelerating Reachability Analysis on Multi-core Processors 3
Rajarshi Ray, Amit Gurung, Binayak Das, Ezio Bartocci,
Sergiy Bogomolov, and Radu Grosu

Abstraction-Based Parameter Synthesis for Multiaffine Systems 19
Sergiy Bogomolov, Christian Schilling, Ezio Bartocci, Gregory Batt,
Hui Kong, and Radu Grosu

Tools

Combining Static and Dynamic Analyses for Vulnerability Detection:
Illustration on Heartbleed . 39

Balázs Kiss, Nikolai Kosmatov, Dillon Pariente, and Armand Puccetti

The Verification Cockpit – Creating the Dream Playground for Data
Analytics over the Verification Process . 51

Moab Arar, Michael Behm, Odellia Boni, Raviv Gal, Alex Goldin,
Maxim Ilyaev, Einat Kermany, John Reysa, Bilal Saleh,
Klaus-Dieter Schubert, Gil Shurek, and Avi Ziv

Verification of Robotics

Coverage-Driven Verification — An Approach to Verify Code for Robots
that Directly Interact with Humans . 69

Dejanira Araiza-Illan, David Western, Anthony Pipe, and Kerstin Eder

Symbolic Execution

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 87
Jakub Daniel and Pavel Parízek

TSO to SC via Symbolic Execution. 104
Heike Wehrheim and Oleg Travkin

Parallel Symbolic Execution: Merging In-Flight Requests. 120
Martin Nowack, Katja Tietze, and Christof Fetzer

http://dx.doi.org/10.1007/978-3-319-26287-1_1
http://dx.doi.org/10.1007/978-3-319-26287-1_2
http://dx.doi.org/10.1007/978-3-319-26287-1_3
http://dx.doi.org/10.1007/978-3-319-26287-1_3
http://dx.doi.org/10.1007/978-3-319-26287-1_4
http://dx.doi.org/10.1007/978-3-319-26287-1_4
http://dx.doi.org/10.1007/978-3-319-26287-1_5
http://dx.doi.org/10.1007/978-3-319-26287-1_5
http://dx.doi.org/10.1007/978-3-319-26287-1_6
http://dx.doi.org/10.1007/978-3-319-26287-1_7
http://dx.doi.org/10.1007/978-3-319-26287-1_8

Model Checking

Limited Mobility, Eventual Stability . 139
Lenore D. Zuck and Sanjiva Prasad

A New Refinement Strategy for CEGAR-Based Industrial Model Checking . . . 155
Martin Leucker, Grigory Markin, and Martin R. Neuhäußer

Timed Systems

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 173
Christian Herrera and Bernd Westphal

Resource-Parameterized Timing Analysis of Real-Time Systems 190
Jin Hyun Kim, Axel Legay, Kim G. Larsen, Marius Mikučionis,
and Brian Nielsen

SAT Solving

SAT-Based Explicit LTL Reasoning . 209
Jianwen Li, Shufang Zhu, Geguang Pu, and Moshe Y. Vardi

Understanding VSIDS Branching Heuristics in Conflict-Driven
Clause-Learning SAT Solvers . 225

Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman,
and Krzysztof Czarnecki

Multi Domain Verification

Multi-Domain Verification of Power, Clock and Reset Domains 245
Ping Yeung and Eugene Mandel

Synthesis

FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error
Localization and Correction . 259

Andrew Becker, Djordje Maksimovic, David Novo, Mohsen Ewaida,
Andreas Veneris, Barbara Jobstmann, and Paolo Ienne

On Switching Aware Synthesis for Combinational Circuits. 276
Jan Lanik and Oded Maler

Author Index . 293

XVI Contents

http://dx.doi.org/10.1007/978-3-319-26287-1_9
http://dx.doi.org/10.1007/978-3-319-26287-1_10
http://dx.doi.org/10.1007/978-3-319-26287-1_11
http://dx.doi.org/10.1007/978-3-319-26287-1_12
http://dx.doi.org/10.1007/978-3-319-26287-1_13
http://dx.doi.org/10.1007/978-3-319-26287-1_14
http://dx.doi.org/10.1007/978-3-319-26287-1_14
http://dx.doi.org/10.1007/978-3-319-26287-1_15
http://dx.doi.org/10.1007/978-3-319-26287-1_16
http://dx.doi.org/10.1007/978-3-319-26287-1_16
http://dx.doi.org/10.1007/978-3-319-26287-1_17

Hybrid Systems

XSpeed: Accelerating Reachability Analysis on
Multi-core Processors

Rajarshi Ray1(B), Amit Gurung1, Binayak Das1, Ezio Bartocci2,
Sergiy Bogomolov3, and Radu Grosu2

1 National Institute of Technology Meghalaya, Shillong, India
raj.ray84@gmail.com

2 Vienna University of Technology, Vienna, Austria
3 Institute of Science and Technology Austria, Klosterneuburg, Austria

Abstract. We present XSpeed a parallel state-space exploration algo-
rithm for continuous systems with linear dynamics and nondeterministic
inputs. The motivation of having parallel algorithms is to exploit the
computational power of multi-core processors to speed-up performance.
The parallelization is achieved on two fronts. First, we propose a parallel
implementation of the support function algorithm by sampling functions
in parallel. Second, we propose a parallel state-space exploration by slic-
ing the time horizon and computing the reachable states in the time slices
in parallel. The second method can be however applied only to a class
of linear systems with invertible dynamics and fixed input. A GP-GPU
implementation is also presented following a lazy evaluation strategy on
support functions. The parallel algorithms are implemented in the tool
XSpeed. We evaluated the performance on two benchmarks including an
28 dimension Helicopter model. Comparison with the sequential coun-
terpart shows a maximum speed-up of almost 7× on a 6 core, 12 thread
Intel Xeon CPU E5-2420 processor. Our GP-GPU implementation shows
a maximum speed-up of 12× over the sequential implementation and 53×
over SpaceEx (LGG scenario), the state of the art tool for reachability
analysis of linear hybrid systems. Experiments illustrate that our paral-
lel algorithm with time slicing not only speeds-up performance but also
improves precision.

1 Introduction

Reachability analysis is a standard technique for safety verification, analysis and
synthesis of continuous and hybrid systems. Since exact computation of reach-
able states is in general intractable, set-based conservative computation methods
has been proposed in the past with different choice of sets [1,2,7–9,12,22]. The
reachable states are represented as a collection of continuous sets (⊂ R

n) with a
symbolic representation of each individual set. Precision and scalability has been
the two challenges with such set-based methods. The symbolic set representation
plays a key role in deciding the efficiency of the reachability algorithm. Recently,
algorithms using convex sets represented by support functions [12] and zonotopes
[9] have shown promising scalability. Systems having dimension as large as 100
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-26287-1 1

4 R. Ray et al.

have been shown to be computed efficiently with support-function-based algo-
rithms.

The advent of multi-core architectures and many-core parallel co-processors
like graphics processing units (GPUs) have provided tremendous computing
power at our disposal. In this work, our goal is to leverage these powerful par-
allel architectures to speed-up the performance of reachability analysis and also
possibly the precision of analysis. There has been prior work on devising parallel
algorithms for discrete state concurrent systems in order to speed-up their per-
formance on multi-core machines. Parallel state-space-search algorithms in the
model-checker SPIN has been proposed in [6,13]. A GP-GPU implementation
of the algorithms in SPIN has been proposed in [3]. However, no prior work is
known to us on parallel state-space exploration of continuous and hybrid systems
except for [17] which presents some preliminary results.

In particular, we consider the support-function-based reachability algo-
rithm and propose two parallel versions of it. The first, samples the sup-
port functions along the template directions in parallel. This algorithm could
be applied to any system with linear dynamics and nondeterministic inputs
(ẋ = Ax(t) + u(t), u(t) ∈ U , x(0) ∈ X0). The second computes the reachable
sets in slices of the time horizon. This algorithm can be applied to the class of
linear systems whose dynamics A is invertible and the input set U is a point set.
We also propose a GP-GPU implementation of the algorithm by following a lazy
evaluation strategy. Our current GP-GPU implementation restricts X0 and U to
be specified as hyperbox.

The organization of the paper is as follows. In Sect. 2, we present prelimi-
naries on support functions and a reachability analysis algorithm using support
functions. In Sect. 3, a parallel implementation scheme of the algorithm and
our parallel state-space exploration algorithm is presented. We present our GPU
implementation scheme in Sect. 4 to sample support functions in parallel in GPU
cores. The experimental results are presented in Sect. 5 illustrating the achieved
speed-up and precision. We conclude in Sect. 6.

2 Preliminaries

Since our work is focused on the support-function representation of compact
convex sets, we recap the definition of support functions and template polytopes
in Sect. 2.1. The reachability algorithm using support functions is discussed in
Sect. 2.2.

2.1 Support Functions

Definition 1. [18] Given a nonempty compact convex set X ⊂ R
n the support

function of X is a function supX : Rn → R defined as:

supX (�) = max{� · x | x ∈ X} (1)

XSpeed: Accelerating Reachability Analysis on Multi-core Processors 5

where � · x is the scalar product of direction � and vector x, that is, the pro-
jection of x on direction �. A compact convex set X is uniquely determined by
the intersection of the halfspaces generated by support functions in all possible
directions � ∈ R

n.

X =
⋂

�∈Rn

� · x ≤ supX (�) (2)

Definition 2. Given the support function supX of a compact convex set X and
a finite set of template directions D, the template polytope of the convex set X
is defined as:

PolyD(X) =
⋂

�∈D
� · x ≤ supX (�) (3)

Proposition 1. Given a polytope X = {x ∈ R
n | P · x ≤ Q}, the support

function of X in the direction � is the solution to the Linear Program (LP):

supX (�) =

⎧
⎪⎨

⎪⎩

maximize � · x

subject to:
P · x ≤ Q

Proposition 2. Given a hyperbox H = {x ∈ R
n | x ∈ [a1, b1] × . . . × [an, bn]},

the support function of H in the direction � = (�1, �2, . . . , �n) is given by:

supH(�) =
n∑

i=1

�i · hi, where hi =

{
ai if �i < 0
bi otherwise

where ai and bi are the lower and upper bound respectively of H in the dimen-
sion i.

2.2 Reachability Analysis Using Support Functions

In this work, we consider continuous linear systems with constrained inputs and
initial states. The dynamics of such systems is of the form:

ẋ = Ax(t) + u(t), u(t) ∈ U , x(0) ∈ X0 (4)

where X0, U is the set of initial states and the set of inputs given as compact
convex sets, respectively.

We now discuss the algorithm proposed in [12] for computing reachable states
using support functions. The algorithm discretizes time by a time step δ and
computes an over approximation of the reachable set in time horizon T by a set
of convex sets represented by their support functions, as shown in Eq. 5.

Reach[0,T](X0) ⊆
N−1⋃

i=0

(Ωi) (5)

6 R. Ray et al.

The convex sets Ωi are given by the following equations:

Ωi+1 = ΦδΩi ⊕ W (6)
Ω0 = CH(X0, ΦδX0 ⊕ V)

where ⊕, CH stands for minkowski sum and convex hull operation over sets
respectively, Φδ = eδA and W, V are convex sets given as follows:

V = δU ⊕ αB
W = δU ⊕ βB (7)

α, β are constants depending on X0, U , δ and the dynamics matrix A. B is a unit
ball in the considered norm.

The support function representation of Ωi can be seen as an abstraction
of its template polyhedra representations. A concretization can be obtained by
computing template polyhedra approximations of Ωi along a set of directions D.
Such concretization provides an efficient computation of intersection, plotting
and other efficient operations over polytopes but at the expense of an approxi-
mation error depending on the number of template directions and the choice of
directions.

The algorithm considers a set of bounding directions, say D, to sample the
support functions of Ωi and obtains a set of template polyhedra PolyD(Ωi)
whose union over-approximates the reachable set.The support function of Ωi is
computed with the following equation obtained using the properties of support
functions:

supΩi+1(�) = supΩi
(ΦT

δ �) + supW(�) (8)

supΩ0(�) = max
(
supX0(�), supX0(Φ

T
δ �) + supV(�)

)

Simplification of Eq. 6 yields the following relation:

supΩi
(�) = supΩ0

(
(ΦT

δ)i�
)

+
i−1∑

j=0

supW
(
(ΦT

δ)j�
)

(9)

3 Parallel State-Space Exploration

In this section, we present two approaches to parallelize the support-functions-
based reachability algorithms in Sects. 3.1 and 3.2.

3.1 Parallel Samplings over Template Directions

The LGG (Le Guernic Girard) scenario of the state of the art tool, SpaceEx [8]
computes reachable states using a support-functions algorithm with the provision

XSpeed: Accelerating Reachability Analysis on Multi-core Processors 7

of templates in box, octagonal and p uniform directions. A box polyhedron has
2n directions (xi = ±1, xk = 0, k �= i) whereas an octagonal polyhedron has
2n2 directions (xi = ±1, xj = ±1, xk = 0, k �= i, k �= j), giving a more precise
approximation. The support function algorithm scales well when the number of
template directions is linear in the dimension n of the system. When computing
finer approximations with directions quadratic in n, we trade-off precision for
scalability.

The support-functions-based algorithm is easy to parallelize by sampling the
template directions in parallel [12]. However, there are implementation chal-
lenges. In this work, we propose a multi-threaded implementation with a master
thread spawning worker threads for every direction in the template set D. The
pseudocode of master thread is shown in Algorithm 1. A global support function
matrix M having R rows and N columns is allocated to store the computed sup-
port functions by different worker threads, where R is the number of directions
in D and N = T/δ is the number of iterations. Each worker thread ti computes
the support function samples along a direction d(i) in parallel. The results by
thread ti are written to the row M [i] resulting in no write contention among the
threads. An entry M(i, j) stores the support function of Ωj in the ith direction
in D as shown in lines 2–3 in Algorithm2.

The master thread waits for all the worker threads to complete. After all the
worker threads have finished, we have a template polytope PolyD(Ωi) for every
convex set Ωi which is obtained from the support function as shown in lines 7–9
in Algorithm 1.

Algorithm 1. Pseudocode of Master Thread
1: procedure Reach-Parallel-Master(D,N)
2: for all �i ∈ D do � Master Thread
3: Spawn a thread ti to sample sup of Ω0 . . . ΩN−1 along �i

4: end for
5: Wait for all threads to finish.
6: Rapprox ← ∅
7: for i ← 0, N − 1 do
8: PD(Ωi) ← ∧|D|

j=1 d(j).x ≤ M(j, i)
9: Rapprox ← Rapprox

⋃
PD(Ωi)

10: end for � Reach[0, T] ⊆ Rapprox

11: end procedure

Algorithm 2. Pseudocode of Worker Thread
1: procedure Reach-Parallel-Worker(M ,N ,�,i) � Worker Thread � Each

thread gets an id i ∈ [1, R]
2: for j ← 0, N − 1 do
3: M [i][j] ← supΩj (�)
4: end for
5: end procedure

8 R. Ray et al.

Sampling with Thread Safe GLPK. It can be seen that when the initial
set X0 in a location dynamics in Eq. 4 is given as a polytope, the convex sets
Ωi in Eq. 6 are also polytopes. Sampling the support function of a polytope is a
linear programming problem. SpaceEx LGG scenario expects initial set X0 and
U to be polytopes and samples their support function using the GLPK (GNU
Linear Programming Kit) library [15], an open source and highly optimized linear
programming solver library. In our parallel implementation we also assume initial
and input sets to be polytopes and use GLPK package to solve their support
functions. However, note that the GLPK library is not thread safe This is due to
the fact that GLPK implementation uses thread shared data that suffers from
race condition in multithreaded executions. To overcome this, we identified the
thread shared data and made them thread local to ensure thread safety. The
thread safe GLPK objects are used per thread to compute the support functions
at different directions in parallel.

3.2 Parallel Exploration of Reachable States

In addition to the parallelization introduced in the previous section, we also pro-
pose another parallelization where threads compute reachable states in disjoint
intervals of the time horizon in parallel. To bring in parallelism, our key idea is
to compute the reachable states at distinct times in the time horizon and treat
them as initials states for independent reachability computations. The reachable
states from each of the initials states is then computed by an independent thread
in parallel. For load balancing, the time horizon T is sliced into equal intervals
of size Tp = T/N , N being the degree of parallelism. The limitation of this
approach is that the input set U is assumed to be a point set and the dynamics
matrix A is assumed to be invertible.

Proposition 3. Given a linear dynamics of the form ẋ = Ax(t)+u(t), u(t) ∈ U ,
if the input set U = v is a point set and the matrix A is invertible, the set of
states reachable at time ti = iTp is defined as:

S(ti) = eAiTp .X0 ⊕ A−1(eAiTp − I)(v) (10)

where I is the identity matrix.

Proof. Solving the differential equation ẋ = Ax(t) + u(t), u(t) ∈ U gives:

x(t) = etAx0 +
∫ t

0

e(t−y)Au(y)dy

= etAx0 +
∫ t

0

e(t−y)Avdy

= etAx0 + A−1(eAt − I)(v)

When x(0) ∈ X0, we apply minkowski sum to get:

X (t) = etAX0 ⊕ A−1(eAt − I)(v)

XSpeed: Accelerating Reachability Analysis on Multi-core Processors 9

Substituting t = iTp:

X (i(Tp)) = S(ti) = eA(iTp).X0 ⊕ A−1(eA(iTp) − I)(v) 	

Let Φ1 = eA(iTp) and Φ2 = A−1(eA(iTp) − I), the support function of the
S(ti) is given by:

supS(ti)(�) = supX0(Φ
T
1 �) + supv(ΦT

2 �) (11)

The reachable states in each time interval Ii = [iTp, (i + 1)Tp] starting from
states x ∈ S(ti) is defined as R(Si) and can be computed sequentially using
Eq. 6. Computation of R(Si) can also be in parallel over the template directions
as proposed in Sect. 3.1.

Proposition 4. An approximation of the reachable states in time horizon T can
be computed by the following relation:

Reach[0,T](X0) ⊆
N−1⋃

i=0

R(Si) (12)

Proof. R(Si) is computed using Eq. 6 with a discretization time step δ with Si

as the initial set. Since Si gives the exact set of states reachable at time instant
t = iTp, the correctness argument shown in [12] guarantees that Reach[Ii](X0) ⊆
R(Si). Therefore, we have:

Reach[0,T](X0) =
N−1⋃

i=0

Reach[Ii](X0) ⊆
N−1⋃

i=0

R(Si) 	

In Sect. 5 we show that computing the reachable states using Proposition 4
gives in some cases more precise results compared to the sequential algorithm
in [11,12]. This is because the approximation error in the computation of Ω0 in
Eq. 6 propagates in the sequential algorithm. In our algorithm, since we compute
exact reachable states at partition time points in the time horizon and recompute
Ωti

0 using them, the propagation of the error may diminish.

4 Sampling Support Functions in GPU

It can be observed from Eqs. 8 and 9 that the support function of Ωi can be
computed from the support function of X0, V and W. The support function of
V,W can be, in turn, computed from the support function of U and B. There-
fore, to compute the support functions of Ω0, . . . , ΩN−1 along a direction �, it
suffices to compute the support function of X0, U and B along the directions
�, ΦT

δ �, (ΦT
δ)2�, . . . , (ΦT

δ)N �. Unlike the support function algorithm in [12] which
computes the support functions iteratively using Eq. 8, we propose to compute
the support functions in a lazy fashion which involves delaying evaluation until

10 R. Ray et al.

Algorithm 3. Lazy evaluation of support functions
1: procedure Eval-Support(Ω[0 . . . N − 1], X0, U , �)
2: D[0] ← �; � Computing directional arguments
3: for i ← 1, N do
4: D[i] ← ΦT

δ · D[i − 1]
5: end for

� Computing support functions in parallel
6: Spawn thread Ti to evaluate ith loop iteration;
7: for i ← 0, N do
8: SupX0[i] ← Ti.evalSup(X0, D[i])
9: SupU [i] ← Ti.evalSup(U , D[i])

10: SupB[i] ← Ti.evalSup(B, D[i])
11: end for
12: Wait for all threads to finish.

� Computing support Functions of Ωi

13: sum ← 0
14: supΩ0(�) ← max

(
SupX0[0], SupX0[1] + δ · SupU [0] + α · SupB[0]

)

15: for i ← 1, N − 1 do
16: p ← max

(
SupX0[i], SupX0[i + 1] + δ · SupU [i] + α · SupB[i]

)

17: sum ← sum + δ · SupU [i − 1] + β · SupB[i − 1]
18: supΩi(�) ← p + sum
19: end for
20: end procedure

all the directional arguments are computed. The support functions are then
evaluated in parallel in lines 7–11, as shown in Algorithm3.

Observe that we need to run the same support function evaluation routine for
a convex set but on different directions in parallel. We build upon this observa-
tion and propose to compute the support functions in SIMT (Single Instruction
Multiple Threads) parallel architecture wherein multiple instances of a proce-
dure execute in parallel but on different data. The modern day GPU (Graphics
Processing Unit) architectures are SIMT in nature and we therefore propose to
offload the support function computations to the GPU. A brief introduction to
GPU architecture and CUDA programming model is given in Sect. 4.1.

4.1 CUDA Programming Model

We now briefly present the GPU hardware architecture and the programming
model used to implement our parallel algorithms. As illustrated in Fig. 1, the
GPU architecture consists of a scalable array of N multithreaded Streaming
Multiprocessors (SMs), made up of M Stream Processor (SP) cores. Each core
is equipped with a fully pipelined integer arithmetic logic unit (ALU) and a
floating point unit (FPU) that executes one integer or floating point instruction
per clock cycle. In our experiments we have used the NVIDIA GeForce GTX
670 having 7 SMs and 192 SPs for each SM, for a total of 1344 SPs.

XSpeed: Accelerating Reachability Analysis on Multi-core Processors 11

The NVIDIA vendor provides also a special Application Programming Inter-
face (API) called Compute Unified Device Architecture (CUDA) that facilitates
the developing of efficient applications tuned for NVIDIA GPUs. CUDA extends
the C and the FORTRAN languages with special keywords and language prim-
itives that are suitable to achieve a high-performance hardware-based multi-
threading. We have implemented our parallel algorithms using the C extension.

Shared Memory

Registers

Streaming
Multiprocessor

SPM-2 SPM-1

SP0 SP1

Global Memory

L1 & L2 Cache

SP Stream Processor (core)

Host Memory (RAM)

SM0 SMN-1

Shared Memory

Registers

Streaming
Multiprocessor

SPM-2 SPM-1

SP0 SP1

G
ra

ph
ic

 P
ro

ce
ss

in
g

U
ni

t

Fig. 1. GPU architecture

The CUDA programming model
consists in using thousands of light-
weight threads arranged into one- to
three-dimensional thread blocks. A
thread executes a function called the
kernel that contains the computations
to be run in parallel using a GPU
device. A CUDA program starts run-
ning in the Central Processing Unit
(CPU) referred as the host. When-
ever a kernel is launched from the host
code, the execution continues then in
the GPU. The max number of threads
running a kernel is fixed at the launch-
ing time (this limitation has some
exceptions in the modern GPU cards
supporting dynamic parallelism).

Each thread is assigned to a SP
and each thread block is processed by
a SM. The thread execution model in
CUDA is the Single Instruction Multi-
ple Threads (SIMT). SIMT differs from the classical Single Instruction Multiple
Data (SIMD) by the fact that the threads sharing the same instruction address
and running synchronously are organised within a thread block into groups of
32 threads called warps. In a warp, the divergence of the threads execution in
different branches due to if-then-else constructs, reduces considerably the level
of parallelism and indeed degrades the performance of the kernel execution.

Threads can access different types of memory and their judicious use is key
to performance. The most general is the off-chip global memory, to which all
threads can read and write. Also the host can read and write the global memory
and so this memory is usually used as a way of communication between the host
and the GPU device. The global memory has slow performances and it is very
important to access it in a coalesced way using a single memory transaction
of 32, 64, or 128 bytes. The two caches L1 and L2 shown in Fig. 1 mitigates
this bottleneck by storing copies of the data most frequently accessed in the
global memory. Significantly faster levels of memory are available within an SM,
including 32–64 KB of on-chip registers partitioned among all threads. As such,
using a large number of registers within a CUDA kernel will limit the number
of threads that can run concurrently. Finally, local memory is invoked when a

12 R. Ray et al.

thread runs out of available registers. In addition, each SM has a shared memory
region (16–48 KB). This level of memory, which can be accessed nearly as quickly
as the registers, facilitates communication between threads and can be used as
a programmer-controllable memory cache.

Threads located in the same thread block can cooperate in several ways. They
can insert a synchronization point into the kernel, which requires all threads
in the block to reach that point before execution can continue. They can also
share data during execution. In contrast, threads located in different thread
blocks cannot synchronize each other and they essentially operate independently.
Although a small number of threads or blocks can be used to execute a kernel,
this arrangement would not fully exploit the computing potential of the GPU.

4.2 Computing Support Functions of Polytopes in GPU

As discussed in Sect. 2, when X0 and U are polytopes, their support function eval-
uation is equivalent to solving a linear program (LP). The Simplex algorithm
[4,5] is a well known and efficient procedure to solve LPs in practice. There is
previous work on implementing the simplex algorithm on CUDA executing in
a CPU-GPU heterogeneous system. An efficient implementation of the revised
simplex method over a CPU-GPU system is shown in [21]. A multi-GPU imple-
mentation of the simplex procedure is reported in [14]. However, the reported
results shows speed-up compared to sequential CPU implementation only when
the size of LP is at least 500 × 500 (500 variables, 500 constraints). The reason
why performance is poor for small size LPs is the CPU-GPU memory transfer
latency to copy the simplex tableau and therefore the time gain due to par-
allelization is predominant over the CPU-GPU memory transfer latency only
for large instances of LP. Since the benchmarks we know are of dimension much
smaller than 500, we did not go for a simplex-algorithm implementation in GPU.

4.3 Computing Support Functions of Hyperbox in GPU

When the initial set X0 and input set U are given as hyperboxes, which are
special cases of polytopes, their support function can be computed using Propo-
sition 2 instead of solving an LP with simplex algorithm. This also avoids expen-
sive memory transfer of simplex tableau, a data structure used in the simplex
algorithm, from CPU to GPU. Building on this observation, we implemented
a CUDA procedure to compute the support function of a hyperbox. There are
challenges to have speed-up derived from GPU due to issues like warp diver-
gence, memory transfer latency and GPU occupancy. We map a CUDA block
to compute support function along a sampling direction. Since CUDA blocks
are scheduled to SMs, this ensures that all the GPU SMs are utilized when the
number of sampling directions are more than the SMs in the GPU. Our block
is one dimensional containing only 32 threads (warp size) since instructions in
GPU are scheduled per warp which is a collection of 32 threads. The number of
threads per block is kept to 1 warp-size since the task of computing the support

XSpeed: Accelerating Reachability Analysis on Multi-core Processors 13

function of a Hyperbox is lightweight. The maximum number of support func-
tion evaluation tasks that can be performed in parallel is limited by the number
of directions that can be transferred to the GPU global memory. We attempt
maximum parallelism by offloading tasks in batches of maximum possible size.
The pseudocode of the GPU offloading routine is shown in Algorithm4.

Algorithm 4. Offloading of Tasks in Batches to GPU
1: procedure GPU-Offload(H, D, numDirections, Res)
2: gpuMemsize ← getGlobalMemsize();
3: sizePerDirection ← D[0].memsize();
4: memsize ← numDirections ∗ sizePerDirection
5: if memsize > gpuMemsize then
6: totalBatches ← ceil(memsize/gpuMemsize);
7: batchSize ← floor(gpuMemsize/sizePerDirection);
8: D′ ← malloc(sizePerDirection ∗ batchSize ∗ sizeof(double));
9: cur ← 0;

10: while cur ≤ totalBatches do
11: D′ ← copy D from batchSize ∗ cur to batchSize ∗ (cur + 1) − 1;
12: gpuKernel <<< batchSize, 32 >>> (H, D′, Res);
13: cur ← cur + 1;
14: end while
15: else
16: batchSize ← numDirections;
17: gpuKernel <<< batchSize, 32 >>> (H, D, Res);
18: end if
19: end procedure

5 Experiments

The parallel algorithms are implemented as part of the tool XSpeed including
the CUDA implementation. To measure the performance of our parallel algo-
rithms, we experiment on two benchmarks and compare our performance with
the SpaceEx’s (LGG) scenario [8] and with an optimized implementation of the
support function algorithm in [12].

5.1 Five Dimensional System

We consider a five dimensional linear continuous system as a benchmark from
[10]. Since we require the inputs set U to be a point set for our parallel state-space
exploration algorithm, we consider U = (0.01,0.01,0.01,0.01,0.01). We consider
the initial set X0 as a hyperbox with sides 0.02 centered at (1,0,0,0,0). For the
matrix A, the reader may refer to [10].

Figure 2 illustrates the parallel exploration with slicing the time horizon. The
figure shows that a time horizon of 5 units is sliced into five intervals each of size
1 unit. Five threads compute the reachable sets in parallel starting from initial
sets S(t = 0), S(t = 1), S(t = 2), S(t = 3) and S(t = 4).

14 R. Ray et al.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

x2

(a) Reachable states com-
puted by individual threads
in 0.5 time unit

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

x2

(b) Reachable states com-
puted by individual threads
in 0.75 time unit

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

x2

(c) Reachable states com-
puted by individual threads
in 1 time unit

Fig. 2. Illustrating parallel state-space exploration in sliced time horizon

5.2 Helicopter Controller

To measure the performance on a high dimensional system, we consider the
benchmark of helicopter controller from [8,20]. This benchmark models the con-
troller of a Westland Lynx military helicopter with 8 continuous variables. The
controller is a 20 variables LTI system and the control system has 28 variables
in total. We consider the initial set X0 to be a hyperbox and the input set U to
be the origin {0}.

Table 1 shows the performance speed-up in computing reachable states with
our parallel direction samplings compared to the sequential support-function
algorithm in a 4 core and 6 core machine with hyper-threading, namely Intel Core
i7-4770, 3.40 GHz, 8 GB RAM and Intel Xeon CPU E5-2420, 1.2 Ghz, 46.847 GB
RAM respectively. The results are an average of 10 runs for a time horizon of
5 units and a time step of 1.7e − 3 units. A speed-up of almost 7× is observed
for the Helicopter model. The gain in CPU utilization shows how our parallel
implementation exploits the power of multicore processors effectively.

Figure 3 shows the speed-up obtained with the parallel state-space explo-
ration with octagonal directions and time step of 0.0048 on Intel Core i7-4770, 4
core, 8 threads, 3.40 GHz, 8 GB RAM processor. The results from the SpaceEx
tool are obtained by running the executable available at http://spaceex.imag.
fr/ on the same machine, with same parameters. We show that selecting the
right partition size is important to obtain optimal speed-up. Partitioning beyond
a limit though give us high precision but degrades the performance as the
threading overhead outruns the performance gain due to parallelism. The thresh-
old depends on the number of cores in the underlying multi-core architecture.
Figure 4 shows the gain in precision with box directions and time step of 0.01
and 0.0048 respectively for the five dimensional and the Helicopter benchmark.
The gain in precision is because the time sliced algorithm computes exact reach-
able states at time points in the time horizon and diminishes the propagation
of approximation error resulting from the computation of Ω0 in the support-
function algorithm.

Table 2 shows the performance speed-up of reachability analysis when sup-
port functions are sampled in parallel in GPU (Algorithms 3 and 4) compared to

http://spaceex.imag.fr/
http://spaceex.imag.fr/

XSpeed: Accelerating Reachability Analysis on Multi-core Processors 15

Fig. 3. Illustrating speed-up using parallel state-space exploration in time slices over
sequential algorithm and the SpaceEx LGG scenario.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x1

x2

(a) Reachable states of the five dimen-
sional model (Red-parallel exploration,
Brown-support function algorithm)

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x1

x8

(b) Reachable states of the Helicopter
model (Red-parallel exploration, Brown-
support function algorithm)

Fig. 4. Illustrating gain in precision with parallel state-space exploration over sequen-
tial algorithm.

sequential support function algorithm using GLPK and SpaceEx LGG scenario.
The iters in the table refers to the discretization factor of the time horizon. The
experiments are performed in Intel Q9950, 2.84 Ghz, 4 Core, no hyper-threading,
8 GB RAM with GeForce GTX 670 GPU card. We observe a speed-up of 9× to
12× over sequential implementation. A maximum speed-up of 53× is observed
for the five dimensional and 38× for the Helicopter model respectively com-
pared to SpaceEx on different parameters to the support-function algorithm.

16 R. Ray et al.

Table 1. Speed-up and utilization gain with parallel support function samplings

Model Dirs 4 core (8 threads) 6 core (12 threads)

Time (in secs) CPU util

gain (%)

Speed-up Time (in secs) CPU util

gain (%)

Speed-up

Seq Par Seq Par

5 Dim-model Box 0.203 0.087 47.22 2.33 0.336 0.101 71.88 3.32

Oct 0.937 0.337 68.75 2.78 1.532 0.401 74.46 3.82

500 9.045 3.095 76.65 2.92 14.037 3.243 81.15 4.33

Helicopter

controller

(28 dim)

Box 2.418 0.571 71.05 4.23 3.36 0.608 79.96 5.52

Oct 67.125 14.779 77.5 4.54 93.837 13.669 86.77 6.87

3000 130.01 28.148 77.9 4.62 178.913 26.015 87.77 6.88

Table 2. Performance speed-up with samplings in GPU

Model Dirs Iters Time (in secs) Speed-up

Seq SpaceEx Par (GPU) vs. Seq vs. SpaceEx

Five dim. model Box 1000 0.133 0.345 0.018 7.27 18.82

Box 2000 0.287 0.686 0.028 10.01 23.93

Oct 1000 0.717 1.399 0.06 11.87 23.15

Oct 2000 1.462 2.8 0.119 12.30 23.55

500 1000 6.695 24.171 0.576 11.62 41.96

500 2000 13.329 39.58 1.114 11.96 35.52

1000 1000 13.128 59.996 1.121 11.71 53.52

1000 2000 26.022 94.204 2.219 11.72 42.44

Helicopter con-
troller (28 dim.)

Box 1000 1.4 4.399 0.172 8.14 25.56

Box 1500 2.077 7.263 0.249 8.33 29.11

Box 2000 2.769 8.685 0.327 8.45 26.50

Box 2500 3.444 11.014 0.405 8.50 27.18

Oct 1000 39.089 123.794 4.246 9.21 29.15

Oct 1500 57.632 248.769 6.321 9.12 39.35

2000 1000 50.367 187.825 5.396 9.33 34.80

3000 1000 75.086 311.652 8.054 9.32 38.69

3000 2000 149.313 608.214 16.092 9.28 37.80

Observe that the performance of our algorithms improves with the increase in
the number of cores in the machine and signifies that performance of XSpeed
can scale automatically with future multicore machines and GPUs with higher
degree of parallelism.

6 Conclusion

We presented a parallel implementation of the support-function algorithm and
a time-sliced parallel state-space exploration algorithm. A lazy strategy of eval-

XSpeed: Accelerating Reachability Analysis on Multi-core Processors 17

uating support functions to bring in parallelism is illustrated and implemented
in CUDA to offload the computation task in GPU. We show that the perfor-
mance of reachability algorithms for linear dynamical systems can be consider-
ably improved using the modern multi-core processors. The use of GP-GPU has
shown a promising performance gain in many scientific applications and we show
that they can also substantially improve the performance of reachability analy-
sis. The parallel algorithms and the GP-GPU task offloading are implemented
in the tool XSpeed.

Acknowledgements. This work was supported in part by the European Research
Council (ERC) under grant 267989 (QUAREM) and by the Austrian Science Fund
(FWF) under grants S11402-N23, S11405-N23 and S11412-N23 (RiSE/SHiNE) and
Z211-N23 (Wittgenstein Award).

References

1. Althoff, M., Krogh, B.H.: Zonotope bundles for the efficient computation of reach-
able sets. In: Proceedings of the 50th IEEE Conference on Decision and Con-
trol and European Control Conference, CDC-ECC 2011, Orlando, FL, USA, 12–
15 December 2011, pp. 6814–6821. IEEE (2011). http://dx.doi.org/10.1109/CDC.
2011.6160872

2. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using
conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 20–35. Springer, Heidelberg (2003)

3. Bartocci, E., DeFrancisco, R., Smolka, S.A.: Towards a gpgpu-parallel SPIN model
checker. In: Rungta and Tkachuk [19], pp. 87–96. http://doi.acm.org/10.1145/
2632362.2632379

4. Dantzig, G.B., Thapa, M.N.: Linear Programming 1: Introduction. Springer, New
York (1997)

5. Dantzig, G.B., Thapa, M.N.: Linear Programming 2: Theory and Extensions.
Springer, New York (2003)

6. Filippidis, I., Holzmann, G.J.: An improvement of the piggyback algorithm for
parallel model checking. In: Rungta and Tkachuk [19], pp. 48–57. http://doi.acm.
org/10.1145/2632362.2632375

7. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int.
J. Softw. Tools Technol. Transf. (STTT) 10(3), 263–279 (2008)

8. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

9. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari
and Thiele [16], pp. 291–305. http://dx.doi.org/10.1007/978-3-540-31954-2 19

10. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari
and Thiele [16], pp. 291–305

11. Girard, A., Le Guernic, C.: Efficient reachability analysis for linear systems using
support functions. In: Proceedings of IFAC World Congress (2008)

12. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009)

http://dx.doi.org/10.1109/CDC.2011.6160872
http://dx.doi.org/10.1109/CDC.2011.6160872
http://doi.acm.org/10.1145/2632362.2632379
http://doi.acm.org/10.1145/2632362.2632379
http://doi.acm.org/10.1145/2632362.2632375
http://doi.acm.org/10.1145/2632362.2632375
http://dx.doi.org/10.1007/978-3-540-31954-2_19

18 R. Ray et al.

13. Holzmann, G.J.: Parallelizing the spin model checker. In: Donaldson, A., Parker,
D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 155–171. Springer, Heidelberg (2012)

14. Lalami, M.E., Baz, D.E., Boyer, V.: Multi GPU implementation of the simplex
algorithm. In: Thulasiraman, P., Yang, L.T., Pan, Q., Liu, X., Chen, Y., Huang, Y.,
Chang, L., Hung, C., Lee, C., Shi, J.Y., Zhang, Y. (eds.) 13th IEEE International
Conference on High Performance Computing and Communication, HPCC 2011,
Banff, Alberta, Canada, 2–4 September 2011, pp. 179–186. IEEE (2011). http://
dx.doi.org/10.1109/HPCC.2011.32

15. Makhorin, A.: GNU Linear Programming Kit, v.4.37 (2009). http://www.gnu.org/
software/glpk

16. Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for general stochastic
hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp.
198–214. Springer, Heidelberg (2005)

17. Ray, R., Gurung, A.: Poster: parallel state space exploration of linear systems
with inputs using xspeed. In: Girard, A., Sankaranarayanan, S. (eds.) Proceedings
of the 18th International Conference on Hybrid Systems: Computation and Con-
trol, HSCC 2015, Seattle, WA, USA, 14–16 April 2015, pp. 285–286. ACM (2015).
http://doi.acm.org/10.1145/2728606.2728644

18. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, New York
(1998)

19. Rungta, N., Tkachuk, O. (eds.): 2014 International Symposium on Model Checking
of Software, SPIN 2014, Proceedings, San Jose, CA, USA, 21–23 July 2014. ACM
(2014). http://dl.acm.org/citation.cfm?id=2632362

20. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and
Design. Wiley, New York (2005)

21. Spampinato, D.G., Elster, A.C.: Linear optimization on modern GPUS. In: 23rd
IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2009, Rome, Italy, 23–29 May 2009, pp. 1–8. IEEE (2009). http://dx.doi.org/10.
1109/IPDPS.2009.5161106

22. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable
sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol.
2623, pp. 482–497. Springer, Heidelberg (2003)

http://dx.doi.org/10.1109/HPCC.2011.32
http://dx.doi.org/10.1109/HPCC.2011.32
http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk
http://doi.acm.org/10.1145/2728606.2728644
http://dl.acm.org/citation.cfm?id=2632362
http://dx.doi.org/10.1109/IPDPS.2009.5161106
http://dx.doi.org/10.1109/IPDPS.2009.5161106

Abstraction-Based Parameter Synthesis
for Multiaffine Systems

Sergiy Bogomolov1(B), Christian Schilling2, Ezio Bartocci3,
Gregory Batt4, Hui Kong1, and Radu Grosu3

1 IST Austria, Klosterneuburg, Austria
sergiy.bogomolov@ist.ac.at

2 University of Freiburg, Freiburg im Breisgau, Germany
3 Vienna University of Technology, Vienna, Austria

4 INRIA Paris-Rocquencourt, Paris, France

Abstract. Multiaffine hybrid automata (MHA) represent a powerful
formalism to model complex dynamical systems. This formalism is par-
ticularly suited for the representation of biological systems which often
exhibit highly non-linear behavior. In this paper, we consider the prob-
lem of parameter identification for MHA. We present an abstraction of
MHA based on linear hybrid automata, which can be analyzed by the
SpaceEx model checker. This abstraction enables a precise handling of
time-dependent properties. We demonstrate the potential of our app-
roach on a model of a genetic regulatory network and a myocyte model.

1 Introduction

Hybrid automata can model systems from a wide range of real-world domains.
Due to its behavioral complexity, the biological domain can particularly bene-
fit from the expressiveness of hybrid automata [4]. However, biological models
mostly have highly non-linear dynamics.

Parameter identification is the problem where we want to find a parame-
ter set for which a given property is satisfied by the system. In the biological
domain, this problem is of large importance considering the current limitations
on experimental measurement techniques [17].

In this paper, we present a novel approach to solve the parameter identifi-
cation problem for the class of multiaffine hybrid automata (MHA). We reduce
the parameter identification problem to solving multiple verification problems.
In short, the algorithm consists of the following steps: We partition the parame-
ter space into a number of equivalence classes. Given an equivalence class, we
show how the system behavior can be approximated with a linear hybrid automa-
ton (LHA), which can be analyzed by the hybrid model checker SpaceEx [11].
In addition, we utilize a hierarchical search to start the analysis with coarser
regions and iteratively refine the partition based on the model structure. We
are also able to prune the search when we detect that our analysis will not find
any parameters in a subregion. We have implemented our approach and show
its potential on a genetic regulatory network and a myocyte model.
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 19–35, 2015.
DOI: 10.1007/978-3-319-26287-1 2

20 S. Bogomolov et al.

Outline. The rest of the paper is organized as follows. In Sect. 2, we introduce
some preliminary notions. Then we present our new approach, first the construc-
tion of the relevant parts in Sect. 3, followed by the hierarchical search procedure
in Sect. 4. In Sect. 5, we evaluate the approach on two biological models. We dis-
cuss related work in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

In this section, we introduce the notions used in the rest of the paper.

Multiaffine function. A multiaffine function f : Rn → R
q(n, q ∈ N) is a polyno-

mial in the variables x1, . . . , xn with the property that the degree of f in any of
the variables is less than or equal to 1 [15]. Formally, f has the following form:

f(x1, . . . , xn) =
∑

i1,...,in∈{0,1}
ci1,...,inxi1

1 · · · xin
n ,

with ci1,...,in ∈ R
q for all i1, . . . , in ∈ {0, 1} and the convention that x0

k = 1.

Hybrid automaton. A hybrid automaton (HA) [1] is a mathematical model with
both continuous and discrete behavior. It is represented by the tuple H =
(Loc,Var , Inv ,Flow ,Trans, Init). Loc is a set of discrete locations. Var is a set
of real-valued variables x1, . . . , xn. Each � ∈ Loc is associated with a set of dif-
ferential equations (or inclusions) Flow(�) that defines the time-driven evolution
of the continuous variables. A state s ∈ Loc ×R

n consists of a location and val-
ues of the continuous variables x1, . . . , xn. The set of discrete transitions Trans
defines how the state can jump between locations when inside the transition’s
guard set. The system can remain in a location � while the state is inside the
invariant set Inv(�). All behavior originates from the set of initial states Init . A
trajectory is a function which defines the state of the HA for every time moment.
In the verification setting, we are interested in whether there exists a trajectory
from the set Init to a set Bad which defines the bad states to be avoided.

Let x(t) ∈ R
n denote the values of the continuous variables at time t. We

consider continuous dynamics Flow of the following two forms. If ẋ(t) = f(x, t)
where f(x, t) is a multiaffine function, then the HA is called a multiaffine hybrid
automaton (MHA). If ẋ(t) ∈ P where P is a polytope, then the HA is called a
linear hybrid automaton (LHA). We always consider convex polytopes and omit
the dependence of f on t in what follows.

Genetic regulatory network. A genetic regulatory network [5] is defined by the
dynamics of the following form:

ẋi = fi(x, p) =
∑

j∈Pi

κij rP
ij(x) −

∑

j∈Di

γij rD
ij (x)xi, i = 1, . . . , n (1)

Here xi is the i-th component of the state vector x ∈ X ⊂ R
n. Pi and Di

are sets of indices. κij and γij are production and degradation rate parameters,
respectively. We assume that some parameters are uncertain, i.e., are defined on

Abstraction-Based Parameter Synthesis for Multiaffine Systems 21

proper intervals. We denote the number of uncertain parameters by m. Therefore,
the system is parametrized by the vector p = (p1, ..., pm) ∈ D, where D is the
hyper-rectangular domain of uncertain parameters.

The terms rij are continuous piecewise-multiaffine functions arising from
products of ramp functions r+ and r− of the form shown in Fig. 1(a). Each rij

captures the combined impact of several regulatory proteins in the sets Pi and
Di, respectively, on the control of the production or degradation of protein i.
Assuming protein i does not regulate its own degradation, i.e., xi does not occur
in rD

ij (x) for j ∈Di, function f = (f1, . . . , fn) is multiaffine in x and affine in p.

r−(xi, θi, θi)
+(xi, θi, θi)

θi xi0 θi

1

θi xi0 θi

1

(a)
ba

A
B

(b)

Fig. 1. (a) Ramp functions r+ and r−. (b) The two-genes network model.

We note that the ramp functions induce a partition of the state space X into
a grid of hyper-rectangular regions H. The values of the separating hyperplanes
are called thresholds θ. Let θ̄i be the number of thresholds in dimension i.

Definition 1. Let H :=
{
Hc | c = (c1, . . . , cn), ci ∈ {1, . . . , θ̄i − 1}, i = 1, . . . , n

}

be the set of hyper-rectangles Hc with coordinates c in the grid. Furthermore, let
coord :H → ∏n

i=1{1, . . . , θ̄i − 1} map hyper-rectangle Hc to its coordinate c.

Problem statement. A property ϕ specifies the desired system behavior. In this
paper, we consider properties of the form RInit → ¬♦RBad where the region
RInit denotes the initial system states and the region RBad denotes the states
to be avoided. Note that ϕ belongs to the class of safety properties. Our goal is
to identify a subset of the parameter domain D which ensures that the property
ϕ holds for a given MHA, i.e., RBad is avoided when starting in RInit .

Note that an MHA provides a semantically equivalent representation of the
dynamics (1). We consider an abstraction of a parametric MHA M(p) to an
infinite transition system.

Definition 2. Let Hx be the hyper-rectangle strictly containing x. Given a para-
meter p and an MHA M(p), the embedding transition system TM (p) is defined
as follows. The states X are the same as the continuous states of M(p). There is
a transition x → x′ iff: (1) Hx and Hx′ are either equal or adjacent. (2) There
is a solution ξ of (1) and time points t0 < t1 such that ξ(t0) = x, ξ(t1) = x′ and
for all t in [t0, t1], ξ(t) stays within Hx or Hx′ .

22 S. Bogomolov et al.

Almost all trajectories in M(p) are represented in TM (p). The exception are
trajectories not passing through a common facet of two hyper-rectangles. In
what follows, we consider the representation of the system TM (p).

Example (two-genes network). In the following, we illustrate our approach on
the two-genes network [6] (also called toggle switch or cross-inhibition network).

ẋa = κa · r−(xa, θ4a, θ5a) · r−(xb, θ
2
b , θ3b) − γaxa κa ∈ [0, 30], γa = 1

ẋb = κb · r−(xa, θ2a, θ3a) − γbxb κb ∈ [0, 40], γb = 2

(θ1a, θ2a, θ3a, θ4a, θ5a, θ6a) = (0, 8, 12, 18, 22, 30) (θ1b , θ2b , θ3b , θ4b) = (0, 8, 12, 20)

Here xa and xb define the concentrations of the proteins A and B, respectively.
The uncertain parameters κa and κb define the range of their production rates in
the given intervals. As Fig. 1(b) shows, protein A inhibits the production of both
proteins A and B, while protein B only inhibits the production of protein A. We
are interested in checking whether the protein concentrations cannot reach some
specific threshold values when starting in a given initial region.

In addition, we consider an extended version of the dynamics (1) which fea-
tures a stimulus. The stimulus is a time-dependent function which models an
external influence on the system.

Example (two-genes network with stimulus). We extend the previous example
with the first equation now featuring some stimulus u:

ẋa = κa · r−(xa, θ4a, θ5a) · (1 − r+(xb, θ
2
b , θ3b) · (1 − u)) − xa

u̇ = r−(t, t2, t3) (t1, t2, t3, t4) = (0, 0.29, 0.3, 1)

We use a stimulus which is 1 at the beginning up until 0.29 ms and then
drops linearly to 0 within 0.01 ms, expressed by the ramp function of time
r−(t, 0.29, 0.3). This stimulus regulates the production of the protein A together
with the protein B. The term (1 − r+(xb, θ

1
b , θ2b) · (1 − u)) encodes the logical

formula ¬(xb∧¬u), which is equivalent to ¬xb∨u. Thus, this term contributes to
the production of the protein A whenever the protein B is absent or the stimulus
is present. Since the stimulus is time-dependent and decreasing, this means that
the inhibitory effect of the protein B is only relevant for the production of the
protein A after 0.29 ms.

3 Abstraction of MHA

In this section, we first introduce an LHA LM (p) which overapproximates the
behavior of the transition system TM (p) for a particular parameter value p ∈ D.
In order to provide efficient exploration of the parameter state space, we then
lift this definition to parameter sets. We use the two-genes model as a running
example throughout this section.

Abstraction-Based Parameter Synthesis for Multiaffine Systems 23

3.1 Pointwise LHA Abstraction

State space and invariants. We use the same continuous variables for LM (p)
as in the MHA M(p). Thresholds θ partition the continuous state space into a
grid of hyper-rectangular regions, which naturally induces a discrete structure of
the LHA and location invariants. In particular, we map every hyper-rectangular
region to a location in the LHA and use the bounds on the regions as invariants.

xb

xa

H1 H2

H3 H4

H1 H2

H3 H4

θ1
a θ2

a θ3
a

θ1
b

θ2
b

θ3
b

(a)

xb

xa

κb

κa

H

P

κ1
a κ2

a

κ1
b

κ2
b

θ1
a θ2

a

θ1
b

θ2
b

d1 d2

d3d4

(b)

xb

xa

Q(d1) Q(d2)

Q(d4) Q(d3)

Q∀(P)

Q∃(P)

κ
1
a
− θ

2
a

κ
2
a
− θ

2
a

κ
1
a
− θ

1
a

κ
2
a
− θ

1
a

κ1
b − 2θ2

b

κ2
b − 2θ2

b

κ1
b − 2θ1

b

κ2
b − 2θ1

b

(c)

Fig. 2. (a) From state space partition to transition system. Example for κa = 10 and
κb = 15 (arrows normalized). (b–c) Flow computation for P = [8, 12] × [15, 20] (Color
figure online).

Example. In the two-genes example we get a 2D-partition by the planes at xa =
θi

a and xb = θj
b . Parts of the state space and the associated locations are shown

in Fig. 2(a). The invariant of location H3 is θ1a ≤ x1 ≤ θ2a ∧ θ2b ≤ x2 ≤ θ3b .

Discrete transitions. We use the quotient of TM (p) with respect to the state
space partition to define the discrete transitions.

Definition 3. Let H� and H�′ be the regions associated with the location � and
�′, respectively. LM (p) has a transition from location � to �′ if

– � and �′ are adjacent,
– there is a solution ξ of (1) and time points t0 < t1 < t2 such that

ξ(t) ∈ Inv(�) for all t in [t0, t1], and ξ(t) ∈ Inv(�′) for all t in [t1, t2].

We do not add any guards on the transitions as the chosen invariants already
ensure that a transition between two locations can only be taken on the common
facet of two adjacent regions H� and H�′ .

In order to effectively construct the transitions, we use the facts that the
dynamics f(x, p) are multiaffine in x and we consider only hyper-rectangular
regions for the locations in LM (p). In the following, let hull denote the convex
hull operator.

24 S. Bogomolov et al.

Theorem 1. [7] Let f : Rn → R
n be a multiaffine function and H ⊂ R

n be a
hyper-rectangle with corner set CH . Then

f(H)⊆ hull({f(v) | v ∈ CH}).

Intuitively, this theorem says that the behavior of f inside a hyper-rectangle
H is completely determined by the behavior of f in the corners of H. As a
consequence, the following proposition along the lines of a similar proposition
for Kripke structures [5] can be proven.

Proposition 1. LM (p) has a transition from location � to �′ associated with
hyper-rectangles H� and H�′ only if the projection of f(x, p) on the H� → H�′

direction is positive in at least one corner of the facet separating H� from H�′ .

Direction and strength of the derivative ẋi = fi(x, p) in a corner v of a hyper-
rectangle depends linearly on parameter vector p. As a consequence, fi(v, p) = 0
is the hyperplane separating parameter values p where ẋi is positive from the ones
where ẋi is negative. Thus, Proposition 1 allows us to construct the transitions of
LM (p) based on the sign of the function f at the vertices of the hyper-rectangles.

Example. The transitions for the excerpt shown in Fig. 2(a) are determined by
the direction of the derivatives in the corners (shown in blue). For instance, we
add a transition from H1 to H2 because there is a corner, e.g., (θ2a, θ1b), which
point to this direction, but there is no transition from H2 to H1.

Continuous flows. For computing the flows of the LHA we again use the multi-
affine dependence of f(x, p) on x and the affine dependence on p.

For a fixed hyper-rectangle H with corner set CH and a fixed parameter
vector p, by Theorem 1 we know that f(x, p) is included in the convex hull of
the hyper-rectangle corners v ∈ CH . Therefore, we can bound the flow of LM (p)
by a polytope, i.e., the dynamics can be represented in the form of differential
inclusion.

Definition 4. The flow of LM (p) is defined as Q(p) := hull({f(v, p) | v ∈ CH}).

3.2 Set-Based LHA Abstraction

In order to handle infinite sets of parameters, we lift the pointwise definition of
LM (p) to sets of parameters. In particular, given a parameter polytope P , we
introduce an LHA L∃

M (P) which overapproximates the behavior of LM (p) for
all p ∈ P . Therefore, if L∃

M (P) satisfies a property ϕ, we can conclude that P
is a valid parameter set. Otherwise, we partition the parameter set P into two
subsets P1 and P2 and proceed with their analysis. In order to prune the parts
of the parameter space where our analysis will not provide any valid parameters,
we introduce a further LHA called L∀

M (P) which underapproximates the LHA
LM (p) for the parameter class P . In the following, we assume a parameter p ∈ P .

State space and invariants. We use the same state space and invariants for both
L∃

M (P) and L∀
M (P) as defined for LM (p).

Abstraction-Based Parameter Synthesis for Multiaffine Systems 25

Discrete transitions. The theorem below provides an effective way to compute
the image of f(v, p) for a particular state space corner v and a parameter vector
p ∈ P .

Theorem 2. [14] Let f : Rm → R
m be an affine function and P ⊂ R

m be a
convex polytope with corner set CP . Then

f(P)= hull({f(d) | d ∈ CP }).

Now, L∃
M (P) has a transition from location � to �′ if there is a transition

from � to �′ in LM (p) for some p ∈ P . Analogously, L∀
M (P) has a transition

from location � to �′ if there is a transition from � to �′ in LM (p) for all p ∈ P .

Definition 5. Let c := coord(H) and c′ := coord(H ′) be the coordinates of two
adjacent hyper-rectangles. Furthermore, let V := CH ∩ CH′ be the corners on
the separating facet and let � and �′ be the locations associated to H and H ′,
respectively.

We define g(�, �′) :=
⋃

v∈V {p ∈ P | fi(v, p) · (c′
i − ci) > 0}, where i ∈

{1, . . . , n} such that c′
i − ci
= 0. A transition � → �′ belongs to the LHA

– L∃
M (P) if g(�, �′)
= ∅, and to

– L∀
M (P) if g(�, �′) = P .

Note that Theorem 2 allows us to construct the parameter set satisfying the
constraint fi(v, p) · (c′

i − ci) > 0 by only considering the vertices of P . The term
c′
i − ci = ±1 is used to express the direction of the transition. The construction

uses the union operation and test for equality and emptiness for polytopes.

Continuous flows. For L∃
M (P) to be an overapproximation of all LM (p) and

L∀
M (P) to be an underapproximation, the tightest definition we can find is the

union and intersection of all Q(p), respectively. Let Q∗
∃(P) :=

⋃
p∈P Q(p) and

Q∗
∀(P) :=

⋂
p∈P Q(p). Computing Q∗

∃(P) and Q∗
∀(P) is, however, infeasible.

Therefore, similarly to the transition construction, we propose an approximation
which relies on the values of the derivatives in the corners of state space partitions
H and parameter sets P .

Theorem 3. Let f(x, p) : R
n × R

m → R
n with x ∈ R

n and p ∈ R
m be a

multiaffine function which is affine in p, H ⊂ R
n be a hyper-rectangle with a

corner set CH and P ⊂ R
m be a convex polytope with a corner set CP . Then the

following holds:

–
⋃

p∈P Q(p) ⊆ hull
(⋃

d∈CP
Q(d)

)
,

–
⋂

p∈P Q(p) ⊆ ⋂
d∈CP

Q(d).

Note that the left-hand sides are Q∗
∃(P) and Q∗

∀(P), respectively. Based on
this theorem, we define the flows in the following way.

Definition 6. The flow of L∃
M (P) is defined as Q∃(P) := hull

(⋃
d∈CP

Q(d)
)
.

The flow of L∀
M (P) is defined as Q∀(P) :=

⋂
d∈CP

Q(d).

26 S. Bogomolov et al.

We obtain an algorithm for computing Q∃(P) and Q∀(P) by first traversing
all vertices v ∈ CH and d ∈ CP and collecting f(v, d) in order to compute the
polytope Q(d). In the end, we take the finite union and intersection of those
polytopes. Note that similar to LM (p) we end up with LHA whose dynamics are
defined by differential inclusions.

The following proposition relates the flow representations we have introduced.

Proposition 2. The sets Q(p), Q∗
∃(P), Q∗

∀(P), Q∃(P) and Q∀(P) are related
as follows.

– Q∗
∀(P) ⊆ Q∀(P).

– Q∗
∀(P) ⊆ Q(p) ⊆ Q∗

∃(P) ⊆ Q∃(P) for all p ∈ P .

Thus, Q∃(P) is indeed an overapproximation of LM (p) as required. However,
while Q∗

∀(P) is an underapproximation of LM (p), Q∀(P) is not necessarily an
underapproximation of LM (p) for p ∈ P . We discuss this issue in the next section.

We define the automaton L∃∗
M (P) by replacing Q∃(P) with Q∗

∃(P) in the
continuous flow of the automaton L∃

M (P). We derive L∀∗
M (P) from L∀

M (P) in the
analogous way, i.e., by replacing Q∀(P) with Q∗

∀(P).

Example. Consider the state space rectangle H and the parameter space rectangle
P in Fig. 2(b). Recall that the state equation ẋ = f(x, p) is given as

ẋa = fa(x, p)= κa − xa ẋb = fb(x, p)= κb − 2xb.

Hence the dynamics f(v, d), for v and d in the corner sets CH and CP of H
and P , respectively, are of the form (κi

a − θj
a, κk

b − 2θ�
b).

Let the corners of the parameter space rectangle P be denoted in anti-
clockwise order as d1, d2, d3 and d4. Now construct the state space rectangles
Q(d1), Q(d2), Q(d3) and Q(d4). The intersection of all these rectangles results in
the rectangle Q∀(P), while the union is the rectangle Q∃(P). Since it is already
convex, hull is the identity operation in this case. The results are visualized in
Fig. 2(c).

We observe that, by construction, LM (p) is a conservative abstraction of
TM (p), and L∃

M (P) is a conservative abstraction of LM (p), i.e., if L∃
M (P) satisfies

a safety property, then so does TM (p). This fact ensures the soundness of our
approach.

Proposition 3. L∃
M (P) is an overapproximation of TM (p) for any p ∈ P .

4 Hierarchical Parameter Search

In this section, we first show that by using sampling techniques we can compute
the automaton L∀∗

M (P) with arbitrary precision. Afterwards, in order to lever-
age different levels of abstractions during the parameter space exploration, we
introduce a discrete abstraction of MHA. Finally, we describe an abstraction-
based parameter search procedure which explores the parameter domain in a
hierarchical fashion.

Abstraction-Based Parameter Synthesis for Multiaffine Systems 27

4.1 Computation of Underapproximative Abstractions

As outlined in the previous section, the role of the underapproximation L∀∗
M (P)

is to detect parameter regions which our approach cannot classify as valid ones.
The LHA L∀

M (P), an overapproximated version of L∀∗
M (P), does not generally

underapproximate LM (p) for all p ∈ P . The reason is that the flows Q∀(P) do
not necessarily underapproximate the flows Q(p) of all LM (p). In particular, as
we take an intersection only over corner points of a considered parameter set,
there might exist some p ∈ P such that Q∀(P)
⊆ Q(p).

Note that as we only use L∀
M (P) for pruning purposes, soundness of our

approach is not affected by imprecision. We might at most ignore some parameter
region which could have been classified as valid by our approach. Still, in order
to improve the precision of L∀

M (P), we can randomly sample parameter vectors
p ∈ P and consider the intersection of Q(p) with Q∀(P).

The following theorem describes the possible improvements by sampling. For
notational convenience, let ‖·‖ denote the Euclidean norm, ∂S denote the border
of a closed set S, d(t, S) := mins∈S ‖t−s‖ denote the distance of t to the border
of S, and Ker ε(S) := {s ∈ S | d(s, ∂S) ≥ ε}.

Theorem 4. Let f(x, p) : R
n × R

m → R
n with x ∈ R

n and p ∈ R
m be a

multiaffine function which is affine in p, H ⊂ R
n be a hyper-rectangle and P ⊂

R
m be a convex polytope. Then the following formulae hold:

∀p, p′ ∈ P. lim
‖p−p′‖→0

Q(p) = Q(p′) (2)

∀p ∈ P, ε > 0.∃δ > 0.∀p′ ∈ P. ‖p − p′‖ < δ (3)
=⇒ Ker2ε(Q(p)) ⊆ Q(p) ∩ Q(p′) ∧ Ker2ε(Q(p′)) ⊆ Q(p) ∩ Q(p′)

This theorem asserts that if we sample sufficiently many points in a uniform
way in parameter space, then we can approximate L∀∗

M (P) infinitely closely for
non-degenerate cases, i.e., when Ker2ε(Q(p))
= ∅ for all p ∈ P . However, for
practical purposes, sampling can clearly shrink the overapproximation even in
degenerate cases.

LM (p)L∀∗
M (P)L∀

M (P) L∃∗
M (P) L∃

M (P)

K∀
M (P) KM (p) K∃

M (P)

TM (p)

Fig. 3. Relations of the systems presented in this paper. Let p ∈ P . An arrow S1 −→ S2

indicates that S2 is an overapproximation of S1.

Figure 3 shows the relationship between the systems considered in this paper.

28 S. Bogomolov et al.

4.2 Discrete Abstraction of MHA

For later discussion, it is useful to define the induced Kripke structures (KS) of
the LHA LM (p), L∃

M (P) and L∀
M (P). Basically, we drop the continuous behavior

and map initial and bad states to the locations with non-empty intersection.

Definition 7. Given an LHA H with set of locations Loc, let S be a set of
discrete states with |S| = |Loc| and let disc : Loc → S be a bijection which maps
every location to a discrete state. In addition, let Bad be the bad states of H.

The pair (H,Bad) induces a Kripke structure K = (S, S0, SB , T), where
S = {disc(�) | � ∈ Loc} is the set of states, S0 = {disc(�) | inv(�) ∩ Init
= ∅}
is the set of initial states, SB = {disc(�) | inv(�) ∩ Bad
= ∅} are the bad states,
and T = {disc(�) →K disc(�′) | � →H �′ ∈ Trans} is the set of transitions.

We denote by KM (p), K∃
M (P), K∀

M (P) the Kripke structures induced by
LM (p), L∃

M (P), L∀
M (P), respectively. Clearly, the induced Kripke structure is a

conservative abstraction of the LHA as it allows for additional trajectories to
the bad states for two reasons. The behavior in the states is unconstrained due
to the absence of flows, and the initial and bad states of the Kripke structure
overapproximate their LHA counterparts.

Proposition 4. KM (p) (K∃
M (P), K∀

M (P), respectively) is an overapproxima-
tion of LM (p) (L∃

M (P), L∀
M (P), respectively) for any p ∈ D (P ⊆ D, respec-

tively).

We incorporate the Kripke structures into our approach in the following way.
Whenever we analyze an LHA, we first analyze the respective KS. If the KS
satisfies the given property, we skip the LHA analysis. This is justified because
by Proposition 4 we know that the respective LHA will also satisfy the property.
In this way, we improve analysis performance as the reachability problem for
LHA is computationally harder to solve. We note that the construction of the
KS does not impose any further computational efforts since we need to construct
the locations and transitions for the LHA anyway.

4.3 Parameter Identification

Given an MHA M with ẋ = f(x, p), a safety property ϕ and the domain of
uncertain parameters D, we explore the parameter space in a hierarchical way.
Recall from the construction of the transitions that the constraints f(x, p) = 0
are the separating hyperplanes responsible for adding transitions. Based on those
constraints, the instantiation of f(x, p) in every corner v of the state space leads
to a parameter space partition into polytopes.

We now explain the algorithm with the help of the pseudocode given in Fig. 4.
In a preprocessing step, the algorithm examines the corners of the state space

partition and collects the constraints Ψ over the parameters in the function
CollectConstraintsList (line 3) such that f(x, p) = 0.

Abstraction-Based Parameter Synthesis for Multiaffine Systems 29

1 (M, ϕ, D)
2 % M : MHA, ϕ : property , D : unce r ta in parameters
3 Ψ := (M, D) ;
4 global V := ∅ ;
5 (ε, Ψ, M, ϕ, D, �) ; % s t a r t at root (ε = empty l i s t)
6 return V ; % found va l i d parameters

6 (CL, Ψ, M, ϕ, D, b) % CL : l i s t o f cur rent c on s t r a i n t s
7 P := (CL, D) ;

8 K∃
M , K∀

M , L∃
M , L∀

M = (M, P) ;

9 i f (b ∧ ¬ (K∃
M , ϕ))

10 V := V ∪ P ; return ; % va l i d s e t found by the KS ana l y s i s

11 e l s e i f (¬ (L∃
M , ϕ))

12 V := V ∪ P ; return ; % va l i d s e t found by the LHA ana l y s i s

13 e l s e i f (¬b ∨ (K∀
M , ϕ))

14 b := ⊥ ; % no fu tu r e va l i d s e t s f o r the KS ana l y s i s

15 i f ((L∀
M , ϕ))

16 return ; % no fu tu r e va l i d s e t s f o r the LHA ana l y s i s
17 % pa r t i t i o n P and descend to ch i l d nodes in the search t r e e
18 c := (Ψ) ; Ψ := (Ψ) ;
19 ((CL, c ≥ 0), Ψ, M, ϕ, D, b) ;
20 ((CL, c ≤ 0), Ψ, M, ϕ, D, b) ;

Fig. 4. The algorithm in pseudocode.

Next, the algorithm moves on to the function Explore (line 5) which actually
implements the search in the parameter space. This function successively builds
a number of abstractions of the MHA for a considered parameter set in order to
find valid subsets. It takes a list CL of constraints which encodes hyperplanes
used to define the current parameter set. We initially call the function with
CL = ε as we first consider the whole parameter space. Now we look at the
function Explore in more detail.

We start by calling the function PolytopeFromConstraintsList (line 7)
which builds a parameter polytope P based on the provided list CL of constraints
over parameters and the parameter space domain D. In line 8 we compute the
KS K∃

M (P), K∀
M (P) and the LHA L∃

M (P), L∀
M (P). Note that on the implemen-

tation level we compute them only on demand. The computed approximations
are analyzed in the following way:

1. If the property ϕ holds for the KS K∃
M (P) already (line 9), we conclude

that the current parameter set P is valid. Therefore, we add P to the set of
valid parameters V and stop considering the current branch in the search tree
(line 10).

2. If the discrete abstraction K∃
M (P) was too coarse to prove the validity of P ,

we continue with the finer analysis using L∃
M (P) (line 11). Similar to step 1,

in the case of property satisfaction we add P to the valid parameters (line 12).

30 S. Bogomolov et al.

3. If the parameter set validity has not been shown up to now, we proceed to the
pruning phase by considering K∀

M (P) and L∀
M (P). If both of them violate the

property ϕ, we prune the search tree as we expect that no valid parameter
sets can be found for any subset of P .
Note that due to efficiency reasons we first analyze K∀

M (P) (line 13) and move
on to L∀

M (P) (line 15) only if the KS is not safe with respect to the property
ϕ. If L∀

M (P) is not safe either, we prune the current subtree. However, if
L∀

M (P) is safe, we continue with the search. In this case, we can omit the KS
analysis for all nodes in the current subtree as it will always give the same
result. We assume the conditions in lines 9 and 13 are evaluated in a lazy
fashion and therefore we only use the KS analysis based on the value of the
Boolean switch b.

4. If K∀
M (P) or L∀

M (P) are safe, we partition the parameter set P into two
subsets by considering a further constraint from the list Ψ (line 18). Those
two subsets correspond to the positive and negative values of the chosen
constraint, respectively. We proceed by recursively analyzing both subsets
(lines 19–20).

Pε

≤ 0 ≥ 0

P0 P1

≤ 0 ≥ 0

P00 P01
...

≤ 0 ≥ 0

P10 P11
...

...

Fig. 5. Search tree in the parameter space. yellow: L∃
M (P) satisfies the property ϕ

while K∃
M (P) violates it. blue: L∀

M (P) satisfies the property ϕ while K∀
M (P) violates

it. gray: The node is only explored by the LHA analysis. red: The node is only explored
by the KS analysis (Color figure online).

Search tree implications. In Fig. 5, we illustrate the potential impact of the LHA
L∃

M (P) and L∀
M (P) on the structure of the search tree compared to an approach

only using the KS analysis. We observe that L∃
M (P) satisfies the property ϕ in

the node P1, whereas K∃
M (P) violates the property. The LHA analysis benefits

in two ways from this result. Firstly, it finds a large parameter set P1, whereas
the KS analysis can at most find valid sets in some of the child nodes, which are
subsets of P1. Secondly, the LHA analysis does not explore the children of P1 in
the search tree, which improves the algorithm performance. Moreover, L∀

M (P)
satisfies the property ϕ in the node P0, whereas K∀

M (P) violates the property.
Therefore, the KS analysis prunes the subtree P0, but a valid parameter set P00

can be found by the LHA analysis.

5 Evaluation

We have implemented the algorithm in MATLAB in the tool Hydentify. We
use the library PPL [2] for the operations on polytopes and the SpaceEx model

Abstraction-Based Parameter Synthesis for Multiaffine Systems 31

checker [11] for the analysis of the LHA. Note that the default version of SpaceEx
does not stop immediately after having found a property violation. Therefore,
we have modified the version of SpaceEx so that it stops as soon as a prop-
erty violation has been detected. This adjustment lets us improve the analysis
performance. We apply the PHAVer scenario of SpaceEx which uses constraint
polytopes to represent reachable regions to precisely analyze LHA.

Batt et al. [5] have presented a parameter identification approach for mul-
tiaffine systems implemented in a tool called RoVerGeNe. They approximate
the system on the level of the induced Kripke structures. In the following eval-
uation, we compare the parameter identification results of our approach and
RoVerGeNe. The integration of the induced KS into our algorithm allows for
both a qualitative and a quantitative comparison of the two approaches. The
implementation and models we used for the evaluation are available online1.

Two-genes network model. We evaluate our tool on a number of models from the
class of genetic regulatory networks. The experiments have been performed on
a notebook with an Intel Core 2 Duo @ 2.26 GHz processor and 4 GB RAM.

For the evaluation purpose, we consider two classes of the two-genes network
model introduced in Sect. 2. The first model class is the original system, while
the second class is augmented by a stimulus. Note that our LHA framework
enables an easy modeling and analysis of models with time dependent stimuli.
In particular, we model a stimulus as a ramp function of an auxiliary variable t
defined by the differential equation ṫ = 1. For every model class, we present two
model instances. We look for parameters which lead to the repression of a given
protein. For every instance and parameter identification algorithm, we report
the following data: the coverage of the parameter domain, the number of the
valid parameter sets found, the number of nodes in the search tree considered,
the number of KS and LHA analyzed, and the runtime in seconds. By the term
parameter coverage we denote the relation of the volume of the found valid
parameters to the volume of the whole parameter domain D. The results are
provided in Table 1. The instances 1–2 correspond to the model class without a
stimulus, whereas the other two instances belong to the class with a stimulus.

We first observe that the valid parameter regions found by our algorithm are
usually much larger than the ones found by RoVerGeNe for both the models
with and without the stimulus. Instance 2 provides a particularly illustrative
example for the difference. Here, RoVerGeNe does not find any valid parameters,
whereas our approach discovers valid parameter regions covering 38 % of the
whole parameter domain. This behavior can be justified as follows. On the one
hand, RoVerGeNe reports that both K∃

M (P) and K∀
M (P) at the root level reach

the bad states. This results in analysis termination of RoVerGeNe. On the other
hand, our algorithm proceeds in-depth with the analysis of the parameter space
and detects 5 valid parameter regions. In instance 3, we see similar impact of
taking LHA into account. In particular, both approaches consider 5 K∀

M (P).
However, our approach additionally considers 3 L∀

M (P) which allow to extra
unfold the parameter space. In this way, our approach analyzes 15 nodes and
1 http://swt.informatik.uni-freiburg.de/tool/spaceex/hydentify.

http://swt.informatik.uni-freiburg.de/tool/spaceex/hydentify

32 S. Bogomolov et al.

Table 1. model ID: 1–2: without stimulus; 3–4: with stimulus; % valid: percentage of
parameter space verified; # sets: number of parameter sets found; # nodes: number
of nodes in the search tree; # ∃-KS/∃-LHA: number of K∃

M/L∃
M analyzed; # ∀-

KS/∀-LHA: number of K∀
M/L∀

M analyzed; runtime: runtime in seconds

% valid # sets # nodes # ∃-KS/∃-LHA # ∀-KS/∀-LHA runtime [s]

m
o
d
el

ID

R
o
V

er
G

eN
e

H
y
d
en

ti
fy

R
o
V

er
G

eN
e

H
y
d
en

ti
fy

R
o
V

er
G

eN
e

H
y
d
en

ti
fy

R
o
V

er
G

eN
e Hydentify

R
o
V

er
G

eN
e Hydentify

R
o
V

er
G

eN
e

H
y
d
en

ti
fy

K
S

L
H

A

K
S

L
H

A

1 60 85 7 5 23 23 23 9 21 16 5 10 11 32

2 0 38 0 5 1 79 1 1 79 1 1 62 2 95

3 65 73 3 5 9 15 9 9 12 5 5 3 6 22

4 60 84 4 3 13 9 13 7 7 9 4 1 8 18

finds 5 valid regions compared to 9 nodes and 3 valid regions for RoVerGeNe,
respectively. At the same time, the refined precision of LHA can shrink the search
space. For example, in instance 4, the new algorithm achieves the parameter
coverage of 84 % vs. 60 % by RoVerGeNe having considered only 9 nodes vs.
13 nodes in case of RoVerGeNe. We note that the valid parameter sets which
are near the search tree root lead to larger parameter coverage with only a few
parameter sets. This fact is confirmed by instance 4 where our approach finds 3
valid sets which cover a bigger region than the 4 valid sets found by RoVerGeNe.

Myocyte model. A fundamental question in the treatment of cardiac disorders,
such as tachycardia and fibrillation [8], is the identification of circumstances
under which such a disorder arises. Cardiac contraction is electrically regulated
by particular cells, known as myocytes. For each electric stimulus originating
in the sino-atrial node of the heart (its natural pacemaking unit), the myocytes
propagate this stimulus and enforce the contraction of the cardiac muscle, known
as a heart beat. Grosu et al. [13] have identified an MHA model for human
ventricular myocytes and recast the biological investigation of lack of excitability
to a computational investigation of the parameter ranges for which the MHA
accurately reproduces lack of excitability. We apply our algorithm to this model
and compare its performance with RoVerGeNe. The model has 4 continuous
variables and 4 parameters. In our setting, a valid parameter set ensures that
the myocyte is not excited.

We remark that our parameter identification approach has a large potential
with respect to parallelization as the LHA and KS can be analyzed indepen-
dently. We made use of this property and utilized a parallel version of our imple-
mentation for the analysis of the myocyte model. The experiments have been run
on a Linux cluster with 32 AMD @ 2.3 GHz cores and 256 GB RAM. The model
behavior is analyzed within a biologically reasonable time span of 1 ms. We note
that the stimulus and particularly its duration require a special treatment as it
strongly impacts the myocyte behavior. The stimulus in our model starts with

Abstraction-Based Parameter Synthesis for Multiaffine Systems 33

the value 1 and linearly drops to 0. We explore the impact of the stimulus length
on the myocytes excitement.

