
Chapter 10
Mitochondrial Reactive Oxygen Species
in Cellular Senescence

Timothy Nacarelli, Claudio Torres, and Christian Sell

Abstract Mitochondria are central for the maintenance of cellular homeostasis
and both cellular dysfunction and aging are linked to mitochondrial dysfunction.
Mitochondrial dysfunction is the principle cause of increased levels of reactive
oxygen species (ROS) and oxidative stress, which is a key mediator of aging. The
cell responds to this stressful stimulus by the induction of the cellular aging-stress
response, cellular senescence. Here, we discuss the mechanisms through which
mitochondrial ROS promotes senescence. In this context, we will highlight how
mitochondrial ROS serves an initiating upstream, or sustaining downstream, role in
the induction of senescence. We will also discuss potential interventions to alleviate
mitochondrial ROS and delay cellular senescence.

Keywords Aging • Cellular senescence • Mitochondria • ROS

10.1 Introduction: Mitochondria and Cellular Senescence

Mitochondria are essential for normal cellular processes including aerobic
metabolism for the production of ATP and critical metabolic intermediates, calcium
homeostasis, apoptotic signaling, beta oxidation, and regulations of redox status.
Because mitochondria are central to energy metabolism and affect signaling
pathways, they also play an important regulatory role in the cell. Specifically,
mitochondria respond to cellular signals or altered status by communicating to the
nucleus to alter gene expression through retrograde signaling. This is vital not only
for adapting cellular energy status, but also for maintaining mitochondrial quality
control. Mitochondrial defects are an acknowledged feature of cellular dysfunction
in the aging process where the most prominent aspects of mitochondrial dysfunction
include reduced function, structural disorganization, and increased production of
reactive oxygen species (ROS). These alterations are common in aged tissues
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and are associated with age-related pathologies, yet the mechanisms by which
mitochondrial dysfunction promotes cellular aging and tissue deterioration are
unclear (Bratic and Larsson 2013; Lee and Wei 2012; Cagin and Enriquez 2015).
One possibility is that mitochondrial dysfunction promotes the cellular aging-stress
response, cellular senescence. Although senescent cells are metabolically active
and viable (Campisi 2013), they exhibit alterations in mitochondrial morphology,
function, metabolism, and redox state (Passos et al. 2013; Hutter et al. 2004; Hwang
et al. 2009; Ahmed et al. 2010).

Since mitochondria are central to cellular metabolism, it is compelling to
speculate the requirement of mitochondrial alterations in senescence. A major
detrimental aspect of mitochondria dysfunction is the generation of ROS, which
not only leads to cellular damage but also reinforces mitochondrial dysfunction
by damaging mitochondrial components, altering mitochondrial metabolism and
dynamics, and depleting antioxidant defenses (Bratic and Larsson 2013; Seo et al.
2010). As a result of amplified mitochondrial dysfunction, this stressed cellular state
might then signal to promote senescence. In this review, we will focus on how
mitochondrial ROS might serve as an effector of cellular senescence. We will also
discuss potential therapeutic approaches to improve mitochondrial homeostasis and
prevent the pathologic generation of ROS.

10.2 The Generation of Mitochondrial ROS

One of the first theories of aging proposed that free radical-generated ROS insid-
iously impaired cellular homeostasis and caused aging (Harman 1956). However,
demonstration that antioxidants failed to slow the aging process in mammals led
to revision of this theory, with mitochondria identified as being the principal
endogenous source and target of ROS responsible for cellular aging (Harman 1972).
Mitochondria produce ROS as a byproduct of oxidative phosphorylation when elec-
trons, leaked mainly from complexes I and III of the electron transport chain (ETC),
reduce oxygen into toxic superoxide anion. The ETC establishes a membrane poten-
tial across the inner mitochondrial membrane to control oxidative phosphorylation.
Alteration of this membrane potential through hyperpolarization or depolarization
accelerates the formation of superoxide anion (Korshunov et al. 1997; Nicholls
2004; Suski et al. 2012; Zorov et al. 2006). ETC-generated superoxide anion can
be converted through redox reactions into intermediates and other harmful ROS,
such as hydrogen peroxide, peroxynitrite anion, and hydroxyl radical (Turrens
2003; Brand 2010). The mitochondria maintain ROS levels and redox status using
an endogenous antioxidant defense system consisting of the enzymes manganese
superoxide dismutase (MnSOD), glutathione peroxidase, and thioredoxin 2 (Li
et al. 2013b). High levels of ROS damage macromolecules, including mitochondrial
DNA (mtDNA), proteins, and lipids; developing a model of vicious cycle where
ROS produced in the mitochondria propagates further damage within the cell. The
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mitochondrial genome is susceptible to ROS-induced mutagenesis because of its
close proximity to ROS, absence of protective histones, and lower fidelity DNA
repair system. ROS-induced mutagenesis compromises oxidative phosphorylation
by incorporation of defective mtDNA-encoded subunits or altering complex stoi-
chiometry within the ETC. mtDNA encodes 24 mitochondrial translation-related
RNAs and 13 proteins that comprise subunits of the ETC complexes and ATP
synthase. Also vulnerable to ROS is the tricarboxylic acid (TCA) cycle enzyme
aconitase, which attempts to compensate for the production of ROS by slowing TCA
cycle and ETC activity. However, slowing TCA cycle activity may not counteract,
but worsen the production of ROS by malfunctioning ETC complexes (Bandy and
Davison 1990; Shokolenko et al. 2014; Alexeyev 2009). The aforementioned actions
form a feed-forward progression of ROS-damaged mitochondria, amplifying the
production of ROS and damaging neighboring mitochondria.

