Chapter 13
Stress-Induced (Premature) Senescence

Florence Debacq-Chainiaux, Randa Ben Ameur, Emilie Bauwens,
Elise Dumortier, Marie Toutfaire, and Olivier Toussaint

Abstract Three main roads lead to senescence: telomere-dependent replicative
senescence, oncogene-induced senescence and stress-induced (premature) senes-
cence. This latter type of senescence appears after exposure of normal, immortalized
or transformed cells to stress of chemical or physical nature inducing oxidative stress
and/or DNA damage. After these exposures, chronic or acute, single or multiple,
stressed cells developed a “senescence-like” phenotype. This “senescence-like”
phenotype presents several biomarkers of cellular senescence such as irreversible
growth arrest, morphological change, senescence-associated -galactosidase (SA-
Bgal) activity and senescence-associated secretory phenotype (SASP). However,
large-scale studies of transcriptome and proteome of cells in replicative senescence
or in stress-induced senescence show that although they share similarities, the
two phenotypes are not identical. Different signaling pathways involved in the
development of stress-induced senescence are presented as those dependent on
TGF-B1, p38MAPK  IGF-R1 and DNA damage. The possible induction of this type
of senescence in vivo and in cancer treatment is discussed.

Keywords Replicative senescence ¢ Cell cycle * Stress ¢ SIPS ¢ Oxidation
* DNA damage ¢ Telomeres

13.1 Introduction

Ageing is characterized by a progressive functional decline, leading to increased
risk of developing major human pathologies, such as cardiovascular disorders,
cancer, diabetes and neurodegenerative diseases. Nine hallmarks of ageing have
been established, including cellular senescence (Lopez-Otin et al. 2013). Cellular
senescence, first described in vitro in normal human diploid fibroblasts (HDFs)
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by L. Hayflick in the early 1960s, is defined as an irreversible arrest of the
cellular divisions and for this reason also called “replicative senescence” (RS)
(Hayflick and Moorhead 1961). Almost 30 years later, it was shown that this type
of senescence is associated with a « critical » shortening of the telomeres after
extensive proliferation in the absence of endogenous telomerase activity (Harley
et al. 1990).

After the discovery of cellular senescence, studies were performed to char-
acterize the senescent phenotype and to identify specific biomarkers that allow
to distinguish senescent cells from other non-dividing cells (such as quiescent
or terminally differentiated cells). Senescence-associated biomarkers are among
others typical morphology (Bayreuther et al. 1988), irreversible growth arrest with
overexpression of p21WVAF! and p16™K-42 (Alcorta et al. 1996; Sherr and Roberts
1999), senescence-associated beta-galactosidase activity (SA-Bgal) (Dimri et al.
1995), altered gene expression (Dumont et al. 2000b), senescence-associated het-
erochromatin foci (SAHFs) and senescence-associated DNA-damage foci (SDFs)
(d’Adda di Fagagna et al. 2003) and lamin B1 loss (Freund et al. 2012). Using
some of these biomarkers such as SA-Bgal and p16™K“% overexpression, it was
demonstrated that senescent cells accumulate in tissues with age (Dimri et al. 1995;
Ressler et al. 2006).

The role of senescent cells in vivo is still unclear, but from their discovery, it
has been speculated that they may be involved in the functional decline associated
with ageing. In 2011, Baker et al. (2011) demonstrated that clearance of senescent
cells in mice delays ageing-associated disorders as cataract and muscular mass loss,
demonstrating the impact of senescent cells on their cellular and matrix environment
and on tissue function. This impact is more than probably related to their ability to
secrete a variety of factors such as inflammatory cytokines, metalloproteinases and
growth factors, identified as the senescence-associated secretory phenotype (SASP)
(Coppe et al. 2008).