Our approach empirically shows that the whole parameter domain is valid
for all stimuli of length up to approximately 0.12 ms. In other words, we can
provide a lower bound on the stimulus length which makes the myocyte model
excitable. For this purpose, we have discretized the stimulus length with a step
of 0.1 ms, i.e., we have considered stimuli of the length 0, 0.1, . . . , 1 ms. Having
identified an interval of interest [0.1; 0.2], we have discretized it in a finer way
with a step of 0.02 ms. The new analysis takes 187 s and detects that the whole
parameter domain is valid for the stimulus of length 0.12 ms, whereas RoVerGeNe
reports the coverage of 29 % after 48 s. The parameter coverage computed by our
algorithm drops to 30 % for the stimulus length of 0.14 ms and the analysis takes
1785 s. We note that the coverage computed by RoVerGeNe stays the same
for all stimulus lengths as it cannot reason about time. This is a conceptual
improvement over RoVerGeNe.

6 Related Work

A number of approaches have been developed to solve the parameter identification
problem for hybrid automata. First, as already outlined in the previous section,
Batt et al. [5] presented a parameter identification approach based on the abstrac-
tion of MHA by Kripke structures. By using our LHA abstraction, we improve the
abstraction precision and in this way find more valid parameters. Dang et al. [9]
introduced a “sensitive barbarian” approach. Bartocci et al. [3] consider a modular
version of this approach. The main idea is to combine numerical simulation with
sensitivity analysis to reduce the considered parameter space. A crucial difference
to our approach lies in the fact that we utilize a symbolic analysis of the reach-
able states. In a further approach, Dreossi et al. [10] provide a parameter synthesis
algorithm for polynomial dynamical systems. Their synthesis technique uses the
Bernstein polynomial representation and recasts the synthesis problem as a linear
programming problem. Note that they consider only discrete time dynamical sys-
tems, whereas we treat time as a continuous entity. The work by Liu et al. [16]
tackles the parameter synthesis problem using δ-complete decision procedures [12]
for first-order logic (FOL) formulae to overcome undecidability issues. In this set-
ting, a FOL formula describes the states reachable with a finite number of steps.
Therefore, the parameter identification problem is reduced to finding a satisfying
valuation of the parameters for this formula. This approach requires enumerating
all the discrete paths of a particular length,which leads to performance degradation
for large models. In our approach, we employ the symbolic model checker SpaceEx,
which prunes the state space exploration by checking whether the currently con-
sidered states have already been visited.

34 S. Bogomolov et al.

7 Conclusion

We have presented a novel parameter identification algorithm for multiaffine
hybrid automata. In our algorithm, we compute equivalence classes in the para-
meter space and explore them in a hierarchical way. The approximation of the
system dynamics with linear hybrid automata lets us keep the timing information
in our abstraction. This allows us to precisely treat time-dependent properties
such as a stimulus.

Given a parameter polytope P , we compute an LHA which overapproximates
the system behavior for P . Furthermore, we compute another LHA which enables
us to prune the search tree. We have evaluated our approach on a model of a
genetic regulatory network and a myocyte model and demonstrated its improve-
ment over RoVerGeNe, a tool for parameter identification based on a purely
discrete abstraction.

In the future, we plan to investigate the application of hybrid model checkers
which support more expressive continuous dynamics. This enables approximat-
ing the parametrized system dynamics with a hybrid automaton class featuring
dynamics beyond the ones of LHA.

Acknowledgments. This work was partly supported by the European Research
Council (ERC) under grant 267989 (QUAREM), by the Austrian Science Fund (FWF)
under grants S11402-N23, S11405-N23 and S11412-N23 (RiSE/SHiNE) and Z211-N23
(Wittgenstein Award), and by the German Research Foundation (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(1), 3–34 (1995)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1), 3–21 (2008)

3. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular design
of synthetic biological circuits. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013.
LNCS, vol. 8130, pp. 164–177. Springer, Heidelberg (2013)

4. Bartocci, E., Corradini, F., Di Berardini, M.R., Entcheva, E., Smolka, S., Grosu,
R.: Modeling and simulation of cardiac tissue using hybrid I/O automata. Theor.
Comput. Sci. 410(410), 3149–3165 (2009)

5. Batt, G., Belta, C., Weiss, R.: Temporal logic analysis of gene networks under
parameter uncertainty. IEEE Trans. Autom. Control 53, 215–229 (2008)

6. Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of
synthetic gene networks. Bioinformatics 23(18), 2415–2422 (2007)

7. Belta, C., Habets, L.: Controlling a class of nonlinear systems on rectangles. IEEE
Trans. Autom. Control 51(11), 1749–1759 (2006)

http://www.avacs.org/

Abstraction-Based Parameter Synthesis for Multiaffine Systems 35

8. Cherry, E.M., Fenton, F.H.: Visualization of spiral and scroll waves in simulated
and experimental cardiac tissue. New J. Phys. 10, 125016 (2008)

9. Dang, T., Donzé, A., Maler, O., Shalev, N.: Sensitive state-space exploration. In:
CDC, pp. 4049–4054 (2008)

10. Dreossi, T., Dang, T.: Parameter synthesis for polynomial biological models. In:
Proceedings of HSCC 2014: The 17th International Conference on Hybrid Systems:
Computation and Control, HSCC 2014, pp. 233–242. ACM, New York, NY, USA
(2014)

11. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

12. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiabil-
ity over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS, vol. 7364, pp. 286–300. Springer, Heidelberg (2012)

13. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bar-
tocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg
(2011)

14. Habets, L.C.G.J.M., Collins, P.J., van Schuppen, J.H.: Reachability and control
synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Autom.
Control 51(6), 938–948 (2006)

15. Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: Hespanha,
J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 348–362. Springer, Hei-
delberg (2006)

16. Liu, B., Kong, S., Gao, S., Zuliani, P., Clarke, E.M.: Parameter synthesis for cardiac
cell hybrid models using delta-decisions. CoRR, abs/1407.1524 (2014)

17. Myers, C.J.: Engineering Genetic Circuits. Chapman and Hall/CRC (2010)

Tools

Combining Static and Dynamic Analyses
for Vulnerability Detection: Illustration

on Heartbleed

Balázs Kiss1, Nikolai Kosmatov2(B), Dillon Pariente3, and Armand Puccetti2

1 Search Lab, Budapest 1117, Hungary
balazs.kiss@search-lab.hu

2 Software Reliability and Security Laboratory, CEA, LIST, PC 174,
91191 Gif-sur-Yvette, France

{nikolai.kosmatov,armand.puccetti}@cea.fr
3 Dassault Aviation, 92552 Saint-Cloud, France

dillon.pariente@dassault-aviation.com

Abstract. Security of modern information and communication systems
has become a major concern. This tool paper presents Flinder-SCA, an
original combined tool for vulnerability detection, implemented on top of
Frama-C, a platform for collaborative verification of C programs, and
Search Lab’s Flinder testing tool. Flinder-SCA includes three steps.
First, abstract interpretation and taint analysis are used to detect poten-
tial vulnerabilities (alarms), then program slicing is applied to reduce the
initial program, and finally a testing step tries to confirm detected alarms
by fuzzing on the reduced program. We describe the proposed approach
and the tool, illustrate its application for the recent OpenSSL/Heart-
Beat Heartbleed vulnerability, and discuss the benefits and industrial
application perspectives of the proposed verification approach.

Keywords: Vulnerability detection · Static analysis · Program slicing ·
Fuzzing · Frama-C · Flinder · Heartbleed

1 Introduction

The recent Heartbleed bug [6] illustrated once again that critical security flaws
can remain undetected by a static or a dynamic analysis technique alone [8].
This paper presents Flinder-SCA, a novel verification tool for vulnerability
detection using a combination of static and dynamic analyses, as well as a case
study illustrating the capabilities of the proposed combined verification approach
to detect recent vulnerabilities at the source code level with reasonable amounts
of efforts and computing time. This work has been realized in the context of the
STANCE project.

This work has been partially funded by the EU FP7 project STANCE (grant 317753).

c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 39–50, 2015.
DOI: 10.1007/978-3-319-26287-1 3

40 B. Kiss et al.

The STANCE project1 belongs to the European FP7 Research Program
and proposes to design and implement validation and verification (V&V) tools
to ensure security of industrial software in C, C++ or Java. STANCE builds
on the Frama-C [7], Flinder [10] and VeriFast2 toolkits and extends their
capabilities to handle the aforementioned programming languages and perform
security analyses. STANCE studies security properties of industrial applications
provided by partners. These are related to an Aeronautic use case (from Dassault
Aviation, France), Trusted Computing platforms for embedded systems based
on the TPM3 (from Infineon AG, Germany and TU Graz, Austria), and authen-
tication software for complex distributed networks (from Thales COM, France).
The vulnerabilities addressed by STANCE have been classified by using the
CWE classification [1] and keeping those vulnerabilities that (1) can be detected
in the source code, (2) are written in C, C++ or Java, and (3) are related to the
considered application categories.

The original contributions of the present work include

– a new combined verification technique for detection of security vulnerabilities,
– its implementation, Flinder-SCA, realized in the context of the STANCE

project,
– an illustration of its application to the recent Heartbleed vulnerability, and
– a discussion of benefits and application perspectives of the proposed approach.

This paper is structured as follows. Section 2 describes the Heartbleed vulnerabil-
ity. Section 3 provides on overview of the Flinder-SCA tool and the associated
methodology. Sections 4, 5 and 6 describe the tool components and illustrate
them on the case study. Section 7 provides a short tool demo. Section 8 dis-
cusses the difficulties of detecting the Heartbleed vulnerability. Finally, Sect. 9
concludes with the benefits of the approach and some future work.

2 The Heartbleed Vulnerability

The Heartbleed bug [6] was discovered in 2014 in OpenSSL4, the famous crypto-
graphic library widely used to encrypt communications over the Internet. This
bug was identified in the HeartBeat functionality, originally intended to check
whether a given server is still alive and able to encipher TCP/IP packets with
SSL techniques. How HeartBeat operates is straightforward: a client sends a
“keep-alive” message containing a payload (a random array of bytes intended to
be repeated) as well as the payload’s size. In turn, if alive, the server is expected
to send the very same payload back to the client. This ensures that the server is
— at least — able to copy a message previously received and to forward it back
to the sender.
1 See http://www.stance-project.eu/.
2 See http://people.cs.kuleuven.be/bart.jacobs/verifast.
3 See http://www.trustedcomputinggroup.org.
4 See https://www.openssl.org.

http://www.stance-project.eu/
http://people.cs.kuleuven.be/bart.jacobs/verifast
http://www.trustedcomputinggroup.org
https://www.openssl.org

Combining Static and Dynamic Analyses for Vulnerability Detection 41

The security issue comes from the fact that the size of the payload is specified
by the client, and this size is not checked by the server against the effective
payload length — causing it to read past the end of the memory area allocated
to hold the payload, which is a typical buffer over-read vulnerability [1]. For
instance, if the client sends a 3-byte message and indicates 0xFFFF (=65535) as
the fake size, the server will send the following non-padding data back to the
client: the message header and length (1+2 bytes), the 3-byte message itself, then
65532 bytes from the server’s heap memory immediately following the payload at
the time of processing. Since the memory area allocated to the payload changes
with each request, an attacker can repeatedly send such a request and obtain data
stored in many different areas of the heap. Unfortunately, such data may contain
confidential data from other processes (e.g. Apache credentials) as well as any
other compromising information, and most importantly the secret keys used by
OpenSSL itself — which could then be used to impersonate or steal information
from the server. Many commonly-used and important Internet sites and their
services (such as Google, Youtube, Wikipedia, and Reuters) were compromised
by this vulnerability.

The code snippet in Fig. 1, extracted from the OpenSSL/HeartBeat extension
v1.0.1+, illustrates the Heartbleed bug. The buffer over-read vulnerability clearly
stands in the memcpy call statement (line 7). The payload length variable payload is
indeed specified by the client, possibly an attacker, and determines how many
bytes from the payload pl will be copied into the buffer starting from buffer
pointer bp. A few statements later, after adding additional padding bytes (line
10), the contents of the buffer variable are sent back to the client (line 11),
potentially with a substantial part of the heap.

Fig. 1. Extract from OpenSSL/HeartBeat source code (tls1_process_heartbeat function)

3 Overview of the Flinder-SCA Tool

The Flinder-SCA tool has been realized in the context of two V&V tools: the
Frama-C code analysis platform [7], and the Flinder security testing plat-
form [10]. Frama-C provides a collection of scalable and interoperable tools for
static and dynamic analyses of ISO C99 source code. It is based on a common
kernel that hosts analyzers as collaborating plug-ins that share a common formal

42 B. Kiss et al.

Fig. 2. (a) Overview of the proposed methodology, and (b) Architecture of the
Flinder tool

specification language. Frama-C includes plug-ins based on abstract interpre-
tation, deductive verification and dynamic analysis, as well as a series of derived
plug-ins which build elaborate analyses upon the former. In addition, the exten-
sibility of the overall platform, and its open-source licensing, have fostered the
development of an ecosystem of independent third-party plug-ins.

The proposed verification methodology is illustrated in Fig. 2a. First, a static
analysis step relying on value and taint analyses (detailed in Sect. 4) is applied
to detect alarms reporting potential vulnerabilities. Second, a program slicing
step (described in Sect. 5) is used to reduce the initial program p and to produce
a smaller one, p′, called a slice. These two steps are realized by Frama-C plug-
ins. Finally, the fuzz testing step (presented in Sect. 6) applies Flinder on p′

to confirm these alarms as actual vulnerabilities. This methodology enhances
the Sante approach [3] that combined value analysis, slicing and structural
testing for detection of runtime errors, and makes it well-adapted for detection
of security flaws. (For more related work, see [3]).

4 Detection of Alarms by Static Analysis

With Frama-C, potential runtime errors (alarms) can be detected and local-
ized by the Value plug-in [7]. It implements an abstract interpretation based
value analysis that computes (over-approximated) domains of possible values
for program variables at each program location. For the memcpy call responsible
for Heartbleed (cf. Fig. 1), Value generates the following assertions (slightly
rewritten here for the sake of clarity):
//@ assert Alarm1: mem_access: \valid(bp[0 .. (payload -1)]);
//@ assert Alarm2: mem_access: \valid(pl[0 .. (payload -1)]);

Combining Static and Dynamic Analyses for Vulnerability Detection 43

These alarms indicate that the tool cannot ensure the validity of pointers bp and
pl in the range of the payload size payload, and therefore dereferencing them may
be dangerous.

As Value is a sound analyzer [7], it guarantees to generate alarms for
all potential runtime errors. It may also generate spurious cases — false pos-
itives —, due to over-approximations, especially when users do not provide it
with a sufficiently accurate initial state for the inputs. As a result, the alarms
of interest with regard to Heartbleed might be raised among numerous other
alarms, with no means — at first glance — to distinguish preeminent assertions.
Of course, more precise analyses could be performed through additional efforts,
for instance on the specification of the initial state, or additional annotations in
the code to reduce non-conclusive over-approximations. These two workarounds
imply a deeper understanding of the application under analysis, and may not be
affordable in terms of required efforts or functional expertise in practice.

In this work, we use another approach based on taint analysis [5] to iden-
tify code variables and statements concerned with the propagation of taintable,
i.e. potentially corrupted inputs. Taintable inputs may contain information con-
trolled by an attacker, and therefore represent a high risk to introduce malicious
behaviors. Taint analysis allows the user to distinguish which source code state-
ments are concerned with the taintable input flow and are used by a potentially
vulnerable function. Taintable data flows are propagated, for instance, in case of
pointer aliasing, or copy of memory zones. The proposed taint analysis approach
is based on static analysis results computed by Value. We have implemented it
in an experimental Frama-C plug-in.

To apply it on the Heartbleed case, the user specifies the potentially taintable
inputs (rrec.data, the major part of the HeartBeat message sent by the client), and
the vulnerable functions (e.g. libc functions memcpy, strcpy, fgets,. . . that give rise to
a significant number of vulnerabilities [4]). The tool reports that the assertions
related to memcpy call handle the taintable input flow, and the memcpy statement
is identified as vulnerable5. This permits to distinguish security-related alarms
among all alarms generated by Value.

5 Simplification of the Program by Slicing

Program slicing [11,12] consists in computing the set of program instructions,
called program slice, that may influence the program state at some point of
interest, called slicing criterion. Slicing preserves the behaviors of the initial
program at the selected criterion after removing irrelevant instructions. It relies
on dependency analysis, that can in turn use the results of value analysis.

The Slicing plug-in [7] of Frama-C offers various ways to define slicing
criteria, including program statements, function calls and returns, read and write
accesses to selected variables, and logical annotations. Slicing is also able to
handle a conjunction of atomic criteria: by construction, the slice will verify all
criteria simultaneously.
5 For convenience of the reader, taint analysis results are illustrated in Sect. 7.1.

44 B. Kiss et al.

In this work, we apply Slicing to simplify the code with respect to the set
of alarms produced by static analysis (cf. Sect. 4). For the program with the
Heartbleed vulnerability, initially containing 8 defined functions and 51 lines of
code, using Slicing allows us to simplify the code and to keep only 2 defined
functions and 38 lines in the slice used in the last step.

6 Confirmation of Alarms by Fuzz Testing

Fuzz testing consists of injecting faulty, erroneous or malformed input into a sys-
tem under test, and monitoring the state of the system. Detecting an observable
error state (such as a crash) indicates that the system cannot properly handle
the input in question, confirming the existence of a bug in the code. To be more
efficient, fuzzing must be able to generate syntactically correct, but semantically
invalid input by modifying some (sets of) fields within it. The Flinder fuzz test-
ing framework [10] was originally developed to perform “smart”, syntax-aware
black-box fuzzing : the tester specified the exact format of the input being tested,
provided a valid input sample, and defined which of the fields within the format
should be modified.

Within STANCE, Flinder plays a different role: it is used to determine
whether a certain alarm identified by static analysis is an actual vulnerability.
Flinder accomplishes this via white-box fuzzing: a specific function inside a
program becomes the system under test, and its parameters define individual
input fields to be modified. The main white-box operation steps, labelled (1)–
(5), are shown in Fig. 2b:

(1) Based on the previously-instrumented code (with the potentially vulnerable
callsites detected by e.g. value analysis) and information about the particular
variables to modify in a function (provided by e.g. taint analysis), Flinder
generates a list of fuzzing parameters for each variable to be modified, spec-
ifying what kind of values should be generated for them to look for certain
kinds of vulnerabilities.

(2) The instrumented code is compiled and fed to the Flinder test harness.
(3) Test vectors are generated according to the fuzzing parameters — e.g. strings

of varying length for a string variable to identify buffer overflow problems,
and very small and very large values for an integer variable to identify integer
overflow and array overindexing issues.

(4) Each test vector is sent to the test harness (4a), where its values are used
to replace the values in the variables targeted by the fuzzing at runtime
(4b). The test harness observes the termination of the function (4c), detects
anomalies thanks to the instrumentation, and logs the results (4d).

(5) Based on the presence of anomalies in the logs — such as invalid memory
accesses or crashes — Flinder decides whether the vulnerability is con-
firmed or not.

In the Heartbleed example, the static analysis step reports to Flinder six
potential bugs, while the slicing step reduces the code and the number of para-
meters of the function tls1_process_heartbeat. Next, the code is instrumented to be

Combining Static and Dynamic Analyses for Vulnerability Detection 45

able to detect memory violation errors. Used in the white-box mode, Flinder
generates test cases for modifying each of the parameters in turn: 10 test cases
for a different-size Heartbeat message buffer, and 32 test cases each for different
Heartbeat message length and sequence number values. The first test case where
the Heartbeat message length is larger than the buffer size causes an invalid mem-
ory read attempt. Captured by the test harness, this operation allows Flinder
to identify the specific Frama-C alarm connected to the test. Flinder ulti-
mately relays this information to Frama-C, which can then change the status
of the corresponding alarms to confirmed (showing them in red in the Frama-C
GUI)6.

7 Tool Demonstration

7.1 Static Analysis Step Applied to the Heartbleed Vulnerability

Figure 3 provides a screenshot illustrating how the first step of Flinder-SCA
allows the verification engineer to detect potential vulnerabilities within the
Frama-C toolset. The culprit memcpy statement is identified as vulnerable, because
it manipulates a taintable data flow. We extended the original Frama-C GUI by
some complementary columns to ease the localization of vulnerable statements in
the source code. In the upper left panel, several columns identify functions compris-
ing taintable data flows, vulnerable statements and alarms. The upper right panel
shows the source code with the taintable data flows and vulnerable statements
highlighted in orange and pink respectively. This provides the verification team
with a user-friendly overview of taint analysis results on the code under review
(especially thanks to the causality with taintable input parameters).

7.2 Fuzz Testing Step Applied to the Heartbleed Vulnerability

In this example, Flinder is applied to the simplified version of the Heartbleed
vulnerability (see Fig. 1). The static analysis step has identified six potential
bugs in the tls1_process_heartbeat function, and the slicing step has simplified the
program to reduce the size and complexity of the code. After appropriately
instrumenting the sliced code at each alarm location where memory issues are
suspected, Flinder determines which fuzzing rules to apply — in this case,
simple integer fuzzing is applied to the two integer parameters of the function
tls1_process_heartbeat, and binary data fuzzing is applied to the string parameter
(see Fig. 4). Fuzzing the first (string) parameter s_s3_rrec_data proves to be incon-
clusive: injecting modified values into the program does not result in crashes or
other incorrect operation. Regardless, fuzzing buffers such as this is important
— in many cases, they can contain important data that can affect the execution
path of the application. Changing the second (integer) parameter s_s3_rrec_length

to a value that is larger than the size of the buffer results in an invalid memory
access, which is then detected by the test harness due to the hooks inserted
6 For convenience of the reader, fuzzing results are illustrated in Sect. 7.2.

46 B. Kiss et al.

Fig. 3. Frama-C GUI after applying Value and taint analysis. (Color figure online)

into the code. This allows Flinder to confirm the presence of the vulnerability.
Finally, this information is sent back to Frama-C to set the status of the corre-
sponding alarms as confirmed (in other words, the corresponding assertions are
marked in red as invalid, see Fig. 5).

8 Discussion

According to [8], the main difficulties in detecting Heartbleed with static analy-
sis tools were four-fold: the way data is stored and referenced, complexity of
following the execution path, difficulty of identifying the specific parts in the
storage structure that are misused, and resistance to taint analysis heuristics
due to the difficulty of determining whether a specific part within a complex
storage structure has become untainted.

Detecting the bug via dynamic analysis ran into another problem: the custom
memory management used by OpenSSL would prevent dynamic testing frame-
works such as Valgrind [9] from being able to successfully detect a memory
corruption or over-read problem. This — combined with encapsulation of the
heartbeat length field within the payload — made its detection via fuzz testing
infeasible.

In the end, Heartbleed was detected with two main approaches: Neel Mehta
(Google) found it using manual code review7, and Codenomicon found it through
7 as reported by Andrew Hintz, Google vulnerability analyst, see https://news.

ycombinator.com/item?id=7558015.

https://news.ycombinator.com/item?id=7558015
https://news.ycombinator.com/item?id=7558015

Combining Static and Dynamic Analyses for Vulnerability Detection 47

Fig. 4. The results produced by Flinder after applying it to the Heartbleed vulnera-
bility.

the use of a hybrid fuzzer/dynamic analyzer tool. The latter approach is very
interesting from a tool standpoint: instead of relying purely on fuzzing, an addi-
tional mechanism was employed to detect when the output of a system was
semantically incorrect in several ways (bypassing authentication, data leakage,
amplification, and weak encryption) [2]. This approach requires additional man-
ual work in the creation of additional information to describe the output, but
this only needs to be done once for each interface.

48 B. Kiss et al.

Fig. 5. The final results in the Frama-C GUI after applying Flinder-SCA to the
Heartbleed vulnerability. The last two alarms shown in red are real flaws. (Color figure
online)

This trend of combining fuzz testing tools with other static and dynamic
analysis techniques proves to be an important way of detecting complex and
non-obvious security vulnerabilities, moving forward.

To summarize, complex vulnerabilities such as Heartbleed present significant
challenges to state-of-the-art static and dynamic analysis tools. While manual
code review can always be effective, it is not always a viable solution due to the
sheer volume of source code to be inspected in some cases. Thus, new approaches
— such as the one proposed in the present work — that combine existing methods
are essential in their capacity to detect vulnerabilities automatically without
requiring significant manual effort.

9 Conclusion and Future Work

The difficulties of detecting the Heartbleed vulnerability by a static or a dynamic
analysis technique alone have been identified and discussed in [8]. To address such

Combining Static and Dynamic Analyses for Vulnerability Detection 49

vulnerabilities, this work proposes an innovative combined approach whose dif-
ferent steps are complementary and offer a very promising synergy. First, value
analysis reports potential errors as alarms, while taint analysis identifies a sub-
set of alarms that are most likely to lead to attacks. Notice that static analysis
alone reports several alarms and cannot precisely find the security flaw. Second,
slicing reduces the source code by removing statements that are irrelevant w.r.t.
the identified subset of alarms. In this case study, slicing reduced the program
by 25 %, while in earlier experiments on runtime error detection with Sante [3],
the average rate of program reduction by slicing was about 32 %. These two steps
help to focus on security-relevant alarms in the last step and avoid wasting time
by analyzing safe or irrelevant statements. Finally, a fuzz testing step is applied
on the reduced code in order to try to confirm the selected alarms. In the present
case study, fuzz testing with Flinder without a preliminary static analysis step
could be applied only in a black-box manner and would not be able to find
the Heartbleed bug either. Similarly, only using static analysis techniques could
not confirm the validity of any identified alarms. Another important benefit for
industrial applications of the method is its capacity to detect bugs with reason-
able efforts, e.g. without the tester having to provide a detailed specification of
the input state or additional annotations in the code.

We implemented this method in the Flinder-SCA tool, aiming to connect
several new plug-ins developed on top of the Frama-C platform: a taint analysis
tool, and a fuzz testing prototype currently being developed within the STANCE
project. The originality of the present work with respect to Sante [3] lies in using
taint analysis for identifying the most security-relevant alarms, and fuzz test-
ing for efficient detection of vulnerabilities. That enhances the Sante method,
adapts it to detection of security flaws and makes it effective for such subtle
vulnerabilities as Heartbleed.

Flinder-SCA is currently used to analyze other proprietary or open-source
pieces of software, with negligible adaptations; however, it is important to note
that much of the intended vulnerability detection functionality of Flinder-
SCA is still under active development within the STANCE project. Several
improvements are planned to enlarge the scope of applications. This concerns
in particular the Flinder tool to address more types of vulnerabilities, and
a better integration with taint analysis to be able to apply fuzzing techniques
to any control point in the potentially vulnerable workflow under analysis and
better identify which parts of the code are the best candidates for fuzzing.

Future improvements also include the investigation of complex input that
cannot be represented by variable types — such as a string variable contain-
ing an entire SSL3 record consisting of several distinct pieces of data. This can
be achieved by adapting Flinder’s already existing structure-aware fuzz test-
ing capabilities and employing static analysis methods to help users create the
inner structure for such variables as necessary — or in some cases, generating it
automatically.

These future developments will permit to apply the methods and tools dis-
cussed in this paper to several application candidates, sub-parts of the STANCE

50 B. Kiss et al.

project use cases. They could range from basic Apache resource libraries, for which
the feasibility can be considered as acquired, to more sophisticated functions
(possibly from SingleSignOn software for instance). It is also expected to expand
these applications to critical infrastructures in future projects, coupling dynamic
and static approaches, in which fuzzing will remain one of the key techniques for
verification of complex security properties in complement to classical static analy-
sis methods.

Acknowledgment. We thank the Frama-C team for providing the tools and support,
and the anonymous referees for many helpful comments.

References

1. CWE-126: Buffer Over-read. http://cwe.mitre.org/data/definitions/126.html
2. Carvalho, M., DeMott, J., Ford, R., Wheeler, D.A.: Heartbleed 101. IEEE Secur.

Priv. 12(4), 63–67 (2014)
3. Chebaro, O., Cuoq, P., Kosmatov, N., Marre, B., Pacalet, A., Williams, N.,

Yakobowski, B.: Behind the scenes in SANTE: a combination of static and dynamic
analyses. Autom. Softw. Eng. 21(1), 107–143 (2014)

4. Common Vulnerabilities and Exposures. https://cve.mitre.org
5. Denning, D.E.: A lattice model for secure information flow. Commun. ACM 19,

236–243 (1976)
6. CVE-2014-0160. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-

0160
7. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:

a software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015)
8. Kupsch, J.A., Miller, B.P.: Why do software assurance tools have problems finding

bugs like Heartbleed? Continuous Software Assurance Marketplace, April 2014
9. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary

instrumentation. In: PLDI (2007)
10. Search Lab: Flinder security testing platform. http://www.flinder.hu
11. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3), 121–189 (1995)
12. Weiser, M.: Program slicing. In: ICSE 1981, pp. 439–449 (1981)

http://cwe.mitre.org/data/definitions/126.html
https://cve.mitre.org
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://www.flinder.hu

The Verification Cockpit – Creating the Dream
Playground for Data Analytics
over the Verification Process

Moab Arar1, Michael Behm2, Odellia Boni1, Raviv Gal1(B), Alex Goldin1,
Maxim Ilyaev1, Einat Kermany1, John Reysa2, Bilal Saleh1,

Klaus-Dieter Schubert3, Gil Shurek1, and Avi Ziv1

1 IBM Research, Haifa, Israel
{moab,odelliab,ravivg,alexgo,imaxim,
einatke,bilal,shurek,aziv}@il.ibm.com

2 IBM Systems, Austin, TX, USA
{behm,reysa}@us.ibm.com

3 IBM Systems, Boeblingen, Germany
kdschube@de.ibm.com

Abstract. The Verification Cockpit (VC) is a consolidated platform for
planning, tracking, analysis, and optimization of large scale verification
projects. Its prime role is to provide decision support from planning to
on-going operations of the verification process. The heart of the VC is a
holistic centralized data model for the arsenal of verification tools used in
modern verification processes. This enables connection of the verification
tools and provides rich reporting capabilities as well as hooks to advanced
data analytics engines. This paper describes the concept of the Verifica-
tion Cockpit, its architecture, and implementation. We also include exam-
ples of its use in the verification of a high-end processor, while highlighting
the capabilities of the platform and the benefits of its use.

1 Introduction

Modern verification is a highly automated process in which an endless number
of verification jobs are continuously being executed in verification farms [15].
The process involves many tools and subsystems that handle tasks such as: the
documentation and management of the verification plan, tracking changes in the
design and the verification environment, scheduling verification jobs, generating
stimuli, simulating the design under verification (DUV), collecting coverage data,
and more.

These verification tools, which we sometime refer to as data sources, pro-
duce a large amount of data that is essential for understanding the state and
progress of the verification process. For example, simulation traces are needed
for efficient debug. Another example is coverage analysis that is used to monitor
the state of the verification process and identify areas that need more atten-
tion [1]. These examples use data from a single tool or data source. In many

c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 51–66, 2015.
DOI: 10.1007/978-3-319-26287-1 4

52 M. Arar et al.

cases, cross-referencing data from several sources can provide additional insight
into the verification process. For example, the correlation between coverage, bugs
found, and new features in the DUV can help the verification team assess the
quality of new features and identify holes in the verification and coverage plans.

Today, we are witnessing the growing complexity and size of the verification
process on the one hand, and the availability of more and more verification tools
that produce large amounts of data on the other. This combination is causing
a shift in the verification domain from a world that contains little data, forcing
verification engineers to fumble in the dark, to a world with too much data
that can drown the verification team. This raises the challenge of using the data
produced in the verification process to provide the verification team with decision
support from planning to on-going operations. This requires extraction of useful
concise information from data coming from a single source or combination of
multiple sources. This, in turns, calls for an open platform that allows existing
tools to feed data into it and analysis and reporting engines to consume and
process the data.

Existing solutions can be categorized into three main types. The first type
includes integrated verification platforms, such as Incisive from Cadence [18],
VCS from Synopsys [20], and Questa from Mentor Graphics [19]. These plat-
forms integrate several verification tools and engines, usually coming from the
same vendor. They also provide some reporting and analysis capabilities. The
disadvantage of these platforms is that they are relatively closed and do not allow
the easy connection and integration of external tools. (The main exceptions are
some external version control and bug tracking tools.) Another limitation of
these platforms is their databases, which are usually designed as operational
databases optimized for insertion and processing single entries; however, these
are less efficient when it comes to retrieving and manipulating large amounts of
records.

The second type of solutions are product lifecycle management (PLM) tools
and platforms [14]. Life cycle management is geared towards providing connectiv-
ity between the various tools used in different phases of a product, such as design,
development, and maintenance. This connectivity enables a holistic view of the
data created by the different tools. Some forms of PLM, such as application
lifecycle management (ALM) and collaborative lifecycle management (CLM),
are used for applications and systems development in the software engineering
and system engineering domains. To the best of our knowledge, an equivalent
solution does not exist for the hardware verification domain.

An alternative solution lies in the form of standards, such as the Unified Cov-
erage Interoperability Standard (UCIS) [24]. These standards provide an open
interface that allows the connection of coverage producers and consumers, as well
as several producers or consumers. The disadvantage of such standards is that
they are not generic enough. For example, they do not address the connection
of coverage data to other data sources such as bug tracking.

This paper introduces the Verification Cockpit (VC), a consolidated plat-
form for planning, tracking, analysis, and optimization of large scale verification

The Verification Cockpit – Creating the Dream Playground 53

projects, such as the verification of IBM high-end systems. The VC is influenced
by the Project Lifecycle Management concept, and its implementation is based
in parts on IBM’s CLM platform, which helps meet the requirements of an open
platform. Specifically, the VC is based on the Jazz architecture [22] and OSLC
protocol [23], which provide services that allow tools and data sources to publish
their data schemas and actual data. This, in turn, allows other tools that are
part of the platform to link to that data and connect it to their own data. For
example, after the coverage collection tool publishes its data, the verification
planning tool can add a link pointing to the coverage model for each item in the
plan. In this way, when the user points to or hovers over the coverage model,
the definition and current coverage status are displayed.

The Verification Cockpit uses the vast amount of data collected by the indi-
vidual data sources for analysis and reporting. This type of usage requires
processing and manipulating a large number of data records. This, in turn,
calls for the use of a high-volume data warehouse. The data warehouse is fed
with data from the various data sources using Extract, Transform and Load
(ETL) processes. It organizes the data in a star schema that is efficient for data
retrieval and creates the required connectivity between the data items from dif-
ferent sources. The data analysis components of the VC and its report engines
use this repository as the source for their analyses.

To complete the Verification Cockpit picture, the tool uses the rich reporting
capabilities of Rational Insight (Cognos) [21] to provide users with customizable
reports on many aspects of the data sources connected. It is also connected to in-
house analysis engines that mine the data produced by the verification process.
As we show in later sections, one such example is the Template Aware Coverage
(TAC) analysis engine, which explores the relations between test templates1 and
coverage.

With these components of the VC, it can provide the verification team deci-
sion support throughout the verification process from planning via on-going
operations to tape-out decisions and beyond. In addition, it can be used to feed
automation applications from end-to-end process optimization to single aspect
services.

We are now in the initial phase of deploying the Verification Cockpit in
the verification of the latest high-end processor developed at IBM. Part of the
potential data sources, namely, the verification plan, the work plan, the batch
test submitter and monitor, and the coverage database, are connected to the VC
and through it to each other. A rich set of reports provides various views into
each of these data sources individually and to combinations of the sources. Even
with this limited connectivity, the VC proves that it can manage the volumes
of data required, and, more importantly, provide the verification team with the
means to easily dive into the data and extract useful information.

1 Test templates are definitions provided to stimuli generators or test-benches for
generation of random tests. Test templates are sometimes called test definitions or
simply tests.

54 M. Arar et al.

The rest of the paper is organized as follows. In Sect. 2, we provide the moti-
vation for the Verification Cockpit project and its goals. Section 3 describes the
architecture of the tool and its implementation. In Sect. 4, we present some exam-
ples that highlight the benefits of using the Verification Cockpit. We conclude
the paper in Sect. 5.

2 Motivation and Goals

The verification process follows many tasks and steps from the initial plans to
successful completion of its execution. To perform all these tasks, a typical mod-
ern verification environment comprises many tools originating from many ven-
dors. In many cases a tool suite from one vendor provides most of the needs, but
such suites are often augmented by tools from other vendors and in-house tools.
The major components of the verification environment can be seen in Fig. 1.

The Verification Plan holds the features that need to be verified, the verifica-
tion means (simulation, special checker, formal verification etc.), and the metrics
(coverage or other). The Work Plan breaks down the features into tasks. The
Test Submission system keeps the different random (and directed) test tem-
plates, and monitors their submission according to the current verification goals
(new feature to verify, wide regression etc.). The Failure Tracking system pro-
vides the data required for triage, debug, and rerun of failures (the error mes-
sage, the number of failures, the test template, etc.). The Coverage Tracking
tool holds the definition and the status of the coverage events and models. The
Bug Tracking tool provides status and information regarding the bugs found in
the verification process. Finally, the Design and the Test Bench data can be
provided by the version control (owner, number of rows, changes, etc.).

Fig. 1. Modern verification environment components

The Verification Cockpit – Creating the Dream Playground 55

Each of the tools mentioned above, and many other tools omitted for lack of
space, produces and stores data that is important for its operation. The data also
helps in understanding the state and progress of the verification process. Many
of the tools produce structured data that is kept in local databases, but some
tools produce unstructured data, such as test logs and definition documents.
Not all of the produced data is stored. Understanding the data produced by
each of the verification tools alone and in combination with the data of other
tools is an essential part of the day-to-day work done by each member of the
verification team, starting from the project manager and going all the way to
each of the team members. This task can be difficult, time consuming, as it
requires expertise and experience. Therefore, any automatic assistance provided
by analysis tools and engines can be a welcome relief for the verification team.

Data analytics, or the analysis of data, is the process of inspecting, cleaning,
transforming, and modeling data with the goal of discovering useful informa-
tion, suggesting conclusions, and supporting decision-making [17]. Data analytics
combine techniques and algorithms from domains such as statistics, data mining,
and machine learning to extract the essence of the input data [13]. In general,
the information coming from data analysis can be classified into three main cat-
egories: descriptive, quantitatively describing the main features of a collection
of data; predictive, analyzing current and historical facts to make predictions
about the future; and prescriptive, making predictions and then suggesting deci-
sion options that take advantage of the predictions.

Data analytics has been used in the verification process for many years,
mostly to support coverage analysis. Coverage hole analysis [1] is an example of
descriptive analysis used to detect large uncovered areas and report these areas
instead of reporting large lists of uncovered events. The work by Hajjar et al. [9]
uses statistical models to predict coverage progress. In the domain of prescriptive
analysis, the work by Copty et al. [5] proposed the use of probabilistic regression
suites to improve the coverage progress in regression, and the work by Farkash
et al. [6] showed how to efficiently target coverage around changes in the DUV.
Coverage directed generation (CDG) [10] is another form of prescriptive analysis
that closes the loop between coverage data and test templates, leading to the
coverage of the requested events. Various methods that use techniques such as
machine learning (e.g., [7]) and data mining (e.g., [4]) have been proposed to
automatically construct test templates based on coverage information. Quality
estimation and bug prediction is another area in which data analytics is often
used. For example, Guo et al. [8] use machine learning to correlate design and
bug characteristics, and predict bug distribution.

To enable widespread use of data analytics in the hardware functional domain,
we need a platform that connects the various tools involved in the verification
process and is capable of handling the vast amount of data created by these
tools. The main requirements for such a platform are the following: The plat-
form should be based on an open architecture so any verification tool can con-
nect to the platform. Moreover, an existing standardized architecture is preferred
because it could reduce the effort needed to define and implement the interfaces

56 M. Arar et al.

to the platform. The openness of the architecture should exist for both the con-
nection of the verification tools as data sources and the analytics engines as
consumers of the data.

The platform needs to provide a centralized data model that defines the
relationship between data items coming from different data sources. For example,
the data model needs to ensure that the same names are used for the hardware
units by all the data sources. Alternatively, if different names are used, the
mapping of the name used by the coverage collection tools should be mapped to
the name used by the test job submission tool.

The open architecture provides the means for connecting the data sources,
either directly or using a centralized meeting place. The data model is used to
connect the relevant matching data items out of all the data items existing in
the data sources.

The platform needs to handle the vast amount of data created by the verifi-
cation process and allow the analysis engines efficient methods for accessing and
manipulating the data. This includes the ability to process and store (some of)
the structured data produced by the verification tools and process, but leave off
some of the structured and unstructured Big Data [11] produced by these tools.

Finally, the platform should provide rich reporting capabilities that clearly
show users the essence of the data collected. The reports can be created directly
from the data or as the output of the data analysis engines that are part of the
platform and/or are attached to it. The platform should support pre-defined
reports and allow easy customization of the reports to fit the users’ needs.
In addition, the platform should provide support for alerts that warn users when-
ever anomalies are detected in the process.

3 Architecture and Implementation of the Verification
Cockpit

3.1 Architecture of the Verification Cockpit

The basic approach of the Verification Cockpit, described in Fig. 2, borrows from
the Product Lifecycle Management (PLM) concept. The interconnection between
the different verification tools is illustrated by the circular line connecting the
tools. The converging lines from the data sources into the data warehouse (or
Big Data tool) represent a standard Extract Transform and Load (ETL) process
extracting the data from the data source, transforming it to the coherent data
model, and loading it into the target database. Data analytics in all levels –
descriptive, predictive and descriptive – over the data in the data warehouse
are then used to optimize directives over the verification process. The optimiza-
tion directives can use reports and alerts to recommend actions. They can also
directly activate actions, such as modifying the test submission policy to maxi-
mize the coverage rate of a feature in the DUV.

The Verification Cockpit architecture that implements this concept is based
on the IBM Rational Collaborative Lifecycle Management (CLM) built on the

The Verification Cockpit – Creating the Dream Playground 57

Fig. 2. Verification Cockpit concept

Jazz platform [22]. The IBM Rational CLM was originally designed for software
development. The VC adjusts the platform for hardware functional verification.
CLM brings together project planning and tracking (Rational Team Concert -
RTC), requirements management and quality (testing) management, on a com-
mon unified platform. All the operational data from the CLM tools can be con-
nected to IBM Rational Insight (Cognos), which provides rich level of reports
and dashboards over this data. The IBM Rational CLM is an open solution.
New tools can be connected to the system using the Open Service for Lifecycle
Collaboration (OSLC) interface [23].

The Verification Cockpit architecture, described in Fig. 3, has three main
components: RTC is used as both the verification plan and work plan tools;
Rational Insight (Cognos) and DB2 are used for the data warehouse and the
reports hub; and the VC server at the bottom hosts all the new VC components.
The ETL engines job is to extract the data from the data source, transform it
to the data warehouse model, and finally load it into the data warehouse. The
OSLC bridges expose services to connect different data sources. The analytics
engines perform the advanced analysis over the data in the data warehouse.
Users access the VC by web browser since the Rational Insight dashboards and
RTC are both web applications. Another access point is the interface of each
analytics engine, where our preferred flow is to store the analysis results in the
data warehouse and present it through Cognos reports.

3.2 The Data Model

We define a coherent data model for the data warehouse based on the star schema
methodology [12]. There is a fundamental difference between the operational
database usually managed by each tool and the star schema model used in the
data warehouse. While the operational database is optimized for insert, update,

58 M. Arar et al.

Fig. 3. Verification Cockpit architecture

and delete operations, the star schema model is optimized for data analytics,
where the common operation would be data retrieval. A partial example of our
star schema is presented in Fig. 4. The star schema is built from dimensions and
metrics. While the metrics usually hold numeric values that can be aggregated,
the dimensions define the “aggregate by” options. There are common dimensions
like the date and the project name. There are also tool-specific dimensions such
as the test template name for the test submission data, and the coverage model
name for the coverage data. The VC keeps separate metric tables per data source,
and they use the dimensions to generate the unique key in the table. The common
dimensions are essential components to cross-reference data queries.

Clearly, as the tools were developed independently, their data does not follow
this model directly. This is a known issue with data warehousing that is handled
in the Transform step of the ETL process, where we select the data we want to
load into the data warehouse and transform it to its data model. This includes,
for example, data aggregation and renaming.

3.3 Implementation

We built the entire VC system, but connecting the data sources to the VC
is an ongoing process. To date, we have connected three tools that serve four
roles to the VC: RTC for the verification plan and the execution plan, the Test
Submission tool, and the Coverage tool. While RTC is a natural player in the
IBM Rational CLM solution, the last two are in-house tools that demonstrate
what it takes to integrate such tools into the VC.

We developed an ETL for each tool to connect the test submission and cov-
erage tools to the data warehouse. Since these are in-house tools that enable

The Verification Cockpit – Creating the Dream Playground 59

Fig. 4. Star schema data model for test submission and coverage data (partial)

direct access to their data, we developed the ETL in Java and JDBC. The ETLs
update the data warehouse on a daily basis, and handle several million records
within less than 30 min. Our data warehouse now holds around 400 GB of data,
which covers Test Submission data for a couple of years, and Coverage summary
data. The historic data provides the means for long term trends analysis.

IBM RTC was designed to support an agile software development flow. Since
the RTC template can be configured, and there is a lot in common between
SW development and HW verification, we extended the basic RTC template
to support the verification teams flow. We defined RTC-Feature, a new work
item type for a feature in the DUV needed to be verified. The RTC-Feature
contains hardware verification specific attributes, such as the verification means
(simulation, special checker, formal verification, etc.) It also contains a link to
the coverage model that provides the metric for the feature. To provide this
capability, we developed an OSLC bridge that exposes the coverage data and
provides services that enable accessing through RTC.

We developed a rich layer of reports and dashboards over the data. While
the majority of these reports are for a single data source, we already developed
a few cross data reports and advanced analytics over the data.

4 Use Examples

The vision of the Verification Cockpit is to provide all levels of data analytics over
the verification process data, whether descriptive, predictive, or prescriptive. Our
use examples cover all three levels. Moreover, it covers the different actors in the
verification team: the verification engineer, the team lead, and the verification
manager. The examples described below are from the verification of the latest
high-end processors in IBM.

The Verification Cockpit can display its reports in many forms. For example,
many reports can be displayed as graphic plots (e.g., pie charts) that provide a
clear visual qualitative view. For a quantitative view and for deeper digging, the
reports can also be displayed as text tables. The reports shown in this section

60 M. Arar et al.

contain only one form. Moreover, some of the reports were slightly modified from
their actual form to fit onto the paper format.

4.1 Test Submission Dashboards

For each simulation job we capture the test template used to generate the test,
the resulting pass or fail, the number of cycles simulated, the simulation model,
and more. The data for each individual run is kept in the operational database
of the test submission tool. Later on users can query the tool to get information
about specific runs. The VC provides aggregations and summaries of the simu-
lated tests. To efficiently prepare the needed reports, the data is accumulated on
a daily basis. We also aggregated the data at different levels and views, ranging
from the test templates level, through the verification environment level, all the
way up to the project level.

There are many potential uses for the test submission reports generated by
the VC. Consider a verification engineer that developed a list of test templates
intended to cover a certain feature. For this list of tests, the engineer uses a
dashboard containing several charts and tables, and starts with a chart showing
the daily pass rate for each of the templates as shown in Fig. 5. The figure shows
that on July 15 and 16 many of the test templates suffered from a low pass rate.

Fig. 5. Test submission - daily pass rate report. Each line represents a test template.

The next step in the investigation is to check if a broken model of the hard-
ware was used during the days in question. This information can be detected in
the report of Fig. 6, which displays the pass rate (the bars in the figure) and the
number of tests (the line) for each hardware model. The report shows that indeed
the model used on these dates (if p910 105u02c) suffered from a low passing rate.
Here, we do not show the report indicating when each model is used.

To reduce the workload of the verification engineer and save some analy-
sis time, the VC can automatically perform some of the analyses and alert
the engineer only when things go wrong or anomalies are detected. For example,

The Verification Cockpit – Creating the Dream Playground 61

Fig. 6. Test submission - pass rate progress by model (x axis). The bars represent the
pass rate and the dotted line represents the number of tests.

the verification engineer can specify that she wants to receive an alert if the
success rate of her test template list drops below 80 %, in which case she wants
to receive the reports of Fig. 5.

4.2 Coverage Dashboards

Coverage driven verification (CDV) [3] is the leading methodology for hard-
ware verification today. The CDV methodology emphasizes the tight relation-
ship between the verification plan and coverage. It does this using the coverage
status and progress reports as the main measure for the state and progress of
the verification process. The Verification Cockpit supports CDV in several ways.
In general, the coverage reports and the connection between coverage and the
verification plan follow the IBM flavor of CDV presented by Schubert et al. [16].

Our coverage collection tool stores the coverage data using a daily granularity.
The VC coverage ETL takes this raw data for each verification environment and
model, and loads it into the data warehouse, from which the VC provides classic
and new analysis of the data.

The summary coverage report for the Instruction Sequencing Unit (ISU) is
displayed in Fig. 7. The figure shows the coverage summary for each of the tags
(coverage models) defined for the unit; it also compares the coverage in different
environments, such as unit level, core level and system level simulation. The
report is usually the first step in an attempt to analyze the coverage status of
the unit. The next step is to drill down into one of the tags that requires special
attention; an example would be the exceptions tag.

Figure 8 shows the summary report of this tag. For each coverage event in the
tag, the report shows the status of the event in each environment. We distinguish
between well and lightly covered events according to a hit threshold. We further
divide the zero-hit events into those that were never hit and the ones that were
previously hit but have been zero for some time (aged-out) [2]. The colors provide
a quick view of the status of events; the data in the table allows deeper analysis.

One of the main advantages of using a data warehouse is that it allows trend
analysis. We can analyze and present the historic trends of this coverage model

62 M. Arar et al.

Fig. 7. Coverage summary for ISU

Fig. 8. Detailed coverage for the exceptions tag in the ISU (Color figure online)

as shown in Fig. 9. This provides the verification engineer with a better means
for understanding the coverage picture and detecting problems in the verification
process. For example, identifying the time when events started to age-out can
help find the change in the design or verification environment that caused it.
A further drill down is possible to see the trend of each event.

4.3 Connecting Coverage to the Verification Plan

Another important aspect of the CDV methodology is the connection between
the verification plan and the coverage status. To provide this connectivity, we
developed an OSLC bridge that exposes the coverage data and provides services
to access it from RTC. This allows users to define a bidirectional hyperlink
between the RTC-Feature and the coverage model.

The first step in creating the connection is to add a coverage goal to an
RTC-Feature. This is done by selecting the proper coverage model out of a list
of models available for this project in the coverage database. Because the RTC-
Feature can have more than one coverage model, and the coverage model can
measure more than a single RTC-Feature, a many-to-many relation is allowed.

Once a link is established, the user can view the coverage model summary infor-
mation by hovering over the link. The data presented is similar to the data for
the given tag in the coverage summary report of Fig. 7. A link which leads to the
detailed coverage report of this coverage model (Fig. 8) is also provided. Moreover,
the coverage status is also used to color RTC-Features in the verification plan,

The Verification Cockpit – Creating the Dream Playground 63

Fig. 9. Coverage model trend - last month

thus quickly pointing the verification lead (and anyone else looking at the plan)
to weaknesses in the implementation and progress of the plan.

4.4 Template Aware Coverage

To further investigate the coverage state and devise actions that improve it, it is
important to understand the relationship between coverage and test templates.
Today, in high-volume verification environments, the simulation to coverage flow
is template blind. That is, coverage accumulation is done for all tests, regardless
of their origin test templates. The Verification Cockpit infrastructure that con-
nects the test submission tool and the coverage collection tool lead the way to
incorporating test-template information into the coverage data, thus enhancing
the coverage information that is stored and analyzed. We use the term Template
Aware Coverage (TAC) for the connection between the origin test template and
the coverage it achieves.

Even with the capacity of the data warehouse, processing and maintaining
the coverage data for the thousands to millions of coverage events and hundreds
to thousands of test templates can be tough. Our solution is to use the Big Data
approach, processing the coverage data on the fly and keeping only a summary
of it for the deep analysis. Specifically, the VC keeps only the probability of each
test template to hit each coverage event.

This information can be used in many ways. Descriptive reports using TAC
data can extend the understanding of the coverage and provide hooks for improve-
ment. For example, the test template developer can be given feedback on how well
the template is doing its job and hitting the events targeted. Another example is
presented in Fig. 10, where we wish to find the best test templates to cover a cov-
erage model. Given a test template, we can learn how it performs, by looking at
the different coverage models (features) that are hit by tests generated from this
template; this can be seen in Fig. 11.

A prescriptive analytic usage of the TAC matrix is to find an optimized
test policy for a given set of verification goals, as defined by a coverage space.

64 M. Arar et al.

Fig. 10. Coverage model - best test templates (number of instances to run to get mean
hit percent of 95%)

Fig. 11. Test template - best coverage models

Given the coverage goals, we use optimization algorithms [5] to find an optimized
policy, minimizing the total number of tests needed to cover the coverage space.
A policy is a weighted list of test templates, in which the weight is the number
of times we need to run a test of this template. The optimization engine can
be used, for example, to find an optimized wide-regression set close to tapeout.
A common use case in any verification team is finding a light regression to verify
that a new model is not dead on arrival. Another important usage can follow
a bug fix to run regression for this feature. In this case, we define the coverage
space by the coverage models connected to this feature.

5 Conclusions

This paper presented the concept, architecture, and implementation of the Ver-
ification Cockpit (VC), a platform that connects verification tools to a holistic
centralized data model and hooks them to rich reporting and data analytics
engines. With these connections and hooks, the VC allows deep mining of useful
information that is sometimes hidden deep in the vast amount of data produced
by the verification tools. In that sense, the VC is a dream playground that allows
data analytics applications to analyze and improve the verification process.

The Verification Cockpit is based on the open Jazz architecture that allows
any verification tool to connect to it and through it to other tools and report-
ing/analysis engines. It utilizes a high-end data warehouse that can handle the
data produced by the verification tools. The data warehouse and the star schema
at its base provide the reporting and analysis engines with an efficient way to
retrieve and manipulate the data.

The Verification Cockpit – Creating the Dream Playground 65

The VC is now in its initial state of deployment with a small number of
tools connected to it. Nevertheless, we can already see the benefits of the cen-
tralized data model and the connectivity between verification tools that enable
enrichment of the information extracted from the data.

We are continuing to develop the Verification Cockpit and extend its capa-
bilities as well as its use in the field. In general, our development effort follows
three main directions. First, we are continuing to connect more tools and data
sources to the VC. Second, we are adding more analysis and reports to our arse-
nal of engines. For example, we are now investigating the automatic detection
of anomalies in bug finding rates. Finally, we are working to enhance our Big
Data and unstructured data analysis capabilities. In addition to the Template
Aware Coverage presented in the paper, we are exploring the relations between
bugs and coverage to assist in the triage process.

References

1. Azatchi, H., Fournier, L., Marcus, E., Ur, S., Ziv, A., Zohar, K.: Advanced analysis
techniques for cross-product coverage. IEEE Trans. Comput. 55(11), 1367–1379
(2006)

2. Birnbaum, A., Fournier, L., Mittermaier, S., Ziv, A.: Reverse coverage analysis.
In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp.
190–202. Springer, Heidelberg (2012)

3. Carter, H.B., Hemmady, S.G.: Metric Driven Design Verification: An Engineer’s
and Executive’s Guide to First Pass Success. Springer, New York (2007)

4. Chen, W., Wang, L.C., Bhadra, J., Abadir, M.: Simulation knowledge extraction
and reuse in constrained random processor verification. In: Proceedings of the 50th
Annual Design Automation Conference, DAC 2013, pp. 120:1–120:6, June 2013

5. Copty, S., Fine, S., Ur, S., Yom-Tov, E., Ziv, A.: A probabilistic alternative to
regression suites. Theor. Comput. Sci. 404(3), 219–234 (2008)

6. Farkash, M., Hickerson, B., Behm, M.: Coverage learned targeted validation for
incremental HW changes. In: Proceedings of the 51st Annual Design Automation
Conference on Design Automation Conference, pp. 57:1–57:6, June 2014

7. Fine, S., Ziv, A.: Coverage directed test generation for functional verification using
Bayesian networks. In: Proceedings of the 40th Design Automation Conference,
pp. 286–291, June 2003

8. Guo, Q., Chen, T., Chen, Y., Wang, R., Chen, H., Hu, W., Chen, G.: Pre-silicon
bug forecast. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 451–
463 (2014)

9. Hajjar, A., Chen, T., Munn, I., Andrews, A., Bjorkman, M.: High quality behav-
ioral verification using statistical stopping criteria. In: Proceedings of the 2001
Design, Automation and Test in Europe Conference, pp. 411–418, March 2001

10. Ioannides, C., Barrett, G., Eder, K.: Feedback-based coverage directed test gen-
eration: an industrial evaluation. In: Barner, S., Harris, I., Kroening, D., Raz, O.
(eds.) HVC 2010. LNCS, vol. 6504, pp. 112–128. Springer, Heidelberg (2010)

11. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime
Data Systems. Manning Publications, Westampton (2015)

12. Ponniah, P.: Data Warehousing Fundamentals for IT Professionals, 2nd edn. Wiley,
Hoboken (2010)

66 M. Arar et al.

13. Runkler, T.A.: Data Analytics - Models and Algorithms for Intelligent Data Analy-
sis. Springer, Wiesbaden (2012)

14. Saaksvuori, A., Immonen, A.: Product Lifecycle Management, 3rd edn. Springer,
Heidelberg (2010)

15. Schubert, K.D., et al.: Solutions to IBM POWER8 verification challenges. IBM J.
Res. Dev. 59(1), 1–17 (2015)

16. Schubert, K.D., et al.: Functional verification of the IBM POWER7 microprocessor
and POWER7 multiprocessor systems. IBM J. Res. Dev. 55(3), 308–324 (2011)

17. Wikipedia: Data analysis – Wikipedia, the free encyclopedia (2014). http://en.
wikipedia.org/wiki/Data analysis. Accessed 29 October 2014

18. Incisive enterprise manager. http://www.cadence.com/products/sd/enterprise
manager/pages/default.aspx. Accessed 19 July 2015

19. Questa verification management. http://www.mentor.com/products/fv/
questa-verification-management/. Accessed 19 July 2015

20. VCS. http://www.synopsys.com/Tools/Verification/FunctionalVerification/
Pages/VCS.aspx. Accessed 19 July 2015

21. IBM - rational insight. http://www-03.ibm.com/software/products/en/rtl-insight.
Accessed 21 July 2015

22. The people, places, history, and ideas behind Jazz. https://jazz.net/story/about/.
Accessed 19 July 2015

23. What is OSLC? http://open-services.net/resources/tutorials/oslc-primer/
what-is-oslc/. Accessed 19 July 2015

24. Unified coverage interoperability standard (UCIS). http://accellera.org/images/
downloads/standards/ucis/UCIS Version 1.0 Final June-2012.pdf. Accessed 19
July 2015

http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Data_analysis
http://www.cadence.com/products/sd/enterprise_manager/pages/default.aspx
http://www.cadence.com/products/sd/enterprise_manager/pages/default.aspx
http://www.mentor.com/products/fv/questa-verification-management/
http://www.mentor.com/products/fv/questa-verification-management/
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
http://www-03.ibm.com/software/products/en/rtl-insight
https://jazz.net/story/about/
http://open-services.net/resources/tutorials/oslc-primer/what-is-oslc/
http://open-services.net/resources/tutorials/oslc-primer/what-is-oslc/
http://accellera.org/images/downloads/standards/ucis/UCIS_Version_1.0_Final_June-2012.pdf
http://accellera.org/images/downloads/standards/ucis/UCIS_Version_1.0_Final_June-2012.pdf

Verification of Robotics

Coverage-Driven Verification —

An Approach to Verify Code for Robots that Directly
Interact with Humans

Dejanira Araiza-Illan1, David Western1, Anthony Pipe2, and Kerstin Eder1(B)

1 Department of Computer Science and Bristol Robotics Laboratory,
University of Bristol, Bristol, UK

{dejanira.araizaillan,david.western,kerstin.eder}@bristol.ac.uk
2 Faculty of Engineering Technology and Bristol Robotics Laboratory,

University of the West of England, Bristol, UK
tony.pipe@brl.ac.uk

Abstract. Collaborative robots could transform several industries, such
as manufacturing and healthcare, but they present a significant challenge
to verification. The complex nature of their working environment neces-
sitates testing in realistic detail under a broad range of circumstances.
We propose the use of Coverage-Driven Verification (CDV) to meet this
challenge. By automating the simulation-based testing process as far as
possible, CDV provides an efficient route to coverage closure. We dis-
cuss the need, practical considerations, and potential benefits of trans-
ferring this approach from microelectronic design verification to the field
of human-robot interaction. We demonstrate the validity and feasibility
of the proposed approach by constructing a custom CDV testbench and
applying it to the verification of an object handover task.

1 Introduction

Human-Robot Interaction (HRI) is a rapidly advancing sector within the field
of robotics. Robotic assistants that engage in collaborative physical tasks with
humans are increasingly being developed for use in industrial and domestic set-
tings. However, for these technologies to translate into commercially viable prod-
ucts, they must be demonstrably safe and functionally sound, and they must be
deemed trustworthy by their intended users [7]. In existing industrial robotics,
safety is achieved predominantly by physical separation or through limiting the
robot’s physical capabilities (e.g., speed, force) to thresholds, according to pre-
defined interaction zones. To fully realize the potential of collaborative robots,
the correctness of the software with respect to safety and functional (liveness)
requirements needs to be verified.

HRI systems present a substantial challenge for software verification — the
process used to gain confidence in the correctness of an implementation, i.e.
the robot’s code, with respect to the requirements. The robot responds to an
environment that is multifaceted and highly unpredictable. This is especially true
for robots involved in direct interaction with humans, whether this is in an
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 69–84, 2015.
DOI: 10.1007/978-3-319-26287-1 5

70 D. Araiza-Illan et al.

unstructured home environment or in the more structured setting of collabo-
rative manufacturing. We require a verification methodology that is sufficiently
realistic (models the system with sufficient detail) while thoroughly exploring
the range of possible outcomes, without exceeding resource constraints.

Prior work [3,6,14,19,20,25] has explored the use of formal methods to verify
HRI. Formal methods can achieve full coverage of a highly abstracted model
of the interactions, but are limited in the level of detail that can practically
be modelled. Sensors, motion and actuation in a continuous world present a
challenge for models and requirement formulation in formal verification. Physical
experiments or simulation-based testing may be used to achieve greater realism,
and to allow a larger set of requirements to be verified over the real robot’s code.
However, neither of these can be performed exhaustively in practice.

Robotic code is typically characterised by a high level of concurrency between
the communicating modules (e.g., nodes and topics used in the Robot Operating
System, ROS1) that control and monitor the robots sensors and actuators, and
its decision making. Parallels can be drawn here to the design of microelectronics
hardware, which consists of many interacting functional blocks, all active at the
same time. Hence it is natural to ask: ‘Can techniques from the microelectronics
field be employed to achieve comprehensive verification of HRI systems?’

In this paper, we present the use of Coverage-Driven Verification (CDV) for
the high-level control code of robotic assistants, in simulation-based testing. CDV
is widely used in functional verification of hardware designs, and its adoption
in the HRI domain is an innovative response to the challenge of verifying code
for robotic assistants. CDV is a systematic approach that promotes achieving
coverage closure efficiently, i.e. generation of effective tests to explore a System
Under Test (SUT), efficient coverage data collection, and consequently efficient
verification of the SUT with respect to the requirements. The resulting efficiency
is critical in our application, given the challenge of achieving comprehensive
verification with limited resources.

The extension of CDV to HRI requires the development of practical tools that
are compatible with established robotics tools and methods. The microelectronics
industry benefits from the availability of hardware description languages, which
streamline the application of systematic V&V techniques. No practical verifica-
tion tool exists for Python or C++, common languages for robotics code [24].
A novel contribution of this paper is the development of a CDV testbench specif-
ically for HRI; this implementation makes use of established open-source tools
where possible, while custom tools have been created as necessary to complete
and connect the testbench components (Test Generator, Driver, Checker and
Coverage Collector). Additionally, we outline the relevant background to ensure
robust implementation of CDV.

To demonstrate the feasibility and potential benefits of the method, we
applied CDV to an object-handover task, a critical component of a coopera-
tive manufacture scenario, implemented as a ROS and Gazebo2 based simulator.
1 http://www.ros.org/.
2 http://gazebosim.org/.

http://www.ros.org/
http://gazebosim.org/

Coverage-Driven Verification 71

Our automated testbench conveniently allows the actual robot code to be used
in the simulation. Model-based and constrained pseudorandom test generation
strategies form the Test Generator. A Driver applies the tests to the simulation
components. The Checker comprises assertion monitors, collecting requirement
coverage. The Coverage Collector, besides requirement, includes code coverage.

We verified selected safety and liveness (functional) requirements of the han-
dover task to showcase the potential of CDV in the HRI domain.

The paper proceeds with an overview of the CDV testbench components
and verification methodology in Sect. 2. The handover scenario is introduced in
Sect. 3, where we then present the CDV testbench we used to verify the code
that implements the robot’s part of the handover task. Section 4 discusses the
verification and coverage results for this example. Conclusions and future work
are given in Sect. 5.

2 Coverage-Driven Verification

2.1 Structure of a CDV Testbench

In CDV, a verification plan must be constructed before the testing process
begins [23]. This plan includes the aspects of the SUT that need to be verified,
e.g. a requirements list or a functional description of the SUT, and a cover-
age strategy. The coverage strategy indicates how to achieve effective coverage,
i.e. the exploration of the SUT and advancement of the verification progress,
through the design of the testbench components, especially the Test Generator,
the Checker and the Coverage Collector. The coverage strategy also specifies
how to measure the coverage, e.g. a requirements model or a functional model
to traverse.

In Testing, the SUT is placed into a test environment, a testbench. The test-
bench represents (a model of) the universe, or of its target environment. The
process of testing is realised using the following four core components in a test-
bench, as shown in Fig. 1:

Fig. 1. Structure of a basic CDV testbench

72 D. Araiza-Illan et al.

– the Test Generator is the component that generates stimulus for the SUT;
– the Driver is the component that takes a test, potentially at a high level of

abstraction, translates it into the level of abstraction used in the simulation,
and drives it to stimulate the SUT;

– the Checker is the component that checks the response of the SUT to the
stimulus and detects failures;

– the Coverage Collector is the component that records the quality of the
generated tests with respect to a set of complementing coverage models.

A key objective in the design of a CDV testbench is to achieve a fully autonomous
environment, so that verification engineers can concentrate on areas requiring
intelligent input, namely efficient and effective test generation, bug detection,
reliable tracking of progress and timely completion.

In the following sections we describe each testbench component in more
detail, explaining how they can be used for verification in robotics.

2.2 Test Generator

The test generator aims to exercise the SUT for verification (activation of faults),
while working towards full coverage. Test generators in CDV make use of pseudo-
random generation techniques. Using pseudorandom as opposed to random gen-
eration allows repeatability of the tests. The generated tests must be valid (realis-
tic, like a sensor input that reflects a valid scene). An effective set of tests includes
a good variety that explores unexpected conditions and addresses the scenarios
of interest as per the requirements list. An efficient set of tests maximises the
coverage and verification progress, whilst minimizing the number of tests needed.
To achieve the former while allowing for the latter, pseudorandom test gener-
ation can be biased using constraints. These constraints can be derived from
the SUT’s functional requirements or from the verification plan [23]. However,
supplying effective constraints requires significant engineering skill and applica-
tion knowledge. It is particularly difficult to generate meaningful sequences of
actions, whether these are transactions on the interface of a system-on-chip, or
interactions between humans and robots.

Constrained pseudorandom test generation can be complemented with model-
based techniques [10,16] to generate sequences that address specific use cases,
such as interaction protocols between human and robot in a collaborative man-
ufacturing environment. In model-based test generation, a model is explored or
traversed to obtain abstract tests, i.e. tests at the same level of abstraction as
the model. These abstract tests can serve as test templates, or constraints, for
tests that target specific behaviours [15,21]. For this, a model needs to be imple-
mented, e.g. one that captures the intended behaviours of the robot when inter-
acting with humans and/or its environment. In robotics, the degree of abstrac-
tion between such a model and the simulation often differs significantly compared
to that observed in microelectronics [22]. Many low-level implementation details
such as motion control, sensing models or path planning are abstracted from
(e.g., as in [25]) to keep these models within manageable size. For model-based

Coverage-Driven Verification 73

testing to be credible and effective, the correctness of the behavioural model
with respect to the robot’s code needs to be established. However, this is beyond
the scope of this paper.

2.3 Driver

The Driver is a fully automated component that translates a (potentially high-
level) description of a test into signal-level stimulus that can be applied to the
interfaces of the SUT in order to expose the SUT to the situation prescribed
by the test. The Driver may comprise an interacting network of modules corre-
sponding to the distinct interfaces of the SUT. The SUT reacts to the stimuli
provided on its interfaces. The Driver runs in parallel with the SUT and responds
to it, if necessary; i.e., the Driver can be reactive. The automation of the Driver
makes it feasible to execute batches of abstract tests, to accelerate testing.

In HRI, the Driver comprises a model of the human, a physics model, and com-
munication channels to represent any interactions that do not require detailed
physical simulation. For example, if the human element in the simulator is driving
the robot’s code, the Driver would execute the corresponding high-level action
sequence, one item at a time, by translating it into the respective sequence of input
signals, potentially passing through the physics model before exposing the signals
to the robot’s input channels.

2.4 Checker

The automation of test generation prompts the need for automatic and test inde-
pendent checkers, i.e. self-checking testbenches. Assertion-based verification [8]
allows locating checkers, in the form of assertion monitors, close to the code that
is being observed.

Requirements to verify can be expressed as Temporal Logic properties. Asser-
tion monitors can be derived automatically from these properties [12], in an
automata-based form. Since the simulations are time bound, some safety prop-
erties defined over infinite traces (e.g., using an always Temporal Logic operator)
are bound over the duration of a simulation run. Relevant work in [2] mentions
the advantages of the automatic generation of monitors as automata, including
the reduction of errors caused by manual translation.

For requirements about the low-level continuous behaviour of the SUT (e.g.,
trajectories computed by the motion planning), the monitoring can be performed
in a quasi-continuous manner, considering computational limitations. Other-
wise, over-approximations or interpolation can be performed to predict events
at instants of time between computations, such as the overlapping of regions in
the 3D space for collision avoidance.

2.5 Coverage Collector

Automatic test generation necessitates monitoring the quality of the tests to
gain an understanding of the verification progress. To achieve this, statistics

74 D. Araiza-Illan et al.

can be collected on the tests, the driven stimulus (external events), the SUT’s
response, and the SUT’s internal state, including assertion monitors. In general,
we distinguish between code coverage models and functional coverage models.
A comprehensive account on coverage can be found in [23].

The collected coverage data provides information on unexplored (coverage
“holes”) or lightly covered areas. Coverage closure is the process of identifying
coverage holes and creating new tests that address these holes. This introduces
a feedback loop from coverage collection/analysis to test generation, termed
Coverage Directed test Generation (CDG) [23]. Attempts have been made to
automate CDG using machine learning techniques [13]. However, CDG remains
a difficult challenge in practice.

In principle, coverage collection and analysis techniques can be transferred
directly into the domain of robotics verification. In fact, it is interesting to note
that functional coverage in the form of “cross-product” coverage [26], as widely
used in hardware design verification, has recently been proposed (independently)
for the verification of autonomous robots in [1], where it is termed situation
coverage and includes combinations of external events only.

2.6 CDV Methodology

In CDV, an iterative process of test generation, execution, coverage collection
and analysis is used to achieve coverage closure over several cycles. In practice,
engineering input is required to interpret the data and to guide test generation
towards closing coverage holes. This is either achieved simply by allowing further
pseudorandom tests to be generated, by adding constraints to bias test genera-
tion, by employing model-based test generation or, as a last resort, by directed
testing. If model-based test generation has already been applied, modifications
to the formal model may yield new tests.

It is important to note that further test generation is not always the only
appropriate response to a coverage hole or a requirement violation. The following
options should also be considered: (1) the SUT has a bug, to be referred to the
design team; (2) modifications to one or more of the requirements models (e.g.
assertions or formal properties) are needed to more accurately reflect the actual
requirements and/or design of the SUT; and/or (3) modifications to one or more
of the testbench components are needed. This third decision may be reached if
the tests and requirements models are deemed appropriate but the testbench
does not allow the SUT’s full range of functions to be exercised and observed.

3 CDV Implementation

A case study from a collaborative manufacture scenario is presented. We demon-
strate the transferability of CDV into the HRI domain by constructing a CDV
testbench for this case study using a combination of established open-source
tools and custom components. Our implementation showcases the potential of
CDV to verify robotic code used in HRI.

Coverage-Driven Verification 75

3.1 Case Study: Robot to Human Object Handover Task

Our case study is an object handover, a critical subtask in a broader scenario
where a robot (BERT2 [17]) and a person work together to assemble a table.
The handover starts with an activation signal from the person to the robot.
The robot then picks up an object, and holds it near the person. The robot
indicates it is ready for the person to receive the object. Then, the person is
expected to hold the object simultaneously, moving closer if necessary, and to
look at it — indicating readiness of the person. The robot collects data through
two different sensing systems: “pressure”, sensors that determine whether just
the robot, or simultaneously the robot and the person, are holding the object;
and “location” and “gaze” sensors, an ‘EgoSphere’ system that tracks whether
the human hand is close to the object and whether the human head is directed
towards the object [17]. Based on the sensors, the robot determines whether the
release condition is satisfied, and decides on a course of action: the robot will
release the object and allow the person to take it, if the human was ready; if
not, the robot will not release the object. The robot or human may disengage
from the task (look or move away). The sensors are considered perfect.

According to the handover task’s interaction protocol, a robot ROS ‘node’
was developed in Python, comprising 209 code statements. This node was struc-
tured as a state machine, using the SMACH modules [4], to facilitate modularity.
The states, with their transitions, can be enumerated as shown below. Each state
transitions to the next in sequence, except where indicated otherwise. The code
is also depicted as a flow chart in Fig. 5.

1. reset - The robot moves to its starting position, with gripper open.
2. receive signal - Read signals. If ‘startRobot’ is received, transition to move;

elseif timeout, transition to done; else, loop back to present state.
3. move - Plan trajectory of hand to piece. Move arm. Close gripper. Plan tra-

jectory of hand to human. Move arm.
4. send signal - Send signal to inform human of handover start.
5. receive signal - Read signals. If ‘humanIsReady’ is received, transition to

sense; elseif timeout, transition to done; else loop back to present state.
6. sense - Read sensors. If timeout, transition to done; elseif not all signals

available, loop back to present state; else, transition to decide.
7. decide - If all sensors are satisfied, transition to release; else, transition to

done (without releasing).
8. release - Open the gripper. Wait for 2 s.
9. done - End of sequence.

3.2 Requirements

Requirements were derived from ISO 13482:2014 and desired functionality of the
robot in the interaction [9]:

1. If the gaze, pressure and location are sensed as correct, then the object shall
be released.

76 D. Araiza-Illan et al.

2. If the gaze, pressure or location are sensed as incorrect, then the object shall
not be released.

3. The robot shall make a decision before a threshold of time.
4. The robot shall always either time out, decide to release the object, or decide

not to release the object.
5. The robot shall not close the gripper when the human is too close.

Requirements 1 to 4 refer to sequences of high-level events over time, whereas
Requirement 5 refers to a lower-level safety requirement of the continuous state
space of the robot in the HRI. Thus, the former can be both targeted with model-
based techniques and implemented as assertion monitors, whereas the latter is
only suitable for implementation as an assertion monitor.

3.3 CDV Testbench Implementation

ROS is a widely used open-source platform for the design of code for robots
in C++ and/or Python. ROS allows interfacing directly with robots. Gazebo
is a robot simulation tool designed for compatibility with ROS, that is able to
emulate the physics of our world. Thus, the combination ROS-Gazebo provides
a means of developing a robotic simulator, as shown in Fig. 2.

Fig. 2. BERT2 robot and a human, and the simulator in ROS-Gazebo

Figure 3 shows the structure of our CDV testbench implementation, incorpo-
rating the robot’s high-level control code. The Driver incorporates the Gazebo
physics simulator and the MoveIt!3 packages for path-planning and inverse kine-
matics of the robot’s motion. The human is embodied as a floating head and
hand for simplicity; in future, this representation can be replaced by one that is
anatomically accurate. The implementation in ROS ensures that assertion mon-
itors and coverage collection can access parameters internal to the robot code as
well as the external physics model and other interfaces, such as signals. Observ-
ability of the external behaviour allows validating the robot’s actions. In real
life experiments, this is equivalent to observing the robot’s physical behaviour
to see if its responses are as expected.
3 http://moveit.ros.org/.

http://moveit.ros.org/

Coverage-Driven Verification 77

Fig. 3. Testbench and simulator elements in ROS-Gazebo

3.4 Test Generator and Driver

Tests were generated pseudorandomly, by concatenating randomly selected ele-
ments from the set of high-level actions belonging to the handover workflow,
forming random action sequences and instantiating relevant parameters. These
randomized sequences represent environmental settings that do not necessarily
comply with the interaction protocol. Thus, pseudorandom action sequence gen-
eration produces stimulus that correspond to unexpected behaviours that were
not previously considered in the requirements. Posteriorly, constraints were intro-
duced to bias the pseudorandom generation to obtain tests that do comply with
the interaction protocol (e.g., enforcing particular sequences of actions).

The handover interaction protocol was formalized as a set of six automata,
in particular Probabilistic-Timed Automata (PTA) [11], comprising the robot,
the workflow, the gaze, the location, the pressure, and the sensors. Behaviours
of the different elements (e.g., protocol compliant actions to activate the robot
through signals) were abstracted in terms of state transitions and variable assign-
ments. The structure of the robot’s code guided the abstraction process, and the
abstraction was verified via bisimulation analysis [18].

Model-based test templates were obtained from witness traces (examples or
counterexamples) produced by model checking the product automaton [21].
These witnesses contain combined sequences of states from the different automata.
Requirements 1 to 4 (Sect. 3.2) were used to derive model-based test templates
that would trigger corresponding assertion monitors. We employed UPPAAL4, a
model checker for PTA that produces witnesses automatically. Projections over
these traces with respect to the workflow, gaze, location, pressure and sensors
automata remove the elements that correspond to the robot’s activities, to form
a test template. Based on these test templates, tests were generated pseudoran-
domly.

