
Chapter 9
Cell Cycle Checkpoints and Senescence

Renu Wadhwa, Zeenia Kaul, and Sunil C. Kaul

Abstract Cellular senescence, an outcome of finite proliferative, limited repair and
defence capacity of normal cells, is a widely accepted in vitro model for ageing
studies. In a sharp contrast to cancer cells, it is firmly regulated by cell cycle
checkpoints that ensure evasion of stressed and genetically modified cells, limiting
their expansion and serve as an innate check to carcinogenesis. Tumour suppressors
and their regulatory proteins play key roles, both as molecular sensors and regulators
in this process. Aim of the present chapter is to sketch a brief understanding on
how cellular senescence is regulated by major tumour suppressor and cell cycle
checkpoint proteins as well as by some emerging molecules.
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9.1 Cellular Senescence

Senescence (derived from Latin: senescere, meaning “to grow old”) is a property of
all living organisms. It is a process that leads to functional decline, and an increase in
vulnerability to a spectrum of diseases eventually leading to death of an organism.
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From evolutionary perspectives, decline in reproductive capacity and increase in
mortality rate with age, set up conditions which eradicate exhaustive competition for
resources and favour continual survival of a population versus the individuals (Kirk-
wood 2008). Senescence is considered to be an outcome of limited maintenance and
repair capacity of living organisms leading to accumulation of damage that occurs as
a consequence of gene activities or functions essential for survival. In other words,
it is an indispensable outcome of life; further complicated by the environmental
factors without which life cannot exist or function (Kirkwood 2008). A large number
of model systems have been used for studying senescence in vitro. It has been
established that a cell, the smallest functional unit of life, mimics highly complex
organismal ageing phenomenon, and was first demonstrated by its limited capacity
to divide despite the availability of sufficient nutrients, growth factors and space
(Hayflick 2007; Hayflick and Moorhead 1961). The total number of population
doublings (PDs) that normal cell cultures can attain before senescence depends
on the cell type and the age of the donor, and not the chronological age of the
culture (Hayflick and Moorhead 1961; Maier and Westendorp 2009). The present
chapter provides a simple sketch on the current understanding on the role of cell
cycle checkpoint proteins in regulation of proliferation in normal and cancer cells.

Senescent cell can be identified in cell culture by virtue of its phenotypic
characteristics including increased cell size, flattened and irregular shape, multi-
nucleation and cytoplasmic vacuolation (Mitsui and Schneider 1976; Robbins et al.
1970; Sikora et al. 2011). Young fibroblasts have an organized fusiform appearance
in culture. On the other hand, senescent fibroblasts appear flattened, disorganized
and are randomly oriented in culture dish. They show fragmented and distorted
subcellular structures including nucleus, mitochondria and endoplasmic reticulum,
and have a high rate of autophagy that is associated with an increase in lysosomal
mass (Gerland et al. 2003; Goligorsky et al. 2009; Kurz et al. 2000). Young cultures
are heterogeneous and contain a mixture of dividing, growth-arrested and senescent
cells. The proportion of senescent cells increases progressively until the whole
culture has entered senescence, a state in which they can remain metabolically active
for long periods of time (Cristofalo and Sharf 1973; Smith et al. 1980; Wadhwa et al.
1991). Senescent culture has a lower cell density at confluence than a confluent
young culture suggesting that the senescent cells are more sensitive to cell-cell con-
tact inhibition. Although these phenotypes of senescent cells are firmly established,
the underlying molecular mechanism(s) remain obscure. A few molecular events
have been allied to senescent cell morphology and replicative senescence. Caveolin-
1, an integral membrane protein and the principal component of caveolae, was
shown to play an important role in senescence-associated morphological changes
by regulating focal adhesion kinase activity and actin stress fibre formation in the
senescent cells (Cho et al. 2004). Reduction in the levels of caveolin-1 caused
resumption of DNA synthesis in senescent cells (Cho et al. 2003) suggesting that it is
required for maintaining the state of replicative senescence. Senescence-associated
“-galactosidase (SA “-gal) activity was associated with the unusual behaviour of the
enzyme “-galactosidase, a lysosomal hydrolase. “-galactosidase is normally active
at pH 4, but in senescent cells it becomes active at pH 6. Cells positive for SA “-gal
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increase with cell culture passage and age, both in vitro and in vivo, respectively
(Bandyopadhyay et al. 2005; Carnero 2013; Dimri and Campisi 1994; Dimri et al.
1995). Early studies showed that the lysosomes increase in number and size in
senescent cells. SA “-gal appeared to be a result of increased lysosomal activity
at a suboptimal pH, which becomes detectable in senescent cells due to an increase
in lysosomal content (Kurz et al. 2000).

