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Abstract
The armamentarium of approved radiopharma-
ceuticals for either diagnosis or therapy is at the
core of the clinical practice of today’s nuclear
medicine. Nevertheless, both because the cur-
rently approved agents do not meet all the
clinical needs for radionuclide targeting and
because advancing knowledge in the patho-
physiology of tissues/organs open in turn new
opportunities, investigations continue at the
preclinical and clinical validation level for the
development of new radiopharmaceuticals,
most of which are not approved yet for com-
mercial use. Concerning in particular the diag-
nostic applications of nuclear medicine to
oncology, ongoing investigations in the search
for tumor-targeting agents with better specific-
ity and sensitivity are countless, possibly
within the scenario of theranostics – that is,
with the dual potential for imaging and for
therapy, depending on the specific radionuclide
employed for radiolabeling. We will focus this
chapter on the most promising imaging agents

labeled with single-photon-emitting radionu-
clides based on some of the mechanisms that
are typical for tumor cells/tissues.
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Glossary
BTAP Bis(thioacetamido)pentanoyl
DOTA 2-(4-Isothiocyanatobenzyl-1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetra-
acetic acid (macrocyclic coupling
agent to label compounds of biologi-
cal interest with metal radionuclides)

DTPA Diethylenetriaminepentaacetic acid
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
FDA United States Food and Drug

Administration
GMP Good manufacturing practice
HER Human epidermal growth factor

receptor
HPLC High-performance liquid chroma-

tography (formerly known as high-
pressure liquid chromatography)

HYNIC 6-Hydrazinopyridine-3-carboxylic
acid, also known as hydrazido-
nicotinic acid/hydrazinonico-
tinamide (a chelating agent)

MMP Metalloproteinases, a family of
matrix enzymes
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MRI Magnetic resonance imaging
NIRF Near-infrared fluorescence
PET Positron emission tomography
RGD Tripeptide composed of L-arginine,

glycine, and L-aspartic acid (a
sequence that is a common element
in cellular recognition)

SPECT Single-photon emission tomography
TGF Transforming growth factor
TKI Tyrosine kinase inhibitor
TPPTS 3,3,3”-Phosphanetriyltris

(benzenesulfonic acid) trisodium
salt, a ligand also known as sodium
triphenylphosphine trisulfonate

VEGF Vascular endothelial growth factor
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Introduction and Background

The armamentarium of approved radiopharma-
ceuticals for either diagnosis or therapy is at the
core of the clinical practice of today’s nuclear
medicine. Nevertheless, advancing knowledge in
the pathophysiology of tissues/organs opens new
opportunities, for the development of new radio-
pharmaceuticals, most of which are not approved

yet for commercial use. There is an ongoing
search for tumor-targeting agents with better spec-
ificity and sensitivity. There are many new devel-
opments of agents with the dual potential for
imaging and for therapy, depending on the spe-
cific radionuclide employed for radiolabeling
[1–3].

Tumor cells and tissues exhibit different char-
acteristics compared to normal cells and due to the
altered physiology, tissue composition, and
expression of intra- and extracellular molecules
[4, 5]. These attributes can be the basis for devel-
oping new imaging targets for diagnostic applica-
tions as well as for developing new anticancer
drugs and for assessing tumor response to treat-
ment [6–9] (see also▶Chaps. 1, “Cancer Biology
of Molecular Imaging,” and ▶ 2, “Principles of
Molecular Targeting for Radionuclide Therapy”
of this book).

Single-photon-emitting radiopharmaceuticals
can be classified according to different properties,
such as their biodistribution and targeting charac-
teristics, their different chemical and physical
properties, and their specific interaction with a
target. Tumors are known to display an aberrant
vascular network and microcirculation, which in
turn influence an increase in interstitial pressure,
as well as hypoxia and acidosis; all these features
contribute to the expression of malignant pheno-
types and to resistance to various treatments [10].
Within this environment, tumor cells can also
display altered energy metabolism, as reflected,
for example, in increased glucose uptake and
shifted balances in metabolic products.