A test template for our simulator consists of a sequence of high-level actions
(workflow) to activate the robot expressed as a state machine. A test comprises,
besides the high-level actions, the pseudorandom instantiation of parameters,
4 http://www.uppaal.org/.

http://www.uppaal.org/

78 D. Araiza-Illan et al.

from well defined sets (e.g., ranges of values for gaze correct or gaze incorrect).
An example is shown in Fig. 4. The Driver produces responses in the physical
model in Gazebo, signals to be communicated to the robot, and sensor readings.

1 sendsignal activateRobot
2 setparam time = 40 This time instantiation produces
3 receivesignal informHumanOfHandoverStart a waiting time of 40 × 0.05 seconds.
4 sendsignal humanIsReady
5 setparam time = 10
6 setparam honTask = true
7 setparam hgazeOk = true Gaze instantiation for true: choosing offset,
8 setparam hpressureOk = true distance and angle, from ranges {[0.1, 0.2],
9 setparam hlocationOk = true [0.5, 0.6], [15, 40)}, e.g., (0.1, 0.5, 30)

Fig. 4. Example test from a test template, comprising high-level actions and some
parameter instantiations (time and gaze)

An example of a constraint for constrained pseudorandom generation is the
enforcement of the sequence of actions in lines 1 to 4 of Fig. 4, followed by any
other action sequence. This constraint ensures the immediate activation of the
robot, when a simulation starts.

An added benefit from the development of a formal model for test generation
is that this allows formal verification through model checking [5]. Formal veri-
fication can thus complement CDV. However, properties that hold for abstract
models must still be verified at the code level. Model checkers for code (e.g.,
CBMC5, Java PathFinder6) target runtime bugs in general, such as arrays out
of bounds or unbounded loop executions. These are, however, at a different level
than the complex functional behaviours we aim to verify. In [25], the runtime
detail is abstracted, giving way to high-level behaviour models where functional
requirements can be verified with respect to the model only.

3.5 Checker

Assertion monitors were implemented for all the requirements in Sect. 3.2.
Requirements 1 to 4 were translated first into CTL properties, and then automata-
based assertion monitors were generated manually. This process will be automated
in the future. For example, Requirement 1 corresponds to the property:

E <> sgazeOk ∧ spressureOk ∧ slocationOk ∧ releasedTrue.

The resulting monitor is triggered when reading a sensors signal indicating the
gaze, pressure and location are correct. Then, the automaton transitions when
receiving a signal of the object’s release. If the latter signal event happens within
a time threshold (3 s), a True result is reported. Finally, the automaton returns
to the initial state.
5 http://www.cprover.org/cbmc/.
6 http://javapathfinder.sourceforge.net/.

http://www.cprover.org/cbmc/
http://javapathfinder.sourceforge.net/

Coverage-Driven Verification 79

Requirement 2 corresponds to the CTL property:

E <> (sgazeNotOk ∨ spressureNotOk ∨ slocationNotOk) ∧ releasedFalse.

This monitor is triggered when any of the gaze, pressure or location are
incorrect in a sensing signal. Then, the automaton transitions to either a False
result when receiving a signal of the object’s release, or a True result if some time
has elapsed (2 s) and no release signal has been received. Finally, the automaton
returns to the initial state.

Requirement 5 refers to physical space details abstracted from our PTA
model, and it cannot be expressed as a Temporal Logic property. Hence, it
was directly implemented as an automaton-based assertion monitor. When the
robot grabs the object, it needs to make sure the human’s hand (or any other
body part) is at a distance. The monitor is triggered every time the code invokes
the hand(close) function, which causes the motion of the robot’s hand joints.
The location of the human hand is then read from the Gazebo model (the head
is ignored, since the model is abstracted to a head and a hand). If this location
is close to the robot’s hand (within a 0.05 m distance of both mass centres), the
monitor registers a False result, or otherwise True.

The monitors automatically generate report files, indicating their activation
time, and the result of the checks if completed.

3.6 Coverage Collector

We implemented two coverage models: code (statement) coverage and functional
coverage in the form of requirements (assertion) coverage. The statement cover-
age was implemented through the ‘coverage’7 module for Python. For each test
run, statistics on the number of executed code statements are gathered. The
assertion coverage is obtained by recording which assertion monitors are trig-
gered by each test. If all the assertions are triggered at the end of the test runs,
the testbench has achieved 100 % requirements coverage.

4 Experiments and Verification Results

The CDV testbench described in Sect. 3 was used (a) to demonstrate the benefits
of CDV in the context of HRI; (b) to obtain an insight into the verification
results, including unexpected behaviours or requirement violations; and (c) to
explore options to achieve coverage closure (from Sect. 2.6).

The requirements mentioned in Sect. 3.1 were verified using a CDV testbench
in ROS (version Indigo) and Gazebo (2.2.5), and through model checking in
UPPAAL (version 4.0.14), using the model we developed for model-based test
generation. We used a PC with Intel i5-3230M 2.60 GHz CPU, 8 GB of RAM,
running Ubuntu 14.04.
7 http://nedbatchelder.com/code/coverage/.

http://nedbatchelder.com/code/coverage/

80 D. Araiza-Illan et al.

Table 1 presents the assertion coverage for the handover, and the verification
results from model checking. In model checking, the requirements were verified
as true (T) or false (F). Through model checking, we were only able to cover
Requirements 1 to 4. From each of the model checking witnesses (test templates)
of Requirements 1 to 4, we generated a test (model-based generation). We also
generated 100 pseudorandom (unconstrained) tests, and 100 constrained pseudo-
random tests that enforced the activation of the robot as explained in Sect. 3.
We verified Requirements 1 to 5 in simulation, and recorded the results of the
assertion monitors: Pass (P), Fail (F), Not Triggered (NT), or Inconclusive (U)
when the monitor was triggered but the check was not completed within the sim-
ulation run. The same setup was used to compute both assertion and statement
coverage, allowing the comparison of the test generation strategies in terms of
coverage efficiency.

Table 1. Requirements (assertion) coverage and model checking results

Req. Model

checking

Simulation-based testing

Pseudorandom Constrained-pseudorandom Model-based

P F NT I P F NT I P F NT I

1 T 0/100 0/100 100/100 0/100 0/100 0/100 100/100 0/100 3/4 0/4 1/4 0/4

2 T 33/100 0/100 67/100 0/100 87/100 0/100 13/100 0/100 1/4 0/4 3/4 0/4

3 T 33/100 0/100 67/100 0/100 87/100 0/100 13/100 0/100 4/4 0/4 0/4 0/4

4 T 98/100 0/100 0/100 2/100 98/100 0/100 0/100 2/100 4/4 0/4 0/4 0/4

5 - 46/100 0/100 54/100 0/100 93/100 0/100 7/100 0/100 4/4 0/4 0/4 0/4

The results in Table 1 confirm our expectations for the different test gen-
eration strategies. For assertion-based functional coverage, pseudorandom and
constrained-pseudorandom test generation are less efficient than model-based
test generation, which triggered all five assertions with just four tests. Require-
ment 1 was not covered by either the pseudorandom or the constrained pseudo-
random strategy. If either of these strategies was used alone, the coverage hole
could potentially be closed by adding further constraints or by using a more
sophisticated test generation strategy such as model-based test generation.

The assertion monitor checks for Requirement 4 were inconclusive for some of
the pseudorandom and constrained-pseudorandom generated tests. This occurs
because in these tests the robot is activated long after the start of the handover
task (when the robot is reset and proceeds to wait for a signal). These tests do
not comply with the protocol which requires to activate the robot at the start
and within a given time threshold.

This coverage result could trigger different actions, e.g. the assertion monitor
could be modified to choose either pass or fail at the end of the simulation; the
Driver could be modified such that the simulation duration is extended; or, the
inconclusive checks could be dismissed as trivial, in which case the efficiency of
any further tests could be improved by directing them away from such cases.
As noted in Sect. 2.6, further test generation is not always the sole appropriate

Coverage-Driven Verification 81

response to a coverage hole. It is worth noting that this scenario was exposed
only by pseudorandom and constrained-pseudorandom test generation, demon-
strating the unique benefit of these approaches; by exploring the SUT’s behav-
iour beyond the assumptions of the verification engineer, they provide a useful
complement to the more directed approach of model-based test generation.

Figure 5 illustrates the code coverage (statements) achieved with each test
generation strategy over 206 statements (the actual percentages may vary ±2%
due to decision branches with 1 or 2 lines of code each). The lines of code
are grouped using the state machine structure in the Python module, to facili-
tate visualization. The block of code corresponding to the “release” state is not
covered by the pseudorandom and constrained pseudorandom generated tests,
hence it is shown in white. This coverage hole could be closed by applying the
test template produced by model-based test generation for Requirement 1.

Because our code is structured as a finite state machine (FSM), it would
be appropriate to also incorporate structural coverage models in the future.
A comprehensive test suite would include tests that visit all states, trigger all
possible state transitions, and traverse all paths.

(a) (b) (c)

Fig. 5. Code coverage (percent values) obtained in simulation with (a) model-based (4
tests), (b) pseudorandom (100 tests), and (c) constrained-pseudorandom test genera-
tion (100 tests)

The generation of effective tests, that target both the exploration of the SUT
and the verification progress, is fundamental to maximising the efficiency of a
CDV testbench reaching for coverage closure. From the overall results, it can
be seen that the three test generation approaches applied have complementary
strengths that overcome their respective weaknesses in terms of coverage. While
model-based test generation ensures that the requirements are covered in an
efficient manner, pseudorandom test generation can construct scenarios that the
verification engineer has not foreseen. Such cases are useful for exposing flawed
or missing assumptions in the design of the testbench or the requirements.

82 D. Araiza-Illan et al.

5 Conclusions

We advocated the use of CDV for robot code in the context of HRI. By promot-
ing automation, CDV can provide a faster route to coverage closure, compared
with manually directed testing. CDV is typically used in Software-in-the-Loop
simulations, but it can also be used in conjunction with Hardware-in-the-Loop
simulation, Human-in-the-Loop simulation or with emulation. The flexibility of
CDV with regard to the levels of abstraction used in both the requirements
models and the SUT makes it particularly well suited to verification of HRI.

The principal drawback of CDV, compared with directed testing, is the over-
head effort associated with building an automated testbench. Directed testing
produces early results, but CDV significantly accelerates the approach towards
coverage closure once the testbench is in place. Hence CDV is an appropriate
choice for systems in which complete coverage is difficult to achieve due to a
broad and varied state space that includes rare but important events, as is typ-
ically the case for HRI.

We proposed implementations of four automatic testbench components, the
Test Generator, the Driver, the Checker and the Coverage Collector, that suit the
HRI domain. Different test generation strategies were considered: pseudorandom,
constrained pseudorandom and model-based to complement each other in the
quest for meaningful tests and exploration of unexpected behaviours. Assertions
were proposed for the Checker, accommodating requirements at different levels
of abstraction, an important feature for HRI. Different coverage models were
proposed for the Coverage Collector: requirements (assertion), code statements,
and cross-product.

The potential for CDG (Coverage-Driven test Generation), through the imple-
mentation of automated feedback loops, has been considered. Nevertheless, we
believe a great part of the feedback work needs to be performed by the verifica-
tion engineer, since CDG is difficult to implement in practice.

A handover example demonstrated the feasibility of implementing the CDV
testbench as a ROS-Gazebo based simulator. The results show the relative merits
of our proposed testbench components, and indicate how feedback loops in the
testbench can be explored to seek coverage closure. Several key observations
can be noted from these results. Pseudorandom test generation allows a degree
of unpredictability in the environment, so that unexpected behaviours of the
SUT may be exposed. Model-based test generation usefully complements this
technique by systematically directing tests according to the requirements of the
SUT. This requires the development of a formal model of the system, which
additionally enables exhaustive verification through formal methods, as explored
by previous authors for HRI [3,6,14,19,20,25].

If the requirements are translated into Temporal Logic properties for model
checking, assertion monitors can be derived automatically. In future work, we
will be exploring generation of monitors for different levels of abstraction in the
simulation (e.g., events-based, or checked at every clock cycle) in a more for-
mal manner. We will further explore the use of bisimulation analysis to ensure
equivalence between a robot’s high-level control code and any associated formal

Coverage-Driven Verification 83

models. We intend to incorporate probabilistic models of the human, the envi-
ronment and other elements in the simulator, to enable more varied stimulation
of an SUT. We also intend to verify a more comprehensive set of requirements for
the handover task, e.g., according to the safety standard ISO 15066 (currently
under development) for collaborative industrial robots.

Our approach is scalable, as more complex systems can be verified using the
same CDV approach, for the actual system’s code. We are confident CDV can
be used for the verification and validation of autonomous systems in general.
Open source platforms and established tools can serve to create simulators and
models at different abstraction levels for the same SUT.

Acknowledgments. This work was supported by the EPSRC grants EP/K006320/1
and EP/K006223/1 “Trustworthy Robotic Assistants”.

We are grateful for the productive discussions with Yoav Hollander, Yaron Kashai,
Ziv Binyamini and Mike Bartley.

References

1. Alexander, R., Hawkins, H., Rae, D.: Situation Coverage - A Coverage Criterion
for Testing Autonomous Robots. Department of Computer Science, University of
York, Technical Report (2015)

2. Armoni, R., Korchemny, D., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: Deterministic
dynamic monitors for linear-time assertions. In: Havelund, K., Núñez, M., Roşu,
G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262, pp. 163–177.
Springer, Heidelberg (2006)

3. Bordini, R.H., Fisher, M., Sierhuis, M.: Formal verification of human-robot team-
work. In: Proceedings of ACM/IEEE HRI, pp. 267–268 (2009)

4. Boren, J., Cousins, S.: The SMACH high-level executive. IEEE Robot. Autom.
Mag. 17(4), 18–20 (2010)

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

6. Cowley, A., Taylor, C.J.: Towards language-based verification of robot behaviors.
In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4776–4782. IEEE (2011)

7. Eder, K., Harper, C., Leonards, U.: Towards the safety of human-in-the-loop robot-
ics: challenges and opportunities for safety assurance of robotic co-workers. In:
Proceedings of IEEE ROMAN, pp. 660–665 (2014)

8. Foster, H.D., Krolnik, A.C., Lacey, D.J.: Assertion-Based Design, 2nd edn.
Springer, Heidelberg (2004)

9. Grigore, E.C., Eder, K., Lenz, A., Skachek, S., Pipe, A.G., Melhuish, C.: Towards
safe human-robot interaction. In: Groß, R., Alboul, L., Melhuish, C., Witkowski,
M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 323–335.
Springer, Heidelberg (2011)

10. Haedicke, F., Le, H., Grosse, D., Drechsler, R.: CRAVE: an advanced constrained
random verification environment for System C. In: Proceedings of SoC, pp. 1–7
(2012)

11. Hartmanns, A., Hermanns, H.: A modest approach to checking probabilistic timed
automata. In: Proceedings of QEST, pp. 187–196 (2009)

84 D. Araiza-Illan et al.

12. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002)

13. Ioannides, C., Eder, K.I.: Coverage-directed test generation automated by machine
learning - a review. ACM Trans. Des. Autom. Electron. Syst. 17(1), 7:1–7:21 (2012)

14. Kouskoulas, Y., Renshaw, D.W., Platzer, A., Kazanzides, P.: Certifying the safe
design of a virtual fixture control algorithm for a surgical robot. In: Belta, C.,
Ivancic, F. (eds.) Proceedings of Hybrid Systems: Computation and Control
(HSCC), pp. 263–272. ACM (2013)

15. Lackner, H., Schlingloff, B.: Modeling for automated test generation a comparison.
In: Proceedings of MBEES Workshop (2012)

16. Lakhotia, K., McMinn, P., Harman, M.: Automated test data generation for cov-
erage: haven’t we solved this problem yet? In: Proceedings TAIC (2009)

17. Lenz, A., Skachek, S., Hamann, K., Steinwender, J., Pipe, A., Melhuish, C.: The
BERT2 infrastructure: an integrated system for the study of human-robot inter-
action. In: Proceedings of IEEE-RAS Humanoids, pp. 346–351 (2010)

18. Milner, R.: A Calculus of Communicating Systems. LNCS. Springer, Heidelberg
(1980)

19. Mohammed, A., Furbach, U., Stolzenburg, F.: Multi-robot systems: modeling, spec-
ification, and model checking. In: Robot Soccer, pp. 241–265 (2010)

20. Muradore, R., Bresolin, D., Geretti, L., Fiorini, P., Villa, T.: Robotic surgery. IEEE
Robot. Autom. Mag. 18(3), 24–32 (2011)

21. Nielsen, B., Skou, A.: Automated test generation from timed automata. Int. J.
Softw. Tools Technol. Transfer 5, 59–77 (2003)

22. Nielsen, B.: Towards a method for combined model-based testing and analysis. In:
Proceedings of MODELSWARD, pp. 609–618 (2014)

23. Piziali, A.: Functional Verification Coverage Measurement and Analysis. Kluwer
Academic, Boston (2004)

24. Trojanek, P., Eder, K.: Verification and testing of mobile robot navigation algo-
rithms: a case study in SPARK. In: Proceedings of IROS, pp. 1489–1494 (2014)

25. Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.L.,
Dautenhahn, K.: Formal verification of an autonomous personal robotic assistant.
In: Proceedings of AAAI FVHMS 2014, pp. 74–79 (2014)

26. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification. Morgan
Kaufmann, San Francisco (2005)

Symbolic Execution

PANDA: Simultaneous Predicate Abstraction
and Concrete Execution

Jakub Daniel and Pavel Paŕızek(B)

Department of Distributed and Dependable Systems,
Faculty of Mathematics and Physics,

Charles University in Prague, Prague, Czech Republic
{daniel,parizek}@d3s.mff.cuni.cz

Abstract. We present a new verification algorithm, Panda, that com-
bines predicate abstraction with concrete execution and dynamic analy-
sis. Both the concrete and abstract state spaces of an input program are
traversed simultaneously, guiding each other through on-the-fly mutual
interaction.Panda performs dynamic on-the-fly pruning of those branches
in the abstract state space that diverge from the corresponding concrete
trace. If the abstract branch is actually feasible for a different concrete
trace, Panda discovers the covering trace by exploring different data
choices. Candidate spurious errors may also arise, for example, due to over-
approximation of the points-to relation between heap objects. We elimi-
nate all the spurious errors using the well-known approach based on lazy
abstraction refinement with interpolants. Results of experiments with our
prototype implementation show that Panda can successfully verify pro-
grams that feature loops, recursion, and manipulation with objects and
arrays. It has a competitive performance and does not report any spurious
error for our benchmarks.

1 Introduction

Program verification techniques based on predicate abstraction and iterative
refinement have been the subject of extensive research. The set of popular
approaches includes counterexample-guidedabstraction refinement (CEGAR) [11]
and lazy abstraction with interpolants [1,16,18], which are implemented in tools
such asBlast [6] andCPAchecker [8]. Although these approaches are successful
in verifying programs with predominantly acyclic control-flow, programs contain-
ing loops with many iterations and programs with arrays pose a challenge to them.
The initial abstraction is usually too coarse to capture only the feasible executions
of a loop. Therefore, these kinds of approaches are forced to repeatedly refine the
abstraction and effectively unroll the loop. Many of the unrollings are incomplete,
and the corresponding traces are spurious because they exit the loop prematurely.

Each step of abstraction refinement is considerably costly because it usually
involves expensive SMT calls, and therefore use of refinement makes a verifi-
cation procedure rather inefficient in this setting. More recent techniques (e.g.,
Smash [14]) complement the abstraction refinement with some kind of under-
approximating analysis (e.g., testing) in order to rule out spurious traces and
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 87–103, 2015.
DOI: 10.1007/978-3-319-26287-1 6

88 J. Daniel and P. Paŕızek

to focus directly on the complete unrollings with proper number of loop itera-
tions. Some of the recent approaches, such as Dash [5] implemented in the tool
Yogi [20], in fact alternate between predicate abstraction and concrete execu-
tion. Tests always explore a feasible number of loop iterations, and therefore
spurious traces that would otherwise cause refinement are avoided, saving many
calls to SMT. In general, the combination of abstraction with testing preserves
the benefits of each approach while mitigating their respective weaknesses.

Example 1. Consider the small example program in Fig. 1. The function find-

Greater searches the array a of integer values and returns the index of the first
value that is greater than t. If no such value is present in a, then the length of the
array is returned instead. The program further contains a procedure main that
asserts the correct behavior of findGreater. The function loadUnknownArray creates
an array of arbitrary integer values with a statically given length and stores it
into the variable a. After the call of findGreater(a, 10), the procedure main asserts
the desired property of the returned value.

Fig. 1. Example program

Both CEGAR and lazy abstraction, as implemented for example in Blast [6],
would struggle analyzing the loop at lines 8–10 in Fig. 1 provided the array
was large enough. They would iteratively discover spurious traces that exit the
loop prematurely, and rule out the traces one by one in separate refinement
steps by deriving predicates that relate j to a specific constant. On the other
hand, approaches like Dash employ testing in order to find the correct number
of loop iterations. A run of a test always represents a feasible execution and
thus never yields spurious behavior. Furthermore, concrete execution is typically
cheap because it does not use expensive SMT calls.

Based on the same observations, we introduce a new technique that combines
predicate abstraction with concrete execution. We propose a verification algo-
rithm Panda, which performs abstract state space traversal that is augmented
with simultaneous concrete execution in order to eliminate spurious abstract
traces on-the-fly. The predicate abstraction and the concrete execution guide

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 89

each other during the traversal. Usage of concrete execution enables Panda
to faithfully capture the behavior of programs written in mainstream object-
oriented languages, and to support features of such programs that are hard
to model with abstraction predicates. It also allows Panda to prune infeasible
abstract traces that arise due to the overapproximating predicate abstraction,
and thus greatly reduces the number of necessary refinement steps.

The state space is constructed on-the-fly during the systematic traversal by
unrolling the control-flow graph of the program. In each state, all possible outgoing
transitions are determined using the overapproximate abstract information, and
then every transition is explored using both concrete and abstract execution. The
complete reachable state space of a given program is covered in this way.

Althoughpruning based on concrete execution eliminates some spurious traces,
it may not prune everything for two reasons: (1) consistency between abstract and
concrete executions is checked only locally, and (2) concrete execution still allows
for non-determinism (see Sect. 3). Therefore, the state space traversal procedure
may still report a spurious error. To address this problem, Panda uses the well-
knownapproach of lazy abstractionwith iterative refinement that is based on inter-
polants computed for the spurious counterexample [16].

In the case of our example program, Panda eliminates the traces that are
spurious due to an infeasible number of the loop body unrollings (at line 8)
without resorting to iterative refinement. The algorithm explores all the feasible
traces — more specifically, one trace returning from the function findGreater at
line 9 for every value of the index j between 0 and the length of the array a, and
one trace returning from findGreater through line 11.

We implemented the Panda approach in a tool with the same name. Unlike
most of the tools we target Java and not C. Panda builds on concrete state
space traversal provided by Java Pathfinder [25], and simultaneously computes
predicate abstraction in such a way that the systematic exploration of a concrete
state space and the predicate abstraction can interact. We also performed exper-
imental evaluation of Panda on small examples from our previous work [21] and
benchmarks taken from the Competition on Software Verification [26], and com-
pared its performance with other tools. Results show that the proposed approach
is promising — our prototype implementation has a competitive performance
and does not report spurious errors.

2 Preliminaries

Here we define more formally basic concepts that are used in the rest of this
paper, and the important terminology.

Program. We model programs using control-flow automata (CFA). A program
P is a tuple (C, linit, lerr), where C is a set of control-flow automata representing
individual methods in the program, linit is the initial location of the whole pro-
gram, and lerr is the error location. The control-flow automaton C for a method
m is a tuple (L,A, len) that encodes a directed graph with a single root node and
labeled edges. Nodes of the graph correspond to the set L of program locations

90 J. Daniel and P. Paŕızek

in the method m, and edges correspond to the set A of actions between locations.
An action a ∈ A from the location l to the location l′, written as (l, a, l′), is repre-
sented by a graph edge that is labeled with the program statement corresponding
to a. The location len ∈ L is the entry point of the method m. We use the sym-
bol vars(C) to denote the set of local variables that appear in statements that
correspond to actions of the control-flow automaton C.

The initial location linit of the whole program corresponds to the entry point
len of some method minit, which is modeled by Cinit ∈ C. Any two distinct
CFA’s may have only the error location lerr in common. It is the destination
location of every action that triggers a possible runtime error.

A program statement can be either an assume, an assignment, a procedure
call, or a return from the current procedure. The assume statements are used to
model the intra-procedural control flow, such as branching and loops. If there
are more actions defined at one location, they all have to be assume statements.
We allow only variables (fields, array elements) of an integer type and references
to heap objects.

Abstraction. The symbol abs denotes a global mapping from program locations
to sets of abstraction predicates. For a given location l, the set abs(l) contains all
predicates associated with the location l, i.e. the set of predicates whose scope
includes l.

States. A program state s is a pair (H,S), where H denotes the heap and S is
the call stack. The heap H is a directed graph. Inner nodes of the graph represent
objects, classes, and arrays. Leaf nodes are associated with the concrete values of
object fields and array elements that have an integer type. In general, edges in the
graph capture the points-to relation between heap objects, and associate objects
with values of their fields, respectively arrays with values of their elements. An
edge (o, f, v) connects a node that represents a heap object o with a node that
represents the possible value v of the field f . Similarly, an edge (o, n, v) connects
a node that represents an array object o with a node that represents the value
v of an element with the index n.

The call stack is a sequence of tuples (li, σi, Φi) that represent method frames.
The symbol li denotes the current program location within the corresponding
method, σi is the assignment of values to all local variables, and Φi is the val-
uation of all abstraction predicates in abs(li). Possible values of each predicate
are ⊥, �, and ∗ representing false, true, and unknown, respectively.

We assume that a program P has a single initial concrete state, and reads
input from the environment during its execution. The initial state s0 has an
empty heap and stack with a single frame. This frame contains the initial location
linit where the program execution starts, initial values σinit of local variables
in the scope of the entry CFA, and the initial valuation Φinit of abstraction
predicates (i.e., unknown). More formally, σinit = {v �→ 0 | v ∈ vars(Cinit)} and
Φinit = {p �→ ∗ | p ∈ abs(linit)}.

Reachability Graph. We use reachability graphs, defined over the set S of
program states and the set T of transitions between states, to model the program

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 91

behavior and state space. A reachability graph R(P) for the program P is a
possibly infinite directed graph R = (S, T). A transition τ ∈ T is an edge (s, a, s′)
labeled with action a in some CFA. We use a single monolithic reachability graph
for the whole program P . It is constructed inductively as fixpoint of a monotonic
sequence Ri, i ≥ 0 of finite approximations, which starts in R0 = ({s0} , {}). An
approximation Rk+1 extends Rk with a new state s′ and a transition τ = (s, a, s′)
such that s is a state already present in Rk but unexpanded and a is the action
executed by τ . The order of state expansions can be arbitrary, although we use
only the depth-first order in this paper for simplicity.

Note that R(P) is always specific to a given set of abstraction predicates.
The sets S and T , and therefore also the shape of the reachability graph, are
changed upon refinement. For brevity, we use the symbol R to denote a finite
approximation of R(P) in the rest of the paper.

Alternative Interpretations. Each statement of an input program P is exe-
cuted both concretely and abstractly. The abstract execution of a single state-
ment may give rise to multiple alternative interpretations.

The symbol alt(R, s, a) denotes the set {s′ | (s, a, s′) ∈ R} of all alternative
interpretations for an action a in the state s in R. The set contains all the
already explored transitions from s. Note that although in general there may be
infinitely many alternative interpretations of an action in any given state in the
entire R(P), e.g. interpretations of x = unknown(), the set alt(R, s, a) is always
finite for a given approximation R and it is initially empty.

The symbol alt∗ denotes the set of potential alternative interpretations that
will be expanded later (in future); it is initially defined as:

alt∗(s, a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∅ a is not an action at the current location of s in C
{s′} a is x = unknown() ; s ′is successor for x = 0

{s′
1, . . . , s

′
n} a is x = e ; s ′

i are successors for valuations of e

{s′} a is m(x) , or return x ; s ′ is the only successor
∅ or {s′} a is assume c ; s ′ augments s with the condition c

There are no interpretations defined for actions that are not enabled in the
given state. The initial interpretation of x = unknown() is such that x is assigned
the value 0. The interpretation of a regular assignment may not be deterministic
due to heap abstraction, e.g. in the case of x = a[i], and therefore we consider
the set of alternative interpretations to contain all the choices. Interpretation of
procedure calls and returns is straightforward and affects the call stack compo-
nent of a program state. The interpretation of an assume statement depends on
the valuation of the assumed condition c in the state s. If the fact is satisfiable
there is one interpretation s′, otherwise there is none.

The new alternatives to be expanded later are discovered on-demand, and
in the majority of cases only a small finite subset of alternatives needs to be
expanded. An expansion of an action a in s effectively moves the corresponding
interpretation s′ from alt∗(s, a) to alt(R ⊕ (s, a, s′), s, a). For convenience, we
define a set unexp(s) = {a | alt∗(s, a) �= ∅} of actions that are not completely

92 J. Daniel and P. Paŕızek

expanded. We assume the presence of a special unique state send, for which the
set unexp(send) is always empty.

Traces. An execution trace tr of the program P is a finite path in the reachability
graph R(P) that starts in s0 and can be viewed as an alternating sequence
of states and actions (s0, a1, s1, . . . , an, sn). Every such trace tr is associated
with a trace formula ϕtr that captures the execution of the program P along
the trace. The trace formula ϕtr is a conjunction of constraints that express
the semantics and effects of all executed statements (corresponding to actions
a1, . . . , an). Each constraint is defined using the static-single-assignment form.
We say that an execution trace tr is feasible if the corresponding trace formula
ϕtr is satisfiable. A trace tr that reaches the error state serr is called an error
trace or a counterexample.

3 PANDA Algorithm

We describe the core Panda algorithm in the first part of this section, and then
we provide more details on selected aspects in the following subsections.

The core algorithm is shown in Fig. 2. It takes a program P = (C, linit, lerr)
and the initial map abs as input, and constructs the monolithic reachability
graph R for P through iterative unrolling of control-flow graphs in the set C.
Note that the map abs is usually empty at the start, but the user can provide
some predicates for specific locations in this way. The reachability graph R is
iteratively unrolled in the function unroll by means of an overloaded function
advance and a dual function backtrack that carry out key steps of the search.
When the error location lerr is reached by the last transition τ ′, the Panda
algorithm checks feasibility of the counterexample cex. If the error is real then
it is reported to the user; otherwise Panda performs abstraction refinement in
order to eliminate the spurious counterexample and then restarts the state space
traversal. The verification of a program terminates when all the reachable states
are processed. This happens when Panda backtracks over the initial state s0
and the current trace tr becomes empty (line 4). Note also that the verification
algorithm does not perform state matching. Our definition of the verification
algorithm in Fig. 2 contains several other auxiliary functions (scopes, locs, and
itp) that are described later in this section, and also the function trans that
we first explain as a black box and then provide more details in Sect. 3.1.

The function trans(R, tr, s, a) performs simultaneous concrete and abstract
execution of a given action a in the state s at the end of the trace tr in R. It
returns some transition τ ′ = (s, a, s′) for some candidate successor state s′ ∈
alt∗(s, a). There is always at least one successor state, otherwise a /∈ unexp(s).
See Sect. 3.1 for more details on the selection of s′. New valuation of abstraction
predicates in s′ after the execution of the action a is computed using the standard
approach based on weakest preconditions and decision procedures. In addition,
the abstract interpreter uses knowledge of the abstract heap to determine more
precise valuation of predicates that capture aliasing between reference variables.
However, predicates that help maintain the aliasing relation among variables

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 93

Fig. 2. Panda algorithm

still have to be introduced through refinement. Effects of the action a on the
concrete part of the program state s are determined by concrete semantics of
the statement corresponding to a.

A non-deterministic choice in the state space is created when the result of
abstract execution of a given action a cannot be determined precisely using
information from the program state. Possible sources of non-determinism include
especially predicate valuations at branching statements (e.g., when the condition
is unknown) and overapproximating points-to relation due to weak update. The
effect of an assignment to a reference variable is modeled by weak update when-
ever the destination cannot be determined precisely, and in that case the variable
may point to multiple heap objects. When processing an access to array, Panda
can make choices at two levels to consider all the possibly affected elements and
values — first it has to determine all concrete indices that satisfy constraints
encoded by abstraction predicates, and then for each index it has to find all the
array element values based on the points-to relation.

When executing a procedure call,Panda computes initial valuation of abstrac-
tionpredicates of the new stack frame (i.e., in the callee scope) usingpredicates over
the actual arguments of the call. Upon return, valuation of abstraction predicates
in the scope of the caller procedure is updated using valuation of predicates over
the actual arguments of a reference type and predicates over the returned value.

94 J. Daniel and P. Paŕızek

New abstraction predicates are derived from a spurious counterexample cex
in the function refine by the means of interpolation. We use a variant of the
standard approach based on computing an interpolation-sequence [23] over the
trace formula ϕcex. The trace formula is obtained as a conjunction of clauses that
encode individual statements, heap manipulation (via read and write), and the
non-deterministic choices made during their execution (e.g., choice of a concrete
array index when processing statements like x = a[i]). In our case, interpolants are
generated separately for each method call in ϕcex. To ensure a proper scope of
interpolants within each individual method call on the given trace, Panda uses
a procedure similar to nested interpolants [15]. The function scopes divides the
whole trace formula ϕcex into many fragments, where each of them corresponds
to the scope of execution of some method call. The function locs returns a list
Lscp of locations that appear in the given fragment of the trace formula, i.e. in the
corresponding scope. Note that if a method m is executed several times in cex,
then the function scopes will return a separate fragment ϕscp for each execution
of m, and similarly a location can appear multiple times in Lscp (e.g., due to a
loop in the code). Actual interpolants for every fragment ϕscp are computed by
the function itp(ϕscp, ϕcex, l), which calls an interpolating solver. This approach
respects method call boundaries and variable scopes. In particular, interpolants
generated for locations inside a method m contain only symbols that represent
local variables of m.

3.1 Dynamic Pruning and Discovery of Feasible Covering Paths

A consequence of the simultaneous concrete and abstract execution is that a
transition may reach an inconsistent combined state. This situation occurs when
an action a allows for non-deterministic expansion, i.e. when the abstract pre-
state s induces multiple alternative interpretations in alt∗(s, a), while there is
usually a single successor in the concrete state space. In such a case, the concrete
successor is consistent only with one of the abstract successors.

Figure 3 illustrates dynamic pruning and discovery of feasible covering paths,
the strategy that we propose for resolving such situations. The function
transpruning is the implementation of trans from Sect. 3. First, at line 2, it
selects and executes one interpretation of action a in the state s (there must be
at least one due to the check at line 24 in Fig. 2) and marks it as processed at
line 4. Further, if the abstract part of s′ overapproximates the concrete part, i.e.
when there are no inconsistencies, the function returns a transition leading to s′.
Otherwise, Panda is bound to prune the current trace by returning transition
to send at line 10, because the currently analyzed interpretation is not consis-
tent. Then the main algorithm is forced to backtrack in the next iteration, i.e.
in the next call to unroll. However, there may still exist a concrete trace that
captures different values returned by the unknown statements and conforms to
the same abstract trace. Its existence is checked at lines 6 and 7 by means of
generating a model for the related trace formula, and the corresponding branch
will be explored by Panda under a different combined trace in R. Although we
omit this from the pseudocode of trans in Fig. 3, when Panda searches for the

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 95

Fig. 3. The implementation of trans within Panda

alternative concrete trace, it first tries to reuse the already discovered values
that were returned in statements x = unknown() (in order to minimize backtrack-
ing) and only then it explores new models. Panda extracts new interpretations
(i.e., new values of all unknown statements) from the model and adds them into
respective sets alt∗, so that they are explored later (line 9). Here the operator
· [x ← e] produces a state that differs from its operand only in valuation of
the variable x, which is fixed to the value e. Note that a single value returned
by some unknown may prevent further execution of a trace in combination with
specific values of other unknown statements along the trace, and it may permit
the execution in combination with different values.

Example 2. Now consider the situation depicted in Fig. 4 that illustrate the
whole process. On the left, there is a short code snippet, which first stores a
non-deterministic value into the variable x and then compares this variable with
the constant 1. The rest of the figure shows combined concrete and abstract
traces that are explored by Panda during analysis of the code snippet. Dashed
circles represent abstract states, solid dots represent concrete states, tubes depict
abstract transitions, and finally solid arrows stand for concrete transitions. Each
state label always applies to both the concrete and abstract part of a state, and
the same is true for transitions.

The process of pruning inconsistent traces and discovering feasible alternative
traces that cover the pruned behavior is divided into three phases. Each of the
phases is illustrated with a subfigure to the right of the code snippet in Fig. 4.

Phase 1. Panda expanded the action b corresponding to x = unknown() in state
s1 to produce the transition τ1 and reach the state s2. The default interpretation
of b is equivalent to x = 0 (recall the definition of alt∗). At this point, the then-
branch is selected first and trans(R, tr, s2, assume x > 1) yields the state s′, which
is not consistent because the abstract state satisfies x > 1 while the concrete
state assigns 0 to x. This is the reason why the solid dot is not included in the
dashed circle for the state s′, and therefore the solid arrow leaves the tube —
representing the inconsistency between concrete and abstract interpretation of

96 J. Daniel and P. Paŕızek

Fig. 4. On-the-fly discovery of feasible covering paths

the action a in the state s2. However, a different interpretation of b in s1 exists
that would produce a consistent transition. It is extracted from the model of
ϕ(s1,b,s2,a,s′). We suppose, for the purpose of the example, that the discovered
interpretation of b is equivalent to x = 2, although many other integer values
could be returned from unknown(). The new interpretation is added to the set
alt∗(s1, b) before trans returns send and forces Panda to backtrack to s1.

Phase 2. After the backtrack, b ∈ unexp(s1) as it was reintroduced in the previ-
ous phase, and so it is selected for expansion. In the middle subfigure, the alterna-
tive interpretation s′

2 of the action b is expanded by Panda in trans(R, tr, s1, b).
As a result, the state s′

2 is added to the reachability graph R.

Phase 3. The search now continues from s′
2. In the right-most subfigure, trans

explores the interpretation of a in state s′
2. This time, it is consistent and yields

the transition τ ′
2 and the state s′′. Thus the abstractly reachable then-branch

is covered also by the concrete execution, although first it has been discovered
with a concrete trace that had no feasible extension entering the branch.

In general, dynamicpruning eliminatesmany infeasible traces fromtheabstract
state space based on the knowledge of concrete states. That is an important benefit
of the simultaneous concrete and abstract execution. Note, however, that usage of
pruning does not guarantee that all the infeasible abstract branches are eliminated,
because it handles only choices introduced by actions that read non-deterministic
values. Although only the feasible concrete execution traces will be explored for
many input programs, iterative abstraction refinement still may be necessary in
the case of choices caused by non-determinism of other kinds (e.g., imprecise heap
abstraction).

3.2 Soundness and Termination

In this section, we discuss soundness of the proposed Panda algorithm, and why
it may not terminate in general. We show that dynamic pruning and discovery
of feasible covering paths is sufficient to guarantee exploration of all the feasible
behaviors of the given program.

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 97

We say that a reachability graph R is complete if every reachable state of
the program P is directly contained in R, and that R is precise if it does not
contain a spurious trace reaching serr.

The proof of soundness of our verification procedure Panda is based on the
following theorem.

Theorem 1. The program P is safe if and only if the error state serr is not
contained in a complete and precise reachability graph R constructed for P .

Proof. We show the two directions of the equivalence separately for some com-
plete precise reachability graph R for P .

⇐) The state serr is not in R, and since R is complete it contains all the reachable
states of P . Therefore, serr is not reachable in P and by definition P is safe.

⇒) Assume that P is safe. Then, serr is unreachable in any execution of P , and
any abstract trace reaching serr is spurious. Because the given R is precise, it
cannot contain spurious abstract trace reaching serr and thus serr is excluded
from R. ��
What remains to be shown is that when Panda does not report an error

in P , it either terminates with a complete precise reachability graph R(P) or
does not terminate at all. Precision of R follows from the abstraction refinement
step of the main algorithm. Panda either does not terminate or there are finitely
many refinement steps, and thus the resulting reachability graph may not contain
spurious error traces and it is precise.

Now assume that Panda terminates on P and the reachability graph R is
not complete, i.e. there is a reachable state s of P that is not contained in R. In
that case, there must be a trace tr from s0 to s and a state

◦
s that is the first

state on that trace not contained in R. Let (
•
s, a,

◦
s) be the transition reaching

◦
s

on the trace tr for the first time, which means that
•
s ∈ R. The only reason for a

consistent reachable state
◦
s to be excluded from R is that it was never included

in alt∗(
•
s, a). Since the heap abstraction and computation of abstract succes-

sors are overappoximating, the sets of alternative interpretations for assignment
statements, branching, looping, function calls, and returns are overappoximating
as well, and they never exclude any abstractly reachable successor unless it is
pruned. Every abstract successor that is being pruned is analyzed (lines 6–9 in
Fig. 4) for feasibility and appropriate enabling interpretations of actions along
the trace are added to alt∗, so that they can be explored later. Consequently, if
the algorithm terminated without processing the alternative that reaches

◦
s, it

could not have been feasible and R is, in fact, complete.

Theorem 2. Panda soundly verifies safety of programs.

Proof. Follows directly from the discussion above. ��
The whole Panda algorithm may not terminate. The reachability graph may

be infinite due to unbounded loops and recursion that admit infinite number of
concrete traces of different lengths. Also, the abstraction refinement loop may
diverge for input programs with possibly infinite state spaces [16].

98 J. Daniel and P. Paŕızek

4 Implementation

We implemented the proposed verification algorithm in the tool called Panda,
which is built upon Java Pathfinder (JPF) [25] and accepts programs in Java.
JPF is responsible for concrete execution of Java bytecode instructions and sys-
tematic traversal of the concrete state space, and it also provides concrete values
taken from dynamic program states. Predicate abstraction and lazy refinement
are performed with the help of SMT solvers. The current version of Panda
uses CVC4 [4] and Z3 [19]. The complete source code of our implementation,
including examples and benchmark programs, is available at https://github.
com/d3sformal/panda.

In the rest of this section, we describe several optimizations of the core algo-
rithm in Fig. 2 that apply to the restart of state space traveral after refinement.

The basic variant of the function reset backtracks to the initial state, and
drops all information about the state space fragment explored before the spuri-
ous error was hit. However, in this case Panda would explore again the fragment
of the program state space that has already been proven safe. A more efficient
approach, heavily inspired by lazy abstraction [16] used in Blast [6], is the fol-
lowing: (1) determine which locations and states on the spurious error trace are
affected by the refinement, (2) backtrack only to the last state of the longest
unaffected prefix of the error trace, and (3) then resume state space exploration
from that point with the refined abstraction. Location l is affected by the refine-
ment when new predicates were added to abs(l).

Another limitation of the basic Panda algorithm is repeated exploration of
certain safe fragments of the program state space. We designed an optimization
that is based on recording information about explored state space branches.
During the traversal, Panda remembers all safe branches for each choice on the
current trace, and when the traversal resumes with the more precise abstraction
it skips the recorded branches.

5 Evaluation

We performed experiments on three groups of Java programs in order to evaluate
Panda. A brief description of each group of benchmarks follows.

The first group contains 7 benchmarks from the categories loops and arrays
of the Competition on Software Verification (SV-COMP) [26]. Four benchmarks
in this group (Array, Invert String, Password, and Reverse Array) use arrays
whose content is based on non-deterministic input, Eureka 01 computes aggre-
gate properties of data structures based on the values of corresponding elements
of multiple arrays, TREX 03 involves loops with a possibly large number of iter-
ations but without a single explicit control variable, and the benchmark Two
Indices maintains a relation over array elements at different indices. We had to
translate all of them from C into Java, and we also reduced the sizes of arrays
in both language variants, because the current version of Panda is not yet opti-
mized for programs with large arrays.

https://github.com/d3sformal/panda
https://github.com/d3sformal/panda

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 99

The second group contains 4 example programs that we used in previous
work [21], namely Data-flow Analysis, Cycling Race, Image Rendering, and
Scheduler. These benchmark programs are more realistic; they involve manipu-
lation with arrays (sorting), field accesses on heap objects, and loops.

The third group contains variants of two benchmarks from the CTC reposi-
tory [24]: Alarm Clock and Producer-Consumer. We translated the original con-
current programs into sequential programs using an approach similar to context-
bounded reduction [22].

As the benchmark programs in the second and third group are relatively
larger, we used them to find whether Panda is competitive in terms of scalability.
Note also that source code of all the programs contains assertions but the cor-
responding error states are not reachable.

We ranPanda and selected other tools – namelyBlast [6],CPAchecker [8],
Ufo [1], and Wolverine [17] – on all the benchmark programs in order to find
whether our proposed approach is competitive with respect to the ability of ver-
ifying program safety and the running time. We used CPAchecker in the ver-
sion from SV-COMP’15, Blast and Ufo in the versions from SV-COMP’14, and
Wolverine from the year 2012. Table 1 contains results of the experiments.

For Panda, we report the total running time (t), size of the reachable state
space (|S|), number of refinement steps, maximum number of abstraction pred-
icates at some location, and the total number of satisfiability queries executed
by Panda. For the other tools, we report only the total running time in case the
respective tool provided a correct answer. Other possible outcomes are expressed
by specific symbols. We use the symbol ✗ to denote that a tool reported a spuri-
ous error (i.e., a wrong answer), the symbol ? to indicate that a tool says “don’t

Table 1. Experimental results and comparison with other tools

Benchmark Panda Blast CPA Ufo Wolverine

t |S| #ref |abs| #sat

Array 4 s 38 0 7 1802 2 s 2 s 1 s 1 s

Eureka 01 23 s 741 0 53 11462 ✗ ? ✗ timeout

TREX 03 21 s 1425 0 9 14371 ✗ ✗ 1 s 1 s

Invert String 6 s 126 0 18 2728 ✗ 6 s ✗ 9 s

Password 22 s 870 0 19 12837 23 s 3 s ✗ 4 s

Reverse Array 5 s 135 0 18 2358 ✗ 3 s ✗ 3 s

Two Indices 4 s 55 0 15 1921 ✗ 2 s ✗ 1 s

Data-flow Analysis 379 s 508 0 64 8159 ? ? ✗ ✗

Cycling Race 5 s 87 0 28 2151 6 s 3 s 2 s 2 s

Image Rendering timeout - 44 s - ✗

Scheduler 5 s 108 0 35 2185 ? 4 s ✗ 4 s

Alarm Clock 970 s 21200 0 20 87628 ? ✗ ✗ -

Producer-Consumer timeout ? ✗ - ✗

100 J. Daniel and P. Paŕızek

know”, and the character “-” when a tool fails for some other reason (e.g., miss-
ing support for a particular language feature). We put the limit of two hours on
the running time for all experiments.

The results show that Panda did not have to perform abstraction refinement
in the case of all our benchmarks for which verification finished before the time
limit. In addition, Panda did not report a spurious error for any benchmark
program, unlike some of the other tools. This observation supports our claim
that simultaneous abstract and concrete execution is very precise and avoids
spurious behaviors.

Regarding performance, the results are mixed — Panda is faster than other
tools for some of the programs and slower in other cases, but its running times
are competitive for all the benchmarks. Data for the benchmarks Alarm Clock,
Image Rendering, and Producer-Consumer show that Panda has limited scal-
ability, but the other tools failed on these benchmarks with the exception of
CPAchecker on Image Rendering. By manual inspection of execution logs, we
found the following main reasons for the long running times and state explosion
in the case of these three programs.

1. Each trace contains many non-deterministic data choices (unknown state-
ments) for which multiple concrete values have to be explored.

2. Some of the more complex SMT queries executed byPanda, in particular those
used to derive new return values for unknown statements, take a very long time
to answer — for example, even up to 200 seconds in the case of Image Rendering.

On the other hand, Panda successfully verified the programs Alarm Clock, Data-
flow Analysis, and Eureka 01, for which all the other tools failed or reported a
wrong answer.

6 Related Work

Many verification techniques based on the CEGAR principle [11] have been
proposed in the past. However, we are not aware of any existing approach that
combines abstraction with concrete execution in the same way as Panda does.
We provide details about selected techniques and highlight the main differences.

The Panda algorithm extends the approach to lazy predicate abstraction,
which was originally proposed by Henzinger et al. [16] and implemented in
Blast [6]. Simultaneous combination of abstraction with concrete execution
allows Panda to prune many infeasible execution paths and spurious errors on-
the-fly during the state space traversal, thus avoiding many expensive steps of
abstraction refinement. In the more recent work of McMillan [18] and Alberti
et al. [3], lazy abstraction is done using only interpolants without predicate
abstraction, but in this case it is more difficult to check whether a given state
was already covered during traversal. Ufo [1] is another verification technique
that combines abstraction, unrolling of a control flow graph, and interpolants.
It captures multiple error traces with a single formula in order to reduce the
number of necessary refinement steps.

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 101

CPAchecker [8] is a tool that performs multiple custom analyses simul-
taneously, using the framework proposed by Beyer et al. [7]. For example, it
enables users to combine predicate abstraction with shape analysis. The defini-
tion of each program analysis consists of an abstract domain, transfer relation,
merge operator, and an operator that performs the covering check. It might be
possible to implement the Panda algorithm in CPAchecker, assuming that
different analyses can exchange the necessary information during a run of the
tool. Concrete execution would have to be expressed as one of the analyses.

Charlton [9] proposed another framework that supports combination of multi-
ple analyses and verification techniques. The analyses are executed in steps by the
overall worklist algorithm. In each iteration, they exchange computed facts about
the program behavior using logic formulas, and they can also query each other.

The Dash algorithm [5] combines testing with abstraction in an iterative
manner to achieve better precision and performance. In each iteration, it explores
the current abstract state space in order to search for a possible error trace.
Then, if there is an abstract error trace, Dash attempts to find a corresponding
concrete trace by creating and running new tests. Based on their results, it can
either confirm the presence of a real error or extend the current forest of tests.
Only when such a test cannot be found, the abstraction is refined by predicates
that are derived from the first infeasible transition on the given error trace. Like
in the case of Panda, use of concrete execution (testing) saves many refinement
steps and helps to avoid many SMT queries, especially if the input program
contains loops with many iterations. The main difference is that Dash performs
the individual phases, i.e. concrete execution and changes of the abstraction,
consecutively (in turns), while Panda unrolls the reachability graph on-the-
fly using both concrete execution and predicate abstraction simultaneously (in
tandem). This enables Panda to refine multiple regions of the abstraction in
each iteration, achieving faster convergence.

Smash [14] combines may analysis (abstraction) with must analysis (concrete
execution in the form of dynamic test generation) using a compositional approach
based on procedure summaries. In each step, it can update either the may sum-
mary of some procedure or the must summary, but not both of them simulta-
neously. The key feature of Smash is the alternation (interplay) of testing and
abstraction such that intermediate analysis results are exchanged between the
two. Both theDash and Smash algorithms are implemented in theYogi tool [20].

Panda resembles also mixed symbolic and concrete execution, implemented
in tools such as DART [13] and KLEE [10]. However, in Panda the concrete
execution and predicate abstraction are performed simultaneously in such a way
that they guide each other, while in DART, for example, they do not interact
during the traversal of one path. In addition, Panda uses predicates that are
more expressive than path constraints in DART, because it generates new predi-
cates by applying interpolation to trace formulas (i.e. not just by extraction from
the program code). It is also more efficient because it can prune several infeasible
paths in one step. The main practical limitation of symbolic execution is that
users must put a bound on the number of explored paths and their depth. Tools

102 J. Daniel and P. Paŕızek

based on this approach are therefore used mainly for dynamic test generation
and bug hunting, while Panda can explore all paths in the reachability graph
of a given program to check whether it is safe.

Some work has been done also on combining symbolic execution with predi-
cate abstraction and iterative refinement. The approach proposed by
Albarghouthi et al. [2] uses symbolic execution to explore the underapproxi-
mation of a program behavior, and in each iteration checks whether the abstract
model created by symbolic execution is also an overapproximation of the con-
crete state space. Abstraction refinement is performed to add new predicates
that would enable the verification procedure to cover more feasible execution
paths.

7 Conclusion

In this paper we presented the Panda algorithm that combines predicate abstrac-
tion with simultaneous concrete execution. Dynamic pruning, the method that
we proposed for solving inconsistencies between concrete and abstract execution,
eliminates many spurious execution paths on-the-fly. A consequence of this com-
bination is a higher analysis precision that allows Panda to keep the number
of necessary refinement steps to a minimum. Specifically, Panda did not have
to perform abstraction refinement for any of the benchmark programs that we
used in our experiments.

In future, we plan to optimize our prototype implementation and we would
also like to use a different abstract representation of the program heap. Our long
term goals include support for data containers, concurrency, and predicates over
data shared between threads, most probably through adaptation of some already
known techniques [12,21].

Acknowledgements. This work was partially supported by the Grant Agency of
the Czech Republic project 13-12121P and by Charles University institutional funding
SVV-2015-260222.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-
approximations and back. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 157–172. Springer, Heidelberg (2012)

2. Albarghouthi, A., Gurfinkel, A., Wei, O., Chechik, M.: Abstract analysis of sym-
bolic executions. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol.
6174, pp. 495–510. Springer, Heidelberg (2010)

3. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstrac-
tion with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18
2012. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012)

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

5. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
Proceedings of ISSTA. ACM (2008)

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 103

6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST. STTT 9(5–6), 505–525 (2007)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

8. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011)

9. Charlton, N.: Program verification with interacting analysis plugins. Form. Aspects
Comput. 19(3), 375–399 (2007)

10. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of OSDI.
USENIX (2008)

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
154–169. Springer, Heidelberg (2000)

12. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg
(2011)

13. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of PLDI. ACM (2005)

14. Godefroid, P., Nori, A., Rajamani, S.K., Tetali, S.: Compositional may-must pro-
gram analysis: unleashing the power of alternation. In: Proceedings of POPL. ACM
(2010)

15. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Proceedings of
POPL. ACM (2010)

16. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of POPL. ACM (2002)

17. Kroening, D., Weissenbacher, G.: Interpolation-based software verification with
Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 573–578. Springer, Heidelberg (2011)

18. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

19. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

20. Nori, A.V., Rajamani, S.K., Tetali, S.D., Thakur, A.V.: The Yogi project: software
property checking via static analysis and testing. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009)

21. Parizek, P., Lhotak, O.: Predicate abstraction of java programs with collections.
In: Proceedings of OOPSLA. ACM (2012)

22. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: Proceedings of PLDI.
ACM (2004)

23. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: Pro-
ceedings of FMCAD. IEEE (2009)

24. Concurrency Tool Comparison. https://facwiki.cs.byu.edu/vv-lab/index.php/
Concurrency Tool Comparison

25. Java Pathfinder. http://babelfish.arc.nasa.gov/trac/jpf
26. Competition on Software Verification. http://sv-comp.sosy-lab.org/2015/

https://facwiki.cs.byu.edu/vv-lab/index.php/Concurrency_Tool_Comparison
https://facwiki.cs.byu.edu/vv-lab/index.php/Concurrency_Tool_Comparison
http://babelfish.arc.nasa.gov/trac/jpf
http://sv-comp.sosy-lab.org/2015/

TSO to SC via Symbolic Execution

Heike Wehrheim and Oleg Travkin(B)

Institut für Informatik, Universität Paderborn, 33098 Paderborn, Germany
{wehrheim,oleg82}@uni-paderborn.de

Abstract. Modern multi-core processors equipped with weak memory
models like TSO exhibit executions which – due to store buffers – seem-
ingly reorder program operations. Thus, they deviate from the commonly
assumed sequential consistency (SC) semantics. Analysis techniques for
concurrent programs consequently need to take reorderings into account.
For TSO, this is often accomplished by explicitly modelling store buffers.

In this paper, we present an approach for reducing TSO-verification of
concurrent programs (with fenced or write-free loops) to SC-verification,
thereby being able to reuse standard verification tools. To this end, we
transform a given program P into a new program P ′ whose SC-semantics
is (bisimulation-) equivalent to the TSO-semantics of P . The transforma-
tion proceeds via a symbolic execution of P , however, only with respect
to store buffer contents. Out of the thus obtained abstraction of P , we
generate the SC program P ′ which can then be the target of standard
analysis tools.

1 Introduction

With the advent of multi-core processors we recently see new types of bugs
in concurrent programs coming up1. These bugs are due to the weak memory
semantics of multi-core processors, which in their architectures are streamlined
towards high performance. In executions of concurrent programs, weak memory
causes program statements to seemingly be executed in an order different from
the given program order. TSO (total store order) is one such weak memory
model (of the x86 processors [18]), incorporating characteristics common to a lot
of other weak memory models. On the contrary, concurrent executions adhering
to program order are said to be sequentially consistent (SC) [14].

As concurrent programs are today executed on multi-cores, analysis tech-
niques for concurrent software need to be based on weak memory semantics.
This is often accomplished by an explicit modelling of store buffers, which are
the cause of statement reordering. Store buffers are attached to cores, and values
of variables shared among processes are first written to the corresponding store
buffer before being flushed to main memory. Thereby, a read operation following
a write may seem to overtake it from the point of view of other process. Analy-
sis techniques employing store buffer modelling are for instance model checking
1 See e.g. T. Lane. Yes, waitlatch is vulnerable to weak-memory-ordering bugs, http://

www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us, 2011.

c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 104–119, 2015.
DOI: 10.1007/978-3-319-26287-1 7

http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us
http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us

TSO to SC via Symbolic Execution 105

approaches [19,23], predicate abstraction [11], or interactive proving [20]. The
modelling of store buffers does, however, impose a non-neglectable overhead on
the analysis, might it be automatic, supported by theorem provers or manual.

In this paper, we propose an approach for reducing TSO analysis (i.e., analy-
sis of concurrent programs taking the TSO semantics into account) to SC analy-
sis. The technique is applicable to all programs with fenced or write-free loops,
i.e., programs in which all loops contain at least one fence operation (memory
barrier), or alternatively have no write operations in loops. While this seems
rather restrictive, a lot of concurrent algorithms already possess this property,
e.g., concurrent data structures using compare-and-swap operations (acting as
fences) in loop conditions. Our approach proceeds by translating a program P
into a program P ′ such that P ’s TSO semantics is bisimilar to P ′’s SC semantics.
Like [5], the approach closest to ours, the additional condition (fenced or write-
free loops) guarantee finite (though a priori unknown) store buffer sizes during
execution. Unlike [5], we however only need few additional program variables in
the constructed program P ′, and these are furthermore all local to processes.
As a result, our technique is compositional in that it separately translates the
programs of processes in a parallel composition.

The translation proceeds via a sort of symbolic execution of P [17] which
constructs an abstraction of P symbolically tracking store buffer contents. This
abstraction is transformed into a new program P ′ (by an approach for program
generation out of abstract reachability graphs [22]). For the generated program
we can afterwards re-use established analysis techniques and tools for SC. To
show the practicability of our approach, we apply the technique to four mutual
exclusion algorithms and two concurrent data structures, which we translate into
an SC version and give to the model checker SPIN [13]. In almost all cases, it
can be seen that the number of states generated by SPIN is reduced when going
from a TSO version with explicit store buffer modelling to our SC version.

The paper is structured as follows. We start with a short introduction to
weak memory models and the reorderings they generate. We will then proceed
with defining the syntax and semantics of single processes, both for TSO and
SC. On the semantic domain, we define our notion of equivalence (of programs
viz. their executions). Sections 4 and 5 explain the transformation of a program
into an SC form. We report on experimental results in Sect. 6 and discuss related
work in Sect. 7. Section 8 concludes.

2 Weak Memory Reorderings

Weak memory models describe the semantics of concurrent programs when exe-
cuted on multi-core machines. In general, the execution of memory instructions
on the TSO memory model involves the usage of store buffers local to processes.
A write operation on a shared variable thus first puts its written value into
the store buffer. The contents of store buffers are occasionally flushed into main
memory. Memory barriers (fences) can be used to enforce flushing, because fence
operations can only be executed when the store buffer is empty. All read oper-
ations on shared variables will first examine the contents of the process’ store

106 H. Wehrheim and O. Travkin

buffer: if there is a value for the variable in the store buffer, the read will take
the most recent one, otherwise it reads from main memory.

This usage of store-buffers leads to two kinds of reorderings on TSO: write-
read reorderings and early-reads. These effects can best be understood on exam-
ples. Such small examples exhibiting certain interesting behaviours of multi-
processors are known as litmus tests. Figures 1 and 2 give two such litmus tests.
The first example is a write-read reordering. Both processes first write on a
shared variable and then read from another shared variable into local registers.
Since both writes might first be placed into the local store buffers, both reads
can still see the initial values of x and y, and hence r1 = 0 ∧ r2 = 0 is a possible
final state. It looks as though the writes and reads have changed position.

Initially : x = 0 ∧ y = 0

Process 1

1 : write(x , 1);
2 : read(y , r1);
3 :

Process 2

1 : write(y , 1);
2 : read(x , r2);
3 :

r1 = 0 ∧ r2 = 0 possible

Fig. 1. Litmus test for write-read
reordering

Initially : x = 0 ∧ y = 0

Process 1

1 : write(x , 1);
2 : read(x , r1);
3 : read(y , r2);
4 :

Process 2

1 : write(y , 1);
2 : read(y , r3);
3 : read(x , r4);
4 :

r1 = r3 = 1 ∧ r2 = r4 = 0 possible

Fig. 2. Litmus test for early reads

The litmus test in Fig. 2 exemplifies the phenomenon of early reads (or inter-
processor forwarding). The possible outcome r1 = 1 ∧ r2 = 0 ∧ r3 = 1 ∧ r4 = 0
occurs when both reads from lines 2 read from the process’ own written value
in the store buffer, and thus at the end the processes observe different orders of
writes. It looks as though the reads on lines 3 have happened before both writes.

The basic idea of our approach is now to make these reorderings explicit in a
new version of the program, and give this new version to standard SC verification
tools for analysis.

3 Processes and Their Parallel Composition

Reorderings are being made explicit by transforming – in a concurrent program
[P1|| . . . ||Pn] – the programs Pi of single processes into a form P ′

i such that
the following holds: execution of Pi on TSO is “equivalent” to execution of P ′

i

on SC. We can then use standard SC verification tools for checking properties
on [P ′

1|| . . . ||P ′
n]. In this section, we will first of all explain how programs look

like, and what we mean by “equivalent”. The equivalence should in particular
guarantee that other processes running in parallel cannot distinguish equivalent
programs. We will thus base our equivalence on a notion of bisimulation [16].

TSO to SC via Symbolic Execution 107

As a consequence, our transformation need not be defined on the whole par-
allel program, but can transform programs of single processes in isolation: our
technique is compositional.

For programs, we assume a set Reg of registers local to processes and a
set of variables V ar, shared by processes. For simplicity, both take as values
just natural numbers. Thus the local state of a program is - among others -
represented by a function reg : Reg → N, and the global state by a function
mem : V ar → N. We use the notation mem[x �→ n] to stand for the function
mem′ which agrees with mem up to x which is mapped to n (and similar for
other functions). Processes use local store buffers, i.e., FIFO queues, into which
values for shared variables are first written before being flushed to main memory.
A store buffer sb ∈ (V ar × N)∗ is a sequence of (variable and value) pairs. We
write x ∈ sb to state that there is a pair (x, ·) in the store buffer sb. Program
statements are labelled with locations out of some set L. A variable pc taking
values � ∈ L determines the statements that can be executed next. Thus, the
local state s of some process is characterised by a tuple (�, reg, sb).

We describe the programs of processes by predicates, one predicate stating
conditions on the initial state and a set of predicates for operations (indexed by
i ∈ I). Thus a program P of a process is given as (Init, (COpi)i∈I), where Init
is a predicate on pc, reg and sb. Each COpi is a predicate over pc, pc′, reg, reg′,
sb, sb′ and mem,mem′ in which the primed versions refer to the state after
executing the operation. We assume Init to specify sb = 〈 〉 (empty sequence).

Processes are allowed to interact with the memory using pre-defined oper-
ations from the set {write, read, fence, flush}. The latter two are only mean-
ingful in a TSO context. In TSO, their semantics is defined by the following
predicates.

Write: Writing the value of a register or a constant to a variable x:
write(x, n) =̂ sb′ = sb � 〈(x, n)〉, writing constant n
write(x, r) =̂ sb′ = sb � 〈(x, reg(r))〉, writing value from register r

Read: Reading the value of a variable x into register r:

read(x, r) =̂ (x /∈ sb ∧ readmem(x, r)) ∨ (x ∈ sb ∧ readloc(x, r)) where
readmem(x, r) =̂ reg′ = reg[r �→ mem(x)]

readloc(x, r) =̂ reg′ = reg[r �→ latest(x, sb)]
latest(x, sb) = n =̂ ∃sbpre, sbsuf : sb = sbpre

� 〈(x, n)〉 � sbsuf ∧ x
∈ sbsuf

Fence: Memory barrier blocking until store buffer is empty:
fence =̂ sb = 〈 〉

Flush: Flushing single store buffer entries to main memory:
flush =̂ ∃(x, v) ∈ (V ar × N) : sb = 〈(x, v)〉 � sb′ ∧ mem′ = mem[x �→ v]

The operation read has two cases: Reads might be early, reading from the con-
tents of the store buffer (readloc) or - if the store buffer contains no entry for
the variable - read from main memory (readmem). In addition to the above
operations we have thread-local operations LocOp, i.e., operations of the form
r := expr (semantics reg′ = reg[r �→ reg(expr)]), where expr is an expression

108 H. Wehrheim and O. Travkin

build out of constants and register names using e.g. arithmetic operations, or
boolean conditions over registers and constants.

We assume all operations (predicates) to have the following form (or
equivalent):

COp =̂ pc = � ∧ pc′ = �′ ∧ op

where op is either a memory operation or a local operation, e.g., op = read(x, r).
We define op(COp) =̂ op to state the operational part of COp (similar for

Init), without the part referring to program locations, and pc(COp) to be the
part of the predicate referring to the program counter. When executed on TSO,
we implicitly add the operation COpf =̂ flush to each process. This is the only
operation without location predicates. We let def(op) be the set of registers
assigned to (changed) in an operation op and use(op) to be the registers used.
Process 1 of Fig. 1 would be specified as follows:

Init=̂ pc = 1 ∧ r1 = 0 ∧ sb = 〈 〉
COp1=̂ pc = 1 ∧ pc′ = 2 ∧ write(x, 1)

COp2=̂ pc = 2 ∧ pc′ = 3 ∧ read(y, r1)

COpf =̂ flush

The semantics of programs is given by labelled transition systems. For being
able to compare the semantics of programs run under TSO with those run on
SC, we define a common set of labels:

Lab = {skip, r := expr, bexpr, wr(x, n), rd(x, r) |
x variable, r register, n ∈ N}

For the semantics, we use the convention that all entities (registers, pc, ...)
which are not mentioned in the operation formula keep their values. For pairs
of (global) states (g, g′), g = (�, reg, sb,mem), g′ = (�′, reg′, sb′,mem′) we write
(g, g′) |= COp to say that the predicate COp is satisfied by states g and g′.
Similarly, for predicates p on unprimed variables only and states g, we write
g |= p to say that the predicate p is valid in the state g.

For single processes, we next define an open semantics. It is open in the sense
that we assume other processes, possibly running in parallel, to arbitrary change
shared memory, and thus incorporate into the semantics all steps the process can
do with arbitrary values of mem.

Definition 1. The process-local TSO transition system of a program
P = (Init, (COpi)i∈I), [[P]]tso, is (S,−→, S0) with

– S0 = {s = (�, reg, sb) | s |= Init},
– s −lab−→ s′ with s = (�, reg, sb) and s′ = (�′, reg′, sb′) iff ∃COpi,∃mem,mem′

s.t. ((mem, s), (mem′, s′)) |= COpi, and the label lab is
• r := reg(expr) if op(COpi) = (r := expr),
• reg(bexpr) if op(COpi) = bexpr,

TSO to SC via Symbolic Execution 109

• skip if op(COpi) ∈ {fence, write(x, n), write(x, r), skip},
• wr(x, n) if op(COpi) = flush and sb = 〈(x, n)〉 � sb′,
• rd(x, r) if op(COpi) = read(x, r) and x /∈ sb, and
• r := n if op(COpi) = read(x, r), x ∈ sb and n = latest(x, sb).
For such transitions we use the notation s −lab−→mem,mem′ s′.

– S is the set of all states reachable from S0 by transitions.

The choice of labels reflects what is visible to the environment (i.e., other
processes): a local write to a store buffer looks to the outside as if nothing
happens, hence gets a skip label; a local read from store buffer looks like an
assignment to a register, and hence gets an assignment label; finally, a flush
operation looks to the outside like a proper write on shared memory and thus is
labelled as write. This idea of relabelling transitions according to what effects are
visible to the outside is also the basic principle of our TSO to SC transformation.
For the SC semantics of programs, we slightly restrict the set of operations. In
SC, programs cannot (and do not) have fence operations, and furthermore their
write and read predicates have a different semantics.

Write: Writing the value of a register or a constant to a variable x:
writesc(x, n) =̂ mem′ = mem[x �→ n], writing constant n
writesc(x, r) =̂ mem′ = mem[x �→ reg(r)], writing value from register r

Read: Reading the value of a variable x into register r:
readsc(x, r) =̂ reg′ = reg[r �→ mem(x)]

As we see now, none of the operation predicates is refering to the store buffer.
The local states of the SC transition system are thus of the form (�, reg). Note
that in this case we do not implicity add a flush operation to the set of program
operations.

Definition 2. The process-local SC transition system of a program P =
(Init, (COpi)i∈I), [[P]]sc, is (Q,−→, Q0) with Q0 = {q = (�, reg) | q |= Init}
and q −lab−→ q′ with q = (�, reg) and q′ = (�′, reg′) iff ∃COpi,∃mem,mem′ :
((mem, q), (mem′, q′)) |= COpi and the label lab is

– r := reg(expr) if op(COpi) = (r := expr),
– reg(bexpr) if op(COpi) = bexpr,
– skip if op(COpi) = skip,
– wr(x, n) if op(COpi) ∈ {writesc(x, n), writesc(x, r) and reg(r) = n},
– rd(x, r) if op(COpi) = readsc(x, r).

Again, Q is the set of all reachable states.

Processes typically run in parallel with other processes. The semantics for paral-
lel compositions of processes is now a closed semantics already incorporating all
relevant components. We just define it for two processes here; a generalisation
to larger numbers of components is straightforward.

110 H. Wehrheim and O. Travkin

Definition 3. Let Pj = (Initj , (COpi
j)i∈I), j ∈ {1, 2}, be two processes, Init

an additional predicate on mem, and let (Sj ,−→j , S0,j), be their process local
(i.e., open) semantics (TSO or SC).

The closed TSO or SC semantics, respectively, of P1 ||Init P2 is the labelled
transition system (S,−→, S0) with S ⊆ {(mem, s1, s2) | s1 ∈ S1, s2 ∈ S2}, S0 =
{s ∈ S | s |= Init1∧ Init2∧ Init}, and s = (mem, s1, s2) −lab−→ s′ = (mem′, s′

1, s
′
2)

when (s1 −lab−→mem,mem′ s′
1 ∧ s2 = s′

2) or (s2 −lab−→mem,mem′ s′
2 ∧ s1 = s′

1).

Due to the open semantics for processes, we have thus been able to give a com-
positional semantics for parallel composition.

Ultimately, we will be interested in comparing the TSO semantics of one program
with the SC semantics of another. Our notion of equality is based on bisimulation
equivalence [16]. Our definition of bisimulation compares transition systems with
respect to their labels on transitions as well as their local states.

Definition 4. Let T1 = (S,−→tso, S0) be a TSO and T2 = (Q,−→sc, Q0) an SC
transition system.

Transition systems T1 and T2 are locally bisimilar, T1 ≈� T2, if there is a
bisimulation relation R ⊆ S × Q such that the following holds:

1. Local state equality:
∀(s, q) ∈ R, s = (�1, reg1, sb), q = (�2, reg2),∀r ∈ Reg: reg1(r) = reg2(r).

2. Matching on initial states:
∀s0 ∈ S ∃ q0 ∈ Q0 s.t. (s0, q0) ∈ R, and reversely ∀ q0 ∈ Q0 ∃ s0 ∈ S0 s.t.
(s0, q0) ∈ R.

3. Mutual simulation of steps:
if (s1, q1) ∈ R and s1 −lab−→tso s2 then ∃ q2 such that q1 −lab−→sc q2 and (s2, q2) ∈
R, and reversely, if (s1, q1) ∈ R and q1 −lab−→sc q2 then ∃ s2 such that s1 −lab−→tso

s2 and (s2, q2) ∈ R.

Similarly, one can define global bisimilarity for the closed semantics of a parallel
composition, in addition requiring equality of shared memory mem. We use the
notation ≈g to denote global bisimilarity. This lets us state our first result: Local
bisimilarity of processes implies global bisimilarity of their parallel compositions.

Theorem 1. Let P1, P
′
1, P2, P

′
2 be processes such that [[P1]]tso ≈� [[P ′

1]]sc and
[[P2]]tso ≈l [[P ′

2]]sc and let Init be a predicate on mem. Then

[[P1||InitP2]]tso ≈g [[P ′
1||InitP

′
2]]sc.

Proof idea: Let Ri be the bisimulation relations showing [[Pi]]tso ≈� [[P ′
i]]sc.

Then

R := {((mem, s1, s2), (mem, s′
1, s

′
2)) | (s1, s′

1) ∈ R1 ∧ (s2, s′
2) ∈ R2}

is the relation showing global bisimilarity. ��
This result enables us to carry out the transformation from TSO to SC locally,
i.e., transform the programs of processes individually and after that combine
their SC versions in parallel.

TSO to SC via Symbolic Execution 111

4 Symbolic Store-Buffer Graphs

The basic principle behind our verification technique is to transform every pro-
gram P into a program P ′ such that [[P]]tso is locally bisimilar to [[P ′]]sc. The
construction of P ′ proceeds by symbolic execution of P and out of the thus
constructed symbolic states generation of P ′. The symbolic execution tracks -
besides the operations being executed and the program locations reached - store
buffer contents only, and only in a symbolic form. The symbolic form stores
variable names together with either values of N (in case a constant was used
in the write), or register names (in case a register was used). A symbolic store
buffer content might thus for instance look like this: 〈(x, 3), (y, r1), (x, r2), (z, 5)〉.
The symbolic execution thereby generates a symbolic reachability graph, called
store-buffer graph.

Definition 5. A store-buffer (or sb-)graph G = (V,E, v0) consists of a set of
nodes V ⊆ (L × (V ar × (Reg ∪ N))∗), edges E ⊆ V × Labtso × V and initial
node v0 ∈ V where Labtso = {write(x, r), write(x, n), read(x, r), f lush, fence}∪
LocOp.

The store-buffer graph for a program P is constructed by a form of symbolic
execution, executing program operations step by step without constructing the
concrete states of registers. We let tail(list) of a nonempty sequence list denote
the sequence without its first element.

Definition 6. Let P = (Init, (COpi)i∈I) be the program of a process. The sb-
graph of P , sg(P), is inductively defined as follows:

1. v0 := (�0, 〈 〉) with Init ⇒ pc = �0,
2. if (�, ssb) ∈ V , we add a node (�′, ssb′) and

– an edge (�, ssb) −lab−→ (�′, ssb′) if ∃COpi with op(COpi) = lab and
• lab = flush, � = �′ and ssb
= 〈 〉 and ssb′ = tail(ssb), or pc(COpi) =

(pc = � ∧ pc′ = �′) and
∗ lab ∈ LocOp and ssb′ = ssb, or
∗ lab = write(x, r) and ssb′ = ssb � 〈(x, r)〉, or
∗ lab = write(x, n) and ssb′ = ssb � 〈(x, n)〉, or
∗ lab = fence and ssb = ssb′ = 〈 〉, or

– an edge (�, ssb) −readmem(x,r)−−−−−−−−→ (�′, ssb′) and a node (�′, ssb′) if
∃COpi = (read(x, r) ∧ pc = � ∧ pc′ = �′) and ssb′ = ssb ∧ x
∈ ssb, or

– an edge (�, ssb) −readloc(x,r)−−−−−−−→ (�′, ssb′) and a node (�′, ssb′) if
∃COpi = (read(x, r) ∧ pc = � ∧ pc′ = �′) and ssb′ = ssb ∧ x ∈ ssb.

As an example, Figs. 3 and 4 show the store-buffer graphs of process 1 from
Fig. 1 and of process 1 in Fig. 2, respectively. On them, we directly see when the
effects of writes take place in main memory, namely when the corresponding flush
happens. On the left graph, right branch, we thus see the read of y happening
before the “real” write of x (flush) to memory. On the right graph, right branch,
we see the read of x taking place before the write to x (flush). Later we will

112 H. Wehrheim and O. Travkin

Fig. 3. Store buffer graph represent-
ing the reachable store buffer states of
process 1 in Fig. 1.

Fig. 4. Store buffer graph represent-
ing the reachable store buffer states of
process 2 in Fig. 2.

see that all such early reads still read correct values in the SC version of the
program.

Note that store-buffer graphs need not necessarily be finite. They are infinite
if a program has loops with write operations, but no fences in order to enforce
flushing of store buffer content. Since this finiteness of the store buffer graph is
key to our technique, we next define our only restriction on the class of programs
considered: all loops have to be fenced or write-free.

