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Abstract Metaheuristic search methods have been extensively used for optimiza-
tion of the structures over the past two decades. Genetic algorithms (GA), ant colony
optimization (ACO), particle swarm optimization (PSO), harmony search (HS), big
bang-big crunch (BB-BC), artificial bee colony algorithm (ABC) and teaching–
learning-based optimization (TLBO) are the most popular metaheuristic optimiza-
tion methods. The basic principle of these methods is that they make an analogy
between the natural phenomena and the optimization problems. In this chapter,
recently developed metaheuristic optimization methods such as self-adaptive har-
mony search and teaching–learning-based optimization are reviewed and the per-
formance of these methods in the field of structural engineering are compared with
each other and the other metaheuristic methods.
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1 Introduction

A family of metaheuristic optimization methods based on swarm intelligence have
been developed in the past two decades. These methods simulate the behaviour of
different groups/swarms/colonies of animals and insects. Ant colony optimization
(ACO), harmony search (HS), particle swarm optimization (PSO), big bang-big
crunch optimization (BB-BC) and artificial bee colony optimization (ABC), teaching–
learning-based optimization (TLBO) are few examples of recent metaheuristic
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algorithms. They also are classified as population-based or nature-inspired opti-
mization methods. The main philosophy of all metaheuristic optimization methods is
the mimicking of the natural phenomenon. Design optimization of skeletal structures
using metaheuristic search methods is an important field of engineering under con-
tinuous development. The state-of-the-art utilization of metaheuristic algorithms in
weight or cost optimization of skeletal structures have been recently reviewed by
Lamberti and Pappalettere [1] and Saka [2].

The ACO was originally proposed by Dorigo et al. [3] for optimization prob-
lems. The method simulates the foraging behaviour of real-life ant colonies.
The ACO attempts to model some of the fundamental capabilities observed in the
behaviour of ants as a method stochastic combinatorial optimization [4]. In addition
to its different applications, the method has also been used for design optimization
of structural systems. ACO was used for optimization of truss structures by Camp
and Bichon [5], Capriles et al. [6], Serra and Venini [7], and Hasancebi et al. [8],
and frame structures by Camp et al. [4], Kaveh and Shojaee [9], Hasancebi et al.
[10], Kaveh and Talatahari [11].

HS was first developed by Geem et al. [12] for solving combinatorial opti-
mization problems. The method bases on the analogy between the musical process
of searching for a perfect state of harmony and searching for solutions to opti-
mization problems. HS has been used for a variety of structural optimization
problems including optimum design of truss structures [8, 13, 14], geodesic domes
[15], grillage systems [16] and steel frames [17–19].

In recent years, improved/modified HS algorithms have been developed in order
to increase the efficiency of the method. Saka and Hasancebi [20] developed an
adaptive harmony search algorithm for design code optimization of steel structures.
Hasancebi et al. [21] proposed an adaptive harmony search method for structural
optimization. Lamberti and Pappalettere [22] proposed an improved
harmony-search algorithm, where trial designs are generated including information
on the gradients of cost function for truss structure optimization. Two improved
harmony search algorithms called efficient harmony-search (EHS) algorithm and
self-adaptive harmony-search (SAHS) algorithm were proposed by Degertekin [23]
for sizing the optimization of truss structures.

The PSO method was first developed by Kennedy and Eberhart [24]. It is based
on the premise that social sharing of information among members of a species offers
and evolutionary advantage [25]. PSO has been used in optimization of skeletal
structures [26–29]. Researchers introduced new features in the standard imple-
mentation of PSO. Li et al. [28, 29] developed a heuristic particle swarm optimizer
(HPSO), which combines the PSO scheme and the HS scheme, for sizing opti-
mization of truss structures. Kaveh and Talatahari [30, 31] introduced a particle
swarmer, ant colony optimization and harmony search scheme for truss structures
with both discrete [30] and continuous variables [31].