Thus, at the preclinical level, a variety of single-
photon-emitting tracers are under evaluation for
use asmarkers for (neo)angiogenesis [11–13], hyp-
oxia [14, 15], acidosis [16], metabolic activity [17],
and proteolytic activity [18, 19]. Besides metabolic
tracers, efforts are being directed also toward the
development and validation of single-photon pro-
bes specific for tumor target molecules such as cell
surface antigens, receptors, or other molecules sim-
ilarly overexpressed in tumor tissues [20]. The use
of peptides interacting with receptors [21], of anti-
bodies or antibody fragments targeting different
epitopes of tumor-associated antigens [22], of
vitamin-based radiopharmaceuticals [23], and of
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nucleoside analogs [24–27] significantly increases
the possibilities for tumor detection, localization,
and staging. Specific issues of interest in transla-
tional preclinical imaging studies include efforts
directed at improving specificity for tumor types
[28], tumor uptake/retention [29], yet with minimal
pharmacological effects of the imaging probes.

The successful choice of a target molecule
potentially leads to the development not only of a
molecular imaging probe but also of a therapeutic
agent capable to inhibit the disease process –
according to the approach of theranostics. Receptor
targeting with small radiolabeled peptides for
receptor-targeted tumor imaging (PET and
SPECT) as well as for radionuclide therapy pro-
vides good examples of such theranostics potential.

Peptide Receptor Targeting

The best-known examples of this tumor-targeting
mechanism are based on the use of somatostatin
analogs. For imaging purposes either single-
photon-emitting radionuclides (chiefly 111In) or
positron-emitting radionuclides (chiefly 68Ga) are
used in the clinical routine. For therapeutic pur-
poses, different β�-emitting radionuclides (chiefly
90Y and 177Lu) are currently being used clinically
or undergoing extensive validation; although the
chief indications for the use of these radiopharma-
ceuticals regard neuroendocrine neoplasms (see
▶Chaps. 29, “Diagnostic Applications of Nuclear
Medicine: Neuroendocrine Tumors,” and ▶ 43,
“Neuroendocrine Tumors: Therapy with Radio-
labeled Peptides” of this book), the indications for
the use of these tracers, with either diagnostic or
therapeutic purposes, are expanding to other tumors
as well. Thus, the radiolabeled somatostatin ana-
logs are prototypes for a whole spectrum of other
peptide receptor systems that are overexpressed in a
variety of tumors. The common feature shared by
all these systems is that they are members of the
so-called G-protein-coupled receptor superfamily
and play a major role in the progression and angio-
genesis of a number of malignancies.

Briefly, the peptide ligands that have yielded
the most promising results so far are the analogs of
bombesin, of cholecystokinin, of the vasoactive

intestinal peptide, of gastrin, of glucagon, of
substance P, of exendin, and of the
α-melanocyte-stimulating hormone [30–36]. The
use of the so-called RGD-based peptides for
targeting the integrin receptor system (another
member of the G-coupled family) is discussed
further below in this chapter.

Apoptosis

Apoptosis is a process of regulated or programmed
cell death, which in its classic form, does not cause
inflammation. The mitochondria and ribosomes of
the cells undergoing apoptosis remain intact, and
surrounding cells internalize them along with the
other components of the post-apoptotic cell.
Necrotic cells, in contrast, lose membrane integrity,
swell, and then release their contents to the sur-
rounding tissue, causing inflammation and possi-
bly initiating an immune response.

Lipid composition of the outer and inner leaflets
of the plasma membrane is normally not symmet-
rical; for instance, some molecules such as phos-
phatidylserine and phosphatidylethanolamine are
normally retained on the intracellular face of the
cell membrane. When cells undergo apoptosis, this
distribution is altered, so that these molecules are
rapidly exposed to the outside of the cell membrane.
The most promising single-photon-emitting radio-
pharmaceuticals targeting phosphatidylserine and
phosphatidylethanolamine are represented by
radiolabeled annexin and duramycin, respectively.