10.3 Mitochondrial ROS and Longevity

Despite the general acceptance that mitochondrial dysfunction accelerates the aging
process, there is not a clear consensus in the literature that this acceleration is medi-
ated by increased mitochondrial ROS. The most compelling evidence supporting the
notion that mitochondrial ROS regulates lifespan, as well as healthspan, comes from
mice overexpressing a ROS-scavenging mitochondrial-targeted catalase. These
mice, with reduced mitochondrial oxidative damage and mtDNA mutations and
deletions, exhibit increased mean and maximal lifespan, as well as resistance to
a number of age-related pathologies (Schriner et al. 2005; Dai et al. 2009; Treuting
et al. 2008; Dai et al. 2014). Additionally, a noninvasive approach using the
mitochondrial-targeted antioxidant SkQ1, has been shown to suppress cardiomy-
opathy and traits of aging and increase lifespan in mice (Anisimov et al. 2008, 2011;
Dai et al. 2014; Manskikh et al. 2015; Skulachev et al. 2009). However, evidence
against the pathologic role of mitochondrial ROS is provided by some early studies
in ‘mutator mice’ harboring an exonuclease proofreading-deficient mitochondrial
DNA polymerase gamma. Although these mice exhibited an accelerated aging
phenotype driven by mtDNA mutations and deletions, they did not exhibit increased
levels of ROS (Kujoth et al. 2005; Vermulst et al. 2008; Trifunovic et al. 2005; Hiona
et al. 2010). However, recent studies using more sensitive approaches did detect
increased mitochondrial ROS and oxidative damage in ‘mutator mice’ (Kolesar
et al. 2014; Logan et al. 2014). In support of mitochondrial ROS as a driver of
pathologic effects in this model, overexpression of mitochondrial-targeted catalase
in ‘mutator mice’ alleviated mtDNA deletions, mitochondrial oxidative damage, and
age-dependent cardiomyopathy (Dai et al. 2010, 2014). Additionally, antioxidant
treatment attenuated somatic progenitor cell mtDNA mutagenesis and loss of self-
renewal capacity in ‘mutator mice’ (Ahlqvist et al. 2012). These studies support the
role of mitochondrial ROS as a driver of mitochondrial dysfunction and aging.
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10.4 Mitochondrial ROS as an Inducer of Senescence