The BB-BC proposed by Erol and Eksin [32] simulates the theories of the
evolution of the universe. According to this theory, in the big bang phase energy
dissipation produces disorder, and randomness is the main feature of this phase;
whereas, in the big crunch phase, randomly distributed particles are drawn into an
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order [33]. BB-BC algorithm was applied for sizing optimization of truss structures
[34]. In order to improve the convergence capability of standard BB-BC algorithm,
Kaveh and Talatahari [33, 35] developed hybrid BB-BC (HBB-BC) algorithm to
optimize space trusses and ribbed domes.

The ABC method was first developed by Karaboga [36] for numerical function
optimization. The ABC is an optimization method based on the intelligent beha-
viour of honey bee swarm. The ABC has successfully been applied to the size
optimization of truss structures with both continuous [37] and discrete variables
[38].

Another metaheuristic method called ‘teaching-learning-based optimization
(TLBO)’ has been proposed by Rao et al. [39] for constrained mechanical design
optimization problems. The method bases on the effect of influence of a teacher on
learners and the effect of learners with each other. Rao et al. [40] developed the
TLBO method for large-scale nonlinear optimization problems for finding global
solutions. TLBO was employed for optimum design of planar steel frames [41] and
sizing optimization of truss structures Degertekin and Hayalioglu [42].

In this chapter, the robustness of the SAHS [23] and TLBO [42] will be
investigated in the optimization of truss type structures. Three benchmark truss
structures existing in the current literature are presented to test the efficiency of the
methods. The results obtained from these methods will be compared with those of
other metaheuristic optimization algorithms recently presented in the literatures like
particle swarm optimization (PSO), heuristic particle swarm optimizer (HPSO),
hybrid particle swarm optimization (HPSO), big bang-big crunch optimization
(BB-BC), heuristic particle swarm ant colony optimization (HPSACO), hybrid big
bang-big crunch optimization (HBB-BC), artificial bee colony optimization
(ABC-AP) and improved harmony search algorithm (IHS).

The rest of this study is organized as follows. The formulation of optimum
design problem is given in Sect. 2. SAHS and TLBO methods are explained in
Sects. 3 and 4. The results obtained from the design examples are presented and
compared with other metaheuristic optimization methods in Sect. 5. Finally, con-
clusions are presented in Sect. 6.

2 Formulation of Optimum Design Problem

The minimum weight design problem for a truss structure can be formulated as
Find X ¼ ½x1; x2; . . .; xng� to minimize

WðXÞ ¼
Xng
k¼1

xk
Xmk

i¼1
qiLi ð1Þ
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subject to the following normalized constraints

gsnlðXÞ ¼
rnlj j
rnuj j � 1 � 0; 1 � n � nm; 1 � l � nl ð2Þ

gbnlðXÞ ¼
rclj j
rcuj j � 1 � 0; 1 � n � ncm; 1 � l � nl ð3Þ

gdjlðXÞ ¼
djl
�� ��
dju
�� ��� 1 � 0; 1 � j � nn; 1 � l � nl ð4Þ

xmin� xk � xmax; k ¼ 1; 2; . . .ng ð5Þ

where X is the vector containing the design variables, WðXÞ is the weight of the
truss structure, ng is the total number of member groups (i.e. design variables), xk is
the cross-sectional area of the members belonging to the group k, mk is the total
number of members in the group k, qi is the density of member i, Li is the length of
member i, gsnlðXÞ, gbnlðXÞ and gdjlðXÞ are the constraint violations for member stress,
member buckling stress and joint displacements of the structure. rnl and rcl are the
member stress and the member buckling stress of the nth member due to loading
condition l, rnu and rcu are their upper limits. djl is the nodal displacement of the jth
translational degree of freedom due to loading condition l, dju is its upper limit. nl is
the number of load conditions, nn is the number of nodes, max and min are the
upper and lower limits for cross-sectional area.

The optimum design of truss structures must satisfy optimization constraints
stated by Eqs. (2)–(5). In this study, the constraints are handled using a modified
feasible-based mechanism [30]. The efficiency of the method was previously ver-
ified for optimization of truss structures [23, 30]. The method consists of the
following four rules [30]:
Rule 1: Any feasible design is preferred to any infeasible design.
Rule 2: Infeasible designs containing slight violation of the constraints (from 0.01

in the first search to 0.001 in the last search) are considered as feasible
designs.

