
Chapter 8
Modeling Cellular Aging: An Introduction –
Mathematical and Computational Approaches

Tarynn M. Witten

Abstract In this chapter we examine a variety of modeling approaches that have
been historically used to understand the sub-cellular and cellular biology of aging.
We find that there are a large array of methods from discrete to continuous and
from deterministic to stochastic. This chapter is not meant to be a comprehensive
coverage of all of the modeling efforts but rather a buffet introduction to what has
been done in the field over the last 50–60 years.
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8.1 Models of Cellular and Subcellular Aging

“Each particular discipline contains only as much science as it contains mathematics: : :

Immanual Kant, in Metaphysical Foundations Of Science”

Living systems are ubiquitous. Moreover, most of them are so complex that it is
difficult to understand their behavior. Experimental science works from the obvious
historical perspective of reductionism. Break the organism apart and hope (1) that
you can understand how the pieces work and (2) that if you are lucky, you can
put the pieces back together again and perhaps understand more about how the
whole organism works. However, sometimes it is impossible to test an experimental
hypothesis. Perhaps the equipment doesn’t exist or it’s too expensive. Sometimes
we just don’t quite know how the pieces should fit back together and we would like
to examine a number of different hypotheses. We might want to determine the most
important genes in a very large known network. However, knocking them out – one
by one – would be time-consuming and expensive. One way to handle problems
of such a complex nature is to make use of mathematical and computational
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models. The literature in mathematical modeling and computer simulation, like
living systems, is also ubiquitous. New books and papers appear regularly. It is
beyond the scope of this short chapter to cover this literature. Some excellent starting
texts can be found in references (Hannon and Ruth 1997; Murray 1989; Meerschaert
1993; Jacquez 1985; Godfrey 1983; Tautu 1990; Goel and Richter-Dyn 1974).

8.1.1 Thinking About, Building and Analyzing Mathematical
Models and Computer Simulations

Modeling in aging has been around for as long as demography and survival
theory have been disciplines; certainly since the famous Benjamin Gompertz and
subsequent mortality theorists (Carnes et al. 2006). Circa the 1960s, mathematical
and computational methods began to be applied to other areas of aging dynamics.
Brain/body-mass and metabolic rate vs. maximum lifespan relationships (Cutler
1982) were two of the earliest of the non-demographic applications of simple
mathematical modeling. In complexity theory, these are called scaling relationships
(West and Bergman 2009). More recently, there has been a growing interest
in graph theoretic/network methods to understand how longevity-related genes
and proteins are linked together in networks and how those networks behave
(Witten 2014; Wimble and Witten 2014). Graph theoretic methods lead to systems
biological approaches that apply differential equation modeling (Jones and Sleeman
1983; Dalle Pezze et al. 2014) and simulation to various pathways in order to
better understand their dynamics (Glass 1975). Today, mathematical modeling and
computer simulation have been applied to a far larger variety of aging-related
problems across all scales of the aging hierarchy, from molecular through population
levels.

One area of great interest, in part because of the early ability to make experi-
mental measurements and now to be able to obtain additional data through the use
of “omic” methods, is the modeling of sub-cellular, single cell and cell population
dynamics. In this chapter we will focus on applications of aging-related modeling
in these areas.

8.1.2 Constructing a Model

Mathematical and computer modeling might be seen as the comprehensive pro-
cesses of representing real world phenomena in terms of mathematical equations or
computer equations and subsequently extracting from those frameworks potentially
useful information that could further the understanding of the system of interest.
The process of mathematical and computer modeling does not have a specific set of
rules. It is still as much of an art as it is a science. This isn’t to say that there are
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not useful guiding principles and approaches to constructing models. An excellent
discussion of the process of constructing a mathematical/computer representation
of a living system is presented in Kirkwood et al. (2006).

Thinking About the Time Variable

Time, one of the major means by which aging is measured, discussed and by which
dynamical systems are studied, is fundamental to any analysis of aging processes.
The following citations address the concept of time from various perspectives
(Denbigh 1981; Featherman and Peterson 1986; Witten 1984; Vrobel 2011). When
we consider modeling cellular aging, we are typically constructing some sort of
relationship between a collection of dependent variables such as N.t/ the number of
individuals at time t or the amount of waste w.t/ in a cell at time t. Time is usually
expressed as a continuous variable t or as a discrete variable tn where the subscript
indicates the nth timepoint. The timepoints tn could be the population doubling
times or the generation number of yeast buds. It is also possible to describe time
t as a random or stochastic variable (Witten 1984, 1994) such as time to failure of a
pathway or intermitotic times and even as a fractal (Vrobel 2011). In this chapter I
will focus on just discrete and continuous time models of aging.

Thinking About the Dependent Variable(s)

For the most part, a dependent variable will be a variable of interest that depends
upon time or age in some way. It will also take on either a discrete, continuous or
probabilistic/stochastic demeanor depending upon what you choose to describe. For
example, a simple model of cell growth in an unlimited resource could be modeled
by a continuous time – continuous dependent variable differential equation of the
form

dN.t/

dt
D bN.t/ (8.1)

N.0/ D N0 (8.2)

where N.t/ is the number of individuals at time t, b is the per capita net growth rate,
and N0 is the initial population size. We could choose to model the same system
using a discrete time – continuous independent variable model as follows

NnC1 D bNn (8.3)

N0 D given as initial information (8.4)

where Nn is the number of cells at population doubling point n, b is the per capita net
doubling rate, and N0 is a known initial amount of cells in the population. We can
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also have models where one variable, say time t is continuous and the other variable,
say R.t/ is discrete. For example, we might like to look at how many receptor sites
are occupied on a cell at time t. Here, clearly t is continuous but the number of
receptor sites R.t/ is discrete.