Although it is currently debated whether and how mitochondrial-derived ROS
serves as an inducer of senescence, senescence induction by ROS is clear. ROS
has been identified as a key player in establishing replicative, genotoxic stress
and oncogene-induced senescence (Lu and Finkel 2008; Nair et al. 2015; Colavitti
and Finkel 2005). In addition, exposure to exogenous hydrogen peroxide induces
senescence through mechanisms involving genomic DNA damage (Duan et al.
2005; von Zglinicki et al. 2005; Borodkina et al. 2014), transforming growth
factor-“ (TGF-“) (Frippiat et al. 2001; Yu et al. 2009; Hassona et al. 2013), and
p38MAPK signaling (Frippiat et al. 2002; Zdanov et al. 2006; Barascu et al. 2012;
Iwasa et al. 2003). The generation of intracellular ROS appears to be a much
earlier event than the onset of other senescent phenotypes as shown in a time-
progression analysis of replicative senescence in human fibroblast (Kim et al. 2013).
A significant increase in mitochondrial superoxide anion has been reported with
increasing population doublings and replicative senescence in human fibroblasts,
mesenchymal stem cells and vascular smooth muscle cells (Passos et al. 2007, 2013;
Bielak-Zmijewska et al. 2014; Estrada et al. 2013; Nacarelli et al. 2015; Lerner et al.
2013). The mitochondria undergo distinct changes that may support the production
of ROS during the induction of senescence. For instance, increased mitochondrial
respiration has been detected in replicative, oxidative stress, and oncogene-induced
senescence (Hutter et al. 2004; Kaplon et al. 2013; Quijano et al. 2012; Nacarelli
et al. 2015). Not only are mitochondria the suspected culprits in the generation
of ROS in promoting senescence, but also the immediate target. In replicative
senescence of human fibroblasts, the most evidence of ROS-induced oxidative
damage was detected within the mitochondria (Ahmed et al. 2010). This preferential
accumulation of oxidative damage not only suggests that the mitochondria are a
ROS source and target, but also that mitochondria are subject to reduced quality
control in senescence.

Several studies have highlighted mitochondrial ROS in altering susceptibility to
senescence. HIV highly active antiretroviral therapy nucleoside reverse transcriptase
inhibitors (NRTIs), which are known to insult the mitochondria as an off-target
effect and increase susceptibility to the development of age-related pathologies,
increase ROS and induce senescence in human fibroblasts (Caron et al. 2008;
Nacarelli et al. 2015). Mice deficient for the mitochondrial superoxide anion-
scavenger MnSOD are more susceptible to oxidative stress and a range of age-
related pathologies, and exhibit an abbreviated lifespan. In vivo and in vitro studies
in these mice show evidence of increased vulnerability to oxidative stress-induced
senescence (Velarde et al. 2012; Treiber et al. 2011). Contrary to the idea that
MnSOD promotes longevity, overexpression of MnSOD fails to increase lifespan
in mice (Jang and Van Remmen 2009). This is not surprising since overexpressing
MnSOD may generate more hydrogen peroxide that will serve as a precursor
for more harmful ROS (MacMillan-Crow and Crow 2011). Interestingly, ‘mutator
mice’ exhibit increased p16 expression in their hearts. Remarkably, overexpressing
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the mitochondrial-targeted catalase in these mice reduces expression of p16 in
their heart, attenuating their age-dependent cardiomyopathy (Dai et al. 2010). It is
possible that the mitochondrial-targeted catalase alleviates mitochondrial oxidative
stress that induces senescence and contributes to the pathologic phenotype of
cardiomyopathy.

10.5 ETC Dysfunction in Generating Mitochondria ROS

Given a severe insult, mitochondria can produce enough ROS to cause genomic
instability and telomere attrition, providing a setting conducive for senescence (Liu
et al. 2002). Disrupting the mitochondrial ETC and oxidative phosphorylation by
severely uncoupling the proton gradient using p-trifluoromethoxyphenylhydrazone
(FCCP) to produce high levels of mitochondrial ROS accelerates telomere attrition
and induces oxidative stress-induced senescence in human fibroblasts (Stockl
et al. 2007). Supporting a role for mitochondrial-generated ROS in replicative
senescence, mild uncoupling to lower mitochondrial ROS reduced the rate of
telomere shortening and extended replicative lifespan in human fibroblasts. The fact
that the mitochondrial-targeted antioxidant mitoquinone (mitoQ) yielded the same
effect in human fibroblasts pinpoints mitochondrial ROS as a factor in replicative
senescence (Saretzki et al. 2003; Passos et al. 2007). Mild uncoupling of the
mitochondria to reduce mitochondrial ROS was able to protect against hydrogen
peroxide-mediated oxidative stress-induced senescence in human fibroblasts (Cho
et al. 2014). This approach appears to be therapeutic at the organismal level, as
mildly uncoupling mitochondria reduced mitochondrial ROS and oxidative damage
in various tissues and extended lifespan in mice (Caldeira da Silva et al. 2008). One
may speculate whether senescence was alleviated within the tissues of these mice
during physiologic aging.

