
Decreasing Rework in Video Games
Development from a Software
Engineering Perspective

Hugo A. Mitre-Hernández, Carlos Lara-Alvarez,
Mario González-Salazar and Diego Martín

Abstract Video game industry is becoming increasingly important due to its
revenues and growing capabilities. Information complexity and process agility are
limitations for developing a videogame and they may lead to rework. Many rework
problems are related to unspecified or ambiguous requirements in game design. For
reducing rework, this article proposes an agile development process for video
games that aligns the Scrum instance of the software development Project Pattern
(sdPP) and the improved Game Design Document (iGDD). For measuring the
rework induced by different alternatives, we conducted a case study that compares
the proposed approach against a conventional counter proposal in game industry;
the results prove that our proposal generates less normalized rework than the
counter proposal.

Keywords Rework � Video games � Software engineering � Requirements
engineering

H.A. Mitre-Hernández (&) � C. Lara-Alvarez � M. González-Salazar
Computer Science Department, Center for Research in Mathematics (CIMAT),
Av. Universidad 222, 98068 Zacatecas, Mexico
e-mail: hmitre@cimat.mx

C. Lara-Alvarez
e-mail: carlos.lara@cimat.mx

M. González-Salazar
e-mail: remylebv@cimat.mx

D. Martín
Telematics Department, Technical University of Madrid, Av. Complutense 30,
28040 Madrid, Spain
e-mail: diego.martin.de.andres@upm.es

© Springer International Publishing Switzerland 2016
J. Mejia et al. (eds.), Trends and Applications in Software Engineering,
Advances in Intelligent Systems and Computing 405,
DOI 10.1007/978-3-319-26285-7_25

295



1 Introduction

Video games are important economically, as innovative leaders and as an alter-
native to solve issues outside the entertainment area; they constitute the main
entertainment industry, with continuous growth since their appearance and billions
of dollars in sales and revenues [1]. Video games have proven useful outside the
entertainment area with good results for solving problems, training, diagnosing,
predicting, and teaching among others [2].

In the video game industry, the development process is commonly composed by
three stages: pre-production, production and post-production [3]. The pre-produc-
tion stage focuses mainly on creating the game concept and design. The production
stage creates and validates the software; this stage also produces sounds and music
required by the game. Finally, the post-production stage distributes and maintains
the game; it also manages the feedback coming from different sources—i.e. spe-
cialized video game reviewers–.

Some games are complex systems requiring significant effort in the first two
stages; these complexities can increase the amount of rework and consequently, the
cost of the game. Rework is defined as any additional effort required for finding and
fixing problems after documents and code are formally signed-off as part of con-
figuration management [4]. Thus, end-phase verification and validation are usually
excluded, but debugging effort during integration and system testing is included. To
compare different products, rework effort is sometimes “normalized” by being
calculated as a percentage of development effort [4]; the rework is generally con-
sidered to be potentially avoidable work that is triggered to correct problems.

Rework issues in game development usually start at the pre-production stage. It
has been reported that 65 % of problems in game development are generated at this
stage and are related to unspecified or ambiguous requirements in game design [5, 6].
At the production stage, developers can ask the game designer for clarification of the
missing information or can make their best assumption. In either case, a rework is
done; even, rework can rise when wrong assumptions about the requirements are
made. Hence, we need a way to describe the game design with enough formality and
detail, a Software Requirements Specification (SRS) document can be used for
designing the software of the game [7, 8]. In sum, a more formal requirement
specification is needed to avoid rework problems in the game development process.

The game design is central in game development; this activity transforms an idea
into a detailed description of the game. Formally, the game design is the process of
imagining a game, defining the way it works, describing the elements that make up
the game (conceptual, functional, artistic, and others), and transmitting that infor-
mation to the team that will build the game [9]; this information is reflected in the
Game Design Document (GDD).

We consider that the rework can be substantially reduced in the pre-production
stage. The approach proposed in this article is composed by (i) a project pattern
adapted to game agile development, and (ii) an improved GDD [10] based
on requirements engineering. Software process patterns encapsulate the solution

296 H.A. Mitre-Hernández et al.



for a specific development project; therefore, it is possible to adapt them to the game
development process. On the other hand, the requirement engineering is helpful
because it offers characteristics such as correctness, unambiguously, completeness,
consistency, stability, verifiability, modifiability, traceability [11] and structurability
[12].