13.2 Different Types of Senescence

Many studies have shown that multiple ways can lead to senescence or at least to a
“senescence-like” phenotype. Senescence can be induced by multiple stimuli such
as shortened or dysfunctional telomeres, excessive mitogenic signals (including
those produced by oncogenes) and stress. Three major types of senescence may
thus be highlighted: replicative senescence or telomere-dependent senescence,
oncogene-induced senescence and stress-induced (premature) senescence. These
three types of senescence share a common senescent phenotype, as highlighted by
the appearance of senescence-associated biomarkers (Fig. 13.1).
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Fig. 13.1 Replicative senescence, oncogene-induced senescence and stress-induced senescence
share a common senescent phenotype presenting several of the so-called senescence-associated
biomarkers

13.2.1 Replicative Senescence or Telomere-Dependent
Senescence

Replicative senescence is intimately linked to telomere shortening. Telomeres
are sequences of repetitive DNA (5-TTAGGG-3' in vertebrates) located at the
extremities of linear chromosomes and associated to telomere-specific protein
complex, also known as shelterin/telosome, including TRF1, TRF2, TIN2, POT1,
TPP1 and hRAPI (for a review: Palm and de Lange 2008). Length of telomeres
are shortened after each cellular division, this is inherently linked to the activity of
the DNA polymerase which is not able to completely replicate one strand of DNA,
also referred as the « end-replication problem » (Harley et al. 1990). This leads
to critically short and dysfunctional telomeres, which are sensed by the cells as
double-strand breaks (DSBs). There follows activation of a classical DNA-damage
response (DDR) inducing activation of upstream kinases as ataxia telangectasia
mutated (ATM) and ATM and Rad-3 related (ATR), DNA-damage adaptator
proteins as MDC1 (mediator of DNA-damage checkpoint protein-1), 53BP1 (p53-
binding protein-1), BRCA1 (breast cancer type-1 susceptibility protein) and claspin,
downstream kinases such as checkpoint-1 and -2 (CHK1 and CHK?2) and finally
effectors proteins as p53, CDC25 and SMCI (structural maintenance of chro-
mosomes protein-1). This activated pathway induces cell cycle arrest, mainly by
phosphorylating p53, activating the expression of p21WVAF-! inhibiting CDK-cyclin
complexes and triggering DNA repair (Campisi and d’Adda di Fagagna 2007;
d’Adda di Fagagna et al. 2003).
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13.2.2 Oncogene-Induced Senescence

Oncogenes are mutant version of normal genes that have the potential to transform
cells in combination with additional mutations, notably leading to inactivation of
tumor-suppressor genes such as p53 or p16"%%-42_ Oncogenes activation was shown to
induce senescence in normal cells. This response was presented as a way to prevent
oncogenic transformation. This was first observed by the expression of oncogenic
ras (H-RAS® V'?) form in normal fibroblasts leading to growth arrest and SA-Bgal
activity (Serrano et al. 1997), independently of the telomere shortening (Wei and
Sedivy 1999). Oncogene-induced senescence (OIS) has been displayed by many
oncogenes in vitro and in vivo including members of Ras signalling pathway as N-
Ras, Raf, BRAF®5% (for a review: Gorgoulis and Halazonetis 2010). Senescence can
also be induced by the expression of mutated form of tumor suppressor genes like
PTEN, VHL, RB1, and NF-1 leading to their inactivation (Nardella et al. 2011).

13.2.3 Stress-Induced Senescence: Premature or Not?

Senescence can finally appear after exposure of normal, immortalized or trans-
formed cells to stress from physical or chemical agents inducing oxidative stress
and/or DNA damage. This was called « Stress Induced Premature Senescence
» or SIPS (Toussaint et al. 2000). “Premature” refers that senescence following
stress occurs at earlier population doublings (PDs) than the maximum number of
PDs at which appears usually replicative senescence. ‘“Premature” emphasizes the
accelerated nature of the process. However, the use of the “premature” term may be
questionable.

First because the in vitro cell culture conditions are still not ideal and that the
definition of a “classical” number of passages at which cells enter in senescence
is dependent of many variables of cell culture conditions. For instance current cell
culture conditions consist in maintaining cells at atmospheric oxygen concentration
(21 %). However, in vivo, cells are exposed to a reduced oxygen concentration
ranging between tissues from 3 to 4 % in the brain (Dings et al. 1998), 3—7 % in the
muscles (Vedsted et al. 2006), 5-7 % in the dermis and 16—19 % in the epidermis
(Stucker et al. 2002). HDFs maintained in culture at a more physiological/reduced
oxygen pressure, are able to achieve more passages before undergoing replicative
senescence than cells maintained at atmospheric partial oxygen pressure (Packer
and Fuehr 1977). From then on, one may wonder what the standard is and if the
cells maintained at 21 % oxygen are not themselves subject to some oxidative
stress (Toussaint et al. 2011). We understand here the difficulty of setting a classical
or a premature onset of senescence. However, the culture conditions are identical
between stressed and control cells, “premature” insists on the quickening of the
process between the two conditions.