Besides uncoupling, direct damage to the ETC can lead to the production
of mitochondrial superoxide anion from complexes I and III. Indeed, inhibiting
complex I using rotenone or complex III using antimycin A increased mitochondrial
ROS and induced senescence in human fibroblasts (Velarde et al. 2012; Moiseeva
et al. 2009; Stockl et al. 2006). Additionally, disrupting complex I by silencing its
assembly factor NDUFAF1 increased mitochondrial ROS and induced senescence
in human fibroblasts. Supporting a role in longevity, efficient assembly of complex
I is associated with lower ROS levels and a feature of young, rapamycin-fed, and
long-lived mice (Miwa et al. 2014). The ETC can also be altered in response to sig-
naling to provoke the generation of mitochondrial ROS that induces senescence. For
instance, the senescence-promoting proinflammatory cytokine transforming growth
factor-“1 inactivates glycogen synthase kinase 3 to suppress complex IV activity
of the ETC that results in the generation of mitochondrial ROS and induction of
senescence (Byun et al. 2012). Another cascade in mitochondrial ROS-induced
senescence is in response to angiotensin II-mediated NADPH oxidase activation
in vascular smooth muscle cells. Activation of NADPH oxidase by angiotensin
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II elicits a feed-forward mechanism where the production of superoxide anion
from the mitochondria further activates NADPH oxidase and causes senescence.
Suppressing mitochondrial ROS in this setting by mild inhibition of complex I
using rotenone or a mitochondrial-target antioxidant prevented this cross-talk and
senescence (Mistry et al. 2013).

10.6 Impaired Mitochondrial Dynamics in Generating
Mitochondrial ROS

Mitochondria are dynamic organelles that continually undergo fusion and fission
events to alter their morphology and organization. These processes, which are
required for maintenance and quality control of the mitochondria, facilitate the
degradation of dysfunctional mitochondria through autophagy, a process termed
mitophagy. Altering mitochondrial fission has been shown to impact ROS levels and
senescence (Seo et al. 2010). Inhibiting mitochondrial fission by knocking down
fission protein 1 (Fis1) caused mitochondrial elongation, increased ROS levels,
DNA damage, and senescence (Lee et al. 2007). Similar effects were observed
when mitochondrial fusion and enlargement were aberrantly stimulated using
deferoxamine (Yoon et al. 2006). Likewise, enlarged mitochondrial morphology has
been observed in replicative senescence (Hwang et al. 2009). Senescence has also
been studied in response to mitochondrial insults that impair dynamics. Disruption
of mitochondrial dynamics and mitochondrial fragmentation induced by cigarette
smoke extract increased mitochondrial ROS and induced senescence. Mitochondrial
ROS appeared to be required for the induction of senescence in this setting, as these
responses were prevented in the presence of a mitochondrial-targeted antioxidant
(Hara et al. 2013). Mitochondrial ROS-induced senescence in response to cigarette
smoke extract was also ameliorated when mitophagy was stimulated to remove
dysfunctional mitochondria (Ito et al. 2015). These studies highlight the importance
of quality control to eliminate aberrant mitochondria with the potential to increase
ROS and put the cells at risk for senescence.

10.7 Metabolic Disruption in Promoting Mitochondrial ROS

Increased mitochondrial ROS in the induction of senescence has been studied in
regards to glucose metabolism. Although senescent cells are metabolically active,
the glycolytic status within senescent cells is unclear. Increased glycolysis has
been reported in replicative and radiation-induced senescent cells (Bittles and
Harper 1984; Goldstein et al. 1982; Liao et al. 2014; James et al. 2015). However,
oncogene-induced senescence is characterized by a metabolic shift from glycolysis
to the TCA cycle due to decreased expression of glycolytic proteins and increased
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pyruvate oxidation (Kaplon et al. 2013; Li et al. 2013a). Exposing cells to a
high concentration of glucose increased mitochondrial ROS and caused oxidative
stress-induced senescence (Ksiazek et al. 2008; Park et al. 2014). Unfortunately,
these studies did not address whether high glucose aberrantly stimulated glycolysis
or had a direct effect on the mitochondria. Similarly, supplying the cell with
excessive TCA cycle intermediates by overexpressing sodium-dependent dicar-
boxylate cotransporter 3, disrupted mitochondrial ETC activity, increased ROS
levels, and caused oxidative stress-induced senescence in human fibroblasts (Ma
et al. 2014). Interestingly, high levels of the TCA cycle intermediate fumarate
lowered antioxidant defenses by inactivating glutathione and caused oxidative
stress-induced senescence (Zheng et al. 2015). These results support the idea that
an altered metabolism or altered levels of metabolites are capable of damaging
mitochondria and increasing ROS to induce senescence. Of course it is possible that
mitochondrial dysfunction alters glucose metabolism in a way that promotes the
generation of mitochondrial ROS. For instance, it is suspected that mitochondrial
dysfunction accounts for transcriptional and metabolic changes in the TCA cycle
during replicative senescence in Saccharomyces cerevisiae (Kamei et al. 2014).