99mTc-Annexin V

The discovery of phosphatidylserine externaliza-
tion as the event initiating apoptosis has opened
the way to the search for compounds that have an
affinity for phosphatidylserine and could therefore
be used to localize in sites of apoptosis. To date,
the compound that has received major interest in
both the preclinical and clinical arena is
annexin V, a non-glycosylated single-chain pro-
tein physiologically involved in the inhibition of
hemostasis [37]. Annexin V, which is part of a
protein family that binds to negatively charged
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phospholipids in a Ca2+-dependent manner, is
distributed ubiquitously in the human body. Com-
plete functional details of the annexin V pathway
have yet to be clarified, but a large body of evi-
dence suggests that annexin acts as a specific
ligand for phosphatidylserine, and it is able to
prevent activation of the immune response when
cells undergo apoptosis [38].

In translational research, annexin V labeled with
radionuclides has been used for studying, localiz-
ing, visualizing, andmeasuring apoptosis in vitro as
well as in vivo, both in preclinical animal models
and in patients [39, 40]. Radiolabeled annexin was
first proposed to image blood clots in patients with
atrial fibrillation; subsequently this compound
gained attention for imaging of apoptosis in tumors
[41]. Annexin V used for development of radio-
labeled imaging agents is produced by the expres-
sion of annexin V complementary DNA in
Escherichia coli. Several radiolabeled probes and
other agents bearing different moieties have been
explored preclinically to image annexin V uptake
by means of SPECT, PET, MRI, and near-infrared
fluorescence (NIRF).

As single-photon imaging probes, numerous
methods for labeling annexin with 99mTc have
been identified through the use of chelators such
as the bifunctional N2S2 chelate to form

99mTc-4,5-
bis(thioacetamido)pentanoyl-annexin V (or 99mTc-
BTAP-annexin V, also known as 99mTc-Apomate)
or hydrazinonicotinamide (HYNIC) to form 99mTc-
HYNIC-annexin V. The former formulation is also
available as a good manufacturing practice (GMP)
product in a radiolabeling kit [42].

Moreover, animal experiments suggest an
improved protocol for annexin labeling via the
use of self-chelating annexin V mutants. In this
case, the radiotracer exhibits reduced abdominal
background and decreased renal radiation dose
[43]. At the clinical level, various studies support
the notion that 99mTc-annexin V SPECT allows
for noninvasive, reproducible, quantitative apo-
ptosis imaging and for assessing tumor response
as early as 24 h after the start of treatment, with the
goal of monitoring the effectiveness of therapy in
cancer patients. With pioneering work, Belhocine
et al. used 99mTc-BTAP-annexin V to monitor
chemosensitivity in a variety of cancer types

(e.g., lung cancer, lymphoma, and breast cancer),
demonstrating that 99mTc-BTAP-annexin V
uptake after chemotherapy was significantly
related to survival and progression-free survival
in cancer patients [44].

More recently 99mTc-annexin V has been pro-
bed in clinical studies to assess the efficacy of
chemotherapy and radiotherapy [45, 46]. The
promising results so far obtained offer the possi-
bility also in this scenario to develop a personal-
ized medicine approach, now primarily explored
in genome-based medicine, applicable to all can-
cer patients.

However, the main problems in a wide clinical
application remain the absence of ideal biological
properties; experiences with radiolabeled annexin
V have indicated that issues such as
biodistribution and target-to-background ratio
require further improvement [47]. In an attempt
to reduce renal uptake, annexin Vwas also labeled
with 123I. 123I-annexin V does indeed show good
imaging features for imaging the abdominal
region compared to 99mTc compounds (no liver
nor renal radioactivity accumulation 12-h post-
injection) but is subject to rapid in vivo
dehalogenation and is more expensive, and the
labeling procedure is more complex [48].

