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Abstract
Colorectal cancer is the fourth most common
neoplastic disease (50–60% overall survival at
5 years); 90–95% of colorectal cancers are
adenocarcinoma. Important prognostic factors
include: whether the tumor is well differenti-
ated, the extent of the primary tumor, and the
presence of local and/or lymph node invasion.
Two staging classifications for colorectal can-
cer are available: Dukes’ classification and the
TNM stage system by the American Joint
Committee on Cancer/International Union
Against Cancer (AJCC/UICC).

Contrast-enhanced computed tomography
(CECT) of the chest, abdomen, and pelvis is
used in pretreatment staging. Because of the
high incidence of disease recurrence (30–40%),
morphological imaging (CT, abdominal ultra-
sound) and serial measurements of serum
markers (carcinoembryonic antigen, or CEA)
are used in the follow-up. The use of [18F]
FDG-PET for early detection of primary

colorectal cancer is limited due to the low sen-
sitivity for small tumors as well as for mucinous
lesions. False-positive PET findings are also
reported in patients with inflammatory bowel
disease (IBD) or previous diagnostic poli-
pectomy. Although [18F]FDG PET is more sen-
sitive than CT in detecting regional lymph node
involvement, CT is better at detecting liver
metastases. As a result, the role of [18F]FDG
PET-CT for presurgical staging is unclear. [18F]
FDG-PET is useful as a complementary exam in
selected patients with a high metastatic
potential.

During restaging and follow-up, whole-
body [18F]FDG-PET/CT is recommended to
localize recurrent disease in cases of elevated
serum CEA and negative morphological imag-
ing findings or indeterminate lesions. Com-
bined PET/CT tomography improves the
accuracy of the evaluation of colorectal cancer,
especially in the visualization of abdomino-
pelvic extrahepatic disease.

[18F]FDG-PET may be useful to evaluate
response to chemotherapy, although the opti-
mum timing of the assessment of metabolic
response remains unsettled. Moreover, new
drugs targeted to angiogenesis or tyrosine
kinase have opened new frontiers to the use
of [18F]FDG-PET in evaluating response
because of their cytostatic rather than
cytoreductive effect. In rectal cancer it is
often difficult to evaluate response to radio-
therapy by anatomic imaging due to residual
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tissue mass, but [18F]FDG-PET/CT can detect
residual tumor by the metabolic activity.
Finally, [18F]FDG-PET has been proposed in
the evaluation of response to local treatment of
liver and lung metastases by radiofrequency
ablation (RFA). In patients with unresectable
liver metastases and/or advanced burden of
liver disease, transarterial radioembolization
with microspheres labeled with 90Y is becom-
ing a valid therapeutic alternative to
chemoembolization and RFA.
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Glossary
[18F]FDG 2-deoxy-2-[18F]fluoro-D-glucose
99mTc-HDP 99mTc-hydroxyethylenediphos-

phonate
AJCC American Joint Committee on

Cancer
BOmR Best overall metabolic response
CEA Carcinoembryonic antigen
CECT Contrast-enhanced computed

tomography
CI Confidence interval
CMR Complete metabolic response
CRC Colorectal cancer
CRT Chemoradiotherapy
CT X-ray computed tomography
DOTA 1,4,7,10-tetraazacyclododecane-

1,4,7,10-tetraacetic acid
EORTC European Organization for

Research and Treatment of
Cancer

GI Gastrointestinal
IBD Inflammatory bowel disease
M Metastasis status according to

the AJCC/UICC TNM staging
system

MRI Magnetic resonance imaging

N Lymph node status according to
the AJCC/UICC TNM staging
system

NOC 1-Nal3-octreotide
NPV Negative predictive value
PERCIST Positron emission tomography

response criteria in solid tumors
PET Positron emission tomography
PET/CT Positron emission tomography/

computed tomography
PET/MRI Positron emission tomography/

magnetic resonance imaging
PMD Progressive metabolic disease
PMR Partial metabolic response
PPV Positive predictive value
PREDIST PET residual disease in solid

tumor
PTV Radiotherapy planning target

volume
RECIST Response evaluation criteria in

solid tumors
RFA Radiofrequency ablation
ROI Region of interest
SMD Stable metabolic disease
SN Sensitivity
SP Specificity
SUV Standardized uptake value
T Tumor status according to the

AJCC/UICC TNM staging
system

TLG Total lesion glycolysis
TOC Octreotide
TREUS Transrectal ultrasound
TRG Tumor regression grade
UICC Union Internationale Contre le