Rule 3: Between two feasible designs, the one having the better objective function
value is preferred.

Rule 4: Between two infeasible designs, the one having the smaller constraint
violation is preferred.
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3 Self-Adaptive Harmony Search Algorithm (SAHS)

Harmony-search (HS) algorithm for sizing optimization of the truss structures could
be explained in the following steps [23]:

Step 1. Initializing the harmony search parameters
HS parameters are assigned in this step. The number of design vectors in harmony
memory (HMS), harmony memory consideration rate (HMCR), pitch adjusting rate
(PAR) and the stopping criterion are selected in this step.

Step 2. Initializing harmony memory
All design vectors are stored in the harmony memory (HM). The HM matrix given
in Eq. (6) is filled with randomly generated design vectors as the size of the
harmony memory (HMS) in this step.

HM ¼

x11 x12 . . . x1ng�1 x1ng
x21 x22 . . . x2ng�1 x2ng
..
. ..

.
::: ..

. ..
.

..

. ..
.

::: ..
. ..

.

xHMS�1
1 xHMS�1

2 . . . xHMS�1
ng�1 xHMS�1

ng

xHMS
1 xHMS

2 . . . xHMS
ng�1 xHMS

ng

2
6666666664

3
7777777775

!
!
!
!
!
!

WðX1Þ
WðX2Þ

..

.

..

.

WðXHMS�1Þ
WðXHMSÞ

ð6Þ

In the HM, each row represents a truss design. X1, X2,…, XHMS�1, XHMS andWðX1Þ,
WðX2Þ,…, WðXHMS�1Þ, WðXHMSÞ are designs and the corresponding objective
function values, respectively. The truss designs in the HM are sorted by their
objective function values (WðX1Þ �WðX2Þ � � � � �WðXHMS�1Þ� WðXHMSÞ)
which are calculated using Eq. (1).

Step 3. Improvising a new harmony
A new harmony (i.e. new truss design) Xnew ¼ ðxnew1 ; xnew2 ; . . .; xnewng Þ is generated
using three rules: (i) HM consideration, (ii) pitch adjustment and (iii) random
generation. Generating a new harmony is called ‘improvisation’ [13].

In the HM consideration, the value of the first design variable xnew1 for the new
harmony is chosen from the HM, (i.e. fx11; x21; . . .:; xHMS�1

1 ; xHMS
1 g) or from the

possible range of values. The other design variables of new harmony
ðxnew2 ; . . .; xnewng�1; x

new
ng Þ are chosen by the same consideration. HMCR is applied as

follows:

xnewi 2 fx1i ; x2i ; . . .. . .; xHMS�1
i ; xHMS

i g
xnewi 2 Xs

(
with probability HMCR
with probability ð1� HMCRÞ ð7Þ

where Xs is the set of the possible range of values for each design variable
(xmin�Xs� xmax). The HMCR, which varies between 0 and 1, is the rate of
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choosing one value from historical values stored in the HM, while (1–HMCR) is the
rate of randomly selecting one value from the possible range of values [14]. For
example, a HMCR value of 0.95 indicates that HS algorithm will choose the design
variable from historically stored values in the HM with a 95 % probability and from
the entire possible range with a 5 % probability [13].

Any design variable of the new harmony obtained by the memory consideration
is examined to determine whether it is pitch-adjusted or not. This is performed by
the pitch adjusting rate (PAR). PAR investigates a better design in the neighbouring
of the current design and is applied as follows:

Pitch adjusting decision for

xnewi  yes with probability PAR
no with probability ð1� PARÞ

�
ð8Þ

The value of (1–PAR) sets the rate of doing nothing, whereas the value of PAR
indicates that xnewi is replaced as follows:

xnewi  xnewi þ bw� uð�1; 1Þ ð9Þ

where bw is the arbitrary distance bandwidth for continuous variable and uð�1; 1Þ
is a uniform distribution between −1 and 1. For example, a PAR of 0.1 indicates
that the algorithm will choose a neighbouring value with 10 % × HMCR probability
[13]. HMCR and PAR parameters are introduced to allow the solution to escape
from the local optima and to improve the global optimum prediction of HS algo-
rithm [13].