99mTc-Duramycin

Duramycin, a 19-amino acid peptide cross-linked
by a disulfide bond, has been found to be capable
of binding to phosphatidylethanolamine with high
affinity and high selectivity; therefore, the radio-
labeled 99mTc-duramycin represents now a novel
molecular compound for apoptosis imaging [49].

Similar to phosphatidylserine (the target marker
of the earliest apoptosis probe, annexin V),
phosphatidylethanolamine is a major component
of the inner leaflet of the cell membrane, and its
expression on the surface of normal viable cells is
extremely low [50–52]. When apoptosis occurs,
phosphatidylethanolamine is exposed on the
cell surface [53], because of redistribution of
phospholipids across the bilayer. Phosphatidyl-
ethanolamine becomes accessible to the extracel-
lular milieu during necrosis, because of the
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compromised plasma membrane integrity. Thus,
phosphatidylethanolamine constitutes a potential
target molecule for cell death imaging in general.

Phosphatidylethanolamine expressed on the apo-
ptotic cell surface appears to play a regulatory role in
the so-called blebbing and formation of apoptotic
bodies. In these constitutive processes of apoptosis,
intracellular components are discretely packaged
and earmarked for engulfment by scavenger cells
without causing inflammation. As one of the mor-
phologic hallmarks of apoptosis, blebbing includes
profound membrane structural remodeling. The
trans-bilayer movement of phosphatidylethanol-
amine is especially enhanced on the blebs of
apoptotic cells. These morphologic changes are in
part attributed to the phosphatidylethanolamine-
mediated reorganization of actin filaments [54, 55].

As a novel molecular probe to target apoptosis
imaging, duramycin is produced by Streptover-
ticillium cinnamoneus [56, 57]. Biologic activities
of duramycin have been well characterized, and
their phosphatidylethanolamine binding activity
explored with in vitro biologic studies [58–62].
In particular, duramycin binds the head group of
phosphatidylethanolamine with high affinity at a
molar ratio of 1:1 [63–65]. Duramycin has a com-
pact cyclic configuration, with a single binding
pocket that specifically interacts with phosphati-
dylethanolamine. Stabilized by three internal
thioether bonds, duramycin is the smallest
known polypeptide that has a defined three-
dimensional binding site [56, 57].

In 2008, Zhao et al. originally described the
preparation of 99mTc-labeled duramycin, using a
HYNIC ligand with tricine and phosphine as
coligands [66]. The low molecular weight of
duramycin (�2 kDa) confers favorable pharmaco-
kinetics and biodistribution properties for in vivo
imaging of apoptosis. However, in the original
formulation, HPLC purification after radiolabeling
was a prerequisite for intravenous injection in
humans, a cumbersome procedure that limited clin-
ical investigations. The goal to produce high-
quality 99mTc-curamycin in a single-step kit formu-
lation, without additional purification steps, was
achieved in 2012 by Zhao and coworkers, with
the development of a single-step kit formulation
for 99mTc-labeling of HYNIC-duramycin [67].

An optimal formulation with tricine-to-TPPTS
molar ratio of 10:1 was determined, which led to
consistent production of high radiochemical purity
99mTc-duramycin without the need for further puri-
fication. The radiopharmaceutical so produced
retained phosphatidylethanolamine binding affin-
ity and specificity, while its clearance properties
and in vivo biodistribution were consistent with
those obtained in prior studies using radio-HPLC-
purified preparation.