We first define loops. A (syntactically possible) path of a program
P is a sequence �1, �2, ..., �n of locations such that there are operations
COp1, ..., COpn−1 such that pc(COpi) = (pc = �i ∧ pc′ = �i+1). We also write
paths like this: �1 −COp1−−−→ �2 −COp2−−−→ . . . −COpn−1−−−−−→ �n. A loop is a path �1, �2, ..., �n

such that n > 1 and �1 = �n. A loop is write-free if none of the operations on
the loop is a write. A loop is fenced, if at least one of the operations on the loop
is a fence. We furthermore assume that all process programs are in SSA-form
(static single assignment [10]), meaning that all the registers are (statically)
assigned to only once, i.e., for every register r there is at most one operation op
with r ∈ def(op). We furthermore assume that registers are never used before
defined. Both, this and the SSA-form is guaranteed by modern compilers, e.g.,
the LLVM-framework2 which we use for our approach only generates intermedi-
ate code in this form.

Proposition 1. Let P be a process program in which every loop is fenced or
write-free. Then sg(P) is finite.

2 http://www.llvm.org.

http://www.llvm.org

TSO to SC via Symbolic Execution 113

In the generation of a new program out of an sb-graph we transform every edge
of the graph into an operation (predicate). In this, a flush operation in the sb-
graph, flushing a symbolic store buffer content (x, r) (r being a register name),
becomes a writesc(x, r) operation. For this to be sound (w.r.t. the intended
equivalence of old and new program), we need to make sure that the content of
register r at a flush is still the same as the one at the time of writing the pair
(x, r) into the (symbolic) store buffer. This is not necessarily the case. A path
�1 −COp1−−−→ �2 −COp2−−−→ . . . −COpn−1−−−−−→ �n is a write-def chain (wd-chain) if there is an
r ∈ Reg such that op(COp1) = write(., r) and r ∈ def(COpn−1). A wd-chain
is fenced, if one of the operations in between the write and the definition of the
register is a fence. If this is guaranteed, we know that a register occuring with its
name in the symbolic store buffer still has the same value as of the corresponding
write.

Proposition 2. Let P be the program of a process in SSA form with fenced
write-def chains only. Let s = (�, reg, sb) be a state of [[P]]tso such that sb contains
an entry (x, n), n ∈ N. If this value has been put into the store buffer by an
operation write(x, r), r ∈ Reg, then reg(r) = n.

Proof: By the definition of wd-chains: after write(x, r) there is no further oper-
ation defining r before the next fence operation. A fence, however, needs an
empty store buffer in order to execute. ��
As this property is key to our transformation, we next define a way of chang-
ing every program into an equivalent one with fenced wd-chains only. We first
determine all write operations causing unfenced wd-chains, e.g. by a simple
dataflow analysis. Let W be the set of all such write sources of wd-chains,
and Rg(W) ⊆ Reg be the set of registers participating in such writes. For
every register r ∈ Rg(W) we now introduce a new register raux and add it
to Reg (thereby giving a set Regaux). Note that this is the only point in
our program transformation where new variables or registers are introduced.
The registers raux act as auxiliary variables in the programs. Every write
COp ∈ W,COp = (pc = � ∧ write(x, r) ∧ pc′ = �) is now transformed into a
new operation COpaux =̂ (pc = � ∧ writeaux(x, r) ∧ pc′ = �) where

writeaux(x, r) =̂ write(x, r) ∧ reg′ = reg[raux �→ reg(r)]

We let P ′ denote the program P with all such changes.

Proposition 3. The program P ′ has no unfenced wd-chains.

The label of this new operation writeaux in the TSO semantics is raux := n for
n = reg(r) (see Definition 1). Note that the number of new registers needed is
bounded by the number of registers used in loops. For each COpaux operation, we
add an edge (�, ssb) −lab−→ (�′, ssb′) to the sb-graph, where lab = write(x, raux) ∧
reg′ = reg[raux �→ reg(r)] and ssb′ = ssb � 〈(x, raux)〉. Note that we use raux

in the symbolic store buffer, although the value of r is used in the transition
system.

114 H. Wehrheim and O. Travkin

5 SC Program Generation

The store-buffer graph presents an abstraction of the actual TSO transition
system of a program. The basic idea behind the generation of new programs out
of store-buffer graphs is now to take the store-buffer graph as the control flow
graph of the new program. We do so by using the nodes in the sb-graph as new
program locations, i.e., program locations become pairs of (location, symbolic
store buffer contents). If we would simply take the operations on edges as they
are, we would arrive at a new program P ′ which is equivalent to P w.r.t. the
TSO semantics. However, instead of using the operations as they are written
on the edges, we make changes analogous to the relabelling used in the TSO
semantics: The generated operation in the SC program should reflect the visible
effect of an TSO operation, e.g. flush operations become writes and local reads
become local assignments. For the latter, we use the fact that the symbolic store
buffer contents contains names of registers, not just their values.

Definition 7. Let G = (V,E, v0) be an sb-graph of a program P with init pred-
icate Init. The new SC program of G, prog(G), (Init′, (COpi)i∈I′) is defined as
follows:

– We use Init′ =̂ pc = v0 ∧ op(Init),
– for every edge v −lab−→ v′, we define an operation COpi =̂ pc = v ∧ pc′ =

v′ ∧ opsc(lab), where opsc maps the edges of the sb-graph to the behaviorally
equivalent steps in an SC setting:

opsc(lab) =̂ skip iff lab ∈ {fence, write(x, r), write(x, n)}
opsc(lab) =̂ writesc(x, r) iff lab = flush ∧ v = (�, ssb)

∧ ssb = 〈(x, r)〉 � tail(ssb)
opsc(lab) =̂ raux := r iff lab = (write(x, raux)

∧ reg′ = reg[raux �→ reg(r)])
opsc(lab) =̂ readsc(x, r) iff lab = readmem(x, r)

opsc(lab) =̂ r := rsrc iff lab = readloc(x, r) ∧ v = (�, ssb)
∧ rsrc = latest(x, ssb)

opsc(lab) =̂ lab else

The transformation of a program into its SC form is then defined as

tso2sc(P) =̂ prog(sg(P))

As a preparatory step to this, we might need to bring P into a form without
unfenced wd-chains as described in the previous section. For process 1 of Fig. 1
and its store buffer graph in Fig. 3, its SC version is the following:

Init =̂ pc = (1, 〈 〉)
COp1 =̂ pc = (1, 〈 〉) ∧ pc′ = (2, 〈(x, 1)〉) ∧ skip

TSO to SC via Symbolic Execution 115

COp2 =̂ pc = (2, 〈(x, 1)〉) ∧ pc′ = (2, 〈 〉) ∧ writesc(x, 1)
COp3 =̂ pc = (2, 〈 〉) ∧ pc′ = (3, 〈 〉) ∧ readsc(y, r1)
COp4 =̂ pc = (2, 〈(x, 1)〉) ∧ pc′ = (3, 〈(x, 1)〉) ∧ readsc(y, r1)
COp5 =̂ pc = (3, 〈(x, 1)〉) ∧ pc′ = (3, 〈 〉) ∧ writesc(x, 1)

In parallel with the SC version of process 2, this can then be given to standard SC
verification tools. Our approach is compositional: transformations of processes
can be done without considering other parallel processes (see Theorem 1); we
can reuse transformation results when processes are combined in different ways.

Our main result showing the soundness of this approach is the equivalence
of P and tso2sc(P) with respect to local bisimulation.

Theorem 2. Let P be a program with fenced or write-free loops only and with
no unfenced wd-chains. Then

[[P]]tso ≈� [[tso2sc(P)]]sc.

Proof sketch: The proof proceeds by defining a relation on the states of [[P]]tso

and [[tso2sc(P)]]sc. For this, we need some concretisation function for symbolic
store buffer contents, concretising the value of a symbolic store buffer ssb with
respect to the current state s:

concs(〈 〉) = 〈 〉
concs(〈(x, n)〉 � ssb) = 〈(x, n)〉 � concs(ssb) for n ∈ N

concs(〈(x, r)〉 � ssb) = 〈(x, s(reg)(r))〉 � concs(ssb) for r ∈ Reg

The relation proving bisimilarity is then:

R = {(s, q) | first(q(pc)) = s(pc)
∧concs(second(q(pc))) = s(sb)
∧∀r ∈ Reg : s(reg)(r) = q(reg)(r)}

where first((�, ssb)) = � and second((�, ssb)) = ssb. ��
This result allows us to re-use standard verification techniques for SC programs,
might these be automatic or interactive.

6 Experimental Results

In our experiments we wanted to see whether the possibility of using standard
SC tools for verification, opened up by our transformation technique, might now
have to be paid by an increase in time and space usage of the tools. Our exper-
imental setup was as follows. We used SPIN [13] as model checking tool, both
for the SC semantics and for the TSO semantics. SC semantics are provided by
SPIN. For TSO, we manually enhanced programs with store buffers and flush
and fence operations, mimicking the TSO semantics (see [19] for details). The

116 H. Wehrheim and O. Travkin

experiments all started with a C or C++ program which was compiled to an
intermediate representation (IR) with the LLVM compiler. The IR code was then
translated to Promela code (input to SPIN) with store buffers. Furthermore,
we constructed the sb-graph automatically and out of this the transformed SC
program, manually. Implementations of manual steps are on the way. The trans-
formation is linear in the size of the sb-graph and hence, negligible compared to
the actual verification effort. The latter depends on a model checker’s ability to
explore state space or the program complexity in case of a formal proof.

For our experiments we considered a number of mutual exclusion algo-
rithms with two processes each (Dekker, Peterson, Lamport Bakery, Szymanski)
and two concurrent data structures, a work-stealing queue by Arora et al. [3]
and a stack implementation by Treiber [21]. The latter two allow for differ-
ent instances in which the processes execute different operations. An instance
UO||TT e.g. describes two processes, one doing operations pushBottom followed
by popBottom and the other executing two popTop operations. The mutual
exclusion algorithms are known to be incorrect under weak memory models and
hence, we used both the original unfenced and the correct fenced version. Only
one of the examples did not fall into the category of programs with fenced or
write-free loops (the unfenced version of Dekker’s algorithm). The other exam-
ples either just have reading loops, or have implicit fence operations. An implicit
fence is for instance generated by a CAS instruction (an atomic compare and
swap), which is often used as the only synchronisation primitive in otherwise
lock-free data structures. All tests were performed on a virtual machine, Ubuntu
Linux, Intel Core i5, 2.53 GHz and 3 GB dedicated to SPIN 6.2.3. All models
used for the verification can be found in our repositories at Github3.

Table 1 provides our verification results giving verification time and number
of states generated by SPIN for both the TSO and transformed SC programs. It
also gives the number of nodes in the store buffer graph (for the processes viz.
operations in the program). The experiments show that our transformation can
in a lot of cases actually reduce the state space and verification time. Besides
being able to use an SC tool, we can thus furthermore gain time and space when
applying the TSO to SC transformation. Compared to the work of [5], who also
used a transformation technique and in their experiments looked at these mutual
exclusion algorithms, we can moreover state that the runtime of our approach
is significantly smaller. The results are, however, not directly comparable since
they used different verification tools.

In our previous work [20], we proved linearizability [12] of the Burns mutual
exclusion algorithm [8] under TSO using an interactive theorem prover. Par-
ticularly, we compared the proof effort of (1) a program encoding TSO with
explicit store buffers against (2) a transformed program version using SC seman-
tics (based on the idea that we formalized in this paper). For the Burns mutex,
the transformation reduced complexity (invariant size) and proof effort (number
of proof steps) approximately by half. Our transformation technique can thus
also be helpful in interactive proving.

3 https://github.com/oleg82upb.

https://github.com/oleg82upb

TSO to SC via Symbolic Execution 117

Table 1. Verification results for case studies.

Algorithm TSO Model Transformed SC Program

(each for 2 processes) states time [s] states time [s] nodes#

Dekker (fenced) 655 ≈ 0 147 ≈ 0 17

Dekker (unfenced) 540 ≈ 0 unfenced writing loop

Peterson (fenced) 709 ≈ 0 270 ≈ 0 14

Peterson (unfenced) 805 ≈ 0 1,271 0.01 28

Lamport Bakery (fenced) 2,907 0.01 405 0.01 24

Lamport Bakery (unfenced) 16,087 0.17 163 ≈ 0 75

Szymanski (fenced) 2,778 0.01 1,741 ≈ 0 30/32

Szymanski (unfenced) 923 0.01 171 ≈ 0 55

Work-Stealing Queue 73,703 0.32 86,566 0.23 13/46/18

(fenced) UOUOUOU‖TTT

=̂ pushBottom, O =̂ popBottom, T =̂ popTop (stealing process)

Treiber-Stack 1,913,313 8.93 1,821,426 4.68 29/15

UUUOOO ‖ OOOUUU

U =̂ push, O =̂ pop

7 Related Work

In the last years, several approaches were proposed in order to deal with software
verification under the influence of weak memory models, ranging from theoretical
results to practical techniques.

Atig et al. [4] have shown that the reachability problem for programs in a TSO
or PSO environment is decidable via reduction to lossy channel machines. How-
ever, for other relaxed memory models like RMO, the problem is undecidable.
Bouajjani et al. [7] determined the complexity (PSpace) of deciding robustness
of programs against TSO. Two recent approaches [1,6] provide underapproxi-
mating techniques for checking program correctness under TSO.

Several approaches [2,5,9,15] propose reduction techniques, which allow for
a reuse of verification techniques developed for SC. The approach closest to us
is the one by Atig et al. [5]. Similar to us, they provide a translation from a
TSO program to an equivalent SC program, but assuming an age bound k. The
bound k stems from the observation that store buffer entries can stay for at
most k steps in the store buffer until they are eventually flushed to the memory.
Their approach is, thus, to model the store buffer behavior as part of the new
SC program by introducing k vectors of shared variable copies as part of the
local state. Hence, rather than getting rid of the complexity of store buffers,
store buffers are replaced with auxiliary vectors in the SC program. The bound
results in some sort of bounded verification; if the program exceeds the bound
(e.g., in case of loops without fences), the bound needs to be increased and
verification restarted.

In our approach (auxiliary) variable copies are only used if they are indeed
required, i.e., when the symbolic store buffer entry of a write source of a wd-chain
can be redefined between write and flush. We have at most one new variable per

118 H. Wehrheim and O. Travkin

register in the program. This is enough since we consider a restricted class of
programs (fenced loops only) for which we can then carry out a (non-bounded)
verification. In summary, our approach works for a restricted class of programs,
but for this carries out a full verification, whereas Atig et al.’s technique works
for all programs, however, sometimes only with an underapproximating analysis.
For the class of programs with fenced-loops our approach furthermore generates
fewer auxiliary variables, and – as the experiments show – may speed up verifi-
cation. We thus see our approach as an excellent alternative to Atig et al.’s, in
case the program falls into our category of fenced-loop programs.

8 Conclusion

In this paper, we have presented a simple and practical reduction of program
verification under the influence of TSO to an SC setting via program transfor-
mation. Consequently, the transformed program can be verified using common
techniques assuming a sequential consistent memory model.

Our transformation exploits that most of the non-determinism inherent to
TSO can be computed statically, which is captured by a store buffer graph in our
approach. By encoding the store buffer graph into an equivalent SC program, we
completely get rid of store buffers and the burden of reasoning about them. Our
experiments show that the transformation can even simplify verification (using
a model checker and a theorem prover) of programs under TSO.

Our approach is restricted to programs with at least one fence in loops con-
taining writes. The reason to restrict ourselves to this class of programs is that
they can be represented by a finite store buffer graph. We could extend our
approach to also deal with unfenced writing loops in a setting of bounded store
buffers. However, we would then have to introduce multiple copies of register
variables in the new program corresponding to different loop iterations in the
original program. In principle, we would then arrive at a technique similar to [5].

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015)

2. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

3. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. Theor. Comput. Syst. 34(2), 115–144 (2001)

4. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: Hermenegildo, M.V., Palsberg, J. (eds.)
POPL 2010, pp. 7–18. ACM (2010)

5. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011)

TSO to SC via Symbolic Execution 119

6. Bouajjani, A., Calin, G., Derevenetc, E., Meyer, R.: Lazy TSO reachability. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 267–282. Springer,
Heidelberg (2015)

7. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store
ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 428–440. Springer, Heidelberg (2011)

8. Burns, J., Lynch, N.A.: Mutual exclusion using indivisible reads and writes. In:
18th Allerton Conference on Communication, Control, and Computing, pp. 833–
842 (1980)

9. Cohen, E., Schirmer, B.: From total store order to sequential consistency: a prac-
tical reduction theorem. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 403–418. Springer, Heidelberg (2010)

10. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

11. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol.
7935, pp. 84–104. Springer, Heidelberg (2013)

12. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

13. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

14. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

15. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying pro-
grams on relaxed memory models. In: van de Pol, J., Weber, M. (eds.) Model
Checking Software. LNCS, vol. 6349, pp. 212–226. Springer, Heidelberg (2010)

16. Milner, R. (ed.): A Calculus of Communicating Systems. Springer, Heidelberg
(1980)

17. Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. STTT 11(4), 339–353 (2009)

18. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

19. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under
weak memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol.
8244, pp. 311–326. Springer, Heidelberg (2013)

20. Travkin, O., Wehrheim, H.: Handling TSO in mechanized linearizability proofs.
In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 132–147. Springer, Heidelberg
(2014)

21. Treiber, R.K.: Systems programming: coping with parallelism. Technical report RJ
5118, IBM Almaden Res. Ctr. (1986)

22. Wonisch, D., Schremmer, A., Wehrheim, H.: Programs from proofs – a PCC alter-
native. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 912–927.
Springer, Heidelberg (2013)

23. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: UMM: an operational memory model
specification framework with integrated model checking capability. Concurrency
Comput. Pract. Experience 17(5–6), 465–487 (2005)

Parallel Symbolic Execution: Merging
In-Flight Requests

Martin Nowack(B), Katja Tietze,
and Christof Fetzer

Technische Universität Dresden, Dresden, Germany
martin nowack@tu-dresden.de

Abstract. The strength of symbolic execution is the systematic analysis
and validation of all possible control flow paths of a program and their
respective properties, which is done by use of a solver component. Thus,
it can be used for program testing in many different domains, e.g. test
generation, fault discovery, information leakage detection, or energy con-
sumption analysis. But major challenges remain, notably the huge (up to
infinite) number of possible paths and the high computation costs gen-
erated by the solver to check the satisfiability of the constraints imposed
by the paths. To tackle these challenges, researchers proposed the paral-
lelization of symbolic execution by dividing the state space and handling
the parts independently. Although this approach scales out well, we can
further improve it by proposing a thread-based parallelized approach.
It allows us to reuse shared resources like caches more efficiently – a
vital part to reduce the solving costs. More importantly, this architec-
ture enables us to use a new technique, which merges parallel incoming
solver requests, leveraging incremental solving capabilities provided by
modern solvers. Our results show a reduction of the solver time up to
50% over the multi-threaded execution.

1 Introduction

Symbolic Execution [12] is a method to automatically and thoroughly test soft-
ware and generate test cases. Lately it has also received attention in other
domains like estimation of power consumption [10], analysis of mobile applica-
tions [1,14], security, and taint tracking [3,8]. Despite these advances, two major
problems remain: the state space explosion problem and high solver times.

To tackle these issues, researchers introduced process-based paralleliza-
tion [4,7,11,18] to symbolic execution engines in order to scale to multiple cores,
multiple machines, and cloud environments [7]. However, this approach typically
involves higher communication costs between concurrent components, e.g., using
Java Remote Method Invocation (RMI) [18] or communicating with the manager
process [4], which distributes and load-balances the single jobs of the symbolic
execution. To reduce these costs, the search space is partitioned, so that the
individual components work independently. But this way, partial solutions (e.g.,
previously solved path constraints that apply to multiple paths) are less likely
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 120–135, 2015.
DOI: 10.1007/978-3-319-26287-1 8

Parallel Symbolic Execution: Merging In-Flight Requests 121

to be reused, which results in re-execution, and thus, in redundant solver calls.
Additionally, the partitioning itself imposes communication overhead for the
manager process to find the best search space segmentation.

Still, solving costs are one major part of the computational expenses - i.e. as
high as 40 % [16] or more of the execution time. Reducing them allows symbolic
execution to explore more of the state space.

In this paper, we propose to use thread-based parallelization as an orthogonal
approach to existing solutions. We introduce techniques like batching of parallel-
running solver requests to minimize the number of solver calls and merging of
solver requests to avoid redundant constraint analysis. Consequently, our app-
roach reduces the overall solving time.

Our major contributions are:

– A multi-threaded implementation of a symbolic execution engine (we modified
KLEE [5]); and

– An extension, which allows combining multiple solver calls, thus reducing the
average time spent per solver request.

The remainder of this paper is structured as follows: We describe symbolic
execution in Sect. 2, extending single threaded execution to our multi-threaded
solution. In Sect. 3 we continue with the approach to batch and merge solver
requests. We detail our implementation based on KLEE in Sect. 4, continue
with the evaluation of our approach in Sect. 5, and finish with related work and
a conclusion in Sects. 6 and 7.

2 Multi-threaded Symbolic Execution

In this section, first we introduce the standard single-threaded symbolic execu-
tion and point out challenges regarding the current use of process-based par-
allelization. Next we will present our approach to improve parallelization by
applying a thread-based approach.

2.1 Symbolic Execution

Symbolic execution systematically executes a program by assuming arbitrary val-
ues for input parameters. By observing the behavior of a specific program path,
it collects logic formulas (constraints, C) that describe this path. The collected
path constraints (PC = C1 ∧ · · · ∧ Cn) are sent to a solver: (a) if the program
reaches a conditional control flow statement (e.g., an if(cond) statement) or
(b) to check a property of the current program state (e.g., if the following mem-
ory access can be a null pointer, if no out-of-bounds access or overflow occurs).
In both cases, the constraint (Ccond) or its negation (¬Ccond) is checked com-
bined with the other path constraints. For the conditional control flow, if both
outcomes are possible, the program state is duplicated with Ccond added to one
state and ¬Ccond to the other; further work on the states is done independently.
If the set of constraints is impossible to fulfill the state can be removed. For the

122 M. Nowack et al.

second case (to check properties), the solver can find possible input values for
the program that trigger the condition to be true or false. This greatly helps a
programmer, e.g., for debugging, by providing him with a concrete input that
can be used to follow a particular path, possibly to reach a bug. However, even
for small non-trivial applications (e.g., containing endless-loops) this approach
can lead to a huge or infinite number of paths, the so-called state space explo-
sion problem. Besides, checking satisfiability by the solver is computationally
expensive, accounting for the major part of the runtime costs.

2.2 Single-Threaded Symbolic Execution

We based our prototype on KLEE [5], a state-of-the-art implementation of sym-
bolic execution. Other implementations are structured similarly, so our findings
will be easy to transfer. The main work flow of a symbolic execution engine is
depicted in Fig. 1. First, an execution unit selects a state from the pool of avail-
able states (state selection). The execution engine uses the state and interprets
its next instructions (interpretation) until: (i) a final instruction of the inter-
preted program is reached and the state is terminated; (ii) a bug is found, so the
state must be terminated prematurely; or (iii) another state is selected. When
path constraints must be solved or conditions need to be checked, the interpreter
invokes the solver (solving).

state
selection

inter-
pretation

solving
caching

simpli-
fication

solver
call

Fig. 1. The basic symbolic execution flow: First, a state is selected and then interpreted.
If needed, collected constraints during interpretation are solved. To reduce the solver
overhead, several optimizations like simplification and caching are done before the
actual solver call.

The solver is a major, computationally expensive part of the symbolic exe-
cution. The feasibility of formulas has to be calculated, which is typically NP
complete. Hence, a chain of additional optimizations (simplification, like inde-
pendence optimization or caching [5]) is executed before the solver is called.

Symbolic execution engines like KLEE typically use existing solvers [9,16].
But these can suffer from issues like segmentation faults or memory leakage. To
improve the reliability, KLEE forks and runs the solver in the child process from
where it returns the result through shared memory. As expected, the forking
imposes non-negligible overhead as we show in the evaluation.

Parallel Symbolic Execution: Merging In-Flight Requests 123

2.3 Going Multi-Threaded

A major challenge of parallelizing symbolic execution is to efficiently partition
and search the execution tree without knowing in the first place which parts
are costly. First, if a leaf node is explored, the size of the subtree it expands is
typically unknown. For example, if only a few expansions are possible, the subtree
will be terminated earlier than if it must be expanded repeatedly. Second, the
individual cost of exploring each node of a subtree is highly dependent on the
costs of solving the path constraints, which are not easy to predict.

Manager Thread

memory
management

global
statistics

Work Queue

Result Queue

worker threads

WT 1

WS

WT 2

WS

...

WS

WT n

WS

creates or
deletes states

state
pool

WS
creates

and passes

WS

extracts
selects state

WS

work state WS
= {current state,

created states,
deleted states,
statistics}

Searcher

Fig. 2. Basic general architecture of a multi-threaded symbolic execution. A manager
thread prioritizes states and puts them in a working queue. Worker threads select states
from the queue and work independently on them, each calls the solver individually.

We propose the architecture depicted in Fig. 2. It resembles the steps from
Sect. 2.2 Fig. 1 and assigns them to different threads. A manager thread is decou-
pled from a group of worker threads by using two queues. While the work queue
buffers the states that are to be handled by the workers, the result queue is filled
with states returned by the workers. The manager selects the states from the
state pool and puts them in the work queue. With the order in which states get
inserted, the managing thread can steer the exploration process. This selection
is based on the statistics that are maintained by symbolic execution engines.
They include information about the code checked during operation, e.g., which
lines of code were already covered. The manager further extracts finished states
from the result queue and updates the global statistics. In case not enough mem-
ory is available, e.g., due to state space explosion, the manager deletes the least
important states (e.g., the state furthest away from uncovered instructions. Each
worker takes a state from the work queue and runs the symbolic execution by
iterating over the code. In case the solver is called, the worker executes it in a
forked process.

124 M. Nowack et al.

The current state to be worked on is wrapped in a worker state used by only
one worker at a time and is thread local. Workers add new states (which were
found by their current exploration) to it, mark states as deleted, and update local
statistics. Later, these information are used by the manager thread to update the
state pool and global statistics. This way, workers manage their updates locally
which improves their access time and reduces pressure on the CPU cache.

The major advantage of our thread-based approach is an improved utiliza-
tion of the CPU cores while additional communication costs between different
processes are avoided. At the same time, components like caches are shared. New
solutions found by the solver are added to the cache which avoids solving them
again.

3 Reducing Overall Solver Costs

In the previous section, we explained how we use more cores for solving, but the
overall solver costs are still significant. Fortunately, our multi-threading archi-
tecture allows new ways of combining solver requests to reduce the number of
solver calls. For our approach we distinguish between unique constraints and
common constraints as depicted in Fig. 3(a). While unique constraints are state
specific (i.e., request specific), common constraints are true for multiple states.
Hence, solutions for common constraints can be reused without recalculation.
The figure also shows how constraints are gathered along a path of the code
tree.

A

B

C D

E F G H

int s = get size();

if(s>5) {...}

c3:
s <= 5

c4:
s > 5

c1

c2

c3 c4

c7 c8

common
constraints

independent
constraints

(a) State exploration

(push) # s t a r t common scope
Common con s t r a i n t s
(a s s e r t c1)
(a s s e r t c2)
Ind i v i dua l c on s t r a i n t s
f o r f i r s t worker
(push)
(a s s e r t c3)
(check−sa t)
(pop)
Ind i v i dua l c on s t r a i n t s
f o r second worker
(push)
(a s s e r t c4)
(check−sa t)
(pop)
(pop) # f i n i s h common scope

(b) Incremental SMT solving

Fig. 3. Example of state exploration (a) and incremental solving using push/pop (b).
If two workers work on C and D independently, they still share a common path. In
that case, to expand C respectively D, the solver can reuse solutions.

Parallel Symbolic Execution: Merging In-Flight Requests 125

We leverage two key observations (i) the likelihood that two or more requests
are worked on in parallel is quite high; and (ii) requests from different paths can
share a common history, hence they are likely to share common path constraints.
More precisely, we address the first observation by batching requests and the
second by reusing the partial solutions for common constraints, as we explain in
Sects. 3.1 and 3.2.

For the second option, we leverage the feature of recent SMT solvers to
incrementally find a solution to solver requests (e.g. [6,15]). Instead of solving
all requests independently, we first start a new scope (push) and put all common
constraints in it (Fig. 3(b)). After that, for the remaining constraints, we open a
new scope (push) for each individual request, solve the constraint (check-sat)
and close the scope again (pop). This way, specific lemmas learned get removed,
common lemmas are kept (e.g. for value forward propagation).

3.1 Batching Solver Requests

We enable a rendezvous of solver requests by a new layer in the solver chain as
depicted in Fig. 4. The waiting barrier (before the solver call) consists of a set
of slots, each describing a possible rendezvous point.

Our waiting barrier is a ring buffer with multiple slots. Each slot can gather
a number of queries. All requests in one slot will be combined to be handled
by one solver request, instead of each provoking a solver call individually. This
batching reduces the number of solver calls, thus reducing the overall costs.

Apart from the set of queries, each slot contains a busy flag, which indicates
whether a solving process is currently running for the queries gathered in the
slot. A global open slot pointer indicates the next open slot in the ring. Open
means that the solving process for the queries in this slot has not yet started, so
other workers are still allowed to add their query to the slot.

We distinguish worker threads and, along them, one primary worker thread
per slot, which acts as a master and manages the solving process. The course
of a solving process is depicted in Fig. 5. The first thread to enter an open slot
will become the primary. Then it starts spinning until a waiting timeout has

worker thread WT1

Independence
optimization

Counter-example
cache

worker thread WT2

Independence
optimization

Counter-example
cache

worker thread WTn

Independence
optimization

Counter-example
cache

waiting barrier

solver

Fig. 4. Additional rendezvous layer: Instead of every worker calling the solver individ-
ually, each thread waits briefly at a waiting barrier for potential other workers to call
the solver. In case a worker arrives in the meanwhile, their requests are combined.

126 M. Nowack et al.

check
slot primary mode

check
slot

sleep

check
slot

end of
solving
process

wake up

waiting
timeout

slot open slot closed

set
busy flag

reset
busy flag

Fig. 5. Temporal course of the solving process. The first worker to arrive at a slot
becomes primary and waits for others. Later arriving workers, enqueue their solver
request in the same slot and sleep. After a timeout, the first thread closes the slot,
solves all queries, returns the result to all sleeping workers, and wakes them up.

exceeded. Subsequently it sets the busy flag, increments the open slot pointer,
and triggers the solving process.

Every worker thread that enters a slot with an existing primary goes to sleep
immediately. When the solving process is finished, the primary wakes up the
other workers, hands them their solver results, and all threads leave the slot,
thus leaving the waiting barrier.

Currently, our matching is trivial: as long as the current slot is still open, new
requests can be matched to others in this slot. However, for future work we plan
to improve this and follow a multiple lane approach, in which we use multiple ring
buffers and assign threads to slots based on the complexity of the request (“slow
track” vs. “fast track”). For this refinement the waiting time depends on (i) the
simplicity of the request and, therefore, the benefit of waiting for another request
to arrive and (ii) the fork time needed to call the solver. If a request is simple
its solution can be calculated quickly, so waiting is too expensive (“fast track”).
As shown by [16], for many benchmarks most solver requests take 1 ms or less,
which we could confirm for our own experiments. We estimate the complexity
of requests resembling [18]: we weight the constraints depending on their costs.
More expensive request wait longer for potential candidates to combine them
with (“slow track”).

3.2 Merging and Solving Requests

Once the primary worker’s timeout has exceeded, it sets the busy flag (to prevent
other workers from entering the slot) and start the solving process. It consists

Parallel Symbolic Execution: Merging In-Flight Requests 127

of two steps, which facilitate the capabilities of incremental solvers. First, it
calculates the intersection of all constraints, thus determining the common con-
straints, which are shared by all queries. The solver will cache this solution for
the common constraints to subsequently reuse it for solving all queries without
recalculation. Second, the requests of all worker threads are handled iteratively:
for each worker, the primary pushes the unique constraints on the working stack,
solves the request, and combines it with the previously calculated solution for
the common constraints.

Once the primary finished solving all worker requests, it wakes the sleeping
worker threads of this batch and passes them their respective results. The threads
leave the slot, thus splitting up again.

Currently we only determine the common constraints of all requests. How-
ever, in future work we plan to extend on this and also calculate subsets of
constraints that are shared by multiple (but not all) workers in a slot. This way,
solver time could be reduced further.

3.3 Merging vs. Caching

One could argue that a global cache to store common constraints and their
solutions should be sufficient and simpler in comparison to our proposed solution.
A major challenge we see is the identification of common constraints. One cannot
know easily upfront the number of common constraints for two or more requests.
Therefore, to make a global cache efficient, one has to save subsets of constraints
for requests. This poses two challenges, first to subsequently match, the subset
should not contain specific constraints otherwise subsequent hits are less likely;
second, choosing the right size of a subset influences the number of entries in the
cache and its hit rate. The smaller entries should be, the larger the cache has to
be. Otherwise, entries might get evicted too often.

4 Implementation

Our prototype is based on the current version of KLEE [5]1. As a symbolic
execution engine for running C and C++ programs, KLEE is built on top of
LLVM [13] (a tool chain for building compilers and interpreters) and uses STP [9]
as a solver for quantifier-free first order logic with support for bit-vectors and
arrays.

We parallelized KLEE by implementing the architecture described in
Sect. 2.3. By converting KLEE to C++11, it enabled us to leverage support
for multi-threading (e.g. using std::shared ptr, std::atomics).

Based on the basic architecture, we added our waiting barrier as an additional
stage before the final solver as depicted in Fig. 4. Precisely, the waiting barrier is
a ring buffer with a number of slots whose contents consist of a set of queries and
a busy flag. The total number of slots in the ring buffer is equal to the number

1 https://github.com/klee/klee.

https://github.com/klee/klee

128 M. Nowack et al.

of CPUs, so every worker thread running in parallel is guaranteed to fit into a
slot.

Once a thread enters an open slot, it will be assigned one of two roles. The first
thread to enter runs in primary mode, thus following a separate code path and
executing primary tasks. All threads that enter a slot with an existing primary
become secondaries.

Flexible waiting timeout: Previously, we explained that threads are matched to
each other by being assigned to the same slot in the waiting barrier. While
our concept allows for different approaches of a waiting timeout, our prototype
implements the following batching process: Every time the primary detects a
newly arrived secondary, it will decrease the waiting timeout by interval I, with
N being the number of possible parallel threads (i.e., the number of CPUs) and
Tw being the length of the waiting timeout: I = Tw/N . Hence, the new waiting
timeout T ′

w is T ′
w = Tw − I.

This flexible waiting timeout allows to include multiple threads in the batch-
ing while reducing the overall idle time. However, in the meantime between the
end of the waiting timeout and the slot actually being closed, other threads can
still enter the slot.

In future work, we will focus on a more sophisticated batching process.
First, we intend to experiment with varying waiting timeouts and matching
approaches. Second, we will implement a multiple lane approach to allow differ-
ent complexity tracks as described in Sect. 3.2.

Resetting the busy flag: When the solving process is finished, the primary wakes
up the secondaries and passes them their respective solutions. To avoid unnec-
essary delays of single threads and additional overhead, the primary gives up its
role right afterwards. The last thread to leave the barrier resets the busy flag
and, thus, opens the slot again.

Limitations to the approach and the prototype: Calls to external libraries have
to be synchronized. Our implementation resembles the original KLEE, e.g., if a
worker calls an external function (e.g. to print to screen), all memory objects
contained in the current state will be written to the real process memory, the
external call will be executed, and changes will be written back. If other workers
also need to execute external calls they will be stalled.

5 Evaluation

For our experiments we used an Intel E5405 2 GHz with 8 cores and 8 GB of RAM
running Ubuntu 14.04.02. To evaluate our approach, we used Coreutils suite2

6.10 as our benchmark suite, the same version as in [4,5,16]. Coreutils contains
around 90 basic utilities for text, file, and shell manipulation and are part of most
Linux-based systems. Written in C, the utilities often have system interactions
2 https://www.gnu.org/software/coreutils/.

https://www.gnu.org/software/coreutils/

Parallel Symbolic Execution: Merging In-Flight Requests 129

and contain low-level bit manipulations. We used the same input parameters
for KLEE as in [5] as far as they are available in the current unmodified KLEE
version. The major difference of our experiment setup is that we run the 64 bit
version of the test applications, our KLEE-based implementation builds on top
of LLVM 3.4, and we limit the maximum memory to use to 4 GB. We allow a
solver request to take up to a maximum of 30 s to execute.

Each of the test tools from the benchmark suite was run 3 times and up to
1h each for every version of our implementation.

5.1 Time Spent by the Solver

To be able to show the improvement of the solving time, we first need to have a
closer look at the solving time spent in the case of the single-threaded execution.
We ran the Coreutils benchmark with the original version of KLEE and recorded
the generated solver requests and the time it took (tklee). In a second step, we
used the solver independently of KLEE and re-ran each request individually
using the solver front end KLEAVER. We disabled the forking mechanism or any
other optimization happened before the solver call, and recorded the solving time
(treal). To our surprise, the solving times varied vastly (tdiff = tklee − treal).

One example run is depicted in Fig. 6 for csplit. The graph depicts solver
request and their execution time over finished instructions made during 1 h. The
green dots depict the real solving time (treal). The blue dots depict the additional
time (tdiff) spent for a request. The solving time is measured in seconds with
maximum of 21.89 s. The allocated memory (red points) is depicted in the same
graph as well. We normalized the measured values to a 0–1 range with 1 being
equivalent to a 4 GB allocation.

As one can see, the real solver time is distributed in three lanes. The major
part of requests is below 10 ms with a slight concentration in the 1st third of
the time; followed by up to 100 ms quite equally distributed over time; with only
minor number of requests above more concentrated during the last two third of
the execution.

As one can see, the solver time difference (tdiff) increase over time highly
correlates with the total size of allocated memory (red points). The higher the
allocation, the higher is tdiff .

We could reproduce similar behavior with a very simple toy program executed
natively that has two phases: first, it allocates an amount of memory and writes
into it, and in the second phase, a few thousand forks() are executed. The
average time a fork takes increases linearly with the amount of allocated memory.
If multiple threads run in parallel in the second phase, the fork time will not
change significantly over the single-threaded execution.

In essence, the less often we need to fork, especially under memory pressure
(e.g. due to state space explosion), the more time can be spent in solving. There-
fore, if many solver requests can be merged and combined to one, the overall
time spent in forking can be reduced.

130 M. Nowack et al.

0.01

1.00

0 200 400 600

Instructions over Time (106)

S
ol

ve
r

T
im

e

Allocated
Memory
Real Solver Time
(t_real)
Solver Time
Difference (t_diff)

Fig. 6. Example of one run for csplit and the time spent for solving the requests
(Color figure online).

5.2 Thread-Based Parallel Symbolic Execution

Our major contribution is combining in-flight solver requests which is built on
top of a multi-threaded implementation of a symbolic execution engine. Before
we evaluate the combining, we evaluated the thread-based symbolic execution.

To show the effectiveness of our multi-threaded implementation, we need to
compare it with the single-threaded execution. To do so, we use two metrics: the
achieved line coverage and the instructions executed.

Multi-threading adds a big source of randomness, which makes it hard to
compare single-threaded and multi-threaded runs. Already for original single-
threaded KLEE, its behavior is highly random, making it hard to repeat exper-
iments. We took similar measures as [16] to disable random influences (e.g.,
deactivate address space random layout). To show the effectiveness (e.g. using
line coverage criterion) of our multi-threaded implementation, we could not use
non-random searchers like depth-first search or breadth-first search. It would be
a disadvantage for single-threaded implementations, as already with a second
worker thread covering an additional path, a multi-threaded implementation
has an advantage over a single threaded implementation. We used a searcher
which selects states randomly from the state space but prefers states close to an
uncovered instruction.

Parallel Symbolic Execution: Merging In-Flight Requests 131

Our results for the coverage show that for the group of applications of Core-
utils, which can be fully covered during the execution of 1 h, the multi-threaded
execution achieves the full coverage in most of the runs earlier up to 6.7x faster
for 8 threads. For the second group of applications, for which full coverage cannot
be achieved during 1 h, the multi-threaded implementation achieved on average
a higher coverage faster in comparison to the single-threaded execution. Still,
the coverage metric is highly influenced by selecting the right states to explore
as early as possible. Using instructions executed as a metric is also fragile. If a
taken path covers instructions for which the constraints are hard to solve, less
instructions can be executed. In contrast, if constraints can be solved fast, more
instructions can be executed. Still our experiments show an improvement for 14
out of 40 experiments executing at least 2 billion more instructions and up to 5
billions more at most (e.g. md5sum).

5.3 Batching and Merging Parallel Requests

The success of our method depends highly on how many requests can be batched.
Obviously, this depends on the time a thread in primary mode is waiting at the
barrier for other threads to arrive and the average time it takes to solve a request.
The second is often specific to the application under test (Sect. 3.1). In our
tests, we varied the waiting time between 1 ms and 100 ms. As a result, different
applications were favored depending on the timeout of the waiting barrier.

How often are solver requests batched and how many together? We run all
the Coreutils suite with our implementation of merging in-flight requests. We
recorded the solver requests which have been made. The experiments generated
7.8 million queries per different waiting configuration. Figure 7(a) shows the dis-
tribution of combined queries. For every observed number of queries involved for
batching (x axis - 1 to 8), we depict the number of how often this happened.
Our testing machines has 8 cores and up to 8 queries were batched, therefore
up to 8 threads arrived at the waiting barrier and used the same slot at one time.
The majority of requests do not execute in parallel (57%). For the remaining
requests, two threads share requests most often. It is an order of magnitude less
for 3, down to a couple of hundreds for 8.

How many constraints did batched requests have in common? The number of
shared constraints for batched requests varied highly. Figure 7(b) shows the dis-
tribution over the number of common constraints. It varies between 0 and 246
in the example of the Coreutils experiment. On average, requests had 69.9 con-
straints in common. This indicates a good applicability of our method. Reason
why the graph has the ragged shape are the way a program is explored. Our
used searcher prefers states close to uncovered instructions. If instructions from
a code region are uncovered, branch points in the code enable different workers
to work on similar states. This makes it more likely to have common constraints.
Also loops in code containing switches make it more likely that several workers
work on different switch cases but still sharing common constraints.

132 M. Nowack et al.

1e+01

1e+03

1e+05

2 4 6 8
Parallelism

N
um

be
r

of
 q

ue
ri

es
 lo

g(
n)

Number of Parallel Queries (43.07%)

(a) Distribution of combined queries encountered.

1e+01

1e+03

1e+05

0 50 100 150 200 250
Number of Common Constraints (>0)

N
um

be
r

of
 Q

ue
ri

es
 lo

g(
n)

Number of Queries for Different Numbers of Common Constraints

(b) Distribution of common constraints for combined queries.

Fig. 7. Results for Coreutils having a barrier waiting time of up to 10 ms. Total number
of queries: 7.8 million.

Parallel Symbolic Execution: Merging In-Flight Requests 133

Results show a saving of solver costs up to 50 % over the multi-threaded
only version, which is almost 7 h in case of the time spent for solver requests on
Coreutils.

5.4 Prototype Limitations

External Calls Calling external functions (i.e. system calls) is essential for test-
ing system applications like the ones in Coreutils The problem is that changes
made by calls to external libraries (i.e. modifications of the memory) cannot
be observed by KLEE. Therefore, the current implementation of KLEE works
around the issue by, first, writing all memory associated to the execution state to
their native positions, second, executing the external call, and last, writing back
all changes from the native memory to the execution state. For our prototype,
to avoid inconsistencies, we made calling external calls mutual exclusive. This
has an impact on the execution time of the application, we measured waiting
costs up to 8 % of the total execution time for each thread (i.e. for md5sum). On
average it was 1.8 % per application and thread.

5.5 Threats to Validity

We verified our implementation and experiment setup to the best of our knowl-
edge. Still it is hard to cope with inherent randomness of symbolic execution
plus the multi-threaded implementation. We tried to mitigate the problem by
running the experiments multiple times and calculating the average. We vali-
dated our approach comparing the code coverage of the checked applications,
which is similar or better.

6 Related Work

To the best of our knowledge, no existing solutions follow a thread-based app-
roach as proposed by us. All solutions we know build on a process-based approach
to utilize multiple cores for symbolic execution.

Staats et al. [18] propose an extension to parallelize the symbolic execution
part of Java Pathfinder [2]. They partition the search tree statically upfront.
First, they perform a symbolic search with iterative deepening to depth n and
collect the sets of constraints. Second, they reassemble the constraints accord-
ing to complexity and use them to split the domains of the input variables in
independent pieces. In a third step, they assign these pieces to different work-
ers, which work on them separately to reduce costs. Bucur et al. [4] propose
a dynamic approach named Cloud 9. The search tree is split dynamically and
a load balancer observes the workers. As soon as a worker is over-utilized, its
search tree is split and parts of the tree are transfered to the load balancer,
which distributes them to under-utilized nodes. Our approach can be combined
with both solutions to help each worker accelerate its progress, thus allowing

134 M. Nowack et al.

a better overall throughput. Additionally, our thread-based parallelization can
also enhance the light-weight symbolic execution proposed by Staats et al. [18].

An interesting alternative is using a portfolio solver as proposed by Palikareva
et al. [16]. A request is sent to different SMT solvers in parallel and the fastest
and/or best solution will be used. This can efficiently utilize multiple cores avail-
able on the same machine. We see our work as an orthogonal approach.

Our solution for merging solver requests is based on similar ideas (see Pötzl
et al. [17]) for solver preprocessing, e.g., Push/Pop Encoding.

7 Conclusion

We presented a new way to combine solver requests in symbolic execution: We
leverage multi-threaded execution and merge parallel occurring solver requests.
Our prototype shows a reduction of the solver time by up to 50 %. We consider
our work a viable extension of existing approaches for parallelized symbolic exe-
cution.

Acknowledgment. We thank the anonymous reviewers for their insightful comments.
This work was partially founded by the German Research Foundation (DFG) under
grant FE 1035/1-2.

References

1. Anand, S., Naik, M., Harrold, M.J., Yang, H.: Automated concolic testing of smart-
phone apps. In: Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, FSE 2012, pp. 59:1–59:11. ACM, New
York (2012). http://doi.acm.org/10.1145/2393596.2393666

2. Anand, S., Păsăreanu, C.S., Visser, W.: JPF–SE: a symbolic execution extension
to Java PathFinder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol.
4424, pp. 134–138. Springer, Heidelberg (2007)

3. Avancini, A., Ceccato, M.: Comparison and integration of genetic algorithms and
dynamic symbolic execution for security testing of cross-site scripting vulnera-
bilities. Inf. Softw. Tech. 55(12), 2209–2222 (2013). http://dx.doi.org/10.1016/
j.infsof.2013.08.001

4. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: EuroSys 2011: Proceedings of the Sixth
Conference on Computer Systems, pp. 183–198. ACM Request Permissions, New
York, April 2011. http://portal.acm.org/citation.cfm?doid=1966445.1966463

5. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224. USENIX Association, Berkeley (2008). http://dl.acm.org/
citation.cfm?id=1855741.1855756

6. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013)

http://doi.acm.org/10.1145/2393596.2393666
http://dx.doi.org/10.1016/j.infsof.2013.08.001
http://dx.doi.org/10.1016/j.infsof.2013.08.001
http://portal.acm.org/citation.cfm?doid=1966445.1966463
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756

Parallel Symbolic Execution: Merging In-Flight Requests 135

7. Ciortea, L., Zamfir, C., Bucur, S., Chipounov, V., Candea, G.: Cloud9: a soft-
ware testing service. ACM SIGOPS Operat. Syst. Rev. 43(4), 5–10 (2010).
http://dl.acm.org/citation.cfm?id=1713254.1713257

8. Corin, R., Manzano, F.A.: Taint analysis of security code in the KLEE symbolic
execution engine. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618,
pp. 264–275. Springer, Heidelberg (2012)

9. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007)

10. Hönig, T., Eibel, C., Kapitza, R., Schröder-Preikschat, W.: SEEP: exploiting sym-
bolic execution for energy-aware programming. Operat. Syst. Rev. 45(3), 58–62
(2011). http://doi.acm.org/10.1145/2094091.2094106

11. King, A.: Distributed Parallel Symbolic Execution. Master’s thesis, August 2009
12. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–

394 (1976). http://doi.acm.org/10.1145/360248.360252
13. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-

sis & transformation. In: CGO 2004: Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-Directed and Runtime Optimiza-
tion. pp. 75–86. IEEE Computer Society, March 2004. http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1281665

14. Mirzaei, N., Malek, S., Pasareanu, C.S., Esfahani, N., Mahmood, R.: Testing
android apps through symbolic execution. ACM SIGSOFT Softw. Eng. Not. 37(6),
1–5 (2012). http://doi.acm.org/10.1145/2382756.2382798

15. de Moura, L., Bjørner, N.S.: Z3: an efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

16. Palikareva, H., Cadar, C.: Multi-solver support in symbolic execution. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 53–68. Springer,
Heidelberg (2013)

17. Pötzl, D., Holzer, A.: Solving constraints for generational search. In: Veanes, M.,
Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 197–213. Springer, Heidelberg
(2013)

18. Staats, M., Pǎsǎreanu, C.: Parallel symbolic execution for structural test genera-
tion. In: The 19th International Symposium, p. 183. ACM Press, New York (2010).
http://portal.acm.org/citation.cfm?doid=1831708.1831732

http://dl.acm.org/citation.cfm?id=1713254.1713257
http://doi.acm.org/10.1145/2094091.2094106
http://doi.acm.org/10.1145/360248.360252
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1281665
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1281665
http://doi.acm.org/10.1145/2382756.2382798
http://portal.acm.org/citation.cfm?doid=1831708.1831732

Model Checking

Limited Mobility, Eventual Stability

Lenore D. Zuck1 and Sanjiva Prasad2(B)

1 University of Illinois at Chicago, Chicago, USA
lenore@cs.uic.edu

2 IIT Delhi, New Delhi, India
sanjivap@cse.iitd.ac.in

Abstract. The IPv6 Mobility protocol, an archetypal system for sup-
porting communication amongst mobile devices, presents challenging
verification problems. While model-checking techniques have been used
to illustrate subtle oversights and flaws in the informal specifications
previously, the more difficult question — whether it is possible to ver-
ify the correctness of the core architecture by checking properties on
a small model — has not been adequately examined. In this paper we
present a novel technique combining ideas from verification of parame-
terised systems, abstraction, model-checking of temporal logic properties
and simulation relations found in process algebras. The technique relies
on the fact that the system can be considered to eventually stabilise to
a form more amenable to techniques used for model-checking parame-
terised systems, allowing the checking of arbitrary LTL properties.

Keywords: Parameterised verification · Abstraction · Simulation · IPv6
mobility

1 Introduction

The IPv6 mobility protocol [14] is designed to allow mobile nodes (MNs) to
remain reachable while moving around from one network to another, while main-
taining a permanent IP address (thus facilitating uninterrupted functioning of
transport and application protocols). It is a proxy-based architecture and uses
a small set of control messages to let correspondent nodes know one another’s
current locations. The protocol assigns to each node a permanent identifying
address and a home agent router (HA) in its default home network, which is
responsible for recording its current location and forwarding messages addressed
to it when it moves. When it moves to a different subnet, a MN is associated
with a care-of address (CoA), which it conveys to its HA and also (optionally)
to correspondent nodes (CNs) via a foreign agent. By letting CNs cache the cur-
rent location of a MN, Mobile IPv6 avoids having messages “dog-leg” via the
home network of the target MN, though this is the default path for CNs who
are unaware of the MN’s location. This solution also avoids the vulnerabilities

This research was supported in part by NSF grant CNS-1228697.

c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 139–154, 2015.
DOI: 10.1007/978-3-319-26287-1 9

140 L.D. Zuck and S. Prasad

of having all messages go via the home router, such as increased traffic, node
failure, denial of service, congestion etc.

Mobile IP is an archetypal distributed framework for supporting communica-
tion between MNs. With the explosive growth in the number of mobile devices,
verifying the correctness of this protocol is important. Its correct functioning
depends on maintaining a global property across the forwarding tables in a dis-
tributed system of routers, and reestablishing it, via coordinated local changes
at different routers, when it is disrupted by the mobility of MNs. The basic cor-
rectness ty required of the protocol is that even with mobility, messages to a
MN eventually get delivered1. Clearly if a restless peripatetic node moves very
frequently, a message addressed to it may forever be chasing it without ever
catching up with it. The correctness of the protocol may therefore be informally
phrased as: if a MN stays “long enough” at a place, a message addressed to it will
eventually be delivered to it. We posit that establishing the essential correctness
of the protocol does not require explicitly modelling time, but that a temporal
ordering suffices to characterise its properties (which we do in LTL).

There have been several attempts at formally specifying and verifying the
IP mobility model, using a variety of techniques (see Sect. 1.1). The different
approaches have focussed on modelling the protocol at various degrees of detail,
sometimes focussing on different issues (security, lifetime of cache entries, basic
invariants, etc.). Model-checking tools have been used to detect (usually minor)
errors in the design of the system. The common characteristic of these efforts
is that the systems modelled have a very small number of mobile nodes and
routers (usually 2 or 3 of each), and have been plagued by an extremely large
state space. While the presence of a property violation in such a limited model
provides a trace identifying an error in the design, the absence of errors in the
model does not vouch for the correctness of the protocol.

In this paper, we show the correctness of (the essence of) the IP mobil-
ity infrastructure by verifying the basic correctness property in a small model
(comprising one message, one mobile node and three routers). We argue that
checking for correctness on this model is adequate in establishing the correct-
ness of much larger systems with many more routers, messages and mobile nodes.
Our work uses a novel methodology for verifying systems such as these, using
ideas from parameterised verification, abstraction, model-checking and a form
of fair simulation.

Note that the correctness requirement is a liveness property. Moreover, the
system that we are modelling has inconvenient data structures that render tradi-
tional parameterised verification techniques unsuitable. However, the system we
study enjoys an exploitable property: it is guaranteed to eventually reach, and
remain in, a state where the unwieldy data structures can be dispensed with.
We are thus able to propose a proof rule that focuses on such “good” states,
1 IP only promises a best effort at datagram delivery; there are the usual reasons for

non-delivery of messages: node failure, link failure, noisy traffic, inadequate buffer
space at congested nodes, etc. The question thus is whether mobility adduces any
additional reasons for non-deliverability of messages.

Limited Mobility, Eventual Stability 141

where the data structures can be replaced with simpler ones. The system being
parameterised, it can be reduced to a (small) finite instance amenable to efficient
model-checking. We use TLV to model and verify the system.

Thus, faced with a parameterised system with non-trivial data structures
and a liveness property, we can reduce the problem to that of model-checking
a small system with simpler data structures. Small model theorems have been
used before in parameterised verification. For example, [7] proposes such for
a restricted class of systems where everything is universal, and the method of
invisible invariants (e.g., [9]) uses a small model theorem for the proof obligation
of the premises of proof rules. While parts of our method resemble the latter
approach, our method is fundamentally different: the small model theorem of
invisible invariants is used to generate invariants on small instances, while here
we verify the property directly on the small instance.

Paper Structure. The rest of the paper is structured as follows. This introduction
concludes with a review of previous work on verifying mobile IP. In Sect. 2, we
present our computational model, and the method used for verification. Section 3
overviews the IP mobility architecture, and presents a finite model of the core
Mobile IP system in TLV which can be model-checked. In Sect. 4, we present
two different proof techniques for establishing the required correctness of the
message delivery property. Both techniques rely on the fact that the system
reaches a stable state which is more amenable to efficient analysis. The first
technique is based on transforming the stable suffix of the original system into a
new one and converting the liveness property into a bounded liveness property
using techniques based on the “method of invisible invariants” (see [2,15,17])
adapted to bounded liveness [8]. The other technique (manually) establishes the
existence of a small model using simulation and then directly model checks the
behavior of that small model. We conclude in Sect. 5, highlighting the novelty of
the method presented.

1.1 Related Work on Verifying Mobile IP

McCann and Roman [13] present a specification of IP mobility in the Mobile
UNITY notation and proof logic, in which they prove several properties of the
system including real-time ones. Their specification is parameterised, comprising
mobile nodes, home and foreign routers and the network, and involves explicit
modelling of clocks and their synchronization. Jackson et al. [11] used the light-
weight formal tool Nitpick to model the protocol, concentrating on time and
time-stamping of messages to analyse the lifetimes of cache bindings. They
detected certain anomalies in the informal protocol specification, identifying cir-
cumstances in which messages may traverse cycles, and how a cycle may form
in the forwarding tables. Our work shows that the protocol may work correctly
even if such forwarding cycles form temporarily. Dang and Kemmerer [6] use
the ASTRAL model-checking tool to model the system in great detail, includ-
ing message formats, physical locations and time. They perform a bounded-time
explicit state space exploration, leading to a huge state space explosion (108) for

142 L.D. Zuck and S. Prasad

even a very small number of mobile nodes, and home and foreign routers (2 of
each). However, their analysis also focuses on security properties of the proto-
col, which they correctly argue are intimately connected to the correctness of the
cache updates. Amadio and Prasad [1] model the protocol in a process calculus
framework, and identify essential invariant properties that the protocol should
maintain, such as the absence of forwarding table cycles and the need for buffer-
ing messages at previously visited nodes. They posit that the correctness of the
protocol architecture does not depend on explicit time (time-stamping, lifetimes
etc.) but on the temporal order of certain control messages, and prove that the
protocol is behaviourally equivalent to IP without mobility. While their analy-
sis is exhaustive, the process calculus setting results in some “over-modelling”
and no automated techniques are presented. The authors, however, do report
an attempt to model-check a small finite version of the protocol using SPIN,
which required state space in excess of the tool’s capabilities. Rodrigues et al.
[16] report the use of an object-oriented Petri Net based tool to verify the pro-
tocol. However, one of the properties they claim is that every data message goes
through the home router, which is not true of Mobile IPv6.

2 The Formal Framework

2.1 Just Discrete Systems

Our computational model is a just discrete system (JDS) S = 〈V,Θ, ρ,J , 〉,
where

– V is a set of system variables. A state of S provides a type-consistent inter-
pretation of the variables V . For state s and variable v ∈ V , we denote by s[v]
the value assigned to v by the state s. Let Σ denote the set of all states over
V .

– Θ is the initial condition: An assertion (state formula) characterising the
initial states.

– ρ(V, V ′) is the transition relation: An assertion, relating the values V of the
variables in state s ∈ Σ to the values V ′ in an S-successor state s′ ∈ Σ.

– J is a set of justice (weak fairness) requirements (assertions). A computation
must include infinitely many states satisfying each of the justice requirements.

For an assertion ψ, we say that s ∈ Σ is a ψ-state if s |= ψ .
A computation of an JDS S is an infinite sequence of states σ : s0, s1, s2, ...,

satisfying the requirements:

– Initiality : s0 is initial, i.e., s0 |= Θ.
– Consecution: For each � = 0, 1, ..., the state s�+1 is an S-successor of s�. That

is, 〈s�, s�+1〉 |= ρ(V, V ′) where, for each v ∈ V , we interpret v as s�[v] and v′

as s�+1[v].
– Justice: For every J ∈ J , σ contains infinitely many occurrences of J-states.

We say that a temporal property ϕ is valid over S, denoted by S |= ϕ, if for
every computation σ of S, σ |= ϕ.

Limited Mobility, Eventual Stability 143

2.2 Finitary Abstraction

We now give an overview of (a somewhat simplified version of) the material in
[12], to which the reader may refer for details.

An abstraction is a mapping α : Σ → Σ
A

for some set Σ
A

of abstract states.
The abstraction α is finitary if the set of abstract states Σ

A
is finite. We focus on

abstractions that can be represented by a set of equations of the form ui = Ei(V),
i = 1, . . . , n, where the Ei’s are expressions over the concrete variables V and
{u1, . . . , un} is the set of abstract variables, denoted by V

A
. Alternatively, α can

be written as a system of equations V
A

= Eα(V).
For an assertion p(V), we define its abstraction by:

α(p) : ∃V.(V
A

= E
A
(V) ∧ p(V))

The semantics of α(p) is the set of abstract states given by ||α(p)|| = {α(s) | s ∈
||p||}. Note that ||α(p)|| is, in general, an over-approximation – an abstract state
is in ||α(p)|| iff there exists some concrete p-state that is abstracted into it. An
assertion p(V, V ′) over both primed and unprimed variables is abstracted by:

α(p) : ∃V, V ′.(V
A

= E
A
(V) ∧ V ′

A
= E

A
(V ′) ∧ p(V, V ′))

The assertion p is said to be precise with respect to the abstraction α if
||p|| = α−1(||α(p)||), i.e., if two concrete states are abstracted into the same
abstract state, they are either both p-states, or they are both ¬p-states. For a
temporal formula ψ in positive normal form (where negation is applied only to
state assertions), ψα is the formula obtained by replacing every maximal state
sub-formula p in ψ by α(p). The formula ψ is said to be precise with respect to
α if each of its maximal state sub-formulas is precise with respect to α.

In all cases discussed in this paper, the formulae are precise with respect
to the relevant abstractions. Hence, we can restrict to the over-approximation
semantics.

2.3 Partial System Abstraction

Let S be a JDS as above, and let Sa = 〈Va, Θa, ρa,Ja, 〉. The following theorem,
whose proof follows a similar proof in [12], is the basis of our method that allows
a partial abstraction of a system.

Theorem 1. Let S ⊂ Σ and let α : S → Σa be an abstraction mapping. Then
if the following all hold:

1. S is valid over S;
2. all α(S) states are Sa reachable from Θa;
3.

⋃
J∈J α(J) ⊆ ⋃

J ′∈Ja
J ′

Then for every state assertion φ,
Sa |= φα =⇒ S |= φ

144 L.D. Zuck and S. Prasad

Fig. 1. Verification by Partial Abstraction

Based on Theorem 1, we propose the following proof methodology outlined
in Fig. 1.

Step 1 requires that S is guaranteed to eventually remain in S-states. Step 2
requires that the abstraction of the S’s justice requirements is a subset of Sa’s
justice requirements. Note that this does not imply that every J-state of S maps
to a J-state of Sa, but rather that if all S’s justice requirements are met then
so are all of Sa’s requirements. Step 3 requires each S transition among S-states
α-maps into a Sa transition. Since the partial abstraction may not be defined for
some of S’s states, Step 4 requires that every α(S) state is Sa-reachable. Finally,
Step 5 requires that the desired property is valid over Sa.

Note that the S1–S4 may be mechanically verified. The only obviously manual
step in the proof rule is the identification of S and the construction of α. In fact,
this is just a case of fair simulations [10] for a restricted set of states. As to Step
5, if Sa is finite-state, or possibly in some other cases, it may be possible to verify
the condition. In the example we outline next, when applying the proof rule, Sa is
a finite (and small) system and we can model check any temporal property on it.

3 Modelling Mobility

In this section we present an abstraction of the protocol which allows us to
prove its main properties. This can be used as a reference specification for many
lower level protocols that implement it. The model is parametric in the number
of routers, but (without loss of generality, we believe) we focus on the possible
behaviours given just one MN to which a message is addressed.

3.1 IPv6 Mobility Basics

IPv6 support for mobility is based on a proxy architecture, where a mobile node
B is associated with

– its identifying IP address nB ;
– its home router, denoted HB , which never changes;

Limited Mobility, Eventual Stability 145

– its current location, denoted hB , which may change over time. At any point
in time, B is “hosted by” at most one router.

In a stable state of the network, a sender sends a message to a mobile node
B by either

1. tunnelling it to B’s home router HB (B’s default location); (a) if B is at home
(hB = HB), the message will be delivered to B. (b) if B is away (hB �= HB),
HB tunnels it to hB , which HB presumably knows.

2. alternatively, if the sender knows hB , it may tunnel the message to hB .

However, when B moves, we cannot assume that the new hB will be known
to nodes wishing to communicate with it, in particular to HB . The IPv6 mobility
protocol achieves correct forwarding of messages with a small number of control
messages that eventually lead to (re)establishing correct forwarding tables. We
focus here on the effects that the control messages have on the forwarding tables.

Let B be a mobile node. We assume that each node i has a table indicating
how to forward each message according to its addressee. For simplicity, since we
focus only on one node (B), we assume that nextB [i] is i’s routing information
for B, i.e., when i receives a message intended for B, if i �= hB , then i sends
the message to nextB [i]. Initially, for every node i, nextB [i] = HB . Moreover, at
any time, if nodes i, j �= HB , hB and nextB [i] = j, nextB [i] can be reset to HB .
The only possible other nextB [i] changes are triggered by B’s moves, with the
associated updates summarised in Fig. 2. These changes are not synchronous –
they can happen at any time and in any order. In fact, if B moves fast enough,
some of the changes may never take place. Allowing such partial changes in the
forwarding table correctly captures the mechanism used in the IPv6 protocol
where mobile nodes ask to be registered at the foreign hosts, requests that may
time out before the mobile node seeks another host.

B Move Updates
HB to j �= HB nextB [HB] = j,

nextB [i] = {HB or j} (For all i �= HB)
j �= HB to HB nextB [i] = HB (for all i)
j1 to j2, j1, j2 �= HB nextB [HB] = j2,

nextB [i] = {HB or j2} (For all i �= HB)

Fig. 2. nextB updating on moves

The main property of IPv6 is that messages get correctly forwarded, hence
we need to model messages and their handling. We choose not to focus on the
precise modelling of messages and their traversal of the network. For a mes-
sage with addressee B, we record the node where the message resides. (We
also assume, for simplicity, that all messages are intended for B, although we
can easily clutter the model and allow multiple messages to multiple recipients.
However, the single message single recipient case is simpler and extremely easy

146 L.D. Zuck and S. Prasad

to generalise.) Assume that some message was generated and addressed to B.
We let msg denote the current location of the message. Consequently, our goal
is to verify that msg = hB

Since B is mobile, we cannot assume that the node generating the message
has its nextB set to hB , or even to HB (or that nextB [HB] = hB. Moreover, if B
keeps changing hosts, it is possible that the changes happen frequently enough so
that the forwarding tables cannot keep up with it. We can thus only expect the
message to be delivered (reach hB) if B stays put at some location long enough
so that all updates to the tables can take place. In LTL, this can be expressed
by

∃i. (hB = i) −→ (msg = hB)

As in all liveness properties, this property can only be met under certain fair-
ness assumptions. We formulate those below, when we describe how the system
can be modelled.

3.2 The System

The system corresponding to the protocol above can be expressed as an asyn-
chronous composition

Move||Node0|| . . . ||NodeN ||Messenger ||M0|| . . . ||MN

where:

– Move controls B moves in the network;
– 0 denotes HB ;
– each Nodei (i ∈ [0..N]) is the process at the ith node to update its routing

table for B;
– Messenger is the process that generates a message (once) at some non-

deterministically selected node; and
– each Mi is the process that forwards or consumes the message when it reaches

node i.

The variables in the system are:

1. hB ∈ [0..N] that denotes B’s current host; It is set by the process Move and
can be read by any of the processes;

2. msg ∈ [0..N] that denotes the current location of message;
3. status ∈ {never , transit , delivered} that denotes whether a message is ever

generated, is in transit, or is delivered. The process Messenger can set it to
transit if its status is never , and consequently each process Mi can forward
the message to nextB [i] if it is at node i �= hB , or set status to delivered if it
is at node i = hB;

4. stay long is a boolean that is non-deterministically set (once) by process Move
and is read by no other process — its only purpose is to indicate B remains
at some node “long enough”;

Limited Mobility, Eventual Stability 147

5. lastB is an array that stores the last location at which a node “saw” B. That
is, lastB [i] = j indicates that when node i was last scheduled, B was in j.
For every i, lastB [i] is read/written by Nodei;

6. nextB is the routing table; nextB [i] is written by Nodei and read by Messenger.

Initially hB = 0 indicating B is at home, status = never indicating that the
message wasn’t sent, stay long = False indicating the B hasn’t yet settled, and
all the nextB pointers lead to home (0).

Process Move: The process may update either hB (nondeterministically) or
stay long (to True) if ¬stay long . It can be described by:

Process Move ::⎡

⎣
loop forever do[

if ¬stay long then hB := {0, 1, . . . , N}
if ¬stay long then stay long := {True,False}

]
⎤

⎦

where stay long := {True,False} denotes a non-deterministic assignment of
stay long . The justice property associated with this process is stay long = True,
indicating that eventually stay long has to be set to True.

Process Nodei: The code for Nodei is described in Fig. 3. The assignment nextB :=
{0, hB} denotes a non-deterministic choice between 0 which denotes B’s perma-
nent home and the variable hB which denotes B’s current host. The process loops
forever and when it realises that B has moved since its last update, assigns nextB
accordingly. The justice condition is that the module is scheduled infinitely many
times. This can be achieved, e.g., by adding a boolean variable that flips whenever
the module is scheduled, and to require that it infinitely many times equals 1 and
infinitely many times equals 0.

Process Nodei(hB ,nextB [i]) ::
local lastB natural in [0..N] init 0
loop forever do⎡

⎣
if hB �= lastB then

if i = 0 then nextB [i] := hB else nextB := {0, hB}
lastB := hB

⎤
⎦

Fig. 3. A Node Process to update Forwarding Table

Process Messenger: This process generates a message if none was generated.
It does so by assigning status to transit and non-deterministically choosing a
location for the message in [0..N]. This process can be described by:

Process Messenger ::
loop forever do⎡

⎣
if status := never then

status := {never, transit}
if status := transit then msg := {0, . . . , N}

⎤

⎦

There is no justice condition associated with this process.

148 L.D. Zuck and S. Prasad

Process Mi: This process forwards a transiting message at node i to B if i is
B’s host, and then it sets status to delivered , or it forwards the message to node
nextB and leaves status intact. The process can be described by:

Process Mi ::
loop forever do⎡

⎣
if status := transit ∧ msg = i then

if hB = i then status := delivered
else msg := nextB [i]

⎤

⎦

The justice property here is that the module is scheduled infinitely many times.

3.3 Properties

Usually one proves several properties on IPv6: that messages are present at their
senders and at prior hosts of B (including its home); that the nextB pointers
don’t form any cycles; and more. From these properties one establishes the main
property we are interested in, namely

(status = transit ∧ stay long) =⇒ (status = delivered)

(in LTL, p =⇒ q abbreviates (p → q), i.e., that it is always the case that

a p is eventually followed by a q.) This property states that if a message is in
transit while B stays put at one host, then the message will be delivered.

In all previous work on the correctness of IP, a lot of effort was invested
in showing the absence of forwarding cycles2. However, the correctness of IPv6
relies on a weaker property. While model-checking, we discovered that it is in
fact possible for cycles to be formed in the forwarding tables, as is illustrated by
the following scenario.

From the initial state, node B moves to node 1. This is first observed by node
2 (in IPv6 that could be because B sends node 2 a message before completing its
registration at node 1) and nextB [2] is set to 1 while all the other nextB pointers
still lead to 0. At this point the node migrates to 2, and the first to observe this
change is node 1 that sets nextB [1] = 2. Until further changes, this creates a
forwarding cycle between nodes 1 and 2. As we show in the next section, if B
remains long enough at node 2 then eventually it will be registered there and
the cycle will be broken. Of course, if B fails to register at node 2, it will move
on to another host, which may create another cycle, but then again, such a cycle
will be broken once B finds an “accommodating” host.

However, message deliverability still holds if such cycles are eventually bro-
ken. For this to occur, all that is required is that the home router eventually has
a pointer to B’s current location, and that by default other nodes revert their
tables to point to B’s home router if they do not know B’s current location.
2 In fact, some of the published works incorrectly claim that messages do not traverse

cycles.

Limited Mobility, Eventual Stability 149

Of course, for efficiency, implementations may choose to enforce stronger prop-
erties such as avoiding forwarding cycle formation to prevent extra traffic and
to ensure timely delivery, or carefully time-stamping binding caches to better
manage resources. However, as with all candidate optimising transformations,
there is a chance of inadvertently breaking this essential resilience property by
not buffering messages long enough or not managing the caches correctly.

4 Formal Verification of the System

We formally verify the protocol using notions of simulation and model checking.
The system is a prime candidate for parameterized verification.

The nextB array poses some difficulty for “traditional” parameterized model
checking, since it can contain pointer chains in the forwarding graph, which,
as noted earlier, may contain cycles. Such structures are notoriously difficult
for parameterised systems [3–5]. However, it is not hard to establish that once
stay long is set, then eventually all nextB links lead to 0 or to hB . Thus, the
nextB array entries don’t form a chain, and in fact there can point to only these
two nodes (0 and hB) once stay long is set.

We first establish the existence of the stable forwarding tables and then
present two different proof techniques for establishing the required correctness
of the message delivery property. One technique is based on the “method of
invisible invariants” (see [2,15,17]) adapted to bounded liveness ([8]). The other
technique (manually) establishes the existence of a small model using simulation
and then directly model checks the system on that small model.

4.1 Proving Eventual Stable Routing

We show that once stay long is set (indicating that B stays put in hB), eventually
all nextB pointers stabilise, leading either to its permanent host hB or to its home
0. Moreover, nextB [0] will always lead to hB, and nextB [hB] will lead to itself.

Lemma 1.

�(stay long =⇒∃v ∈ [0..N].∀i ∈ [0..N].∃ij ∈ {0, v}.

�(hB = v ∧ nextB [v] = v ∧ nextB [i] = ij)

Proof. Let σ be a computation, and assume σ |= stay long . The only module
that can change the value of hB is Move. However, no changes to hB are enabled
once stay long = True. It follows that for some v ∈ [0..N], σ |= �(hB = v).

Let i be a node in [0..N]. The only module that updates nextB [i] is Nodei.
From Nodei’s fairness guarantee it is scheduled at least twice in σ, and since
σ |= �(hB = v), it follows that after the first scheduling of Nodei lastB [i] =
v, and remains so. Consequently, after Nodei is scheduled at most twice in σ,
nextB [i] ∈ {0, v} and remains so.

Furthermore, it follows from the code of Node0 that after Node0 and Nodev

are scheduled at most twice, nextB [0] = nextB [v] = v and remain so.

150 L.D. Zuck and S. Prasad

The fairness assumptions on module Move imply that every fair computation
satisfies stay long. We can thus conclude:

Lemma 2. Let stable be the state assertion:

stay long ∧ status �= never ∧ ∃v ∈ [0..N].hB = nextB [0] = nextB [v] = v
∧ ∀i ∈ [0..N].∃ij ∈ {0, v}.nextB [i] = ij

describing the stable states as in Lemma 1. Then we have:

stable

4.2 Method I: From Stability to Safety

In the following we transform the system into a new one that is initialised accord-
ing to the stable part of a computation of the original system and convert the
original liveness property into a bounded liveness property (as per [8]). We can
then verify the bounded liveness property on the small (N = 2) instantiation,
and conclude that the original system satisfies the original liveness property. See
[8] for details on soundness.

Fix a computation σ. We now construct a new system which is similar to the
original one, only it is initialised to start with the stable prefix. That is, the new
system satisfies � stable.

Since in the new system moves of B as well as updates are disabled, we
ignore the stay long variable as well as the modules Move and the Nodei’s (and,
consequently, the lastB array), and initialise the system as follows:

1. stay long is initialised to True;
2. hB is initialised to σ[hB];
3. for every i, nextB [i] is initialised to σ[nextB [i]];

We can go further and replace the internal if in process Mi with the state-
ment:

⎡

⎣
if status:=transit ∧ msg = i then

if hB = i then status := delivered
elseif nextB [i] = 0 then msg :=0 else msg := hB

⎤

⎦

The advantage of reformulating the above statement is that the new version
avoids mention of an [0..N] → [0..N] array and explicitly refers to a 2-valued
array. In the terminology of [9], this allows defining nextB as a variable of type
index → data rather than as one of type index → index.

Next, we observe that every message can be delivered now within at most
two hops: possibly one to home, and then to hB . We can thus combine all the
Mi modules together, and, once a message is initiated (transit is set), initiate
a counter to 2, and decrease it whenever the message reaches a new location
(the fairness properties on the Mi’s guarantee that the message will be routed
infinitely many times if not delivered). All we have to verify now is that in the

Limited Mobility, Eventual Stability 151

new system it is always the case that when the (message) counter reaches 0 the
message is delivered.

Following the small model theorem used in invisible invariants, it suffices to
model check it for N = 2. The resulting TLV code is in Fig. 4, and for which we
verified �((counter = 0) → msg = hB).

Fig. 4. A TLV code to test for bounded liveness

4.3 Method II

We apply the method of Subsect. method taking SN to be the system instanti-
ated on N > 2 nodes and S2 to be the system instantiated on 2 nodes. Let S be
the stable states of S’s system, i.e., S = ΣN ∩ stable. For every s ∈ S, we define
a state α(s) ∈ Σ2 as follows. We use v to denote SN variable (s[v]), and v′ to
denote S2 variable (i.e., α(s)[v].

The constant range variables, stay long and status, remain the same in α(s).
We next define h′

B , msg ′, and nextB ′, and let lastB ′ = nextB ′. The assignment of
the other α(s) values is summarised in the following table, in which for each row,
we assume that none of the conditions in the first column of the earlier rows hold:

Condition h′
B msg ′ (nextB [0])′ (nextB [1])′ (nextB [2])′

hB = msg = 0 0 0 0 0 0

hB = 0 �= msg 0 1 0 0 0

msg = hB 1 1 1 1 1

nextB [msg] = 0 1 2 1 1 0

(nextB [msg] �= 0) 1 2 1 1 1

152 L.D. Zuck and S. Prasad

We next establish S2–S5 of the proof rule. S2 is obvious since JN ⊇ J2. S3 is
also trivial, since it is easy to (manually or automatically) verify that for every
s1, s2 ∈ S, if (s1, s2) ∈ ρN then (α(s1), α(s2)) ∈ ρ2. As for S4, there are 10
cases here (depending on status); for each case, let p be the assertion that the
conditions of the case hold, and model check �¬p on S2. When all checks fail, it
follows that every state in α(S) is S2-reachable. Similarly, S5 is model-checked
directly on S2.

In fact, S3–S5 can be (and were) model checked in TLV.