Alternatively, we might also ask for the probability that there are N divisions in a
given time interval. We choose to examine probabilities because we recognize that
if we were to repeat the experiment over and over, we would not get the same exact
numbers of doublings at the timepoints that we measure. Defining PN.t/ to be the
probability that there will be N doublings at a given timepoint, it can be shown that
the doubling equation (under certain assumptions of course) can be expressed as
follows

dPN.t/

dt
D bPN�1.t/ � bPN.t/ (8.5)

PN.0/ D 0 (8.6)

which is an equation that describes a continuous time, discrete state (N), continuous
random variable PN.t/ model. The solution to Eq. (8.5) is the Poisson function PN.t/
given by Eq. (8.7)

PN.t/ D .bt/Ne�bt

NŠ
(8.7)

All of these models are deterministic models because they have no randomness in
them. We could, however, easily introduce randomness in a number of ways. For
example, randomness may be directly included as a noise term in our model system.
For example, we don’t expect the net reproductive rate to be exactly the same at
each timepoint t, so we may then suppose that the growth rate b in Eq. (8.1) was not
constant but rather varied about some mean value b0, we might assume !.t/ where
!.t/ was a mean zero variance �2 noise process. Under this assumption, we would
re-express Eq. (8.1) as follows

dN.t/

dt
D b0N.t/ � !.t/N.t/ (8.8)

N.0/ D N0 (8.9)

In this case, while we wish to solve for N.t/ and we have expressed our equation in
that form, it is not possible to solve for N.t/ exactly. Instead, we must solve for a
probability of a particular value of N.t/ at time t. Consequently, N.t/ is a stochastic
variable (Witten 1994). Obviously, we can do the same type of alteration in our
discrete model as well. It should be noted that one has to be more careful about
constructing discrete time models because they can exhibit behaviors that differen-
tial equation models cannot. Consider the following two very simple differential
equation models for cellular growth in a limited food environment (density-
dependent cell growth). Model 1, the continuous model would be expressed as
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dN.t/

dt
D bN.t/

�
1 � N.t/

K

�
(8.10)

N.0/ D N0 (8.11)

where K is the maximum number of cells that the food resource can support.
Similarly, the discrete model would look as follows

NnC1 D bNn

�
1 � Nn

K

�
(8.12)

N0 D given as initial information (8.13)

It can be shown that there is no possible way that Eq. (8.10) can oscillate. However,
Eq. (8.12) can. Consequently, part of the modeling process is understanding the
types of behaviors that the experimental system can exhibit and making sure that
those dynamics are demonstrated by the model. Once that is done, then we can
examine any unknown behaviors displayed by the model and see if they exist in the
experimental system.

More Than One Dependent Variable

Obviously, biological systems are more complex than one independent variable. For
example, if we were interested in the total amount of waste in a cell as a function of
time, we would be interested in a set of equations; one that describes the waste rate
of change and the other that describes the number of cells at a given time. This would
be easily described by a system of differential equations as discussed in Hirsch
(1978, 1986) and Hirsch et al. (1989). We call this a system of coupled differential
equations because the dependent variable of one equation can be found in the other
equation or equations. For example, Zheng (1991) discusses a mathematical model
that describes the proliferative senescence of cells in a cell culture. The model is
based upon the DNA damage hypothesis of cellular aging and is able to account
for both the limited and unlimited in vitro proliferative potential of normal and
transformed cells. In this model the author uses a system of coupled differential
equations (a matrix differential equation system) that describe the transition of a
cell population vector through the cell cycle.

More Than One Independent Variable

The dynamics of growing systems of cells (and of people) has been of interest
for decades and many mathematical models have been created to describe various
aspects of such systems. One of the most famous of these is the Volterra-Lotka
equation describing n.t; a/ the number of organisms (in this case it was originally
people), having age a at time t in the population. Demographers of aging have been
using this system for over 100 years (Carnes et al. 2006). I will not go through the
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derivation of the equation system. One of the first researchers to use this system as a
means of explaining cellular dynamics was Trucco (1965a,b,c). Instead, I will show
the Von Foerster system and discuss its general meaning. The system is given by

@n.t; a/

@t
C @n.t; a/

@a
D ��.t; a; : : :/n.t; a/ (8.14)

n.t; 0/ D
Z 1

0

�.t; a; : : :/n.t; a/da (8.15)

n.0; a/ D n0.a/ (8.16)

where n.t; a/ is the number (or density) of individuals of age a at time t, �.t; a; : : :/

is the per capita mortality rate, �.t; a; : : :/ is the per capita birth rate, and n0.a/ is the
initial population distribution and is a given. This type of equation is called a partial
differential equation because it has partial derivatives instead of the derivatives you
learned in Calculus 1 and we note that there is a derivative related, in the same
equation, to each of the independent variables a and t. Demographers have been
using this form of equation for decades. The first equation (the partial differential
part) describes how individuals of age a at time t exit the population through death;
note the mortality rate term on the right hand side of the equation. The second
equation describes how newborns arrive in the population. It calculates the total
number of newborns by integrating over the whole age distribution in the population.
Obviously, this isn’t entirely realistic, but its a start. And one thing about modeling
is that you have to start very simple otherwise it is very easy to get lost in the
model and never really be able to come up with believable results. The third equation
simply describes the starting distribution; how many individuals there were of age
a at time t D 0. Again, note that this is a deterministic equation system as there is
no randomness in the model. However, you can include it. But that makes it very
hard to solve. As you probably thought while you were reading this, these must be
impossible to solve unless you are a brilliant mathematician. Well, not quite but they
are hard and require some serious mathematical background if the modeler is going
to go this route. A recent application of equation system (8.14) may be found in
Stukalin et al. (2013).

The problem with the previous modeling formulation is that both age a and time
t are related to each other in demographic models. This is problematic for cellular
models because chronological age of a cell is not necessarily related to biological
age. Rubinow (1968) and Lebowitz and Rubinow (1974), in a now classic series of
articles, introduced the maturity � of a cell as a possible variable of interest. The
Rubinow model is generally difficult to implement in that it is challenging, if not
impossible, to assign a biological meaning to the cellular maturity of a cell, it has
allowed for the introduction of the concept of maturation or change in a cellular
variable. The partial differential equation portion takes on the form

@n

@t
C @.vn/

@�
D ��.: : :/n.�; t/ (8.17)
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where v is the individual cellular growth rate, � represents the death rate and � is
the maturity variable. Many authors have looked at a variety of formulations of this
basic model.

