
Genetic Algorithms for Optimization of 3D
Truss Structures

Vedat Toğan and Ayşe Turhan Daloğlu

Abstract Various optimization techniques have been applied to find the optimum
solutions of structural design problems in the last 50 or 60 years. Simple structural
optimization problems with continuous design variables have been solved initially
using mathematically diverse techniques. New approaches called meta-heuristic
techniques have been emerging along with the progress of traditional methods. This
chapter first introduces the mathematical formulations of optimization problems and
then gives a summary and development process of the preliminary techniques such
as genetic algorithm (GA) in obtaining the optimum solutions. The mathematical
formulations of the structural optimization problems are associated with the design
variables, loads, structural responses, and constraints. Strategies are proposed to
improve the performance of the technique to reduce the number of search and the
size of the problem. Finally, some examples related to 3D truss structures are
presented.

1 Introduction

Optimization of the structures is one of the main research areas in civil and
structural engineering. As a branch of applied and computational mathematics,
optimization usually tries to find the best-fitted solution of the problem within a
domain that contains acceptable values of design variables subject to some design
restrictions or constraints. The optimum solution of the problem may be achieved
by minimizing or maximizing a real objective function satisfying predefined
restrictions at the same time. Such a solution is supposed to be the best one among a
large feasible solution space that can satisfy all the constraints of the optimization
problem. The function to be minimized or maximized is referred to as objective
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function, while the functions to represent restrictions are called as constraints. The
design parameters of an optimization problem are called design variables. While the
geometric properties of members can be considered as design variables in structural
weight optimization, coordinates of nodal points can be treated as design variables
for shape or topology design of structures. So the objective function, constraints,
and variables can vary widely according to the type of the problem. For the min-
imum weight design of 3D truss structures, the objective function represents the
weight of the truss, variables can be the areas of cross sections of the structural
members, and the constraints may be the maximum allowable stresses and dis-
placements of nodal joints.

2 Mathematical Formulations of Optimization Problems

An optimization problem subject to some constraints can be formulated as the
following mathematical form:

min
x2 S

f ðxÞ
S ¼ xjhjðxÞ ¼ 0; j ¼ 1; . . .; p; gkðxÞ� 0; k ¼ 1; . . .;m

� � ð1Þ

where f(x), hj(x), and gk(x) are a C1 function of x 2 IRn. In addition, p and m are
the total numbers of hj(x) and gk(x), respectively. S represents the feasible set for the
optimization problem, S � IRn.

However, in the engineering field, an optimization problem can also be generally
defined as follows:

find x ¼ x1; x2; . . .; xnf g
min: WðxÞ
s:t: gkðxÞ� 0; k ¼ 1 tom

xil � xi � xiu; i ¼ 1 to n

ð2Þ

In Eqs. (1) and (2), x is an n-dimensional vector representing the design variables of
the optimization problem. Depending on the optimization type, the cross-sectional
areas of the members, the nodal coordinates of the member connections, and the
members itself are treated as the design variables. f(x) and W(x) are called objective
functions or cost functions, which usually correspond to a real number to be used to
evaluate how good a solution is. Since weight is usually adopted as the objective
function of the optimization problem in structural engineering, W(x) corresponds to
the weight of the related structure. hj(x) and gk(x) are the equality and inequality
constraints functions, respectively. In contrast, hj(x) in the engineering fields, the
type of inequality constraint functions, gk(x), are often encountered. And it generally
requires a structural analysis to obtain the structural response such as displacements,
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forces, etc. Here, xil and xiu show the lower and upper boundaries of xi. Strictly
speaking, xi might be continuous, discrete, and real but since it is preferred in
practice to select the cross-sectional areas of members from the predefined list, xi is
taken as the discrete in structural engineering applications.