Second, transformed cells are also able to undergo senescence after stress. The
mechanisms of growth arrest might be extremely different between cancer cells,



13 Stress-Induced (Premature) Senescence 247

whose cycle is by definition deregulated for many possible reasons, and normal
cells exposed to stressful agents. In that case, can we really speak of “premature”
senescence, since these cells, by nature, do not enter in senescence?

These examples, beyond the debate on whether the use of the term “premature”
is adequate, demonstrate the multiplicity of senescence-like phenotypes. To encom-
pass all forms of senescence induced by stress, it therefore seems more prudent in
this review to talk about “stress-induced senescence” or SIS (Dierick et al. 2003;
Hornsby 2010).

13.3 Models of Stress-Induced Senescence

In vivo, cells are continuously exposed to different types of stress. Depending on
the nature of the stress, its intensity and the cell type, stressed cells can select one
of the three main tracks: repair, die or senesce. If the intensity of the stress is low,
the cell can repair damage and after a transient cell cycle arrest, resumes its growth.
If the stress is intense, apoptosis will be privileged. There is therefore a “moderate”
stress zone for which cells exposed to high stress, but still in the subcytotoxic
range, will not be able to repair all damage caused by the stress. With reference
to the thermodynamic theory of far from equilibrium open systems, cells will drop
to a lower steady state of internal entropy (with lower metabolic activity) and if
exceeded, its cell cycle will be irreversibly arrested and cells will enter in premature
senescence (Toussaint et al. 2002).

Potentially almost any stress from chemical or physical nature can induce
cells to undergo senescence by provoking increased oxidative stress and/or DNA
damage. Per se, the types of stress that can induce senescence seem infinite and
many models of SIS exist which will not be possible to list here. However, we
can describe the main classes of stress models that can induce stress-induced
senescence: physical stress (UV and X-irradiation), oxidizing agents and hyperoxia,
cytokines/adipokines, chemotherapeutic drugs and copper (Fig. 13.2). In the differ-
ent models, the conditions used reduce the growth rate and the maximum obtainable
cumulative population doublings (CPDs) of cells and induce the appearance of
senescence-associated biomarkers.

Cellular senescence can be induced by both chronic or acute stress protocols
in different cell types such as normal HDFs, endothelial cells, melanocytes and
transformed cells. Both protocols use sublethal concentrations of stressors, in
accordance with theoretical studies based on the stability of cellular systems
(Toussaint et al. 1991).

Chronic stress protocols consist of treating different human cell types with
prolonged exposure (several weeks) to a stressor like mild hyperoxia in HDFs (with
oxygen partial concentration around 40 %) (von Zglinicki et al. 1995, 2000), chronic
exposure of endothelial cells to homocysteine (Xu et al. 2000), prolonged culture of
human umbilical vein endothelial cells on glycated collagen (Chen et al. 2002) and
chronic exposure of colon fibroblasts to selenite (Rudolf et al. 2014).
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Fig. 13.2 Several types of stress can induce stress-induced senescence (SIS)

In the second type of protocol, cells, such as HDFs, at early CPDs are exposed
once or several times to acute sublethal stress such as a unique H,O, exposure
(Chen and Ames 1994) or a repeated exposure to tert-butylhydroperoxide (¢-BHP)
(Dumont et al. 2000b). The use of repeated sublethal stresses allow reducing the
concentration of the stressor necessary to trigger stress-induced senescence. The
major advantage of this type of protocol is that the induction of senescence can
be studied relatively independently from purely adaptive responses, if the cells are
allowed to recover for at least 3 days after the stress before analysis of biomarkers of
senescence and if the repetition of stresses increases the fraction of cells undergoing
stress-induced senescence (Toussaint et al. 2000).