Functionally, senescent cells can be distinguished from pre-senescent cells by
their increased resistance to apoptotic death, refractoriness to various growth factors
and mitogens and increased sensitivity to toxins, antibiotics, irradiation, oxidation
and heat shock (Aggarwal et al. 1995; Blake et al. 1991; Fargnoli et al. 1990).
Several studies have demonstrated that the rate of protein, DNA and RNA synthesis
is reduced in senescent cells and is accompanied by substantial alterations in gene
expression involved in processes including cell cycle control, stress response, signal
transduction and synthesis of extracellular matrix, mitochondrial, and cytoskele-
tal proteins (Carnero 2013; Cristofalo et al. 1998; Duncan and Reddel 1997;
Falandry et al. 2013; Goldstein 1990; Holliday 1990; Kuilman et al. 2010; Rattan
1996). Some of the most commonly used senescent cell specific biomarkers are:
osteonectin, fibronectin, apolipoprotein J, smooth muscle cells 22 (SM22) protein,
and type II (1)-pro-collagen (Gonos et al. 1998; Kumazaki et al. 1991). Senescent
cells also display an increased activity of metalloproteinases, which degrade the
extracellular matrix (Campisi 2000). Such senescent cell specific markers provide
hints for elucidating the underlying molecular mechanism(s).

A large number of studies have confirmed that the replicatively senescent cells
make a permanent exit from cell cycle and arrest at the G1/S or G2/M boundary
representing exhaustion of their division capacity (Campisi 2000; Cheung et al.
2010; Goldstein 1990; Herbig et al. 2004; Marcotte and Wang 2002; Pignolo
et al. 1998; Rayess et al. 2012; Stein and Dulic 1995; Vargas et al. 2012). They
have been detected in a variety of tissues and in a number of different organisms
including mouse, primate and human (Dimri et al. 1995; Jeyapalan et al. 2007;
Krishnamurthy et al. 2004; Krtolica and Campisi 2002; Michaloglou et al. 2005;
Molofsky et al. 2006; Prieur and Peeper 2008; Satyanarayana et al. 2004; Campisi
and Robert 2014; Demaria et al. 2015). In old baboons, over 15 % of dermal
fibroblasts showed a senescent phenotype as determined by damaged telomeres,
increased p16INK4A expression and an activation of ATM kinase (Jeyapalan et al.
2007). Michaloglou and colleagues showed that the melanocytic naevi (benign
skin moles, that may be precursors of malignant melanoma) have increased levels
of senescent markers and do not seem to proliferate, yet can persist for many
years (Michaloglou et al. 2005). However, evidence regarding the role of senescent
cells in vivo ageing and pathologies of old age is only limited. Apparently, in
contrast to replicative senescence of cells in vitro, tissue and organismal ageing
is multifactorial and is more complex because of the existence of heterogeneous
populations of cell types that function and senesce in different ways influenced by
individual genetic and environmental factors. Knockout mouse models have been
generated to recapitulate human genetic diseases associated with premature ageing
and cancer predisposition. Individuals with premature ageing disorders such as
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Werner Syndrome, Down Syndrome and Hutchison-Gilford Progeria have a shorter
in vitro life span supporting the use of replicative senescence as a valuable model
to understand the ageing in vivo (Chun et al. 2011; Mackenzie and MacRae 2011;
Raghu et al. 2001; Thweatt and Goldstein 1993; Vaziri et al. 1993).

9.2 Triggers of Senescence

Over the last three decades, there have been several studies to understand the mech-
anisms responsible for the limited replicative potential of normal human fibroblasts.
The most consistent view probably is that the normal biological functions required
for life are important triggers of senescence. Although distinguishing between
the causes and consequences of senescence may be difficult, some of the most
consistent manifestations of cellular senescence appear to be (i) upregulation of
specific tumour suppressor activities (Atadja et al. 1995; Brown et al. 1997; Gire
2005; Gire and Wynford-Thomas 1998; Liu et al. 2015), (ii) accumulation of DNA
damage response proteins at telomeres due to telomere shortening (d’Adda di
Fagagna et al. 2003; Kaul et al. 2012; Mengual Gomez et al. 2014), (iii) an increase
in inadequately repaired single stranded (ss) or double stranded (ds) DNA breaks
(Campisi and Robert 2014; Klement and Goodarzi 2014; Wang et al. 2015) (iv)
increase in intrinsic stress including mitochondrial dysfunction and accumulation of
reactive oxygen species (ROS) (Passos and Von Zglinicki 2006; Passos et al. 2006;
Burhans and Heintz 2009; Vurusaner et al. 2012; Yan et al. 2014), and (v) increase in
secreted growth factors, matrix remodelling enzymes, and inflammatory cytokines
that contribute to age-related pathologies including cancers (Campisi 2005a, b;
Krtolica et al. 2001; Tchkonia et al. 2013; Velarde et al. 2013).