In a rat model of myocardial ischemia/reperfu-
sion injury, 99mTc-duramycin showed specific
higher uptake in apoptotic cells than in viable con-
trol cells, with favorable pharmacokinetic and
biodistribution profiles. The tracer was rapidly
cleared from the circulation via the renal system
with a blood half-life of less than 4min in rats and a
very low liver and gastrointestinal uptake [67, 68].
Similar favorable targeting and biodistribution
properties have been observed also in a porcine
model of myocardial ischemia/reperfusion, show-
ing high accumulation of 99mTc-duramycin in tis-
sue sites of injury with high apoptotic activity [69].
In addition, 99mTc-duramycin has been evaluated
for imaging ischemia/reperfusion injury in the
brain using the rat model of middle cerebral artery
occlusion [70], as well as in a model of oxidative
lung injury [71–73], and finally in susceptible tis-
sues after exposure to high-dose radiation [74].

Taken altogether, these investigations suggest
the high potential of 99mTc-duramycin for use in
oncology, an assumption that has recently been
confirmed by preclinical studies demonstrating
high specific uptake of 99mTc-duramycin in apo-
ptotic cells of colon cancer or breast cancer xeno-
grafts responding to chemotherapy [75–77], thus
supporting the hypothesis that 99mTc-duramycin
is a potential candidate in cancer patients to assess
response to therapy.

Angiogenesis

The formation of the new vessels (“angiogene-
sis”) is an essential process in the growth of
solid tumors. Once tumors have reached a size of
>1 mm3, diffusion alone from the capillary bed is
no longer sufficient to supply the tumor cells with

6 Novel Single-Photon-Emitting Radiopharmaceuticals for Diagnostic Applications 119



adequate amounts of oxygen and nutrients. Fur-
ther tumor growth is only possible when new
blood vessels are formed. Nevertheless, while
normal angiogenesis is orderly and highly regu-
lated, tumor angiogenesis is chaotic and irregular.
Angiogenesis represents an interesting molecular
target not only for imaging but also for targeted
forms of therapy. Examples for target anti-
angiogenic therapies currently used in the clinical
practice are cilengitide (that inhibits integrin
receptors αvβ3 and αvβ5) and bevacizumab, an
antibody targeting the vascular endothelial growth
factor (VEGF).

Different potential molecular targets to moni-
tor angiogenesis are potentially available for
imaging purposes. At the moment the most suit-
able candidates for tracer development are
represented by integrin antagonists, expressed
extracellular matrix protein inhibitors or matrix
metalloproteinase, as well as by tracers binding
to tyrosine kinases or growth factor receptors.

Integrins

Integrins are heterodimeric membrane receptors
constituted by α and β subunits that mediate inter-
actions between cells and the extracellular matrix
and soluble molecules (such as growth factors).
So far 18 different α and 8 different β subunits
have been identified, corresponding to 24 different
integrin receptors. Integrin αvβ3 is one of the most
studied in oncology, because it is highly expressed
on the cell surface of activated endothelial cells in
newly formed blood vessels. In the preclinical
setting, a large variety of imaging strategies have
been successfully employed for imaging integrin
expression.

All the tracers that are used for imaging of
integrin expression are based on the tripeptide
sequence arginine-glycine-aspartic acid (or RGD
in the single letter code) [78]. RGD binds to the
integrin containing the αv subunit, which repre-
sents an abundant physiologic integrin-binding
ligand in proteins of the extracellular matrix.
Accordingly, a variety of radiolabeled RGD-
based peptides have been developed for

noninvasive imaging of integrin αvβ3 expression
with either SPECT or, in most of the cases, PET.
The 99mTc-labeled RGD peptides have been the
subject of few investigations, and few peptides
have been translated into clinical use, such as
99mTc-NC100692 and 99mTc-labeled RGD dimeric
peptides with PEG4 and Gly3.

99mTc-aP2

This 10-amino acid 99mTc-peptide first described
in 1988 contains two copies of the RGD motif for
integrin-specific binding. It has been tested in a
clinical study in a patient with malignant mela-
noma, resulting in a good detection rate of metas-
tases in the neck, axilla, abdomen, and soft tissue
60–120 min after injection; however, sensitivity
was somewhat lower for lesions located in the
thorax, due to high blood pool activity in the
heart and large vessels [79].