5 Conclusions

The verification described in this paper follows the general lines of parameterised
verification. Such verification is usually notoriously hard: with a few exceptions
(e.g., [8,9]), they all deal with only safety properties. The system and correctness
property studied here is not amenable to such methods since it encompasses a
data structure that rules out most of these methods, and all those that handle
liveness directly.

However, our system enjoys a pleasant property which we exploit: it is guar-
anteed to eventually reach, and remain in, a state where the unwieldy data
structures are no more necessary. We then propose a proof rule that focuses on
these “good” states, those whose data structures are equivalent to others that
are (more) amenable for verification. The system is still parameterised, and so
we resort to parameterised techniques, mainly, the reduction to a finite (and
small) instantiation on which we can model check the required property.

Thus, faced with a parameterised system with non-trivial data structures
and a liveness property, we can reduce the problem to that of model checking
a small system with simple data structures without pointer chains. While parts
of the method resemble the small model theorem of the method of invisible
invariants, this method is fundamentally different: the small model theorem of
invisible invariants is used to generate invariants on small instantiations, while
here we verify the property directly on the small instantiation. Moreover, both
the original and the small system allow for prefixes of computations that do not
correspond to one another. Also, while parts of the method are inspired by fair
simulation (similar to [10]), it is not such since we do not (and cannot) require
simulation between all states, just between states in the “good” suffix.

Thus, we have a new simulation-based proof methodology that combines
model checking and process algebraic ideas, and allows showing one system sim-
ulates another at the limit, for which we can derive some (infinitary) properties.
While the IPv6 protocol provides a useful instance of this technique of directly
model-checking a system that simulates an “eventually stable” system, we con-
jecture that this technique may be applicable to other systems.

Our work also results in some interesting observations about Mobile IPv6
from which protocol designers may benefit. The most important one is that the
basic design of mobile IP, that of ensuring the home agent (HA) of a mobile
node (MN) eventually learns its current location, provides the protocol a very

Limited Mobility, Eventual Stability 153

high degree of resilience and efficiency. The formation of temporary forward-
ing cycles, usually viewed as a bug, may not cause incorrect behavior provided
these cycles are eventually broken. For the HA to eventually know the loca-
tion of a MN requires reliable and authenticated communication of a binding
update between the MN (or a FA on its behalf) and the HA, and allowing the
HA and corresponding nodes ignore out-of-date messages. This can be achieved
by ordering these control messages using sequence numbers, rather than more
complicated methods using time-stamping of the messages. The “timing out”
of bindings and binding updates, and defaulting to routing via the home router
are an important factor in the correctness of the protocol. This feature ensures
that “in the limit”, messages from any correspondent node will reach the HA,
whence they can be delivered (so, delivery takes at most 2 hops). Thus, by
freezing mobility, the behavior of the system very closely resembles IP without
mobility. Efficiency considerations may suggest that forwarding cycles should be
avoided, and obsolete cache entries retired, but sometimes it may be important
to buffer messages to nodes in motion long enough that they can be delivered
when they settle. It is not a good idea for a HA to set up a binding for a
MN prior to its registering at a foreign network (in anticipation), since there
is no guarantee that the MN will actually settle there. Nor is it a good idea
for correspondent nodes to infer the location of a MN from header information
in a data message, unless its header indicates it is also a binding update that
is reliably communicated and authenticated, both for correctness and also for
security reasons (replay attacks). Inferring the location of a MN from a data
message will also require more complex recording of time-stamps of each data
message received from each correspondent node, so that out-of-order messages
do not cause incorrect updates to the caches. Finally, checking the integrity and
authenticity of binding updates is essential.

References

1. Amadio, R.M., Prasad, S.: Modelling IP mobility. Formal Methods Syst. Design
17(1), 61–99 (2000)

2. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with
automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, p. 221. Springer, Heidelberg (2001)

3. Balaban, I., Pnueli, A., Sa’ar, Y., Zuck, L.D.: Verification of multi-linked heaps. J.
Comput. Syst. Sci. 78(3), 853–876 (2012)

4. Balaban, I., Pnueli, A., Zuck, L.D.: Invisible safety of distributed protocols. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol.
4052, pp. 528–539. Springer, Heidelberg (2006)

5. Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis of single-parent heaps. In:
Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 91–105. Springer,
Heidelberg (2007)

6. Dang, Z., Kemmerer, R.A.: Using the ASTRAL model checker to analyze mobile
IP. In: Proceedings of the 1999 International Conference on Software Engineering,
ICSE 1999, Los Angeles, 16–22 May 1999, pp. 132–142 (1999)

154 L.D. Zuck and S. Prasad

7. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
Proceedings Automated Deduction - CADE-17, 17th International Conference on
Automated Deduction, Pittsburgh, 17–20 June 2000, pp. 236–254 (2000)

8. Fang, Y., McMillan, K.L., Pnueli, A., Zuck, L.D.: Liveness by invisible invari-
ants. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, pp. 356–371. Springer, Heidelberg (2006)

9. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.D.: Liveness with invisible ranking.
STTT 8(3), 261–279 (2006)

10. Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. Inf. Comput.
173(1), 64–81 (2002)

11. Jackson, D., Ng, Y.-C., Wing, J.M.: A nitpick analysis of mobile IPv6. Formal
Aspects Comput. 11(6), 591–615 (1999)

12. Kesten, Y., Pnueli, A.: Verification by augmented finitary abstraction. Inf. Comput.
163(1), 203–243 (2000)

13. McCann, P.J., Roman, G.-C.: Modeling mobile IP in mobile unity. ACM Trans.
Softw. Eng. Methodol. 8(2), 115–146 (1999)

14. Perkins, C., Johnson, D., Arkko, J.: Mobility Support in IPv6. RFC 6275 (Proposed
Standard), July 2011

15. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, p. 82.
Springer, Heidelberg (2001)

16. Rodrigues, C.L., Guerra, F.V., de Figueiredo, J.C.A., Guerrero, D.D.S., Morais,
T.S.: Modeling and verification of mobility issues using object-oriented petri nets.
In: Proceedings of 3rd International Information and Telecommunication Tech-
nologies Symposium (I2TS2004) (2004)

17. Zuck, L.D., Pnueli, A.: Model checking and abstraction to the aid of parameterized
systems (a survey). Comput. Lang. Syst. Struct. 30(3–4), 139–169 (2004)

A New Refinement Strategy for CEGAR-Based
Industrial Model Checking

Martin Leucker1, Grigory Markin1(B), and Martin R. Neuhäußer2

1 University of Lübeck, Lübeck, Germany
{leucker,markin}@isp.uni-luebeck.de

2 Siemens AG, Nuremberg, Germany
martin.neuhaeusser@siemens.com

Abstract. This paper presents a novel refinement strategy in the set-
ting of counterexample-guided abstraction refinement (CEGAR)-based
model checking. More specifically, the approach shown builds on lazy
abstraction in the context of predicate abstraction. While the concept of
interpolants is typically used for refinement, this paper employs unsatis-
fiability cores together with weakest preconditions. The new refinement
technique is especially applicable in the setting where interpolants are
hard to compute, such as for McCarthy’s theory of arrays or for the the-
ory of fixed-width bit vectors. It is implemented within a model-checking
tool developed for the verification of industrial-critical systems and out-
performs current refinement strategies on several examples.

1 Introduction

Today’s industrial systems are increasingly controlled by software. When these
systems are interconnected and control each other, they often form so-called
cyber-physical systems acting in our physical environment. For such systems,
verification is of major interest as safety and security concerns abound.

In this paper, we are concerned with the verification of industrial software by
means of model checking [1]. To this end, we have developed a model checking
tool for verifying code for programmable logical controllers (PLC code), which
takes a PLC program as well as a reachability property characterizing error
states as input and checks whether an error state can be reached from an initial
state of our program. For testing and comparison, our model checker also accepts
a subset of C programs as input.

As typically no single model checking approach acts as a silver bullet, our
model checker comes with different algorithms. In [2], the last author reports
about a technique following the idea of IC3 [3]. The current paper, however,
describes an approach following the counterexample-guided abstraction refine-
ment (CEGAR) paradigm [4]. Within CEGAR, an abstraction for the system
to verify is continuously checked with respect to a correctness property. When
the a bstract system satisfies the correctness property, the underlying system is
correct as well, while in the case of a counterexample this might be spurious. If
so, the counterexample is used to refine the abstract system and the CEGAR
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 155–170, 2015.
DOI: 10.1007/978-3-319-26287-1 10

156 M. Leucker et al.

loop is continued. Eventually, the underlying system is either verified as correct
or a non-spurious counterexample is found.

Lazy abstraction [5] builds on this scheme, yet refines the abstraction on
demand at locations for which the current abstraction yields a spurious coun-
terexample. In this way, the overall performance of the model checking process
is improved. In [5], the concept of lazy abstraction is introduced in a general set-
ting. In our model checker, we use predicate abstraction [6] as abstract domain.
All (symbolic) computations are considered with respect to a given first-order
theory, and we use the concept of strongest postconditions as well as that of
weakest preconditions to give (partial) semantics to operations, in a way that is
suitable for our approach. We assume the availability of a corresponding SMT
solver allowing to check formulas in the given theory for satisfiability. In fact,
our tool runs with both Microsoft Z3 [7] as well as MathSat [8] as back-end and
the theory of fixed-width bit vectors.

One of the most interesting questions when realizing a lazy abstraction app-
roach with predicate abstraction is how to refine the set of predicates when a
(non-feasible) counterexample is found. In the original work by Henzinger [5],
(negations of) weakest preconditions were used as one example to rule out a
counterexample. Another typical approach is to use interpolants [9–11].

In this paper, we make use of the intermediate results available from the
underlying SMT solver. Whenever a program path is witnessed as spurious, the
encoding of the path as an SMT formula is unsatisfiable. We take a subset of
the clauses of the formula that is already unsatisfiable. Such a subformula is
also called an unsatisfiability core, or unsat core, for short. Actually, we take a
sequence of unsat cores obtained via the infeasible program path and derive new
predicates in this way, forming a new operator called UCB-refinement operator.
Our approach can, in a way, be understood as an improvement of the original
weakest precondition-based approach.

[12–14] also make use of unsat cores in the context of verification, yet none
of the approaches uses unsat core-based techniques to improve lazy abstraction.

We have proven our approach as correct, i.e. that the underlying lazy abstrac-
tion algorithm always terminates with a correct answer when the underlying the-
ory is bounded. Moreover, we have implemented our model checker and evaluated
the performance of our UCB-refinement operator relative to the interpolation-
based refinement strategy. Additionally, we evaluated the performance of the
Lazy Abstraction algorithm in combination with UCB-predicates and inter-
polants relative to an implementation of the IC3 model-checking algorithm
recently presented in [2]. It turns out that our UCB-refinement strategy is
often comparable to the interpolation-based one and in a number of cases, it
allows to solve the verification problems which could not be solved by using the
interpolation-based approach. The Lazy Abstraction algorithm in combination
with UCB-refinement operator typically outperforms the IC3 algorithm and can
solve more problems than the latter. As such, the UCB refinement operator is
valuable as more verification problems can be solved than before. More impor-
tantly, it allows the easy realization of the CEGAR approach for theories and

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 157

SMT solvers not supporting interpolants. However, using other theories in our
model checker than fixed-width bit vectors is future work.

2 Preliminaries

In this section, we give the gist of the standard concepts of logical theories. For
details, we refer the reader to [15].

Throughout this paper let V be a countable set of variables defined over a
non-empty domain. The set of all assignments of elements to variables of the
underlying domain forms the set of all data states, in the following denoted
by S . In our setting the set of variables V comes with an associated first-order
theory T , i.e., a set of closed first-order formulas. We denote by T (V) the set
of formulas that may contain free variables from V . We denote by � and ⊥ the
logical values true and false respectively. When concerned with satisfiability, we
consider such variables as implicitly existentially quantified.

For the rest of this paper, we assume the theory T to be decidable, in practice
by means of an SMT solver. We use the standard definition of conjunctive normal
form (CNF) and we silently assume that every formula is in conjunctive normal
form. We denote the set of all clauses of a CNF formula ϕ as cl(ϕ) and use
formulas in CNF and sets of clauses interchangeably. An unsatisfiable core of
an unsatisfiable CNF formula ϕ is a non-empty subset of clauses of ϕ that is
unsatisfiable. A minimal unsatisfiable core is an unsatisfiability core such that
removing any one of its elements makes the remaining set of clauses satisfiable.
The set of all unsatisfiability cores of ϕ is denoted by UC (ϕ).

An ascending chain is a sequence of formulas ϕ1, . . . such that for all 0 ≤
i < j, ϕj �⇒ ϕi. The ascending chain is called finite, if the sequence is finite.
A theory T is called bounded if all ascending chains from T are finite.

This paper addresses the verification of imperative programs, ranging over
program locations from a set L and performing operations from some given set
Ops. For the sake of generality, we assume the concrete semantics of an operation
op ∈ Ops to be given by its strongest postcondition [16] sp(ϕ, op) ∈ T (V) for
a given precondition ϕ ∈ T (V). In practice, we assume the availability of an
sp-operator that computes for a given precondition ϕ, denoting a set of current
states, the set of successor states. We denote by wp(ϕ, op) the weakest liberal
precondition [16,17] of ϕ with respect to op, representing the largest set of states
from which ϕ is reachable by executing op, if it terminates. Similarly, we assume
the existence of a wp-operator computing the set of predecessor states for a
given ϕ. More specifically we also assume that corresponding sets of successor
and predecessor states can be expressed by formulas of T (V). See [16–18] for
details on weakest preconditions and [9,19,20] for the use of strongest post- and
weakest preconditions in model checking.

Throughout this paper, we follow [11] and use the concept of control flow
automata (CFA) for encoding imperative programs. Hereby, a CFA A is a
directed connected graph where the set of vertices L represents the program
locations and the set of edges E ⊆ L × Ops × L models the execution of opera-
tions from the set Ops (see Fig. 1a for an example).

158 M. Leucker et al.

We focus on the verification of reachability properties of programs. Hence,
we assume a program to be given by its control flow automaton, together with
an initial location and an error location. More precisely, a T -program is tuple
P = (V ,A, lI , lε), where assignments of the variables V form the set of data
states S , A = (L,E) is a CFA that models the control flow of the program and
lI , lε ∈ L model the initial and the error locations, respectively.

A set of data states is called a data region and we restrict to data regions
that can be encoded by a formula ϕ ∈ T (V) as a set of all data states s ∈ S
that entail ϕ. A concrete state of a program is a pair (l , s), where l ∈ L is a
program location and s ∈ S is a data state. A region (l , ϕ) is a set of concrete
states {(l , s) |s ∈ S} such that s |= ϕ.

A program path π is a sequence of program operations π = l0
op1−→ l1

op2−→ · · ·
opn−→ ln, where li ∈ L, i ∈ {0, . . . , n} and opi ∈ Ops, i ∈ [n], where [n] is a
shorthand for {1, . . . , n}. The concrete semantics for a program path π is defined
as sp(ϕ, π) = sp(spn−1, opn) where spi = sp(spi−1, opi) and sp0 = ϕ. A program
path π is feasible when starting from a data region ϕ if sp(ϕ, π) is satisfiable,
otherwise it is infeasible. For brevity, we sometimes only talk of a (in)feasible
program path when the starting region is clear from the context.

Throughout the paper, let {�,⊥} ⊆ P ⊆ T (V) be a finite set of predicates.
A conjunction over the set of predicates P , denoted by

∧
P , is the conjunction of

all predicates from P . The conjunction over an empty set
∧ ∅ is identified by �.

The Cartesian abstraction [21] of a formula ϕ ∈ T (V) with respect to P , denoted
by ϕP , is the conjunction of all predicates from P that are (individually) implied
by ϕ, i.e. ϕP =

∧{p | p ∈ P , ϕ → p}. We also denote by C (P) a conjunction of
predicates that arises from an element of the power set of P . An abstract state is
a region (l , ϕP) computed by the Cartesian abstraction for a region (l , ϕ) with
respect to a set of predicates P .

We define the abstract semantics of an operation op∈Ops by the abstract
strongest postoperator spP defined as spP (ϕ, op) = (sp(ϕ, op))P . Similar to pre-
viously, we extend the abstract semantics to program paths by spP (ϕ, π) =
spP (spP

n−1, opn) where spP
i = spP (spP

i−1, opi) and spP
0 = ϕ.

In our work we also use the concept of an abstract reachability tree (ART)
to encode abstract models of programs. An ART is a rooted directed tree whose
nodes are labeled by triples (l , ϕ,P) where the set of concrete states (l , ϕ) repre-
sents an abstract state and the set of predicates P is the local precision. For each
ART node (l , ϕ,P), the child nodes are labeled with the abstraction precision
P ′ and successor abstract nodes, computed according to the abstract strongest
postoperator spP . A node n = (l , ϕ,P) is called covered if there is a node
n ′ = (l , ϕ′,P ′) such that ϕ ⇒ ϕ′. An ART tree is called complete if every leaf
node is either covered or all possible abstract successor states are present in
the ART as children of the node. In simple words, an ART is the unwinding of
the CFA. If it is complete, the ART comprises a symbolic representation of all
reachable states of the underlying program.

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 159

Algorithm 1. LazyAbstraction(P, Φ)
Require: A program P = (V ,A, lI , lε) with a CFA A = (L,E) and a refinement

operator Φ : T (V) × E+ → 2T (V).
1: create an ART with a root node n0 = (l0, �, {�, ⊥})
2: while there are unmarked nodes in ART do
3: pick an unmarked node n = (l , ϕ,P)
4: if l = lε then
5: let n′ = (l ′, ϕ′,P ′) be the oldest ancestor of n s.t.

n′ σ−→ n and wp(�, σ) ∧ ϕ′ �≡ ⊥
6: if l ′ = lI then
7: return “error trace”σ
8: else
9: let n′′ = (l ′′, ϕ′′,P ′′) s.t. (l ′′, op, l ′) ∈ E

10: let τ denote the time stamp of n′′

11: relabel n′′ by w = (l′′, ϕ′′,P ′′ ∪ Φ(ϕ′′, op · σ))
12: remove the sub-trees starting from n′′

13: for all covered leaf m that was marked after τ do
14: unmark m
15: else if there exists m = (l , ϕ′,P ′) s.t. ϕ → ϕ′ then
16: mark m as covered
17: else
18: for all l ′ ∈ L s.t. (l , op, l ′) ∈ E do
19: ϕ′ ← spP (ϕ, op)
20: if ϕ′ �|= ⊥ then
21: add a child node n′ = (l ′, ϕ′,P) to the ART

22: mark n as uncovered
23: return ART

3 Lazy Abstraction

The traditional flow for CEGAR-based model checking [4] consists of the fol-
lowing steps: building an abstract model of the program using a chosen set
of predicates; verification of the abstract model; checking the feasibility of the
abstract counterexample, i.e. whether it can be executed in the original pro-
gram; counterexample-driven refinement of the set of predicates. All steps are
repeated until either no counterexample can be found in the abstract model, i.e.
the original program is error-free, or an abstract counterexample is feasible, i.e.
an error state is reachable from an initial state.

As the explicit construction of an abstract model and its verification are
generally time-consuming operations, the lazy abstraction approach optimizes
the CEGAR loop in that it continuously constructs an abstract model and checks
whether an error state is reachable at the same time.

In our work, we consider the lazy abstraction algorithm (Algorithm 1), which
is a slightly modified version of the one originally presented by Henzinger et al.
in [5]. The algorithm constructs an ART which either is complete or contains
a feasible abstract counter example. To this end, it starts by creating a new

160 M. Leucker et al.

reachability tree containing one node: a root node corresponding to the initial
node in the CFA. At any time, each node of the tree is either unmarked, i.e. not
processed, or is marked as covered or uncovered. After the initialization step, the
algorithm iteratively picks an unmarked node and checks whether it is labeled by
an error location. If this is not the case, then the algorithm checks whether there
is already another node that represents a superset of the data region represented
by the current node. If so, it marks the node as covered, and, if not, it marks it
as uncovered and adds its children into the tree.

If the picked node is labeled by an error location, then the algorithm checks
whether this node is reachable from the initial node (in the concrete program). If
the node is reachable, then an error trace is found and the algorithm terminates.
Otherwise the algorithm searches backwards for the node, which abstracts con-
crete states from which an error state can be reached but which are unreachable
from all concrete initial states. Such a node is also called a pivot node (n′′ on
line 9). In this refinement step (line 11) the algorithm uses a refinement operator,
denoted by Φ, to increase the abstraction precision of the pivot node by adding
further predicates. After that, the sub-tree rooted at the pivot node is discarded
and all nodes that were covered after processing the pivot node are unmarked,
so that it will (potentially) be reconstructed using the enriched set of predicates
in later steps of the algorithm.

If an error trace is found or if the constructed ART is complete, i.e. all leaf
nodes are covered, the algorithm terminates.

Our version of the algorithm is in fact a concretization of the more generic
one given in [5]. Henzinger’s algorithm operates on so-called symbolic abstrac-
tion structures, which comprise abstract domains and corresponding abstract
operations (see [5] for details). These operations allow computation of abstract
successor states, and predecessors of concrete data regions.

In our setting, we use predicate abstraction as abstract domain and the
abstract strongest postoperator to compute abstract states. We use the weakest
precondition operator to compute sets of concrete states that are reachable from
a given region. As these operators and the abstract domain are built into the
program, our algorithm only takes a program P and the refinement operator Φ
as its input rather than a symbolic abstraction structure.1

In our version of the algorithm we also always remove the sub-tree rooted
at the pivot node after the refinement step. The original algorithm uses an
additional heuristic to determine whether the sub-tree can be kept. The heuristic
does not affect the correctness but it may affect termination. And because, we

1 Actually, a symbolic abstraction structure also contains an operator for computation
of abstract states that can reach a given abstract state and an operator for compu-
tation of concrete states reachable from a given concrete state. These operators are
required for a backward search, i.e. when the lazy abstraction algorithm constructs
an ART starting from the error region and iteratively checks whether an initial region
is reachable. In this paper we only consider lazy abstraction in combination with the
forward search (Algorithm 1) and refer the reader to [5] for more details on the use
of lazy abstraction in combination with backward search.

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 161

are interested in refinement techniques toward termination, we always discard
the sub-tree rooted at a pivot node, to be on the safe side.

It was shown in [5] that the algorithm terminates with a correct result for
finite-state systems, or, more generally, when (i) the language T (V) is bounded,
i.e. does not contain infinite ascending chains, and (ii) the refinement step yields
semantically equivalent data regions (see explanation below) as well as a superset
of predicates, and (iii) the set of predicates returned in the refinement step is
precise enough to rule out the path’s suffix starting from the pivot node. The
second constraint on the refinement step is needed for correctness. It means, that
the region in node n′′ (line 9), given by ϕ′′, is not changed by the refinement
step. This is clear in our setting, as the new node keeps ϕ′′ (line 11) without any
modification. Hence, correctness is immediate, regardless of which refinement
operator is considered.2 The first and last constraint entail termination of the
algorithm.

The main objective of this paper is to introduce a new refinement operator.
Hence, we concentrate in the next section on refinement methods and their prop-
erties toward termination of the algorithm LazyAbstraction(P, Φ) shown in
Algorithm 1. More precisely, we introduce the notion of a progressive refinement
operator and show the termination of the algorithm when applied with such an
operator. We then introduce our concept of an unsatisfiability-core-based refine-
ment operator and show that it is progressive and hence assure termination of
the lazy abstraction algorithm.

4 Abstraction Refinement

When Algorithm 1 hits an error node, it checks whether the path from the initial
node to the error node represents a valid counterexample, i.e. the path is feasible.
If this is not the case, Algorithm 1 searches for the pivot node along that path
that is the furthermost node from the initial node, representing a set of concrete
states reachable from the set of initial states. As the path is an infeasible path,
no error state is reachable from any concrete state represented by the pivot
node. The algorithm constructs such path in the ART, however, due to the low
abstraction precision of the pivot node. Hence, the goal of the refinement step is
to increase the abstraction precision of the pivot node by adding new predicates
in such a way that the algorithm will not be able to construct the same path’s
suffix leading to the error node in the next iteration.

We introduce the notion of abstract infeasibility of program paths to indicate
whether a path can be constructed by the algorithm.

Definition 1 (Abstract (in)feasibility). Let π be a program path that is
infeasible when starting from a region ϕ. The program path π is abstractly infea-
sible with respect to a set of predicates P when starting from ϕ if spP (ϕ, π) is
unsatisfiable. Otherwise π is called abstractly feasible.

2 Due to page limitations, we refrain from formulating the correctness criteria precisely
here but refer the reader to [5] for more details.

162 M. Leucker et al.

When Algorithm 1 constructs an infeasible program path, it is divided by the
pivot node n = (l , ϕ,P) into the feasible path prefix (feasible when starting from
�) and the path suffix that is infeasible when starting from the data region ϕ
represented by the pivot node. The path suffix is, however, abstractly feasible
with respect to the abstraction precision P when starting from ϕ. Thus, in order
to avoid discovering the same path’s suffix by the algorithm again, the goal for
the refinement operator is to find a set of predicates P ′ such that the path suffix
becomes abstractly infeasible with respect to P ′ when starting from ϕ.

Definition 2 (Progressive refinement operator). Given a refinement oper-
ator Φ : T (V) × E+ → 2T (V). We call the refinement operator Φ progressive if
for every program path π which is infeasible when starting from a data region ϕ,
π is abstractly infeasible with respect to Φ(ϕ, π) when starting from ϕ.

Definitions 1 and 2 reflect the constraint on the refinement step as it relates
to the termination of the lazy abstraction algorithm presented in [5]. Lemma 1
formally states this condition in term of the progressive refinement.

Lemma 1 (Termination with progressive refinement operator). Let
P = (V ,A, lI , lε) be a T -program with a CFA A = (L,E) and let
Φ : T (V) × E+ → 2T (V) be a refinement operator. The execution of
LazyAbstraction(P, Φ) terminates if T (V) is bounded and Φ is progressive.

The proof is, on one hand, immediate from the developments in [5], as the
concepts introduced so far are just an instantiation of Henzinger’s more general
approach. Nevertheless, termination can also be shown in a straightforward fash-
ion, using König’s lemma: The algorithm cannot produce an infinite tree in the
limit, as a finitely-branching, infinite tree would contain an infinite path (accord-
ing to König’s lemma), which would be an infinite ascending chain violating the
boundedness of T (V). Progressiveness ensures that the algorithm does not end
up in an infinite loop producing the very same ART again and again.

For each ART node, Algorithm 1 computes a corresponding data region using
the abstract strongest postoperator. If we consider a path in the ART, then
the data regions represented by the nodes along that path form a sequence. In
the following we introduce the notions of an approximating sequence and an
infeasibility witness for a path, which are sequences of data regions of the path’s
length, where each element over-approximates the corresponding data region
computed by the algorithm. The idea behind it is that if a refinement operator
constructs a sequence of data regions for an infeasible path such that it is also
an infeasibility witness, then the elements of that sequence can be used as new
predicates and it will guarantee abstract infeasibility of that path.

Definition 3 (Approximating sequence and infeasibility witness).
Given a program path π = l0

op1−→ l1
op2−→ · · · opn−→ ln, a data region ϕ0 and a set of

predicates P, we call a sequence of formulas ϕ1, . . . , ϕn, ϕi ∈ C (P) for i ∈ [n],
a P -approximating sequence for π if sp(ϕi−1, opi) |= ϕi for all i ∈ [n]. We call
a P-approximating sequence a P -infeasibility witness if ϕn ≡ ⊥.

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 163

As is evident, an approximating sequence for a path forms a sequence of
data regions such that each data region ϕi over-approximates a data region that
is reachable from the predecessor data region ϕi−1 by executing the operation
opi. The first element of each sequence over-approximates the data region that
is reachable from the given data region ϕ0 by executing the first operation of
the path. If the last data region of the sequence is empty, i.e. ϕn ≡ ⊥, the
approximating sequence forms an infeasibility witness.

We define an approximating sequence and an infeasibility witness with
respect to a set of predicates P in order to determine whether a set of pred-
icates is precise enough to show that a path is abstractly infeasible.

First we show that each element of a P -approximating sequence for a path
over-approximates the corresponding data region constructed by Algorithm1.

Lemma 2. Given a program path π = l0
op1−→ l1

op2−→ · · · opn−→ ln, a data region ϕ0

and a set of predicates P. For every P-approximating sequence ϕ1, . . . , ϕn it
holds that spP (ϕ0, op1 . . . opi) |= ϕi for all i ∈ [n].

Now we prove the necessary and sufficient condition of abstract infeasibility
of an infeasible program path with respect to a set of predicates in terms of an
infeasibility witness.

Lemma 3. Given a set of predicates P and a program path π, which is infeasible
when starting from a data region ϕ. The program path π is abstractly infeasible
with respect to P when starting from ϕ iff there is a P-infeasibility witness for π.

Corollary 1 (Termination and infeasibility witness). Given a T -program
P and a refinement operator Φ, whereby T is bounded. If, for every program path
π that is infeasible when starting from a data region ϕ, the refinement operator
Φ yields an infeasibility witness, then LazyAbstraction(P, Φ) terminates.

One of the examples of a set of predicates that forms an infeasibility wit-
ness for an infeasible path is the set of negated weakest preconditions computed
on that path. Consider a path π = l0

op1−→ l1
op2−→· · · opn−→ ln, which is infeasible

when starting from a data region ϕ. Let wpi = wp(�, opi+1 . . . opn), i ∈ [n] and
wpn = � to denote a weakest precondition for location li. Each wpi represents
the largest data region from which an error state can be reached by executing
opi+1 . . . opn. But as the considered path is infeasible when starting from ϕ,
wpi cannot be reached from ϕ by executing op1, . . . , opi−1. Thus, each ¬wpi

represents the largest data region from which no error state can be reached by
executing op1, . . . , opi−1. Moreover, ¬wp1 is reachable from ϕ and each ¬wpi

is reachable from ¬wpi−1 by executing op1 and opi respectively. It follows that
the sequence W = (¬wp1, . . . ,¬wpn−1,¬wpn = ⊥) is a W -infeasibility witness.
Hence, a refinement operator yielding weakest preconditions for an infeasible
path would be progressive and would fulfill the termination criterion for refine-
ment operators.

Weakest preconditions are used for the refinement operator in the original
work to lazy abstraction [5]. Though the use of weakest preconditions are suffi-
cient to guarantee the termination of the algorithm, they often encode too much

164 M. Leucker et al.

information and hence are represented by quite complex formulas. Each formula
encoding a weakest precondition would contain all variables from a path suffix,
regardless of whether a variable has any impact on infeasibility of that path.

In the following, we present a novel method for computation of new predi-
cates from infeasible paths. It is also based on weakest preconditions but tries
to discard as much information as possible that does not affect infeasibility. It
results in much simpler formulas as well as, in some cases, in generation smaller
number of predicates needed to prove or disprove a property using lazy abstrac-
tion algorithm. All these can significantly improve overall performance of the
lazy abstraction algorithm. The computation of new predicates makes use of
unsatisfiability cores and weakest preconditions.

Definition 4 (Unsat-core-based (UCB) predicates). Let π = l0
op1−→ l1

op2−→ · · · opn−→ ln be a program path that is infeasible with respect to a data region
ϕ. We call a sequence of predicates p1, . . . , pn unsat-core based predicates if
pi = ¬(ϕi \ cl(ψi)) where ϕi ∈ UC (ψi ∧ wpi), ψi = sp (pi−1, opi), p0 = ϕ, and
wpn = � and wpi = wp(�, opi+1 . . . opn).

Definition 4 can be seen as an algorithm for computing new predicates. In
the first pass, the algorithm computes the weakest preconditions wp1, . . . ,wpn

for program locations l1, . . . , ln. Then, starting from the location l1, it iteratively
computes for each location li the data region ψi that is reachable from the
data region pi−1 by executing corresponding operation opi. The data region ψi

over-approximates the set of states that are reachable from ϕ, and thus has no
common states with the weakest precondition because the given path is infeasible
with respect to ϕ. Using this fact, we compute an unsatisfiability core of the
conjunction of ψi and wpi and select all clauses from the unsatisfiability core
that are only included in the weakest precondition. The resulting formula over-
approximates the weakest precondition wpi, which represents the largest set of
states from which an error state can be reached by executing the path’s suffix
opi . . . opn. Hence, we take the negation of that formula as a new predicate
pi, which represents an under-approximation of ¬wpi, which is the largest set
of states from which no error state can be reached by executing the path’s
suffix. At the same time, pi represents an over-approximation of the data region
that is reachable from the given data region ϕ by executing the path’s prefix
op1 . . . opi−1.

Intuitively, the properties of UCB predicates described above allow us to use
them for the abstraction refinement. Though each UCB predicate pi represents
in general a smaller data region than the corresponding ¬wpi, they contain
much more precise information about the reason of unsatisfiability than the
corresponding weakest precondition.

Let us sketch how to prove that the use of UCB predicates computed accord-
ing to Definition 4 in the refinement step guarantees termination of Algorithm1.

First one shows that each UCB-predicate pi as well as ψi represent the sets
of states that are disjointed from the set of states represented by wpi. As wpi

represents the set of all states from which the path suffix opi+1 . . . opn can be

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 165

0

1

2

3 4

5

6 ε

i := 0

x := k

i = 0

x := 0

i �= 0

y := 0

x = 0 x �= 0

(a)

0

1

2

5

6 ε

i := 0

x := k

(i = 0 ∧ x := 0)∨
(i �= 0 ∧ y := 0)

x = 0 x �= 0

(b)

0 {false}

1 {i �= 0 ∧ k �= 0}

2 {i �= 0 ∧ x �= 0}

5 {x �= 0}

ε {true}

i := 0

x := k

(i = 0 ∧ x := 0) ∨ (i �= 0 ∧ y := 0)

x �= 0

(c)

Fig. 1. A CFA of a simple imperative program (a). The optimized CFA (b) after
merging “if-then-else” block. An infeasible path (c) from the optimized CFA, where
nodes are labeled by the corresponding weakest preconditions (curly brackets).

executed, we show that pi and ψi under-approximate the set of states represented
by ¬wpi: (i) pi → ¬wpi and ψi → ¬wpi for all i ∈ [n]. Now we show that pi over-
approximates the data region reachable from pi−1, which we use to show that
the sequence p1, . . . , pn forms an approximating sequence: (ii) sp(pi−1, opi) → pi

for all i ∈ [n]. Now we can show that a sequence of UCB predicates computed
according to Definition 4 forms an infeasibility witness. (iii) Given a path π
that is infeasible when starting from a data region ϕ then a sequence of UCB
predicates U computed for π is an U -infeasibility witness for π.

We sum up our developments with the following theorem, which follows easily
from the items (i)–(iii) stated above.

Theorem 1 (Termination with UCB predicates). Let P be a T -program
and let Φ be the refinement operator yielding the UCB predicates for an infeasible
path. If T is bounded, then LazyAbstraction(P, Φ) terminates.

4.1 Path Projection

One of the commonly used techniques to simplify the refinement based on unsat-
isfiability cores, is the refinement of a path formula based on an unsatisfiability
core and the following predicate extraction on the refined path. As a path formula
of an infeasible path is unsatisfiable, one can construct a path “projection”, which
will only contain the information included in the unsatisfiability core and then
apply some predicate extraction technique, e.g. weakest precondition-based or
interpolation-based techniques, on that path. The path projection is achieved by
removing clauses from the encoding of program operations that are not included
in the unsatisfiability core.

Unfortunately, the choice of the predicate extraction techniques in such app-
roach strongly depends on the encoding of program operations as well as on
other components of the Lazy Abstraction algorithm, such as the abstract post-
operator.

166 M. Leucker et al.

0
{false} [true]

1
{i �= 0 ∧ x �= 0} [i = 0 ∨ x = 0]

2
{i �= 0 ∧ x �= 0} [i = 0 ∨ x = 0]

5
{x �= 0} [x = 0]

ε
{true} [false]

i := 0

true

(i = 0 ∧ x := 0) ∨ (i �= 0 ∧ y := 0)

x �= 0

(a)

0
{false} [true]

1
{i �= 0 ∧ x �= 0} [i = 0]

2
{i �= 0 ∧ x �= 0} [i = 0]

5
{x �= 0} [x = 0]

ε
{true} [false]

i := 0

true

(i = 0 ∧ x := 0) ∨ (i �= 0 ∧ y := 0)

x �= 0

(b)

Fig. 2. The projected paths, where nodes are labeled by weakest preconditions (curly
brackets) as well as by extracted predicates (square brackets): negated weakest precon-
ditions (a) and UCB predicates (b).

In our model-checking tool we use the large-block encoding (LBE) technique
[22] and Cartesian abstraction as the abstract postoperator. In the following we
show by means of an example that in our configuration the combination of the
weakest precondition-based predicate extraction and path projection does not
guarantee termination of the Lazy Abstraction algorithm.

Consider a CFA (Fig. 1a) of a simple imperative program assigning a value
to either variable x or y according to the value of the variable i assigned in the
first step. Figure 1b presents the CFA after applying the optimization step that
merges the “if-then-else” block into one transition. If we start the algorithm with
an empty set of predicates, it will find a counterexample (Fig. 1c) in the first iter-
ation, which is obviously infeasible. Due to infeasibility, one can simplify it using
an unsatisfiability core. The example of such projection is presented in Fig. 2a
and b. After simplification step, we can apply a predicate extraction algorithm.
Figures 2a and b show the predicates that were constructed by negating the cor-
responding weakest preconditions (Fig. 2a) and by computing UCB predicates
(Fig. 2b) as described in Definition 4. Unfortunately, the predicates, which were
constructed using negation of weakest preconditions, do not form an approx-
imating sequence for the original path and thus, do not fulfill the necessary
condition for termination of the algorithm. The problem lies on the simplified
transition between nodes 1 and 2. On one hand, the transition was simplified by
removing the superfluous assignment x := k but on the other hand, the variable
x still appears in the predicate. This leads to the problem at program location
2, namely, there is no predicate, which under-approximates the negated weakest
precondition i = 0 ∨ k = 0 from the original path, which represents the largest
set of states from which the error state is unreachable. As one can see, there is
no such problem when using the UCB predicates, as all superfluous variables are
removed from predicates as well.

We have to note that in order to use the UCB predicates in such configu-
ration, one has to ensure that only minimal unsatisfiability cores are used in
the computation of UCB predicates. The reason for that is that by applying
path projection it is necessary that no superfluous variables will remain in the

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 167

resulting predicate, which can be guaranteed by using minimal unsatisfiability
cores. Also note, that the interpolation-based technique to predicate construction
also has this property and hence can be used in combination with projection. We
also consider successfully such an additional projection in our setting (see Sect. 5
(Results)). A formal proof of the previous remarks require a precise definitions
of the notion of projection etc. and is, due to space constraints, left to a full
version of the paper.

5 Implementation and Experimental Results

Implementation. We implemented the Lazy Abstraction algorithm in combina-
tion with the UCB-based as well as the interpolation-based refinement strate-
gies on top of an existing proprietary model-checking framework. This frame-
work makes use of LLVM project to parse C programs and translate them into
the intermediate representation (IR). We apply some static analysis and opti-
mization techniques on this IR, e.g. Steensgaard’s pointer analysis and model
minimization [23–25], as well large block encoding [22]. We use the bit-precise
memory model that supports limited pointer operations including array-element
and record-field addressing. While the Lazy Abstraction algorithm in combina-
tion with the UCB-based refinement strategy is fully theory unaware and can
be used for infinite-domain theories, such as linear real arithmetic (LRA) we use
the finite-domain theory of bit vectors. Our tool supports the Z3 and MathSAT
SMT solvers, but as the Z3 solver does not support computation of interpolants
for the theory of interest we executed all benchmarks using the MathSAT solver.

Besides the refinement algorithms we implemented and evaluated two opti-
mizations which may improve performance of the Lazy Abstraction algorithm
in some cases. The first one is the path projection described in the previous
section and the second one is the limitation of number of extracted predicates.
The intention behind it is that the fewer predicates are extracted the less SMT
queries has to be done by the abstract postoperator and in some cases not all
predicates extracted from an infeasible path are necessary to prove or disprove
a property. It does not affect the correctness, as in the worst case, the algorithm
will need to refine paths multiple times.

We additionally compared our implementation to an improvement of the
IC3 model-checking approach that is currently one of the most actively stud-
ied model-checking algorithms. The improved version of the IC3 algorithm was
recently presented in [2] and is implemented within the same model-checking
framework. Hence, all preprocessing and optimization steps are identical to our
implementation.

Experiments. We have evaluated our algorithms on 178 C programs taken from
the SV competition and enriched by some of our own programs. For 89 programs,
none of the algorithms has terminated within the given time or memory bound.
In the following, we discuss the behavior of the algorithms on the remaining 89
examples, for which at least configuration of one algorithm terminated.

168 M. Leucker et al.

10−3 10−2 10−1 100 101 102 103

10−3

10−2

10−1

100

101

102

103

UCB-1-np

IC
3

(a)

10−3 10−2 10−1 100 101 102 103

10−3

10−2

10−1

100

101

102

103

UCB-1-np

IT
P

-m
ax

-n
p

(b)

Algorithm # solve solve t
UCB-1-np 70 1234
ITP-1-np 77 3471
UCB-max-np 68 1474
ITP-max-np 79 5947
UCB-1-p 58 1777
ITP-1-p 67 2750
UCB-max-p 61 1268
ITP-max-p 70 4356
IC3 63 1249

(c)

Algorithm # solve
UCB 75
ITP 85
IC3 63

(d)

Fig. 3. Performance comparison of UCB (best configuration) with IC3 and interpolants
(best configuration) (a), (b). Number of solved problems by each algorithm in each
configuration (1/max denotes the number of extracted predicates and p/np whether
the path projection is applied (p) or not (np)) (c). Number of solved problems by
algorithms for all configurations (d).

All experiments have been executed on a cluster using a single core running
at 2.1 GHz, a memory limit of 4GB per file and a timeout of 3600 s.

We briefly compare the performance of the Lazy Abstraction algorithm in
combination with UCB-based and interpolation-based refinement in its best con-
figurations (w.r.t number of solved problems) as well the IC3 implementation
from [2]. We also compare the number of solved problems by different approaches.

Results. From the results in Fig. 3 we can come to the following conclusions.
First, the best configuration of the interpolation-based approach solved more
problems out of 89 than others (Fig. 3c). At the same time, our results which
are not presented in tables, shows that there are 4 problems which could only
be solved by the UCB-based and IC3 algorithms. The best configuration of the
UCB-based algorithm solved 8 problems more than the IC3 algorithm and the
latter solved one problem which the best of UCBs could not solve. The best
configuration of the interpolation-based approach solved 15 problems more than
the best configuration of UCBs but at the same time the latter solved 6 problems
which the best interpolation-based could not solve.

A New Refinement Strategy for CEGAR-Based Industrial Model Checking 169

Second, application of the path projection and limitation of the number of
predicates allow to solve problems which can not be solved otherwise, increasing
thereby the total number of solved problems (Fig. 3c) and thus, also play an
important role in Lazy Abstraction approach. While interpolation-based app-
roach solved the most problems without any optimization, the UCB-based app-
roach was most efficient by only taking one predicate during the refinement. The
difference arises from the fact that for the computation of all UCB-predicates one
needs to make as many SMT queries as the path’s length, while an SMT-solver
computes all interpolants from one query. At the same time, applying path pro-
jection may simplify the consequent queries but as we can see, in many cases it
introduces the superfluous computation which decreases the overall performance.

Finally, the best configuration of the UCB-based approach outperforms the
IC3 approach in most cases (Fig. 3a) and is comparable to the best configuration
of the interpolation-based approach (Fig. 3b).

Summarizing our results we can conclude that the best results in our current
setting can be achieved by combining the UCB-based and interpolation-based
approaches for example by running them in parallel.

6 Conclusion

This paper studied a new refinement technique within the CEGAR-based app-
roach to model checking. More specifically, we build on lazy abstraction, where
the refinement step is usually carried out using weakest preconditions on pro-
gram paths or using techniques like interpolants.

As interpolants are sometimes not available by the underlying SMT solver,
we have developed a new refinement step that makes use of unsatisfiable cores
to improve refinement and which can be used with any SMT solver (that can
compute unsatisfiability cores). We have shown that our refinement step is pro-
gressive in the sense that the lazy abstraction approach terminates when veri-
fying finite state systems. Moreover, we have implemented the strategy within
our own model-checking tool. We have shown that UCB-based refinement nearly
always outperforms one of the implementation of IC3 model-checking algorithms
in our setting. Regarding interpolation-based refinement, UCB-based is often
comparable but also allows to verify programs which can not be solved by using
interpolants. As such, the papers presents a new valuable refinement strategy.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Lange, T., Neuhäußer, M.R., Noll, T.: IC3 software model checking on control flow

automata. In: Formal Methods in Computer-Aided Design, FMCAD 2015 (2015)
3. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,

Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

170 M. Leucker et al.

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

5. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. ACM SIG-
PLAN Not. 37, 58–70 (2002). ACM

6. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013)

9. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs.
ACM SIGPLAN Not. 39(1), 232–244 (2004)

10. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

11. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST. Int. J. Softw. Tools Technol. Transf. (STTT) 9(5), 505–525 (2007)

12. Jain, H., Kroening, D., Sharygina, N., Clarke, E.M.: Word-level predicate-
abstraction and refinement techniques for verifying RTL Verilog. IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 27(2), 366–379 (2008)

13. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Cegar-based formal hardware verifi-
cation: a case study. Ann Arbor 2007, 48109–2122 (1001)

14. Yang, Z., Al-Rawi, B., Sakallah, K., Huang, X., Smolka, S., Grosu, R.: Dynamic
path reduction for software model checking. In: Leuschel, M., Wehrheim, H. (eds.)
IFM 2009. LNCS, vol. 5423, pp. 322–336. Springer, Heidelberg (2009)

15. Kroening, D., Strichman, O.: Decision Procedures, vol. 5. Springer, New York
(2008)

16. Gries, D.: The Science of Programming. Springer, Heidelberg (1981)
17. Dijkstra, E.W.: A Discipline of Programming, vol. 1. Prentice-Hall, Englewood

Cliffs (1976)
18. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-

grams. Commun. ACM 18(8), 453–457 (1975)
19. Jager, I., Brumley, D.: Efficient directionless weakest preconditions. Technical

report, CMU-CyLab-10-002, Carnegie Mellon University, CyLab (2010)
20. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288

(2005)
21. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model

checking C programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol.
2031, pp. 268–283. Springer, Heidelberg (2001)

22. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Formal Methods in Computer-Aided
Design, FMCAD 2009, pp. 25–32. IEEE (2009)

23. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984)
24. Lange, T., Neuhäußer, M.R., Noll, T.: Speeding up the safety verification of pro-

grammable logic controller code. In: Bertacco, V., Legay, A. (eds.) HVC 2013.
LNCS, vol. 8244, pp. 44–60. Springer, Heidelberg (2013)

25. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
New York (1999)

Timed Systems

Quasi-equal Clock Reduction:
Eliminating Assumptions on Networks

Christian Herrera and Bernd Westphal(B)

Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany
{salazars,westphal}@informatik.uni-freiburg.de

Abstract. Quasi-equal clock reduction for networks of timed automata
replaces clocks in equivalence classes by representative clocks. An exist-
ing approach which reduces quasi-equal clocks and does not constrain
the support of properties of networks, yields significant reductions of the
overall verification time of properties. However, this approach requires
strong assumptions on networks in order to soundly apply the reduc-
tion of clocks. In this work we propose a transformation which does not
require assumptions on networks, and does not constrain the support
of properties of networks. We demonstrate that the cost of verifying
properties is much lower in transformed networks than in their original
counterparts with quasi-equal clocks.

1 Introduction

Real-time systems can be modelled and verified using networks of timed
automata [1]. Often the local timing behaviour and synchronisation activity
of distributed components in a network are modelled by (local) clocks. If the
valuations of those clocks only differ in points in time in which those clocks are
reset, then we call them quasi-equal clocks [2]. Quasi-equality of clocks induces
equivalence classes in networks of timed automata.

In systems using quasi-equal clocks, those clocks are often reset one by one at
a given point in time. For instance, in TDMA [3] protocols, automata interleave
when they reset quasi-equal clocks at the end of each communication phase. This
interleaving induces sets of reachable intermediate configurations. These sets
grow exponentially in the number of quasi-equal clocks in equivalence classes.
Model checking tools like Uppaal [4] explore those configurations when a property
being verified queries them. However, this exploration may also increase the
memory consumption and verification time for properties which do not query
those intermediate configurations.

In [5] a technique that reduces the number of quasi-equal clocks is presented.
This technique can yield savings in the overall memory consumption and verifica-
tion time of properties in transformed networks for two reasons. The first reason
is that by using only the representative clock of each equivalence class, we reduce
the size of the Difference Bound Matrices (DBMs) that Uppaal uses to repre-
sent zones [6]. The size of a DBM is determined by the size of the set of clocks

CONACYT (Mexico) and DAAD (Germany) sponsor the work of the first author.

c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 173–189, 2015.
DOI: 10.1007/978-3-319-26287-1 11

174 C. Herrera and B. Westphal

in a given system. A more compact DBM can be more efficiently represented,
stored and accessed in memory. The second reason is that Uppaal explores less
configurations when checking a property, since we eliminate intermediate config-
urations if and only if those configurations are reachable by taking edges which
exclusively reset quasi-equal clocks.

In order to soundly reduce quasi-equal clocks, strong assumptions are
required for networks in [5]. One of those assumptions states that there must be
a delay greater than zero time units in the origin location of an edge resetting a
quasi-equal clock. In networks which model the Foundation Fieldbus Data Link
Layer protocol (FDLL) [7], there are edges resetting quasi-equal clocks which can
be taken at any time, even without delaying at the origin locations of those edges.
Hence we cannot transform those networks by using the technique from [5].

In this work we revisit the quasi-equal clock reduction approach, and we
present an approach that does not require assumptions on networks with quasi-
equal clocks. We now enforce a strong distinction of edges that reset quasi-equal
clocks. Namely, edges which exclusively reset one quasi-equal clock, have no
synchronisation with other edges, and are taken after a delay greater than zero
time units, are called simple edges. All other edges resetting quasi-equal clocks
are called complex edges. In general our approach allows us to yield savings
related to having a more compact DBM in memory. Furthermore, for simple
edges we also provide savings related to eliminating intermediate configurations.

As in [5] we delegate the reset of representative clocks to newly added reset-
ter automata. Now automata with transformed simple or complex edges indicate
resetters when to execute that reset which is part of a mechanism that, reduces
the number of configurations reachable by taking transformed simple edges, and
preserves all configurations reachable by taking transformed complex edges. Sim-
ilar to [5], for those configurations that we eliminate, properties are restated in
terms of an existing dedicated location in each resetter which encodes all the
information about those configurations.

In this work we extend the applicability of the quasi-equal clock reduction
approach by eliminating the assumptions on networks presented in [5]. Now we
can transform any network with sets of quasi-equal clocks. Our new approach
allows us to include three new case studies FB [7], TA [8] and PG [9], which
cannot be transformed by the technique from [5]. In general, the cost of veri-
fying properties is much lower in networks transformed with our new approach
than in their original counterparts with quasi-equal clocks. Furthermore, our
new approach allows us to prove in a much simpler and more elegant way that
transformed networks are weakly bisimilar to their original counterparts. We
show that properties wrt. an original network are fully reflected in the trans-
formed network, i.e. the transformed network satisfies a transformed property if
and only if the original network satisfies the original property. We evaluate our
approach on nine real world examples, three of them new.

Related Work. The methods in [10,11] detect and reduce equal and active
clocks by using static analysis over single timed automata and networks of timed
automata, respectively. Two clocks are equal in a location if both are reset by

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 175

the same incoming edge, so just one clock for each set of equal clocks is necessary
to determine the future behavior of the system. A clock is active at a certain
location if this clock appears in the invariant of that location, or in the guard of
an outgoing edge of such a location, or another active clock takes its value when
taking an outgoing edge. Non-active clocks play no role in the future evolution
of the system and therefore can be eliminated. Our benchmarks use at most one
clock per component which is always active, hence the equal and active approach
is not applicable on them.

The work in [12,13] uses observers, i.e. single components encoding proper-
ties of a system, to reduce clocks in systems. For each location of the observer,
the technique can deactivate clocks if they do not play a role in the future evo-
lution of this observer. Processing our benchmarks in order to encode properties
as per the observers approach may be more expensive than our method (one
observer per property), and may not guarantee the preservation of information
from intermediate configurations as required for our benchmark [14].

In sequential timed automata [15], one set of quasi-equal clocks is syntacti-
cally declared. Those quasi-equal clocks are implicitly reduced by applying the
sequential composition operator. The approach in [16] detects quasi-equal clocks
in networks of timed automata. Interestingly, the authors demonstrate the fea-
sibility of their approach in benchmarks that we also use in this paper.

2 Preliminaries

Following the presentation in [17], we here recall the following definitions.
Let X be a set of clocks. The set Φ(X) of simple clock constraints over X

is defined by the grammar ϕ ::= x ∼ c | x − y ∼ c | ϕ1 ∧ ϕ2 where x, y ∈
X , c ∈ Q≥0, and ∼ ∈ {<,≤,≥, >}. Let Φ(V) be a set of integer constraints
over variables V. The set Φ(X ,V) of constraints comprises Φ(X), Φ(V), and
conjunctions of clock and integer constraints. We use clocks(ϕ) and vars(ϕ)
to respectively denote the set of clocks and variables occurring in a constraint
ϕ. We assume the canonical satisfaction relation “|=” between valuations ν :
X ∪ V → Time ∪ Z and constraints, with Time = R≥0. A timed automaton
A is a tuple (L,B,X,V, I, E, �ini), which consists of a finite set of locations
L, where �ini ∈ L is the initial location, a finite set B of actions comprising
the internal action τ , finite sets X and V of clocks and variables, a mapping
I : L → Φ(X), that assigns to each location a clock constraint, and a set of
edges E ⊆ L × B × Φ(X ,V) × R(X ,V) × L. An edge e = (�, α, ϕ,�r, �′) ∈ E from
location � to �′ involves an action α ∈ B, a guard ϕ ∈ Φ(X ,V), and a reset vector
�r ∈ R(X ,V). A reset vector is a finite, possibly empty sequence of clock resets
x := 0, x ∈ X , and assignments v := ψint , where v ∈ V and ψint is an integer
expression over V. We use Lu, Lc ⊆ L to denote the set of urgent and committed
locations in L, respectively. We write X (A), �ini(A), etc., to denote the set of
clocks, the initial location, etc., of A and; clocks(�r) and vars(�r) to denote the
sets of clocks and variables occurring in �r, respectively.

A network N (of timed automata) consists of a finite set A1, . . . ,AN of timed
automata with pairwise disjoint sets of clocks and sets Br ,Bb ,Bu ⊆ ⋃N

i=1 B(Ai)

176 C. Herrera and B. Westphal

of rendez-vous, broadcast and urgent channels, respectively. We write A ∈ N if
and only if A ∈ {A1, . . . ,AN}.

The operational semantics of the network N is the labelled transition sys-
tem T (N) = (Conf (N),Time ∪ {τ}, { λ−→| λ ∈ Time ∪ {τ}}, Cini). The set of
configurations Conf (N) consists of pairs of location vectors 〈�1, . . . , �N 〉 from
×N

i=1L(Ai) and valuations of
⋃

1≤i≤N X (Ai)∪V(Ai) which satisfy the constraint
∧N

i=1 I(�i). We write �s,i, 1 ≤ i ≤ N , to denote the location which automa-
ton Ai assumes in configuration s = 〈�s, νs〉 and νs,i to denote νs|V(Ai)∪X (Ai).
Between two configurations s, s′ ∈ Conf (N) there can be four kinds of tran-
sitions. There is a delay transition 〈�s, νs〉 t−→ 〈�s, νs + t〉 if for all t′ ∈ [0, t]
and for all 1 ≤ i �= j ≤ N , νs + t′ |= ∧N

k=1 Ik(�s,k) (where νs + t′ denotes
the valuation obtained from νs by time shift t′), and (1) �s,i /∈ Lu ∪ Lc,
and (2) νs + t′ �|= ϕ(e), e ∈ E(A), such that α(e) = b!, b ∈ Bu ∩ Bb and
�s,i = �(e); and (3) νs + t′ �|= ϕ(ei) ∧ ϕ(ej), with ei ∈ E(Ai) and ej ∈ E(Aj),
such that α(ei) = u!, α(ej) = u?, u ∈ Bu(N) ∩ Br (N), �s,i = �(ei) and
�s,j = �(ej). There is a local transition 〈�s, νs〉 τ−→ 〈�s′ , νs′〉 if there is an
edge (�s,i, τ, ϕ, �r, �s′,i) ∈ E(Ai), 1 ≤ i ≤ N , such that �s′ = �s[�s,i := �s′,i],
νs |= ϕ, νs′ = νs[�r], and νs′ |= Ii(�s′,i), and if �s,k ∈ Lc for some 1 ≤ k ≤ N

then �s,i ∈ Lc. There is a synchronization transition 〈�s, νs〉 τ−→ 〈�s′ , νs′〉
if there are 1 ≤ i �= j ≤ N , and edges (�s,i, b!, ϕi, �ri, �s′,i) ∈ E(Ai) and
(�s,j , b?, ϕj , �rj , �s′,j) ∈ E(Aj) such that �s′ = �s[�s,i := �s′,i][�s,j := �s′,j],
νs |= ϕi ∧ ϕj , νs′ = νs[�ri][�rj], and νs′ |= Ii(�s′,i) ∧ Ij(�s′,j), and if �s,k ∈ Lc

for some 1 ≤ k ≤ N then �s,i ∈ Lc or �s,j ∈ Lc . Let b ∈ B be a broad-
cast channel and 1 ≤ i0 ≤ N such that (�s,i0 , b!, ϕi0 , �ri0 , �s′,i0) ∈ E(Ai0).
Let 1 ≤ i1, . . . , ik ≤ N , k ≥ 0, be those indices different from i0 such that
there is an edge (�s,ij , b?, ϕij , �rij , �s′,ij) ∈ E(Aij). There is a broadcast transi-
tion 〈�s, νs〉 τ−→ 〈�s′ , νs′〉 in T (N) if �s′ = �s[�s,i0 := �s′,i0] · · · [�s,ik := �s′,ik],
νs |= ∧k

j=0 ϕij , νs′ = νs[�ri0] · · · [�rik], and νs′ |= ∧k
j=0 Iij (�s′,ij), and if �s,k̂ ∈ Lc

for some k̂, k̄ ∈ {i0, i1, . . . , ik} then �s,k̄ ∈ Lc. Cini = {〈�ini, νini〉} ∩ Conf (N),
where �ini = 〈�ini,1, . . . , �ini,N 〉, νini(x) = 0 for each x ∈ X (Ai), and 1 ≤ i ≤ N .

A finite or infinite sequence σ = s0
λ1−→ s1

λ2−→ s2 · · · of configurations is called
transition sequence (starting in s0 ∈ Cini) of N . Sequence σ is called computation
of N if and only if it is finite and s0 ∈ Cini . We denote the set of all computations
of N by Π(N). A configuration s is called reachable (in T (N)) if and only if
there exists a computation σ ∈ Π(N) such that s occurs in σ.

The set of basic formulae over N is given by the grammar β:: = � | ϕ
where � ∈ L(Ai), 1 ≤ i ≤ n, and ϕ ∈ Φ(X ,V). Basic formula β is satisfied by
configuration s ∈ Conf (N) if and only if �s,i = �, or νs |= ϕ, respectively. A
reachability query over N is ∃♦CF where CF is a configuration formula over N ,
i.e. any logical connector of basic formulae. We use β(CF) to denote the set of
basic formulae in CF . N satisfies ∃♦CF , denoted by N |= ∃♦CF , if and only if
there is a configuration s reachable in T (N) s.t. s |= CF .

We recall from [2] the following definitions. Given a network N with clocks
X , two clocks x, y ∈ X are called quasi-equal, denoted by x � y, if and only

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 177

if for all computation paths of N , the valuations of x and y are equal, or the
valuation of one of them is equal to 0, i.e. if ∀s0

λ1−→ s1
λ2−→ s2 · · · ∈ Π(N) ∀i ∈

N0 •νsi
|= (x = 0∨y = 0∨x = y). In the following, we use ECN to denote the set

{Y ∈ X/� | 1 < |Y |} of equivalence classes of quasi-equal clocks of N with at
least two elements. For each Y ∈ X/�, we assume a designated representative
denoted by rep(Y). For x ∈ Y , we use rep(x) to denote rep(Y). An edge e of a
timed automaton A in network N is called resetting edge if and only if e resets
a clock, i.e. if ∃e = (�, α, ϕ,�r, �′) ∈ E(A) • clocks(�r) �= ∅. A location � (�′) is
called reset (successor) location wrt. Y ∈ ECN in N if and only if there is a
resetting edge in E(N) from (to) � (�′). A configuration s ∈ Conf (N) is called
stable wrt. Y ∈ ECN if and only if all clocks in Y have the same value in s, i.e. if
∀x ∈ Y • νs(x) = νs(rep(x)). We use SCY

N to denote the set of all configurations
that are stable wrt. Y . A configuration not in SCY

N is called unstable wrt. Y .

3 Reducing Clocks in Networks of Timed Automata

Consider the following motivating example of the network N1 depicted in Fig. 1.
Network N1 consists of automata A1 and A2 with respective clocks x and y,
rendez-vous channel c, and global variable a. Note that after delaying ten time
units at their respective initial locations, automata A1 and A2 interleave by
taking their simple edges which exclusively reset their respective clocks. This
interleaving induces intermediate configurations where clocks x and y differ on
their valuations. Automata A1 and A2 after a delay of five time units at locations
�1 and �5 interleave once again by taking their complex edges which reset their
respective clocks together with updates of the variable a. Note that automata A1

and A2 can reset once again their respective clocks and transit simultaneously
to their respective locations �3 and �7 at any time, even without delaying at
locations �2 and �6. Since the valuations of clocks x and y only differ at the
point in time when they are reset, therefore they are quasi-equal clocks.

Note that network N1 cannot be transformed by the approach from [5], since
by that approach: (a) the outgoing edges of locations �2 and �6 do not fulfill the
syntactical pattern of an edge resetting quasi-equal clocks, i.e. there are no clock
constraints that guard those edges, and the origin locations of those edges have
no invariants; and (b) there must be a delay greater than zero time units at the
origin location of any edge resetting a quasi-equal clock.

In this paper we present an approach which: (1) does not require that a
network with quasi-equal clocks fulfill certain syntactical assumptions; (2) does
not require any delay before resetting quasi-equal clocks; (3) does not restrict the
point in time at which quasi-equal clocks are reset; (4) eliminates configurations
reachable by taking simple edges, e.g. configurations reachable by taking the
simple edges of locations �0 and �4 and, (5) preserves configurations reachable
by taking complex edges, e.g. configurations reachable by taking the complex
edges of locations �1 and �5.

In the following we introduce two definitions that allow us to classify edges
that reset quasi-equal clocks into simple and complex edges. Intuitively, an edge

178 C. Herrera and B. Westphal

�0 �1 �2

�3

A1:

x ≤ 10 x ≤ 5

�4 �5 �6

�7

A2:

y ≤ 10 y ≤ 5

x ≥ 10

x := 0

x ≥ 5

x := 0,
a := 1

c!x := 0

y ≥ 10

y := 0

y ≥ 5

y := 0,
a := 3

c?y := 0

Fig. 1. Network N1 with quasi-equal clocks x and y.

resetting quasi-equal clocks is called simple if that edge resets exclusively one
clock, does not synchronise with other edges and time must pass before taking
that edge, otherwise is called complex.

Definition 1 (Pre-delayed Edge). An edge e = (�, α, ϕ,�r, �′) ∈ E(N) is
called pre-delayed if and only if time must pass in � before e is taken, i.e. if
Π(N) = Π(Z(N)), where Z is a transformation that adds a fresh clock x in N ,
and for each edge incoming to �, a reset x := 0, and to the guard ϕ the condition
x > 0. We use DEN to denote the set of pre-delayed edges of N .

There are sufficient syntactic criteria for an edge e = (�1, α1, ϕ1, �r1, �2) being
pre-delayed. For instance, if (�0, α0, ϕ0, �r0, �1) is the only incoming edge to �1
and if ϕ0 = (x ≥ C) and ϕ1 = (x ≥ D) and C < D, then e is pre-delayed. It is
also delayed if (�0, α0, ϕ0, �r0, �1) is the only incoming edge to �1, �r0 is resetting
x, and ϕ1 = (x > 0).

Both patterns occur, e.g., in the FS case-study (cf. Sect. 5). There, the reset
location is entered via an edge following the former pattern, and the edges orig-
inating at the reset successor location follow the latter pattern. Thus resetting
edges are pre-delayed in FS.

Definition 2 (Simple and Complex (Resetting) Edges). Let edge e =
(�, α, ϕ,�r, �′) be an edge which resets at least one quasi-equal clock, i.e. clocks(�r)∩
Y �= ∅ for some Y ∈ ECN . Edge e is called simple edge if and only if

– it is of the form (�, τ, x ≥ c, 〈x := 0〉, �′) for some local clock x ∈ X (A),
– the invariant of � is x ≤ c,
– it is pre-delayed, i.e. e ∈ DEN ,
– it is the only outgoing edge of �, i.e. ∀e1 = (�1, α1, ϕ1, �r1, �

′
1) ∈ E(A) • �1 =

� =⇒ e = e1, and it is the only incoming edge into �′, i.e. ∀e1 =
(�1, α1, ϕ1, �r1, �

′
1) ∈ E(A) • �′

1 = �′ =⇒ e = e1.

Otherwise, e is called complex edge. We use SEY (A) to denote the set of simple
edges of A using a clock from Y ∈ ECN . We use CEY (A) to denote the set of
those complex edges which reset at least one clock from Y ∈ ECN .

To avoid really special corner cases in the following we assume that time is not
stopped at origin and destination locations of simple edges. We use RESY (N)
to denote the set of automata in N which have simple or complex resetting

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 179

edges wrt. Y ∈ ECN , i.e. RESY (N) = {A ∈ N | SEY (A) ∪ CEY (A) �= ∅}.
For simplicity we could classify each edge resetting a clock x ∈ Y , with Y ∈
ECN , as complex. However, with the above definition we distinguish complex
edges from simple ones, and we provide a transformation for networks where
interleavings of complex edges are preserved, while interleavings of simple edges
are eliminated.

3.1 Algorithm for Transformation of Networks

In the following we present our transformation algorithm. It takes two inputs, a
network N and a set of equivalence classes of quasi-equal clocks ECN (which can
be obtained by [16]), and outputs a transformed network N ′ which from each
Y ∈ ECN uses only the representative clock rep(Y) and reflects the truth-value
of all queries on N .

Recall that we distinguish stable and unstable configurations per equivalence
class Y . In stable configurations, all clocks from Y have the same value, thus in
particular the same value as the representative rep(Y). In unstable configura-
tions, some clocks from Y have been reset and some not yet, so each clock from
Y either has the value 0 or the same value as rep(Y). We use a fresh boolean
token tx for each quasi-equal clock x to encode clock values in unstable configu-
rations. Configurations in N ′ where token tx is true encode configurations of N
where x = rep(x) holds, while the token being false encodes that x has already
been reset at the current point in time and thus has value 0. Function Γ (cf.
Definition 3) transforms guards and conditions based on this encoding.

Definition 3 (Function Γ). Let N be a network. Let Y,W ∈ ECN be sets of
quasi-equal clocks of N , x ∈ Y and y ∈ W clocks, and z a non-quasi-equal clock.
Let tx, ty /∈ V(N) be boolean variables. Given a clock constraint ϕclk , we define:

Γ0(ϕclk) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((rep(x) ∼ c ∧ tx) ∨ (0 ∼ c ∧ ¬tx)) , if ϕclk = x ∼ c,(
(rep(x) − rep(y) ∼ c ∧ tx ∧ ty) , if ϕclk = x − y ∼ c,

∨ (0 − rep(y) ∼ c ∧ ¬tx ∧ ty)
∨ (rep(x) − 0 ∼ c ∧ tx ∧ ¬ty)
∨ (0 ∼ c ∧ ¬tx ∧ ¬ty)

)
(
(rep(x) − z ∼ c ∧ tx) , if ϕclk = x − z ∼ c,

∨ (0 − z ∼ c ∧ ¬tx)
)

Γ0(ϕ1) ∧ Γ0(ϕ2) , if ϕclk = ϕ1 ∧ ϕ2.

We obtain the transformation Γ by setting Γ (ϕclk ∧ ψint) := Γ0(ϕclk) ∧ ψint .

Following [5], we add to transformed networks a resetter automaton RY to
whom we delegate the reset of clock rep(Y). Resetter RY has the location �nstRY

which, as in [5], encodes unstable configurations wrt. Y . In contrast to [5], where
the time points for resets were encoded in the resetters, our new approach lets
the transformed automata indicate RY when to reset the clock rep(Y) using the
following two mechanisms (cf. Fig. 2):

180 C. Herrera and B. Westphal

1. Rendez-vous channel resetY . This mechanism is used if at least one trans-
formed automaton assumes the origin location of a simple edge. The origin
locations of simple edges obtain self-loops which can synchronise with RY

on resetY exactly at those points in time in which the simple edge would
be taken in the original network. Since multiple automata may have an edge
synchronising on resetY enabled, there is a slight verification time overhead,
but all edges induce the exact same follow-up configuration where only RY

changes its location. The location which RY reaches by the synchronisation on
resetY is the first of a chain of locations. The edges along the chain basically
simulate a broadcast to all transformed automata which assume the origin
location of a simple edge (as indicated by the flag sA

Y) using the rendez-vous
channels rY . The synchronisation on rY involves the transformed simple edge
if and only if would be enabled in N . Thereby, N ′ realises exactly one fixed
sequence of simple edges as opposed to the full interleaving of simple edges
possible in N . To avoid costly and unnecessary interleavings between these
“pseudo-broadcasts”, all intermediate locations are committed.
Note that a better option could be the use of a single broadcast channel on
which automata assuming an origin location of a simple edge would be able
to send and listen, and on which the corresponding RY would listen. Then,
all interleavings of simple edges wrt. Y possible in N would be simulated
by only one transition in N ′. Unfortunately, the version of Uppaal used in
our experiments does not allow clock constraints on edges with inputs on
broadcast channels, which is necessary since being at the origin location of a
simple edge does not imply that edge is enabled.

2. Urgent broadcast channel uY . For the case that no transformed simple edge
is ready to indicate the reset time, the RY also (indirectly) observes whether
complex edges are taken. If the first transformed complex edge is taken at
reset time, then the sum of tokens will decrease. The resetter RY uses the
urgent broadcast channel uY in order to transit to �nstRY

as soon as the sum
of tokens is below |Y |. By transiting to the urgent location �nstRY

, we ensure
that no time elapses unless a configuration corresponding to stability wrt. Y
is reached, i.e. until all tokens wrt. Y are 0.

In order to avoid interleavings between resetters and, e.g., complex edges wrt.
other equivalence classes which may be unstable at the same point in time, a
resetter RY only transits back to �iniRY

(and resets the representative rep(Y)
and the tokens), if all other equivalence classes are stable as expressed by con-
dition blk(ECN) in the guard.

Note that simple edges are taken independently from all other edges, this
allows us to take all transformed simple edges in N ′ before the first transformed
complex one, which in turn allows us to support all queries which ask for con-
figurations where some complex edges and none, only some, or all simple edges
have been taken. Our choice for this order restricts broadcast synchronisation
on edges where the receiver resets clocks from a given equivalence class, and the
sender does not reset clocks from that class. To avoid unnecessarily interleav-
ings, we enforce this order using go(�r) in guards of transformed complex edges

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 181

� �′
A:

I(�)

� �′
K(A):

Γ (I(�))

(a) Pattern of a simple edge

wrt. Y in automaton A.

(b) Pattern of the simple edge of A
transformed in K(A).

ϕ

x1 := 0〈. . . 〉 〈. . . , sA
Y := 1〉

resetY ! Γ (ϕ)

rA
Y ? ¬Γ (ϕ)

rA
Y ? Γ (ϕ)

tx1 := 0, [sA
Y := 0]

�iniRY nstc1 �unstRY
nstcn. . .

RY :

(c) Pattern of resetter RY .

vnstY := 1

uY ! tx1 + · · · + txn 	= |Y |

resetY ?

r
A1
Y ! s

A1
Y

¬s
A1
Y

r
An−1
Y ! s

An−1
Y

¬s
An−1
Y

vnstY := 1

rAn
Y ! sAn

Y

¬sAn
Y

vnstY := 1

tx1 + · · · + txn = 0 ∧ blk(ECN)

Yrep := 0, tx1 := 1, . . . , txn := 1, vnstY := 0

Fig. 2. Patterns used to transform a given network N with ECN . In figures (a), (b) and
(c) we consider the following quasi-equal clocks Y = {x1, . . . , xn}, Y ∈ ECN . Urgent
and committed locations are denoted with the superscript u and c in the name of those
locations, respectively. We use Yrep as representative clock of Y , and blk(ECN) :=∧

W∈ECN \{Y }(
∑

w∈W tw = 0 ∨∑w∈W tw = |W |).

wrt. Y . The condition go(�r) refers to the sum of all variables sA
Y as indicator of

whether there are transformed simple edges wrt. Y which must be taken before
transformed complex edges wrt. Y or, each of those transformed simple ones has
been already taken, thus variable vnstY holds value true.

Formally, the transformation algorithm K works with two given inputs, a
network N and the set ECN of equivalence classes of quasi-equal clocks. The
output of K is the transformed network N ′ = {K(A1, ECN), . . . ,K(An, ECN)} ∪
{RY | Y ∈ ECN } where K(A, ECN) = (L(A), B′,X ′,V ′, I ′, Ec ∪ Es ∪ En, �′

ini).

– B′ = B(A) ∪ {resetY , rA
Y | A ∈ RESY (N)}, i.e. the rendez-vous channels

resetY and rA
Y are added for each equivalence class affected by A,

– X ′ = (X (A) \ Y) ∪ {rep(Y)}, i.e. all quasi-equal clocks but the representative
are removed,

– V ′ = V(A) ∪ {tx | x ∈ Y, Y ∈ ECN } ∪ {sA
Y | A ∈ RESY (N)}, i.e. one boolean

(reset-)token for each quasi-equal clock is added (initial value is one), and a
boolean simple-edge indicator sA

Y (initial value is one iff the initial location of
A is a reset location of a simple edge wrt. Y).

– I ′ = {� �→ Γ (I(�)) | � ∈ L(A)}, i.e. invariants are transformed with Γ to
consider the representative and the reset-token of quasi-equal clocks,

182 C. Herrera and B. Westphal

�0 �1 �2

�3

A′
1:

(Yrep ≤ 10 ∧ tx)

∨(0 ≤ 10 ∧ ¬tx)

(Yrep ≤ 5 ∧ tx)

∨(0 ≤ 5 ∧ ¬tx)

(Yrep ≥ 10 ∧ tx)∨
(0 ≥ 10 ∧ ¬tx)

((Yrep ≥ 5 ∧ tx)∨
(0 ≥ 5 ∧ ¬tx)) ∧ go(�r)r

A1
Y ?

go(�r)

tx := 0, s
A1
Y := 0

resetY ! (Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx)

r
A1
Y ? ¬((Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx))

tx := 0, a := 1

c!

tx := 0

�4 �5 �6

�7

A′
2:

(Yrep ≤ 10 ∧ ty)

∨(0 ≤ 10 ∧ ¬ty)

(Yrep ≤ 5 ∧ ty)

∨(0 ≤ 5 ∧ ¬ty)

(Yrep ≥ 10 ∧ ty)

∨(0 ≥ 10 ∧ ¬ty) r
A2
Y ?

((Yrep ≥ 5 ∧ ty)∨
(0 ≥ 5 ∧ ¬ty)) ∧ go(�r)

go(�r)

resetY ! (Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx)

r
A2
Y ? ¬((Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx))

ty := 0, s
A2
Y := 0 ty := 0, a := 3

c?

ty := 0

�iniRY nstc1 nstc2 �unstRY

RY :

vnstY := 1

uY ! tx + ty 	= |Y |

resetY ?

¬s
A1
Y

r
A1
Y ! s

A1
Y

vnstY := 1

r
A2
Y ! s

A2
Y

¬s
A2
Y

vnstY := 1

tx + ty = 0 ∧ blk(ECN)

Yrep := 0, tx := 1, ty := 1, vnstY := 0

Fig. 3. Transformed network N ′
1 = K(N1, ECN).

– Complex and non-resetting edges are transformed as follows, and the result-
ing edges contained in Ec and En, respectively. Guards are also trans-
formed using Γ and, for complex edges, extended by the blocking condition
go(�r) :=

∧
Y ∈ECN ,clocks(�r)∩Y 	=∅

∑
A∈N sA

Y = 0 ∨ vnstY . which ensures that
simple edges are pushed first. Reset vectors are transformed to consider reset-
tokens instead of the original clock, and extended by r1 as book-keeping for
the simple-edge indicator, where r1(�′) is the update sA

Y := 1 if �′ is the origin
location of a simple resetting edge, and ε otherwise.

Ec = {(
�, α, Γ (ϕ) ∧ go(�r), �r[y := 0/ty := 0 | y ∈ Y, Y ∈ ECN]; r1(�′), �′) |

(�, α, ϕ,�r, �′) ∈ E(A) \ SEY (A)},

The transformation of simple edges and the construction of the resetter RY for
equivalence class Y is depicted in Fig. 2. Transformed simple edges contained
in Es.

Example 1. Applying K to network N1 from Fig. 1 yields network N ′
1 (cf. Fig. 3).