9.3 Stress Induced Premature Senescence (SIPS)

Any form of sub-cytotoxic stress that can accelerate the appearance of the senescent
phenotype in cells is regarded as a trigger of SIPS. Although replicative- and stress-
induced senescence initiate from different origins, both processes demonstrate
strong similarities with regard to activation of DNA damage response, upregulation
of tumour suppressor functions and permanent growth arrest at G1/S or G2/M
checkpoints (Halazonetis et al. 2008; Horn and Vousden 2007), and hence both have
been used as convenient model systems for understanding the molecular basis of
senescence. Sub-lethal stresses such as oxidative stress or gamma irradiation, chro-
matin remodelling, oncogenic stress, DNA damage and strong mitogenic responses
have been shown to result in SIPS (Campisi and Robert 2014; Di Leonardo et al.
1994; Martien and Abbadie 2007; Passos et al. 2006; Saretzki et al. 1998; Suzuki
and Boothman 2008; Toussaint et al. 2000). Nuclear and mitochondrial DNA
damage (mtDNA) induced by physiological levels of ROS has been shown to
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have a significant impact on cellular senescence. Many studies have shown that
the telomere shortening is stress dependent and mtDNA damage is closely related
to ROS production (Passos et al. 2007). Improvement in mitochondrial function
resulted in less telomeric damage and slower telomere shortening. Moreover,
telomerase, an enzyme complex that re-elongates shortened telomeres, was shown
to protect against oxidative stress, suggesting a strong link between mitochondrial
and telomeric DNA damage leading to cellular senescence (Ale-Agha et al. 2014).
Examples of oxidative stress causing senescence include treatment with sub-lethal
levels of hydrogen peroxide (Chen 2000), UV (Ma et al. 2002; Wlaschek et al.
2003) and interferon-” (Weyand et al. 2003) that were shown to induce reactive
oxygen species and DNA damage (Ale-Agha et al. 2014; Klement and Goodarzi
2014; Passos et al. 2007; Vurusaner et al. 2012). Whereas lifespan of primary human
fibroblasts cultured in 3 % O2 was extended by 20 PDs (Chen et al. 1995; Gelvan
et al. 1995) as compared to the ones cultures in 20 % O2 by Hayflick and Moorhead
(1961), the cells cultured in >20 % O2 displayed reduced growth rate and underwent
fewer PDs (Horikoshi et al. 1986; Indran et al. 2010; Passos et al. 2006; Przybylska
and Mosieniak 2014; von Zglinicki et al. 1995).

Oncogene-induced premature senescence (OIPS) is a subset of SIPS that occurs
in response to excessive mitogenic signals. Inappropriate mitogenic signaling such
as inhibition of phosphatidylinositol 3-kinase or constitutive MAP kinase signaling
via overexpression of oncogenic Ras, Raf or MEK induces premature senescence
in human diploid fibroblasts (Lin et al. 1998; Tresini et al. 1998; Zhu et al.
1998). It was shown that the oncogenic Ras-induced SIPS was mediated by an
increase in ROS (Lee et al. 1999; Wei and Sedivy 1999; Sikora et al. 2011). It
was shown that the ROS acts as both an upstream signal that triggers p53 activation
as well as a downstream effector that mediate apoptosis. Low levels of p53 induce
expression of antioxidant enzymes, and its high levels promote the expression of
genes that contribute to ROS formation (Liu et al. 2008). Upon continuous exposure
to over-expression of the oncogene, normal cells stop proliferating long before their
telomeres become short. The RAS proto-oncogenes encode small GTPase proteins
that are involved in cellular signal transduction pathways including induction of
cell growth and survival, as well as differentiation. A mutation in codon 12, 13 or
61 in any of the three RAS genes (N-RAS, K-RAS and H-RAS) transforms them
into active oncogenes but, paradoxically, overexpression of mutant RAS oncogenes
in normal cells causes senescence rather than malignant transformation. Studies
described in 1997 provided a partial explanation on this finding by showing that
the activated H-RAS triggered an initial wave of proliferation in vitro, followed by
an irreversible growth arrest and a concomitant accumulation of p53 and p16INK4A