99mTc-NC100692 (or 99mTc-
Maraciclatide)

99mTc-NC100692 is a new RGD-containing pep-
tide labeled with 99mTc that binds to integrin αvβ3
with high affinity [80]. Clinical studies in patients
with breast and lung cancer showed a good detec-
tion rate for malignant lesions greater than 1 cm,
in the breast, brain, and lung, whereas the detec-
tion rate was considerably lower for bone and
liver metastases [81–83].

On the other hand, in the scenario of ther-
anostics, some investigators confirm that 99mTc-
NC100692 does target the αvβ3 integrin in mice
bearing glioma tumors and may, therefore, be
useful for identifying patients prior to anti-αvβ3
therapy as well as for monitoring tumor response
to antiangiogenetic therapy in these patients [84].

99mTc-3PRGD2

99mTc-PEG4-E[PEG4-c(RGDfK)]2 (or 99mTc-
3PRGD2) is a new single-photon tracer targeting

120 F. Orsini et al.



the integrin αvβ3-receptor and has been used pre-
clinically for tumor imaging, for evaluating angio-
genesis, and for monitoring antiangiogenic drug
efficacy [85, 86].

The new types of RGD peptides show much
higher in vitro integrin αvβ3-binding affinity
than the single RGD tripeptide sequence and
exhibit significantly increased tumor uptake
and improved in vivo kinetics in animal models.
99mTc-3PRGD2 is excreted predominantly by
the kidneys and has a rapid blood clearance, with
less than 1%of the initial radioactivity remaining in
the blood circulation at 60 min after injection. No
adverse reactions have been observed in animal
models or in humans to date. 99mTc-3PRGD2 can
easily be prepared in a kit formulation and has
shown excellent in vivo patterns of biodistribution
in nonhuman primates [87].

Recently, 99mTc-3PRGD2 has been used in
patients, in particular for characterizing solitary
pulmonary nodules [88], as well as palpable and
nonpalpable breast lesions [89]. It has also been
used with satisfactory results in patients with lung
cancer [90], in patients with iodine-refractory thy-
roid cancer [91], for imaging bone metastases in
patients with lung cancer (versus the conventional
99mTc-MDP bone scan) [92], and for monitoring
the response to treatment with antiangiogenetic
therapy in a mouse model of glioma [93].

99mTc-RGD-BBN

A dual receptor-targeted probe, integrin αvβ3 and
gastrin-releasing peptide receptor (GRPR)-targeted
peptide, Glu-c(RGDyK)-bombesin (RGD-BBN)
labeled with technetium-99m (99mTc-RGD-BBN),
has been tested with promising results in an animal
model [94] and then with pilot studies in humans.
In particular, its biodistribution has been evaluated
in healthy volunteers (exhibiting a safe profile) and
in patients with breast cancer as a novel agent for
scintimammography. In this clinical setting, 99mTc-
RCD-BBN has shown excellent properties for
tumor detection [95], with the potential of avoiding
surgical biopsy in patients with equivocal breast
lesions, thanks to its very high negative predictive
value for malignancy [96].

Hybrid Radioactive/Fluorescent RGD

111In-labeled RGD has been coupled with a fluo-
rescent dye to produce a hybrid tracer, with the
purpose of allowing visualization of tumor mar-
gins during surgery as well as the in vivo detection
of the tumor and its distant metastases. Only very
preliminary preclinical studies have been per-
formed so far with this new hybrid tracer, which
appears to exhibit optimal properties for targeted
αvβ3 integrin detection, with very high tumor-
non-tumor ratios [97].

Extracellular Matrix

Fibronectin is a polymorphic matrix protein
belonging to the widely distributed family of
universal cell-adhesion molecules. Fibronectin
can exist in several isoforms implied in a variety
of processes such as cell migration, wound
healing, and oncogenic transformation. A partic-
ular isoform (the splicing variant ED-B) is
important in vascular proliferation and is widely
expressed in neoplastic tissues while showing a
highly restricted distribution in normal tissues
[98].