Similar to the algorithm in [5], only the representative clock of each equivalence

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 183

class remains, in our example we use the fresh clock Yrep as representative of Y
which is reset by resetter RY . Note that each guard and invariant in automata A′

1

and A′
2 is transformed by Γ into a disjunction of clauses. For instance, the guard

x ≥ 10 of automaton A1 in N1, is transformed in N ′
1 into the encoding (Yrep ≥ 10∧

tx)∨ (0 ≥ 10∧¬tx). Then the clause (Yrep ≥ 10∧ tx) is effective in configurations
in N ′ where tx is true (encoding that clock x has the same value as Yrep), while
the clause (0 ≥ 10 ∧ ¬tx) is effective in configurations where tx is false (encoding
that x has already been reset and thus has value 0).

Note that in N ′
1 the pair of transformed complex edges from locations �1

and �5 preserve their original interleavings. Furthermore, the other pair of trans-
formed complex edges, from locations �2 and �6, are taken simultaneously even
without delaying at their origin locations.

3.2 Transformation of Properties

Definition 4 (Function Ω). Let N be a network with a set ECN . Let Ai,
with 1 ≤ i ≤ n, be the i-th automaton of N . Let x ∈ Y be a clock. Let N ′ =
K(N , ECN). Let β be a basic formula over N . Let �nstRY

be the unique urgent
location of resetter RY . We define the function Ω as follows where E� = E(A)\
SEY (A) : Ω0(β) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�′ ∧ �̃i) ∨ � , if β = �, (�, α, ϕ, 〈x := 0〉, �′) ∈ SEY (Ai).
(�′ ∧ ¬�̃i) , if β = �′, (�, α, ϕ, 〈x := 0〉, �′) ∈ SEY (Ai).
�0 , if β = �0(�′

0), (�0, α0, ϕ0, �r0, �
′
0) ∈ E�.

Γ0(ϕclk)[tx/(tx ∨ x̃)] ∧ ϕint , if β = ϕclk ∧ ϕint .

Ω(CF) = ∃�̃1, .., �̃m ∃x̃1, .., x̃k • Ω0(CF) ∧
(�̃i =⇒

∨

(�,α,ϕ,�r,�′)∈SEY (Ai)

�′ ∧ �nstRY
) ∧ (x̃j =⇒

∨

(�,α,ϕ,〈xj :=0〉,�′)∈SEY (Aj)

�′ ∧ �̃j)

By structural induction Ω0 transforms configuration formulas CF.

Function Ω syntactically transforms properties over a network N with a
set of equivalence classes of quasi-equal clocks ECN into properties over N ′ =
K(N , ECN). Function Ω treats queries for origin and destination locations of
simple edges special, and outputs an equivalent property which can be verified
in N ′. For instance, consider the simple edge e = (�0, τ, (x ≥ 10), 〈x := 0〉, �1) of
automaton A1 of network N1. The query ∃♦φ, where φ : �0, is transformed after
some simplifications into Ω(φ) : ∃�̃ ∈ {0, 1}•((�1∧�̃)∨�0)∧(�̃ =⇒ (�1∧�nstRY

)).
The logical variable �̃ in the transformed query enforces consistent unstable
configurations where the location �0 can be assumed.

The origin location �0 of e can be assumed in N in different configurations:
either the reset time is not yet reached, or the reset time is reached but A1 has
not reset its clock x yet, while other automata in RESY (N) may have reset
their clocks already. In N ′, all edges resulting from simple edges are taken in
a fixed sequence by rendez-vous synchronisations, so each origin location is left

184 C. Herrera and B. Westphal

� �′

�′u
��u�

K�(A):

I(�) I(�′)
α, ϕ,�r

� �′A:

I(�) I(�′)

returnY ? returnY ?

α, ϕ′, �r

α, ϕ, �r

Fig. 4. Transformation pattern of algorithm K� over network N ′ = K(N , ECN), where
ϕ′ = ϕ ∧ ∧Y ∈ECN

∑
x∈Y ∩X (A) tx > 0. Algorithm K� takes each edge of network N ′

(excluding edges of resetters), cf. left-hand side and transforms it according to the
right-hand side. The edge originally linking locations � and �′ is redirected to �′u

� if and
only if ∃Y ∈ ECN ∃x ∈ Y • tx ∈ vars(�r). In addition, in each resetter RY , an output
action on broadcast channel returnY is added to the edge from �nstRY to �iniRY .

one by one. Because the resetter finally moves to �nstRY
after synchronising

with automata A′
1 and A′

2, a configuration of N ′ which assumes location �nstRY

represents all similar unstable configurations of N where all simple edges are
in their origin or destination location. Therefore, from Ω(φ), the clause �0 is
effective in configurations of N ′ which represent those in N where the reset time
is not yet reached; while the clause (�1 ∧ �̃) is effective in configurations of N ′

which represent those in N where the reset time is reached but A1 has not reset
its clock x yet, while other automata in RESY (N) may have reset their clocks
already. The latter configurations in N , enforced by the logical variable �̃, are
assumed in N ′, in particular, when resetter RY is located at location �nstRY

and automaton A′
1 at location �1.

4 Weak Bisimulation

In order to prove our approach correct we establish a weak bisimulation relation
between a network N with a set of equivalence classes of quasi-equal clocks ECN ,
and its respective transformed network N ′ = K(N , ECN).

Recall that configurations induced when each clock x from Y ∈ ECN is reset
in network N , are summarised in N ′ in configurations where the �nstRY

-location
is assumed, in particular, when the values of variables sA

Y and tx reflect these
resets. Hence with the valuations from those variables we unfold information
summarised in these configurations from N ′.

Lemma 1. Any network N with equivalence classes of quasi-equal clocks ECN ,
is weakly bisimilar to N ′ = K(N , ECN), i.e. there is a weak bisimulation relation
S ⊆ Conf (N) × Conf (N ′) such that

1. ∀s ∈ Cini(N) ∃r ∈ Cini(N) • (s, r) ∈ S and ∀r ∈ Cini(N ′) ∃s ∈ Cini(N) •
(s, r) ∈ S.

2. For all config. formulae CF over N , ∀(s, r) ∈ S • s |= CF =⇒ r |= Ω(CF)
and ∀r ∈↓2 S • r |= Ω(CF) =⇒ ∃s ∈ Conf (N) • (s, r) ∈ S ∧ s |= CF.

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 185

3. For all (s, r) ∈ S,
(a) if s

λ−→ s′ and
i. λ = d > 0, then there exists a sequence of transitions r

τ−→∗
r′ λ−→ r′′,

with (s′, r′′) ∈ S,
ii. transition is justified by some edges (non-resetting, simple or complex

edge wrt. Y ∈ ECN). Then there exist r
τ−→∗

r′ λ−→ r′′ τ−→∗
r′′′, with

(s′, r′′′) ∈ S.
(b) if r

λ−→ r′ then there exists s′, such that s
λ1−→ s′, with (s′, r′) ∈ S.

Where r
τ−→∗

r′ denotes zero or more successive τ -transitions from configuration
r to configuration r′.

Proof. (Sketch) For each Y ∈ ECN the weak bisimulation relation S which
relates pairs of configurations (s, r) ∈ Conf (N) × Conf (N ′), is based in the
following four aspects: (A1) the values of variables and non-quasi-equal clocks.
(A2) configurations where both networks assume the same locations, and the
value of each clock x ∈ Y in N coincides with the value of that clock assumed
by rep(x) and token tx in N ′. (A2) also considers configurations where simple
edges in N are enabled, and their corresponding transformed simple edges in
N ′ have been taken. (A3) stable configurations wrt. Y in N and configurations
in N ′ where either no transformed resetting edge wrt. Y has been taken, or all
transformed resetting edges wrt. Y have been taken. (A4) consistent values for
variables sA

Y and vnstY .
During stability phases there is a strong bisimulation (one-to-one) between

the networks N and N ′. Only during unstability phases there is a weak bisimu-
lation (one-to-many) from N to N ′. For instance, the reset of a simple edge in
N is simulated in N ′ with multiple steps. Artificial steps in N ′ such as resetY -
synchronization, uY -output and return to �iniRY

in RY are simulated in N by a
zero delay transition. Steps where N ′ takes transformed complex o simple edges
are simulated in N by one step taking the corresponding resetting edge.

Theorem 1. Let N be a network with a set ECN . Let CF be a configuration
formula over N . Then K(N , ECN) |= ∃♦Ω(CF) ⇐⇒ N |= ∃♦CF.

Proof. Use Lemma 1 and induction over the length of paths to show that CF
holds in N if and only if Ω(CF) holds in K(N , ECN). ��

For performance purposes we have transformed our benchmarks with algo-
rithm K� which takes the output of algorithm K and applies the changes depicted
in Fig. 4. Algorithm K� together with functions devirQE and Ω� allow us to
state in Lemma 2 a strong bisimulation relation between the networks N ′ and
N � which are output by algorithms K and K�, respectively.

Lemma 2. Given networks: N with a set ECN , N ′ = K(N , ECN) and N � =
K�(N ′). Then N ′ is strongly bisimilar to N � with devirQE (r) = r[��/� | �� ∈
L(N �)], and N ′ |= ∃♦Ω(CF) ⇐⇒ N � |= ∃♦Ω�(CF), where Ω� is defined by
replacing in Ω every occurrence of a location �′, (�, α, ϕ,�r, �′) ∈ SEY , Y ∈ ECN ,
by �′

�.

186 C. Herrera and B. Westphal

5 Experimental Results

We applied our approach to nine industrial case studies using sAsEt [16], our
implementation of algorithms K and K� with integrated detection of equivalence
classes of quasi-equal clocks and, simple and complex edges. Six case studies
FS [18], CR [19], CD [20], EP [14], TT [21] and LS [22] appear in [5]. The
interested reader can obtain from [5] more details of those case studies. The
elimination of assumptions on networks allowed us to include three new case
studies that [5] cannot transform: FB [7], TA [8] and PG [9]. We verified queries
as proposed by the respective authors of each case study. Our motivating case
study is inspired by the network from [7] which models the Foundation Fieldbus
Data Link Layer protocol (FDLL). The network consists of N sensors and one
master. Each of them with complex edges which are taken simultaneously by
synchronising on a given broadcast channel at the command of the master. Both
sender and receiver reset quasi-equal clocks of the same equivalence class. The
point in time in which quasi-equal clocks are reset by those complex edges, is
neither unique nor explicit in the syntax of those edges. Moreover, those complex
edges can be taken even without delaying at their origin locations. Case study [8]
is an implementation of a TDMA protocol. Case study [9] is an implementation of
the Pragmatic General Multicast (PGM), which is a reliable multicast transport
protocol for applications that require multicast data delivery from a single source
to multiple receivers.

Table 1 gives figures for the verification of queries in instances of the original
and the transformed model (denoted by the suffix K in the name). The rows
without results indicate the smallest instances for which we did not obtain results
within 24 h. For all examples we achieved significant savings in verification time,
sometimes of factor n. However, the verification time in transformed models is
less meaningful in benchmarks TA and TT. The quasi-equal clocks in the TA and
TT models are reset by complex edges, so all interleaving of resets in the original
model are preserved in the transformed network, together with the artificial
transitions that our transformation introduces. This can explain that our savings
in these models are related to a more efficient DBM-management. Still, the
verification of the transformed models of TA and TT including transformation
time is faster than verification of the original ones.

The biggest savings in terms of verification time are obtained in the trans-
formed models FS, CD, and CR. In these models we have simple edges whose
interleaving is reduced to a fixed sequence. Regarding memory consumption,
we observe the biggest savings again in the mentioned models for the reasons
already explained. Note that the verification of the transformed models EP, LS,
PG takes slightly more memory than the verification of the original counter-
parts. We argue that this is due to all resetting edges being complex in these
three networks. Thus, our transformation preserves the full interleaving of clock
resets and the whole set of unstable locations whose size is exponential in the
number of participating automata, and it adds the transitions to and from loca-
tion �nstRY

. Furthermore, we add extra variables in those networks, namely,
boolean tokens for each quasi-equal clock whose management contributes in the

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 187

Table 1. Row X-N(K) gives the figures for case study X with N components (and
K applied). ‘C’ gives the number of clocks in the model, ‘kStates’ the number of 103

visited states, ‘M’ memory usage in MB, and ‘t(s)’ verification time in seconds. sAsEt
transformed each of our benchmarks in at most 5 s.

Network C kStates M t(s) Network C kStates M t(s)

EP-21 21 3,145.7 507.6 444.8 FS-8 14 5,084.3 160.8 1,007.1

EP-21K 1 3,145.7 525.7 89.8 FS-8K 5 1,892.7 78.0 80.3

EP-22 22 6,291.5 1,027.2 1,032.0 FS-10 16 17,474,6 518.6 4,734.0

EP-22K 1 6,291.5 1,060.5 193.8 FS-10K 5 2,152.1 83.7 97.7

EP-23 23 – – – FS-11 17 – – –

EP-23K 1 12,582.9 2,146.9 427.3 FS-126K 5 28,510.8 905.6 3,963.3

TT-5 6 436.9 57.9 5.9 CD-14 29 7,078.1 591.7 1,388.0

TT-5K 1 327.1 79.5 4.5 CD-14K 15 1,327.3 142.0 179.1

TT-6 7 2,986.0 116.5 36.9 CD-15 31 8,945.7 1,186.9 1,785.7

TT-6K 1 1,916.6 467.1 30.2 CD-15K 16 6,062.6 529.6 978.9

TT-7 8 16,839.9 612.9 235.3 CD-16 33 – – –

TT-7K 1 11,054.9 2,527.7 198.2 CD-16K 17 17,892.1 1,954.9 3,703.0

LS-6 17 145.1 21.6 4.3 CR-6 6 264.5 20.3 2.8

LS-6K 3 151.2 23.0 2.2 CR-6K 1 67.7 12.3 0.8

LS-7 19 553.3 74.6 22.2 CR-7 7 7,223.7 497.5 132.8

LS-7K 3 554.7 81.0 10.1 CR-7K 1 1,300.6 165.2 20.9

LS-9 23 8,897.6 1,285.2 524.9 CR-8 8 – – –

LS-9K 3 9,008.2 1,450.8 224.1 CR-8K 1 2,569.7 359.0 52.4

FB-12 14 24.6 6.6 30.9 TA-2 7 42.1 6.3 0.3

FB-12K 3 24.6 6.1 0.4 TA-2K 2 40.1 6.1 0.3

FB-15 17 2,920.3 36.5 3,894.4 TA-3 8 921.5 97.5 10.6

FB-15K 3 196.6 31.7 4.8 TA-3K 2 917.4 59.5 9.7

FB-16 18 – – – TA-4 9 33,547.6 1,827.8 630.0

FB-21K 3 12,582.9 2,138.4 647.5 TA-4K 2 31,397.2 1,405.7 412.7

PG-10 13 85.0 4.6 367.9

Experimental environment: Intel i3,

2.3GHz, 3GB,Ubuntu 11.04,

verifyta 4.1.3.4577/default options.

PG-10K 3 160.8 7.1 1.5

PG-12 15 389.1 9.6 9,560.9

PG-12K 3 737.3 21.1 8.5

PG-13 16 – – –

PG-18K 3 65,273.9 1,732.4 1,165.3

overall memory consumption. The shown reduction of the verification time is
due to a smaller size of the DBMs that Uppaal uses to represent zones [6] and
whose size grows quadratically in the number of clocks.

188 C. Herrera and B. Westphal

Our new technique transforms any network with quasi-equal clocks. It reduces
the verification time of properties in transformed networks, and represents all
clocks from an equivalence class by one representative. This technique can reduce
those configurations induced by automata that reset quasi-equal clocks one by
one. Furthermore, our technique supports all properties reflected by original
networks. We plan to implement our new approach in hybrid automata.

References

1. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Herrera, C., Westphal, B., Feo-Arenis, S., Muñiz, M., Podelski, A.: Reducing quasi-

equal clocks in networks of timed automata. In: Jurdziński, M., Ničković, D. (eds.)
FORMATS 2012. LNCS, vol. 7595, pp. 155–170. Springer, Heidelberg (2012)

3. Rappaport, T.S.: Wireless communications, vol. 2. Prentice Hall (2002)
4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo,

M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

5. Herrera, C., Westphal, B., Podelski, A.: Quasi-equal clock reduction: more net-
works, more queries. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS).
LNCS, vol. 8413, pp. 295–309. Springer, Heidelberg (2014)

6. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

7. Petalidis, N.: Verification of a fieldbus scheduling protocol using timed automata.
CI 28(5), 655–672 (2009)

8. Godary, K.: Validation temporelle de réseaux embarqués critiques et fiables pour
l’automobile. PhD thesis, Institut National des Sciences Appliquées de Lyon,
France (2004)

9. Bérard, B., Bouyer, P., Petit, A.: Analysing the PGM Protocol with UPPAAL.
IJPR 42(14), 2773–2791 (2004)

10. Daws, C., Yovine, S.: Reducing the number of clock variables of timed automata.
In: RTSS, pp. 73–81. IEEE (1996)

11. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998)

12. Braberman, V., Garbervestky, D., Kicillof, N., Monteverde, D., Olivero, A.: Speed-
ing up model checking of timed-models by combining scenario specialization and
live component analysis. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS
2009. LNCS, vol. 5813, pp. 58–72. Springer, Heidelberg (2009)

13. Braberman, V.A., Garbervetsky, D., Olivero, A.: Improving the verification of
timed systems using influence information. In: Katoen, J.-P., Stevens, P. (eds.)
TACAS 2002. LNCS, vol. 2280, p. 21. Springer, Heidelberg (2002)

14. Limal, S., Potier, S., Denis, B., Lesage, J.: Formal verification of redundant media
extension of ethernet powerlink. In: ETFA, pp. 1045–1052. IEEE (2007)

15. Muñiz, M., Westphal, B., Podelski, A.: Timed automata with disjoint activity. In:
Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 188–203.
Springer, Heidelberg (2012)

16. Muñiz, M., Westphal, B., Podelski, A.: Detecting quasi-equal clocks in timed
automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol.
8053, pp. 198–212. Springer, Heidelberg (2013)

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 189

17. Olderog, E.-R., Dierks, H.: Real-time systems - formal specification and automatic
verification. Cambridge University Press (2008)

18. Dietsch, D., Feo-Arenis, S., et al.: Disambiguation of industrial standards through
formalization and graphical languages. In: RE, pp. 265–270. IEEE (2011)

19. Gobriel, S., Khattab, S., Mossé, D., et al.: RideSharing: fault tolerant aggregation
in sensor networks using corrective actions. In: SECON, pp. 595–604. IEEE (2006)

20. Jensen, H., Larsen, K., Skou, A.: Modelling and analysis of a collision avoidance
protocol using SPIN and Uppaal. In: 2nd SPIN Workshop (1996)

21. Steiner, W., Elmenreich, W.: Automatic recovery of the TTP/A sensor/actuator
network. In: WISES, pp. 25–37. Vienna University of Technology (2003)

22. Kordy, P., Langerak, R., et al.: Re-verification of a lip synchronization protocol
using robust reachability. In: FMA. EPTCS, vol. 20, pp. 49–62 (2009)

Resource-Parameterized Timing Analysis
of Real-Time Systems

Jin Hyun Kim1(B), Axel Legay1, Kim G. Larsen2, Marius Mikučionis2,
and Brian Nielsen2

1 INRIA/IRISA, Rennes, France
2 Alborg University, Aalborg, Denmark

jin-hyun.kim@inria.fr

Abstract. Cyber-Physical Systems (CPS) are subject to platform-given
resource constraints upon such resources as CPU, memory, and bus, in
executing their functionalities. This causes the behavior of a verified
application to deviate from its intended timing behavior when the appli-
cation is integrated on a specific platform. For the same reason, a con-
figuration of platforms cannot be independent from applications in most
cases. This paper proposes a new analysis framework of real-time systems
where an application and a platform can be analyzed in a fully indepen-
dent way such that not only the application but also the platform once
verified can be exploited by various applications. The dependent behav-
iors of application and platform are also analyzed by exploiting their
individual models transformed from their independent models. To the
end, we provide a highly configurable platform model that can be para-
meterized by various resource configurations. For analysis of application
and platform models, we use two model checking techniques: symbolic
and statistical model checking techniques of Uppaal. Our framework is
demonstrated by a case study where a turn indicator system is analyzed
with respect to various platform resource constraints.

1 Introduction

The more control systems close to human lives adopt Cyber-Physical Systems
(CPS), the more important it is to guarantee the safety and integrity of the sys-
tem. For instance, many automotive system components are required to achieve
a designated integrity level through recommended design and analysis methods.
In order to achieve a high level of integrity, it is recommended to formally design
and analyze all possible properties of the system.

In particular, it is important to take into account the composability of appli-
cation and platform in an early design phrase prior to implementation. So that
the application once verified without the concern about its platform should sat-
isfy its functional and performance requirements when being integrated with a
platform. Model-Driven Architecture (MDA) is a model-based approach based

The research presented in this paper has been partially supported by EU Artemis
Projects CRAFTERS and MBAT.

c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 190–205, 2015.
DOI: 10.1007/978-3-319-26287-1 12

Resource-Parameterized Timing Analysis of Real-Time Systems 191

Fig. 1. Analysis methodology using Uppaal environment.

on the separation of concerns principle. In the approach, an application is cap-
tured by two models, a Platform-Independent Model (PIM) and a Platform-
Specific Model (PSM). Kim et al. in [5,6] present a formal analysis method
utilizing the MDA principle, where the PIM (Platform-Independent Model) and
PSM (Platform-Specific Model) of a medical software system are analyzed using
a symbolic model checking technique. The platform-concerned aspect of the PSM
is abstracted as a delay which postpones the execution time of applications. The
PSM of this work is simple but too specific to be used for various platform set-
tings. Also, the PSM of the MDA does not specify a platform even if a platform
is more often re-used than applications. So far, platform aspects in the MDA
have not been much studied as an independent model so that they are captured
for the composability analysis of applications, analysis of a platform cannot be
thus independent from applications.

In short, not only application requirements should be platform-independent
and define both functional and performance timing requirements, but also a plat-
form should be application-independent. Hence, the development of CPS applica-
tions should be leveraged so that if resource constraints are guaranteed by a plat-
form running the application, then the integration of applications and platforms
will satisfy both functional and performance requirements of applications.

This paper presents a new analysis framework of real-time CPS using formal
analysis techniques, where the platform is verified independently from appli-
cations to guarantee given resource constraints, and the application is evalu-
ated under the verified resource constraints to satisfy its functional and tim-
ing requirements. In our framework, an application model captures a functional
behavior over time, and a platform model captures resource constraints regarding
a shared resource, e.g. CPU, and is represented by a scheduling system that man-
ages limited resources for current tasks. The application model is integrated on
a platform model and checks its functional and timing properties under resource
constraints given by the platform model.

We propose three behavioral models for applications and platforms, as shown
in Fig. 1: Resource-Independent behavioral Model (RIM) models a functional-
ity of the system including application-concerned timing requirements, ignoring

192 J.H. Kim et al.

any platform constraints. Scheduling System Model (SSM) specifies a schedul-
ing mechanism of a given platform. Resource-Specific behavioral Model (RSM)
refines a RIM with platform-given constraints in terms of the best- and worst-
case execution time and communication mechanisms. In terms of MDA, a plat-
form independent model of applications can be presented by a RIM. A platform
specific model is given by both RSM and SSM. For the analysis of platform
independent and platform specific models, a behavior model of each application
component is first captured by RIM. Second, a (shared) resource constraint of
platforms is captured by a SSM. One or more tasks and scheduling mechanisms
constitute a SSM, which is checked in terms of the schedulability. Third, a RSM
is constructed by refining individual operations of a RIM with timing proper-
ties. Finally, a RSM and a SSM are combined into a system model by associating
individual components of the RSM to tasks of the SSM, and the system model
is checked against application’s properties relying on a platform. For the for-
mal analysis, we apply the statistical and symbolic model checking techniques
of Uppaal.

This paper extends our previous work of [7] where a turn indicator system is
analyzed using Uppaal tools so that application model of the system is inves-
tigated under platform-given resource constraints. In addition, we propose a
scheduling system model as a way of providing resource constraints of platforms
for composability analysis of applications.

The rest of the paper is organized as follows: Sect. 2 discuss the background of
this work and related work. Section 3 discusses our methodology and proposes a
new analysis framework using formal analysis techniques that supports the MDA
principle. Section provides a brief description of the case study, Turn Indicator (TI)
system, and the properties to be checked. Finally, the paper is concluded in Sect. 5.

2 Backgrounds

This section discusses the formalism of our specification and analysis. We used
Timed Automata (TA) and Stopwatch Automata (SWA) for specification and the
relevant model checking tools, Uppaal MC and Uppaal SMC. Timed Automa-
ton (TA) that [1] is a classical formal model for designing real-time systems. It
consists of:

– A set of real-time clocks. The model uses a continuous time semantics meaning
that the clocks are evaluated to real number.

– A set of locations, possibly labeled with an invariant constraint over clocks,
which restricts the time spent in the location.

– A set of transitions between pairs of locations, possibly labeled with a guard
over clocks. This guard specifies from which values of the clocks the transition
may be taken. The transition may also be labeled with a synchronization
channel and an update of clocks.

In case of preemptive real-time systems, it is necessary to keep track of the
execution time of a running process, and SWA comes along with a stopwatch

Resource-Parameterized Timing Analysis of Real-Time Systems 193

(a) Timed Automata (b) Simulation

(c) Stopwatch automata (d) Simulation

Fig. 2. Stopwatch Automata for switch

mechanism where a stopwatch clock keeps the time it stops by a condition so
that it resumes from the moment it freezes.

The TA and SWA of Fig. 2 models various quantitative aspect of a simple
Switch with two modes On and Off. Figure 2(a) is a timed automaton model of
the Switch using a clock x to enforce that the time-separation between mode-
switches is between 2 and 4 time-units. In addition an integer variable c counts
the number of time the Switch has been in location On. Figure 2(c) introduces
a stopwatch y which is running only in location On, thus effectively measuring
the accumulated residence-time in On.

Correctness of the system is specified using formal logics that defines which
are the admissible executions of the system. We will use a subset of the Computa-
tional Tree Logic (CTL) as defined by the model-checker Uppaal. The grammar
of this subset is ϕ ::= A[]P | A<>P | E[]P | E<>P. A and E are paths operators,
meaning respectively “for all the path” and “there exists a path”. [] and <> are
state operators, meaning respectively “all the states of the path” and “there
exists a state in the path”. P is an atomic proposition that is valid in some
state. For example the formula “A[] not deadlock” specifies that in all the paths
and all the states on these paths we will never reach a deadlock state in which
the system is permanently blocked.

Model-checking (MC) is an automated verification technique that explored
all the possible executions of a TA to verify if it satisfies a property expressed in
a logic like CTL. Probabilistic model-checking can also be used to compute the
probability to satisfy a CTL property. However these technique are limited by
state-space explosion problems when the model is too large, which can prevent
the analysis due to a lack of memory.

Another verification method that we adopt here is Statistical Model-Checking
(SMC) [3]. We have two reasons for using SMC analyzing a probabilistic model:
First, it somehow mitigates the limitation of MC, the state-explosion problem.
Basically, SMC, based on numerous traces from simulations, computes a possibil-
ity of system’s satisfaction for a property using statistical methods. The model
that can be checked by SMC must be probabilistic. However, Uppaal SMC

194 J.H. Kim et al.

accepts a non-probabilistic model and transforms the model into a probabilistic
model by applying the uniform probability distribution so that SMC techniques
is applicable for the model. Using SMC techniques, we can gain a probability of
system’s satisfaction for a property limited by a specific certainty. Although the
100 % certainty cannot be not obtained, SMC can give a quantified evidence of
system’s satisfaction for a property Moreover, SMC can return a counterexample
that disproves a property of a system so that we can find a way how to fix the
identified problem. Second, a non-determinism of timed systems that can not be
modeled in an easy way can be modeled with a probability.

2.1 Related Work

This work is a realization of Y-Chart methodology [2,4] targeting at the early
phase timing analysis of CPS. Y-Charts methodology recommends the perfor-
mance check of the combination of platforms and applications. Metropolice [2] is
an analysis environment where a system is designed and analyzed in accordance
with the Y-Chart principle prior to implementation of applications. However, we
are aiming at providing a platform model fully independent from applications
such that it can be utilized for any given applications.

In principle, our model of real-time CPS is similar to conservative scheduling
systems, such as deferrable server and sporadic server scheduling [8,11]. One of the
drawbacks of conservative scheduling systems is to waste some supplied resource
when a client task is idling. However, the separation of our framework between
application and platform executions brings the advantage that analysis of plat-
forms is independent from that of applications. In addition, the separation makes
it possible to provide a verified specification of applications that can be refined
with resource constraints of platforms. The behavior of our application models
depending on a platform model of scheduling systems is compared to a hierarchical
scheduling system, where a scheduling system depends on its nesting scheduling
system [9]. Our focus of this work is on the realization and analysis of various com-
binations of applications and platforms for composability analysis. To the end, we
present highly configurable formal models of applications and platforms.

The most recent relevant work is the work of Kim et al. in [5,6]. In this
work, a CPS is modeled based on Model-Driven Architecture principle. A PSM
is captured by two layers, an application layer and a platform layer, which are
distinguished by Input/Output and Monitor/Control variables individually. In
this work, the computation and communication time of applications depending
on platforms are abstracted by a delay measured physically. Distinguished from
[5,6], we propose a combination of a platform behavior model and an application
model, where the platform model is represented by an scheduling unit. Thus,
the platform layer is so flexible, specified and general as to be adopted by any
platforms.

In terms of application model, TIMMO Project [12] also deals with an exten-
sion of software architecture models with timing but are not supported by any
formal analysis technique. In terms of formal analysis for software architecture,
Sokolsky et al. [10] presented a formal method using a process algebraic method,

Resource-Parameterized Timing Analysis of Real-Time Systems 195

ACSR-VP and the relevant tool for AADL. However, it focuses on schedulability
analysis from application perspective.

To our best knowledges, our work is unique in that we present behavior models
of applications that are completely dependent from platforms but transformed for
a particular platform in ease. Also, we propose a systematic way of combining an
application and a platform that has not been dealt by MDA approaches. Moreover,
we present a highly configurable platform is parameterized with various resource
configurations for analysis of platform-dependent properties of applications.

3 Resource-Parameterized Timing Analysis

To analyze individual applications, platforms, and their combinations, we cap-
ture their individual behaviors and then compose them into a system model. An
application is modeled in accordance with functional and performance require-
ments. A platform is modeled to capture resource constraints in the form of
scheduling systems, which is parameterized with configurations of tasks charac-
terized by real-time attributes e.g. an execution time, a period, and a deadline.

Fig. 3. Our CPS model

Figure 3 shows a Resource-Parameterized Model (RPM) of real-time appli-
cations where a platform is configured according to resource constraints. This
model is composed of two layers, an application layer and a platform layer. The
application layer is composed of a set of components (Compi) and the platform
layer is composed of one or more scheduling units (SCi). The behavior of an
application component is modeled by one or more functional processes (FPi),
which can be any computation models capable of representing a behavior of
computations and communications over time. Each component Compi is con-
nected to a specific task Ti, which is characterized by real-time attributes, such
as a period(Pi), the worst-case execute time (Ci), and a deadline (Di). As our
framework is aiming at an early phase timing analysis, the worst-case execution
time of a task is a timing requirement.

196 J.H. Kim et al.

Fig. 4. Resource-Parameterized Model (RPM)

A resource constraint of a platform is denoted by real-time attributes of tasks.
The resource constraint should be guaranteed by the objective platform and the
application should accomplish both functional and performance requirements
under platform-given resource constraints.

In fact, an application is the same object as task but they are separated in
our framework as a client and a server, respectively: A task is a server supplying
computation resources to applications and an application is a client requiring
a specific amount of resources. The separation between application and task
enables investigation of applications and platforms in a fully independent way.
Also, the platform model can be used as a resource constraint specification for
composability analysis of applications prior to their integration. Furthermore, it
enables a platform once verified to be used for different applications.

The RPM in Fig. 4 refines the RPM in Fig. 3 in terms of behavior. The task
Ti(Pi, Ci,Di) has a behavior depending on a resource model of CPU. The CPU
resource model schedules jobs of tasks using the EDF scheduling policy. If the
CPU resource model begins to serve at state Ti.Server, then the task Ti switches
to state Executing by the condition [Ti.Serve] and the functional process FPi

also switches to state Executing by the condition [Ti.Executing].

3.1 Response Time of Applications

The separation between applications and tasks is similar to a hierarchical schedul-
ing system and a deferrable scheduling system, where a client task demanding a
resource assignment cooperates with a server task supplying resources to a client

Resource-Parameterized Timing Analysis of Real-Time Systems 197

Fig. 5. The WCRT of an application

task. For this reason, the preexisting analysis techniques for such systems can
also be used for the application properties of our framework.

The application behavior in this framework does not necessarily synchronize
with its relevant task of a platform model, the response time of applications rely-
ing on its associated task is hence varying according to the real-time attributes
of the task. Figure 5 depicts that the application with execution time E is served
by a task in the worst-case. The task runs for C time units every P time units.
The application needs E time units to finish its computations. The worst-case
is that the application begins as soon as the task (the first execution of the
task) finishes one of its executions, and ends with an execution of the task (the
last execution of the task) postponed as long as possible. For a given applica-
tion whose the execution time is E and which relies on a periodic task T (P,C),
the worst-case response time (W) of the application can be computed using the
service time bound function (sbf) [9]:

sbf(E) = (P − C) + P ·
⌊

E

C

⌋
+ εs (1)

εs =

⎧
⎨

⎩
P − C + E − C ·

⌊
E
C

⌋
if t − C ·

⌊
E
C

⌋
> 0

0 otherwise
(2)

However, the response time of applications according to the above equation
is the worst-case and not always returned by the actual setting of the system,
thus we present a way of estimating a response time close to the actual response
time using model checking techniques, which we will explain in Sect. 4.2.

3.2 Behavior Models of PIM and PSM

Modeling Aspects of PIM and PSM. The requirements of CPS that we are
concerned about are application requirements and platform constraints. An appli-
cation requirement includes both functional andperformance requirements.Aplat-
form constraint is a constraint to be imposed upon applications that characterizes
a platform. We distinguish platform constraints by three categories: a resource

198 J.H. Kim et al.

capability, a scheduling mechanism, and a communication mechanism. A resource
capability is a processing capability of resources. In the case of CPU, the resource
capability is represented by an execution time for a computation of applications. A
scheduling mechanism denotes a resource sharing mechanism. A communication
mechanism is a communication protocol supported by a platform.

RIM and RSM in Timed Automata. A RIM captures a functionality of
applications, i.e. computation and communication behavior of applications. A
RSM refines a RIM with the resource capability and the communication mech-
anism of a platform.

(a) RIM

(b) RSM

Fig. 6. Refinement of RIM to RSM (Color figure online)

Figure 6 shows a RIM and its corresponding RSM modeled using TA. They
have the same functionality, but the RSM includes more information on resource
constraints and communication mechanisms. The RIM of Fig. 6(a) has a simple
behavior: If it receives the event Event1, then it performs the action Action1.
Afterwards, it triggers the event Event2. The action performed during a transi-
tion can be any types of actions, such as computations and communications. The
action might need a computation resource and time when it is actually imple-
mented. However, a RIM executes such a resource-consuming action instanta-
neously and it does not need any resources.

A RSM corresponding to RIM takes into account resource capability and
communication mechanisms in addition to the functionality and communication
of RIM. Thus, the action of a RSM consuming time and resources is guarded by
an execution time, such as WCET and BCET, and the availability of a resource.
In a RSM, a specific communication mechanism replaces a simple communication
of a RIM.

The execution time and the availability of a resource necessary to perform the
action of a RSM is represented by a location, an invariant and a guard outgoing
from the location. In Fig. 6(b), the location Processing (in blue) proceeds to
execute the action Action1, where the WCET of the action is specified as an
invariant in the form of x <= WCET and the availability of the relevant resource
is represented by the function isRunning(). Also, the BCET of the action Action1

Resource-Parameterized Timing Analysis of Real-Time Systems 199

is labeled on the transition outgoing from location Processing in the form of
x >= BCET. In a RSM, a specific communication mechanism is considered. In
Fig. 6(b), the condition ReceptiveEvent1 is set to true in order to notify that
the event Event2 is allowed to synchronize. Compared to the RIM, the RSM
adds the condition ReceptiveEvent2 to the outgoing transition from the location
ReadyToFireEvent2 in order to specify a specific condition to fire the event Event2.

SSM in Timed Automata. A scheduling system model (SSM) consisting of
a task model and scheduler model is modeled using SWA.

Fig. 7. TA Scheduler model

The scheduling policy models of
EDF (Earliest Deadline First) is shown
in Fig. 7. The scheduling policy model
is triggered by the event (req sched[i])
from a task process and selects the
highest priority task from the ready
queue where tasks are sorted accord-
ing to their priorities.

The task model in Fig. 8 simulates
a task behavior that depends on the
availability of a CPU. The task model
releases a job at the location Job-
Done by the condition t rt[tid] >=
tstat[tid].prd that denotes a new period has begun. Then, the released job accesses
to a CPU at the location Executing, where the availability of the resource is
checked by the function isSchedSuped(). The stopwatch clock t et refers to the
executing time. If a CPU is available to this task, the clock t et begin its progress.

Fig. 8. SWA Task model

200 J.H. Kim et al.

The clock is running as long as the CPU is available. If t et reaches the BCET
denoted by tstat[tid].bcet, the task model can leave the location Executing and
return to the location JobDone.

4 Case Study: Turn Indication Systems

In this section, a case study is conducted to illustrate our framework, extending
our previous work in [7]. A turn indicator (TI) subsystem is one of automotive
components that indicates the direction of the car when the driver is about to
change the direction of his car. In addition, it indicates the emergency situation
and the status of the door lock/unlock operated by the driver.

Fig. 9. The architecture of the TI system

Figure 9 shows the software architecture of the TI system model and its data
and control flow between functional processes in individual components. The
architecture model groups TA functional processes into three groups consisting
of five components: Input, Control, and Output. Each component is composed
of one or more functional processes, and a functional process (FP) is a concurrent
process capturing functional and communication behavior of components.

For the simplicity, most of data are manipulated by user-defined functions
that use the Uppaal type system supporting data variables using a behavioral
description language like C. The interfaces of the components are represented
by channel names, and the connectors are modeled using the communication
primitives of Uppaal, a broadcasting channel (long dashed arrow) and a 1-to-1
synchronization (short dashed arrow) channel. The data is communicated by
shared data variables (normal arrow).

Resource-Parameterized Timing Analysis of Real-Time Systems 201

(a) RIM

(b) RSM

Fig. 10. ReadTICmdSig: TI command handler in RIM and RSM (Color figure online)

4.1 PIM Analysis

Firstly, the applications of the TI system are modeled in terms of RIM, and the
platform is also analyzed separately from the application analysis. Figure 10(a)
shows the RIM of ReadTICmdSig. It (1) responds to a TI command from Single
Column Switching, (2) determines the TI operation mode to be activated, and (3)
calls on the functional process that determines the occurrence of the emergency.

RIM Analysis. For the verification of safety and liveness properties of the TI
system, we construct some additional templates that monitor the violation of
system’s behavior against required properties. The detailed description of our
PIM models can be found from [7].

Table 1 shows the verification results of the safety, liveness, and deadlock-
freedom properties checked by Uppaal MC. The first property UP.001 is proven
to show that the system is safe from deadlock. The safety property SP.001.01
is proven to show that only one turn indicator group exclusively flashes when a
normal mode or the Tip blinking mode is engaged. The last liveness property
LP.001 is also proven to show that one of the turn indicator lamp groups is
operated eventually by any command from the driver.

202 J.H. Kim et al.

Table 1. CTL properties and model checking results

Property ID CTL Results Analysis time (second)

UP.001 A[] not deadlock Satisfied 1.05

SP.001 A[] not FailSafetyReq001.SReq001 1 Satisfied 0.29

LP.001 E<> LivenessReq001.LReq001 1 Satisfied 0.02

Table 2. Assignments of shared resources

Applications Resource Configuration 1 Resource Configuration 1

Compi FPi Precedence Ti(ExeTime,

Period)

CPUi Ti(ExeTime,

Period)

CPUi

C1 ReadEmgSig 1 T1(3, 20) CPU1 T1(2, 10) CPU1

ReadTICmdSig 2

ReadDefSig 3

C2 CheckEmgSig 1 T2(3, 20) T2(2, 10) CPU2

CheckDefSig 2

C3 SetFlashCount 1 T3(2, 20) CPU2 T3(1, 10)

SetTIOutputSig 2

C4 FlashTISig 1 T4(3, 20) T4(2, 10) CPU3

C5 FlashKombiTISig 1 T5(3, 20) T5(2, 10)

SSM Analysis. A platform is parameterized by resource configurations. Table 2
shows two resource configurations to be given the TI applications. The first
configuration (Resource Configuration 1) deploys five tasks exploiting 2 CPUs
while the second one (Resource Configuration 2) exploits three CPUs. We check
the schedulability of each resource configuration using the statistical and the
symbolic model checkers of Uppaal.

Table 3. Results of schedulability analysis for platform configurations

Property ID Property specifications Results

Probabilistic

schedulability

Pr[<= SimLimit] (<> error) (228 runs) Pr(<> ...) in [0,0.0199955]

with confidence 0.99. (Verification time

used: 14.7 s)

Schedulability A[] not error Satisfied (Verification time used:

77.93 s)

Table 3 exhibits the results of schedulability analysis for the resource config-
urations. Firstly, we conduct a quick analysis consuming a relative short time
(14.7 s) by means of a small hammer, the statistical model checker of Uppaal
(SMC). As a result, we obtained the probabilistic results regarding the schedu-
lability with 99 % certainty. SMC simulates a given model numerous times and
returns a probabilistic answer on how many traces satisfy a given property. After-
wards, we applied a big hammer, the symbolic model checker of Uppaal, that

Resource-Parameterized Timing Analysis of Real-Time Systems 203

consumes 77.93 s to return 100 % certainty for the schedulability of the resource
configurations.

4.2 PSM Analysis

RSM Construction. Figure 10(b) shows a RSM of the TI system that is refined
from its corresponding RIM. Note that some actions in Fig. 10(b) are refined
to denote the consumption of time and resources using a resource-consuming
location (in blue) given a WCET and associated with a stopwatch clock (run[cid])
that stops and resumes by the function isRunning(). Similar to the task model
of Fig. 8, the resource-consuming action of the RSM depends on the associating
task, i.e. the action is performed only while the task is running.

Some event channels are also protected by the associated condition vari-
ables. For instance, the location ExeAct1 has the invariant run[cid] <= 3 and the
transition from the location has the guard run[cid] >= 2. In the expressions, 3
and 2 are the WCRT and the BCET, respectively, to perform the actions tem-
pCMD=ti cmd, exe[cid]=false on the transition leaving ExeAct1. In this way, the
action to consume time and resource is refined with a logical time.

Composability Analysis: End-to-End Delay Analysis. The RSM of the
TI system is composed with a SSM varying resource configurations and checked
to see if the TI model satisfy its end-to-end delay requirement. Table 2 maps indi-
vidual components and their associated tasks. For this case study, we provide two
resource configurations for the TI applications. We checked the end-to-end delay
requirement that any driver commands for TI operations should be responded
within 20 ms.

Fig. 11. TA environment model
for end-to-end delay analysis

The end-to-end delay is estimated by a new
TA template in Fig. 11: The clock e2e clock
begins to progress when the event end2end input
occurs, stops when the event e2e output occurs,
and is reset when a new TI command arrives.
The events end2end input and e2e output can be
annotated upon any transitions of the TI model
that denote the start and the end of an opera-
tion. The following SMC query is given SMC to
check the end-to-end delay:

E[<=100000;1000](max:e2e clock)

It requires Uppaal SMC to return a probability distribution on the average
of the maximum value of the clock e2e clock from 1,000 individual simulation
traces, of which each runs for 100,000 time units.

As results, we obtained two probability distributions, as shown in Fig. 12, from
SMC. Figure 12(a) is the probability distribution concerning the first resource con-
figuration and shows that the maximum end-to-end delay is 99.86 ms (Span of
display sample [0, 99.86]) and the average of the maximum end-to-end delay over

204 J.H. Kim et al.

(a) (b)

Fig. 12. Probability distributions of the end-to-end delay of the TI system

all produced traced is 15.17 ms. Meanwhile, the end-to-end delay for the second
resource configuration is 69.6 ms, as shown in Fig. 12(a), and its average of the
maximum end-to-end delay is 12.08. It is because the second configuration oper-
ates the TI system using more CPUs than the first one. By checking these config-
urations, we concluded that, in terms of the end-to-end delay, the performance of
the second configuration is 30 % better than the first configuration.

5 Conclusions

In developing safe and reliable real-time CPS, one of significant issues is how
to correctly integrate applications with a given platform such that application
behavior does not deviate from any requirements. To the end, the application
should be developed such that its behavior is correct with respect to resource
constraints of a given platform that are guaranteed by the platform.

This paper presented a design and analysis framework for real-time systems.
In this framework, the application model and the platform model are analyzed
independently from each other, and the application model is then transformed
into a platform-concerned application model so that its composability against a
given platform is formally analyzed.

To the end, we presented formal behavior models of applications and plat-
forms and a transformation method to refine a platform-independent application
model into the corresponding platform-specific application model for compos-
ability check. For a platform resource constraint given applications, we proposed
a platform model that is a scheduling system model capable of being parame-
terized with configurations of tasks and showed how the platform model can be
associated to an application model for composability check.

This paper contributes to the design and analysis of safe and reliable real-
time CPS with:

– A model of real-time systems that distinguishes between task and application
such that platform properties are analyzed independently from applications,

– A platform-independent behavior model of applications extensible for its analy-
sis against platform-concerned properties,

Resource-Parameterized Timing Analysis of Real-Time Systems 205

– A platform model that can be used as a resource constraint specification and
be composed with an application model to check platform-concerned proper-
ties of applications.

This framework leverages the analysis of an integration of applications and
platforms in advance of their implementation to obtain more functionally correct
applications in terms of platforms. In this paper, we realized these models using
TA and SWA and checked using the statistical and the symbolic model checker
of Uppaal and conducted a case study to illustrate our framework.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.: Metropolis: an integrated electronic system design environment.
Computer 36(4), 45–52 (2003)

3. David, A., Larsen, K., Legay, A., Mikučionis, M., Poulsen, D.: Uppaal SMC tuto-
rial. Int. J. Softw. Tools Technol. Transf. 17, 1–19 (2015)

4. Kienhuis, B., Deprettere, E.F., van der Wolf, P., Vissers, K.: A methodology to
design programmable embedded systems. In: Deprettere, F., Teich, J., Vassiliadis,
S. (eds.) SAMOS 2001. LNCS, vol. 2268, pp. 18–37. Springer, Heidelberg (2002)

5. Kim, B., Feng, L., Phan, L.T.X., Sokolsky, O., Lee, I.: Platform-specific timing
verification framework in model-based implementation. In: Proceedings of the 2015
Design, Automation and Test in Europe Conference and Exhibition, DATE 2015,
pp. 235–240. EDA Consortium, San Jose (2015)

6. Kim, B., Hwang, H., Park, T., Son, S., Lee, I.: A layered approach for testing
timing in the model-based implementation. In: 2014 Design, Automation and Test
in Europe Conference and Exhibition (DATE), pp. 1–4, March 2014

7. Kim, J.H., Larsen, K.G., Nielsen, B., Mikučionis, M., Olsen, P.: Formal analysis
and testing of real-time automotive systems using UPPAAL tools. In: Núñez, M.,
Güdemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 47–61. Springer, Heidel-
berg (2015)

8. Lehoczky, J.P., Sha, L., Strosnider, J.K.: Enhanced aperiodic responsiveness in
hard real-time environments. In: RTSS, pp. 261–270. IEEE Computer Society
(1987)

9. Shin, I., Lee, I.: Periodic resource model for compositional real-time guarantees.
In: RTSS, pp. 2–13. IEEE Computer Society (2003)

10. Sokolsky, O., Lee, I., Clarke, D.: Schedulability analysis of AADL models. In:
Proceedings of International Conference on Parallel and Distributed Processing, p.
179. IEEE Computer Society, Washington (2006)

11. Strosnider, J.K., Lehoczky, J.P., Sha, L.: The deferrable server algorithm for
enhanced aperiodic responsiveness in hard real-time environments. IEEE Trans.
Comput. 44(1), 73–91 (1995)

12. TIMMO(TIMing MOdel) Project. http://www.timmo-2-use.org

http://www.timmo-2-use.org

SAT Solving

SAT-Based Explicit LTL Reasoning

Jianwen Li1,2(B), Shufang Zhu2, Geguang Pu2, and Moshe Y. Vardi1

1 Department of Computer Science, Rice University, Houston, USA
lijwen2748@gmail.com

2 Shanghai Key Laboratory of Trustworthy Computing, East China Normal
University, Shanghai, People’s Republic of China

Abstract. We present here a new explicit reasoning framework for lin-
ear temporal logic (LTL), which is built on top of propositional satisfiabil-
ity (SAT) solving. As a proof-of-concept of this framework, we describe a
new LTL satisfiability algorithm. We implemented the algorithm in a tool,
Aalta v2.0, which is built on top of the Minisat SAT solver. We tested the
effectiveness of this approach by demonstrating that Aalta v2.0 signifi-
cantly outperforms all existing LTL satisfiability solvers.

1 Introduction

Linear Temporal Logic (LTL) was introduced into program verification in [24].
Since then it has been widely accepted as a language for the specification of
ongoing computations [20] and it is a key component in the verification of reac-
tive systems [4,14]. Explicit temporal reasoning, which involves an explicit con-
struction of temporal transition systems, is a key algorithmic component in this
context. For example, explicitly translating LTL formulas to Büchi automata
is a key step both in explicit-state model checking [11] and in runtime veri-
fication [30]. LTL satisfiability checking, a step that should take place before
verification, to assure consistency of temporal requirements, also uses explicit
reasoning [25]. These tasks are known to be quite demanding computationally
for complex temporal properties [11,25,30]. A way to get around this difficulty
is to replace explicit reasoning by symbolic reasoning, e.g., as in BDD-based or
SAT-based model checking [22,23], but in many cases the symbolic approach is
inefficient [25] or inapplicable [30]. Thus, explicit temporal reasoning remains an
indispensable algorithmic tool.

The main approach to explicit temporal reasoning is based on the tableau
technique, in which a recursive syntactic decomposition of temporal formulas
drives the construction of temporal transition systems. This approach is based
on the technique of propositional tableau, whose essence is search via syntac-
tic splitting [6]. This is in contrast to modern propositional satisfiability (SAT)
solvers, whose essence is search via semantic splitting [19]. The tableau approach
to temporal reasoning underlies both the best LTL-to-automata translator [8]
and the best LTL-satisfiability checker [18]. Thus, we have a situation where
in the symbolic setting much progress is being attained both by the impres-
sive improvement in the capabilities of modern SAT solvers [19] as well as new
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 209–224, 2015.
DOI: 10.1007/978-3-319-26287-1 13

210 J. Li et al.

SAT-based model-checking algorithms [1,3], while progress in explicit temporal
reasoning is slower and does not fully leverage modern SAT solving. (It should be
noted that several LTL satisfiability solvers,including Aalta v1.2 [17], TRP++
[15], and ls4 [29] do employ SAT solvers, but they do so as an aid to the main
reasoning engine, rather than serve as the main reasoning engine.)

Our main aim in this paper is to study how SAT solving can be fully lever-
aged in explicit temporal reasoning. The key intuition is that explicit temporal
reasoning consists of construction of states and transitions, subject to temporal
constraints. Such temporal constraints can be reduced to a sequence of Boolean
constraints, which enables the application of SAT solving. This idea underlies
the complexity-theoretic analysis in [32], and has been explored in the context of
modal logic [12], but not yet in the context of explicit temporal reasoning. Our
belief is that SAT solving would prove to be superior to tableau in that context.

We describe in this paper a general framework for SAT-based explicit tempo-
ral reasoning. The crux of our approach is a construction of temporal transition
system that is based on SAT-solving rather than tableau to construct states and
transitions. The obtained transition system can be used for LTL-satisfiability
solving, LTL-to-automata translation, and runtime-monitor construction.

As proof of concept for the new framework, we use it to develop a SAT-based
algorithm for LTL-satisfiability checking. We also propose several heuristics to
speed up the checking by leveraging SAT solvers. We implemented the algorithm
and heuristics in an LTL-satisfiability solver Aalta v2.0.

To evaluate its performance, we compared it against Aalta v1.2, the existing
best-of-breed LTL-satisfiability solver [17,18], which is tableau-based. We also
compare it against NuXmv, a symbolic LTL-satisfiability solver that is based
on cutting-edge SAT-based model-checking algorithms [1,3], which outperforms
Aalta v1.2. We show that our explicit SAT-based LTL-satisfiability solver out-
performs both.

In summary, the contributions in this paper are as follows:

– We propose a SAT-based explicit LTL-reasoning framework.
– We show a successful application of the framework to LTL-satisfiability check-

ing, by designing a novel algorithm and efficient heuristics.
– We compare our new framework for LTL-satisfiability checking with existing

approaches. The experimental results demonstrate that our tool significantly
outperforms other existing LTL satisfiability solvers.

The paper is organized as follows. Section 2 provides technical background.
Section 3 introduces the new SAT-based explicit-reasoning framework. Section 4
describes in detail the application to LTL-satisfiability checking. Section 5 shows
the experimental results for LTL-satisfiability checking. Finally Sect. 6 provides
concluding remarks. Missing proofs and algorithms are available at our on-line
technical report http://arxiv.org/abs/1507.02519.

http://arxiv.org/abs/1507.02519

SAT-Based Explicit LTL Reasoning 211

2 Preliminaries

Linear Temporal Logic (LTL) is considered as an extension of propositional logic,
in which temporal connectives X (next) and U (until) are introduced. Let AP
be a set of atomic properties. The syntax of LTL formulas is defined by:

φ ::= tt | ff | a | ¬φ | φ ∧ φ | φ ∨ φ | φUφ | Xφ

where a ∈ AP , tt is true and ff is false. We introduce the R (release) connec-
tives as the dual of U , which means φRψ ≡ ¬(¬φU¬ψ). We also use the usual
abbreviations: Fa = ttUa, and Ga = ff Ra.

We say that a is a literal if it is an atomic proposition or its negation.
Throughout the paper, we use L to denote the set of literals, lower case letters
a, b, c, l to denote literals, α to denote propositional formulas, and φ, ψ for LTL
formulas. We consider LTL formulas in negation normal form (NNF), which can
be achieved by pushing all negations in front of only atoms. Since we consider
LTL in NNF, formulas are interpreted here on infinite literal sequences, whose
alphabet is Σ := 2L.

A trace ξ = ω0ω1ω2 . . . is an infinite sequence in Σω. For ξ and k ≥ 1 we
use ξk = ω0ω1 . . . ωk−1 to denote a prefix of ξ, and ξk = ωkωk+1 . . . to denote
a suffix of ξ. Thus, ξ = ξkξk. The semantics of LTL with respect to an infinite
trace ξ is given by:

– ξ |= α iff ξ1 |= α, where α is a propositional formula;
– ξ |= X φ iff ξ1 |= φ;
– ξ |= φ1 U φ2 iff there exists i ≥ 0 such that ξi |= φ2 and for all 0 ≤ j < i,

ξj |= φ1;
– ξ |= φ1 R φ2 iff for all i ≥ 0, it holds ξi � φ2 or there exists 0 ≤ j ≤ i such

that ξj |= φ1.

The closure of an LTL formula φ, denoted as cl(φ), is a formula set such
that: (1). φ is in cl(φ); (2). ψ is in cl(φ) if φ = Xψ or φ = ¬ψ; (3). φ1, φ2 are
in cl(φ) if φ = φ1 op φ2, where op can be ∧,∨, U and R; (4). (Xψ) ∈ cl(φ) if
ψ ∈ cl(φ) and ψ is an Until or Release formula. We say each ψ in cl(φ), which is
added via rules (1)–(3), is a subformula of φ. Note that the standard definition
of LTL closure consists only of rules (1)–(3). Rule (4) is added in this paper due
to its usage in later sections. Note that the size of cl(φ) is linear in the length
of φ, even with the addition of rule (4).

3 Explicit LTL Reasoning

In this section we introduce the framework of explicit LTL reasoning. To demon-
strate clearly both the similarity and difference between our approach and previ-
ous ones, we organize this section as follows. We first provide a general definition
of temporal transition systems, which underlies both our new approach and pre-
vious approach. We then discuss how traditional methods and our new one relate
to this framework.

212 J. Li et al.

3.1 Temporal Transition System

As argued in [12,31], the key to efficient modal reasoning is to reason about
states and transitions propositionally. We show here how the same approach can
be applied to LTL. Unlike modal logic, where there is a clear separation between
formulas that talk about the current state and formulas that talk about successor
states (the latter are formulas in the scope of � or ♦, i.e. G or F in LTL), LTL
formulas do not allow for such a clean separation. Achieving such a separation
requires some additional work.

We first define propositional satisfiability of LTL formulas.

Definition 1 (Propositional Satisfiability). For an LTL formula φ, a propo-
sitional assignment for φ is a set A ⊆ cl(φ) such that

– every literal � ∈ L is either in A or its negation is, but not both.
– (θ1 ∧ θ2) ∈ A implies θ1 ∈ A and θ2 ∈ A,
– (θ1 ∨ θ2) ∈ A implies θ1 ∈ A or θ2 ∈ A,
– (θ1Uθ2) ∈ A implies θ2 ∈ A or both θ1 ∈ A and (X(θ1Uθ2)) ∈ A. In the former

case, that is, θ2 ∈ A, we say that A satisfies (θ1Uθ2) immediately. In the latter
case, we say that A postpones (θ1Uθ2).

– (θ1Rθ2) ∈ A implies θ2 ∈ A and either θ1 ∈ A or (X(θ1Rθ2)) ∈ A. In the former
case, that is, θ1 ∈ A, we say that A satisfies (θ1Rθ2) immediately. In the latter
case, we say that A postpones (θ1Rθ2).

We say that a propositional assignmentApropositional satisfiesφ, denoted asA |=p

φ, if φ ∈ A. We say an LTL formula φ is propositionally satisfiable if there is a
propositional assignment A for φ such that A |=p φ.

For example, consider the formula φ = (aUb)∧ (¬b). The set A1 = {a, (aUb),
(¬b), (X(aUb))} ⊆ cl(φ) is a propositional assignment that propositionally sat-
isfies φ. In contrast, the set A2 = {(aUb),¬b} ⊆ cl(φ) is not a propositional
assignment.

The following theorem shows the relationship between LTL formula φ and
its propositional assignment.

Theorem 1. For an LTL formula φ and an infinite trace ξ ∈ Σω, we have
that ξ |= φ iff there exists a propositional assignment A ⊆ cl(φ) such that A
propositionally satisfies φ and ξ |= ∧

A.

Since a propositional assignment of LTL formula φ contains the information
for both current and next states, we are ready to define the transition systems
of LTL formula.

Definition 2. Given an LTL formula φ, the transition system Tφ is a tuple
(S, S0, T) where

– S is the set of states s ⊆ cl(φ) that are propositional assignments for φ. The
trace of a state s is s ∩ L, that is, the set of literals in s.

– S0 ⊆ S is a set of initial states, where φ ∈ s0 for all s0 ∈ S0.

SAT-Based Explicit LTL Reasoning 213

– T : S ×S is the transition relation, where T (s1, s2) holds if (Xθ) ∈ s1 implies
θ ∈ s2, for all Xθ ∈ cl(φ).

A run of Tφ is an infinite sequence s0, s1, . . . such that s0 ∈ S0 and T (si, si+1)
holds for all i ≥ 0.

Every run r = s0, s1, . . . of Tφ induces a trace trace(r) = trace(s0), trace(s1),
. . . in Σω. In general, it needs not hold that trace(r) |= φ. This requires an addi-
tional condition. Consider an Until formula (θ1Uθ2) ∈ si. Since si is a proposi-
tional assignment for φ we either have that si satisfies (θ1Uθ2) immediately or
that it postpones it, and then (θ1Uθ2) ∈ si+1. If sj postpones (θ1Uθ2) for all
j ≥ i, then we say that (θ1Uθ2) is stuck in r.

Theorem 2. Let r be a run of Tφ. If no Until subformula is stuck at r, then
trace(r) |= φ. Also, φ is satisfiable if there is a run r of Tφ so that no Until
subformula is stuck at r.

We have now shown that the temporal transition system Tφ is intimately
related to the satisfiability of φ. The definition of Tφ is, however, rather noncon-
structive. In the next subsection we discuss how to construct Tφ.

3.2 System Construction

First, we show how one can consider LTL formulas as propositional ones. This
requires considering temporal subformulas as propositional atoms. We now define
the propositional atoms of LTL formulas.

Definition 3 (Propositional Atoms). For an LTL formula φ, we define the
set of propositional atoms of φ, i.e. PA(φ), as follows:

1. PA(φ) = {φ} if φ is an atom, Next, Until or Release formula;
2. PA(φ) = PA(ψ) if φ = (¬ψ);
3. PA(φ) = PA(φ1) ∪ PA(φ2) if φ = (φ1 ∧ φ2) or φ = (φ1 ∨ φ2).

Consider, for example, the formula φ = (a ∧ (aUb) ∧ ¬(X(a ∨ b))). Here
we have PA(φ) is {a, (aUb), (X(a ∨ b))}. Intuitively, the propositional atoms are
obtained by treating all temporal subformulas of φ as atomic propositions. Thus,
an LTL formula φ can be viewed as a propositional formula over PA(φ).

Definition 4. For an LTL formula φ, let φp be φ considered as a propositional
formula over PA(φ).

We now introduce the neXt Normal Form (XNF) of LTL formulas, which
separates the “current” and “next-state” parts of the formula, but costs only
linear in the original formula size.

Definition 5 (neXt Normal Form). An LTL formula φ is in neXt Normal
Form (XNF) if there are no Unitl or Release subformulas of φ in PA(φ).

214 J. Li et al.

For example, φ = (aUb) is not in XNF, while (b∨ (a∧ (X(aUb)))) is in XNF.
Every LTL formula φ can be converted, with linear in the formula size, to an
equivalent formula in XNF.

Theorem 3. For an LTL formula φ, there is an equivalent formula xnf (φ) that
is in XNF. Furthermore, the cost of the conversion is linear.

Proof. To construct xnf (φ), We can apply the expansion rules (φ1Uφ2) ≡ (φ2 ∨
(φ1 ∧ X(φ1Uφ2))) and (φ1Rφ2) ≡ (φ2 ∧ (φ1 ∨ X(φ1Rφ2))). In detail, we can
construct xnf (φ) inductively:

1. xnf (φ) = φ if φ is tt , ff , a literal l or a Next formula Xψ;
2. xnf (φ) = xnf (φ1) ∧ xnf (φ2) if φ = (φ1 ∧ φ2);
3. xnf (φ) = xnf (φ1) ∨ xnf (φ2) if φ = (φ1 ∨ φ2);
4. xnf (φ) = (xnf (φ2)) ∨ (xnf (φ1) ∧ Xφ) if φ = (φ1Uφ2);
5. xnf (φ) = xnf (φ2) ∧ (xnf (φ1) ∨ Xφ) if φ = (φ1Rφ2).

Since the construction is built on the two expansion rules that preserve the
equivalence of formulas, it follows that φ is logically equivalent to xnf (φ). Note
that the conversion map xnf (φ) doubles the size of the converted formula φ, but
since the conversion puts Until and Release subformulas in the scope of Next,
and the conversion stops when it comes to Next subformulas, the cost is at most
linear. ��
We can now state propositional satisfiability of LTL formulas in terms of satisfi-
ability of propositional formulas. That is, by restricting LTL formulas to XNF,
a satisfying assignment of φp, which can be obtained by using a SAT solver,
corresponds precisely to a propositional assignment of formula φ.

Theorem 4. For an LTL formula φ in XNF, if there is a satisfying assignment
A of φp, then there is a propositional assignment A′ of φ that satisfies φ such
that A′ ∩ PA(φ) ⊆ A. Conversely, if there is a propositional assignment A′

of φ that satisfies φ, then there is a satisfying assignment A of φp such that
A′ ∩ PA(φ) ⊆ A.

Proof. (⇒) Let A be a satisfying assignment of φp. Then let A′ be the set of
all formulas ψ ∈ cl(φ) such that A satisfies (xnf (ψ))p. We clearly have that
A′ ∩ PA(φ) ⊆ A. According to Definition 1 and because φ is in XNF, we have
that A′ is a propositional assignment of φ that satisfies φ.

(⇐) Let A′ be a propositional assignment of φ that satisfies φ. Then let A to
be the assignment that assign true to ψ ∈ cl(φ) precisely when ψ ∈ A′. Again,
we clearly have that, A′ ∩ PA(φ) ⊆ A. According to Definition 1 and because φ
is in XNF, we have that A is a satisfying assignment of φp. ��
Theorem 4 shows that by requiring the formula φ to be in XNF, we can construct
the states of the transition system Tφ via computing satisfying assignments of
φp over PA(φ). Let t be a satisfying assignment of φp and At be the related
propositional assignment of φ generated from t by Theorem 4, the construction
is operated as follows:

SAT-Based Explicit LTL Reasoning 215

1. Let S0 = {At | t |= φp}; and let S := S0,
2. Compute Si = {At | t |= (xnf (

∧
X(si)))p} for each si ∈ S, where X(si) =

{θ | (Xθ) ∈ si}; and update S := S ∪ Si;
3. Stop if S does not change; else go back to step 2.

The construction first generates initial states (step 1), and then all reachable
states from initial ones (step 2); it terminates once no new reachable state can
be generated (step 3). So S is the set of system states and its size is bounded
by 2|cl(φ)|.

Our goal here is to show that we can construct the transition system Tφ by
means of SAT solving. This requires us to refine Theorem 2. A key issue in how
a propositional assignment handles an Until formula is whether it satisfies it
immediately or postpones it. We introduce new propositions that indicate which
is the case, and we refine the implementation of xnf (). Given ψ = (ψ1Uψ2),
we introduce a new proposition v(ψ), and use the following conversion rule:
xnf (ψ) ≡ (v(ψ)∧ψ2)∨((¬v(ψ))∧ψ1∧(X(ψ))). Thus, v(ψ) is required to be true
when the Until is satisfied immediately, and false when the Until is postponed.
Now we can state the refinement of Theorem 2.

Theorem 5. For an LTL formula φ, φ is satisfiable iff there is a finite run
r = s0, s1, . . . , sn in Tφ such that

1. There are 0 ≤ m ≤ n such that sm = sn;
2. Let Q =

⋃n
i=m si. If ψ = (ψ1Uψ2) ∈ Q, then v(ψ) ∈ Q.

Proof. Suppose first that items 1 and 2 hold. Then the infinite sequence r′ =
s0, . . . , sm, (sm+1, . . . , sn)ω is an infinite run of Tφ. It follows from Item 2 that
no Until subformula is stuck at r′. By Theorem 2, we have that r′ |= φ.

Suppose now that φ is satisfiable. By Theorem 2, there is an infinite run r′

of Tφ in which no Until subformula is stuck. Let r′ = s0, s1, . . . be such a run.
Each si(i ≥ 0) is a state of Tφ, and the number of states is bounded by 2|cl(φ)|.
Thus, there must be 0 ≤ m < n such that sm = sn. Let Q =

⋃n
i=m si. Since no

Until subformula can be stuck at r, if ψ = ψ1 U ψ2 ∈ Q, then it is must be that
v(ψ) ∈ Q. ��

The significance of Theorem 5 is that it reduces LTL satisfiability checking to
searching for a “lasso” in Tφ [5]. Item 1 says that we need to search for a prefix
followed by a cycle, while Item 2 provides a way to test that no Until subformla
gets stuck in the infinite run in which the cycle sm+1, . . . , sn is repeated infinitely
often.

3.3 Related Work

We introduced our SAT-based reasoning approach above, and in this section we
discuss the difference between our SAT-based approach and earlier works.

Earlier approaches to transition-system construction for LTL formulas, based
on tableau [11] andnormal form [18], generate the systemstates explicitly or implic-
itly via a translation to disjunctive normal form (DNF). In [18], the conversion to

216 J. Li et al.

DNF is explicit (though various heuristics are used to temper the exponential blow-
up) and the states generated correspond to the disjuncts. In tableau-based tools,
cf., [7,11], the construction is based on iterative syntactic splitting in which a state
of the form A ∪ {θ1 ∨ θ2} is split to states: A ∪ {θ1} and A ∪ {θ2}.

The approach proposed here is based on SAT solving, where the states corre-
spond to satisfying assignments. Satisfying assignments are generated via a search
process that is guided by semantic splitting. The advantage of using SAT solving
rather than syntactic approaches is the impressive progress in the development of
heuristics that have evolved to yield highly efficient SAT solving: unit propagation,
two-literal watching, back jumping, clause learning, and more, see [19]. Further-
more, SAT solving continues to evolve in an impressive pace, driven by an annual
competition1. It should be remarked that an analogous debate, between syntac-
tic and semantic approaches, took place in the context of automated test-pattern
generation for circuit designs, where, ultimately, the semantic approach has been
shown to be superior [16].

Furthermore, relying on SAT solving as the underlying reasoning technology
enables us to decouple temporal reasoning from propositional reasoning. Tem-
poral reasoning is accomplished via a search in the transition system, while the
construction of the transition system, which requires proposition reasoning using
SAT solving.

4 LTL Satisfiability Checking

Given an LTL formula φ, the satisfiability problem is to ask whether there is
an infinite trace ξ such that ξ |= φ. In the previous section we introduced a
SAT-based LTL-reasoning framework and showed how it can be applied to solve
LTL reasoning problems. In this section we use this framework to develop an
efficient SAT-based algorithm for LTL satisfiability checking. We design a depth-
first-search (DFS) algorithm that constructs the temporal transition system on
the fly and searches for a trace per Theorem 5. Furthermore, we propose several
heuristics to reduce the search space. Due to the limited space, we offer here
a high-level description of the algorithms. Details are provided in our online
technical report.

4.1 The Main Algorithm

The main algorithm, LTL-CHECK, creates the temporal transition system of the
input formula on-the-fly, and searches for a lasso in a DFS manner. Several prior
works describe algorithms for DFS lasso search, cf. [5,18,27]. Here we focus on
the steps that are specialized to our algorithm.

The key idea of LTL-CHECK is to create states and their successors using
SAT techniques rather than traditional tableau or expansion techniques. Given
the current formula φ, we first compute its XNF version xnf (φ), and then use

1 See http://www.satcompetition.org/.

http://www.satcompetition.org/

SAT-Based Explicit LTL Reasoning 217

a SAT solver to compute the satisfying assignments of (xnf (φ))p. Let P be
a satisfying assignment for (xnf (φ))p; from the previous section we know that
X(P) = {θ | Xθ ∈ P} yields a successor state in Tφ. We implement this approach
in the getState function, which we improve later by introducing some heuristics.
By enumerating all assignments of (xnf (φ))p we can obtain all successor states
of P . Note, however that LTL-CHECK runs in the DFS manner, under which
only a single state is needed at a time, so additional effort must be taken to
maintain history information of the next-state generation for each state P .

As soon as LTL-CHECK detects a lasso, it checks whether the lasso is accept-
ing. Previous lasso-search algorithms operate on the Büchi automaton generated
from the input formula. In contrast, here we focus directly on the satisfaction
of Until subformulas per Theorem 5. We use the example below to show the
general idea.

Consider the formula φ = G((Fb)∧(Fc)). By Theorem 3, xnf (φ) = xnf (Fb)∧
xnf (Fc)∧Xφ, where xnf (Fb) = ((b∧v(Fb))∨(¬v(Fb)∧X(Fb))) and xnf (Fc) =
((c∧v(Fc))∨(¬v(Fc)∧X(Fc))). Suppose we get from the SAT solver an assign-
ment of (xnf (φ))p P = {v(Fb),¬v(Fc), b,¬c,¬X(Fb),X(Fc),Xφ}. By Theorem
4, we create a satisfying assignment A′ that includes all formulas in cl(φ) that are
satisfied by P , and we get the state s0 = P ∪{φ, Fb, Fc, (Fb)∧ (Fc)}. To obtain
the next state, we start with X(s0) = {Fc, φ}, compute xnf (Fc ∧ φ) and repeat
the process. After several steps LTL-CHECK may find a path s0 −→ s1 −→ s0,
where s1 = {φ, Fb, Fc, (Fb) ∧ (Fc),¬v(Fb), v(Fc),¬b, c,X(Fb),¬X(Fc),Xφ}.
Now s0 and s1 form a lasso. Let Q = s0 ∪ s1. Both Fb and Fc are in Q, and also
v(Fb) and v(Fc) are in Q. By Theorem 5, φ is satisfiable.

4.2 Heuristics for State Elimination

While LTL-CHECK uses an efficient SAT solver to compute states of the system
in the getState function, this approach is effective in creating states and their
successors, but cannot be used to guide the overall search. To find a satisfying
lasso faster, we add heuristics that drive the search towards satisfaction. The key
to these heuristics is smartly choosing the next state given by SAT solvers. This
can be achieved by adding more constraints to the SAT solver. Experiments show
these heuristics are critical to the performance of our LTL-satisfiability tool.

The construction of state in the transition system always starts with formu-
las. At the beginning, we have the input formula φ0 and we take the following
steps: (1) Compute xnf (φ0); (2) Call a SAT solver to get an assignment P0 of
(xnf (φ0))p; and (3) Derive a state P ′

0 from P0. Then, to get a successor state,
we start with the formula φ1 =

∧
X(P ′

0), and repeat steps (1–3). Thus, every
state s is obtained from some formula φs, which we call the representative for-
mula. Note that with the possible exception of φ0, all representative formulas
are conjunctions. Let φs =

∧
1≤i≤n θi be the representative formula of a state s;

we say that θi(1 ≤ i ≤ n) is an obligation of φ if θi is an Until formula. Thus, we
associate with the state s a set of obligations, which are the Until conjunctive
elements of φs. (The initial state may have obligations if it is a conjunction.) The
approach we now describe is to satisfy obligations as early as possible during the

218 J. Li et al.

search, so that a satisfying lasso is obtained earlier. We now refine the getState
function, and introduce three heuristics via examples.

φ0

s0

φ1s1 φ2

s2
φ3

s3

O = ∅

O = ∅
Reset O = {Fa, F¬a} O = {F¬a} O = ∅

Reset O = {Fa}

() ()

Fig. 1. A satisfiable formula. In the figure φ0 = G((Fa)∧(F¬a)), φ1 = ((Fa)∧(F¬a)∧
φ0), φ2 = ((F¬a)∧φ0) and φ3 = ((Fa)∧φ0). These representative formulas correspond
to states s0, s1, s2, s3, respectively.

The getState function keeps a global obligation set, collecting all obligations
so far not satisfied in the search. The obligation set is initialized with the oblig-
ations of the initial formula φ0. When an obligation o is satisfied (i.e., when v(o)
is true), o is removed from the obligation set. Once the obligation set becomes
empty in the search, it is reset to contain obligations of current representative
formula φi. In Fig. 1, we denote the obligation set by O. O is initialized to ∅,
as there is no obligation in φ0. O is then reset in the states s1 and s3, when it
becomes empty.

The getState function runs in the ELIMINATION mode by default, in
which it obtains the next state guided by the obligations of current state. For
satisfiable formulas, this leads to faster lasso detection. Consider formula φ =
G((Fa)∧(F¬a)). Parts of the temporal transition system Tφ are shown in Fig. 1.
In the figure, O is reset to {(Fa), (F¬a)} in state s1, as these are the obligations
of φ1. To drive the search towards early satisfaction of obligations, we obtain a
successor of s1, by applying the SAT solver to the formula (xnf (φ1) ∧ (v(Fa) ∨
v(F¬a)))p, to check whether Fa or F¬a can be satisfied immediately. If the
returned assignment satisfies v(Fa), then we get the success state s2 with the
representative formulas φ2, and (Fa) is removed from O. Then the next state
is s3 with the representative formula φ3, which removes the obligation (F¬a).
since O becomes empty, it is reset to the obligations {Fa} of φ3. Note that in
Fig. 1, there should be transitions from s2 to s1 and from s3 to s2, but they are
never traversed under the ELIMINATION mode.

The getState function runs in the SAT PURSUING mode when the oblig-
ation set becomes empty. In this mode, we want to check whether the next state
can be a state that have been visited before and after that visit the obligation set

SAT-Based Explicit LTL Reasoning 219

has become empty. In this case, the generated lasso is accepting, by Theorem 5. In
Fig. 1, the obligation set O becomes empty in state s3. Previously, it has become
empty in s1. Normally, we find a success state for s3 by applying the SAT solver
to (xnf (φ3))p. To find out if either s0 or s1 can be a successor of s3, we apply the
SAT solver to the formula (xnf (φ3) ∧ (X(φ0) ∨ X(φ1)))p. Since this formula is
satisfiable and indicates a transition from s3 to s1 (Xφ1 can be assigned true in
the assignment), we have found that trace(s0), (trace(s1), trace(s2), trace(s3))ω

satisfies φ. In the figure, the transitions labeled x represent failed attempts to
generate the lasso when O becomes empty. Although failed attempts have a
computational cost, trying to close cycles aggressively does pay off.

The getState function runs in the CONFLICT ANALYZE mode if all for-
mulas in the obligation set are postponed in the ELIMINATION mode. The goal
of this mode is to eliminate “conflicts” that block immediate satisfaction of oblig-
ations. To achieve this, we use a conflict-guided strategy. Consider, for example,
the formula φ0 = a∧ (Xb)∧F ((¬a)∧ (¬b)). Here the formula ψ = F ((¬a)∧ (¬b))
is an obligation. We check whether ψ can be satisfied immediately, but it fails.
The reason for this failure is the conjunct a in φ, which conflicts with the oblig-
ation ψ. We identify this conflict using a minimal unsat core algorithm [21]. To
eliminate this conflict, we add the conjunct ¬Xa to φ, hoping to be able to satisfy
the obligation immediately in the next state. When we apply the SAT solver to
(xnf (φ) ∧ (¬Xa))p, we obtain a successor state with the representative formula
φ1 = (b∧ψ), again with ψ as an obligation. When we try to satisfy ψ immediately,
we fail again, since ψ conflicts with b. To block both conflicts, we add ¬Xb as an
additional constraint, and apply the SAT solver to (xnf (φ) ∧ (¬Xa) ∧ (¬Xb))p.
This yields a successor state with the representative formula φ2 = ψ. Now we are
able to satisfy ψ immediately, and we are able to satisfy φ with the finite path
φ −→ φ1 −→ φ2.