3 Genetic Algorithms

To find the value of x obeying the hj(x) and gk(x) and minimizing W(x) requires an
optimization method to be employed. Optimization methods, generally speaking,
are classified as the gradient-based and gradient-free techniques. Of course, various
categorizations can be encountered for the optimization methods available in the
literature [1–3]. In fact, although they are referred with various classifications and
names, there is not much difference in the main properties of the methods. For
example, one of the most commonly used classifications is deterministic and
stochastic. While the former uses derivatives of the objective function and con-
straints in the search of the optimum solution, the latter works with probabilistic
transition rules instead of the gradient information of the objective function and
constraints [4–12]. As seen from the example, deterministic and stochastic tech-
niques are easily put into the classification of the gradient-based and the
gradient-free optimization methods, respectively.

Genetic algorithm (GA) is probably one of the first optimization methods, which
simulates the natural phenomena into a numerical algorithm. It mimics the proce-
dure known as survival of the fittest. GA was firstly proposed by Holland [13].
Since new some valuable improvements in the GA such as adaptive operators,
distinct coding schemes for the design variables, immigration, elitism, breeding,
hybridization, etc., have been presented by the researcher [19–30].

After the study of Rajeev and Krishnamoorthy [14] which was a
well-documented study for the application of the GA in the structural optimization
problems, GA has gained more popularity in this area than that proposed for the
first time. By studying Rajeev and Krishnamoorthy [14], it is realized at first glance
that GA is very primitive compared with the level recently reached. For instance,
the design variables were coded with binary scheme in the GA process proposed by
Rajeev and Krishnamoorthy [14], while at the moment the design variables are
treated as discrete and even that mixed [15–18]. Figure 1 demonstrates the binary
scheme for the design variables of the structural optimization problems. Herein, it is
assumed that the corresponding optimization problem has three design variables

1011 0100 0110
x=[ x1 x2 x3 ]

Fig. 1 Coding in binary system for design variables
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which are the cross-section areas of the grouped members. And they are selected
from 16 different sections available in practice.

When this scheme is chosen to find the value of the design variables in decimal
system, a transformation is needed. Through this transformation, the sequence
numbers of the sections related to the design variables are determined from a
predefined list sections. The steps of the transformation and mapping can be
summarized as the main steps shown in Fig. 2. After mapping with the predefined
list, the cross-section area for the related design variable is directly used in the
corresponding process, i.e., in calculating the structural responses via a structural
analyzer.

Then the structure should be analyzed to determine its responses and then the
requirements of the optimization problems defined by the constraints functions are
evaluated. The next step is to calculate the value of W(x). As mentioned before, it
shows the goodness of the solution that consists of coupling the design variables
(see Fig. 1)—the string is called as a solution. However, since the GA is an
unconstrained optimization method like other gradient-free optimization tech-
niques, W(x) also includes the value of a function known as the penalty function
which reflects the violation level of the constraints in normalized form for the
solution. Equation (3) shows the objective function, incorporating the constraints
violation as expressed in Rajeev and Krishnamoorthy [14].

20x1+21x0+22x1+23x1 20x0+21x1+22x0+23x0 20x0+21x1+22x1+23x0

1+0+4+8=13 0+2+0+0=2 0+2+4+0=6

20x1+21x0+22x1+23x1 20x0+21x1+22x0+23x0 20x0+21x1+22x1+23x0

1+0+4+8= 0+2+0+0= 0+2+4+0=

1011 0100 0110
Transformation from binary to decimal system

Mapping with pre-
Section 
no

Area(mm2) available 
in practice

1 0.45
2 0.48

6 0.95
7 1.02

13 1.35

defined list

Fig. 2 Decoding and mapping steps for the design variables represented in the binary system
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WðxÞ ¼ W 0ðxÞ 1þKCð Þ

where C ¼
Xm
k¼1

ck
ð3Þ

where K is a parameter that is taken as 10, C is the violation coefficient computed in
the following manner: if gk(x > 0, then ck = gk(x); or if gk(x ≤ 0), then ck = 0.
Finally, W′(x) represents the weight of the structure. Note that gk(.) is in the nor-
malized form expressed as σ/σa −1 ≤ 0 for stress and d/da−1 ≤ 0 for displacement.
σa and da in these expressions show the allowable values for stress and displace-
ment for the problem considered.