10.8 Senescence Induction of Mitochondrial ROS: p53
Effector Response

Although discussed up to this point as an upstream effector of senescence, elevated
mitochondrial ROS might also represent a downstream mechanism to maintain
the senescence phenotype. Senescence induction by the p53/p21 pathway as part
of the DNA damage response increased and sustained ROS production from the
mitochondria, forming a positive feedback mechanism, whereby further DNA
damage and p53/p21 pathway activation served to maintain senescence (Passos et al.
2010). p53 can serve as a major effector in establishing high levels of ROS following
senescence induction, by altering mitochondria redox status. Elevated p53 can
transcriptionally downregulate mitochondrial MnSOD, the mitochondrial antioxi-
dant that dismutates mitochondrial superoxide anion into hydrogen peroxide. Also,
MnSOD ROS-scavenging activity can be impaired by physical interaction with
p53 following localization of p53 to the mitochondria (Lebedeva et al. 2009; Pani
and Galeotti 2011). p53 also serves a mitochondrial pro-oxidant role by promoting
p66Shc, which translocates to the mitochondria and generates ROS by transferring
electrons from cytochrome c to molecular oxygen (Pani and Galeotti 2011; Galimov
et al. 2014; Giorgio et al. 2005). p66Shc also is responsive to ROS and has been
shown to increase at the mRNA and protein level during oxidative stress-induced
senescence in fetal bovine fibroblasts (Favetta et al. 2004). Suggesting a role in
longevity, mice deficient for p66Shc are less susceptible to oxidative stress and
age-related pathologies (Migliaccio et al. 1999; Berry and Cirulli 2013). These
mice accumulate fewer senescent cells in their thymus during physiological aging,
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and embryonic fibroblasts from these mice are resistant to oxidative stress-induced
senescence, further supporting the notion that these mice are protected against
oxidative stress (Gambino et al. 2013). Mitochondrial autophagy and dynamics
can also be impaired by p53, leading to the generation of mitochondrial ROS.
For instance, in replicatively senescent mouse embryonic fibroblasts, cytosolic p53
prevents mitochondrial localization and action of parkin, an E3 ubiquitin ligase
that facilitates autophagic clearance of dysfunctional mitochondria (Hoshino et al.
2013).

10.9 Senescence Induction of Mitochondrial ROS: Metabolic
Disruption

Oncogene-induced senescence is also triggered by a p53 response that promotes the
production of mitochondrial ROS. For example, ras-mediated oncogene-induced
senescence entails p53-dependent mitochondrial dysfunction that is defined by
increased mitochondrial mass and production of superoxide anion in human fibrob-
lasts (Moiseeva et al. 2009; Lee et al. 1999). Supporting the notion of altered
mitochondrial function, ras-mediated senescence increases the rate of mitochondrial
respiration and the proteins that support this, particularly mitochondrial pyruvate
dehydrogenase (Quijano et al. 2012; Li et al. 2013a). Pyruvate dehydrogenase has
also been identified as a key factor in mediating increased mitochondrial respiration
and ROS in oncogenic BRAFV600E-induced senescence. This senescent phenotype
was maintained by elevated pyruvate dehydrogenase activity, which increased
pyruvate oxidation and sustained a high level of mitochondrial respiration (Kaplon
et al. 2013). Interestingly, pyruvate dehydrogenase, itself, is capable of generating
ROS from the mitochondria (Quinlan et al. 2014). It is currently unknown whether
pyruvate dehydrogenase activity is increased in replicative and oxidative stress-
induced senescence. Mitochondrial metabolism might also become dysregulated
in such a way that increases ROS in senescent cells through feedback between
p53 and the mitochondrial NAD(P)C-dependent malic enzyme (ME2). Through
oxidative decarboxylation of malic acid into pyruvate within the mitochondria, ME2
replenishes the mitochondrial NADPH pool that is required by endogenous mito-
chondrial antioxidants. ME2 can be transcriptionally repressed by p53, leading to
elevated levels of ROS that activate p53 in an AMPK-dependent manner. Since ME2
reciprocally represses p53, knocking down ME2 induces p53-dependent senescence
(Jiang et al. 2013; Korge et al. 2015). It is unclear whether increased mitochondrial
ROS in these settings serves as a driver in sustaining the senescent phenotype, rather
than an effect. Nonetheless, it is evident that an altered mitochondrial function that
supports the production of ROS is a part of the metabolic phenotype of senescent
cells.
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10.10 Mitochondrial ROS Interventions for Suppressing
Cellular Senescence