proteins (Serrano et al. 1997). Several reports have now demonstrated that the
oncogene-induced senescence occurs in vivo in mouse tumor models and in human
tumors. A mouse strain containing a knocked-in conditional oncogenic mutant H-
RAS allele developed lung adenomas that were characterized by a low proliferative
index and increased SA “-gal activity and other senescence markers including
senescence-associated heterochromatin foci and elevated levels of p16INK4a and
p15INK4a (Collado et al. 2007). E�-N-RAS transgenic mice harboring targeted
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heterozygous lesions in the gene encoding Suv39h (histone methyltransferase)
developed mouse T cell lymphomas that entered senescence after drug therapy.
Intriguingly, these studies show that tumor cells are still capable of activating the
senescence program when triggered by exogenous stimuli such as DNA-damaging
anticancer drugs (Braig et al. 2005). Oncogene-induced senescence has been studied
largely in vitro, which has evoked debate whether this type of senescence has
physiological relevance. Studies have shown that the stress and oncogene-induced
senescence occur in vivo in response to mutations in Ras (Serrano et al. 1997), Raf
(Dankort et al. 2007; Michaloglou et al. 2005), NF1 (Courtois-Cox et al. 2006) and
PTEN (Chen et al. 2005; Courtois-Cox et al. 2006) genes in mouse as well as human
tumors. Sarkisian and colleagues have postulated a triple step model for dose-
dependent oncogene induced senescence in vivo (Sarkisian et al. 2007). They gen-
erated doxycycline-inducible transgenic mice that allowed titrated Ras activation.
Initial activation of Ras mutation resulted in low levels of oncogene activation that
stimulated proliferation; high level of ras activation activated tumor suppressor path-
ways and caused induction of senescence; inactivation of the latter was indispensible
for tumor progression (Sarkisian et al. 2007). Feng and colleagues demonstrated
the relationship between oxidative stress and senescence in vivo using mouse
oxidative stress model (Feng et al. 2001). Several tissues from the ozone inhalated
mice showed decline in anti-oxidative capacity, increased production of ROS and
senescence-related alterations in physiological and physical strength parameters.

9.4 Cellular Senescence and Cancer

Cellular senescence is largely accepted as an in-built anticancer mechanism.
Whereas cancer cells show a state that has escaped senescence, reimposition of
senescence is considered to be a promising anticancer strategy. Pereira-Smith and
Smith illustrated that the hybrids obtained from fusion of normal human diploid
fibroblasts with immortal human cell lines exhibited limited division potential
suggesting that the cellular senescence is dominant over immortalization (Pereira-
Smith and Smith 1983). The latter has been widely accepted as an early prerequisite
towards tumorigenesis (Campisi 2013; Duncan and Reddel 1997; Reddel 1998;
Shay and Wright 2005; Wadhwa et al. 1994, 2000a, 2002b) and is achieved by over-
riding multiple proliferative checkpoints by events mediated by genetic, epigenetic,
intracellular and extracellular environmental factors (Campisi and Robert 2014;
Serrano and Blasco 2007; Shay and Roninson 2004; Moore et al. 2003; Vallejo
et al. 2004). It was shown that the introduction of transforming genes of DNA
tumour virus, such as SV40, papilloma and adenovirus, prevents cells from entering
senescence and confers a finite extension of proliferative lifespan, of approximately
20–60 PD, which eventually ends in culture crisis (Girardi et al. 1965). Only a
small number of cells (at a frequency of 10�5 to 10�9) were able to escape from
crisis (Girardi et al. 1965; Huschtscha and Holliday 1983; Shay and Wright 1989)
by inactivation of cell cycle checkpoints and activation of a telomere maintenance
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mechanisms (Campisi 2002, 2005b, 2008; Duncan and Reddel 1997; Reddel 1998;
Smith and Pereira-Smith 1996). Reversal of these signalings has been shown to
trigger cells to senescence and has been considered to be a promising anticancer
strategy. Indeed several anticancer drugs have been shown to induce premature age-
related pathologies like visual deterioration, musculoskeletal decline, osteoporosis,
skin changes, chronic fatigue, sexual dysfunction and cardiovascular complications
(Lee and Lee 2014; Maccormick 2006; Meinardi et al. 2000; Ventura et al. 2007).

9.5 Cell Cycle Checkpoints and Senescence

The cell cycle checkpoints provide important regulatory machinery for ensuring
integrity of genetic information in normal cells. In response to genotoxic stress,
they block cell cycle progression, thus allowing DNA repair systems to correct
replication errors. Whereas upon correction of the DNA errors, checkpoint signals
are attenuated resulting in cell cycle renewal, failure of repair triggers senes-
cence/apoptosis, failure of the latter results in carcinogenesis. Recent studies have
shown that the checkpoints-mediated DNA damage response (DDR) signalling acts
as “a double-edged sword” in cancer prevention and cancer therapy (Tian et al.
2015). On one hand, it safeguards genomic stability and prevent from tumorigenesis,
and on the other, it contributes to the resistance of cancer cells to chemo- and
radiotherapy.