As another example, consider the formula φ = (G(Fa) ∧ Gb ∧ F (¬b)). Since
F (¬b) is an obligation, we try to satisfy it immediately, but fail. The reason for
the failure is that immediate satisfaction of F (¬b) conflicts with the conjunct
Gb. In order to try to block this conflict, we add to φ the conjunct ¬XGb, and
apply the SAT solver to (xnf (φ) ∧ ¬XGb)p. This also fails. Furthermore, by
constructing a minimal unsat core, we discover that (xnf (Gb) ∧ ¬X(Gb))p is
unsatisfiable. This indicates that Gb is an “invariant”; that is, if Gb is true in a
state then it is also true in its successor. This means that the obligation F (¬b)
can never be satisfied, since the conflict can never be removed. Thus, we can
conclude that φ is unsatisfiable without constructing more than one state.

In general, identifying conflicts using minimal unsat cores enables both to
find satisfying traces faster, or conclude faster that such traces cannot be found.

5 Experiments on LTL Satisfiability Checking

In this section we discuss the experimental evaluation for LTL satisfiability check-
ing. We first describe the methodology used in experiments and then show the
results.

220 J. Li et al.

5.1 Experimental Methodologies

The platform used in the experiments is an IBM iDataPlex consisting of 2304
processor cores in 192 Westmere nodes (12 processor cores per node) at 2.83 GHz
with 48 GB of RAM per node (4 GB per core), running the 64-bit Redhat 7 oper-
ating system. In our experiments, each tool runs on a single core in a single node.
We use the Linux command “time” to evaluate the time cost (in seconds) of each
experiment. Timeout was set to 60 seconds, and the out-of-time cases are set to
cost 60s.

We implemented the satisfiability-checking algorithms introduced in this
paper, and named the tool Aalta v2.0 2. We compare Aalta v2.0 with Aalta v1.2,
which is the latest explicit LTL-satisfiability solver (though it does use some SAT
solving for acceleration) [17]. (The SAT engine used in both Aalta v1.2 and
Aalta v2.0 is Minisat [9].) In the literature, Aalta v1.2 is shown to outperform
other existing explicit LTL solvers, so we omit the comparison with these solvers
in this paper. Two resolution-based LTL satisfiability solvers, TRP++ [15] and
ls4 [29], also utilize SAT solving, and we include them in our comparison.

As shown in [25], LTL satisfiability checking can be reduced to model check-
ing. While BDD-based model checker were shown to be competitive for LTL
satisfiability solving in [25], they were shown later not to be competitive with
specialized tools, such as Aalta v1.2 [18]. We do, however, include in our com-
parison the model checker NuXmv [2], which integrates the latest SAT-based
model checking techniques. It uses Minisat as the SAT engine as well. Although
standard bounded model checking (BMC) is not complete for the LTL satisfia-
bility checking, there are techniques to make it complete, for example, incremen-
tal bounded model checking (BMC-INC) [13], which is implemented in NuXmv.
In addition, NuXmv implements also new SAT-based techniques, IC3 [1], which
can handle liveness properties with the K-liveness technique [3]. We included
IC3 with K-liveness in our comparison.

To compare with the K-liveness checking algorithm, we ran NuXmv using the
command “check ltlspec klive -d”. For the BMC-INC comparison, we run NuXmv
with the command “check ltlspec sbmc inc -c”. Aalta v2.0 and Aalta v1.2 tools
were run using their default parameters. For the other tools, ls4 runs with “-r2l”
and TRP++ runs with “-sBFS -FSR”. Since the input of TRP++ and ls4 must
be in SNF (Separated Normal Form [10]), an SNF generator is required for run-
ning these tools. A generator translate is available from the TRP++ website3. The
parameters of translate are “-s -r”.

In the experiments we consider the benchmark suite from [26], referred to as
schuppan-collected. This suite collects formulas from several prior works, includ-
ing [25], and has a total of 7446 formulas (3723 representative formulas and
their negations). (Testing also the negation of each formula is in essence a check
for validity.) In our experiments, we did not find any inconsistency among the
solvers that did not time out.
2 It can be downloaded at www.lab205.org/aalta.
3 http://cgi.csc.liv.ac.uk/∼konev/software/trp++/.

www.lab205.org/aalta
http://cgi.csc.liv.ac.uk/~konev/software/trp++/

SAT-Based Explicit LTL Reasoning 221

5.2 Results

The experimental results are shown in Table 1. In the table, the first column lists
the different benchmarks in the suite, and the second to eighth columns display
the results from different solvers. Each result in a cell of the table is a tuple 〈t, n〉,
where t is the total checking time for the corresponding benchmark, and n is the
number of unsolved formulas due to timeout in the benchmark. Specially the
number “0” in the table means all formulas in the given benchmark are solved.
Finally, the last row of the table lists the total checking time and number of
unsolved formulas for each solver.

The results show that while the tableau-based tool Aalta v1.2, outperforms
ls4 and TRP++, it is outperformed by NuXmv-BMCINC and NuXmv-IC3-
Klive, both of which are outperformed by Aalta v2.0, which is faster by about
6,000 seconds and solves 47 more instances than NuXmv-IC3-Klive.

Our framework is explicit and closest to that is underlaid behind Aalta v1.2.
From the results, Aalta v2.0 with heuristic outperforms Aalta v1.2 dramati-
cally, faster by more than 23,000 seconds and solving 371 more instances. One
reason is, when Aalta v1.2 fails it is often due to timeout during the heavy-
duty normal-form generation, which Aalta v2.0 simply avoids (generating XNF
is rather lightweight).

Generating the states in a lightweight way, however, is not efficient enough. By
running Aalta v2.0 without heuristics, it cannot perform better than Aalta v1.2,
see the data in column 5 and 7 of Table 1. It can even be worse in some bench-
marks such as “/anzu/amba” and “anzu/genbuf”. We can explain the reason via
an example. Assume the formula is φ1 ∨ φ2, the traditional tableau method splits
the formula and at most creates two nodes. Under our pure SAT-reasoning frame-
work, however,it may create three nodes which contain φ1 ∧ ¬φ1 or ¬φ1 ∧ φ2, or

Table 1. Experimental results on the Schuppan-collected benchmark. Each cell lists a
tuple 〈t, n〉 where t is the total checking time (in seconds), and n is the total number
of unsolved formulas.

Formula type ls4 TRP++
NuXmv-
BMCINC

Aalta v1.2
NuXmv-
IC3-Klive

Aalta v2.0
without heuristics

Aalta v2.0
with heuristics

/acacia/example 155 0 192 0 1 0 1 0 8 0 1 0 1 0

/acacia/demo-v3 68 0 2834 38 3 0 660 0 30 0 630 0 3 0

/acacia/demo-v22 60 0 67 0 1 0 2 0 4 0 2 0 1 0

/alaska/lift 2381 27 15602 254 1919 26 4084 63 867 5 4610 70 1431 18

/alaska/szymanski 27 0 283 4 1 0 1 0 2 0 1 0 1 0

/anzu/amba 5820 92 6120 102 536 7 2686 40 1062 8 3876 60 928 4

/anzu/genbuf 2200 30 7200 120 782 11 3343 54 1350 13 5243 94 827 4

/rozier/counter 3934 62 4491 44 3865 64 3928 60 3988 65 3328 55 2649 40

/rozier/formulas 167 0 37533 523 1258 19 1372 20 664 0 1672 25 363 0

/rozier/pattern 2216 38 15450 237 1505 8 8 0 3252 17 8 0 9 0

/schuppan/O1formula 2193 34 2178 35 14 0 2 0 95 0 2 0 2 0

/schuppan/O2formula 2284 35 2566 41 1781 28 2 0 742 7 2 0 2 0

/schuppan/phltl 1771 27 1793 29 1058 15 1233 21 753 11 1333 21 767 13

/trp/N5x 144 0 46 0 567 9 309 0 187 0 219 0 15 0

/trp/N5y 448 10 95 1 2768 46 116 0 102 0 316 0 16 0

/trp/N12x 3345 52 45739 735 3570 58 768 48 705 0 768 0 175 0

/trp/N12y 3811 56 19142 265 4049 67 7413 110 979 0 7413 100 154 0

/forobots 990 0 1303 0 1085 18 2280 32 37 0 2130 30 524 0

Total 32014 463 163142 2428 24769 376 31208 450 14261 126 31554 455 7868 79

222 J. Li et al.

φ1∧φ2. This indicates that the state space generated by SAT solvers may in general
be larger than that generated by tableau expansion.

To overcome this challenge, we propose some heuristics by adding specific
constraints to SAT solvers, which at the mean time succeeds to reduce the
searching space of the overall system. The results shown in column 8 of Table 1
demonstrate the effectiveness of heuristics presented in the paper. For example,
the “/trp/N12/” and “/forobots/” benchmarks are mostly unsatisfiable formu-
las, which Aalta v1.2 and Aalta v2.0 with heuristic do not handle well. Yet the
unsat-core extraction heuristic, which is described in the CONFLICT ANALYZE
mode of getState function, enables Aalta v2.0 with heuristic to solve all these
formulas. For satisfiable formulas, the results from “/anzu/amba/” and “/anzu/
genbuf” formulas, which are satisfiable, show the efficiency of the ELIMINA-
TION and SAT PURSUING heuristics in the getState function, which are nec-
essary to solve the formulas.

Note that NuXmv-IC3-Klive is able to solve more cases than Aalta v2.0 with
heuristic in some benchmarks, such as “/lift” and “/schuppan/phltl” in which
unsatisfiable formulas are not handled well enough by Aalta v2.0. Currently,
Aalta v2.0 requires large number of SAT calls to identify an unsatisfiable core.
In future work we plan to use a specialized MUS (minimal unsatisfable core)
solver to address this challenge.

6 Concluding Remarks

We described in this paper a SAT-based framework for explicit LTL reasoning.
We showed one of its applicaitons to LTL-satisfiability checking, by proposing
basic algorithms and efficient heuristics. As proof of concept, we implemented an
LTL satisfiability solver, whose performance dominates all similar tools. More-
over we demonstrate that our approach can be extended from propositional LTL
to assertional LTL, yielding exponential improvement in performance. (see tech-
nical reprot)

Extending the explicit SAT-based approach to other applications of LTL
reasoning, is a promising research direction. For example, the standard approach
in LTL model checking [33] relies on the translation of LTL formulas to Büchi
automata. The transition systems Tφ that is used for LTL satisfiability checking
can also be used in the translation from LTL to Büchi automata. Current best-
of-breed translators, e.g., [7,8,11,28] are tableau-based, and the SAT approach
may yield significant performance improvement.

Of course, the ultimate temporal-reasoning task is model checking. Explicit
model checkers such as SPIN [14] start with a translation of LTL to Büchi
automata, which are then used by the model-checking algorithm. An alternative
approach is to construct the automaton on-the-fly using SAT techniques, using
the framework developed here. Current symbolic model-checking tools, such as
NuXmv, do rely heavily on SAT solvers to implement algorithms such as BMC
[13] or IC3 [1]. The success of the SAT-based explicit LTL-reasoning approach for
LTL satisfiability checking suggests that this approach may also be successful in
SAT-based model checking. This remains a highly intriguing research possibility.

SAT-Based Explicit LTL Reasoning 223

Acknowledgment. The authors thank anonymous reviewers for useful comments.
The work is supported in part by NSF grants CCF-1319459, by NSF Expeditions in
Computing project “ExCAPE: Expeditions in Computer Augmented Program Engi-
neering”, and by BSF grant 9800096. Geguang Pu is partially supported by the NSFC
grants No. 61202069 and No. 61361136002. Jianwen Li is partially supported by Shang-
hai Collaborative Innovation Center of Trustworthy Software for Internet of Things
(ZF1213).

References

1. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

2. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg
(2014)

3. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: Cabodi,
G., Singh, S. (ed.) FMCAD, pp. 52–59. IEEE (2012)

4. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

5. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory efficient algo-
rithms for the verification of temporal properties. Formal Methods Syst. Des. 1,
275–288 (1992)

6. D’Agostino, M.: Tableau methods for classical propositional logic. In: D’Agostino,
M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods,
pp. 45–123. Springer, Netherlands (1999)

7. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear
temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 249–260. Springer, Heidelberg (1999)

8. Duret-Lutz, A., Poitrenaud, D: SPOT: an extensible model checking library using
transition-based generalized büchi automata. In: Proceedings of the 12th Interna-
tional Workshop on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems, pp. 76–83. IEEE Computer Society (2004)

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Fisher, M.: A normal form for temporal logics and its applications in theorem-
proving and execution. J. Logic Comput. 7(4), 429–456 (1997)

11. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic veri-
fication of linear temporal logic. In: Dembiski, P., Sredniawa, M. (eds.) Protocol
Specification, Testing, and Verification, pp. 3–18. Chapman & Hall, Warsaw (1995)

12. Giunchiglia, F., Sebastiani, R.: Building decision procedures for modal logics from
propositional decision procedures - the case study of modal K. In: McRobbie, M.A.,
Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 583–597. Springer, Heidelberg
(1996)

13. Heljanko, K., Junttila, T.A., Latvala, T.: Incremental and complete bounded model
checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 98–111. Springer, Heidelberg (2005)

14. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2003)

224 J. Li et al.

15. Hustadt, U., Konev, B.: TRP++ 2.0: a temporal resolution prover. In: Baader,
F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 274–278. Springer, Heidelberg
(2003)

16. Larrabee, T.: Test pattern generation using Boolean satisfiability. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst 11(1), 4–15 (1992)

17. Li, J., Pu, G., Zhang, L., Vardi, M.Y., He, J.: Fast LTL satisfiability checking by
SAT solvers. CoRR, abs/1401.5677 (2014)

18. Li, J., Zhang, L., Pu, G., Vardi, M., He, J.: LTL satisfibility checking revisited. In:
20th International Symposium on Temporal Representation and Reasoning, pp.
91–98 (2013)

19. Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical
success. Commun. ACM 52(8), 76–82 (2009)

20. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, New York (1992)

21. Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In:
Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer,
Heidelberg (2011)

22. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

23. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Boston
(1993)

24. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pp. 46–57 (1977)

25. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. Int. J. Softw. Tools Technol.
Transf. 12(2), 123–137 (2010)

26. Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Bultan,
T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 397–413. Springer,
Heidelberg (2011)

27. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190.
Springer, Heidelberg (2005)

28. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)

29. Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with
partial model guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS, vol. 7364, pp. 537–543. Springer, Heidelberg (2012)

30. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for Sys-
temC. Formal Methods Syst. Des. 41(3), 236–268 (2012)

31. Vardi, M.: On the complexity of epistemic reasoning. In: Proceedings of the Fourth
Annual Symposium on Logic in Computer Science, pp. 243–252. IEEE Press,
Piscataway (1989)

32. Vardi, M.Y.: Unified verification theory. In: Banieqbal, B., Barringer, H., Pnueli,
A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 202–212. Springer,
Heidelberg (1989)

33. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of the 1st IEEE Symposium on Logic in Computer
Science, pp. 332–344 (1986)

Understanding VSIDS Branching Heuristics
in Conflict-Driven Clause-Learning SAT Solvers

Jia Hui Liang(B), Vijay Ganesh, Ed Zulkoski, Atulan Zaman,
and Krzysztof Czarnecki

University of Waterloo, Waterloo, Canada
jliang@gsd.uwaterloo.ca

Abstract. Conflict-Driven Clause-Learning (CDCL) SAT solvers cru-
cially depend on the Variable State Independent Decaying Sum (VSIDS)
branching heuristic for their performance. Although VSIDS was pro-
posed nearly fifteen years ago, and many other branching heuristics for
SAT solving have since been proposed, VSIDS remains one of the most
effective branching heuristics. Despite its widespread use and repeated
attempts to understand it, this additive bumping and multiplicative decay
branching heuristic has remained an enigma.

In this paper, we advance our understanding of VSIDS by answer-
ing the following key questions. The first question we pose is “what is
special about the class of variables that VSIDS chooses to additively
bump?” In answering this question we showed that VSIDS overwhelm-
ingly picks, bumps, and learns bridge variables, defined as the variables
that connect distinct communities in the community structure of SAT
instances. This is surprising since VSIDS was invented more than a
decade before the link between community structure and SAT solver
performance was discovered. Additionally, we show that VSIDS viewed
as a ranking function correlates strongly with temporal graph centrality
measures. Putting these two findings together, we conclude that VSIDS
picks high-centrality bridge variables. The second question we pose is
“what role does multiplicative decay play in making VSIDS so effec-
tive?” We show that the multiplicative decay behaves like an exponential
moving average (EMA) that favors variables that persistently occur in
conflicts (the signal) over variables that occur intermittently (the noise).
The third question we pose is “whether VSIDS is temporally and spa-
tially focused.” We show that VSIDS disproportionately picks variables
from a few communities unlike, say, the random branching heuristic. We
put these findings together to invent a new adaptive VSIDS branching
heuristic that solves more instances than one of the best-known VSIDS
variants over the SAT Competition 2013 benchmarks.

1 Introduction

The Boolean satisfiability (SAT) problem [14] is the quintessential NP-complete
problem, a class of decision problems conjectured to be computationally hard.
Yet, impressively, modern sequential Conflict-Driven Clause-Learning SAT
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 225–241, 2015.
DOI: 10.1007/978-3-319-26287-1 14

226 J.H. Liang et al.

solvers [6,9,15,32,34] are able to solve large instances obtained from real-world
applications [3,29]. Although hundreds of techniques and heuristics have been
proposed over the last five decades to solve the Boolean SAT problem [2,3], mod-
ern SAT solvers rely crucially only on a handful of them. Of these, the two most
important are Conflict-Driven Clause-Learning with backjumping (CDCL) [34]
and Variable State Independent Decaying Sum (VSIDS) branching heuristic [36].
Many systematic experiments have been performed to ascertain the veracity of
this observation [29]. Additionally, not only is VSIDS one of the most effec-
tive branching heuristics, but many other well-known high-performing branch-
ing heuristics are simply variants of VSIDS. Researchers have proposed some
theoretical explanations for the impact of clause-learning on the performance
of the modern SAT solvers: clause-learning allows SAT solvers to polynomi-
ally simulate general resolution propositional proof system [5,7,39]. However,
our understanding of the role played by VSIDS heuristic has previously been
limited. The motivation for the research presented in this paper is to achieve a
better scientific understanding of VSIDS. We focus on two well-known variations
of VSIDS, namely cVSIDS and mVSIDS, described in Sect. 2.

Our Scientific Findings and Contributions. In this paper we ask the fol-
lowing questions regarding the behavior of VSIDS.1 First, what is special about
the class of variables that VSIDS chooses to additively bump? (Answered by
Contributions I and III.) Second, what role does multiplicative decay play in
making VSIDS so effective? (Answered by Contribution IV.) Third, is VSIDS
temporally and spatially focused? (Answered by Contribution II.)

Contribution I: Bridge Variables and VSIDS. Community structure is a
property exhibited in many real-world graphs, particularly in social networks,
where the graph can be partitioned into groups of vertices, called communities,
such that each group is densely connected within itself but sparsely connected
with other groups. Recent research has shown that the community structure
quality of the SAT input correlates with faster solving time [38]. We show that
bridge variables connecting distinct communities in the community structure of
a SAT instance [21] are high priority targets for both the branching heuristic
and clause-learning, which suggests one possible explanation for this correlation.

Contribution II: Community-focused Search and VSIDS. We define two
terms, spatial focus and temporal focus, to describe how a branching heuristic
focuses on certain regions of the search space during solving, with respect to
the underlying community structure. We refer to this form of locality as focused
search, to distinguish it from local search performed by stochastic local search
solvers [25]. We show that mVSIDS is more focused than cVSIDS and random
branching according to these metrics.

1 All code and experimental data sets are available from our website: https://github.
com/JLiangWaterloo/vsids.

https://github.com/JLiangWaterloo/vsids
https://github.com/JLiangWaterloo/vsids

Understanding VSIDS Branching Heuristics in Conflict-Driven 227

Contribution III: Exponentially-smoothed Temporal Graph Central-
ity and VSIDS correlate strongly. Third, we show that VSIDS rankings
correlate strongly with the variable rankings induced by exponentially smoothed
temporal graph centrality (TGC) measures over the temporal variable incidence
graphs (TVIG) of the original and learnt clauses of an input SAT instance. This
correlation remains strong throughout the run of the solver. The TVIG extends
the well-known variable incidence graph over Boolean formulas by incorporat-
ing the dynamically evolving aspect of the learnt clause database inside a SAT
solver and uses exponential smoothing to focus on recently learnt clauses. TGC
is the temporal version of the widely-used graph centrality measures, such as
degree and eigenvector centrality, which are used to identify important vertices
in a graph. The definitions are inspired by recent research on temporal aspects
of social networks [22,42]. For example, the timed PageRank algorithm [42]
is used to discover important publications that are likely to be referenced in
the future. We show that VSIDS typically selects variables with high temporal
degree centrality and temporal eigenvector centrality. The above-mentioned find-
ings essentially tell us that we have a single family of mathematically-precise
graph-theoretic measures, namely TGC, that succinctly characterizes both the
additive bump and multiplicative decay components of VSIDS family of heuris-
tics. Variables that have high centrality correspond to variables in “recent” learnt
clauses that are “highly-constrained” and get additively bumped. Variables that
are not “persistently” highly-constrained, i.e., do not occur frequently in recent
learnt clauses get decayed away quickly. Putting together Contributions I and
III, we conclude that VSIDS picks high-centrality bridge variables.

Contribution IV: Exponential Moving Average and Multiplicative
Decay in VSIDS. Fourth, we show that the multiplicative decay in VSIDS
is a form of exponential moving average, and provide a plausible explanation as
to why this is crucial to the effectiveness of VSIDS.

Contribution V: A Novel Adaptive Branching Heuristic. Our findings
led to a new VSIDS called adaptVSIDS that adapatively adjusts the exponential
moving average (a form of adaptive moving average) depending on the quality of
the learnt clauses. We show that adaptVSIDS outperforms mVSIDS, by solving
2.4 % more instances over the SAT Competition 2013 benchmarks.

2 Background

Here we describe VSIDS and the variable incidence graph of a CNF formula.

The VSIDS Branching Heuristic and Variants. The term VSIDS refers to
a family of branching heuristics widely used in modern CDCL SAT solvers that
rank all variables of a Boolean formula during the run of a solver. As things stand
today, VSIDS is significantly more effective than other well-known heuristics
such as DLIS [33], MOM [18], Jeroslow-Wang [28], and BOHM [12]. VSIDS was
a major breakthrough when first introduced as part of the Chaff solver [36]. The
key idea is to collect statistics over learnt clauses to guide the direction of the

228 J.H. Liang et al.

search, where recent learnt clauses are favored. The key characteristics of VSIDS
is the additive bumping and multiplicative decay behavior, described in more
details below. Another positive characteristic of VSIDS is its low computational
overhead. We focus on two of the more well-known variants of VSIDS, namely,
the variant from Chaff [36] and the variant from MiniSAT version 2.2.0 [15]. We
refer to these variants as cVSIDS and mVSIDS respectively. Both variants have
the common characteristics listed below.

Activity Score, Initialization and VSIDS Ranking. VSIDS assigns a float-
ing point number, called activity, to each variable in the Boolean formula. At
the begining of a run of a solver, the activity scores of all variables are typically
initialized to 0. We refer to the ranking of variables according to their activity
scores in the decreasing order as the VSIDS ranking. VSIDS picks the variable
with the highest activity to branch on.

Additive Bump and Multiplicative Decay. When the solver learns a clause,
a set of variables is chosen, and their activities are additively increased, typically
by 1. The quantum of this increase is called the (additive) bump. At regular
intervals during the run of the solver, the activities of all variables are multiplied
by a constant 0 < α < 1 called the (multiplicative) decay factor.

cVSIDS. The activities of variables occurring in the newest learnt clause are
bumped up by 1, immediately after the clause is learnt. The activities of all
variables are multiplied by a constant 0 < α < 1. The decay occurs after every i
conflicts. We follow the policy used in recent solvers like MiniSAT and use i = 1.

mVSIDS. The activities of all variables resolved during conflict analysis that
lead to the learnt clause (including the variables in the learnt clause) are bumped
up by 1. The activities of all variables are decayed as in cVSIDS2.

Variable Incidence Graph (VIG). The VIG of a CNF formula F is defined
as follows: vertices of the graph are the variables in the formula. For every clause
c ∈ F we have an edge between each pair of variables in c. In other words, each
clause corresponds to a clique between its variables. The weight of an edge is

1
|c|−1 where |c| is the length of the clause. VIG does not distinguish between
positive and negative occurrences of variables. We combine all edges between
each pair of vertices into one weighted edge by summing the weights. More
precisely, the VIG of a CNF formula F is a weighted graph defined as follows:
set of vertices V = V ar, set of edges E = {xy | x, y ∈ c ∈ F}, and the weight
function w(xy) =

∑
x,y∈c∈F

1
|c|−1 .

2 MiniSAT’s actual implementation is slightly different, but has the same effect. Rather
than decaying the activities of every variable, it increases the bump quantum of all
future conflicts instead [8].

Understanding VSIDS Branching Heuristics in Conflict-Driven 229

3 Contribution I and II: Community-Focused Search,
Bridge Variables, and VSIDS

In this section, we describe the experimental setup, methodology, and results to
show the connection between VSIDS and community structure.

The Hypotheses. Here we state the three hypotheses that we tested in this
section: (1) Bridge Experiment: VSIDS disproportionately picks, bumps, and
learns the bridge variables, (2) Spatial Focus Experiment: VSIDS dispropor-
tionately picks from a smaller number of communities rather than a large fraction
of the communities of a SAT instance, and (3) Temporal Focus Experiment:
VSIDS typically picks from recently-seen communities.

Community Structure of the Graph of SAT Instances, and Bridge
Variables. The concept of decomposing graphs into natural communities [13,43]
arose in the study of complex networks such as the graph of biological systems.
Informally, a network or graph is said to have community structure if the graph
can be decomposed into sub-graphs where the sub-graphs have more internal
edges than outgoing edges [38]. We say that a graph has a “good” community
structure if the percentage of intra-community edges is significantly higher than
inter-community edges. We refer to these inter-community edges as bridges, and
the vertices connected by such edges as bridge vertices. In the context of the
community structure of the VIG of a Boolean formula, bridge vertices are called
bridge variables. We refer the reader to these papers [13,43] for a more formal
introduction to community structure of graphs.

Recently there has been some interesting discoveries regarding the impact of
community on CDCL SAT solver performance [38]. Specifically, the authors of
the paper [38] showed that the running time of CDCL solvers is strongly corre-
lated with community structures of SAT instances. In light of these discoveries,
it was but natural for us ask the question whether VSIDS somehow exploits the
community structure of SAT instances. What we discovered and explain below
is that VSIDS disproportionately picks, bumps, and learns the bridge variables
in the community structure of SAT instances.

Temporal and Spatial Focused Search. We further define two terms, spa-
tial focus and temporal focus, to describe how a branching heuristic gravitates
towards certain regions of the search space during solving, with respect to
the underlying community structure. We say a branching heuristic is spatially
focused if it disproportionately picks variables from a small set of communities,
when normalized for size, throughout the entire run of the solver. A branching
heuristic exhibits temporal focus if it typically picks a new decision variable from
a small fixed-size window of recently-seen communities.

Experimental Setup and Methodology. Experiments were performed over
the 1030 instances from SAT Competition 2013 [3], after simplification using
MiniSAT simplifying-solver. We use the Louvain method [10] to compute the
communities of the VIG of the input SAT formulas. There are many community-
detecting algorithms to choose from and we picked Louvain because it scales well

230 J.H. Liang et al.

with the size of input graphs. For each instance, the Louvain method is given an
hour to compute and save the communities it finds. The community information
is then given to a modified MiniSAT 2.2.0 so it can track the bridge variables.
Due to the high cost, we only compute the communities once at the start.

For the Bridge-Experiment , we ran the instances using a modified MiniSAT
with a timeout of 5000 seconds, as per the SAT Competition 2013 rules. Before
MiniSAT begins its CDCL loop, it reads in the community information stored by
the Louvain method. The solver then scans through its the initial input clauses
and checks which variables share at least one clause with another variable resid-
ing in a different community and marks them as bridge variables. Whenever our
modified version of MiniSAT (1) picks a decision variable, (2) bumps a variable,
and (3) learns a clause over a variable during the search, it checks whether the
variable is a bridge variable. If so, the solver updates its internal counters to
keep track of the number of bridge variables in the each of the 3 scenarios. At
the end of the run, the solver outputs the percentage of variables that are bridge
in each of these scenarios. This additional code adds little overhead and does not
change the behavior of MiniSAT. We are simply instrumenting the solver to col-
lect statistics of interest. For the Temporal-Experiment and Spatial-Experiment ,
we additionally modified MiniSAT to record all decision variables to a file, in
order to post-process the data. We allowed a 10000 second timeout for these
experiments due to this additional overhead.

The Reporting of Results. In the Bridge-Experiment , for each instance, we
compute the percentage of decision variables, bumped variables, learnt clause
variables, and number of variables that are also bridges. Then we averaged these
percentages over the three SAT 2013 Competition benchmark categories (appli-
cation, combinatorial, and random) and reported these numbers.

For the Spatial-Experiment , for every community i, we compute a commu-
nity score csi = picks from(i)/order(i), where picks from(i) is the number
of times the solver branched on a variable from community i and order(i)
is the size of community i in terms of variables. We then use the Gini coef-
ficient [20], a statistical measure of inequality, to compute our spatial score
ss = gini(csi for i ∈ communities). A score of 1 indicates total disparity (e.g.
all picks are from one community), whereas zero indicates total equality. Higher
scores therefore favor our hypothesis. We report the average ss value for each
benchmark category. The intuition behind this experiment and the use of the
Gini coefficient here (used in measuring the inequality of wealth distribution
in countries) is that it is an effective method for computing how unequally a
branching heuristic favors some communities over others. Using this metric we
show for example that VSIDS disproportionately favors a small set of commu-
nities (highly unequal distribution of picks) versus random branching heuristic
(largely equal distribution of picks).

For the Temporal-Experiment , we define our window size ws to be 10 % of
the total number of communities, rounded up to the nearest integer. For all
instances, our window contains the set of communities from the ws most recent
decisions (note that the set may have less than ws elements). At every decision,

Understanding VSIDS Branching Heuristics in Conflict-Driven 231

we increment a counter window hits if the current variable is from a community
in the window. We assign a temporal score ts = window hits/decisions for
each instance. We report the average ts value for each benchmark category. The
key idea behind this experiment is to test the hypothesis that VSIDS branching
favors picking from recently picked-from communities, versus random which does
not display such temporal locality.

Results and Interpretations of Bridge Variable Experiment. Table 1
shows that bridge variables are highly favored in MiniSAT by its branching
heuristic, conflict analysis, and clause-learning. It is a surprising result that
bridge variables are favored even though the heuristics and techniques in Min-
iSAT have no notion of communities. While bridge variables certainly make up
a large percent of variables, the percent of picked bridge variables is even higher.
Table 1 includes only the instances where the Louvain implementation completed
before timing out. In total, 229/300 instances in the application category and
238/300 instances in the hard combinatorial category are included in the Table 1.
In the random category, every variable is a bridge, hence the results are omitted.
This is expected because it is highly improbable to generate random instances
where a variable is not neighboring another variable outside its community.

Recent research suggests that CDCL solvers take advantage of good commu-
nity structure in SAT instances [38] leading to faster solving time. The reason for
this phenomenon is not fully understood. One possibility is that good commu-
nity structure lends itself to divide-and-conquer because the bridges are easier to
cut (i.e., satisfy). More precisely, the solver can focus its attention on the bridges
by picking the bridge variables and assigning them appropriate values. When it
eventually assigns the correct values to enough bridges, the VIG is divided into
multiple components, and each component can be solved with no interference
from each other. Even if the VIG cannot be completely separated, it may still
be beneficial to the cut bridges between communities so that these communities
can be solved relatively independently.

Results and Interpretations of Temporal and Spatial Focused Search
Experiments. Table 2a depicts the average Gini coefficient for the Spatial-
Experiment . Both VSIDS techniques exhibit much more inequality relative to
random branching for the application and combinatorial instances, indicating
that VSIDS may be attempting to hone in on certain communities. The very

Table 1. MiniSAT’s CDCL and mVSIDS techniques prefers to pick, bump, and learn
over bridge variables.

Category % of variables
that are
bridge

% of picked
variables
that are
bridge

% of bumped
variables
that are
bridge

% of learnt clause
variables that
are bridge

Application 61.0 79.9 71.6 78.4

Combinatorial 78.2 87.6 84.3 88.2

232 J.H. Liang et al.

Table 2. (a) VSIDS heuristics are more spatially focused than random branching. (b)
VSIDS heuristics tend to pick from recently-picked communities.

low values for random instances indicate that none of the branching heuristics
typically favor certain communities, likely due to the poor community structures
exhibited by such instances. Table 2b demonstrates that VSIDS techniques are
much more temporally focused on average than random branching. It is com-
monly believed that VSIDS improves the search locality [32,37] which in turn
improves solver performance. However, this term search locality has previously
been not rigorously defined. We precisely defined spatial focus and temporal
focus, and show that VSIDS displays high search locality in terms of these defi-
nitions.

4 Contribution III: Experimental Evidence Supporting
Strong Correlation Between TGC and VSIDS

In this section, we describe the experiments to support the hypothesis that the
VSIDS variants cVSIDS and mVSIDS, viewed as ranking functions, correlate
strongly with both temporal degree centrality and temporal eigenvector cen-
trality according to Spearman’s rank correlation coefficient and top-k measures.
Combining the results of this section with Contribution I (namely, VSIDS picks,
bumps and learns over bridge variables), we conclude that VSIDS picks high-
centrality bridge variables.

Temporal Variable Incidence Graph (TVIG). To incorporate the temporal
aspect of learnt clauses we introduce temporal variable incidence graph (TVIG)
here, that extends the VIG by encoding temporal information into its structure.
In the TVIG, every clause is labeled with a timestamp denoted t(c). The t(c) is
equal to 0 if c is a clause from the original input formula, otherwise t(c) is equal
to the number conflicts up to the learning of c. We refer to the difference between
the current time t and the timestamp of a clause t(c) as the age of the clause:
age(c) = t − t(c). Fix an exponential smoothing factor 0 < α < 1. The TVIG is
a weighted graph constructed in the same manner as the VIG except the weight
of an edge is αage(e)

|c|−1 . Like the VIG, multiple edges between a pair of vertices are
combined into one weighted edge. More precisely, the TVIG of a clause database
at time t is defined in the same way as VIG except with a modified weight
function that takes the ages of clauses into account: w(xy) =

∑
x,y∈c∈F

αage(c)

|c|−1 .
Observe that the TVIG evolves throughout the solving process: as new learnt
clauses are added, new edges are added to the graph, and all the ages increase.

Understanding VSIDS Branching Heuristics in Conflict-Driven 233

As an edge’s age increases, its weight decreases exponentially with time assuming
no new learnt clause contains its variables. In many domains, it is often the case
that more recent data points are more useful than older data points.

(Temporal) Degree and Eigenvector Centrality. A graph centrality mea-
sure is a function that assigns a real number to each vertex in a graph. The
number associated with each vertex denotes its relative importance in the
graph [16,19,41]. For example, the degree centrality [16] of a vertex in a graph
is defined as the degree of the vertex. The eigenvector centrality of a vertex in
a graph is defined as its corresponding value in the eigenvector of the greatest
eigenvalue of the graph’s adjacency matrix. We similarly define the temporal
versions of degree and eigenvector centrality. The key idea needed to define tem-
poral graph centrality measures is to incorporate temporal information inside
the TVIG. The temporal degree centrality (TDC) and (resp. temporal eigenvec-
tor centrality (TEC)) of a vertex at time t is defined as the degree centrality
(resp. eigenvector centrality) of the vertex in the TVIG at time t.

Experimental Setup and Methodology. We implemented the VSIDS vari-
ants and TGC measures in MiniSAT 2.2.0 [15]. All the experiments were per-
formed using MiniSAT on all 1030 Boolean formulas obtained from all three
categories (application, combinatorial, and random) of the SAT Competition
2013 [3]. Before beginning any experimentation, the instances are first simplified
using MiniSAT’s inbuilt preprocessor with the default settings. All experiments
were performed on the SHARCNET cloud [4], where cores range in specs between
2.2 to 2.7 GHz with 4 GB of memory, and 4 hour timeout. We use 100 iterations
of the power iteration algorithm [23] to compute TEC, and 1 iteration for TDC.
We use MiniSAT’s default decay factor of 0.95 for VSIDS. We also use 0.95
as the exponential smoothing factor for the TVIG. We take measurements on
the current state of the solver after every 5000 iterations, where an iteration is
defined as a decision or a conflict. Observe that we take measurements dynami-
cally as the solver solves an instance, and not just once at the beginning. Such
a dynamic comparison gives us a much better picture of the correlation between
two different ranking functions or measures than a single point of comparison.

Methodology for Comparing Rankings based on Spearman’s Rank
Correlation Coefficient. For each set of experiments, for each SAT instance,
for every measurement made, we compute the Spearman’s rank correlation coef-
ficient [40] between the VSIDS and TGC rankings. Spearman’s rank correlation
coefficient is a widely-used correlation coefficient in statistics for measuring the
degree of relationship between a pair of rankings. The strength of Spearman’s
correlation is conventionally interpreted as follows: 0.00–0.19 is very weak, 0.20–
0.39 is weak, 0.40–0.59 is moderate, 0.60–0.79 is strong, 0.80–1.00 is very strong.
We compute the average of the Spearman’s correlation over the execution of a
SAT solver on each instance. We follow the standard practice of applying the
Fisher transformation [17] when aggregating the correlations.

Methodology for Comparing Rankings based on Top-k. Let v be the unas-
signed variable with the highest ranked according to some VSIDS variant. Let i be

234 J.H. Liang et al.

the position of variable v according to a specific TGC ranking, excluding assigned
variables. Then the top-k measure is 1 if i ≤ k, otherwise 0. The rationale for this
metric is thatSATsolvers typically only choose the top-rankedunassignedvariable,
according to the VSIDS ranking, to branch on. If the VSIDS top-ranked unassigned
variable occurs very often among the top-k ranked variables according to TGC,
then we infer that VSIDS picks variables that are highly ranked according to TGC.
In our experiments, we used various values for k. Again, we compute the average
of top-k measure over the execution of a SAT solver on each instance.

The Reporting of Results. For every pair of rankings, one from the VSIDS
family and the other from the TGC family, we report the top-k measure and
Spearman’s rank correlation coefficient between the pair of rankings every 5000
iterations. On termination, we compute the average for the instance. We take all
the instance averages and average them again, and report the average of the aver-
ages. The final numbers are labeled as “mean top-k” or “mean Spearman”. For
example, a mean top-10 of 0.912 is interpreted as “for the average instance in the
experiment, 91.2 % of the measured top-ranked variables according to VSIDS are
among the 10 unassigned variables with the highest centrality”. Likewise, a high
mean Spearman implies the average instance has a strong positive correlation
between VSIDS and TGC rankings.

Results and Interpretations. In Table 3 (resp. Table 4), we compare VSIDS
and TDC (resp. TEC) rankings. The data shows a strong correlation between
VSIDS and TDC, in particular, the 0.818 mean Spearman between cVSIDS
and TDC is high. The metrics are lower with TEC, but the correlation remains
strong. mVSIDS has a better mean Spearman with TEC than TDC in the appli-
cation category. We have also conducted this experiment with non-temporal
degree/eigenvector centrality and the resulting mean Spearman and mean top-k
are significantly lower than their temporal counterparts.

It is commonly believed that VSIDS focuses on the “most constrained part
of the formula” [24], and that this is responsible for its effectiveness. However,
the term “most constrained part of the formula” has previously not been well-
defined in a mathematically precise manner. One intuitive way to define the
constrainedness of a variable is to analyze the Boolean formula, and count how
many clauses a variable occurs in. The variables can then be ranked based on
this measure. In fact, this measure is the basis of the branching heuristic called
DLIS [33], and was once the dominant branching heuristic in SAT solvers. We
show that graph centrality measures are a good way of mathematically defining
this intuitive notion of syntactic “constrainedness of variables” that has been

Table 3. Results of comparing VSIDS and TDC.

cVSIDS vs TDC mVSIDS vs TDC

Application Combinatorial Random Application Combinatorial Random

Mean Spearman 0.818 0.946 0.988 0.629 0.791 0.864

Mean Top-1 0.884 0.865 0.949 0.427 0.391 0.469

Mean Top-10 0.912 0.898 0.981 0.705 0.735 0.867

Understanding VSIDS Branching Heuristics in Conflict-Driven 235

Table 4. Results of comparing VSIDS and TEC.

cVSIDS vs TEC mVSIDS vs TEC

Application Combinatorial Random Application Combinatorial Random

Mean Spearman 0.790 0.926 0.987 0.675 0.764 0.863

Mean Top-1 0.470 0.526 0.794 0.293 0.304 0.418

Mean Top-10 0.693 0.746 0.957 0.610 0.670 0.856

used by the designers of branching heuristics. Degree centrality of a vertex in
the VIG is indeed equal to the number of clauses it belongs to, hence it is a good
basis for guessing the constrained variables for the same reason. Eigenvector
centrality extends this intuition by further increasing the ranks of variables close
in proximity to other constrained variables in the VIG. Additionally, as the
dynamic structure of the VIG evolves due to the addition of learnt clauses by
the solver, the most highly constrained variables in a given instance also change
over time. Hence we incorporated learnt clauses and temporal information into
the TVIG to account for changes in variables’ constrainedness over time.

Besides the success of branching heuristics like VSIDS and DLIS, there is
additional evidence that the syntactic structure is important for making good
branching decisions. For example, Iser et al. discovered that initializing the
VSIDS activity based on information computed on the abstract syntax tree
of their translator has a positive impact on solving time [27]. In a different
paper [38], the authors have shown that the graph-theoretic community struc-
ture strongly influences the running time of CDCL SAT solvers. This is more
evidence of how CDCL SAT solver performance is influenced by syntactic graph
properties of input formulas. Finally, by combining the results of this section with
Contribution I, we conclude that VSIDS picks high-centrality bridge variables.

5 Contribution IV: Exponential Moving Average and
Multiplicative Decay

In this section, we argue that the multiplicative decay aspect of the VSIDS
branching heuristic is a form of exponential moving average (EMA) [11]. It is
the inclusion of multiplicative decay in VSIDS that gives it its distinctive feature
of focusing its search based on recent conflicts. The original Chaff paper [36] and
patent [35] rather cryptically mentioned that VSIDS acts like a “low-pass filter”.
They do not specify wh at signals are being fed to this filter, and why the high-
frequency components are being filtered out and discarded.

In his paper [8], Armin Biere was perhaps the first to articulate the idea that
additive bumping of variable scores can be viewed as a signal (a square wave,
to be more precise) over the run of the solver. More precisely, at every time
step, the signal of a variable is 1 if it is bumped, or 0 otherwise. Armin Biere
formalized normalized VSIDS [8] as sn = (1 − f) × ∑n

k=1 δk × fn−k. sn is the
normalized VSIDS activity of a variable v after the nth conflict. δk = 1 if variable
v was bumped in the kth conflict, otherwise δk = 0. f is the decay factor.

236 J.H. Liang et al.

While Huang et al. [26] referred to VSIDS as an EMA, we will show this
explicitly. We not only characterize VSIDS as an EMA explicitly, but also
describe why this is crucial to the effectiveness of VSIDS as a branching heuris-
tic. In the next section we leverage this connection between EMA and VSIDS to
propose an adaptive VSIDS branching heuristic inspired by an adaptive version
of EMA.

EMA is a form of exponential smoothing, used in getting rid of noise (vari-
ables whose VSIDS scores are akin to high-frequency signals) in time series data
(the signals due to VSIDS scores). Exponential smoothing is a class of tech-
niques to mitigate the effect of random noise in time series data for the purpose
of analysis and forecasting. Armin Biere’s normalized VSIDS equation can be
rewritten to the following recursive formula: sn = (1 − f) × δn + f × sn−1. This
formula fits exactly the definition of Brown’s simple exponential smoothing, also
known as exponential moving average. Therefore normalized VSIDS is exactly
an EMA over the δ time series. The EMA causes VSIDS to favor variables that
“persistently” occur in “recent” conflicts. A rationale why this is effective could
be as follows: A conflict essentially points to faulty judgment by the solver in
assigning values to variables. If a set of variables are at the root of a faulty judg-
ment and thus occurs in a conflict, then they would repeatedly occur in related
faulty judgments and hence in related conflicts. Variables that occur persistently
in “recent” conflicts could be a good guess for the root cause of those conflicts.
Hence, perhaps the most effective search strategy is to focus on determining this
root cause. The learnt clauses that result from such a strategy improve in quality
with time, until such time that the root cause of a set of faulty judgment has
been determined and enshrined as a learnt clause.

6 Contribution V: A Faster Branching Heuristic Based
on Adaptive Moving Average

In this section, we report on our design of a better VSIDS based on the knowledge
that VSIDS decay is a form of EMA. The EMA is integral to VSIDS performance
as a branching heuristic, and now that the connection between EMA and VSIDS
is established, all the literature on EMA and other time series data analysis are
directly applicable to VSIDS.

Adaptive Moving Average. Given that VSIDS decay is a form of EMA, we
studied the literature of EMA from the financial domain [31], where it is known
that the fixed decay factor can be undesirable. A moving average with a large
decay factor would lag behind fast moving markets whereas a small decay factor
would fail to smooth out a lot of noise. Kaufman [31] noted that a fixed decay
factor performs poorly when the market volatility changes. He devised adaptive
moving average where the decay factor (also known as smoothing constant) is
determined by the market volatility to minimise lag and noise. By fluctuating
the decay factor when necessary, adaptive moving average is better than EMA
at uncovering trends in the market.

Understanding VSIDS Branching Heuristics in Conflict-Driven 237

Just like how markets can go up and down, a CDCL SAT solver can go up
and down in “productivity” over time. For example, Audemard and Simon [6]
discovered that a learnt clause with lower literals blocks distance (LBD) [6] is
of higher quality. LBD of a clause is defined to be the number of decision lev-
els that its variables span. If the solver is in a search space that produces many
learnt clauses with low LBD, then we want to encourage the solver to stay within
that search space. We do so by adjusting the VSIDS decay factor to be closer
to 1, i.e., decay slower. On the other hand, if the solver is in a search space
that produces many learnt clauses with high LBD, it is best to choose a smaller
decay factor, i.e., decay faster. Based on this insight, we devised a new VSIDS
heuristic called adaptVSIDS by extending mVSIDS with an adaptive moving
average. adaptVSIDS maintains a floating-point number lbdema equal to the
exponential moving average of the learnt clause LBDs. lbdema is updated after
every learnt clause and this number will be used to adjust the decay factor of the
variables’ activities. In mVSIDS, the variables’ activities are decayed by multi-
plying with a constant decay factor, typically 0.95, after each conflict. Whereas
in adaptVSIDS, the decay factor is adjusted based on the LBD of the learnt
clause. If the LBD of the learnt clause is greater than lbdema, then use a decay
factor of 0.75, otherwise use a decay factor of 0.99. Our website has all the code.

Experimental Setup and Methodology. The experiments were performed
on the application and combinatorial categories of the SAT Competition 2013.
For each instance with a timeout of 5000 seconds as per competition rules, we ran
an unmodified MiniSAT 2.2.0 and a modified MiniSAT 2.2.0 with adaptVSIDS
on StarExec [1].

Results and Interpretations. Our adaptVSIDS solved 351 instances whereas
mVSIDS solved 343 instances, an increase of 2.4 % more solved instances.

7 Interpretation of Results

We began our research by posing a series of questions regarding VSIDS, and we
now interpret the results obtained in light of these questions.

What is special about the class of variables that VSIDS chooses to
additively bump? (Answered by Contributions I and III.) In the bridge vari-
ables experiment (Sect. 3), we showed that VSIDS disproportionately favored
bridge variables. Even though SAT instances have large number of bridge vari-
ables on average, the frequency with which VSIDS picks, bumps, and learns
bridge variables is much higher. There is no a priori reason to believe that
VSIDS would behave like this. This surprising result, plus a previous result
that good community structure correlates with faster solving time [38], suggests
CDCL solvers exploit community structure. More precisely, they target variables
linking distinct communities, possibly as a way to solve by divide-and-conquer
approach.

In the VSIDS vs. TGC experiments (Sect. 4), we used the Spearman’s rank
correlation coefficient to show that the VSIDS and TGC rankings are strongly

238 J.H. Liang et al.

correlated. From our experiments, we can say that for all the VSIDS variants
considered in this paper, additive bumping matches with the increase in central-
ity of the chosen variables. We also observe from our results that the variables
that solvers pick for branching have very high TGC rank. The concept of cen-
trality allows us to define in a mathematically precise the intuition many solver
developers have had, i.e., that branching on “highly constrained variables” is
an effective strategy. Our bridge variable experiment combined with the TGC
experiment suggests that VSIDS focuses on high-centrality bridge variables.

What role does multiplicative decay play in making VSIDS so
effective? (Answered by Contribution IV, that in turn led to a new adap-
tive VSIDS presented as Contribution V.) We show that multiplicative decay is
essentially a form of exponential smoothing (Sect. 5). We add an explanation as
to why this is important, namely, that exponential smoothing favors variables
that persistently occur in conflicts and this is a better strategy for root-cause
analysis. We designed a new VSIDS technique, we call adaptVSIDS, based on
the above results, wherein we rapidly decay the VSIDS activity if the learnt
clause LBDs are large (Sect. 6). We showed that this technique is better than
mVSIDS on the SAT Competition 2013 benchmark.

Is VSIDS temporally and spatially focused? (Answered by Contribution
II.) We show that VSIDS exhibits spatial focus and temporal focus (Sect. 3),
forms of locality in search. While there has been speculation among solver
researchers that CDCL with VSIDS solvers perform local search, we precisely
define spatial and temporal locality in terms of the community structure.

8 Related Work

Marques-Silva and Sakallah are credited with inventing the CDCL technique [34].
The original VSIDS heuristic was invented by the authors of Chaff [36]. Armin
Biere [8] described the low-pass filter behavior of VSIDS, and Huang et al. [26]
stated that VSIDS is essentially an EMA. Katsirelos and Simon [30] were the
first to publish a connection between eigenvector centrality and branching heuris-
tics. In their paper [30], the authors computed eigenvector centrality (via Google
PageRank) only once on the original input clauses and showed that most of the
decision variables have higher than average centrality. Also, it bears stressing
that their definition of centrality is not temporal. By contrast, our results corre-
late VSIDS ranking with temporal degree and eigenvector centrality, and show
the correlation holds dynamically throughout the run of the solver. Also, we
noticed that the correlation is also significantly stronger after extending central-
ity with temporality. Simon and Katsirelos do hypothesize that VSIDS may be
picking bridge variables (they call them fringe variables). However, they do not
provide experimental evidence for this. To the best of our knowledge, we are
the first to establish the following results regarding VSIDS: first, VSIDS picks,
bumps, and learns high-centrality bridge variables; second, VSIDS-influenced
search is more spatially and temporally focused than other branching heuristics

Understanding VSIDS Branching Heuristics in Conflict-Driven 239

we considered; third, explain the importance of EMA (multiplicative decay) to
the effectiveness of VSIDS; and fourth, invent a new adaptive VSIDS branching
heuristic based on our observations.

9 Conclusions and Future Work

In this paper we present various empirically-verified findings on VSIDS. We show
that VSIDS tends to favor the high-centrality bridge variables in the community
structure of the Boolean formula. In addition, we show that VSIDS focuses on
a small subset of communities in the graph of a SAT instance during search.
Lastly, we explain the multiplicative decay of VSIDS with EMA and use this
finding to devise a new branching heuristic we call adaptVSIDS. These results
put together show that community structure, graph centrality, and exponential
smoothing are important lenses through which to understand the behavior of
the VSIDS family of branching heuristics and CDCL SAT solving. In the future,
we plan to strengthen our results by considering a larger number of benchmarks,
solvers, branching heuristics, and graph representations.

Acknowledgement. We thank Kaveh Ghasemloo for his help in refining our TGC
model and for his insight on the connection between VSIDS decay and exponential
moving average.

References

1. Starexec. http://www.starexec.org/
2. Proceedings of Past SAT Conferences (2013). http://www.satisfiability.org
3. SAT Competition Website (2013). http://www.satcompetition.org
4. SHARCNET Website (2013). https://www.sharcnet.ca
5. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many

restarts and bounded-width resolution. In: Kullmann, O. (ed.) SAT 2009. LNCS,
vol. 5584, pp. 114–127. Springer, Heidelberg (2009)

6. Audemard, G., Simon, L.: Glucose: a solver that predicts learnt clauses quality.
IJCAI 9, 399–404 (2009)

7. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)

8. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer,
Heidelberg (2008)

9. Biere, A.: Lingeling (2010)
10. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-

munities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)
11. Brown, R.G.: Exponential Smoothing for Predicting Demand. Little, Cambridge

(1956)
12. Buro, M., Büning, H.K.: Report on a SAT competition. Fachbereich Math.-

Informatik, Univ. Gesamthochschule (1992)
13. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large

networks. Phys. Rev. E 70(6), 066111 (2004)

http://www.starexec.org/
http://www.satisfiability.org
http://www.satcompetition.org
https://www.sharcnet.ca

240 J.H. Liang et al.

14. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC 1971,
pp. 151–158. ACM, New York (1971)

15. Een, N., Sörensson, N.: MiniSat: a SAT solver with conflict-clause minimization.
In: SAT 2005 (2005)

16. Faust, K.: Centrality in affiliation networks. Soc. Netw. 19(2), 157–191 (1997)
17. Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in

samples from an indefinitely large population. Biometrika 10(4), 507–521 (1915)
18. Freeman, J.W.: Improvements to propositional satisfiability search algorithms.

Ph.D. thesis, Philadelphia, PA, USA (1995). uMI Order No. GAX95-32175
19. Freeman, L.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3),

215–239 (1979)
20. Gini, C.: Measurement of inequality of incomes. Econ. J. 31(121), 124–126 (1921)
21. Girvan, M., Newman, M.E.: Community structure in social and biological networks.

Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)
22. Gloor, P., Krauss, J., Nann, S., Fischbach, K., Schoder, D.: Web science 2.0: identi-

fying trends through semantic social network analysis. In: 2009 International Con-
ference on Computational Science and Engineering, CSE 2009, vol. 4, pp. 215–222,
August 2009

23. Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2012)
24. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6(4),

245–262 (2009)
25. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications.

Morgan Kaufmann Publishers Inc., San Francisco (2004)
26. Huang, R., Chen, Y., Zhang, W.: SAS+ planning as satisfiability. J. Artif. Int. Res.

43(1), 293–328 (2012)
27. Iser, M., Taghdiri, M., Sinz, C.: Optimizing MiniSAT variable orderings for the

relational model finder kodkod. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 483–484. Springer, Heidelberg (2012)

28. Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Ann. Math.
Artif. Intell. 1(1–4), 167–187 (1990)

29. Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy
of modern SAT solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol.
6695, pp. 343–356. Springer, Heidelberg (2011)

30. Katsirelos, G., Simon, L.: Eigenvector centrality in industrial SAT instances. In:
Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 348–356. Springer, Heidelberg
(2012)

31. Kaufman, P.J.: Trading Systems and Methods. Wiley, New York (2013)
32. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: an efficient SAT solver. In: H.

Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 360–375. Springer,
Heidelberg (2005)

33. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability
algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol.
1695, pp. 62–74. Springer, Heidelberg (1999)

34. Marques-Silva, J.P., Sakallah, K.A.: Grasp: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

35. Moskewicz, M.W., Madigan, C.F., Malik, S.: Method and system for efficient imple-
mentation of boolean satisfiability (26 August 2008), US Patent 7,418,369

36. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, DAC 2001, pp. 530–535. ACM, New York (2001)

Understanding VSIDS Branching Heuristics in Conflict-Driven 241

37. Nadel, A., Ryvchin, V.: Assignment stack shrinking. In: Strichman, O., Szeider, S.
(eds.) SAT 2010. LNCS, vol. 6175, pp. 375–381. Springer, Heidelberg (2010)

38. Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of
community structure on SAT solver performance. In: Sinz, C., Egly, U. (eds.) SAT
2014. LNCS, vol. 8561, pp. 252–268. Springer, Heidelberg (2014)

39. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with
restarts. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer,
Heidelberg (2009)

40. Spearman, C.: The proof and measurement of association between two things. Am.
J. Psychol. 15(1), 72–101 (1904)

41. Straffin, P.D.: Linear algebra in geography: eigenvectors of networks. Math. Mag.
53(5), 269–276 (1980)

42. Yu, P.S., Li, X., Liu, B.: Adding the temporal dimension to search - a case study
in publication search. In: Skowron, A., Agrawal, R., Luck, M., Yamaguchi, T.,
Morizet-Mahoudeaux, P., Liu, J., Zhong, N. (eds.) Web Intelligence, pp. 543–549.
IEEE Computer Society (2005)

43. Zhang, W., Pan, G., Wu, Z., Li, S.: Online community detection for large complex
networks. In: Proceedings of the Twenty-Third international joint conference on
Artificial Intelligence, pp. 1903–1909. AAAI Press (2013)

Multi Domain Verification

Multi-Domain Verification of Power,
Clock and Reset Domains

Ping Yeung1(&) and Eugene Mandel2

1 Mentor Graphics, Fremont, USA
ping_yeung@mentor.com

2 Mentor Graphics, Petah Tikva, Israel

Abstract. Multi-Domain Verification (MDV) is a comprehensive approach that
specializes in verifying design logic that straddles heterogeneous domains. An
integrated circuit design can be conceptually disintegrated into multiple types of
partition for domain analysis. For example, a modern design typically has a
power domain partition, a clock domain partition, and a reset domain partition.
Historically, domain analysis is confined to verification of the same domain
(homogeneous domain): for example, power domain verification and clock
domain crossing verification are performed separately. As designs become
highly sophisticated and domains are inter-dependence of each other, this
practice is no longer sufficient. Interactions between different types of domains
(heterogeneous domains) is exceptionally complex and critical to the success of
the device. Hence, a new methodology is required to verify them effectively.
Multi-domain verification uses power domain information from the Unified
Power Format (UPF) specifications, clock domain information from the clock
tree models and reset domain information from the reset tree models. It employs
specialized domain analysis and methodologies to examine the complex inter-
actions of logic that straddles domain boundaries—among both homogeneous
domains and heterogeneous domains. Multi-domain verification is an efficient
way to ensure that all inter-domain issues are explored and verified with com-
plete confidence.

1 Introduction

To meet the rigorous functionality and power requirements, SoC designs typically
operate in a spectrum of clock frequencies and uses a set of sophisticated power
management strategies. It can incorporate advanced design technologies, such as
asynchronous clocks, ratio-synchronous clocks, clock gating, multiple voltages, power
switching, dynamic voltage and frequency scaling (DVFS) and so on. Interaction of
logical function spanning out in different power, clock and reset domains can poten-
tially cause spectacular chip failures. Yet, design teams face several challenges to
ensure these domains are working correctly with respect to each other. Although design
teams usually do a good job partitioning a design into multiple power, clock and reset
domains at the chip-level, it is challenging to understand how these domains interact
with each other at the block or lower levels. The situation is made worse when design
teams are integrating multiple IPs that they know little about together. In order to save
power in today’s designs, blocks are switched on and off continuously. Power-aware

© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 245–255, 2015.
DOI: 10.1007/978-3-319-26287-1_15

simulation is a good start, but it is impossible to achieve sufficient coverage with
simulation to verify the inter-domain interaction dynamically. Hence, static domain
analysis is essential to examine the design space thoroughly. Multi-Domain Verifica-
tion (MDV) is developed to address the challenges in this area (Fig. 1).

This paper has three sections.

• In the first section, we summarize the current power domain verification, clock
domain verification and reset domain verification methods. They provide compre-
hensive verification of the homogeneous domains, but they fail to consider the
presence of the other domains.

• In the second section, we explain the general concept of multi-domain represen-
tation, its data model and verification methods. It addresses two limitations in
existing tools: (1) what are the effects of other heterogeneous domain, and (2) what
will happen to the domain-controlling signals (such as clock gating signals) when
they are crossing other domains?

• In the final section, we describe some of the issues found in the designs from our
development partners. They are good examples to demonstrate the necessity and
benefits of multi-domain verification.

2 Individual Domain Verification

2.1 Clock Domain Crossing

Today’s SoC designs have a large number of clock domains. In addition, it also
integrates a lot of internal and external IPs from multiple sources. As a result, a
significant number of asynchronous clock domains and clock domain crossing
(CDC) signals are introduced into the design. CDC logic must follow strict design
principles for reliable operation [5, 6]. And because of transistor-level effects in cir-
cuits, verifying CDC logic is not possible with standard simulation or static timing
analysis techniques (Fig. 2).

To handle this dilemma, CDC verification can be divided into three parts [7]:
1. identify all CDC signals in the design; statically recognize the synchronizers and
validate the intended CDC schemes. 2. Dynamically and/or formally verify the CDC

Fig. 1. Multi-domain verification

246 P. Yeung and E. Mandel

protocols. This step ensures that the CDC control and data signals are stable when
crossing the domain boundaries. 3. Dynamically simulate the design with metastability
injection and/or formally verify reconvergent structures. This step ensures that the chip
is tolerant of unpredictable delays from the synchronizers embedded in the CDC paths.

CDC verification is commonly deployed by advanced design teams; CDC struc-
tures and schemes are well understood. But when a design with hundreds of asyn-
chronous clock domains and thousands clock gating signals operate in various power
domains, their interactions are difficult to predict.

2.2 Reset Domain Crossing

System level reset strategy becomes increasingly complex as they combine various
sources of reset requirements [8]. For example, reset signals are needed for each power
domain and they also must be synchronized to their target clock domains before use.

When a set of data dependent registers in the same clock domain, are driven by
different reset signals, Fig. 3, the asynchronous reset signal on the source register will
cause an asynchronous event to happen at the receiving register. If rstn1 is asserted
while rstn2 is not asserted, the asynchronous output data from dff1 can cause
metastability on dff2. This is the reset domain crossing we are concerned about.

Reset domain crossing verification can be divided into three parts [9]: 1. Static
analysis is used to find and build the tree structure of all the reset signals in the design.

Fig. 2. Clock domain crossing

Fig. 3. Reset domain crossing

Multi-Domain Verification of Power, Clock and Reset Domains 247

Resets can be classified as either synchronous or asynchronous resets, as well as active
high or active low. 2. Rather than rely on gate level simulation, RTL simulation with
silicon-accurate X-propagation semantics can be used to find issues related to unini-
tialized design elements. 3. Formal verification can be used to verify many aspects of the
reset tree, including: connectivity of all sources of resets to their intended destinations
and detecting corruption of correctly reset storage elements by unknown logic values.

To lower power consumption, design teams are adding more complex power
domains into the design. As a reset signal is required for each power domain, the activity
of the reset signals (as part of the power sequence) has increased significantly. It is
difficult to foresee all the possible interactions of the reset signals with other domains.

2.3 Power Domain Crossing

With the Unified Power Format (UPF) standard [2], project teams are able to capture
the power intent of the design. The power intent specification consists of power
domains, supply networks, power structures, and power states. The verification goal is
to check the functionality of the power management elements to ensure they are
working properly. Also, each subsystem can be turned-on, transitioned into its
power-modes and shut-down independently.

A power-aware verification tool can check the placement of isolation cells and level
shifters on the power domain crossing signals. The isolation cells will be controlled by
the power controller with respect to the power-up and power-down sequences. If
retention registers are used, the save and restore operations will also need to be verified.
To help guide design teams on this new challenge, a power verification checklist is
presented in [3]. It focuses on various aspects of power domain toggling, isolation cells,
memories, and retention of registers.

As the number of power domain increases in designs, they have created a heavy
burden for both the design and the verification teams. By supporting the UPF standard,
we enable project teams to verify the power intent early in the design cycle with other
domains.

3 Multi-Domain Verification

As designs are getting more complex and heterogeneous domains are interacting more
with each other, it is insufficient to verify one domain at a time. To account for the
introduction of power domains, some CDC verification tools [10, 11] are starting to
leverage the power domain information from the UPF specification. It helps identify
and verify power control signals that are crossing clock domains. It is a step in the right
direction to verify the interactions between domains. However, it still lacks a complete
domain specific view of the design. Hence, we take a step forward to architect a new
verification environment. It has all the domain information extracted and represented
persistently. This allows the environment to verify all the domain interactions com-
prehensively. At the same time, extra information from a different domain can be
pulled in on-demand to refine and understand the severity of an identified situation.

248 P. Yeung and E. Mandel

We named this approach Multi-Domain Verification (MDV). It extracts the power
domain information from the Unified Power Format (UPF) specification, the clock
domain information from the clock trees and the reset domain information from the
reset trees. It is equally important to represent the logic functions controlling the
different domains: power control signals, clock gating signals and reset enabling sig-
nals. To truly understand the interaction between domains, it has to understand the
functionality of the control signals. For instance, if the clock to a register is gated off or
the register is in retention mode, the register is going to be very stable. Hence, clock
domain crossing or reset domain crossing from the register will not be a problem.

As shown in Fig. 4, the multi-domain verification process is divided vertically into
three phases: domain structure verification, domain control verification and domain
crossing verification. Instead of verifying one domain at a time, this vertical phase by
phase (heterogeneous) approach allows users to focus on the big picture first. For
instance, if the power domain specification is wrong, or the clock tree is not well
defined yet, it is not going to be productive examining the detail violations generated
from the power or clock domain crossing signals. Users should focus on refining the
UPF specification, the clock trees and the reset trees first. Once the early phase has been
finalized, users can move onto the latter phase. Consequentially, the latter phases can
leverage all the information, augmentation, and refinement done in the previous phases.

3.1 Domain Structure Verification

Multi-domain verification extracts, represents and verifies the structures of the power
domain, clock domain and reset domain concurrently. It allows users to understand
how the domain structures, such as clock trees and reset trees, is affected by the
presence of the other domains.

The objective of structure verification is to ensure that the power supply nets, clock
signals and reset signals are distributed to different parts of the design correctly. During
this process, domains are colored, the domain boundaries are carved, and the number of
domains is calculated. Then, for each design element in the design (such as register,
memory array, and module), we will know the power, clock and reset domains it is
associated with.

Fig. 4. The 3 phases of multi-domain verification

Multi-Domain Verification of Power, Clock and Reset Domains 249

Domain structure checks include:

1. Registers without explicitly connected clock or reset signals
2. Reset used both active-high and active-low levels
3. Reset used both asynchronously and synchronously
4. Reset not synchronized to targeted clock domain (wrong clock or polarity)
5. Clock or reset tree with combinational feedback loop
6. Clock or reset tree with unexpected combinational logic
7. Clock or reset tree with re-convergent paths
8. Clock or reset tree crossing power domains
9. Clock tree crossing reset domains

10. Reset tree crossing clock domains
11. Consistence of power supply network (ports, nets, and switches)
12. Power management elements (power controller, retention cells, level shifters or

isolation cells) are not in always-on power domain.

3.2 Domain Control Verification

As power switching, frequency switching and clock gating are common practices for
low-power designs, it is important to understand the domain control signals, such as
power switch signals, isolation and retention control signals; clock select, control and
gating signals; reset control and gating signals. The power control signals are generated
by the power controller. The clock control signals can be from a number of sources
including frequency switching signals, design-for-test signals, mode of operation sig-
nals, and software programmable configuration signals.

For domain control signals, there are two important aspects that need to be verified:
domain dependence and functionality. The control signals should be from an always-on
power domain or from the same power domain. In addition, they should be generated
by registers from the same synchronous clock and reset domains. For functionality, to
operate and to power up or power down a domain correctly, the power supply, the
clock and the reset signals have to be asserted and removed following a precise
sequence. To do so, the corresponding control signals, the power switch, clock and
reset gating logic have to have the right values at the right time.

With a lot of clock gating and frequency switching, the domain control logic,
especially the clock control logic, can be complex. It is impossible to simulate all the
possible functional scenarios and corner cases. Hence, static and formal connectivity
verification are more effective ways to verify the conditional connectivity of the domain
structures.

Domain control checks include:

1. Identifying internally generated multiplexed clock or reset
2. Identifying internally generated gated clock or reset
3. Clock control signals from different power domains
4. Reset control signals from different power domains
5. Power control signal from different clock domains
6. Undefined, undriven or unknown value on all control signals

250 P. Yeung and E. Mandel

7. Connectivity check the distribution of power control signals with respect to the
power state information

8. Connectivity check the distribution of clock and reset with respect to their control
signals (different configurations, power-up and power-down scenarios)

9. Ordering of events in the power control sequence (power-up and power down)

3.3 Domain Crossing Verification

After domain structure verification, the set of domain, (power, clock and reset),
associated with each design element in the design has been defined. Domain crossing
analysis will examine the connectivity and data dependence in the design. For each data
signal, the domain set of the TX register will be compared with the domain set of the
RX register.

TX(power½on=off�; clock½on=off�; reset½on=off�Þ ! RX(power½on=off�; clock½on=off�; reset½on=off�Þ

If the RX domains are significantly different from the TX domains, corresponding
domain crossing analysis will be performed. The objective is to ensure that an
appropriate domain crossing scheme is in-place to mediate the risk associated with each
type of domain crossing. For instance, for each CDC signal, the domain crossing
analysis will ensure that a suitable synchronization scheme has been applied.

At the same time, in order to understand the interactions between TX and RX
domains, the domain control signals will also be evaluated to determine whether a
domain is active or not. To illustrate why, let us examine Fig. 5; an interface module is
connected to a memory controller. In certain mode of operation, if the interface module
is powered off completely, only power domain crossing analysis needs to be performed
between these modules. On the other hand, if the interface module and the memory
controller are both powered on with the same voltage, their clock and reset domains
will be examined to determine whether clock or reset domain crossing verification is
required.

Fig. 5. Power, clock and reset domain crossing

Multi-Domain Verification of Power, Clock and Reset Domains 251

Domain crossing checks include:

1. Clock domain crossing signal without proper synchronizer
2. Clock domain crossing reset signal without proper synchronizer
3. Clock domain crossing control signal without proper synchronizer
4. Reset domain crossing signal without proper guarding or isolation
5. Power domain crossing signal without proper isolation or level shifter
6. Potential signal corruption to and from retention register.

4 Results

We have applied multi-domain verification on a few designs from our development
partners with various combinations of power, clock and reset domains. The verification
was performed at the RT level with UPF specifications. Results from 3 of the blocks are
summarized in Table 1 below. With multi-domain verification, the tool was able to
identify all the power, clock and reset domains correctly. Users can amend the power
net groupings, clock and reset tree groupings within each domain by assigning explicit
values to the control signals, or by grouping the clock and reset signals explicitly with
directives.

Block 1 is a peripheral interface controller with 2 power domains. The clock and
reset trees cross the power domains a few times (row#4, row#6). They are mainly going
from the always-on power domain to other switchable power domains. When a clock
tree is crossing reset domains (row#5), it means that different reset signals are used to
initialize registers within the same clock domain. If some of the registers are depending
on each other, this will lead to reset domain crossing problems. Reset trees crossing

Table 1. Summary of multi-domain verification

Number of domains Block 1 Block 2 Block 3
1 Power domains 2 3 4
2 Asynchronous Clock domains 3 4 16
3 Asynchronous Reset domains 2 11 9

Number of trees crossing domains Block 1 Block 2 Block 3
4 Clock trees crossing power domains 2 2 6
5 Clock trees crossing reset domains 2 3 5
6 Reset trees crossing power domains 1 2 7
7 Reset trees crossing clock domains 2 5 16

Number of control crossing domains Block 1 Block 2 Block 3
8 Clock control from diff. power domain 0 4 5
9 Reset control from diff. power domain 0 2 13

10 Power control from diff. clock domain 2 4 6

252 P. Yeung and E. Mandel

power and clock domains are normally done by design (row#6, row#7). It means that
the same reset tree is being used in different clock or power domains. This will be a
problem however if the power domain needs to be reset independently with respect to
other domains in the design.

There are two issues with the power control signals (row#10). From the schematic
in Fig. 6, an isolation cell is used to isolate the switchable and the always-on power
domains. Although the two power domains belong to the same clock domain, the
isolation signal is from a different clock domain (such as the power controller clock
domain). As a result, the isolation signal introduced a clock domain crossing signal into
the design. To design this correctly, the isolation signal should be synchronized to the
RX clock before used. Hence, using a single isolation signal for all the output ports can
easily lead to this problem.

Block 2 is a functional controller for a design. It has a few clock and power
domains, but it generates a lot of reset signals to control structures locally and to other
blocks of the design (row#3). For this block, we were focusing on verifying the reset
structures. Power domains and reset signals are closely related. Each switchable power
domain should have a reset signal to initialize the storage elements every time when it
is powered on. However, when data is flowing from one power domain to another, it is
not a good idea to use different reset signals to initialize the registers when they are
residing within a same clock domain (row#5). In Fig. 7, a reset signal is needed for the
RX module in the switchable power domain. Instead of using reset1 from the TX
module, the designer synchronized an external reset, reset2, for RX module. As a
result, different reset signals are used for the data path from TX module to RX module.
An undesirable reset domain crossing path is introduced.

Block 3 is part of an interconnect controller for multiple processor cores. The
design has 16 primary clock signals. Some of the clock signals are interface specific
and they only go to the specific interface modules. Other system level clock signals are
distributed widely. Since the top-level of the design is in an always-on power domain,
most of the clock trees going from the top to a switch-able power domain are not a
concern. We were particularly worrying about clock trees going from one switch-able

Fig. 6. Clock domain crossing power isolation signal

Multi-Domain Verification of Power, Clock and Reset Domains 253

power domain to another switch-able power domain (row#4). After reviewing the
results carefully, we were happy that the scenario had not happened.

However, that is not the case with the reset signals. The design has 3 primary reset
signals. From them, internal reset signals, warm reset signals, and synchronized reset
signals were derived internally. From the top-level, the reset signals are driven into
each of the power domains and at the same time, synchronized into each of the clock
domains respectively. After reviewing the issues reported by the tool, we have found a
few cases that the reset signals are crossing power domains (row#6). As shown in
Fig. 8, the two reset signals for the RX module are passing through a switchable power
domain. The IP module is a data computational unit. It gets its reset signal from the
top-level module and the input reset signal is also used to drive two output reset signals
for the receiving datapath. The potential problem is: if the switchable power domain is
powered down, it will be impossible to reset the RX module any more. From the
schematic, it is quite clear that the RX module does not need to get the reset signals
from the IP module, instead, it can get the reset signals directly from the top-level.
When we reviewed this situation with the design team, they told us that they do not
know the functionality of the IP module. They used the reset signals from the IP
module to ensure that the receiving datapath will be in-sync with the computation in the
IP module.

Fig. 7. Reset domain crossing between two power domains

Fig. 8. Reset signals crossing different power domains

254 P. Yeung and E. Mandel

5 Conclusion

In this paper, we have presented the Multi-Domain Verification approach that verifies
the power, clock and reset domains concurrently at the RT level. It analyzes data
signals and structures that straddles heterogeneous domains. By representing and
verifying these domains together, it is more intuitive to understand the interaction
between them and hence, anticipate any domain issue as early as possible in the design
cycle. The process is divided into three steps: domain structure verification, domain
control verification and domain crossing verification. This divide-and-conquer
approach encourages users to focus on verifying and refining the domain structures
first. With well-understood domain structures and controls, domain crossing signals can
then be verified efficiently.

References

1. ARM® Cortex®-A17 MPCore Processor Technical Reference Manual Revision: r1p0.
http://infocenter.arm.com

2. Unified Power Format: 1801–2013 IEEE Standard for Design and Verification of
Low-Power Integrated Circuits. IEEE (2013)

3. Bembaron, F., Kakkar, S., Mukherjee, R., Srivastava, A.: Low power verification
methodology using UPF. In: DVCon (2011)

4. Srivastava, A., Bhargava, M.: Stepping into UPF 2.1 world: easy solution to complex power
aware verification. In: DVCon (2014)

5. Ginosar, R.: Metastability and synchronizers, a tutorial. IEEE Des. Test Compt. 28(5), 23–
35 (2011)

6. Cummings, C.: Clock domain crossing (CDC) design and verification techniques using
SystemVerilog. In: Synopsys User Group Meeting (SNUG) (2008)

7. Kwok, C., Gupta, V., Ly, T.: Using assertion-based verification to verify clock domain
crossing signals. In: DVCon (2003)

8. Liu, K., Yang, P., Levitt, J., Berman, M., Eslinger, M.: Using formal techniques to verify
system on chip reset schemes. In: DVCon (2013)

9. Kwok, C., Viswanathan, P., Yeung, P.: Addressing the challenges of reset verification in
SoC designs. In: DVCon (2015)

10. Chakraborty, A., Jain, N., Goel, S.: Power aware CDC verification at RTL for Faster SoC
verification closure. In: DVCon India (2014)

11. Takara, K.: Next-generation power aware CDC verification – what have we learned. In:
DVCon (2015)

12. Cummings, C., Mills, D., Golson, S.: Asynchronous and synchronous reset design
techniques. In: SNUG 2003, Boston (2003)

Multi-Domain Verification of Power, Clock and Reset Domains 255

http://infocenter.arm.com

Synthesis

FudgeFactor: Syntax-Guided Synthesis
for Accurate RTL Error Localization

and Correction

Andrew Becker1(B), Djordje Maksimovic2, David Novo1, Mohsen Ewaida1,
Andreas Veneris2, Barbara Jobstmann1, and Paolo Ienne1

1 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
andrew.becker@epfl.ch

2 University of Toronto, Toronto, Canada

Abstract. Functional verification occupies a significant amount of the
digital circuit design cycle. In this paper, we present a novel approach
to improve circuit debugging which not only localizes errors with high
confidence, but can also provide semantically-meaningful source code
corrections. Our method, which we call FudgeFactor, starts with a
buggy design, at least one failing and several correct test vectors, and
a list of suspect bug locations. We obtain the suspect location from a
state-of-the-art debugging tool that includes a significant number of false
positives. Using this list and a library of rules empirically characterizing
typical source-code mistakes, we instrument the buggy design to allow
each potential error location to either be left unchanged, or replaced with
a set of possible corrections. FudgeFactor then combines the instru-
mented design with the test vectors and solves a 2QBF-SAT problem to
find the minimum number of source-level changes from the original code
which correct the bug. Our 13 benchmarks demonstrate that our method
is able to correct a sizable portion of realistic bugs within a reasonable
computational time. With the aid of available golden reference designs,
we show that those corrections are, at least on these benchmarks, always
valid and non-trivial fixes. We believe that our technique significantly
improves over other debugging tools in two respects: When we succeed,
we obtain a much more precise bug localization with no false positives
and little or no ambiguity. Additionally, we offer bug corrections that are
inherently meaningful to the designers and enable designers to quickly
recognize and understand the root cause of the bug with a high level of
confidence.