99mTc-AP39

The 99mTc-anti-ED-B fibronectin L19-(Gly)3-Cys-
Ala scFv antibody fragment (99mTc-AP39) is a
radiolabeled molecular imaging agent developed
for single-photon emission imaging of tumor
angiogenesis and for guidance during anti-
angiogenic treatment for tumors.

The single-chain antibody fragment (scFv)
derived from the L19 monoclonal antibody (with
a high affinity to ED-B fibronectin) was devel-
oped by Pini et al. [99] and initially labeled with
radioiodine for biodistribution in different animal
models, where it exhibited excellent targeting to
tumor vessels, without selective accumulation in
the vessels of other organs [100].

In order to prepare a stable 99mTc-labeled L19
fragment, Berndorff et al. [101] inserted the amino
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acid sequence (Gly)3-Cys-Ala at the C terminus of
L19 to produce the recombinant protein, AP39.
These authors demonstrated that the 99mTc-
labeled compound so formed (99mTc-AP39) has
favorable biodistribution and imaging properties
in mice bearing a murine embryonal teratocarci-
noma. Since high levels of ED-B expression have
been found in a variety of cancers including pri-
mary and metastatic breast, colorectal, and
non-small cell lung cancers [102–104], this anti-
fibronectin tracer has the potential of being useful
for noninvasive imaging of tumor angiogenesis in
all such cancers, virtually as a pancarcinoma-
targeting agent.

Besides the potential for tumor targeting with
imaging purposes as described above, the very
high uptake of the anti-fibronectin ED-B mono-
clonal constructs in tumor tissues opens promis-
ing perspectives for developing new agents for
radioimmunotherapy, as described in details in
▶Chap. 8, “Novel Radiopharmaceuticals for
Therapy” of this book.

Matrix Metalloproteinases

Due to their involvement in tumor metastasis and
angiogenesis, the matrix metalloproteinases
(MMP) are potential targets for molecular imaging.
TheMMP family consists ofmore than 18 different
members, with levels in tissues that are controlled
by a balance between synthesis of the proenzyme
and expression of endogenous MMP inhibitors
[105]. Increased proenzyme production causes
degradation of the basement membrane and of the
extracellular matrix, thus preparing the structural
requirements for migration of endothelial cells and
formation of vessels [106]. In particular, the
MMP-2 and MMP-9 gelatinases are often detected
in malignant tissue, and their overexpression cor-
relates with tumor aggressiveness and metastatic
potential. Ongoing investigations aim at develop-
ing synthetic compounds for targeting MMPs.

Although most studies are in a preliminary
phase, some hydroxamate-based tracers with
promising binding properties have been identi-
fied. In particular, among single-photon-emitting
agents, the peptidomimetics [111In]-DTPA-RP782

and [99mTc]-(HYNIC-RP805)(tricine)(TPPTS)
and the picolyl-benzenesulfonamide [123I]I-HO-
CGS 27023A appear to specifically target the
enzymatic action of MMPs in animal models of
various diseases. Nevertheless, preclinical studies
in animal models prove that these imaging agents
might be more successful for investigating athero-
sclerosis than for tumor targeting [107].

Epidermal Growth Factor Receptor
(EGFR)

The EGFR family consists of four transmembrane
receptors, respectively, EGFR properly said
(HER1/erbB-1), HER2 (erbB-2/neu), HER3
(erbB-3), and HER4 (erbB-4). EGFR is a
glycosylated transmembrane protein composed of
an extracellular ligand-binding region, a transmem-
brane region, and an intracellular tyrosine kinase
domain. The extracellular domain binds endoge-
nous growth factors, like epidermal growth factor
(EGF) or transforming growth factor alpha
(TGF-α). Binding of one of these endogenous
ligands triggers erbB receptor aggregation, thus
resulting in the formation of receptor homodimers
and/or heterodimers, and internalization. Dimer
formation leads to activation of the intrinsic recep-
tor tyrosine kinase domain and to a cascade of
intracellular signaling pathways.