The sum and substance of our discussion is that mathematical and computer
simulation models come in a wide variety of types and there is not necessarily a
correct or unique approach for modeling or simulating a given physical system. So
how then do we go about the actual modeling effort given all of these ambiguities
and philosophical difficulties? Start with a simple model and see what kind
of behaviors you get. Interact with the experimentalists regularly and read the
literature. Understand and be able to explain the limits of your model. Identify the
most important dependent and independent variables first. Draw lots of pictures
describing the known experimental results. Now we can talk about some of the
modeling.

8.2 Senescence at the Sub-cellular and the Single Cellular
Levels

As technological progress invades the biosciences, scientific innovation allows us to
ask increasingly more precise and detailed questions about the complex workings
of cells. These rapid technological advances have made it possible to address issues
of aging at the molecular level.

As early as 1967, Strehler addressed the issue of irreplaceable components;
components which allowed “the adult organism to persist only as long as the
irreplaceable elements continued to function in a manner commensurate with life.”
He related these elements to molecular/genetic mechanisms in living systems. These
issues were further addressed in Strehler and Freeman (1980) and Strehler (1986).
We cannot hope to address the myriad of molecular aging theories, their experimen-
tal validity, and their mathematical treatment. In this chapter, we will address only
some of the historical hypotheses that had mathematical or computational models
associated with them.

• Somatic Mutation Theory: Aging is due to changes (of various types) in the
DNA of somatic cells.

• Error Catastrophe Theory: Aging is due to a progressive accumulation of DNA
errors leading to protein errors, etc.

• Differentiation Theory: Aging is due to changes in gene regulation which
control differentiation. Altered gene expression might subsequently lead to aging
processes.

• Mitochondrial Mutation Theory: Aging results from the accumulation of
mutations in the mitochondrial genome.

• Codon Restriction Theory: Aging is a result of increasing inability to decode
the genetic material.
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• General Theories: Aging is the result of the gradual wear and tear of sub-
cellular components or of the accumulation and/or depletion of some necessary
material, component, product, or operation.

8.2.1 Mathematics of Somatic Mutations

In an excellent review paper on the subject, Hirsch (1978) points out that somatic
mutations have been a major focus of aging research for a number of years. The
initial arguments for a somatic mutation theory of aging grew out of the view
that aging in mammals was due to a gradual accumulation of somatic mutations;
mutations due to radiation in the environment. The theory proposes that aging is
due to additions to, losses from, or other changes in the DNA base sequence of
somatic cells.

The mathematical modeling methods used in somatic mutation models hinge
upon concepts involved in target theory. Namely, one asks for the probability that
a certain number of sites (of some type) are knocked out by a radiation or other
event such as a chemo-mutagenic event. This probability is then related, via some
sequence of mathematical arguments, to the probability that the whole system under
investigation will survive. The survival of the system is assumed to depend upon the
fact that a certain number of sites must receive a certain number of hits, in order
for the system to fail or be unable to survive. Let us now briefly examine the target
theory approach and some of its extensions.

Let P.n; t/ be the probability that the target area receives n hits at time t. Assume
that the system survives as long as it does not receive the environment. We will not
specify the nature of these hits for the moment. Let us call this critical number of
hits nc. Hence, the probability that the system

PSURV.t/ D P.0; t/ C P.1; t/ C P.2; t/ C : : : C P.nc � 1; t/ (8.18)

We can see that Eq. (8.18) is true as the probability of any hit number n occurring
is independent from the occurrence of any other hit 2 hits and 3 hits as that is
equivalent hits. Hence, from basic probability theory, the probability that the system
survives PSURV.t/ is equal to the sum of all of the individual hitting probabilities
P.n; t/ whose number of hits n is strictly less than nc. Since Eq. (8.18) describes the
probability that the system survives, we can – from basic probability theory – find
the failure probability. This is given by

PFAILS.t/ D 1 � PSURV.t/ D 1 �
ncX

nD0

P.n; t/ (8.19)

Suppose, however, that it is required that not only must the system receive a critical
number of hits, but also a certain critical number of hits must be received by each of
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p target sites in the system. That is, in order for the system to fail, each of the p sites
in the system must receive the required critical number nc hits. Since, within reason,
it is justifiable to assume that failure of one target site does not induce failure in
another target site, we may write the probability of system failure as follows

PFAILS.t/ D Œ1 � PSURV.t/�p (8.20)

Equation (8.20) represents the culmination of a general discussion of what a
simple mathematical model might be like, if we required that a transformation to
senescence would necessitate that a system of the form specified by Eq. (8.18) have
p targets each requiring nc hits. This is a very simple model. It assumes that the
p targets are all homogeneous in their behavior. That is, they all require the same
minimum number of hits before they fail. It might be that different targets require
a different number of hits before they fail. It might be that a certain fraction of the
target population requires n.1/

c while the other fraction of the population requires
n.2/

c . We might require that the total accumulated number of hits not exceed � by
time t. In other words, Eq. (8.20) describes an extremely simplified target model
for consider a more complex version of this model. In order to further analyze
Eq. (8.20), it next becomes necessary to give a mathematical form to the probability
of receiving n hits at time t; P.n; t/. There are two ways of looking at the form of
P.n; t/. If we consider the hitting agent as radiation related, then the natural choice
for the hitting probability is the Poisson probability distribution. The particular
reason for this choice has to do with the methodology which one uses to create
a mathematical model for radiation emission. However, the general form for the
probability that n hits are received at time t, given a radiation argument is

P.n; t/ D .IAt/n exp .�IAt/

nŠ
(8.21)

where A is the target area, I is the average number of ionizing events per unit time,
and t is the given time. In this case, combining Eqs. (8.19), (8.20), and (8.21) yields
a general radiation model hitting model. In the simple case where nc D 1 the model
is very simple and can be written as

PFAILS.t/ D 1 � exp .�IAt/ (8.22)

For the p target model we would have a probability of failure given by

PFAILS.t/ D Œ1 � exp .�IAt/�p (8.23)

as the probability that the system fails. Consequently, for the p target model, the
probability of survival is given by

PSURV.t/ D 1 � Œ1 � exp .�IAt/�p (8.24)
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Biological systems, even at the molecular level, are considerably more complex
systems than the simple system that we have just described.