Step 4. Updating the harmony memory
If the new harmony Xnew ¼ ðxnew1 ; xnew2 ; . . .; xnewng Þ is better than the worst design in
the HM, judged in terms of the objective function value, the new harmony is
included in the HM and the worst harmony is excluded from the HM. In this
process, the HM is sorted again by objective function values.

Step 5. Terminating the process
Steps 3 and 4 are repeated until the termination criterion is satisfied.

The proposed SAHS algorithm differs from the standard HS algorithm as indi-
cated in the following aspects:

SAHS algorithm presented in this study dynamically updates PAR during the
search process as follows [23]:

PARðnsÞ ¼ PARmax � ðPARmax � PARminÞ
NI

� ns ð10Þ
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In SAHS algorithm, bw is completely removed and Eq. (9) is replaced as follows:

xnewi ¼ xnewi þ ½maxðHMÞi � xnewi � � uð0; 1Þ if uð0; 1Þ� 0:5 ð11Þ

xnewi ¼ xnewi � ½xnewi �minðHMÞi� � uð0; 1Þ if uð0; 1Þ[ 0:5 ð12Þ

where minðHMÞi and maxðHMÞi are the lowest and highest values of the ith design
variable in the HM. uð0; 1Þ is a uniform random number in the [0,1] range. Since
minðHMÞi and maxðHMÞi approach optimum gradually, SAHS algorithm produces
finer adjustments to the harmony.

4 Teaching–Learning-Based Optimization

The TLBO method presents a mathematical model for optimization problems based
on the simple teaching process. In the TLBO, the learners in a class are considered as
the population. The teacher is accepted as the well-versed person in his/her pro-
fession. Hence, the learner with the highest mark in a class is mimicked as a teacher.

An analogy between the TLBO and the optimization of truss structures is
established in the following way: a class is considered as a population which
contains truss designs, a learner in a class denotes a truss design in the population, a
design variable represents a subject taught to student, the grade of a student denotes
the weight of the truss design, the teacher is the truss design with the lowest weight
in the population.

Optimization of truss structures using the TLBO method consists of following
steps [42]:

Step 1. Initializing the TLBO
In this step, the class is filled with randomly generated learners (truss designs) as the
size of the population (ps).

ps ¼

x11 x12 . . . x1ng�1 x1ng
x21 x22 . . . x2ng�1 x2ng
..
. ..

.
::: ..

. ..
.

..

. ..
.

::: ..
. ..

.

xps�11 xps�12 . . . xps�1ng�1 xps�1ng

xps1 xps2 . . . xpsng�1 xpsng

2
6666666664

3
7777777775

!
!
!
!
!
!

WðX1Þ
WðX2Þ

..

.

..

.

WðXps�1Þ
WðXpsÞ

ð13Þ

In the class, each row represents a truss design. X1, X2,…, Xps�1, Xps and
WðX1Þ, WðX2Þ,…, WðXps�1Þ, WðXpsÞ are truss designs and the corresponding
weight values, respectively. It should be noted that the designs in the class are
sorted by their weight values (WðX1Þ�WðX2Þ� � � � �WðXps�1Þ�WðXpsÞ)
which are calculated using Eq. (1).
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Step 2. Teaching phase
The truss design with the lowest objective function (WðX1Þ) is assigned as the
teacher ðX teacher ¼ X1Þ. The aim of the teacher is to put effort to move the mean of
the class ðXmeanÞ. Therefore, ith design (i ≠ 1) is modified using the following
expression:

Xnew;i ¼ Xiþ rðX1 � TFX
meanÞ ð14Þ

in which Xi and Xnew;i are the current and new designs, respectively. r is the random
number uniformly distributed in the range of [0,1], TF is the teaching factor
which is either 0 or 1 [39] and Xmean is the mean of the designs calculated as the
following way:

Xmean ¼ m class
Xps
i¼1

xi1

 ! !
;m class

Xps
i¼1

xi2

 ! !
; . . .. . .;m class

Xps
i¼1

xing

 ! !" #

ð15Þ

where mð�Þ is the mean of the design variable. If the new design (Xnew;i) is better
than the current design (Xi) (i.e. WðXnew;iÞ\WðXiÞ), the new design is replaced
with the current design, Xi ¼ Xnew;i.