The DNA damage checkpoint control is constituted of sensors (MRN complex
and RPA), transducers (Ataxia telangiectasia mutated, ATM; Ataxia telangiectasia
and Rad3-related, ATR and DNA-PK) and their effector proteins (Chk1, Chk2, p53,
Cdc25A, Cdk1, Cdk2 and several others) (Broustas and Lieberman 2014; Elias
et al. 2014; Stracker et al. 2013; Zannini et al. 2014; Zhang and Hunter 2014).
The ATM/ATR-Chk1/Chk2-p53-p21 axis is a primary regulator of DNA damage
response (Stracker et al. 2013). Each of these proteins plays a specific role in
regulation of cell cycle and DNA damage response. ATM and DNA-PK respond
to double strand DNA breaks, ATR is involved in single-strand DNA breaks. In
response to genotoxic, oncogenic and environmental stresses, it is activated by
phosphorylation on specific Ser or Thr residues and causes G1/S and G2/M cell
cycle arrest. Furthermore, they exhibit stress specific activation. Whereas ATM and
DNA-PK respond mainly to DSBs, ATR is activated by single-strand DNA and
stalled DNA replication forks (Sperka et al. 2012). Chk1, Chk2, p53 and its down-
stream regulators execute cell cycle arrest and are most frequently inactivated in
cancer cells. On the other hand, they are activated in DDR and OIPS. Furthermore,
whereas precancerous cells possess active DDR and OIS, aggressive and advanced
cancers show their inactivation suggesting that DDR and checkpoint barriers are
overridden during the process of carcinogenesis (Broustas and Lieberman 2014;
Sperka et al. 2012; Wang et al. 2015). p53 is activated in response to a variety of
stresses and inactivated in large majority of cancers (Blagosklonny 2002; Wynford-
Thomas 1996; Xue et al. 2007). Although, mechanisms of functional inactivation
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of this axis at various checkpoints are not well understood, recent data show that
many checkpoint recovery proteins are overexpressed in various cancer tissues
suggesting that they function not only in the cell cycle control, but also in the
process of cancer development. On the other hand, several proteins, such as Wee
1, Claspin, Plk1, Wip1, Gwl, FoxM1, Cdh1/APC, and PP2A have been shown
to inactivate checkpoint regulators by ubiquitin mediated degradation or other
mechanisms and promote cell transformation (Wang et al. 2015; Zannini et al. 2014;
Zhang and Hunter 2014). The following discussion is limited to the major cell cycle
checkpoints involved in senescence.

9.6 p53 Checkpoint

Involvement of multifunctional p53 tumour suppressor protein in senescence has
been firmly established in last two to three decades. The two main activities of
p53, DNA binding and transcriptional activation, have been shown to increase as
cells approach senescence (Atadja et al. 1995; Bond et al. 1996; Kulju and Lehman
1995) or undergo SIPS in response to oncogenic or environmental stimuli (Chen
et al. 1998). It activates transcription of a large variety of genes including p21WAF1,
GADD45, MDM2, Bax, thrombospondin 1, cyclin G, IGF-BP3, TGF’, 14-3-3 s and
MDM2 (el-Deiry 1998; Elias et al. 2014; Fang et al. 1999; Liu et al. 2015; Menon
and Povirk 2014; Mirzayans et al. 2012; Zhang et al. 2014) and in turn regulated
by HDM2, predominantly, by proteasome mediated degradation (Courtois-Cox
et al. 2006). Several studies have shown that p53 must be transcriptionally active
in order to induce senescence through its downstream effector cyclin dependent
kinase inhibitor p21WAF1 that causes arrest at G1/S or G2/M stage of cell cycle.
Whereas overexpression of p21WAF1 in p53 compromised cells resulted in their
senescence (Wang et al. 1999; Fang et al. 1999), p21WAF1 compromised cells were
refractory to this effect (Brown et al. 1997). Microinjection of anti-p53 antibodies
rescued cells from senescence and this effect was accompanied by a decrease in
p21WAF1 expression (Bond et al. 1994; Gire and Wynford-Thomas 1998; Shay et al.
1993). p21 expression is upregulated in a p53-dependent manner as cells approach
senescence (Alcorta et al. 1996; Dulic et al. 1994; Harper et al. 1993; Noda et al.
1994; Stein et al. 1999; Vaziri et al. 1993). Exogenous expression of p21WAF1

induced senescence in early passage human diploid fibroblasts (Fang et al. 1999;
McConnell et al. 1998; Vogt et al. 1998). Disruption of both p21 alleles conferred
an extended lifespan (Brown et al. 1997). However, a high level of p21 expression
was neither maintained in human senescent cells nor was necessary for acquisition
of senescence in mouse cells (Medcalf et al. 1996; Pantoja and Serrano 1999). Thus
it was proposed that p21WAF1 may initiate senescence but may not be involved in its
maintenance. On the other hand, p53 is inactivated in about 60 % of human cancers
(Sharpless and DePinho 2002) by mechanisms involving (i) mutations, (ii) inactiva-
tion by either DNA tumour virus oncoproteins or cellular partners/antagonists. Cells
from individuals with Li-Fraumeni syndrome (an inherited mutation in one TP53
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allele) were shown to exhibit lifespan extension when their wtTP53 was inactivated
spontaneously (Maclean et al. 1994; Rogan et al. 1995). And, introduction of wtp53
into immortalized cells resulted in their growth arrest or apoptosis.