Cancer (International Union
Against Cancer)
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Overview of Colon-Rectal Cancer:
Incidence and Mortality

Colorectal cancer is the fourth most common neo-
plastic disease, after prostate, lung, and breast can-
cer, and the second leading cause of death from
cancer, with an estimated overall survival at 5 years
of 50–60% in Western countries [1, 2]. There is
considerable evidence for its correlation with satu-
rated fat, low-fiber diet, obesity, and inflammatory
bowel disease (IBD), as well as with genetic factors
(familial adenomatous polyposis or the Lynch syn-
drome). Mortality rates have steadily decreased,
particularly between 1980 and 2005, owing to
improved surgical and adjuvant therapies (chemo-
therapy protocols and targeted molecular treat-
ment) and more extensive screening programs
with early diagnosis [3].

Despite improved prognosis and extensive pri-
mary and secondary prevention programs, about
150,000 new cases of colorectal cancer have been
diagnosed in 2009 in the United States alone. Colo-
rectal cancer remains a huge health problem [3].

Prognostic Factors

Some studies suggest a poorer prognosis in symp-
tomatic patients due to local complications (e.g.,
locally extended cancer with obstruction and per-
foration) at diagnosis. Among patient characteris-
tics, age less than 40 years at diagnosis is another
factor of poor prognosis, because cancer is more
aggressive in younger patients, with a high percent-
age of positive lymph nodes and aggressive histo-
logical features. As to histology, adenocarcinoma
accounts for 90–95% of colorectal cancers. These

tumors are classified into three groups according to
the Dukes’ grading system: grade 1, the most dif-
ferentiated forms; grade 2, the intermediate forms;
and grade 3, the less differentiated forms. The less
differentiated forms carry a worse prognosis as
they are locally more extensive, with a higher
lymphatic affinity and metastatic potential. The
remaining 5–10% of colorectal cancers include
other histological variants such as colloid ormucin-
ous adenocarcinomas, less frequently squamous
cells, undifferentiated carcinomas, and carcinoid
forms which usually arise in the rectum. The
mucinous variant is also correlated with a more
aggressive behavior and frequently with an
advanced stage at diagnosis. Primary tumor exten-
sion at diagnosis expressed by local invasion and
number of positive lymph nodes seems to be the
most important prognostic factor, as curative treat-
ment is possible only at the early stage of disease.
Nearly 40% of patients present with a confined
primary tumor at diagnosis, almost 40% with
locally advanced disease, and the remaining 20%
with metastatic spread. A localized tumor means
that it is limited to the bowel wall, without lym-
phatic spread or peritoneal seeding when consider-
ing intraperitoneal sites (cecum, transverse colon,
and sigmoid) or without extension to retroperito-
neal lymph nodes, or to retroperitoneal tissue such
as the kidneys, or to the ureter or the pelvis when
considering extraperitoneal sites (ascending and
descending colon and the majority of rectal local-
izations). Lymphatic spread usually occurs via the
paracolic lymph node groups by the mesenteric the
retroperitoneal lymph nodes in extraperitoneal
localizations of colon cancer, and the perirectal
lymph nodes in rectal cancer. Metastatic spread is
often localized to the liver in colon cancer and in
tumors of the upper rectum, whose venous system
drains into the portal circulation. The distal rectum
has a double drainage: to the portal system via the
inferior mesenteric vein through the superior hem-
orrhoidal veins with metastatic spread to the liver,
and to the inferior vena cava via the pelvic veins
through the middle and inferior hemorrhoidal
plexus; in the latter case case, lung metastases are
more frequent. Bone lesions can be caused by
metastatic spread through the vertebral venous
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plexus and are more frequently located in the
sacrum, coccyx, pelvis, and lumbar vertebrae.

Staging Classification and Prognosis

There are two different surgical staging classifica-
tions for colorectal cancer. Dukes’ classification is
a practical system that classifies tumors into three
groups according to the extent of bowel wall
penetration: (A) penetration into but not through
the bowel wall, (B) penetration through the bowel
wall, and (C) lymph node involvement regardless
of bowel wall penetration. Stage D was later
added to indicate disease extension beyond the
limit of surgical resection and includes metastatic
tumor. This system correlates easily with different
prognoses for different stages. A 1984 meta-
analysis by the Large Bowel Project, London,
identified the number of positive lymph nodes as
the most important factor [4]. A recent study by
Fretwell et al. on 351 patients confirmed this
result, showing that lymph node status is an inde-
pendent prognostic factor [5].