Such a model is extremely complex and depends upon knowledge of a number
of pieces of information about the structure of the biological system to which it will
be applied. For example, how does one define the biological equivalent of sites and
components? One might conceivably argue that the target sites are the DNA bases
themselves, while the components are the genes. However, one might also argue that
the genes are the target sites and the chromosomes are the components. Then, within
the framework of the application, one would need to estimate how many sites and
components are relevant to the model. Let us now consider an alternative approach
to the mathematical modeling of somatic mutations.

The arguments that we will now discuss arise out of the modeling of carcinogenic
processes – or more generally – the development of disease. Suppose that, in order
to initiate a given disease, r distinct mutations must occur. These mutations give rise
to a clone of cells whose subsequent growth gives rise to the disease. If we assume
that attaining the disease state is equivalent to system failure, then a cell is said to
fail when it receives r mutations. Or, if we wish, when r of the subsystems are said
to fail.

Suppose that we assume that �j is the mutation rate at the jth locus/cell/unit time.
We may then show that the probability of a mutation at the jth locus of a given cell,
in the time interval .0; t/ is just

ProbŒjth locus mutation in .0; t/� D �jt (8.25)

If �jt is small then, for any given cell, the probability that there will be r mutations
before time t (that is, in the interval .0; t/) is just

ProbŒr mutations in .0; t/� D .�1t/.�2t/: : :.�rt/ (8.26)

or, more compactly,

ProbŒr mutations in .0; t/� D
 

rY
kD1

�k

!
tr (8.27)

Equation (8.27) gives us the probability that a single cell (or target subsystem)
will receive r mutating or damaging events before time t. If we now assume that
the given system has mc of these subsystems, then the average number of damaged
clones (if we think of the systems as cells) at time t is given by

� D mctr

 
rY

kD1

�k

!
D ˇtr (8.28)

As we know the average occurrence rate of the senescence inducing clones
(Eq. (8.28)), it is natural to assume that they are distributed in a Poisson-like manner.
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That is, the probability that there are n senescence inducing clones in the time
interval .0; t/ is Poisson with mean �. We may then ask the question of how long
will it take for the first occurrence of the disease? In our case, how long will it take
for the first occurrence of “senescence”? Such a question is answered by knowledge
of the cumulative distribution function for the waiting time to the first occurrence of
interest. Under our given assumptions, this is approximated by

ProbŒfirst occurrence is in .0; t/� D 1 � exp .�ˇtr/ (8.29)

As before, we assume that r mutations are necessary to damage the target.
However, we also assume that mc targets must fail before senescence may be
initiated. That is, each of mc targets must receive r mutation events in order that
the senescence process may be initiated. In this case, Eq. (8.29) may be generalized
to

ProbŒfirst occurrence is in .0; t/� D Œ1 � exp .�ˇtr/�mc (8.30)

A closing alternative to the target theory approach to modeling senescence is the
so-called forbidden clone theory (Hirsch 1974). In this modeling approach, cells
are assumed to transition through a sequence of states, in an irreversible manner.
As the cells transition through these states, they are assumed to be transitioning
towards a state of senescence. These models are often called Markov models (See
also Kirkwood and Proctor 2003). In the next section we will discuss the concepts
of error catastrophe and error propagation and how they have been modeled.

8.2.2 Mathematics of Error Catastrophe

Mistakes in the translation of genetic information provide a theoretical mecha-
nism/argument for the variety of age related changes seen in the experimental
literature. While error catastrophe and error propagation are accumulation theories
of aging (that is they are based upon the accumulation of a toxic effect upon the
cell), the large body of mathematical modeling in this particular area warrants the
separation of these two theories under a separate heading. In a subsequent section,
discuss more general accumulation/depletion theories. Mistakes in the translation
apparatus can lead to two distinct types of error theory: (1) Error Catastrophe and
(2) Error Propagation.

Orgel (1963, 1970) proposed that errors in the translation of genetic information
contain an element of positive incidents of mistakes and therefore increase the
probability of subsequent mistakes. This mechanism, is based upon the assumption
that the initial presence of errors in enzymes involved in the transcription/translation
process may lead to further to cell death.

The issue of stability of the proof-reading apparatus, the fidelity of cellular
translation and DNA synthesis, and the possible variations in proteins as related
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to aging processes have been discussed by a number of authors. With this in mind,
let us begin to make some simple models of error catastrophe.

As a preliminary approach to error catastrophe modeling, let us denote the
number of errors at time t as E .t/. Let us denote the rate of error accumulation
as r.t/. Then, if �t is small, and if the errors are not depleted, the number of errors
at time t C �t is just

E .t C �t/ D E .t/ C r.t/�t (8.31)

If we allow �t go to zero, we obtain the following differential equation for the
number of errors E .t/.

dE .t/

dt
D r.t/E .t/ (8.32)

While Eq. (8.32) may be solved for the general case where r.t/ is arbitrary, let
us consider a specific choice for r.t/ as motivated by biological considerations.
The Orgelian hypothesis is that errors create more errors. Therefore, let us assume
that the error accumulation rate r.t/ is proportional to the number of errors E .t/.
Consequently, we would expect the rate of accumulation of errors to be proportional
to the current amount of errors. If we wish, we might assume, more generally, that
r.t/ is some function of E .t/ and then we can examine the system’s behavior. For
example, we might assume that when there are no errors, the system grows at a
constant exponential rate r0 however, as the errors increase, we can assume that it
eventually stops growing.