3.1 Genetic Operators

The search procedures of GA were based on the mechanics of natural genetics and
natural selection. With the help of the genetic operators adapted from nature, the
concept of the survival of the fittest is simulated to form a robust search mechanism.
Following the steps summarized above, the GA search procedure proposed by
Rajeev and Krishnamoorthy [14] applies two genetic operators successively.

The first one is the reproduction operator which reflects the concept of the
survival of the fittest in nature. It proceeds according to the individual fitness
calculated as follows:

Fi ¼ Wmax þWminð Þ �WiðxÞ ð4Þ

where Fi is the fitness of the ith individual in the population, Wmax and Wmin are the
maximum and minimum values of W(x) computed using Eq. (3). Thus, the indi-
viduals with higher fitness values have a higher probability to survive, whereas the
less fit ones get fewer chances of survival. And the worst fit individuals will be
removed from the population.

Then, to exchange the solution segments between the individuals in the popu-
lation, crossover operator is implemented. Double point crossover is applied to the
pairs selected randomly as an example. Figure 3 demonstrates the application of the
two genetic operators explained in Rajeev and Krishnamoorthy [14].

The genetic algorithm continues the process by following the above steps out-
lined in detail so as to modify the new population. To terminate the GA process, a
criterion based on the similarity of the individuals in the population was imposed by
Rajeev and Krishnamoorthy [14]. In addition, although mutation operator was not
implemented in [14], the GA search process employed it to preserve the diversity
among the population. Figure 4 illustrates the basic concept behind the mutation
operator. It proceeds in three steps. First, an individual within the population is
randomly selected. Then, a binary position to be changed is determined randomly.
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Pairs Site 1 Site 2 New population
4 5 10 1011  0011  1010

1 5 10 1100  0100  0111
8 2 6

5 2 6

individual
In

di
vi

du
al

 n
um

be
r

Design variables
x1 x2 x3

1011  0100  0110

1100  0011  1011

0011  1101  0001

1011  0100  0110

1100  0011  1011

1100  0011  1011

(a)

(b)

Fig. 3 Two genetic operators given in Rajeev and Krishnamoorthy [14]. a Reproduction operator.
b Crossover operator

Available popula-
tion

Individual number 
to be exposed to 

mutation

Position 
number New individual

1011  0011  1010

8 7 1010  0011  0011
1100  0100  0111

1010 000 00111

Fig. 4 Mutation operator
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After that, the corresponding position value is switched to 1 if it is equal to 0 or to 0
if it is equal to 1.

All search procedures based on GA were called simple genetic algorithms in
Rajeev and Krishnamoorthy [14] and since then, numerous modifications have been
proposed by researchers in order to improve the search and/or computational
performances of the GA in this area. For example, the coding scheme [19–21],
the penalization [22–27], and new operators [28–30] are some of them. Other
improvements based on adaptive concept have attracted more attention. The fol-
lowing section will review this concept.

4 Strategies Based on the Adaptive Concept

Some improvement or renewal in the GA operators or the GA algorithms have been
made by researchers to increase the probability of finding the global solution and to
enhance the performance of GA. Other improvements of GA are to relieve the user
from the burden of determining sensitive parameter(s) existed in GA. The vast
majorities of these efforts have been focused on the adaptive approaches in GA for
both the penalty function, and the mutation and crossover. The key idea behind the
adaptive approaches is to adjust itself automatically during the optimization pro-
cedure using genetic algorithms.

4.1 Adaptive Penalty Scheme

Although it is not a genetic operation, the penalty function is important in GA to
demonstrate the extent of the violation of the constraints quantitatively. Penalty
techniques can be classified as multiplicative or additive. A positive penalty factor
is introduced in the multiplicative case to amplify the value of the fitness function of
an infeasible individual in a minimization problem. This type of penalty has
received less attention in the evolutionary computation community, compared with
the additive type. A penalty functional is added to the objective function in the
additive case to define the fitness value of an infeasible element [24].