For its role as a guardian of the genome, p53 has been shown to induce a variety
of genes that promote cell death or apoptosis in response to stress (DNA damage,
hyperoxia, hypoxia, activated oncogenes, heat shock, cytokines and growth factors)
and evade expansion of cells with genomic anomalies. These include BAX, APAF1,
PUMA, p53AIP1, NOXA, Wip1 and Gadd45 (Elias et al. 2014; Liu et al. 2014,
2015; Menon and Povirk 2014). During apoptosis, several of these proteins are
found in mitochondria and involved in triggering the caspase cascade. It is still
unclear what regulates p53 activities to induce either cell cycle arrest or apoptosis.

Site-specific phosphorylation of p53 in response to DNA damage and other
stresses has been used as a reliable indicator of stressed state of cells. For example,
ionising radiation induces phosphorylation of p53 at serine 15, and this requires
Checkpoint kinase 2 (Chk2) and ATM kinase (Banin et al. 1998; Canman and Lim
1998; Knippschild et al. 1996). UV induces phosphorylation at serines 15 and 37,
which is dependent on Chk1 and ATR kinase (Chehab et al. 1999; Hirao et al.
2000) and Chk1 also specifically phosphorylates p53 at serine 20 (Chehab et al.
1999; Shieh et al. 2000). UV has also been found to induce phosphorylation at
five other N-terminal serines and two threonine residues and, in the C-terminus, at
serine 392 (Appella 2001; Appella and Anderson 2001). Phosphorylation of p53 has
been shown to prevent its binding to antagonist HDM2, resulting in its stability and
upregulation in stressed cells.

Due to critical role of p53 in cell cycle arrest, and its frequent inactivation
in human cancers, it has been established as a key regulator of ageing and
carcinogenesis. Mouse models with enforced increase in p53 activity have provided
contrasting results due to differences in the transgenic p53 allele (Garcia-Cao et al.
2002; Lavigueur et al. 1989; Maier et al. 2004; Tyner et al. 2002). These studies
showed that (i) mice with truncated or mutated p53 allele have accelerated ageing
and shorter lifespan, and (ii) the mice with multiple copies of the entire p53 locus
(super p53) exhibit decreased cancer incidence. Furthermore, the transgenic animals
with supernumerary copies of both p53 and its associated regulator p19ARF (super
p19ARF/p53) exhibited a high degree of tumour resistance and delay in ageing
(Matheu et al. 2007). These studies have highlighted the importance of regulation of
p53 activity and not just its expression (Liu et al. 2015; Papazoglu and Mills 2007).
Furthermore, It has recently been shown to regulate microRNAs that mediate its
spectrum of activities in cell cycle arrest, apoptosis and metabolic regulation (Zhang
et al. 2014) (Liao et al. 2014; Musilova and Mraz 2015; Penna et al. 2015).

Just as p53 regulates a large number of proteins, it is affected and regulated by
a enormous number of factors. One of its strong upstream regulators of p53 is ARF
(Alternate Reading Frame) protein coded by INK4a locus on human chromosome
9p21 that also encodes p16INK4A, an upstream regulator of pRB (Quelle et al.
1995). Both these proteins have been shown to act as key regulators of replicative
senescence, SIPS, OIPS and immortalization of human cells (Kamijo et al. 1997;
Quelle et al. 1995; Serrano et al. 1996). ARF was shown to inactivate ubiquitin