The rest of this article is organized as follows: Sect. 2, summarizes the game
development methodologies directly related to our approach; Sect. 3, introduces the
proposed approach; Sect. 4 compares empirically our approach against a classical
methodology for game development in terms of rework; Sect. 5, discusses the
results; and finally, Sect. 6 concludes this work.

2 Related Work

As stated earlier, our proposal aligns a project pattern with the improved GDD; the
following paragraphs overview the work related to these two components.

2.1 Development Project Pattern

The videogame development is a form of software development that adds additional
requirements, e.g., artistic aspects; hence, many of the management tools and
standards from the software industry can be useful for game development. Game
projects are usually more complicated than software projects because they involve a
multidisciplinary team and they usually have more uncertainty around project goals.

Software development models—e.g., waterfall, iterative, or extreme—can be
used for developing videogames [3]. In general, the waterfall model is considered
inadequate because it is highly structured and it cannot be adapted to changes in the
requirements; therefore, more flexible models are needed [13–15].

Agile methodologies—i.e. Scrum [16] or eXtreme Programming [17]—are
better suited for the challenges of game development [18, 19]; they have been
adapted to game development by using other tools as complements: user stories
[18], game design documentation [20], or workshops for strengthening the inter-
action between clients and developers [21].

Patterns [22] are used to solve a generic problem: given a narrative and context
of the problem to be solved, they propose a solution. They can be used for for-
malizing the knowledge about the development process; [23] proposes the Software
Development Project Pattern (sdPP) framework. For testing this approach [23],
generates four instances of the sdPP with agile development models; one of these
instances—Scrum sdPP—is suitable for game agile development because it allows
to follow an iterative process without sacrificing creativity. The resulting workflow
and productflow can guide game developers between the activities and their cor-
responding input and output products.

Decreasing Rework in Video Games Development … 297



2.2 Improved Game Design Document

The Mechanics, Dynamics and Aesthetics (MDA) framework [13] is an iterative
approach for designing and tuning video games; it first defines the aesthetics, then
the dynamics—trying to fulfill aesthetics–, and finally the game elements—that
bring the required interaction–; this framework offers an interesting way of
designing and tuning games, but it does not provide the tools or methods to con-
struct the details of such mechanics, dynamics and aesthetics. On the other hand,
several approaches suggest to use different abstraction levels for the game design
documentation, but they are too specific for certain types of games [24, 25].

The Game Design Document (GDD) plays a key role for every game project,
i.e., a poorly elaborated GDD can lead to rework and loss of investment in pro-
duction and postproduction phases; to address these issues, in [10] we propose the
improved GDD (iGDD). The iGDD has different abstraction levels [9]; it is based
on the Taylor’s GDD template [24], but it incorporates the (MDA) framework and
the best practices from Software Requirements Specification (SRS) [7, 8]; sections
of the iGDD are shown in Table 1.

3 Proposed Approach

The sdPP model is defined as a problem–solution pair; in our case, the solution is
closely related to agile game development with Scrum and the use of the iGDD into
the development process. Proposed improvements to the Scrum sdPP are: (i) the

Table 1 Description and characteristics of sections of the iGDD [10]

iGDD section Description SRS characteristics

Overview Describes briefly the most important
aspects of the game

Relations with other documents,
and common language for better
understanding

Mechanics Describes the elements of the game Organization of game
requirements (objects
organization)

Dynamics Describes how the elements of the
game will take action in the game

Organization of game
requirements. Relation of
complexity with gamer profile

Aesthetics Describes what the player perceives
directly through their sense, like what
he sees and hears

–

Experience Highlights important aspects of the
game and what you hope to achieve
from these aspects

Decision making based on
tradeoffs of game parts. Quality
attributes on video games

Assumptions
and
constraints

Narrates the aspects of the design
assumptions and limitations of the
game, either technical or business