Given its impact on senescence, mitochondrial ROS could be targeted as a strategy
to provide longevity assurance. The most direct strategy might make use of the
aforementioned mitochondrial-targeted antioxidants. However, the most effective
and long-term intervention would be an intervention that improves mitochondrial
homeostasis and provides resistance against mitochondrial stress. Our laboratory
has shown that senescence is delayed and replicative lifespan is increased in human
fibroblasts treated long term with 1 nM rapamycin, a pharmacologic inhibitor of
mTORC1. Notable features of these rapamycin-treated cells included improved
mitochondrial homeostasis and diminished ROS (Lerner et al. 2013). Other studies
have also highlighted the suppression of senescence by rapamycin (Demidenko
et al. 2009; Pospelova et al. 2012). Rapamycin treatment also provides resistance
to mitochondrial insults, such as ethidium bromide or NRTI treatment, which
increase ROS levels and susceptibility to senescence (Nacarelli et al. 2014, 2015).
These results may help to explain the benefits of rapamycin in slowing aging and
extending organismal lifespan among various species, and protecting against age-
related pathologies in disease mouse models (Johnson et al. 2013; Ehninger et al.
2014). Rapamycin is thought to converge on similar longevity-extending pathways
as caloric restriction, a well-known intervention that also improves mitochondrial
function, and protects against age-related diseases (Colman et al. 2009; Bratic and
Larsson 2013).

Interestingly, at least some aspects of the longevity features and benefits of
caloric restriction can be obtained through restricting the amino acid L-methionine
in rodents. A targeted reduction of methionine synthase to reduce methionine
levels has also been shown to extend lifespan and increase stress resistance in
S. cerevisiae and human fibroblasts (Johnson and Johnson 2014). A major effect of
L-methionine restriction appears to be the reduction of mitochondrial ROS genera-
tion and oxidative stress (Sanchez-Roman and Barja 2013). Remarkably, restricting
L-methionine in cell culture media suppressed the generation of mitochondrial ROS
and oxidative damage, delayed senescence, and extended replicative lifespan in
human fibroblasts (Koziel et al. 2014). These interventions provide mechanistic
insight into how improving mitochondrial homeostasis and sustaining low levels
of mitochondrial ROS could support longevity pathways and delay senescence.

10.11 Conclusion

Mitochondria maintain cellular homeostasis and are critical determinants of cellular
longevity. One detrimental effect of mitochondrial dysfunction is the generation
of superoxide anion, which gives rise to high levels of ROS. High levels of ROS
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Fig. 10.1 Mitochondrial ROS as an inducer of senescence. Synthesis of events that increase
mitochondrial ROS in the induction of cellular senescence

damages macromolecules and establish a stressful cellular environment. This stress
stimulus may induce senescence, promoting aging. In Figs. 10.1 and 10.2, we put
forth a synthesis of the mechanisms by which mitochondrial ROS initiates or helps
maintain senescence. Alterations in the mitochondria that support the generation
stress-inducing ROS include ETC dysfunction, altered dynamics that impair quality
control, and metabolic disruption. Given a non-mitochondrial stimulus, senescent
cells can also generate signals as a mechanism to maintain the senescence phenotype
to induce mitochondrial ROS. This encompasses effector responses of p53 and
changes in metabolism. Various interventions that alleviate increased mitochondrial
ROS levels, such as rapamycin treatment or methionine restriction, might be
effective in preventing senescence and extending longevity. These methods might
succeed in preventing cascades initiated, amplified, or maintained by mitochondrial
ROS in promoting senescence. Although senescence is irreversible, these interven-
tions may also assist in confining the pathological effects of senescent cells through
a reduction in SASP, the senescence-associated secretory phenotype that acts to
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Fig. 10.2 Senescence induction of mitochondrial ROS. Synthesis of events mediating increased
levels of mitochondrial ROS following the induction of cellular senescence

promote a pro-inflammatory state. With mitochondrial ROS being a common target,
these therapeutic approaches are important in understanding age-promoting stress
signaling and ways to decelerate senescence.
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