154 R. Wadhwa et al.

ligase HDM2, responsible for degradation of p53 and pRB, resulting in increased
level of expression and activation of these proteins. It also functions independent
of HDM2 and involves several other interacting proteins including E2F family
members, spinophilin, topoisomerase I, Pex19p, cyclin G1, p120 (E4F), WRN
helicase c-myc and CARF (Menendez et al. 2003; Martelli et al. 2001; Vivo et al.
2001; Karayan et al. 2001; Sugihara et al. 2001; Zhao et al. 2003; Rizos et al.
2003; Woods et al. 2004; Hasan et al. 2002, 2004, 2008; Qi et al. 2004). It has
been established that compared to human cells, mouse cells possess milder tumour
suppressor mechanisms and hence undergo spontaneous immortalization in culture.
Explanation to such difference in the activity of mouse and human p53 was provided
by the study that isolated Pex19p as an ARF interacting partner in mouse cells.
It was shown that Pex19p interacts with mouse ARF (p19ARF), but not human
ARF (p14ARF), and inactivate its p53-activating function accounting for weaker p53
activity in mouse cells (Wadhwa et al. 2002b). ARF was also found to interact with
a novel 61-kDa serine-rich ubiquitous unique protein coded by human chromosome
4q35. It was named CARF (collaborator of ARF) due to its interaction and
collaboration with ARF for activation of p53 function. Targeted siRNA mediated
knockdown of CARF resulted in downregulation of ARF expression and its activity
that was also translated to downregulation of p53 and p21WAF1 expression and activ-
ities (Hasan et al. 2002, 2004). The data suggested that CARF is required for ARF
function. Furthermore, CARF interacted with p53 causing its stability and activation
(Hasan et al. 2004), and HDM2 (Hasan et al. 2008) resulting in its degradation. In
a feedback regulation, CARF acts as a transcriptional suppressor of HDM2 and
protects itself from HDM2-mediated proteasomal degradation (Cheung et al. 2010;
Hasan et al. 2008). It was shown that CARF regulates senescence and carcinogenesis
by its dose dependent two-way regulation of DNA damage response. Whereas high
level of CARF activated DNA damage response and p53 pathway, its super high lev-
els were shown to inactivate these pathways and lead to malignant transformation of
cells (Cheung et al. 2014). Knockdown of CARF on the other hand caused apoptosis
depicting that it is an essential protein for cell survival (Cheung et al. 2011, 2014).

p53 has been shown to be regulated by stress chaperone mortalin that is enriched
in cancer cells (Deocaris et al. 2013; Wadhwa et al. 2006). Amino-terminus region
of mortalin binds to the carboxy-terminus region of p53 (Kaul et al. 2001, 2005;
Wadhwa et al. 1998). The small molecules and peptides that bind to mortalin
were able to act as binding antagonists resulting in translocation and reactivation
of wild type p53 (Deocaris et al. 2007; Grover et al. 2012; Kaul et al. 2005;
Wadhwa et al. 2000b, 2002a). Furthermore, an activation of p53 was observed in
cells compromised for mortalin expression (Wadhwa et al. 2003; Yoo et al. 2010).
It included not only the activation of transcriptional activation function but also
control of centrosomal duplication (Kanai et al. 2007; Ma et al. 2006) and apoptotic
functions (Lu et al. 2011a, b). Based on these findings, a model on stress-regulation
of mortalin-p53 interaction was proposed. Unstressed normal, immortalized and
non-malignant cancer cells possess low level of p53 expression and does not interact
with mortalin. Genotoxic or environmental stress induces mortalin-p53 interaction
leading to inhibition of the apoptotic ability of p53. Physiologically stressed and
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malignant cancer cells accumulate p53 (mutant) that is highly phosphorylated and
have mortalin-p53 interaction (Lu et al. 2011a, b).

An allelic form of mouse mortalin (mot-1) that differs by two amino acids,
M618V and G624R, in the carboxy-terminus substrate-binding domain was earlier
shown to induce senescence in mouse immortal cells. By genome sequencing
of human mortalin (hmot-2) from Parkinson disease (PD) patients two missense
mutants, R126W and P509S, were identified. In comparative functional analysis
mouse mot-1 and human PD mutants, R126W and P509S, it was shown that these
lack mot-2 functions involved in carcinogenesis. These included p53 inactivation,
hTERT/hnRNP-K activation. Of note, mot-1 and PD mutants caused increased
level of endogenous oxidative stress, and resulted in decreased tolerance of cells
to exogenous oxidative stress. Growth characteristics of hmot-2 and PD mutant
revealed that whereas hmot-2 promotes cell cycle progression, PD mots caused cell
cycle retardation (Wadhwa et al. 2015). By functional and biochemical assays on
protein-protein interactions, it was found that they possess differential chaperoning
activities and binding to proteins including RPL-7 and EF-1’ proteins. These
factors were predicted to mediate the transformation of longevity/pro-proliferative
function of hmot-2 to the premature aging/anti-proliferative effect of PD mutants,
that operates through their impact on cell cycle checkpoints involved in regulation
of cellular senescence and carcinogenesis.

9.7 pRB Checkpoint

Retinoblastoma protein (pRb) is a negative regulator of cell cycle. In its un-
phosphorylated form, it binds to E2F family of transcription factors and inactivate
their function for cell cycle progression. Phosphorylation of pRB abrogates its
interaction with E2F proteins and activate cell cycle progression through G1 to
S phase (Nevins 1992; Benevolenskaya and Frolov 2015; Dyson 1994). Several
studies have shown that pRB is under-phosphorylated in senescent cells causing
them to arrest at the G1 stage of cell cycle (Futreal and Barrett 1991; Stein et al.
1990). Similar to p53, pRB is a target of DNA tumour virus transforming proteins
(Ludlow et al. 1989) and is inactivated in large majority of tumours (Shay et al.
1993; Cipressa and Cenci 2013; Jarrard et al. 1999). Introduction of pRB gene
into p53/pRB deficient immortal tumour cells induced senescence (Xu et al. 1997).
Downstream target of the pRB, the family of E2F transcription factors, is the
key regulator of cell cycle progression, apoptosis and a number of other biologic
processes. Most recently, it is implicated in regulation of mitochondria-associated
genes (Benevolenskaya and Frolov 2015).