An adaptive penalty scheme to be able to adjust itself automatically during the
GA process is proposed by Toğan and Daloğlu [31] as follows:

fpenalty ¼ Cmax þCðrÞð Þ= Cmax þCaveð Þ CðrÞ�Cave

fpenalty ¼ Cave þCðrÞð Þ= Cave � Cminð Þ CðrÞ\Cave

fpenalty ¼ 0 CðrÞ ¼ 0 r ¼ 1; . . .; nps

ð5Þ

where fpenalty is the penalty function, C(r) is the violation value of normalized
constraints of the rth individual in the generation, and nps represents the population
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size. In addition, Cmax, Cmin, and Cave are, respectively, the maximum, minimum
and average violation values of generation. According to this formulation, Eq. (3)
becomes

WðxÞ ¼ W 0ðxÞ 1þ fpenalty
� �

: ð6Þ

The penalty function is, therefore, kept free from any predefined or user-defined
constants. Also the magnitudes of the violations are not characterized by a static
rate for both near feasible and infeasible solutions during the design process. With
the expressions in Eq. (5), the infeasible solutions will not be penalized with the
same rate of penalty. The magnitude of the penalty tends to get heavier instead, as
the level of the violation of the infeasible solution tends to get bigger. Moreover,
the magnitude of penalty increases as the violation value gets closer to Cmax. On the
other hand, it decreases as the violation value gets closer to Cmin. Thus, some
infeasible individuals that are close to the feasible region in the search space will
not disappear through the penalty scheme and they will find a chance to survive.
This may sustain the capacity of finding the global solution for design problem
using GA.

4.2 Adaptive Crossover and Mutation Schemes

Genetic operators are applied to mimic the natural evolution. Among these oper-
ators, crossover provides the genetic information exchange between the couples
randomly, and mutation enables the development of new genetic material, and both
play an effective role to reach the optimum or to get close to the optimum solution.
It is arbitrary and up to the user to incorporate the rates of these operators in
optimization process. The choices of mutation, pm, and crossover, pc, rates as well
as generating positions to be shifted by mutation and mapping the individuals for
crossover are also arbitrary.

Many refinements using adaptive controls provide significant improvements in
performance for some situations [32]. Keeping all of these in mind, it can be
concluded that the randomness on mapping for crossover, and specifying the gene
position(s) for mutation may be removed. Mutation and crossover should be
adapted for both the individual and the generation because it is possible to lose the
best-fitted individual with this random process in mutation. Therefore, in contrast to
traditional crossover and mutation operator based on randomization mechanisms,
i.e., generating the pairs, and determining position of bit shifted by mutation of the
solution, the mutation and the crossover operators can be adaptive and adjust
themselves from generation to generation since the population is renewed from
iteration to iteration. Adaptive means adjusting itself automatically depending on
the fitness value of the individual and the other individuals in the generation.
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The adaptive mutation and crossover operators suggested by Srivinas and Patnaik
[33] are modified as follows and applied by Toğan and Daloğlu [31, 34–36], for the
optimization of 2d and 3d truss structures:

pm ¼ 0:5 Wmax �WðrÞð Þ= Wmax �Waveð Þ WðrÞ�Wave

Wave �WðrÞð Þ= Wave �Wminð Þ WðrÞ\Wave

�
ð7aÞ

pc ¼ Wmax �W�ð Þ= Wmax �Waveð Þ W� �Wave

1 W�\Wave

�
ð7bÞ

Here, W(r) is the fitness of the rth individual, Wave is the average fitness value of the
population, Wmax and Wmin are the maximum and minimum fitness values of an
individual in the population, respectively, and W* is the larger of the fitness values
of the solutions to be crossed. pm and pc are mutation and crossover rates,
respectively.