Knowledge of game parts for
reviews. Limitations or boundaries
of video game

298 H.A. Mitre-Hernández et al.



alignment of activities described in the sdPP’s workflow and productflow to the
iGDD; and (ii) the incorporation of the iGDD sections to the Scrum sdPP as
products. For adapting Scrum sdPP to game developing new activities were added
while others were modified; some of these activities are associated to iGDD sec-
tions (products) as shown in Fig. 1. The modified (or added) activities and their
associated iGDD products are described in the following paragraphs:

• Create overview (product: overview of the iGDD [10]), describe the game in a
brief abstract, identify the main objectives of the game, the genre of the game,
ask questions—e.g., why the game is worth doing–, define which type of players
would like to play the game, and what will be the main activities that the player
will be doing while playing the game.

• Design High level game (product: overview of the iGDD [10]), define some
main features of the game: the game modalities (single player, multiplayer,
online, arcade mode, history mode, among others), the platform or platforms on
which the game is intended to run, the game theme (medieval, futuristic,
western, among others), the game story and an initial scope of the levels, size
and time that the game may require.

• Design high level game architecture (product: assumptions and constraints
of the iGDD [10], Table 1). Review the technical settings to modify the as-
sumptions and constraints and determinate any technical constraint that the
game may have. Technical settings include: the standards, conventions, tech-
nology, resources and architecture selected for the game.

• Design Game (products: mechanics, dynamics and aesthetics of the iGDD
[10], Table 1). The design of a level of the game will involve all three cate-
gories, while the design of the main character and all his action will involve only
mechanics and aesthetics.

Fig. 1 Productflow of the scrum sdPP adapted to agile video game development. The added
activities are in black and the modified ones are in gray; these activities are associated to iGDD
sections (products) in light gray

Decreasing Rework in Video Games Development … 299



• Generate code and asset. Create game elements, as suggested by Keith [18].
These elements include code and assets, i.e., music or animations.

• Commit and integrate code. Integrate game elements, as suggested by the
Agile Alliance [26]; a totally integrated game allow to have “at any time” a
version suitable for release.

• Do test and tune. Test the resulting product of the sprint, as suggested by Keith
[18]; small adjustments can be made to polish the game, but radical changes
should be placed in the product backlog to consider them in the next sprint. The
result from this activity will be a potentially shippable product.

• Do alpha and beta tests. Find and remove bugs in alpha test [9, 18, 27], and
test the experiences of the possible market that will play the game in the beta
test.

4 Research Process

The research process is based on guidelines proposed in [28] for empirical evalu-
ation in software engineering.

4.1 Plan

The objective of the case study is to measure whether or not our approach helps to
decrease rework while developing a game. For measuring the rework, any artifact
put to test for the first time starts to register rework time after the test is done.

Twelve junior software engineers at the Center for Research in Mathematics
carried out this empirical study; these engineers (hereafter, participants) were stu-
dents of the videogame course in the software engineering master degree program.
For our study two groups were considered:

Group A: uses the approach proposed in this article;
Group B: uses the Taylor’s GDD [24] and the agile game development with Scrum
[18].

4.2 Execution

The following activities were carried out:

1. Team Creation. The professor interviewed the students for knowing their
experience in similar projects and created two groups as homogeneous as
possible.

300 H.A. Mitre-Hernández et al.



2. Team Training. The researcher trained the teams in the required design doc-
uments and development methods.

3. Conduct Experiment and Data Collection. The researcher conducted a sprint
planning meeting with each team. In this meeting the base requirements and its
priorities were presented. The team divided the base requirements into user
stories for planning the sprint. Then, the teams worked on the user stories of the
sprint for 2 weeks recording the time spent on each user story. The researcher
conducted a sprint end meeting where the user stories were classified as com-
pleted, unfinished or rejected, and the review of the correct use of objects (GDD
and game development model) used by teams during the sprint.

Finally, each team and researcher planned the date for the next sprint planning
meeting, ensuring that the time difference between sprint end and sprint planning
was less than 5 days. This process continued until the base requirements were
finished or the time available ended. The time for these steps were 3 months, where
the teams should have from four to five sprints and finish from ten to fifteen base
requirements.