Step 3. Learning phase
In addition to the teacher’s effort to improve the mean of the class, the learners also
interact with each other to improve themselves. A design in the population is
randomly interacted with other designs to improve its quality. The learning phase is
applied to learn new information between the design i and j (i ≠ j) in the population
and can be expressed as [41]

Xnew;i ¼ Xiþ rðXi � X jÞ if WðXiÞ\WðX jÞ ð16aÞ

Xnew;i ¼ Xiþ rðX j � XiÞ if WðX jÞ\WðXiÞ ð16bÞ

in which X j is the randomly determined design which has to be different from Xi. If
the value ofWðXnew;iÞ is better thanWðXiÞ (i.e.WðXnew;iÞ\WðXiÞ), the new design
is replaced with the current design Xi ¼ Xnew;i.

Step 4. Terminating the search process
The steps 2 and 3 are repeated until the lightest truss design does not improve
during a predetermined number of structural analyses.
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5 Design Examples

The effectiveness and robustness of the SAHS [23] and TLBO [42] are tested using
four truss structures. The results obtained by the methods are compared with those
of HS [13], IHS [22], PSO [25], PSO, PSOPC and HPSO [28], HPSACO [31],
HBB-BC [33], BB-BC [34] and ABC-AP [37].

SAHS algorithm produces the minimum weight design for the values of 20 for
HMS, 0.90 for HMCR, 0.20 and 0.80 for PARmin and PARmax, 0.001 and 0.01
[23].

Two tuning parameters are employed in the TLBO: the population size (ps) and
the number of designs generated in the learning phase (ndlp). The best combination
of them obtained after sensitivity analysis and the minimum weight design for the
TLBO is obtained by setting ps = 30, ndlp = 4 [42].

Twenty independent runs are made for each design example involving 20 dif-
ferent initial designs because of the stochastic nature of the SAHS and TLBO. The
best designs obtained by the methods, the number of structural analyses required to
the optimum solutions, the average weight and the standard deviation of 20 inde-
pendent runs are given in the tables. The SAHS and TLBO are coded in FORTRAN
language and executed on a Intel Pentium Core 2 Duo 2.2 GHz machine.

5.1 Ten-Bar Plane Truss

The planar ten-bar plane truss, shown in Fig. 1 is the first design example. The
Young’s modulus and density of truss members are 104 ksi (1 ksi = 6.895 MPa) and
0.1 lb/in3, respectively. The allowable stress for all members is specified as 25 ksi
both in tension and compression. The maximum displacements of all free nodes in
the X and Y directions are limited to ±2. Each member is considered as a design
variable with the minimum gauge of 0.1 in2.

The results obtained by the SAHS [23], TLBO [42] and the other optimization
methods are reported in Table 1. The presented methods in this chapter found the

Fig. 1 Ten-bar plane truss
(1 in. = 2.54 cm,
1 kip = 4.448 kN)

Metaheuristic Optimization in Structural Engineering 83



T
ab

le
1

T
he

ps
eu
do

co
de

of
th
e
H
S
al
go

ri
th
m

D
es
ig
n
va
ri
ab
le
s
A
i
(i
n.