While the theory of error catastrophe has fallen by the biological wayside,
a number of more complex mathematical models were developed to test the
various hypotheses involved in the error catastrophe theory of aging. These models
attempted to be much more rigorous as well as biologically faithful in their
construction. And, as such, are worthy of discussion. Further, they introduce the
concept of error propagation rather than error catastrophe as a possible model for
a sub-cellular theory of aging.

The major “biologically faithful” models are the models found in Hoffman
(1974), Kirkwood and Holliday (1975a,b), Goel and Yças (1975) and Goel and
Islam (1980). Briefly, Hoffman (1974) argues that the fidelity of translation, denoted
qnC1, of the .n C 1/st generation is related to the fidelity of the nth generation by
the formula

qnC1 D .S � 1/ qm
n C 1

.S � 1/ qm
n C �

(8.33)

where S is a dimensionless specificity coefficient for a perfect translation apparatus,
� is the number of amino acids from which the translation apparatus chooses its
assignments, and m is the critical number of sites in the translation apparatus where
substitution of any of the � � 1 incorrect amino acids is assumed to reduce the
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value of S to one (Gallant and Prothero 1980). In Kirkwood and Holliday (1975b),
the authors extend the previous model to include another parameter R, the relative
overall activity of a translation apparatus that has been rendered non-specific by
amino acid substitution in one of the m critical sites. This new model analysis leads
to the more complex fidelity equation given by

qnC1 D qm
n Œ�S � R.S � � � 1/� C R.S C � � 1/

qm
n Œ�.1 � R/.S C � � 1/� C R.S C � � 1/

(8.34)

The formulations of these two models assume that a single mistake in the
apparatus can produce a non-specific translation apparatus in one fell swoop
(Gallant and Prothero 1980). The work of Goel and Yças (1975) and Goel and Islam
(1980) relaxes this constraint by assuming that y of the m sites must be required for
a loss of specificity. For the purposes of understanding these models, let us briefly
cover the construction of this model. A given synthetase model is allowed to remain
functional only as long as a certain number of amino acid sites on that molecule
remain unchanged. Functionality is defined to be the ability to attach the correct
amino acid to the correct t-RNA molecule. The activity of a synthetase molecule is
defined to be the rate at which it attaches the correct amino acid to the correct t-RNA
molecule. The sites of attachment may be assumed to be different for each of the
different synthetases. Let i be the subscript which of the indexes which synthetases
that we are discussing i D 1; : : :; N. Let j index the sites of attachment. Next, define
xij to be the number of such sites of an amino acid aj in the ith synthetase.

Let qi, q0
i, q00

i denote the fractions of normal, erroneous, and inactive ith synthetase
molecules. Observing that the actions of an erroneous molecule are not site specific,
the normal fraction q1.t C 1/ of normal synthetase for amino acid a1 is given by

�
q1

q1 C q0
1 C q00

1

�
tC1

D Q.1/x11
t Q.2/x12

t � � �Q.N/x1N
t (8.35)

where

Q.j/ D qj

qj C q0
j

(8.36)

The authors argue that Eqs. (8.35) and (8.36) follow from the fact that the errors
will be distributed in a binomial fashion. Therefore, the fraction of molecules with
amino acid a1 at the specified x11 locations is given by the first term on the r.h.s. of
Eqs. (8.35) and (8.36). The fraction of molecules with amino acid a2 at specified x12

locations is given by the second term, etc.
If we now assume that there are yij sites which are occupied by incorrect amino

acids. Suppose that we now wish to obtain an equation for the fraction of erroneous
synthetases. The authors further argue that, if one assumes that the occupation of yij

sites by any of the incorrect amino acids produces an erroneous synthetase, then the
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fraction of erroneous synthetases in generation t C 1 is given by q0
1.t C 1/ and may

be expressed by the following equation

�
q0

1

q1 C q0
1 C q00

1

�
tC1

D Q.1/z11
t Q.1/0y11

t Q.2/z12
t Q.2/0y12

t � � �Q.N/z1N
t Q.N/0y1N

t

(8.37)
where

Q.j/0 D q0
j

qj C q0
j

(8.38)

and zij D xij � yij.
Finally, Goel and Yças (1975) introduce the following change of variables which

allows them to simplify their system of equations. Letting

Qi D ln

�
qi.t/

q0
i.t/

�
(8.39)

they are able to reduce the complex system of N equations to a simple linear matrix
system of the form

Qi.t C 1/ D
NX

jD1

yijQj.t/ i D 1; : : :; N (8.40)

The models of Goel and Yças and Goel and Islam predict a variety of dynamical
behaviors. In particular, they predict that error catastrophe is one of a number of
possible outcomes in a model of this sort. Of great importance is the fact that error
propagation is also a possible outcome. The search for the error catastrophe has,
however, lead to the search for errors in the more general sense. In the next section
of this chapter, we will continue our discussion of mathematical models of errors
from the viewpoint of error propagation. And, in doing so, we will return to the
error catastrophe papers to see which of the models hold true, in light of the known
experimental data.

8.2.3 Mathematics of Error Propagation

An elegant review of the various mathematical models of error propagation may
be found in Gallant and Prothero (1980). The elegance of this paper derives from
the mathematical simplicity of the model and its subsequent predictive power when
applied to a specific biological system; error-promoting drugs in a bacterial system.
Let us briefly review the formulation, which grew out of the paper of Orgel (1970).
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In this paper the author proposed that a given generation n produces the next
generation’s n C 1 proteins. Letting en denote the aggregate error frequency in
generation n, and letting E be the residual error frequency inherent in the translation
machinery. The authors argue that the aggregate error at generation n C 1 is given
by the finite difference equation

enC1 D E C ˛en (8.41)

where ˛ is a proportionality constant. If we know the initial aggregate error in the
system, denoted e0,

en D E
1 � ˛n

1 � ˛
C ˛ne0 (8.42)

As we are interested in the time course of the aggregate errors, it is natural to
inquire as to what happens to the frequency when we examine the system after
a large (infinite) number of generations have past. Without that the system error
equilibrium given by

eeq D E

1 � ˛
(8.43)

if the value of ˛ satisfies ˛ < 1. Otherwise, the system will suffer an error
catastrophe; the aggregate error en!1 as n!1.