4.3 Results

The data of times and user stories associated with base requirements collected
during the case study were recorded in the log of Kanban web. The data was
validated at the end of each sprint planning.

TheWilcoxon signed-rank test was used to compare the rework of groupsA andB.
As shown in Fig. 2, the normalized mean of rework for group A was 2.73 %,

while for group B was 11.50 %. A Wilcoxon signed-rank test showed that the

Fig. 2 Productflow
comparison of rework
between groups A and B

Decreasing Rework in Video Games Development … 301



iGDD + sdPP technique induces significantly less rework than the rework induced
in the group that used GDD + Agile GD with Scrum (p = 0.0085). This proves that
our proposal generates less rework than the counter proposal.

5 Discussions

We observe the following benefits of the iGDD for reducing rework:

• By defining the overview section of the iGDD, participants clarify the infor-
mation of the objectives, justification, gameplay, game features and player
characteristics. This section allows to easily interpreting the requirements in the
following stages.

• By defining the assumptions and constrains of the iGDD, participants discover
the context and limits of the high level architecture. In terms of requirements
engineering, we learned that limitations and boundaries clearly defined can lead
to a feasible development.

• By defining the mechanics and dynamics of the iGDD, participants obtain:
(i) well organized game elements, and (ii) good alignment of complexity with
gamer profile. The traceability of game elements facilitated participants to
reduce rework in the development of game elements.

Our main observation to the adapted Scrum sdPP was the traceability of the
activities to the iGDD sections, allowing participants to retrieve information about
the game elements at any time during process execution.

Summarizing the opinions of the participants, the adapted sdPP is clearer, more
detailed, concise, and accurate than the conventional approach. Moreover, the
documentation was considered better structured, and it requires less effort in
interpretation and design.

The main limitation in the case study is that the teams didn’t have the time for
creating game elements—e.g., the sound part of the game–; hence, external sources
were used to complete the game. Another observed limitation is that it is hard to
coordinate the scrum meeting when the members of a team have different
schedules.

6 Conclusions and Further Work

This article describes how software development patterns make easer the use of
agile game development process; the proposed approach is composed by an agile
development process—an adapted Scrum instance of the sdPP—and an improved
game design document iGDD that takes advantage of the requirements engineering
perspective.

302 H.A. Mitre-Hernández et al.



A case study was conducted, validating that our proposal generates less rework
than a conventional counter proposal. Finally, aspects that contributed to the
reduction of rework with the use of the iGDD and the sdPP’s instance were
discussed.

We consider that the proposed approach not only reduces the rework but also
can give better quality products that enhance the user experience. On the other
hand, a management tool can be used for increasing the productivity of medium or
large scale game projects. We are studying empirically both the quality and pro-
ductivity induced by this approach.

Acknowledgments This research was partially funded by the National Council of Science and
Technology of Mexico (CONACyT) through the project “Strengthening of the master of software
engineering program with the integration the research line in Human-Computer Interaction”
(ZAC-2013-C04- 226098) and the project “Optimization of industrial processes based on simu-
lators, interfaces and software assurance” (CATEDRAS-3163).

References

1. Essential facts about the computer and video game industry (2014)
2. Jason: Gaming is good for you (infographic), http://www.affordableschoolsonline.com/

gaming-is-good-for-you-infographic/
3. Bethke, E.: Game Development and Production, Pap/Cdr edition. edn. Wordware Publishing

Inc., Plano (2002)
4. Kitchenham, B., Pfleeger, S.L.: Software quality: the elusive target. IEEE Softw, vol. 13,

pp. 12–21. (1996)
5. Petrillo, F., Pimenta, M., Trindade, F., Dietrich, C.: What went wrong? A survey of problems

in game development. Comput. Entertain. 7, 1–22 (2009)
6. Petrillo, F., Pimenta, M., Trindade, F., Dietrich, C.: Houston, we have a problem…: a survey

of actual problems in computer games development. In: ACM Symposium on Applied
Computing. pp. 707–711. ACM (2008)