2 )
[1
3]

[2
5]

[2
8]

[3
1]

[2
2]

[3
7]

Pr
op

os
ed

[2
3,

42
]

H
S

PS
O

PS
O

PS
O
PC

H
PS

O
H
PS

A
C
O

IH
S

A
B
C
-A

P
SA

H
S

T
B
L
O

A
1

30
.1
5

33
.5
00

33
.4
69

30
.5
69

30
.7
04

30
.3
07

30
.5
22

2
30

.5
48

30
.3
94

30
.4
28

6

A
2

0.
10

2
0.
10

0
0.
11

0
0.
10

0
0.
10

0
0.
10

0
0.
10

00
0.
10

0
0.
10

0
0.
10

00

A
3

22
.7
1

22
.7
66

23
.1
77

22
.9
74

23
.1
67

23
.4
34

23
.2
00

5
23

.1
80

23
.0
98

23
.2
43

6

A
4

15
.2
7

14
.4
17

15
.4
75

15
.1
48

15
.1
83

15
.5
05

15
.2
23

2
15

.2
18

15
.4
91

15
.3
67

7

A
5

0.
10

2
0.
10

0
3.
64

9
0.
10

0
0.
10

0
0.
10

0
0.
10

00
0.
10

0
0.
10

0
0.
10

00

A
6

0.
54

4
0.
10

0
0.
11

6
0.
54

7
0.
55

1
0.
52

41
0.
55

13
0.
55

1
0.
52

9
0.
57

51

A
7

7.
54

1
7.
53

4
8.
32

8
7.
49

3
7.
46

0
7.
43

65
7.
45

72
7.
46

3
7.
48

8
7.
44

04

A
8

21
.5
6

20
.4
67

23
.3
40

21
.1
59

20
.9
78

21
.0
79

21
.0
36

7
21

.0
58

21
.1
89

20
.9
66

5

A
9

21
.4
5

20
.3
92

23
.0
14

21
.1
56

21
.5
08

21
.2
29

21
.5
28

8
21

.5
01

21
.3
42

21
.5
33

0

A
10

0.
10

0
0.
10

0
0.
19

0
0.
10

0
0.
10

0
0.
10

0
0.
10

00
0.
10

0
0.
10

0
0.
10

00

W
ei
gh

t
(l
b)

a
50

57
.8
8

50
24

.2
1

55
29

.5
0

50
61

.0
0

50
60

.9
2

50
56

.5
6

50
60

.8
2

50
60

.8
80

50
61

.4
2

50
60

.9
6

A
ve
ra
ge

w
ei
gh

t
(l
b)

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

50
61

.9
5

50
62

.0
8

St
an
da
rd

de
v.

(l
b)

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

0.
71

0.
79

C
on

st
ra
in
t
vi
ol
at
io
n
(%

)
0.
09

1
1.
95

N
on

e
N
on

e
N
on

e
0.
09

9
N
on

e
N
on

e
N
on

e
N
on

e

N
.
st
ru
ct
.
an
al
ys
es

20
,0
00

N
/A

15
0,
00

0
15

00
00

12
5,
00

0
10

65
0

13
50

50
0
×
10

3
70

81
16

87
2

a 1
lb

=
0.
45

36
kg

84 S.O. Degertekin and Z.W. Geem



better designs than those of the HS [13], PSO [25] and HPSACO [31] since the
lighter designs obtained by classical HS [13], PSO [25] and HPSACO [31] violated
the design constraints while the designs obtained by the SAHS [23] and TLBO [42]

Fig. 2 Convergence histories for the ten-bar plane truss

Fig. 3 Twenty-five-bar space truss
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are feasible. Although IHS [22] required the lowest number of structural analyses, it
should be noted that the number of structural analyses required by IHS [22] is not a
significant basis of comparison to evaluate the efficiency of SAHS [23] and TLBO
[42] since the IHS [22] included gradient information that allowed the number of
function evaluations to be drastically reduced as gradient information, inherently
speed up the optimization process [23]. Convergence histories (i.e. structural weight
versus number of structural analyses) are illustrated in Fig. 2.

5.2 Twenty-Five-Bar Space Truss

The twenty-five-bar space truss, shown in Fig. 3 is one of the most popular design
examples used in the literature for comparing different optimization methods. The
Young’s modulus and the density of truss members are 104 ksi and 0.1 lb/in3,
respectively. The structure is subject to the two loading conditions given in Table 2.
The design variables of the structure and the allowable stress values for all groups
are listed in Table 3. The displacement of nodes in all directions is restricted to be
less than ±0.35 in. The minimum cross-sectional area for each group of elements is
0.01 in2.