This mechanism is involved in the regulation of
cell growth, as well as in differentiation and sur-
vival of cells. These properties have attracted the
interest of investigators especially in oncology, and
EGFR has been investigated as a major target for
the treatment of uncontrolled tumor growth [108].
In fact, EGFR is often overexpressed in human
malignancies such as head and neck squamous
cell carcinoma, gastrointestinal and abdominal car-
cinomas, lung carcinomas, carcinomas of the
reproductive tract, melanomas, glioblastomas, and
thyroid carcinomas [109]. Although data are het-
erogeneous in this regard, overexpression is often
associatedwith an aggressive tumor phenotype and
poor prognosis. To target tumor cell proliferation or
growth via EGFR, monoclonal antibodies (mAbs)
against this receptor have been developed for ther-
apeutic purpose. One of these agents, cetuximab,
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has been approved by the Food and Drug Admin-
istration (FDA) in 2004 for treatment of colorectal
cancer.

Two predominant classes of EGFR inhibitors
have been developed including mAbs that target
the extracellular domain of EGFR, such as
cetuximab (Erbitux) or trastuzumab (Herceptin),
and small molecule tyrosine kinase inhibitors
(TKIs) that target the receptor catalytic domain of
EGFR, such as gefitinib (Iressa) and erlotinib
(Tarceva) [110]. Several SPECT single-photon
radiopharmaceuticals have been developed in
preclinical trials, such as 99mTc-Cetuximab as sta-
ble complex with ethylenedicysteine [111,112].
Besides an unexpected high kidney uptake
observed in rates bearing a human breast tumor,
the 6-h physical half-life of 99mTc was too short for
imaging, considering that mAb preparations like
cetuximab the highest tracer accumulation in the
tumor is expected 2–3 days post-injection. In a
pilot clinical study, high uptake of this cetuximab
conjugate in tumors was observed, however, with-
out a sufficiently high target-to-background ratio
and without a clear correlation with other clinical
features in patients with head and neck cancer.

With its relative longer physical half-life
(2.8 days), 111In-labeled mAb conjugates obtained
using the chelators DOTA or DTPA are in principle
more suitable for tumor imaging than the 99mT-
labeled counterparts. Accordingly, these have
been investigated in animal models [113, 114]
and in humans [115]. Radiolabeled pertuzumab,
a HER2 dimerization inhibitor that binds to an
epitope different from that of trastuzumab, was
also evaluated to image HER2 downregulation
after 3 days of treatment with trastuzumab
in human breast cancer xenografts. 111In-
diethylenetriaminepentaacetic acid-pertuzumab
(111In-DTPA-pertuzumab [116]) demonstrated a
reduction in viable, HER2-positive tumor cells
after 3 weeks of therapy [117].

Folate Receptor Overexpression

Due to their increased metabolic and structural
requirements, tumor cells usually consume high
amounts of folate, a compound involved in many

biosynthetic processes including DNA synthesis.
The folate transporter is usually overexpressed on
the surface of tumors such as ovarian cancer and
lung cancer, thus representing a possible target for
molecular imaging, both for therapeutic [118] and
for diagnostic purpose (99mTc-Etarfolatide or
111In-DOTA-folate) [119]. Interference by impor-
tant accumulation of this tracer in normal tissues,
particularly in the kidneys, makes it difficult to
analyze the results of clinical trials with 99mTc-
etarfolatide. To prevent such problem, folic acid
or pemetrexed combined with thymidine was
administered in patients before tracer injection as
an antidote to the potential toxicity [120]. The
results of trials with this combination are promis-
ing, particularly in patients with ovarian cancer
[121–123], and the compound is currently under
review by the European Medicines Agency.
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