After the mutation rate, pm, is determined using Eq. (7a), the numbers of design
variables, mdes, disrupted by mutation are calculated by multiplying pm with the
string length of the solution. Then design variables in the individual are arranged
according to the level of violation of normalized constraints, and they are renewed
with mdes starting with the most violated one. Thus design variables in the indi-
viduals are classified and the good individuals are kept unchanged. Also the
diversity of population is maintained since the design variables that violate the
constraints are renewed.

Unlike Srivinas and Patnaik [33], and Bekiroğlu [37], W* represents the lower
value of the two fitness values of the solutions for crossover. The reason for that is
because if the lower value of fitness is bigger than Wave, the crossover will take
place between the pairs having good fitness value, whereas when W* represents the
higher of the fitness values, there is a possibility for crossover to take place between
the pairs having bad fitness values. Since the adaptive crossover is incorporated,
information exchange between pairs can be done with various crossover points
changing from 1 to string length of the individual (flexible point crossover). The
numbers of design variables, cdes, exchanged by crossover between pairs are
specified by multiplying pc with string length for the solution. So if pc is equal to 1,
the individual of pairs will not be subjected to crossover operator.

5 Innovative Approaches in Genetic Algorithms

The enhancements developed by the researchers to increase the performance of GA
are not limited to adaptive schemes. Besides, some refinements are proposed for
making the search procedures of GA computationally effective. Member grouping
and initial population strategies are some of them as described in the next sub-
sections in detail.
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5.1 Initial Population Strategy

To start the evolution process in GA, the initial population within the solution space
is generated. All individuals constituting the initial population are selected from the
solution space of the problem notwithstanding any condition. In other words, this
step is random. However, even though the process of creating initial population
seems ordinary, it critically affects the convergence, the performance and the ability
of the GA. This case becomes more crucial for very complicated and large solution
space which is mostly encountered in the practical application of GA in the area of
structural engineering.

The idea starting the search of the solution space without a randomly generated
set is the key rationale of creating the initial population automatically. So, adopting
the list number of the maximum area of cross sections as the starting point for the
design variables leads to more efficiency than randomly generated. And it is stored
as the initial point for each group of tension members to create the initial popu-
lation. For the groups of the compression members, two or three surplus of the list
number of the member that has he maximum area of cross section in the group is
taken from the list of sections. The value of cross-sectional area and radius of
gyration of that section must be bigger than the values found previously. And the
corresponding section list number gives the initial points for each group of com-
pression members and is stored to create the initial population (see Toğan and
Daloğlu [31, 34] for more details).

5.2 Member Grouping Strategies

In the structural optimization terminologies, the design variables refer to the vari-
ables affecting the value of the objective function, and they generally represent the
areas of the cross section of the structural members. Since the GA completely
independent from the characteristic of the problem, the design variables of the
optimization problems should be coded in some encoding schemes such as binary,
decimal, real, and so on. GA evolves those solutions by creating in terms of design
variables and randomly selecting into the potential solutions space of the problem.
A set of possible feasible or unfeasible solutions construct the population or gen-
eration. Each solution in the populations is known as the individual.

For a given problem, all of the cross-sectional areas of the structural members
can be taken as design variables. In this case, however, the computation time gets
very high and the results obtained from optimization process will probably be the
local optima due to the expanded design space. Therefore in the GA applications,
member grouping is generally applied for the members of the structural system in
order to reduce the size of the problem. On the other hand, the member grouping
adopted a priori might not lead to an accurate grouping and if the number of
members of the structural systems becomes very large; i.e., for 3D roof trusses,
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transmission towers, this leads to very large string lengths, which delays conver-
gence and precludes useful exchange of information [38].

Two new member grouping strategies are proposed by Toğan and Daloğlu [31,
34] to reduce the size of the search space of the design problem as much as
possible, to increase the probability of catching the global optimum solution and
enhance the performance of the GA. The key idea behind the member grouping
strategies is to make a convenient member grouping that will end up with as few
numbers of cross sections as possible in the final set, and reduce the size of the
design space of the problem as much as possible. The efforts are also made to
relieve the user from the burden of determining the member groups.