Among the different models of existing SIS, some are based on physical stress
such as ionizing radiation of endothelial cells (ECs) (Igarashi et al. 2007; Pangani-
ban et al. 2013), exposure of HDFs or melanocytes to UV light (Rodemann 1989;
Debacg-Chainiaux et al. 2005; Medrano et al. 1995), to psoralen pre-treatment and
UVA exposure (pUVA) (Ma et al. 2002) and to electromagnetic fields (Rodemann
etal. 1989b) and exposure of human mesenchymal stem cells to sublethal heat shock
(Alekseenko et al. 2014).

Other models induce oxidative stress as in HDFs exposed to chronic hyperoxia
or to acute subcytotoxic exposure to oxidizing agents such as H,O, or #~-BHP (Chen
and Ames 1994; Dumont et al. 2000a; von Zglinicki et al. 1995).

Stress-induced senescence can also be provoked by stimulating cells with
cytokines or adipokines like repeated stimulation of lung HDFs or endothelial
cells with interleukin-1a (IL-1o), tumor-necrosis factor-a. (TNF-a) (Dumont et al.
2000a), transforming growth factor-beta 1 (TGF-B81) (Debacq-Chainiaux et al. 2005,
2008; Frippiat et al. 2001) and visfatin/Nampt (Villalobos et al. 2014).

Senescence can also be induced by subcytotoxic doses of drugs and in particular
chemotherapeutic drugs such as mitomycin C (Rodemann 1989), cisplatin (Berndts-
son et al. 2007), etoposide (Chiu et al. 2005) and doxorubicin (Maejima et al. 2008;
Piegari et al. 2013).
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Finally, premature senescence appears by incubating HDFs with copper (Cu),
which itself accumulates in cells during replicative senescence. Incubation of
HDFs with copper sulphate (CuSOy4) for 16 h induces the appearance of several
senescence-associated biomarkers (Boilan et al. 2013; Matos et al. 2012). Con-
versely, iron-chelation using desferroxamine mesylate induces growth arrest and
the appearance of senescence-associated biomarkers in hepatocyte cell lines (Yoon
et al. 2002).

13.4 Damage Induced by SIS

13.4.1 DNA Damage

DNA is a favourite target of stress, directly or indirectly. Many types of damage
can be produced on DNA, but the most critical for the induction of senescence is
double strand breaks (DSBs). Shortened and dysfunctional telomeres form similar
structures of DSBs, inducing DDR pathway (Takai et al. 2003).

Several models of stress-induced senescence induced in normal or immortal
cells by chemotherapeutic drugs (mitomycin C, bleomycin, actinomycin D) (Robles
and Adami 1998) or ionizing radiation (X-irradiation) (Kim et al. 2014) generate
DNA damage, including DSBs leading to senescence. Once DNA repair machinery
detects DSBs, large protein complexes including in particular yH2Ax and 53BP1
are recruited at the cleavage site and help to stabilize the damaged strands and to
activate the repair process. If the damage is too important for repair, DDR pathway
is activated and induces activation of p53 transcription factor and expression of
p21WAF1 The overexpression of p21WAF! is transient and followed by a delayed
induction of pl6™&44 as it has been demonstrated in RS. The pathway leading
to p16™K-42 gverexpression after DNA damage is still unclear (Robles and Adami
1998) but could be linked to oxidative stress.

13.4.2 Oxidative Stress

Oxidative stress is probably the most often used inducer of stress-induced senes-
cence. The link between replicative senescence and oxidative stress was clearly
demonstrated by comparing the number of passages in culture performed under
conditions of hypoxia or hyperoxia, and by the use of antioxidants and/or free
radical scavengers as, for instance N-fert-butyl-alpha-phenylnitrone (PBN). PBN is
a biphasic antioxidant that is soluble in lipid and water, and is stable in cell culture
media. Presenescent HDFs incubated with PBN are able to achieve between four
and seven additional CPDs than untreated cells (von Zglinicki et al. 2000).
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An increase of radical oxygen species (ROS) is highlighted in HDFs exposed
to HO,, UVB and copper (Boilan et al. 2013; Borlon et al. 2007; Zdanov et
al. 2006b). The use of antioxidants as mannitol or trolox significantly reduces
the appearance of senescence-associated biomarkers following copper incubation
of HDFs (Boilan et al. 2013). Nrf-2 transcription factor is also activated in HDFs
incubated with copper (Boilan et al. 2013).