Next, the authors demonstrate how this simple model of error propagation may be
used to discuss mistranslation of a specific UUA codon in E. coli. They demonstrate
that their data fits the model when ˛ � 0:5. They further demonstrate that changes
in the dose of streptomycin change E; thus raising the eventual error equilibrium but
not changing the eventual dynamics of the system. Their conclusion is that, for E.
coli, the translation system functions at a safe distance (˛ � 0:5) from the region
of instability (˛ � 1). Therefore, there is no error catastrophe. Rather, there is a
propagation of errors leading to an eventual equilibrium error level. reject the error
catastrophe hypothesis for somatic cells.

8.2.4 Mathematics of Recombination

The concept of tandem gene strings as an evolutionary strategy is an old one. The
argument for tandem gene string involvement in an evolutionary theory follows
along the line of thought that a newly arisen tandem gene sequence will be, more or
less, physiologically superfluous. Hence, mutations in the tandem regions would be
less likely to be disastrous to an organism than if they had occurred in a non-tandem
region. Thus, duplications may be looked upon as resource material for evolution of
new gene sequences; new organismic biological complexity.
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In order to discuss how tandem genes might be involved in aging/evolutionary
strategies, it becomes necessary to have a mathematical description of how tandem
gene repeats would be dispersed/diluted/amplified in an evolving cellular system.
We begin by letting m be the tandem repeat number of a hypothetical gene. Using
a deterministic approach, we would model N.m; t/; the number of cells having a
tandem gene sequence of length m at time t. The simplest way to construct such a
model is to consider time t to be in MPDT’s or Mean Population Doubling Times.
Further, we assume that the cells are dividing synchronously. Hence, we wish to
relate the number of cells with various repeat sequences at time t D n to the number
of cells, one MPDT later or t D n C 1, with various repeat sequences. Let us briefly
examine how we might construct such a relationship.

We follow the discussion in Witten (1980) begin by assuming that we are given
some initial gene distribution , which we shall denote as N.m; 0/. This is the number
of cells having tandem gene sequences of length m at time t D 0. Further, assume
that the longest initial tandem gene sequence is of length m�. If we assume that a
gene sequence of length m may undergo a recombination event which can lead to a
new sequence of length 0 to 2m, then we may define Pm.n; t/ to be the associated
probability that a gene sequence of length m will give rise to a recombinant gene
sequence of length n where 0 � n � 2m. Since cells with 0 or 1 gene cannot
recombine, it is important to realize that we must keep track of these portions of
the gene population separately. Cells with a 0 gene sequence are assumed to be
dead. The number of cells containing an n-gene sequence, which results from a
recombination, is obtained in two steps: First, we assume that there is a population
of cells which will undergo a recombination event, and second, we observe that
not all cells in the recombining portion of the population will yield daughters of the
required n-gene sequence length. If we let R.n; t/ be the fraction of m-gene sequence
cells that undergo a recombination event at time t, then we may obtain the following
equation for N.m; n; 0/

N.m; n; 0/ D Pm.n; 0/R.m; 0/N.m; 0/ 2 � m � m� I 0 � n � 2m (8.44)

where N.m; n; 0/ represents the number of cells with a repeat length n arising from
a parent of repeat length m which divided at time t D 0. Remember, however, that
the total number of daughter n-gene sequences resulting from the recombination is
arrived at by totaling the production of n-gene sequences from all possible m-gene
parent sequences of length m D 2; 3; 4; : : :; m� in that portion of the cell population
undergoing recombination events. Hence, the total number of new n-gene daughter
sequences is given by the following expression

N.n; 0/ D
m�X

mD2

N.m; n; 0/ 0 � n � 2m (8.45)

This results in a recombinant daughter distribution which describes the distribu-
tion of tandem genes of length n as generated from all of the dividing cells which
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were allowed to undergo a recombination event. It is important to realize that the
daughter distribution must be combined with the distribution of parent cells that
did not undergo a recombination event, in order to obtain the final and complete
distribution of new n-gene sequences.

Before we close our discussion of this type of model, we must realize that tandem
genes may confer on the cell containing them

• A growth advantage which allows them to replicate in a shorter timespan than
cells with less genes and,

• A survival advantage which allows them to better compete for available
resources.

That is, a cell with three genes may double three times in the time that it would
take a cell with one gene to double. Details of the mathematical development and
analysis of this formalism may be found in Witten (1980).

The results of these models support a variety of dynamical outcomes. Briefly,
when there is no recombination, gene sequences compete only through survival and
growth advantage. Thus, if the overall advantage is for cells containing the longer
gene repeats(tandem repeats), then the population will tend to a final population
distribution containing only cells with the longest possible repeat length. This
result is independent of the initial distribution of repeat lengths in the population.
Likewise, if the short repeat lengths are to be considered advantageous, then the
population will tend to a final distribution containing only the shortest repeat length.
This result is also independent of the initial distribution of repeat lengths in the
population.

In the event we choose to include recombination effects, the complexity of
possible behaviors becomes increasingly great. The inclusion of recombination can
slow trends to a limiting distribution or it can allow a system to sustain distributions
of genes over to multi-model or unimodal distributions. Or they may not tend to a
final equilibrium at all. Let us now discuss some of the different probabilistic models
of recombination. A similar model with stochastic components was proposed by
Lumpkin and Smith (1980).