5.2.1 First Member Grouping Strategy

The first strategy (strategy 1) is based on the one proposed by previous researchers
[31, 38, 39]. To implement this strategy, the same cross-section areas are assigned
for all the structural members first as stated in [31, 38, 39]. Then the analysis of the
structure is performed using these initial areas for each load cases. Following the
static analysis, the entire range of internal forces is divided into several ranges both
for tension and compression members. And members are grouped according to the
internal forces in the members.

An additional group is added in Toğan and Daloğlu [34] to the system for zero
force members or members with very low internal forces. Hence, all the members of
the truss structure are grouped conveniently and accurately. Moreover, a complex
solution space may be avoided under some conditions.

5.2.2 Second Member Grouping Strategy

For strategy 2, while the magnitude of the axial force is considered as the factor for
grouping the tension members [31, 38, 39], slenderness ratio is considered as the
main factor for the compression members to set the groups. Therefore, due to the
importance of slenderness ratio, it may be more convenient to group the com-
pression members according to their slenderness ratio in terms of radius of gyration
of the cross section and the effective length of the member instead of grouping them
depending on the magnitude of the axial force. This is the key idea behind strategy
2. Hence, as the tension members of the truss structure are grouped depending on
the axial forces, the compression members are grouped according to their slen-
derness ratio. An extra member group for the zero force members or members with
very low internal forces is also arranged (Toğan and Daloğlu [31, 34]).
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6 Examples

In this section, in the light of the information given in the previous sections, two
types of design examples are presented. In the first one, a 160-bar space truss is
considered as an example to demonstrate the effectiveness and robustness of pro-
posed adaptive approaches for GA and member grouping strategy over simple GA.
Later, an investigation is performed to demonstrate the efficiency, accuracy, and
reliability of the proposed initial population strategies by solving numerical
examples taken from previous studies in the literature for comparison.

The population size is taken as 40 for all the examples and real-value coding is
employed in the genetic algorithm.

At the beginning of the genetic process 40 % of the initial population is created
by using the proposed initial population strategy automatically. Therefore the
diversity of the population is preserved and the algorithm may be less likely to get
stuck at local minima and may also avoid some early convergence. It is possible to
create all the individuals of the initial population automatically. However, in this
case, the initial population consists of the same individual only and the search
performed in the solution space start in a certain region. On the other hand, as the
adaptive schemes applied for both penalty functions and mutation and crossover
operators are able to adjust itself automatically during the genetic process [31], they
completely disrupt the initial population. So, creating all the individuals in the
initial population automatically is not meaningful.

6.1 Example 1: 160-Bar Truss Tower

The 160-bar truss tower shown in Fig. 5 was optimized by Rajaev and
Krishnamoorthy [14] and Galante [40] in advance. 32 cross-section types were used
to optimize the tower and taken from the AISC Manual [41]. The members are
classified into 16 groups. Details of the member groups were presented in Galante
[40]. Rajaev and Krishnamoorthy [14] used in GA with one criterion (minimum
weight) and without taking the buckling effect into account. As Galante [40] stated,
it can be observed that the buckling effect plays an important role in truss opti-
mization. So if it is not taken into account the truss obtained will not be suitable as
load carrying structural system. Galante [40] optimized the transmission tower with
the aim of the minimum weight and minimum number of cross-section types of bars
taken from the market and also taking buckling and the slenderness limits rec-
ommended by AISC [41] into account.

The tower is optimized for the objective indicated by Galante [40] with the
proposed algorithm. All parameters needed to start the optimization process are
taken from the reference studies. The structure is optimized with the implemented
improvements in GA and two member grouping strategies for the aim of that the
final design forms three groups at one for tension and two for compression
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members. An extra member group for zero force members is not formed. This is
because of the fact that Galante [40] reported that 51 bars have a higher com-
pression stress than the limit recommended by AISC [41] to prevent buckling and
68 have higher slenderness ratio than the AISC advice. It is also observed from the
optimization process of the tower that the arrangement of an extra member group
for zero force members does not make any difference in the weight of the tower
drastically and the two member grouping strategies give the same result. Therefore,
the tower is optimized with three, four, and five member groups.