An hypothesis to explain the expression of pl6™K42 after DNA damage is the
induction of a second phase of stress after direct DNA damage via oxidative stress
inducing accumulation of ROS, activation of p38MAPK and p16™K-4a gverexpression
(Hornsby 2010).

13.5 Cellular and Molecular Characteristics of SIS

13.5.1 Biomarkers of Senescence

Cells in stress-induced senescence share common features with replicative senes-
cence as it was highlighted by the study of biomarkers of senescence.

Senescent cells are characterized by morphological change, they generally
enlarge, often doubling in volume, and, if adherent, adopt a flattened morphology.
Using the morphotypes classification of HDFs (Rodemann et al. 1989a), it was
shown that after sublethal stress under H,O,, --BHP, UV light, mitomycin C, etc.,
the treated HDFs acquired the morphological features of senescent HDFs (Chen
and Ames 1994; Debacg-Chainiaux et al. 2005; Dumont et al. 2000b; Rodemann
et al. 1989a).

Their growth is irreversibly arrested at the G1/S phase of the cell cycle due
to the overexpression of several cyclin-dependant kinase inhibitors as p21%-!
and p16™-42 and hypophosphorylation of the retinoblastoma protein (pRb) (Chen
et al. 1998).

Senescence-associated B-galactosidase (SA-Bgal) is a commonly used marker
of senescent cells allowing to identify easily senescent cells both in vitro and in
vivo (Dimri et al. 1995). This activity derives from the lysosomal B-galactosidase,
overexpressed in senescent cells, and then detectable at a suboptimal pH (Kurz
et al. 2000). After exposure to stress inducing senescence, proportion of cells
positive for SA-Bgal activity increases.

Mitochondrial DNA undergoes many changes during replicative senescence
among which a 4977 bp « common » mitochondrial DNA deletion. This deletion is
clearly detected in HDFs exposed to sublethal stresses with --BHP or UVB (Debacq-
Chainiaux et al. 2005; Dumont et al. 2000b).

HDFs in RS and in SIS induced by X-irradiation or by bleomycin display a highly
correlated SASP including increased expression of IL-18, IL-8, GROo and MMP-1
(Coppe et al. 2008; Bavik et al. 2006).
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13.5.2 Gene and Protein Expression: Are RS and SIS Identical
Phenotypes?

Senescent cells show striking changes in gene expression, including gene expression
changes of cell-cycle effectors. Two cyclin-dependent kinase inhibitors (CDKIs) are
often overexpressed in senescent cells: p21"/~! (CDKN1a) and p16"%* (CDKN2a).
On the contrary, senescent cells can also repress genes that encode for cell-cycle
activators as c-fos, cyclin B and PCNA (proliferating cell nuclear antigen).

But many changes in gene expression are unrelated to growth arrest. Senes-
cent cells overexpress genes encoding secreted proteins that can alter the tissue
microenvironment, for instance to remodel extracellular matrix or to mediate local
inflammation (Campisi et al. 1996).

If similar gene expression change is observed in stress-induced senescence as
overexpression of p21"¥-! p16"4 apolipoprotein J, osteonectin and fibronectin
(Debacq-Chainiaux et al. 2005; Dumont et al. 2000b; Pascal et al. 2005), large-scale
studies also show specific gene expression change associated either to replicative
senescence or to stress-induced senescence (Pascal et al. 2005).

The study of the different biomarkers tends to show the similarities between the
two phenotypes of RS and SIS. But are they identical phenotypes? To answer this
question, the simple study of the presence of replicative senescence biomarkers after
SIS was not enough. It was therefore necessary to achieve a more global comparison
between these two phenotypes, through larger studies of gene and protein expression
in both phenotypes.