Probabilistic models of recombination seek to describe the probability Pni.t/
that there are ni copies of the ith gene in a cell. If we consider having ni copies
of the ith as equivalent to being in state sni , then we may make use of a class of
mathematical model known as a Markov model. Perelson and Bell (1977) make use
of a Markov model to describe transitions between various states. To construct their
model, Perelson and Bell make use of the following series of arguments. Suppose
that the ith gene can exist in any one of a number of states denoted sni where sni is
the state in which the ith gene has ni copies of itself in the cell. Further, they assume
that ni may take on the values ni D 0; 1; 2; : : :. They next assume that they are
looking at a time interval .t; t C dt/ small enough so that the only way to reach state
sni is to be in state sni�1 (meaning that there are ni � 1 copies of the ith gene) and a
recombination event occurs, adding an additional copy of the copy of the ith gene.
Or, they may be in state sniC1 and a copy of the ith gene is deleted by a recombination
event. They then define �ni.t/ to be the probability that an addition recombination
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occurs per unit time, and �ni .t/ to be the probability that a subtraction recombination
occurs per unit time. They show that the following system of differential equations
describes the probabilities Pni.t/.

dPni.t/

dt
D � Œ�ni.t/ C �ni .t/� Pni.t/ (8.46)

C �ni�1Pni�1.t/ C �niCi.t/PniC1.t/ ni � 1 i D 1; 2; : : :; N0 (8.47)

dP0.t/

dt
D ��0.t/P0.t/ C �1.t/P1.t/ (8.48)

ni D 0 i D 1; 2; : : :; N0 (8.49)

where the initial conditions are specified as Pni.0/ D 1 if ni D 1 otherwise
Pni.0/ D 0. To make the model tractable for analysis, assume that, at t D 0 there is
only one copy of each gene in the population. The solution to the model depends,
intimately, upon the form one chooses for the functions �ni.t/ and �ni .t/.

8.2.5 Mathematics of Accumulation/Depletion

The variety of aging theories leads to a variety of models for aging processes in
mammalian systems. One major class of model is the accumulation/depletion model
which argues that senescence is the result of some gradual accumulation or depletion
of various mysterious (or not so mysterious) cell functions, cell products, cellular
debris (waste), or other cellular activities and more recently discussed in Grűning
and Vinayak (2011).

One of the earliest of the “waste” papers was Hirsch (1978). This paper discusses
the dilution of “cellular waste” due to symmetric or asymmetric cell division. A
discussion of the modeling of asymmetric cell division may be found in Hirsch
(1977). In Hirsch (1978), the author makes use of a differential equations approach
to the modeling of the dilution of a cellular waste product. He assumes (1) that
waste is created at a rate which is either constant or proportional to the waste already
formed, (2) that waste is neither destroyed nor transported across cell walls, and (3)
that the rate of cell division at large values of time is inversely proportional to some
power of the waste per cell. A review of the literature justifying these assumptions
may be found in the aforementioned paper.

The growth of our cell population is governed, as Hirsch (1978) points out, by
the cell division rate which may be a function of cell density, waste level, and time.
Letting w.t/ be the total waste at time t, and letting n.t/ be the total number of cells
at time t, and assuming that the cells are undergoing density dependent growth, we
may write the cell division rate as

1

n.t/

dn.t/

dt
D b.t/k.w/

�
1 � n.t/

E

�
(8.50)
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where b.t/ is the time dependent reproductive rate, k.w/ is the waste-cell interaction
function, and E is the environmental carrying capacity. More accurately, b.t/ is the
net per capita birth rate minus death rate. Hirsch (1977) demonstrates that it is more
natural to assume that the cell division rate is an explicit function of the waste per
cell, denoted w0.t/, rather that the overall waste w.t/. That is, as w0.t/ increases, the
cell division rate should decrease. Further, for the sake of simplicity, we assume that
the cell division rate is a power function of the waste per cell. That is, the waste-cell
interaction function k.w/ is of the form

k.w/ D 1

w0.t/
(8.51)

and the waste per cell is given by

w0.t/ D w.t/

n.t/
(8.52)

Combining this with our Eq. (8.50) we obtain the following equation for the cell
division rate.

1

n.t/

dn.t/

dt
D b.t/

�
n.t/

w.t/

�j �
1 � n.t/

E

�
(8.53)

Equation (8.53) may be rewritten as follows.

dn.t/

dt
D b.t/n.t/

�
n.t/

w.t/

�j �
1 � n.t/

E

�
(8.54)

While Eq. (8.54) is sufficiently general, it does not allow for any obvious
biological insights. Let us begin by making the simplification that b.t/ D b0 a
constant. Further, let us assume that there is no waste effect on the cells. This would
correspond to the case where j D 0. Replacing these assumptions into Eq. (8.54) we
obtain the very familiar equation

dn.t/

dt
D b0n

�
1 � n

E

�
(8.55)

the logistic growth equation; the standard mathematical model for density-
dependent cell growth in a cell culture environment. This equation has a solution
given by

n.t/ D E

1 C
�

E
n0

� 1
�

exp .�b0t/
(8.56)
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where n0 is the initial number of cells at time t D 0. Hence, on the basis of
our simple assumptions, we see that our model describes known cellular growth
phenomena. Let us now examine the possible effects of waste in the model.

We begin this investigation by considering how to describe the production
of the waste material. That is, we wish to write an equation for w.t/. As an
initial assumption, it is reasonable to assume that the waste production is simply
proportional to the number of cells at any given time t. That is,

dw.t/

dt
D r0n.t/ (8.57)

Equations (8.53), (8.54), and (8.57) constitute a simple model for waste production
and its interaction with a population of cells which are growing in a density-
dependent environment such as a cell culture dish.

Suppose that we wish to determine whether or not our model makes any
biological sense. One easy way to do this is to assume that the waste does not affect
cell growth (Eq. (8.55)) and see what happens to the waste production over time.
If we let our equations be Eqs. (8.55) and (8.57) then, after much algebra, one can
show that the solution to the waste equation is given by

w.t/ D w.0/ C E

�
r0

b0

�
ln
hn0

E
.exp .b0t/ � 1/ C 1

i
(8.58)

where w.0/ is the initial amount of waste in the system. Observe that we may obtain
this solution by replacing n.t/ in Eq. (8.57) with the solution for n.t/ as given in
Eq. (8.56).