The final design obtained by the proposed strategies and the ones reported by
Galante [40] are presented in Table 1. Galante [40] used both GA and the simple
rebirth process in GA for the optimization of this example and mentioned that the
GA with the rebirth process achieves a better truss. However, the optimum designs
obtained with the proposed improvements in the algorithm ended up with a lighter
truss than the design by Galante [40]. A question may arise: as the values of design
variables presented in Table 1 for the three groups are the same, why are the
optimum weight of truss different? The answer is hidden in Fig. 6a. It is shown in
Fig. 6a that some members that belong to the first group skipped to the second
group and a better solution from the previous one is reached. However, the most
interesting result is obtained when the four member groups are adopted at two for
tension and two for compression member for this example. Although this optimum
design has more groups than the result obtained by Galante [40] and previously
performed optimization cases, in this study, it seems still reasonable to achieve that
the number of sections in the final set must be as few as possible to make fabri-
cation and workmanship easier [31, 39, 40]. The reduction in the total weight of the

Fig. 5 160-bar trussed steel transmission tower
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Table 1 Comparison of results for 160-bar transmission tower

Design
variables
(mm2)

Galante [40]
at 3 groups
by the GA

Galante [40] at 3
groups by the GA
with rebirth

This study

At 3
groups

At 3
groups

At 4
groups

At 5
groups

A1 2812 767.74 767.74 767.74 767.74

A2 3064 581.93 581.93 339.99 339.99

A3 7096 1251.61 1251.61 581.93 581.93

A4 1251.61 1251.61

A5 150.96

Weight
(kN)

15.33 14.61 14.269 12.651 10.544 10.449

Fig. 6 aMember groups for 160-bar tower, b Variation of weight for the three cases with number
of generations
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tower is about 28 % compared to the designs summarized in Table 1. As mentioned
above, when the number of groups is taken as five, the optimized weight is slightly
changed. In other words, arranging an extra group for the zero force members did
not affect the weight of the tower drastically. Hence, the design at four groups is
more meaningful than the design at five groups for the design objective. Figure 6b
shows the genetic histories of the value of the objective function taken as the weight
of tower for three optimization cases.

6.2 Example 2: 640-Bar Space Deck Truss

A trussed space deck shown in Fig. 7 has 179 joints and 640 members. The truss
was first studied by Jenkins [32] in order to assess the decimal GA on a more
substantial structural problem. Jenkins [32] found the optimum height of truss in
addition to optimum volume. The truss members were subjected to compressive
stress limitation given in BS 5950 and tensile stress limitation, 275 N/mm2. This
trussed space deck was subjected to the one loading condition, which a single load
of 300 kN was applied at the center of the upper plane (joint 90). A maximum
displacement limitation of ±40 mm was imposed on every node in vertical direc-
tion. 21 discrete values of data for each design variable were taken from rectangular
hollow steel sections with cross-sectional areas varying from 142 mm2 in intervals
to 4350 mm2. Jenkins [32] collected the members of the structure in five distinct
groups as follows: (1) upper deck longitudinal members, (2) upper deck transverse
members, (3) lower deck longitudinal members, (4) lower deck transverse mem-
bers, and (5) diagonal members connecting the upper and lower planes.

For this example, 23 pipe sections given in AISC [41] are adopted for each
design variables. The allowable tensile stress is taken as 275 N/mm2 and the
modulus of elasticity is 210 kN/mm2. The allowable compressive stress is calcu-
lated according to AISC [41] for the compression members and the maximum
deflection imposed is 40 mm. The truss is subjected to one loading condition as
specified in [32]. The optimization of the space truss is first carried out by using five
groups imposed by Jenkins [32]. Then the optimal volume of the truss is obtained
with four groups of members that were assumed as one for tension, two for com-
pression members, and one for zero force members after preliminary analysis.
Table 2 shows the optimum volume for each trial and the maximum deflection of
the truss. The algorithm proposed in this study achieved a design with the best
solution vector after approximately 29,000 searches for each trial. When four
groups for the members are adopted after the preliminary analysis, the volume of
the truss gets smaller than the result obtained by using five groups imposed by
Jenkins [32]. Moreover, nearly 50 % reduction is obtained with both the member
grouping and the new initial population strategies adopted in this study. This design
obtained with the proposed algorithm confirms the intension of “both the weight of
the structure and the number of cross section should be minimized to obtain an
economical structure” as indicated in [31, 33–36, 38–40].
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Fig. 7 640 trussed space deck truss