Studies on global gene expression using differential display or cDNA microarray
firstly confirmed the presence of genes whose expression is identically modified
between RS and SIS, but also demonstrated that specific changes were associated
either to RS or to SIS induced by #-BHP, ethanol, H,O, or bleomycin in HDFs
(Pascal et al. 2005; Debacq-Chainiaux et al. 2008; Bavik et al. 2006). In par-
allel, a proteomic identification by mass spectrometry after two-dimensional gel
electrophoresis (2DGE) came to the same conclusion on the comparison of the
same models (Dierick et al. 2002). This observation was confirmed by a proteomic
analysis of HDFs in RS and in H,O,-induced senescence (Aan et al. 2013). These
results reinforced that despite displaying the so-called common biomarkers of
senescence, RS and SIS are not alike.

These studies demonstrated that gene and protein expression changes of HDFs in
SIS can be classified in three groups: firstly, the changes common with RS, secondly,
the changes specific to each kind of stressor and thirdly, changes common to SIS
induced by different stressors.

The specific changes related to one of several SIS models were presented as long-
term effects of the stress and named “molecular scars”. These “molecular scars”
might occur from a few days after the stress and be maintained at long term, after
many types of stress (oxidative stress and/or DNA damage, inflammation) in vitro
and in vivo (Dierick et al. 2003).
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13.6 SIS, Telomeres and Telomerase

Telomere shortening, intimately linked to replicative senescence, is not always
related to the induction of senescence after stress.

After chronic exposure to hyperoxia, telomeres are shortened five to ten times
faster than normal (von Zglinicki et al. 1995). This increased shortening is due to
accumulation of single-strand breaks in telomeres with hyperoxia, leading to faster
telomere loss during DNA replication (von Zglinicki et al. 2000). Surprisingly, the
presence of telomerase does not prevent telomere shortening due to oxidative stress,
as shown in human endothelial cells with ectopically overexpressed telomerase
(Kurz et al. 2004). This is linked to the export of TERT, the catalytic subunit
of human telomerase, from the nucleus to mitochondria. TERT, once localized in
mitochondria, protects mtDNA integrity (Ahmed et al. 2008).

In other models of SIS induced by H,O,, ~-BHP or ionizing radiation, no
increased telomere loss was brought out after stress whereas senescence biomarkers
were well detected (Chen et al. 2001; Dumont et al. 2001; Suzuki et al. 2001).

Moreover, several HDFs strains expressing telomerase and exposed to subcyto-
toxic doses of HyO,, UV, UVB or y-irradiation in conditions inducing senescence,
displayed biomarkers of senescence (de Magalhaes et al. 2002; Gorbunova et al.
2002). This shows that telomere shortening is not detected systematically in all
models of SIS and that SIS could be induced independently of telomere erosion.

13.7 Molecular Pathways

13.7.1 TGF-A1 Pathway

TGF-B1 (Transforming Growth Factor-61) is overexpressed in skin and lung feetal
HDFs after a single exposure to H,O, (Frippiat et al. 2001) and after a series of
exposures to UVB (Debacq-Chainiaux et al. 2005), +-BHP or ethanol (Pascal et al.
2005). TGF-B1 overexpression is necessary for the overexpression of apolipoprotein
J, osteonectin, fibronectin and TGF-f1 itself, namely via a positive feedback on the
activation of p38MAPK (Frippiat et al. 2002). Incubation of lung or skin HDFs with
TGF-B1 for 3 days induces the same phenotype. If neutralizing antibodies directed
against TGF-81 or its receptor II (TBRII) are incubated with cells after the last stress
inducing senescence, this blocks the appearance of the biomarkers of senescence
(Frippiat et al. 2001). This has been confirmed in lung or skin HDFs in various
models of SIS (+~-BHP, ethanol (Debacq-Chainiaux et al. 2008) and UVB (Debacq-
Chainiaux et al. 2005)), reinforcing the major role played by TGF-1 activation in
the SIS phenotype.

P38 Mitogen-activated protein kinase (MAPK) is activated in RS, in OIS induced
by oncogenic Ras and in SIS induced by H,O,, UVB and X-irradiation (Debacq-
Chainiaux et al. 2010; Wang et al. 2002; Freund et al. 2011). Activation of pSSMAPK
by phosphorylation is rapidly detected after the stress. Inhibition of p38MAPK
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activity attenuates the increase of SA-gal positive cells and modifies the profiles
of senescence-associated gene expression in H,O;-induced senescence (Zdanov
et al. 2006a) and reduces the secretion of SASP factors in X-irradiation-induced
senescence (Freund et al. 2011).