We then simply integrate the resultant differential equation to obtain Eq. (8.58).
We may simplify Eq. (8.58) as follows. If we assume that t is large enough, then
Eq. (8.58) may be approximated by

w.t/ � w.0/ C E

�
r0

b0

�h
ln
�n0

E

�
C b0t

i
(8.59)

Rearranging Eq. (8.59) leads to

w.t/ � w�.0/ C Er0t (8.60)

where w�.0/ is given by

w�.0/ D w.0/ C E

�
r0

b0

�
ln
�n0

E

�
(8.61)

Notice that Eq. (8.60) says that if cells are growing logistically (in a density-
dependent manner), and waste does not affect their growth, then the total waste
in the cell system must increase without bound; even though the number of cells
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in the cell culture plateaus out to the value of the carrying capacity E. Hence, the
asymptotic waste per cell can be shown to be given by

w0.t/ D w.t/

n.t/
� w�.0/

E
C r0t (8.62)

which also grows without bound. Clearly, this cannot be the case. Hence, we
must assume that there is a waste-cell interaction or else our model is incorrectly
formulated.

Sheldrake (1974) has suggested that the rate of waste production might be
proportional to the amount of waste per cell already accumulated. This would
require that we utilize a waste equation of the form

dw.t/

dt
D a0w.t/ (8.63)

where a0 is a proportionality constant. Considering this waste production model,
along with our logistic growth model (8.56), we find that the waste per cell is given
by

w0.t/ D w.0/

E
exp .a0t/ C w.0/

E

�
E

n0

� 1

�
exp Œ.a0 � b0/t� (8.64)

As a0 > 0 we see that w0.t/ grows without bound. Whether a0 > b0 is irrelevant
to the large time dynamics of the waste per cell. Again, in the this model, we see
that it is biologically unreasonable to assume that there is no waste interaction. In
both cases, under this assumption of no interaction, the waste per cell accumulates
without limit.

Let us now take a look at the case where j 6D 0. That is, we wish to examine the
case where there exists a waste-cell interaction. As w0.t/ is given by

w0.t/ D w.t/

n.t/
(8.65)

then taking the derivative of both sides of this equation leads to the differential
equation

dw0.t/
dt

C b0.w
0.t//1�j

�
1 � n.t/

E

�
D 1

n.t/

dw.t/

dt
(8.66)

In the case of exponential growth (E!1), Eq. (8.66) reduces to the simpler
equation

dw0.t/
dt

C b0.w
0.t//1�j D 1

n.t/

dw.t/

dt
(8.67)
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which is discussed in Hirsch (1978). The author demonstrates that for a waste
equation where the waste production is proportional to the number of cells
(Eq. (8.57)), a variety of population dynamics may occur; governed by the value
of j. Of interest is the fact that the finite lifespan of WI-38’s can be described by
waste models of this type only if j > 1; though j D 1 will work for appropriately
chosen values of b0 and r0 satisfying r0 > b0. Hirsch (1978) also shows that a
Sheldrake model for waste production (Eq. (8.63)) can lead to models displaying a
senescence-like behavior.

This work is further extended in Hirsch et al. (1989) which discusses how the
waste production may be affected by the requirement for an underlying resource
which is a precursor for the waste product. Preliminary results show that by
controlling the resource, it is possible to control waste levels; and thereby control
cell growth. This type of model may have applications in the study of dietary
restriction.

Other accumulation/depletion models may be found in the work of Strehler
et al. (1971). This work argues that clonal aging processes are explicable as
the consequences of irreversible and reversible repressor accumulation on plasma
membranes. The authors propose a simple equation describing the kinetics of
accumulation. Letting Xn be the fraction of repressors which are irreversibly bound
to the membrane/generation, they show that the ratio of repressors/cell between the
nth generation and the first generation is given by the following equation

	n D 2n � Xn

2n�1 .2 � Xn/
(8.68)

They then go on to demonstrate how this model is consistent with a variety of
known experimental results in clonal aging processes.

8.3 Concluding Chapter Thoughts

The dynamics of aging offers a wealth of potential mathematical and computational
modeling challenges. This review has touched upon just a small portion of them.
The modeling of the cellular dynamics of aging and its interface with tumorigenic
processes is an open question with only a few papers written about it. Mathematical
models of cellular population dynamics abound in the literature. Historically, this
literature does not describe the propagation of a vector of general properties through
a population of cells and how those properties might affect the propagation of the
cell line. This extension has important ramifications in studying the dynamics of
numerous cell system such as aging, cellular co-culture, embryogenesis, and feeder
layer dynamics. As such, it represents the next natural level of cellular modeling.

In this chapter, I focused upon the historical literature in the mathematical
modeling of cellular level processes. Starting with some of the basic theories of
sub-cellular aging processes, we discussed various methods which one can use to
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create models designed to study those same aging processes. We observed that some
approaches used simple iterative (recursive) models while others used differential
equation models; both single and multi-equation. Other forms of model utilized
deterministic probability calculations while others used matrix approaches. We also
saw that some models used partial differential equations. More recently, systems
biological approaches have been used Kowald and Klipp (2013) and Dalle Pezze
et al. (2014). These models involve understanding the actual biological pathways
(graph theoretic structures) and turning them into differential equation models.
Others have modeled focused cellular systems such as aging in the bone (Mehr
et al. 1993), the hematopoetic system (Marciniak-Czochra et al. 2009) or yeast
(Gillespie et al. 2004). Others have focused on modeling the dynamics of sub-
cellular components such as the chaperones (Proctor et al. 2005) or the mitochondria
(Kowald and Klipp 2013) and yeast. In summary, we have seen a variety of modeling
approaches applied to a diverse collection of biological aging processes. We see that
there are numerous mathematical and computational approaches to creating models
of aging and the cellular and cell-population levels and we find that there is no one
correct way to build one of these models. However, it is essential that we understand
the biology of our system to the best of our ability and that we carefully formulate
our questions so that they can be turned into models.
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