Table 2 Results for the 640-bar space deck truss

Variables Optimal cross-section areas (mm2)

Case 1 Case 2

A1 1096.77 568.39

A2 954.84 690.32

A3 954.84 1096.77

A4 690.32 161.29

A5 1096.77

Volume (cm3) 1298026.52 659970.80

Max. def. (mm) 29.03 39.85

Note The coded values design variables for the automatically created individuals

For case 1

Coded values Volume (cm3) Violation (stresses + displacements)

12 10 9 8 10 912520 10.503

For case 2

Coded values Volume (cm3) Violation (stresses + displacements)

9 9 12 1 602088.6 47.84
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6.3 Example 3: 1512-Bar Shed Truss

In order to demonstrate the performance, efficiency, and practical capability of the
algorithm with the proposed strategies, the design of 1512-bar shed truss is studied
as a final design problem. A shed structure illustrated in Fig. 8 covers a square field
with size of 40,000 × 40,000 mm2 and has a height of 5359 mm. The structure is
designed in a way that its sub-parts are reproduced along direction Z per 5000 mm
and are connected by lateral elements on the lower arch level in that direction. In a
sub-part each node on lower arch connects to four nodes on upper arches with
diagonals. So, it consists of 409 nodes and 1512 truss elements. The structure is
supported at two edges in the Z direction. The material density and modulus of
elasticity are 7.85 × 10–8 kN/mm3 and 210 kN/mm2, respectively. It is subjected to
a load scheme that is applied to all nodes of upper arches. 35,000 N is applied the
nodes along Z direction and it increases 10,000 N per each node level in Y direction
so that at the two nodes near symmetry axis the value is 55000 N (see Fig. 8). The
allowable value of 250 N/mm2 is employed for tensile stresses and the formulation
of buckling obeying AISC [41] considered for compressive stresses. The algorithm
is provided with 26 discrete values of data for each design variable. The structural
properties are taken from the pipe sections as given in [41]. The maximum dis-
placement limitation imposed is 50 mm.

As seen in Fig. 8, since the shed truss is a large structural system with more than
1000 members, it might be very difficult to optimize the area of individual members
if the member groups become very large. Besides, very large string length causes
the solution space of the problem to increase and becomes very complicated.
Therefore, member grouping adopted to reduce the size of the problem and initial
points to search the solution space are crucial to get an optimum design which is
closer the global optimum.

The truss is designed by adopting the four groups at one for tension, two for
compression, and one for zero members after the preliminary analysis. Table 3
gives the best solution vectors and the corresponding weight. An optimal structural

Fig. 8 1512-bar shed truss
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weight of 692.43 kN was obtained considering the constraints, which gives a
feasibility to construct it in practice. The algorithm obtained the optimum solution
after approximately 43,600 searches.

7 Conclusion

An optimum design approach is proposed based on the GA for truss structures with
the help of self-adaptive strategies for member grouping, penalty function, mutation
and crossover operators, and the initial population, which is then employed for the
optimization of large 3D truss structures. An investigation has been performed to
demonstrate the performance and workability of the enhanced GA (eGA). It is
shown from the design examples that the eGA works well for the large structural
systems. It is also worth pointing out that self-adaptive strategies in eGA help user
to start the GA process automatically. It can be expected that proposed eGA may
also be a useful search technique and a tool for solving discrete sizing variables of
the large 3D truss structures.
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