Phosphorylation of pRB is regulated by p16INK4a (an inhibitor of the cyclin D-
dependent kinase) coded by the CDKN2A locus on chromosome 9p21 that also
encodes ARF (Kamijo et al. 1998; Stott et al. 1998). It has been shown to maintain
hypo-phosphorylated pRB in senescent human cells. Unlike p21WAF1, p16INK4A

remains high in late senescent cells (Alcorta et al. 1996; Hara et al. 1991; Reznikoff
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et al. 1996; Jarrard et al. 1999; Stein et al. 1990). Introduction of exogenous
p16INK4A into normal or immortal human cells resulted in their growth arrest,
and induction of premature senescence by ectopic expression of activated Ras or
Raf was mediated by p16INK4A (Kato et al. 1998; Serrano et al. 1997; Lin et al.
1998; Zhu et al. 1998). Whereas elevated level of p16INK4A is also responsible
for maintenance of a senescent-like state in cells treated with DNA damaging
agents (Robles and Adami 1998), its spontaneous loss was associated with lifespan
extension in mammary epithelial cells (Brenner et al. 1998; Huschtscha et al. 1998).
In Li-Fraumeni syndrome fibroblasts, loss of wild type p53 or p16INK4A caused
lifespan extension and, the effects of losing both the p53 and the pRb/p16INK4A

pathways were additive (Huschtscha and Reddel 1999). Consistent with the role of
p53 and pRb in cellular senescence in vitro, mice with mutations in p53, and pRb
or p16INK4A were prone to tumour formation (Donehower et al. 1992; Sharpless
et al. 2001), suggesting the role of these proteins in organismal ageing. The level of
p16INK4A/ARF was elevated when cells were accelerated to age with the exogenous
stress (Halvorsen et al. 2000; Krishnamurthy et al. 2004). On the other hand, caloric
restriction, known to retard ageing, caused marked reduction (2–16-fold) in age-
induced p16INK4A/ARF (Krishnamurthy et al. 2004). Induction of ARF expression
has been shown to stabilize and increase the activity of p53, resulting in upregulation
of p21WAF1, which in turn inhibits CDKs and pRB phosphorylation. ARF and
p16INK4A are proposed as biomarkers of ageing through their tumour suppression
and senescence-inducing functions. Krishnamurthy and colleagues demonstrated a
significant increase in expression of the p16INK4A and ARF in most of the tissues
in aged mice and rats (Krishnamurthy et al. 2004). They were associated with
upregulation of SA-“-gal activity in several tissues. In calorie-restricted animals,
increase in lifespan and reduction in age-associated pathologies was correlated with
decrease in both p19ARF and p16INK4A expression (Krishnamurthy et al. 2004).
Sharpless and colleagues showed that the animals deficient in p16INK4a and/or p53
are developmentally normal, but showed increased frequency of cancer; notably,
p16INK4a and p53 double knockout mice have severely shortened lifespan (Sharpless
2004). In contrast, super Ink4A/ARF mice, carrying its extra locus in addition to the
endogenous alleles, are more resistant to the development of a variety of chemically-
induced tumorigenesis, and have a lower incidence of spontaneous tumours without
affecting normal viability or ageing (Matheu et al. 2004, 2007).

Stress induced senescence in human cells is associated with increase in the
expression of p16INK4A (Toussaint et al. 2000; Suzuki and Boothman 2008; Serrano
and Blasco 2007; Mirzayans et al. 2012). On the other hand, it was shown that
ARF is not directly induced by acute DNA damage (Zindy et al. 2003). It mediates
the DNA damage response through its effects on HDM2, p53, ATM and ATR
(Pauklin et al. 2005). It may interact directly with ATM and/or ATR kinases or
may regulate them through TIP60 (Kim and Sharpless 2006). Although the two
major checkpoint pathways, p53 and pRB, show overlapping activities to trigger
and maintain senescence through activities of p21WAF1 and p16INK4A, they also work
independent to each other and have a vital role in senescence related checkpoint
controls, and their loss during cancer development and progression.
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Research in last two to three decades has resolved several questions on functional
intricacies of in-built cell cycle checkpoints and tumour suppressor mechanisms
that regulate limited proliferative capacity of cells and safeguard them against
cancer. Further research on feed-back and feed-forward regulation of these cell
cycle checkpoints in normal and stressed physiological conditions, their crosstalk
with intra- and extra-cellular regulators will be helpful in designing novel strategies
for extending functional lifespan of normal, and therapy of cancer cells.
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