Once activated, p38MAPK phosphorylates and activates ATF-2 transcription
factor. ATF-2 is then responsible of TGF-f31 overexpression and interacts with pRb
(Frippiat et al. 2002). TGF-B1 protein is overexpressed both in latent and active
forms and induces several biomarkers of senescence such as senescent morphology,
SA-Bgal and senescence-associated gene expression (Debacq-Chainiaux et al. 2005;
Frippiat et al. 2001), probably via downstream proteins as IGFBP-3 (Debacq-
Chainiaux et al. 2008) (Fig. 13.3).

Subcytotoxic stress (H,0,)

Active TGF-f1 ’
I
¢ L B 4
Latent TGF-B1

4

- |
® SA-Bgal activity

Morphological change

Fig. 13.3 Activation of p38MAPK ATF-2 and TGF-B1 following H,O,-induced senescence. H,O,
stress immediately activates p38MAPK which is responsible of ATF-2 activation. Phosphorylated
ATF-2 binds to hypophosphorylated pRb, which activates its transcription factor function, and
is responsible for the overexpression of TGF-81, increasing the secretion of its latent and active
protein forms. Active TGF-81 is able to bind to its receptors TBRI and TBRII (TGF-8 receptor 1
and II), leading to their interaction and phosphorylation. Activated TGF-B1 pathway is responsible
for the overexpression of senescence-associated genes as osteonectin (osteo), fibronectin (fibro)
and apolipoprotein J (apo J), of morphological change and SA-Bgal activity as demonstrated by
using neutralizing antibodies against TGF-61 or TBRII
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13.7.2 IGF-IR

Several studies have highlighted the role of insulin like growth factor-1 receptor
(IGF-1R) in the induction of stress-induced senescence. IGF-1R is a transmembrane
tyrosine kinase receptor activated by binding with its ligands IGF-1 and IGF-2,
leading to the autophosphorylation of its cytoplasmic domain. This pathway is
responsible for the activation of PI3K/Akt, MAPK and mTOR (for a review:
Riedemann and Macaulay 2006). Ionizing radiation of human pulmonary artery
endothelial cells (HPAEC) induces senescence-associated biomarkers, IGF-1 and
IGF-2 overexpression and IGF-1R activation. Treatment of HPAEC cells with an
IGF-1R inhibitor (AG1024) protects from ionizing radiation-induced senescence
(Panganiban and Day 2013). It was also demonstrated that the presence of a
functional IGF-1R receptor was required for the activation of the UVB-induced
senescence in normal human keratinocytes (Lewis et al. 2008).

13.8 Stress-Induced Senescence In Vivo

It is well established that senescent cells accumulate in tissues with age, as shown
by studying SA-Bgal activity and DNA damage (Dimri et al. 1995). These senescent
cells could be involved in the functional decline associated with ageing as postulated
by Hayflick at the time of the discovery of replicative senescence. Indeed, a link
between senescent cells accumulating in tissues and ageing-associated disorders
such as cataract and muscular mass loss has been shown in mice by Baker et al.
(2011).

How do these senescent cells appear in vivo and accumulate with age? Do
they appear by telomere-dependent senescence or by another mechanism? By
performing a simple calculation of the number of cells that could generate the two
first telomerase-negative cells, appearing during the in vivo differentiation, based
on the number of generations that HDFs can achieve before reaching replicative
senescence under physiological low O, partial pressure (80 PDs), 2% cells (>10%
cells) must be produced before the first telomere-dependent replicatively senescent
HDFs appear. Of course, to be correct, this extrapolation should also take account
of the cellular turnover and of asymmetric divisions, but should also consider that
more than two telomerase-negative cells will be generated by in vivo differentiation
(Dierick et al. 2003).