1 Introduction

Functional verification is a traditionally thorny process which occupies up to
two thirds of the digital circuit design cycle [9]. There are at least two ways to
reduce the time spent on ensuring functional correctness: either ease the process
of developing functionally-correct circuits from the beginning, or improve circuit
debug and verification tools. This paper takes the latter approach. Although for-
mal verification tools typically return a counterexample when verification fails,
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 259–275, 2015.
DOI: 10.1007/978-3-319-26287-1 16

260 A. Becker et al.

the subsequent debugging process (i.e., error localization and correction) is typ-
ically lengthy and heavily reliant on designers’ expertise and experience. Tools
exist to help in error localization and correction, but most work on the subject
has either suggested repairs at the netlist level [6,7], or tried to map netlist
repairs back to RTL source code (e.g., [10,17]), which is not always possible and
can lead to incomprehensible repair suggestions. We see this as problematic, as
designers rarely work directly with netlists: even if tools find errors and suggest
appropriate corrections in the netlist, designers must still spend an inordinate
amount of time finding the true root cause at the register transfer level to be
able to implement a correction they understand and can vouch for. Thus, we
think it essential to locate and correct errors directly at the register transfer
level, where designers typically work.

In this work, we present FudgeFactor, a syntax-guided synthesis tool for
source-level error localization and correction. It takes as input a buggy circuit
design, at least one failing test vector, some correct test vectors, and a list of
suspect error locations. This list may come from any state-of-the-art error local-
ization tools. These tools are usually remarkably efficient and can handle very
large designs but lack precision. This leads to tens—or more—of fairly vague
false-positive suspect locations. In our case, we use a commercial verification
tool based on the work of Smith et al. [15] to obtain the list of suspect loca-
tions. Using this list and a library of rules characterizing typical source code
mistakes, we automatically instrument the buggy design to allow each potential
bug to either be left unchanged, or replaced with a set of possible corrections.
FudgeFactor then combines the instrumented design with the test vector(s)
and solves a 2QBF-SAT problem to find the minimum number of source-level
changes from the original code which correct the bug. Because all correction
rules describe semantically meaningful transformations, changes FudgeFactor
presents to the user are highly likely to address the root cause and remove the
error. Definitely, not all design errors are typical, “standard” mistakes, and thus
our approach can never be complete, regardless of the number of rules in our
library. Yet, we provide a quick, high-confidence initial debug pass which virtu-
ally eliminates a lengthy root cause analysis for a significant number of frequently
recurring design errors. We have tested our tool with 13 different benchmarks
from 3 real-world designs available on OpenCores [12] and demonstrate here
that FudgeFactor suggests valid corrections for a sizeable portion of the bugs
within a reasonable computational time.

FudgeFactor significantly owes to the approach used by Singh et al. to
give meaningful automatic feedback to students of a programming course using
Python [14]—in fact, the ability to “teach” the designer in which respect the
design fails is exactly what drives our efforts and distinguishes our goal. Yet,
our approach in the context of digital design results in at least a couple of sig-
nificant advantages: (1) Our source-level correction-rules are not at all problem-
specific but empirically represent an extensible library of typical mistakes that
may occur in any design, such as using a wrong compatible signal in an expres-
sion, invoking the incorrect Boolean operator, or instantiating a wrong constant.

FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization 261

(2) The broadness of our rules is key to be able to debug arbitrary circuits but,
if applied indiscriminately, would naturally catastrophically restrict our scala-
bility. This does not happen because, in this domain, we can leverage many
tools, some even commercial, which return approximate error location informa-
tion using totally different techniques that happen to be scalable to industrial
size designs. Thus, we only very selectively apply our generous set of correction
rules to the candidate locations and, as our experiments show, incur perfectly
acceptable run times.

The rest of the paper is organized as follows: We discuss additional related
work in Sect. 2. Sections 3 and 4 describe FudgeFactor in more detail: the
former addresses the basic methodology while the latter describes how we solve
some fundamental scalability issues. We present our experimental setup in Sect. 5
and discuss results in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Related Work

Debugging of hardware designs has been studied extensively in the previous
three decades. This field typically focuses on two related but distinct facets of
the problem: finding potential error locations (at whatever level of the design),
and proposing corrections which eliminate the errors.

Error Localization. Early works on design error localization were targeted at
gate-level representations. Work by Chung et al. [6,7] proposed a localization
technique which expresses the problem as a set of Boolean equations, where
the existence of a solution determines if the gate or wire is a potential error
source or not. Smith et al. [15] improved on the scalability and quality of gate-
level error localization using Boolean satisfiability (SAT). Fixing design errors
at the gate level produces obscure corrections that are very hard for the circuit
designer to understand. Our approach tackles the problem of returning mean-
ingful corrections for the designer. Given the popularity of HDLs among hard-
ware designers, source-level error localization has become increasingly attractive.
Works by Bloem et al. [3] and Peischl et al. [13] discussed Model-Based Diagnosis
(MBD) methods for error localization in VHDL descriptions. Several works [5,15]
adapted the concept of gate-level fault modeling to source-level error localiza-
tion by mapping gates to their HDL description. Our approach adopts the same
concept of inserting multiplexers, but instead of having a single free signal, we
insert proper error corrections based on an error library model. In this way we
restrict the number of possible solutions and improve solver scalability.

Error Correction. Error localization techniques usually generate a design com-
ponent set: either RTL locations, gates in the netlist or combinational paths
that can be modified to correct the error. Chang et al. [4] proposed an app-
roach for correcting gate-level errors using signatures of candidate faulty gates.
A signature is a list of bits each corresponding to the gate output for a given
set of test vectors. Their approach corrects signatures and re-synthesizes them
to replace the gate with one represented by the corrected signature. The idea

262 A. Becker et al.

has been applied to source-level error correction and extended to hierarchal and
sequential designs [5]. Jobstmann et al. [10] suggested an approach to correct
erroneous Verilog designs. Like our work, this approach assumes access to a list
of suspect error locations but uses a different error and reference model. It allows
corrections that can be represented by arbitrary functions in terms of the state
and input variables. This leads to a very general correction model at the expense
of readability and reasonability of correction suggestions. We believe that our
correction rules lead to corrections that are more meaningful and much easier
to understand. In addition, their approach relies on a formal specification (given
in Linear Temporal Logic) that describes the desired behavior of the design.
Since formal specifications are often unavailable, we focus on simulation vec-
tors, the de facto standard technique in industry to verify digital designs. Staber
et al. [17] have extended the above-mentioned repair approach to error localiza-
tion by assuming that only a location that can be corrected can be an actual
error location. This approach is more precise but also more expensive than other
error localization approaches. It is similar to our approach as it also aims to
increase the precision of error locations by searching for correction suggestions.
However, there are significant differences in the setup and underlying technique.
Furthermore, our approach is a SAT-based technique, while their approach used
BDD-based methodologies, which are known to be less scalable for large designs.

The related work probably most relevant to this paper are mutation-based
approaches. Mutations were introduced by Debroy and Wong in the software
world [8] and closely resemble our “fudging” rules (Sect. 3.1), but their muta-
tions are extremely simple and success is determined with some test cases, with
no formal verification. More recently, Alizadeh et al. [1] have used mutations to
create potentially working hardware designs from a failing one; their mutations,
essentially targeting signal processing designs, are a restricted and predetermined
version of our rules, the latter being much more articulated and constituting an
expansible library. And, again, successful mutations are identified by enumera-
tion, whereas our use of 2QBF-SAT is more efficient and also corrects situations
where multiple rules or mutations are needed for a single bug.

3 “Fudging” Buggy RTL Circuits

Figure 1 shows the complete FudgeFactor flow from a buggy RTL circuit to a
(list of) suggested source-code correction(s) which fix the error(s) in the circuit.
The buggy circuit must come with some test vectors and at least one of them
must be failing and expose the error(s).

The approach behind FudgeFactor is syntax-guided synthesis [2]: we tweak
(or “fudge”) the original buggy RTL specification in many different ways to try to
synthesize a new RTL specification which is syntactically as close as possible to
the buggy one yet which does not exhibit the error, and is therefore a candidate
correction. In the spirit of syntax-guided synthesis, we follow the intuition that
acting at the source-code level, respecting the syntactic template provided by
the human designer(s) who inadvertently introduced the error in the first place,

FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization 263

Fig. 1. The overall flow for FudgeFactor. The inputs are a buggy Verilog design and
one or more error traces and the output are candidates to correct the RTL source code.

makes it possible to find good corrections much more easily. More specifically,
in our application, we note how some erroneous RTL designs may be extremely
“close” to the correct one in the syntactic space and yet fundamentally “far” in
the netlist space. A case in point is a missing condition of assignment in a case
construct: a one-character difference in RTL can have such a drastic effect as
transforming a combinational circuit into an erroneous sequential circuit. As we
will show, our approach is perfectly capable of providing meaningful corrections
in such cases.

3.1 Common Error Library

The key intuition of our approach is that many of the errors we make as pro-
grammers and designers are relatively predictable in nature: we may mistake one
signal for another one which is electrically compatible (i.e., the same number of
bits and doesn’t cause a logic loop), and this may happen both on the right
side of an expression (a wrong input being used in the calculation) as well as
on the left side (the wrong signal being assigned). Or we may compute a wrong
logic or arithmetic function by replacing, for instance, an OR with an AND or
specifying a subtraction for an addition. Or, as already mentioned, we may for-
get some clauses in a conditional statement, leading to a variety of errors at the
netlist level including the potential for circuits (or subcircuits) to switch across
the combinational to sequential border. In different contexts, researchers have
already noted that this is an effective way to capture a large fraction of program-
ming errors [14]. Self-evidently, this approach cannot capture all possible errors.
For example, errors of omission (missing conditions in an expression, etc.) are
unlikely to be corrected with our general rules. However, we think there is great
practical value in efficiently capturing and correcting common errors and thus
freeing precious designer time for concentrating on only a relatively few hard
cases.

Our common error library has been developed by reflecting on our experi-
ence as RTL designers and by manually inspecting a large number of buggy
designs, including student assignments and bug fixes in open-source RTL repos-
itories. (We have excluded most of the circuits which we use as benchmarks;
more details about this aspect are given in Sect. 5.) At this point, the exten-
sible library contains only a few very general source-code trasformation rules

264 A. Becker et al.

Table 1. The common error library rules currently implemented in FudgeFactor.
Note that this is by no means a list of all rules one may add, or even an attempt at
capturing all of the most common RTL errors. Also note that the transformer rules
do not necessarily replace the subgraph matched on: the transformer rules insert the
possibility of using such a change, for which it is often necessary to add multiplexers,
signals, etc. to the AST.

Rule Checker (if the subgraph looks like...) Transformer (insert these options...)

A Signal indexing operation Indices and ranges may be shifted to
the left or right by one

B Incomplete case without default Signals assigned in case get a default
assignment of any compatible
signal, or a pure free variable

C If ... If ... Else assigning the same
signal

Allow use of a parallel If ... Else If ...
Else with the same conditions

D Signal in any statement explicitly
mentioned in candidate set

Allow referring instead to any
compatible signal

E A bitwise comparison operator Allow comparing with any other
bitwise comparison operator
instead

F A constant value on right-hand side;
not an index/range

Allow using instead any constant
value (a pure free variable)

G A ternary expression Allow using instead the same ternary
expression, but with the condition
inverted

described in Table 1. Although limited, it turns out that this is already very
effective.

3.2 Error Modeling

Error rules model common designer errors as modifications to the abstract syntax
tree (AST) obtained by parsing the input RTL. Because we work directly on the
AST, our rules are not limited to identifying line-by-line modifications. Our rules
can happily identify and propose corrections for errors spanning multiple lines.
Each rule is composed of two different parts: The first part, the rule checker,
determines whether the particular rule is applicable. The second part, the rule
transformer expresses the modifications to the AST necessary to include a set of
potential corrections. For example, the rule checker of the rule in Fig. 2 checks
whether an AST node represents a bitwise OR operator. If the rule checker
matches a particular node of the AST, the corresponding rule transformer is
executed and the AST is modified. Figure 2 is a simplified example of a rule one
might really want to implement; in practice, the rule checker would probably
match all bivariate Boolean operator nodes and allow the choice of any shows

FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization 265

Fig. 2. A visual example of an error rule. The designer has written the expression e :=
x | y and this rule suggests that what he or she might have meant was any other Boolean
function (e.g., AND, XOR, NOR) instead of OR. The rule checker is represented in the
left part of the figure and, in this elementary case, essentially says that this rule applies
potentially to any OR operation. The right part of the figure is the rule transformer,
which describes how the AST can be rewritten to allow the choice of such an alternative
Boolean operator. Note that this figure shows, for convenience, the rule in the form of
circuits, but rules are actually described and implemented using AST nodes and some
rule-specific ad-hoc code.

Fig. 3. A more complex rule checker. This rule checker is shown as an AST subtree
to match in the design AST. It approximately corresponds to rule C expressing the
fact that the designer might have forgotten an else clause in an if statement. This
shows some of the advanced quantifiers we use in our rules, such as the fact that two if
statement must exist in immediate succession within a block but the first one must not
have already an else clause. The example is slightly simplified compared to the actual
AST of the parser to improve readability.

the rule checker and rule transformer for a simplified version of such a rule
matching only an OR operator.

Rule checkers can perform both structural and property checks. Structural
checks are based on tree isomorphism (i.e., detecting if the structure of the AST
subtree matches a reference one): they detect subtrees of interest and discard
cases where the rule transformer should not be applied. We implement rule
checkers programmatically, although we think that it could be possible (but not
necessarily truly advantageous) to define a formal language syntax to succinctly
express the conditions desired. Property checks are used to gather relevant non-
structural information which is also needed to determine if the rule transformer
should be applied, such as checking whether two identifiers in the matched sub-
tree refer to the same constant value. Figure 3 shows the rule checker for rule C
and shows an application of some of the matching features described above.

266 A. Becker et al.

Rule transformers always instantiate the multiplexer structure illustrated
in Fig. 2, though not necessarily in the same AST location on which the rule
matched. These multiplexers select an input depending on some free variables.
If an assignment to these free variables is necessary to correct the design, the
2QBF solver will find the required assignment (this is described later in Sect. 3.4).
Some transformers include a second type of free variable—a pure free variable—
which can be used to correct constant values (see rule F). For example, the
condition check x < y+ 3 can be corrected to x < y+ 5 with this second type of
free variable.

As multiple rules may be triggered on the same AST node, we propose apply-
ing the rules following a predetermined ordering roughly going from rules that
are more specific to those that are more general. Although this case does not
happen with the common error library described here, Table 1 is ordered by
priority (the first rule is checked/applied first).

3.3 Instrumentation of the Buggy Circuit

To implement the error rules above, we have modified the frontend of Yosys [18],
an open source framework for RTL synthesis, to automatically instrument the
buggy input circuit. We perform a bottom-up, depth-first traversal of the AST
to trigger our code instrumentation. For each node in the traversal, we run
each rule checker’s structural and property checks around the AST location to
identify whether there exists a rule in the common error library which can be
applied. When a rule is triggered, the AST is modified to include the option of
replacing or modifying the original AST with multiple potential corrections. All
modifications result in additional primary inputs added to the faulty circuits:
these free variables control whether the circuit retains the original erroneous
behavior or is modified by some combination of changes caused by the rule
transformers.

The word “combination” above is important: our technique works perfectly
well to handle multiple simultaneously bugs, so long as they are each correctable
with the available rules. To ensure the solver not only chooses free variables which
give correct behavior, but also employ the minimal necessary number of changes,
we also add an extra primary output to the instrumented design that is asserted
when the number of non-zero free variables is less than some specified threshold.
This threshhold is then swept, beginning with only one change allowed and
ending with a user-specified maximum number of allowed changes. We arbitrarily
chose a maximum threshold of three changes for our experiments.

The next step is to construct a miter: a circuit where, through the solution
of a particular satisfiability problem, one can determine a concrete value for all
such free variables which render the circuit correct over all inputs.

3.4 The 2QBF Problem

SAT-based combinational equivalence checking is usually performed by con-
structing a special circuit, called miter, composed of the circuit under test and a

FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization 267

Fig. 4. Constructing a miter with test vectors. Since we have no functional reference,
we build some golden outputs from a small subset of passing test vectors and all the
failing test vectors we are trying to correct. The existance of a particular golden output
for a given set of primary input is used to determine whether the output comparison
is relevant or not.

Fig. 5. Minimizing source-code interventions. The implementation of each rule trans-
former stores the free variables used to select a candidate change. Once all of a module’s
AST has been checked and transformed, these free variables are collected and their
Boolean reduction is summed. The signal “isCorrected” above represents the negated
Boolean reduction we actually use. A non-zero Boolean reduction (thus, a non-zero free
variable) signifies that a multiplexer is configured to change the behavior of some part
of the circuit. The miter then counts the number of corrections applied to the circuit
and forces it to be below a fixed threshold.

functional reference circuit. In short, the solver determines if there is any input
assignment which violates the expected output value of the miter. A buggy
circuit will result in a satisfiable instance and any ‘witness’ returned is a coun-
terexample, or error trace. Formally stated, SAT solvers determine the truth of
the propositional formula:

∀x : test(x) ⇔ reference(x). (1)

In contrast, syntax-guided synthesis uses SAT solvers to determine the truth
of a slightly different propositional formula (formally, an exists-forall 2QBF) in
which the circuit test also consumes some vector of free variables h:

∃h ∀x : test(h,x) ⇔ reference(x). (2)

268 A. Becker et al.

This is equivalent to answering the question “does there exist some value
for the special inputs h such that for all inputs x, test and reference behave
identically?” The internal mechanics of the solver used in this work (see Sect. 5)
are beyond the scope of this paper and we do not claim any innovation on this
front. Yet, we need to construct the miter in a slightly particular way given our
context.

3.5 Miter Construction

Although the basic idea of the miter we use is pretty conventional for syntax-
guided problems, there are two aspects which are peculiar to our situation. First,
in our case we assume that a reference design is not available and that the error
is exposed by an error vector or trace used for functional simulation. Second, we
want to control (and thus minimize) the number of individual corrections to the
buggy code.

Figure 4 shows how we build the miter from the instrumented buggy cir-
cuit and a set of simulation traces, some of which expose the error. We add an
extra multiplexer at the output of the miter to ensure that the solver only tries
to match the output for the given input test vectors (as opposed to any input
assignment). Thus, our miter is trivially satisfied (i.e., the primary output is 0)
for all input stimuli not included in the subset of simulation traces we consider.
For those input stimuli which do match one of the simulation traces, the primary
outputs of the template are XORed with the correct output response. Accord-
ingly, our miter is satisfied by a given vector of free variables (i.e., by a specific
set of error rules correcting the error) when the functionality of the instrumented
circuit matches the correct output response for all input stimuli in our restricted
domain. One key advantage to using this construction as opposed to a golden
reference, aside from the typically-limited availability of such a golden reference,
is it enhances scalability. Of course, there is a trade off between scalability and
the ability of our method to find a real correction as opposed to simply turning
the buggy circuit into another buggy circuit which only works correctly for the
formerly failing vector and for a handful of other vectors. We will discuss later
our very encouraging practical findings, largely dependent on the selective appli-
cation of the error rules which we will describe soon in Sect. 4. Yet, irrespective
of our positive results, one should notice two points: First, we aim to provide
meaningful solutions to the designer and we assume that false solutions, such as
those potentially produced using too few passing test vectors, would be imme-
diately identified and discarded. Secondly, if this were not the case, it would be
easy for the designer to tentatively implement the correction and verify with his
or her standard verification flow if otherwise passing vectors now fail.

Besides the functional equivalence constraint, we also encode a second type
of constraint to force a minimum number of corrections in the buggy RTL code.
Figure 5 shows the logic responsible for this second check, mostly in the shaded
area annotated as “max rules check”. We simply sweep the value of the con-
stant threshold in successive runs of the 2QBF solver until we find the minimum

FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization 269

number of changes. We are thereby able to find the minimal source code mod-
ification(s), which we intuit is/are closest to what a human would do, and try
our best to rule out less general but still legal solutions.

One final type of constraint may be desirable. We do not consider multiple
solutions, but they can be easily handled. At each tested threshhold value, multi-
ple feasible solutions might exist for a couple reasons: either there is one or more
false solutions caused by eschewing an exact golden reference design in favor of
the test vector CAM, or there are simply multiple legitimate corrections which
each require the same number of RTL changes. In either case, at each solution,
the previous choice for non-zero free variables can be ‘blocked’, thus excluding
that same combination of RTL changes, until no more solutions exist. If multiple
solutions with the same number of changes are found, the user can be presented
with all of them, possibly ordered by some heuristic priority.

4 Selecting Areas for “Fudging”

Applying the error models described in Sect. 3 to the complete AST of a circuit
may possibly identify the right correction of the buggy circuit. Yet, both the
ability to generate any possible correction and the likelyhood that the correc-
tion is the intended one may be jeopardized by this näıve implementation of our
idea for a couple of reasons, both of practical and fundamental nature. First, we
deliberately selected in our common error library very general rules (Sect. 3.1).
This is key in capturing sufficiently broad cases which are typical of erroneous
implementations: we definitely meant to be generous with our rules (for instance,
as already mentioned, we imagine the library to be extended progressively with
new rules as their usefulness becomes apparent). The consequence of this “gen-
erosity” is that, were we to apply every rule on every possible AST node where
it can be applied, the 2QBF problem would soon become intractable even for
extremely simple circuits. A second, more fundamental problem, is that an indis-
criminate application of our error rules would arguably lead, in most practical
cases, to multiple possible solutions, some potentially quite far (both in terms of
RTL and netlist location) from the “natural” correction. We solve this issue by
relying on prior work in circuit debugging and using approximate and netlist-
based solutions to guide our instrumentation of the buggy specification.

4.1 SAT-Based Debugger

As Fig. 1 shows, we feed the output of a state-of-the-art debugger into Fudge-
Factor. This output (also called a solution) of a SAT-based debugger [15] is a
set of design components (RTL blocks, RTL code) that cause the propagation
of a failure. This debugger takes as input the RTL description of the design,
the expected behavior of the design over a set of test vectors, and returns an
over-approximate—but not necessarily precise—set of solutions (i.e., the design
component where the actual error is located is within this set). We use this tool

270 A. Becker et al.

to determine the locations on which our methodology should focus to try to cor-
rect the failure. The details of the particular SAT-based debugger we use are out
of the scope of this paper and the interested reader can refer to Smith et al. [15].
All we care for is that the solution it returns is useful to the designer in most
cases but contains enough ambiguity to require significant human analysis effort
to lead to the actual error correction. Specifically, we parse and load the output
of the SAT-based debugger and use this information to mark the correspond-
ing AST nodes of the input circuit description as suspect. We then simply add
one additional check when we implement the instrumentation pass described in
Sect. 3.3: we only apply a rule checker if the node is marked as suspect.

5 Experimental Methodology

We evaluated the performance and scalability of our approach on a range of
Verilog benchmarks taken from OpenCores [12]. Each benchmark has one bug
either injected artificially or taken from the version control history. These buggy
designs were not used to develop our common error library; they were obtained
from a third party, and we do not know which bugs were injected and which are
“organic”. We believe our results are broadly representative of how our approach
works for simple bugs in realistic circuits.

We rely on a commercial verification tool based on the work of Smith
et al. [15] to obtain an initial set of error candidate locations in the input Ver-
ilog. This initial set is significantly over-approximate or, in other words, contains
many false positives: most of the usually dozens of candidates are not actually
part of the error. We use this set in the instrumentation process as discussed in
Sect. 3.3 and unroll the resulting logic with ABC to handle sequential designs.
This unrolled circuit is then passed to the CEGIS 2QBF-SAT solver [16].

Importantly, as mentioned in Sect. 3.5, we do not rely on availability of a
golden reference circuit: we build a miter from only three passing test vectors.
The choice of three vectors is arbitrary here, and is a trade-off between avoiding
trivial, incorrect solutions, and scalability. While the topic of determining which
and how many vectors to include is certainly interesting, we leave a thorough
investigation to future work. The results described below appear to validate our
assumption that a few test vectors are enough to properly correct most circuits
with our approach: each correction found is exactly what a reasonable human
designer would write, and fixes the bug most generally.

SPI (Serial Peripheral Interface) is a serial, synchronous, full-duplex com-
munication protocol very widely used as a board-level interface between dif-
ferent devices such as microcontrollers, DACs, ADCs, and others. This core is
an SPI/Microwire compliant master serial-communication controller with some
additional functionality. There are four different buggy versions. The bug1 design
assigns the wrong signal to a control register; bug3 contains multiple erroneous
data assignments in the controller FIFO, and cannot be corrected with our
restrictive threshold.

FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization 271

AES (Advanced Encryption Standard) is a widely used block cipher with a
block size of 128 bits and a selectable key size of 128 to 256 bits. This is a
pipelined 128-bit AES design from OpenCores. This core has two buggy ver-
sions. The bug1 design is missing a subexpression in an assignment—something
our methodology is poorly suited to correcting. The bug2 design contains an
XOR which erroneously references the signal used in the immediately preceding
operation (a likely copy-paste error).

The Integer Divider Core is a parameterizable non-restoring signed-by-
unsigned integer division core. In our experiments we used a 16-bit dividend
and an 8-bit divisor. This design comes with seven different buggy circuits, some
of which we describe here:

– bug1. The bug erroneously clips a signal range by one, and concatenates a
two-bit constant instead of a one-bit constant. It is difficult to see how this
error would be likely to occur, or how it could be corrected with a general
rule.

– bug2. The bug is an erroneously switched set of function parameters; their
order should have been reversed. Because both parameters can be changed to
compatible signals, this can be corrected.

– bug3. In this version, the arguments of a function are both reversed, but
consist of array-indexing expressions. Our rules do not capture the possibility
of reversing the operands per se, although this could conceivably be corrected
with another fairly-general rule.

– bug4. The bug references the wrong array for computing the divisor. Instead
of reading the array s pipe, the designer made the mistake of reading from
array d pipe—a typo off by one key on a keyboard.

The MIPS CPU is available on GitHub [11]. We used the CPU design to
develop rules, prototype our tool flow, and validate our ability to actually solve
the problems we formulate. We injected simple errors that designers commonly
make and which we believe traditional debugging tools would have difficulty
with: leaving out a default statement in a case block (in bug1), and mistakenly
writing an if condition instead of an else if condition (in bug2).

6 Experimental Results

Tables 2 and 3 summarize the experimental results. The “# Free Var. Bits” col-
umn gives the total number of free variables used in the instrumented design
(including both the control signals of all multiplexers and all pure free vari-
ables representing constants). The “Solver Time” column shows the cumulative
solver time spent on each experiment. For example, those experiments which
failed include the solver time used sequentially for all three attempted threshold
values (1, 2, and 3). The “# RTL Changes” column describes the number of
error candidate locations in the Verilog which needed fixing (for the benchmarks
where a correction was found)—in other words, it is the minimum number of
multiplexer free variables (“isCorrected” in Fig. 5) which need to be non-zero in

272 A. Becker et al.

order to correct the bug. The “Solved?” column reports if the solver was actu-
ally able to find a solution with three or fewer changes. Note that even with
our relatively sparse common error library, FudgeFactor was able to correct
nearly half the simple bugs in the third-party designs.

Table 2. Those experiments listed above the break were provided by a third-party and
not used to develop rules; those below the break are contrived, but show meaningful
results. Note that we correct nearly half of the non-contrived experiments. Note also
that all solutions are indeed those which an oracle would provide: exactly what any
reasonable human designer would provide. “# Matched Nodes” lists how many AST
nodes matched one (or more) of our rules. Finally, “SLOC” represented the lines of
RTL source code (excluding comments, etc.).

Buggy # RTL Solved? Oracle Fixing Applied Total # Matched SLOC

Design Changes Soln.? Rule(s) Rules AST Size AST Nodes

spi bug1 1 � � D ABDEF 2968 20 271

spi bug2 – × – – BD 2964 2 266

spi bug3 – × – – DEF 2968 10 266

spi bug4 1 � � F ABDF 2968 13 266

aes bug1 – × – – ADFG 5080 19 467

aes bug2 1 � � D ABDG 5251 33 467

div bug1 – × – – ADF 2486 13 163

div bug2 2 � � DD AD 2478 8 165

div bug3 – × – – ADF 2486 13 165

div bug4 1 � � D ADF 2502 10 165

div bug5 – × – – ADF 2516 15 168

div bug6 – × – – ADF 2528 20 165

div bug7 2 � � DD ADF 2510 12 165

cpu bug1 1 � � B BDG 3842 4 530

cpu bug2 1 � � C CDEF 3846 5 531

The “Fixing Rule(s)” column describes which rule(s) were essential to correct
the bug. In this column, we see that one rule appears with striking regularity:
rule D (see Table 1). This should come at no surprise, as this is one of the
most general rules in our library. “Applied Rules” lists all rules which were
employed in the instrumentation phase for each experiment. Finally, “Oracle
Sol.” indicates whether the correction returned matches that which an oracle
would give: if the changes were what any reasonable designer would do, we say,
“yes” here. Importantly, all of the solutions found were indeed “oracle solutions”.
Although we do not, and will never, solve every bug, FudgeFactor reports no
false positives while maintaining a reasonable true positive rate. We should also
emphasize that the true positive rate is artificially lowered by our decision to
develop the rules with only a limited set of examples and mostly based on our
intuition as designers: as mentioned, we have treated all buggy designs above the

FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization 273

Table 3. More information on the experiments. We show the total number of free
variable bits inserted, the total solver time, the size (in And-Invert gates as reported by
ABC) of the associated golden reference design, the number of frames it was unrolled,
and the total blowup (i.e., how much larger the instrumented circuit is than the unrolled
golden reference design.

Buggy # Free Var Total Solver # Golden Unroll Blowup

Design Bits Time (s) Gates Frames

spi bug1 92 1.90 14468 20 2.94x

spi bug2 8 1.69 14468 20 1.20x

spi bug3 35 2.23 14468 20 1.90x

spi bug4 65 1.66 14468 20 2.14x

aes bug1 373 18.71 86878 6 1.07x

aes bug2 62 517.40 86878 6 1.29x

div bug1 33 32.28 96767 48 2.30x

div bug2 20 71.47 96767 48 2.12x

div bug3 30 21.82 96767 48 2.28x

div bug4 26 78.90 96767 48 2.24x

div bug5 37 49.05 96767 48 3.20x

div bug6 32 17.75 96767 48 1.99x

div bug7 30 101.46 96767 48 3.15x

cpu bug1 12 87.53 34294 15 2.28x

cpu bug2 46 60.05 34294 15 2.56x

break as a clean test-set which has not been used to develop rules. On the other
hand, in practice, the extensibility of the common error library is a fundamental
part of our approach and many (but not all) of the unsolved designs could be
fixed by developing additional general rule.

These tables also include some information which can be useful in deter-
mining how practical our approach is and validating our use of the SAT-based
debugger to compute an over-approximate error set; our general rules would not
scale if they matched many more nodes. As rule D shows, our strength is in
using fairly general rules, but this comes at a cost: Without hints of where to
look, we would be forced to use less general rules and fundamentally limit our
ability to find bugs.

7 Conclusions

Since humans introduce bugs in the language they use to describe their designs,
we formulated the problem of error localization and correction of a buggy RTL
circuit as the problem of synthesizing a correct circuit with minimal syntactic
distance from the buggy specification. To “fudge” the buggy specification into

274 A. Becker et al.

a rich variety of possible alternate circuits, we have used an empirical library of
error models that tries to capture common errors humans make. Although our
rules are quite general and produce a very generous set of alternate versions, we
use them sparingly by leveraging other over-approximate, better-scalable bug
localization tools. We have shown, though a controlled test-set that we have not
used to develop the inital set of rules, that we can correct a reasonably large set
of errors and, most strikingly, in all cases we can correct, we obtain exactly the
RTL code a human designer would have produced. As the library of common
errors is extensible, we think that the success rate could be improved significantly
with acceptable impact on runtimes. Nevertheless, this technique is clearly not a
complete solution—it will never find all possible bugs; yet, we believe it could be
invaluable in presenting, in most cases, intuitive and immediately understandable
solutions to the designers and thus in freeing up precious time for them to focus
on the comparatively rare hard cases where we would inherently fail.

References

1. Alizadeh, B., Behnam, P., Sadeghi-Kohan, S.: A scalable formal debugging app-
roach with auto-correction capability based on static slicing and dynamic ranking
for RTL datapath designs. IEEE Trans. Comput. 64(6), 1564–1578 (2015)

2. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Proceedings of the 13th Conference on Formal Methods in Computer-Aided Design,
Portland, OR, pp. 1–8, October 2013

3. Bloem, R., Wotawa, F.: Verification and fault localization in VHDL programs. J.
Telematics Eng. Soc. 2, 30–33 (2002)

4. Chang, K.H., Markov, I., Bertacco, V.: Fixing design errors with counterexamples
and resynthesis. In: Proceedings of the Asia and South Pacific Design Automation
Conference, Yokohama, Japan, pp. 944–949, January 2007

5. Chang, K.H., Wagner, I., Bertacco, V., Markov, I.: Automatic error diagnosis and
correction for RTL designs. In: Proceedings of the High Level Design Validation
and Test Workshop, Irvine, CA, pp. 65–72, November 2007

6. Chung, P.Y., Hajj, I.N.: ACCORD: Automatic catching and correction of logic
design errors in combinational circuits. In: Proceedings of the International Test
Conference, Baltimore, MD, pp. 742–751, September 1992

7. Chung, P.Y., Wang, Y.M., Hajj, I.N.: Logic design error diagnosis and correction.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2(3), 320–332 (1994)

8. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty
programs. In: Proceedings of the Third International Conference on Software Test-
ing, Verification and Validation, pp. 65–74, April 2010

9. Foster, H.: Trends in functional verification: a 2014 industry study. In: 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2015

10. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238.
Springer, Heidelberg (2005)

11. Mahler, J.: A MIPS CPU written in Verilog. https://github.com/jmahler/
mips-cpu. Accessed 24 April 2015

12. OpenCores: Opencores database. http://www.opencores.org

https://github.com/jmahler/mips-cpu
https://github.com/jmahler/mips-cpu
http://www.opencores.org

FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization 275

13. Peischl, B., Wotawa, F.: Automated source level error localization in hardware
designs. J. IEEE Des. Test Comput. 23(1), 8–19 (2006)

14. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Seattle, WA,
pp. 15–26, June 2013

15. Smith, A., Veneris, A., Ali, M.F., Viglas, A.: Fault diagnosis and logic debugging
using Boolean satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst.
CAD 24(10), 1606–1621 (2005)

16. Lezama, A.S.: Program synthesis by sketching. Ph.D. thesis, UC Berkeley, Decem-
ber 2008. http://eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html

17. Staber, S., Jobstmann, B., Bloem, R.: Finding and fixing faults. J. Comput. Syst.
Sci. 78(2), 441–460 (2012)

18. Wolf, C., Glaser, J., Kepler, J.: Yosys - a free Verilog synthesis suite. In: Proceedings
of 21st Austrian Workshop on Microelectronics, Linz, Austria, October 2013

http://eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html

On Switching Aware Synthesis
for Combinational Circuits

Jan Lanik(B) and Oded Maler

VERIMAG CNRS and University of Grenoble, Grenoble, France
{jan.lanik,oded.maler}@imag.fr

Abstract. We propose a synthesis algorithm for combinational circuits
which optimizes the expected number of gate switchings induced by typ-
ical sequences of input vectors. Our algorithm, which is based on simple
observations concerning AND gates, performs quite well on sequences
produced by the same probabilistic models used to generate the training
sequences.

1 Introduction

Digital circuit synthesis [3,7,8,15] from higher level descriptions to technol-
ogy dependent standard cells is one of the core activities in Electronic Design
Automation (EDA), well-studied in academic research and implemented in pow-
erful commercial tools. This is the hardware analog of optimizing compilation,
and indispensable tool in producing efficient chips. Traditionally, the major opti-
mization objectives in synthesis have been area and speed, associated with the
depth of the circuit from primary inputs to outputs. In the last decades, power
consumption has become a no less important performance measure for reasons
that need not be repeated here [1,2,4,14]. In this work we develop a new synthesis
algorithm geared toward reducing the expected number of switchings in the cir-
cuit, an important ingredient in its power consumption. This work can be viewed
as part of the trend to apply formal technology (abstract reasoning on Boolean
functions and automata) outside the traditional scope of verification, namely
handling quantitative properties such as timing and power consumption that
were considered non-functional properties, and applying optimization/synthesis
rather than evaluation/verification with respect to them.

Figure 1 sketches a possible logic synthesis flow. Starting from a multi-level
logic specification, the circuit is brought into a form of an And-Inverter Graph
(AIG) consisting solely of and and not gates. This representation is than
mapped into a concrete technology of standard cells admitting physical proper-
ties such as size and electrical characteristics. Syntactically AIGs are composed
from 2and gates but by collapsing together all not-free “cones”, we obtain a
semantically-equivalent function constructed from and gates of unbounded fan-
in (arity). Part of the technology-dependent mapping can be viewed as decom-
posing those ands into networks of 2ands and this is the problem we address
in this paper.
c© Springer International Publishing Switzerland 2015
N. Piterman (Ed.): HVC 2015, LNCS 9434, pp. 276–291, 2015.
DOI: 10.1007/978-3-319-26287-1 17

On Switching Aware Synthesis for Combinational Circuits 277

x1

x2

x3

X = x1 · x2

Y = x̄2 + x3 y

Z = X + Y z

x1

x2

x3

y

z

x1

x2

x3 y

z

2NANDXU37

2NANDXU37

INVBC5
INVBC5

2NORXU6

Fig. 1. A logic synthesis design flow: from multilevel logic specification to And-Inverter
graphs to standard cells.

Dynamic power consumption of Boolean gates is associated essentially with
their switchings between 0 and 1. In this work we consider synchronous combi-
national circuits that process sequences of input vectors. For each input vector, a
circuit propagates values from input to output ports until it stabilizes and then
reads the next input. The overall number of switchings associated with a pair of
inputs is the number of gates whose stable value for one input is different from
their value for the next input. For one such pair it is possible to steer the syn-
thesis process and obtain a circuit with significantly less switchings compared to
other arbitrary circuits that realize the same function. But of course, any circuit
will process during its lifetime a long sequence consisting of diverse consecutive
pairs of input vectors and optimizing synthesis with respect to all those is a
challenging problem.

One natural approach is to define some probability function over sequences of
input sequences, induced, for example, by a Markov chain which generates them.
However, even the evaluation of the expected number of switchings in a given cir-
cuit is an intractable problem for non-trivial probabilistic generators with many
input variables. As an alternative we develop in this paper a switching-aware

278 J. Lanik and O. Maler

synthesis procedure which optimizes the circuit relative to a reference sequence
supposed to represent a typical input. In essence, the algorithm estimates the
expected amount of switchings associated with a conjunction of any pair of input
variables and then solves an optimal perfect matching problem to decide which
variables to pair together as inputs to a 2and gate. The procedure obtains quite a
good switching reduction compared to arbitrary realizations of the same function
by circuits of the same topology.

We then study the question of optimization with respect to inputs gener-
ated by Markov chains of small description size, that is, networks of sparsely-
interacting 2-state probabilistic automata. We use such networks to generate the
reference (training) sequences and then measure the performance gains on other
sequences generated from the same model. We perform experiments on models
of varying degree of variable dependencies and other assumptions on the inputs
and we obtain significant reduction in switching activity. Finally, we introduce
a reduced model of an instruction decoder and evaluate our procedure under
probabilistic assumptions concerning the instruction stream.

2 Problem Statement

Our starting point is a Boolean circuit constructed from unbounded fan-in and
gates and not gates and our goal is to replace the and gates by 2and gates,
yielding a semantically equivalent circuit C. Once we have a good solution for
the and-to-2and problem we can apply it to any and in the AIG and solve the
synthesis problem for the whole circuit. From now on we consider a function f :
(x1, . . . , xn) �→ x1∧· · ·∧xn and a target circuit C which is a properly structured
directed acyclic graph whose nodes are 2ands of the form g : (x1, x2) �→ x1 ∧x2.
We denote the input space B

n by X and the state-space of C, that is, the set of
possible values in the output ports of all its gates, as Y = B

m. The synthesized
circuit C can be viewed as a memoryless transducer from X∗ to Y ∗ such that for
every t, y[t] is the stable state of the circuit after processing x[t]. The amount
of switching in C relative to input x and at time t is

S(C, x, t) = Δ(y[t − 1], y[t])

where Δ is the Hamming distance between Boolean vectors. The total amount
of switching while reading a sequence x ∈ X∗ is

S(C, x) =
|x|∑

t=1

S(C, x, t).

A circuit C is better than C ′ relative to x if S(C, x) < S(C ′, x). We want to
build circuits which are optimal or reasonable in this sense. A major issue is
what to assume about the set of inputs used to evaluate S(C, .). One can think
of two approaches.

On Switching Aware Synthesis for Combinational Circuits 279

1. Assume some probability function P on X∗, or more precisely a family of
probabilities Pk : Xk → [0, 1], defined for example via a Markov chain, and
then attempt to optimize the expected number of switchings per time step

S(C,P) = lim
k→∞

∑

x∈Xk

Pk(x) · S(C, x)/k.

2. Use a long reference sequence x and evaluate C according to S(C, x).

We will use a mixture of these two approaches. We optimize S(C, x) for some
training sequence x generated by a Markov chain and then evaluate the synthe-
sized circuit according to the number of switchings that occur while processing
other sequences generated from the same chain.

3 Input Pairing for and Gates

The principle underlying switching reduction for and gates is simple. Among
all elements of X only a single vector 1 = (1, . . . , 1) satisfies f(x) = 1. Input
transitions of the form x → x′ such that x �= 1 and x′ �= 1 will not change the
primary output. They can change, however, the values of intermediate gates that
realize a conjunction of a subset of the input variables. We call such transitions
useless and our goal is to “abort” them as soon as possible.

x1

x2 x3 x4 x5 x6 x7 x8

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

0 → 1

0 → 0

x1

x2

x3

x4

x5

x6

x7

x8

0 → 0

0 → 1
0 → 1

0 → 1
0 → 1

0 → 1
0 → 1

0 → 1

0 → 0

0 → 1

0 → 1

0 → 1

0 → 0

0 → 1

0 → 0

Fig. 2. For an input transition (0, 0, 0, 0, 0, 0, 0, 0) → (0, 1, 1, 1, 1, 1, 1, 1) a chain real-
izations can abort all switchings but a tree cannot.

280 J. Lanik and O. Maler

There are numerous realizations of f by 2ands, all using n−1 gates. Among
those, one can single out two extreme topologies, the sequential chain, whose
depth is n − 1 and the balanced tree with depth d = log n. Since circuit depth
determines propagation delay from input the output, speed considerations favor
balanced trees and we will focus in this paper on those. Balanced trees bring
some regularity to the problem, allowing us to work recursively on the levels of
the tree from 0 (primary inputs) to d − 1. Note, however, that chains tend to
be more efficient in switching reduction in and gates because they can abort
useless switchings earlier as shown in Fig. 2. We have implemented also a version
of our procedure, not reported here, which does not commit a priori to the circuit
topology and which can be applied when power consumption is considered much
more important than latency.

For the fixed balanced tree topology, the synthesis problem reduces to map-
ping input variables to the circuit input ports. The problem can be phrased
recursively as follows. At level i of the tree, 2d−i inputs should be partitioned
into pairs to be mapped into 2d−i−1 2and gates. To understand which input
signals should be paired together, let us look at Table 1-(A) which shows which
transitions are taken by the output as a function of the transitions taken by the
inputs. Table 1-(B) shows the number of output switchings in each case while
Table 1-(C) shows the net switching reduction effect, namely, the number of
input switchings minus the number of output switchings. It is intuitively clear
that for one consecutive pair of inputs, we should pair together variables taking
respective transitions 1 → 0 and 0 → 1. Such transitions cancel each other and
send as inputs to the next level a variable doing 0 → 0 which will not trigger

Table 1. (A) The output transitions of an and-gate as a function of the input tran-
sitions; (B) The number of switchings associated with every pair (u → u′, v → v′) of
input transitions; (C) the net switching reduction: number of input switchings minus
output switching.

On Switching Aware Synthesis for Combinational Circuits 281

x1

x2

x3

x4

x5

x6

x7

x8

0 → 1

0 → 1
0 → 1

0 → 1
1 → 0

1 → 0
1 → 0

1 → 0

0 → 1

0 → 1

1 → 0

1 → 0

0 → 1

1 → 0

0 → 0

x1

x5

x2

x6

x3

x7

x4

x8

0 → 1

1 → 0
0 → 1

1 → 0
0 → 1

1 → 0
0 → 1

1 → 0

0 → 0

0 → 0

0 → 0

0 → 0

0 → 0

0 → 0

0 → 0

)b()a(

Fig. 3. Two pairings for input transition (0, 1, 0, 1, 0, 1, 0, 1) → (1, 0, 1, 0, 1, 0, 1, 0):
(a) a bad pairing with 6 switchings; (b) a good pairing with no switchings.

further switching with any other input it will be paired with Fig. 3 shows two
circuits and their performance differences with respect to a single consecutive
pair of input vectors.

Let Rjk(u, u′, v, v′) be the probability that a pair (xj , xk) of input variables
takes the joint transition (u → u′, v → v′). When the inputs are generated
by a Markov chain, these probabilities can be derived from the steady state
of the chain which is, however, typically too hard to compute. Given a refer-
ence sequence x, we can approximate Rjk(u, u′, v, v′) by computing the number
of occurences of the given transition in the sequence. Denoting the number of
switchings associated with a pair of transition u → u′ and v → v′ (Table 1-(B))
by s(u, u′, v, v′) (always 0 or 1), the expected number of switchings in xj ∧ xk is

μjk =
∑

u,u′,v,v′
Rjk(u, u′, v, v′) · s(u, u′, v, v′).

Let G = (V,E, μ) be a complete graph with n nodes where each edge (j, k) is
labeled by μjk. For the first level of the tree, the problem of finding input pairing
which is optimal in terms of expected total number of switching is equivalent to
the optimization problem known as minimal-weight perfect matching [12] for G.
Once such an optimal pairing is found for level i, the outputs of the gates at this
level serve as inputs for the pairing problem of the next level as summarized in
Algorithm 1. The first polynomial algorithm for the optimal matching problem
dates back to [5] using linear programming. The complexity of the algorithm has
been improved in [10] from O(n4) to O(n3). Thus, together with the computation
of μ from the training sequence the complexity of our procedure is O(n2 ·|x|+n3).

The results of the algorithm may deviate from the optimal expected number
of switchings for three reasons. First, it is not based on the real value of μ but on
its approximation from the training sequence. Secondly, it works by levels in a

282 J. Lanik and O. Maler

Algorithm 1. Synthesizing a balanced-tree circuit for a conjunction of n vari-
ables.
procedure Synthesize(x)

Input: A Boolean sequence x of dimension n = 2d

Output: A balanced-tree circuit C realizing x1 ∧ · · · ∧ xn

i := 0
while i < d − 1 do

x :=Reduce(x, d − i)
i := i + 1

end

function Reduce(x, i)
Input: A Boolean sequence x of dimension m = 2i

Output: An optimal pairing and a Boolean sequence y
of dimension 2i−1

forall j �= k ∈ [1..i] compute μjk

let G = (N, E, μ) be the corresponding weighted graph
M :=optimal match(G) = {(xr1 , xr2), . . . , (xrm−1 , xrm)}
y := (xr1 ∧ xr2 , . . . , xrm−1 ∧ xrm)
return(y)

level-greedy fashion and hence, in principle, it is not guaranteed to produce the
optimal among all circuits. Finally it does only statistics for pairs of variables and
ignores more complex dependencies between three or more variables that may
influence the outcome. However, as the experimental results show, it constitutes
a very effective heuristics. We have implemented the algorithm and evaluated
it empirically on purely synthetic examples and then on a realization of an
instruction decoder. In the current implementation, since we limit the evaluation
to n = 16, we find the optimal matching by enumeration.

4 Evaluation: Synthetic Boolean Models

We evaluate our algorithm against different classes of probabilistic
16-dimensional input generators. To define probabilities over X∗ using arbitrary
Markov chains we need to handle transition matrices of size at least 2n ×2n. For
large n even writing down such a matrix is infeasible, not to mention computing
its steady state probability. As is common in domains such as probabilistic veri-
fication and performance analysis, we use a compositional model consisting of a
network of sparsely-interacting probabilistic automata. A probabilistic automa-
ton A = (Q,Σ, δ) is an input-dependent Markov chain where every input letter
σ ∈ Σ induces a different transition matrix over state-space Q. The probabilistic
transition function is thus of the form δ : Q × Σ × Q → [0, 1] satisfying

∑

q′∈Q

δ(q, σ, q′) = 1

On Switching Aware Synthesis for Combinational Circuits 283

for every q and σ. A Markov chain can be viewed as a degenerate probabilistic
automaton without an alphabet and a transition function of the form δ : Q×Q →
[0, 1].

Let N = {1, . . . , n}. A network of n interacting probabilistic automata is
given as A = (A1, . . . ,An, h) where Ai = (Qi, Σi, δi) and h : N → 2N is an
influence function such that h(i) is the set of the other automata (besides itself)
whose states are observed by Ai and influence its transitions. In our network
each automaton has a state-space encoded by one bit, Qi = B, and an input
alphabet Σi = B

|h(i)| which is the state-space of the influencing automata. The
composition of the automata yields a global Markov chain (Q, δ) with Q =
Q1 × . . . Qn = B

n. The local input letter read by automaton Ai in a global state
q is the projection of q on the variables in h(i) that we denote by πi(q). The
transition function of the global Markov chain is defined as

δ((q1, . . . , qn), (q′
1, . . . , q

′
n))

=
δ1(q1, π1(q), q′

1) · δ2(q2, π2(q), q′
2) · · · δn(qn, πn(q), q′

n).

The structure of h(i) can be used to classify models according to variable
interaction. When the maximum of |h(i)| is small, the system admits a small
description from which random sequences for training and evaluation can be
generated.

For each class of models we draw model instances randomly and measure
the reduction obtained by our algorithm with respect to inputs generated by
the model. All model classes share a tuning parameter α ∈ [0, 1] intended to
quantify the degree of regularity in the input sequences which can be exploited
to come up with good input pairing. Whenever we need to fix a probability while
defining a model instance, we draw it from Iα defined as

Iα =

⎧
⎨

⎩

[0, α] ∪ [1 − α, 1] when α ≤ 1
2

[α − 1
2 , 1 − (α − 1

2)] when α ≥ 1
2

The regularity in the inputs (and the potential effectiveness of our procedure)
is monotone decreasing with α. When α = 0 the probabilities are taken from
{0, 1} and the resulting model is deterministic. When α = 1/2 the probabilities
are drawn from the whole interval [0, 1] and when α = 1 all probabilities in the
model instances are equal to 1/2. In this case there is no regularity in the input,
all sequences of states and transitions are uniformly distributed and no switching
reduction is expected because any input pairing would be as good as another.

The whole experimental protocol is summarized in Algorithm 2. For each
model class and value of α, we draw randomly a set {M1, . . . , M50} of model
instances. For each instance Mi we generate a training sequence xi of length
10000, apply our algorithm and synthesize an optimized circuit Ci. We generate
an evaluation sequence xi of length 10000 and let Si be the number of switchings
it induces in Ci. Then we draw a set {Ci1, . . . Ci20} of arbitrary circuits, let Si be
the average number of switchings induced by xi in these circuits and let Ri be

284 J. Lanik and O. Maler

Algorithm 2. Average switching reduction evaluation for a class of probabilistic
input generators.
Input: A class of probabilistic input generators
Output: An estimation R of the average switching

reduction obtained by our algorithm
for i := 1 to 50

draw a model Mi

generate a training sequence xi of length 10000
Ci :=Synthesize(xi)
generate an evaluation sequence xi of length 10000
Si := S(Ci, x)
for j = 1 to 20

draw a circuit Cij

Sij := S(Cij , x)
end
Si :=averagej Sij

Ri := (Si − Si)/Si

end
R :=averagei Ri

the relative improvement in Si relative to Si. Finally R is the average reduction
over all model instances of the same class.

Independent Inputs. We start by evaluating the switching reduction for two
simple cases where the input variables are independent of each other. The first
is the case where the value of each xi is drawn according to a stateless Bernoulli
process with parameter ai while in the second model each bit is generated by an
independent Markov chain with parameters ai and bi. The respective transition
matrices are:

(
ai 1 − ai

ai 1 − ai

)
and

(
ai 1 − ai

1 − bi bi

)

For these models μjk is computed analytically (see Table 2) without a training
sequence. Figure 4-(a) shows for these two model classes the average reduction
obtained by our algorithm as a function of α. In both cases the reduction is
around 70 % when the system is close to deterministic and 30 % when probabil-
ities are taken from [0, 1].

Cascades. Next we explore the class of cascade structures where the automata
are ordered and each automaton observes the state of some of its predecessors.
A network is a cascade of depth k if h(i) = {i − k, . . . , i − 1} and the number
transition matrices for each automaton is 2k. The results for cascades of depth
1 and 2 are plotted in Fig. 4-(b). For depth 1 the reduction ranges from 70 % for
close to deterministic inputs to 15 % for α = 1/2 while for depth 2 the range is
from 50 % to 10 %.

On Switching Aware Synthesis for Combinational Circuits 285

Table 2. (a) The probabilities of transition pairs for two sequences generated by:
(a) Bernoulli processes with parameters aj and ak; (b) independent Markov chains
with parameters aj , bj and ak, bk.

Partitioned Variables. Next we applied our procedure to a network where
the variables are partitioned into clusters of size 2 and 4 and each automaton
observes only the states of the automata in its cluster. The results are plotted
in Fig. 4-(c). For 2-clusters the range or reduction is between 65 % for almost
deterministic inputs and 15 % for α = 0.5, while for 4-clusters the corresponding
reductions are less than 50 % and 10 %.

Arbitrary Sparse Network. In the last class of examples we consider arbi-
trary networks where each automaton observes the states of k randomly chosen
other automata. Figure 4-(d) shows the results obtained for k = 2 and 4. In the
former case we obtain 45 % for α = 0.05 and around 5 % for α = 0.5, while
for the latter we obtain the worst results: less than 10 % for quasi-deterministic
inputs and less than 5 % when probabilities are drawn anywhere in [0, 1].

286 J. Lanik and O. Maler

)b()a(

)d()c(

Fig. 4. The average switching reduction as a function of the uniformity parameter
α for different input models: (a): Independent inputs – Bernoulli (dashed red) and
Markov processes. (b): Variables are arranged in a cascade structure of depth 1 (dashed
red) and 2 (c): Variables are partitioned into mutually-dependent clusters of size 2
(dashed red) and 4 (d): Each variable depends on 2 (dashed red) and 4 other arbitrary
variables(Color figure online).

Table 3 shows the average number of absolute switching elimination per gate
in one time step. Upon closer inspection we observe that the results become
consistently worse as the number of variables observed by an automaton becomes
larger, quite independently of the interaction pattern. This may be an artifact
of the way we generate model instances. The reason is that when an automaton
has several transition matrices, the values of an entry (u, v) in different matrices
may be taken from opposite sides of Iα, cancel each other an render the behavior
of the variables more random and less regular.

5 Evaluation: A Mini Instruction Decoder

Finally, we synthesize a mini instruction decoder, where we apply our procedure
to a full AIG. We consider a very simple hand-held calculator whose instructions
are listed in Table 4. The instruction are encoded using 4 bits although 3 bits
would suffice, to reflect the fact that in a real application often not all the possible
input combinations are used.

On Switching Aware Synthesis for Combinational Circuits 287

Table 3. The absolute reduction in number of switching per gate per time step for all
the models.

α Bern iMar casc1 casc2 part2 part4 spar2 spar4

0.05 0.115 0.110 0.117 0.102 0.118 0.060 0.093 0.020

0.10 0.106 0.104 0.105 0.076 0.091 0.041 0.075 0.017

0.15 0.095 0.097 0.089 0.060 0.081 0.037 0.057 0.015

0.20 0.093 0.091 0.079 0.050 0.074 0.029 0.047 0.013

0.25 0.084 0.088 0.066 0.041 0.061 0.023 0.040 0.011

0.30 0.084 0.081 0.063 0.032 0.055 0.019 0.032 0.009

0.35 0.071 0.071 0.048 0.029 0.049 0.016 0.027 0.008

0.40 0.065 0.067 0.040 0.022 0.043 0.013 0.023 0.007

0.45 0.063 0.061 0.037 0.021 0.036 0.012 0.021 0.006

0.50 0.054 0.057 0.036 0.019 0.031 0.011 0.018 0.005

0.55 0.040 0.044 0.026 0.013 0.024 0.008 0.014 0.004

0.60 0.031 0.031 0.018 0.010 0.017 0.006 0.010 0.002

0.65 0.023 0.024 0.013 0.007 0.013 0.004 0.006 0.002

0.70 0.016 0.017 0.009 0.005 0.009 0.002 0.004 0.001

0.75 0.010 0.011 0.006 0.003 0.005 0.001 0.003 0.001

0.80 0.007 0.007 0.003 0.002 0.003 0.000 0.001 0.000

0.85 0.003 0.003 0.001 0.000 0.001 0.000 0.000 0.000

0.90 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4. The instruction set of the calculator.

Instruction Code Meaning

LOAD 1001 Loading from numerical keys

LOADM 1010 Loading from memory

SET ADD 1100 Pressing ‘+’

SET SUB 1101 Pressing ‘−’

SET MUL 1110 Pressing ‘×’

SET DIV 1111 Pressing ‘÷’

EVAL 0000 Pressing ‘=’

STORE 0101 Saving result to memory

We assume that the typical use of the calculator will be just to perform an
operation (add, subtract, multiply, divide) on two numbers entered from the
numeric keypad. More sophisticated users might perform more complex opera-
tions, say add three numbers at once, but with a lower probability. The Markov
model for instruction sequences is depicted in Fig. 5 and explained below:

288 J. Lanik and O. Maler

start set op op set loaded

store

plm:LOADM

1−plm:LOAD

padd:SET ADD

psub:SET SUB

pmul:SET MUL

pdiv:SET DIV

plm:LOADM

1−plm:LOAD

psm:EVAL

1−psm:EVAL

STORE

Fig. 5. The probabilistic model of the instruction generator.

1. With probability plm load an argument previously stored in memory, other-
wise just type in some number as the first argument.

2. Press one of {+,−,×,÷} with respective probabilities {padd, psub, pmul, pdiv}.
3. Load the second argument either from memory (probability plm) or by typing

the number.
4. Evaluate by pressing ‘=’ and then with probability Psm store the result in

memory.

For the experiment we set the parameters of the model as follows:

plm = 0.1 padd = 0.4 psub = 0.3
pmul = 0.2 pdiv = 0.1 psm = 0.1

Fig. 6. A comparison of the number of switchings in the optimized instruction com-
pared to 20 other arbitrary realizations. The height of bars shows how much switching
can be saved using the optimized circuit compared to that realization.

On Switching Aware Synthesis for Combinational Circuits 289

We generate from the model a training sequence of size 20000 and use it to
synthesize an optimized circuit denoted by OC. For evaluation purposes we gen-
erate an input sequence of length 100000 and compare the number of switchings
it induces in OC with 20 randomly drawn implementations of the decoder. The
results are shown in Fig. 6. Note that there is a large variation in the number of
switchings among the different realizations. Circuit OC was always better than
any of the other circuits and on the average achieved a reduction of 16.49 %.
Naturally these results are also sensitive to the uniformity of the probabilities.
For example when we set plm = 0.25 and Psm = 0.2 we obtained a smaller
reduction of 12.53 %.

6 Discussion

The interest in switching reduction and in the evaluation of circuit behavior
against probabilistic models in general [6] is not new. Concerning switching
reduction we can distinguish between an abstract approach like ours which
focuses only on the number of transitions as an approximate indicator of power
consumption and more physical approaches that map abstract circuits onto a
concrete technology where power consumption can be measured more accurately.
The work of [16] which belongs to the second category, mentions the abstract
problem that we solve here as a suggestion for future work that could be plugged
upstream to their own work on power-aware mapping using a real technology
library. The work of [19] is also of this type, mapping abstract AIGs to real gates.
The input is specified as a set of input vectors (patterns) and simulation with
these patterns is used to estimate power consumption for different mappings
alternatives onto real gates from a library.

The work of [17,18] applies a similar reasoning concerning input pairing
for 2and gates and uses a variant of Huffman’s algorithm for constructing a
binary tree with minimal average weighted path length [9]. However, this work is
restricted to the case were variables are assumed to be generated by independent
Bernoulli processes while our approach is applicable to any small-description
Markov process or any user-provided training sequence. Moreover, they use a
greedy pairing algorithm such that at each step of the algorithm one pair of vari-
ables, the one which induces the least expected number of switching is selected
as an input to an and gate. Experiments show that our scheme which treats
at once a complete level of the tree via optimal matching is significantly more
efficient.

The work of [11] also uses Huffman’s algorithm but in a different way that
seems to yield a random balanced tree. They do not give any explicit proba-
bilistic model but introduce some delay assumptions and claim their algorithm
to be optimal in terms of reducing only the switching activity which is due to
glitches. This is the place to mention that as we do not model gate delays, we
cannot detect glitches but one may argue that their importance in balanced trees
structures is less pronounced. The work of [18] is extended significantly in [20]
who give an optimal algorithm for unbounded depth 2and synthesis, restricted

290 J. Lanik and O. Maler

to a Bernoulli input model. Their algorithm tends to produce deep circuits with
long delays.

To summarize, we devised a novel procedure for an early step in the synthesis
flow for digital circuits/functions. The major novelty of the algorithm is its ability
to approximate in a tractable manner, polynomial in the number of inputs to an
and gate, the minimal average-case number of switchings, based on a training
input sequence. The approach can be applied, in principle to any probabilistic
model of the input but, of course, formal guarantees of approximation quality
can be given only in restricted cases.

For synthetic empirical evaluation we developed an original framework based
on sparsely interacting networks of probabilistic automata and ran extensive
experiments under various probabilistic models of the input. The reduction
obtained on these synthetic examples were quite impressive, reaching, in some
cases, dozens of percents. Two major open questions remain concerning their
transfer to real life:

1. Can such reduction be pushed downstream to the more physical steps of
synthesis? This question has two versions: can it be done using existing com-
mercial tools that carry a lot of legacy, or can it done in principle by new
tools if this type of optimization criterion is considered important.

2. How do real applications look like in terms of circuit structure and input
model?

We made a preliminary exploration of the second question using the instruction
decoder model and the results seem encouraging. We believe the behavior of
real circuits is much more regular than arbitrary Markov chains. In the future
we intend to attack larger industrial-scale examples and follow them, as far as
possible, down to technology-dependent mapping, being able to detect timing
effects and measure real power consumption. It has already been observed that
synthesis is an old technology and the outcome of commercial synthesis tools is
sensitive to many syntactic features [13] and we hope that this work will bring
a fresh look on the topic.

On the theoretical side we intend see under what assumptions our level-
greedy algorithm is optimal and to give bounds on its deviation from the opti-
mum when it is not. Another potential direction for exploration is to present
trade-offs between speed and switching reduction by being less committed to
the circuit topology. Although typically the number of inputs to a single and
cone need not be very large, it would be interesting to explore how far we can go
with the number of inputs using the polynomial algorithm for optimal match-
ing. Finally we intend to extend this work to sequential machines and to explore
the application of switching-oriented reasoning to the encoding of states and
symbolic inputs.

On Switching Aware Synthesis for Combinational Circuits 291

References

1. Bellaouar, A., Elmasry, M.I.: Low-power digital VLSI design: Circuits and Systems.
Springer, US (1995)

2. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-
level dynamic power management. IEEE Trans. VLSI 8(3), 299–316 (2000)

3. Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-Vincentelli, A.: Logic
Minimization Algorithms For VLSI Synthesis. The Springer International Series in
Engineering and Computer Science, vol. 2. Springer, US (1984)

4. Anantha, P., Chandrakasan, A.P., Brodersen, R.W.: Low Power Digital CMOS
Design. Springer, US (1995)

5. Edmonds, J.: Maximum matching and a polyhedron with 0, l-vertices. J. Res. Nat.
Bur. Stand. B 69, 125–130 (1965)

6. Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Markovian analysis of large finite
state machines. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(12),
1479–1493 (1996)

7. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Springer,
US (1996)

8. Kohavi, Z., Jha, N.K.: Switching and Finite Automata Theory. Cambridge Uni-
versity Press, Cambridge (2010)

9. Larmore, L.L., Hirschberg, D.S.: A fast algorithm for optimal length-limited huff-
man codes. J. ACM 37(3), 464–473 (1990)

10. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Dover
Publications, New York (1976)

11. Murgai, R., Brayton, R.K., Sangiovanni-Vincentelli, S.: Decomposition of logic
functions for minimum transition activity. In: Proceedings of the 1995 European
Conference on Design and Test, pp. 404. IEEE Computer Society (1995)

12. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Courier Dover Publications, New York (1998)

13. Puggelli, A., Welp, T., Kuehlmann, A., Sangiovanni-Vincentelli, A.: Are logic syn-
thesis tools robust? In: 2011 48th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), pp. 633–638, June 2011

14. Rabaey, J.M., Pedram, M. (eds.): Low Power Design Methodologies. The Springer
International Series in Engineering and Computer Science. Springer, US (1996)

15. Sasao, T.: Switching Theory for Logic Synthesis, vol. 1. Springer, US (1999)
16. Tiwari, V., Ashar, P., Malik, S.: Technology mapping for low power. In: 30th

Conference on Design Automation, pp. 74–79. IEEE (1993)
17. Tsui, C.-Y., Pedram, M., Despain, A.M.: Technology decomposition and mapping

targeting low power dissipation. In: Proceedings of the 30th International Design
Automation Conference, pp. 68–73. ACM (1993)

18. Tsui, C.-Y., Pedram, M., Despain, A.M.: Power efficient technology decomposition
and mapping under an extended power consumption model. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 13(9), 1110–1122 (1994)

19. Yeh, C., Chang, C.-C., Wang, J.-S.: Technology mapping for low power. In: Pro-
ceedings of the ASP-DAC 1999 Design Automation Conference, Asia and South
Pacific, pp. 145–148. IEEE(1999)

20. Zhou, H., Wong, DF: An exact gate decomposition algorithm for low-power tech-
nology mapping. In: Proceedings of the 1997 IEEE/ACM International Conference
on Computer-Aided Design, pp. 575–580. IEEE Computer Society (1997)

Author Index

Araiza-Illan, Dejanira 69
Arar, Moab 51

Bartocci, Ezio 3, 19
Batt, Gregory 19
Becker, Andrew 259
Behm, Michael 51
Bogomolov, Sergiy 3, 19
Boni, Odellia 51

Czarnecki, Krzysztof 225

Daniel, Jakub 87
Das, Binayak 3

Eder, Kerstin 69
Ewaida, Mohsen 259

Fetzer, Christof 120

Gal, Raviv 51
Ganesh, Vijay 225
Goldin, Alex 51
Grosu, Radu 3, 19
Gurung, Amit 3

Herrera, Christian 173

Ienne, Paolo 259
Ilyaev, Maxim 51

Jobstmann, Barbara 259

Kermany, Einat 51
Kim, Jin Hyun 190
Kiss, Balázs 39
Kong, Hui 19
Kosmatov, Nikolai 39

Lanik, Jan 276
Larsen, Kim G. 190
Legay, Axel 190
Leucker, Martin 155
Li, Jianwen 209
Liang, Jia Hui 225

Maksimovic, Djordje 259
Maler, Oded 276
Mandel, Eugene 245
Markin, Grigory 155
Mikučionis, Marius 190

Neuhäußer, Martin R. 155
Nielsen, Brian 190
Novo, David 259
Nowack, Martin 120

Pariente, Dillon 39
Parízek, Pavel 87
Pipe, Anthony 69
Prasad, Sanjiva 139
Pu, Geguang 209
Puccetti, Armand 39

Ray, Rajarshi 3
Reysa, John 51

Saleh, Bilal 51
Schilling, Christian 19
Schubert, Klaus-Dieter 51
Shurek, Gil 51

Tietze, Katja 120
Travkin, Oleg 104

Vardi, Moshe Y. 209
Veneris, Andreas 259

Wehrheim, Heike 104
Western, David 69
Westphal, Bernd 173

Yeung, Ping 245

Zaman, Atulan 225
Zhu, Shufang 209
Ziv, Avi 51
Zuck, Lenore D. 139
Zulkoski, Ed 225

	Preface
	Organization
	Invited Talks
	Hybrid Systems
	Between Testing and Verification: Software Model Checking via Systematic Testing
	Fight for the Future of Verification;Live in it Today
	Between Art and Craft: The Self-conception of a Verification Engineer
	Reasoning About Program Data Structure Shape: From the Heap to Distributed Systems

	Contents
	XSpeed: Accelerating Reachability Analysis on Multi-core Processors
	1 Introduction
	2 Preliminaries
	2.1 Support Functions
	2.2 Reachability Analysis Using Support Functions

	3 Parallel State-Space Exploration
	3.1 Parallel Samplings over Template Directions
	3.2 Parallel Exploration of Reachable States

	4 Sampling Support Functions in GPU
	4.1 CUDA Programming Model
	4.2 Computing Support Functions of Polytopes in GPU
	4.3 Computing Support Functions of Hyperbox in GPU

	5 Experiments
	5.1 Five Dimensional System
	5.2 Helicopter Controller

	6 Conclusion
	References

	Abstraction-Based Parameter Synthesis for Multiaffine Systems
	1 Introduction
	2 Preliminaries
	3 Abstraction of MHA
	3.1 Pointwise LHA Abstraction
	3.2 Set-Based LHA Abstraction

	4 Hierarchical Parameter Search
	4.1 Computation of Underapproximative Abstractions
	4.2 Discrete Abstraction of MHA
	4.3 Parameter Identification

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Tools
	Combining Static and Dynamic Analyses for Vulnerability Detection: Illustration on Heartbleed
	1 Introduction
	2 The Heartbleed Vulnerability
	3 Overview of the Flinder-SCA Tool
	4 Detection of Alarms by Static Analysis
	5 Simplification of the Program by Slicing
	6 Confirmation of Alarms by Fuzz Testing
	7 Tool Demonstration
	7.1 Static Analysis Step Applied to the Heartbleed Vulnerability
	7.2 Fuzz Testing Step Applied to the Heartbleed Vulnerability

	8 Discussion
	9 Conclusion and Future Work
	References

	The Verification Cockpit -- Creating the Dream Playground for Data Analytics over the Verification Process
	1 Introduction
	2 Motivation and Goals
	3 Architecture and Implementation of the Verification Cockpit
	3.1 Architecture of the Verification Cockpit
	3.2 The Data Model
	3.3 Implementation

	4 Use Examples
	4.1 Test Submission Dashboards
	4.2 Coverage Dashboards
	4.3 Connecting Coverage to the Verification Plan
	4.4 Template Aware Coverage

	5 Conclusions
	References

	Verification of Robotics
	Coverage-Driven Verification --- An Approach to Verify Code for Robots that DirectlyInteract with Humans
	1 Introduction
	2 Coverage-Driven Verification
	2.1 Structure of a CDV Testbench
	2.2 Test Generator
	2.3 Driver
	2.4 Checker
	2.5 Coverage Collector
	2.6 CDV Methodology

	3 CDV Implementation
	3.1 Case Study: Robot to Human Object Handover Task
	3.2 Requirements
	3.3 CDV Testbench Implementation
	3.4 Test Generator and Driver
	3.5 Checker
	3.6 Coverage Collector

	4 Experiments and Verification Results
	5 Conclusions
	References

	Symbolic Execution
	PANDA: Simultaneous Predicate Abstraction and Concrete Execution
	1 Introduction
	2 Preliminaries
	3 PANDA Algorithm
	3.1 Dynamic Pruning and Discovery of Feasible Covering Paths
	3.2 Soundness and Termination

	4 Implementation
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	TSO to SC via Symbolic Execution
	1 Introduction
	2 Weak Memory Reorderings
	3 Processes and Their Parallel Composition
	4 Symbolic Store-Buffer Graphs
	5 SC Program Generation
	6 Experimental Results
	7 Related Work
	8 Conclusion
	References

	Parallel Symbolic Execution: Merging In-Flight Requests
	1 Introduction
	2 Multi-threaded Symbolic Execution
	2.1 Symbolic Execution
	2.2 Single-Threaded Symbolic Execution
	2.3 Going Multi-Threaded

	3 Reducing Overall Solver Costs
	3.1 Batching Solver Requests
	3.2 Merging and Solving Requests
	3.3 Merging vs. Caching

	4 Implementation
	5 Evaluation
	5.1 Time Spent by the Solver
	5.2 Thread-Based Parallel Symbolic Execution
	5.3 Batching and Merging Parallel Requests
	5.4 Prototype Limitations
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	Model Checking
	Limited Mobility, Eventual Stability
	1 Introduction
	1.1 Related Work on Verifying Mobile IP

	2 The Formal Framework
	2.1 Just Discrete Systems
	2.2 Finitary Abstraction
	2.3 Partial System Abstraction

	3 Modelling Mobility
	3.1 IPv6 Mobility Basics
	3.2 The System
	3.3 Properties

	4 Formal Verification of the System
	4.1 Proving Eventual Stable Routing
	4.2 Method I: From Stability to Safety
	4.3 Method II

	5 Conclusions
	References

	A New Refinement Strategy for CEGAR-Based Industrial Model Checking
	1 Introduction
	2 Preliminaries
	3 Lazy Abstraction
	4 Abstraction Refinement
	4.1 Path Projection

	5 Implementation and Experimental Results
	6 Conclusion
	References

	Timed Systems
	Quasi-equal Clock Reduction: Eliminating Assumptions on Networks
	1 Introduction
	2 Preliminaries
	3 Reducing Clocks in Networks of Timed Automata
	3.1 Algorithm for Transformation of Networks
	3.2 Transformation of Properties

	4 Weak Bisimulation
	5 Experimental Results
	References

	Resource-Parameterized Timing Analysis of Real-Time Systems
	1 Introduction
	2 Backgrounds
	2.1 Related Work

	3 Resource-Parameterized Timing Analysis
	3.1 Response Time of Applications
	3.2 Behavior Models of PIM and PSM

	4 Case Study: Turn Indication Systems
	4.1 PIM Analysis
	4.2 PSM Analysis

	5 Conclusions
	References

	SAT Solving
	SAT-Based Explicit LTL Reasoning
	1 Introduction
	2 Preliminaries
	3 Explicit LTL Reasoning
	3.1 Temporal Transition System
	3.2 System Construction
	3.3 Related Work

	4 LTL Satisfiability Checking
	4.1 The Main Algorithm
	4.2 Heuristics for State Elimination

	5 Experiments on LTL Satisfiability Checking
	5.1 Experimental Methodologies
	5.2 Results

	6 Concluding Remarks
	References

	Understanding VSIDS Branching Heuristics in Conflict-Driven Clause-Learning SAT Solvers
	1 Introduction
	2 Background
	3 Contribution I and II: Community-Focused Search, Bridge Variables, and VSIDS
	4 Contribution III: Experimental Evidence Supporting Strong Correlation Between TGC and VSIDS
	5 Contribution IV: Exponential Moving Average and Multiplicative Decay
	6 Contribution V: A Faster Branching Heuristic Based on Adaptive Moving Average
	7 Interpretation of Results
	8 Related Work
	9 Conclusions and Future Work
	References

	Multi Domain Verification
	Multi-Domain Verification of Power, Clock and Reset Domains
	Abstract
	1 Introduction
	2 Individual Domain Verification
	2.1 Clock Domain Crossing
	2.2 Reset Domain Crossing
	2.3 Power Domain Crossing

	3 Multi-Domain Verification
	3.1 Domain Structure Verification
	3.2 Domain Control Verification
	3.3 Domain Crossing Verification

	4 Results
	5 Conclusion
	References

	Synthesis
	FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization and Correction
	1 Introduction
	2 Related Work
	3 ``Fudging'' Buggy RTL Circuits
	3.1 Common Error Library
	3.2 Error Modeling
	3.3 Instrumentation of the Buggy Circuit
	3.4 The 2QBF Problem
	3.5 Miter Construction

	4 Selecting Areas for ``Fudging''
	4.1 SAT-Based Debugger

	5 Experimental Methodology
	6 Experimental Results
	7 Conclusions
	References

	On Switching Aware Synthesis for Combinational Circuits
	1 Introduction
	2 Problem Statement
	3 Input Pairing for and Gates
	4 Evaluation: Synthetic Boolean Models
	5 Evaluation: A Mini Instruction Decoder
	6 Discussion
	References

	Author Index