7. Callele, D., Neufeld, E., Schneider, K.: Requirements engineering and the creative process in
the video game industry. In: Proceedings. 13th IEEE International Conference on
Requirements Engineering, pp. 240–250. IEEE (2005)

8. Callele, D., Neufeld, E., Schneider, K.: A report on select research opportunities in
requirements engineering for videogame development. In: The 4th international workshop on
Multimedia and Enjoyable Requirements Engineering, pp. 26–33. (2011)

9. Rollings, A., Adams, E.: Andrew Rollings and Ernest Adams on Game Design. New Riders,
1st edn. (2003)

10. Gonzalez, M., Mitre, H.A., Lemus, C., Gonzalez, J.L.: Proposal of game design document
from software engineering requirements perspective. In: 2012 17th International Conference
on Computer Games (CGAMES). pp. 81–85. IEEE (2012)

11. Wiegers, K.: Software Requirements 2. Microsoft Press, Redmond (2003)
12. IEEE SA—830–1998—IEEE recommended practice for software requirements specifications,

http://standards.ieee.org/findstds/standard/830-1998.html
13. Hunicke, R., LeBlanc, M., Zubek, R.: MDA: A formal approach to game design and game

research. In: Proceedings of the AAAI Workshop on Challenges in Game AI. pp. 04–04
(2004)

14. Schell, J.: The Art of Game Design: a Book of Lenses [Paperback]. Morgan Kaufmann,
Burlington (2008)

Decreasing Rework in Video Games Development … 303

http://www.affordableschoolsonline.com/gaming-is-good-for-you-infographic/
http://www.affordableschoolsonline.com/gaming-is-good-for-you-infographic/
http://standards.ieee.org/findstds/standard/830-1998.html


15. Boehm, B.W.: A spiral model of software development and enhancement. Computer (Long.
Beach. Calif). 21, 61–72 (1988)

16. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Pearson Education
International, Boston (2002)

17. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Longman
Publishing Co, Boston (1999)

18. Keith, C.: Agile Game Development with SCRUM. 1st edn. Addison Wesley, Boston (2010)
19. Kasurinen, J., Laine, R., Smolander, K.: How Applicable Is ISO/IEC 29110 in Game Software

Development? In: 14th International Conference, PROFES 2013, pp. 5–19. Springer, Berlin
(2013)

20. Godoy, A., Barbosa, E.: Game-Scrum: an approach to agile game development. IX SBGames.
(2010)

21. Kortmann, R., Harteveld, C.: Agile game development: lessons learned from software
engineering. In: Learn to Game, Game to Learn; the 40th Conference ISAGA 2009. Society of
Simulation and Gaming of Singapore (2009)

22. Alexander, C.: The Timeless Way of Building: Oxford University Press, Oxford (1979)
23. Martín, D., Guzmán, J.G., Urbano, J., Llorens, J.: Patterns as objects to manage knowledge in

software development organizations. Knowl. Manag. Res. Pract. 10, 252–274 (2012)
24. Taylor, C.: Design template, http://www.runawaystudios.com/articles/chris_taylor_gdd.asp
25. Rogers, S.: Level up!: the guide to great video game design [Paperback]. Wiley, New York

(2010)
26. Agile alliance: Continuos Integration, http://guide.agilealliance.org/guide/ci.html
27. Brinkkemper, S., Weerd, I., Weerd, S.: Developing a reference method for game production

by method comparison. IFIP Adv. Inf. Commun. Technol. 244, 313–327 (2007)
28. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation

in Software Engineering. Springer, Berlin (2012)

304 H.A. Mitre-Hernández et al.

http://www.runawaystudios.com/articles/chris_taylor_gdd.asp
http://guide.agilealliance.org/guide/ci.html

	25 Decreasing Rework in Video Games Development from a Software 	Engineering Perspective
	Abstract
	1 Introduction
	2 Related Work
	2.1 Development Project Pattern
	2.2 Improved Game Design Document

	3 Proposed Approach
	4 Research Process
	4.1 Plan
	4.2 Execution
	4.3 Results

	5 Discussions
	6 Conclusions and Further Work
	Acknowledgments
	References