In vivo, cells are exposed to a multitude of stresses whose nature depends on
their location (pneumocytes facing air pollution and tobacco smoke; melanocytes,
keratinocytes and skin HDFs facing UV; enterocytes facing food oxidants), par-
ticular conditions (endothelial cells facing inflammation, ischaemia/reperfusion,
hypertension, shear stresses or diseases, etc.) and pathologies such as atheroscle-
rosis, diabetes and age-related neurodegenerative diseases (for a review: Toussaint
et al. 2002).
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Chronic inflammation is associated to ageing and age-related diseases (Chung
et al. 2009). This chronic inflammation could increase ROS accumulation and
could induce appearance of senescent cells as detected by many studies in which
premature appearance of cells presenting certain senescence-associated biomarkers
in disease sites, including diseases subjected to chronic inflammation such as
venous ulcers (Mendez et al. 1998), arteries subjected from balloon angioplasty
(Fenton et al. 2001), emphysema (Muller et al. 2006), chronic hepatitis C and
hepatocellular carcinoma (Paradis et al. 2001), prostatic hyperplasia (Choi et al.
2000) and intestinal metaplasia from the stomach (Going et al. 2002).

The premature appearance of these senescent cells could reinforce the inflamma-
tion by their SASP phenotype. This could lead to amplification of the phenomenon,
worsen the inflammation and accelerate ageing. This hypothesis was confirmed
recently in vivo in mice, in which chronic inflammation provoked by knockout of
the nfkbl subunit of the transcription factor NF-kB induces telomere dysfunction
and accelerates ageing (Jurk et al. 2014).

Many studies showed the implication of metals (Cu and Fe) in the development of
age-related diseases and more precisely in age-related neurodegenerative diseases.
These metals are able to generate ROS through the Fenton and Haber-Weiss
reactions (Brewer 2007) and to induce accumulation of DNA damage, by their
ability to inhibit a family of DNA glycosylases by oxidation, changing their
structure and preventing their binding to downstream repair proteins (Hegde et al.
2011). Interestingly, these metals accumulate in HDFs with RS (Boilan et al. 2013;
Killilea et al. 2004). The accumulation of Cu during RS of HDFs was detected
by specific fluorescence-probes (CS1) or cytochemistry (rubeanic acid), but the
mechanisms and the kinetics of this accumulation is still unknown. Incubation of
HDFs at young CPDs with CuSO, induces senescence, this suggests that a transient
increase of copper concentration is sufficient to launch the senescence process.

13.9 SIS in Cancer Treatment

Several studies have shown that in addition to induce apoptosis of cancer cells, some
anti-cancer treatments such as chemotherapy and ionizing radiation were also able
to induce senescence, generally using lower concentrations than those necessary to
provoke apoptosis.

Chemotherapeutic agents able to induce senescence in vitro include among
others cisplatin (Berndtsson et al. 2007), etoposide (Chiu et al. 2005), doxorubicin
(Sliwinska et al. 2009), bleomycin (Aoshiba et al. 2003), vinblastine (Duan et al.
2007), etc (for a review: Bilsland and Keith 2010). An analysis of tumor tissues
from patients treated with chemotherapeutic agents show a greater proportion of
senescent cells (SA-Bgal positive, p16™4? overexpression) compared to healthy
tissues in patients suffering from breast cancer, non-small-cell lung carcinoma or
prostate cancer (Coppe et al. 2008; Roberson et al. 2005; te Poele et al. 2002).
In vivo, first clinical data show that senescence markers (p16i"k'4a overexpression,
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VEGFA and MCP1 secretion) are more expressed in T lymphocytes from patients
suffering for breast cancer treated with adjuvant chemotherapy (anthracyclin-
based) than controls (Sanoff et al. 2014). This therefore accelerates senescence of
hematopoietic tissues.

Furthermore ionizing radiation induces senescence in normal and tumor cells
in vitro (Suzuki and Boothman 2008). So we should be careful about the possible
induction of senescence by radiotherapy on the tumor being treated and its
(micro)environment.

Induction of senescence-like phenotype in transformed cells and particularly of
irreversible cell cycle arrest is seen as an interesting concept in the treatment of
cancer. Indeed cancer cells manage to escape cellular senescence. A promising
strategy is to successfully redirect cancer cells to cellular senescence by developing
senescence-targeted drug. This pro-senescence therapy is presented as a new
promising approach in cancer treatment (Nardella et al. 2011). The main pro-
senescence strategies are to inhibit the activity of telomerase, to reactivate or
stabilize p53, to induce Pten loss induced senescence (PICS) and to inhibit CDKs
and MYC (Acosta and Gil 2012).
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