Table 2 Loading conditions for the twenty-five-bar space truss

Node Condition 1 Condition 2

Fx Fy Fz Fx Fy Fz
1 0.0 20.0 −5.0 1.0 10.0 −5.0

2 0.0 −20.0 −5.0 0.0 10.0 −5.0

3 0.0 0.0 0.0 0.5 0.0 0.0

6 0.0 0.0 0.0 0.5 0.0 0.0

Note Loads are in kips

Table 3 Allowable stress values for the twenty-five-bar space truss

Design variables At (in.
2) Allowable compressive stress (ksi) Allowable tension stress (ksi)

A1 35.092 40.0

A2–A5 11.590 40.0

A6–A9 17.305 40.0

A10–A11 35.092 40.0

A12–A13 35.092 40.0

A14–A17 6.7590 40.0

A18–A21 6.9590 40.0

A22–A25 11.082 40.0
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The results obtained by the SAHS [23], TLBO [42] and the other optimization
methods existing in the literature are reported in Table 4. It is clear from Table 4
that the TLBO [42] developed the best design overall since the lighter design
obtained by HS [13] and HPSACO [31] violated the design constraints while the
design obtained by the TLBO [42] is feasible. Moreover, it should be noted that
although the TLBO [42] required more structural analyses than the SAHS [23] to
find the optimum design, the TLBO [42] developed a design with a weight of
545.38 lb after 6665 structural analyses while the SAHS [23] required 6941
structural analyses to find the same weight. The convergence histories are illustrated
in Fig. 4.

5.3 Seventy-Two-Bar Space Truss

The third example deals with the design of the seventy-two-bar space truss shown
in Fig. 5. The structure is subject to the loading conditions given in Table 5. The
Young’s modulus and density of the material are 104 ksi and 0.1 lb/in3, respec-
tively. The member cross-sectional areas are treated as design variables, and are
divided into 16 groups. The allowable stress for all members is specified as 25 ksi
both in tension and compression. The maximum displacements of all free nodes are
limited to ±0.25 in. The minimum cross-sectional areas are specified as 0.1 in2.

Table 6 shows the results obtained by the SAHS [23], TLBO [42] and the other
optimization methods reported in current literature [13, 25, 28, 33, 34, 37].
The TLBO [42] founded the lightest design overall because the lighter design
obtained by the HS [13] violates the design constraints. It is seen from Table 6 that
the BB-BC [34] found a minimum weight of 379.85 lb after 19621 structural
analyses for case 1 while the TLBO [42] developed the same weight after 8422
structural analyses. Figure 6 shows the convergence histories of the SAHS [23] and
TLBO [42].

Fig. 4 Convergence history
for the twenty-five-bar space
truss
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Fig. 5 Seventy-two-bar space truss: a dimensions b element and node numbering patterns for the
first storey

Table 5 Loading conditions
for the seventy-two-bar space
truss

Node Condition 1 Condition 2

Fx Fy Fz Fx Fy Fz
17 5.0 5.0 −5.0 0.0 0.0 −5.0

18 0.0 0.0 0.0 0.0 0.0 −5.0

19 0.0 0.0 0.0 0.0 0.0 −5.0

20 0.0 0.0 0.0 0.0 0.0 −5.0

Note Loads are in kips
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6 Conclusions

The SAHS and TLBO obtained results as good as or better than other metaheuristic
optimization methods in terms of both the optimum solutions and the convergence
capability. It appeared that although the TLBO developed slightly heavier designs
than the PSOPC, HPSO and ABC-AP in a few cases, it required significantly less
structural analyses than the PSOPC, HPSO and ABC-AP in all design examples. It
should be noted that standard deviation of optimized weights obtained over 20
independent runs was quite small, which is <1.0 % in all design examples, com-
pared with average optimized weight. This points out that the SAHS and TLBO are
able to find a nearly global optimum design.
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