The second system is the TNM classification,
which has undergone several revisions with
further modifications still in progress; the first
unified and revised version was issued by the
American Joint Committee on Cancer/Interna-
tional Union Against Cancer (AJCC/UICC) in
1987–1988 [6, 7]. This version takes into account
tumor extension to the serosa and the number of
positive lymph nodes calculated on at least
12 lymph nodes examined [8]. T is subdivided
into T0 (absence of tumor in resected specimen),
Tis (carcinoma in situ), T1 (submucosa invasion),
T2 (muscolaris mucosa invasion), T3 (extension
to subserosa or to nonperitoneal pericolic or peri-
rectal tissue), and T4 (invasion of the peritoneal
cavity or other organs). N is subdivided into N0
(tumor without lymph node involvement), N1
(tumor with one to three positive regional lymph
nodes), N2 (tumor with four or more positive
regional lymph nodes), and N3 (tumor with cen-
tral positive lymph nodes). Based on the TNM
classification, the AJCC/UICC identified a four-
stage group (Table 1). Prognosis is closely

correlated with stage: survival around 90% for
Stage I, 80–70% for Stage II, 80–40% for Stage
III, and around 10% for Stage IV (Table 2). The
AJCC recommends recovering at least 12 lymph
nodes for accurate analysis, where the number of
lymph nodes recovered is itself a prognostic factor
[9, 10]. Lymph node positivity at surgical resec-
tion is a known independent prognostic factor,
and the cutoff of four lymph nodes in the TNM
classification was based on statistical differences
in prognosis between the two subgroups: overall
5-year survival of approximately 50% for patients
with �4 metastatic lymph nodes at surgical stag-
ing versus approximately 70% for patients with
less than four metastatic lymph nodes [4]. Fur-
thermore, vascular or lymphatic invasion are
adjunctive prognostic elements irrespective of
the stage, since they increase the likelihood of
lymph node or metastatic recurrence [11]. Other
studies have demonstrated that peritoneal involve-
ment could also be considered as a prognostic

Table 1 AJCC/UICC staging classification for colorectal
cancer according to the TNM system

Stage I Tis, N0, M0

Stage II IIA T3, N0, M0

IIB T4, N0, M0

Stage III IIIA T1-T2, N1, M0

IIIB T3-T4, N1, M0

IIIC Any T, N2, M0

Stage IV Any T, any N, M1

Table 2 Prognosis based on AJCC staging classification
of colon and rectal cancer released by American Cancer
Society (results from study of National Cancer Institute’s
SEER database on 120,000 people diagnosed with colon
cancer between 1991 and 2000)

Colon
stage

5-year survival
rate (%)

Rectal
stage

5-year
survival rate
(%)

I 93 I 90

IIA 85 II 70

IIB 72 III 56

IIIA 83a IV 7

IIIB 64

IIIC 44

IV 8
aUncertain result
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factor independent of T and N stage [12]. Finally,
other prognostic factors are molecular markers
such as p53, p27, K-ras, thymidylate synthase,
and mutations of mismatch repair genes, which
can correlate with a more aggressive tumor. Fur-
thermore, their abnormal expression can influence
and predict tumor response to treatment [13–17].
Other cellular and tumor morphological parame-
ters under study are the angiogenesis patterns,
since anti-angiogenetic therapy constitutes a new
chance of targeted treatment [18].

Clinical Objectives in Colorectal Cancer

The first objective in managing colorectal cancer
patients is adequate and complete preoperative
staging, which is routinely done by abdominal
and thoracic contrast-enhanced computed tomog-
raphy (CECT) to evaluate overall liver status. The
purpose of primary tumor treatment is to be as
curative and radical as possible, while exactly
defining local disease extension. This is also
important in cases with isolated metastatic spread.
Surgery is usually the first choice treatment for
localized disease and single and/or resectable
metastases. In locally advanced disease, the use
of neoadjuvant chemoradiation therapy appears to
improve prognosis [19, 20]. Adjuvant treatment is
indicated to limit tumor recurrence, based on ini-
tial tumor extension and prognostic factors (Stage
III, lymph node metastases, poorly differentiated
tumors, lymphovascular invasion). It ordinarily
consists of systemic chemotherapy protocols
based on 5-fluorouracil as first choice. On com-
pletion of treatment, close follow-up is essential
because of the high percentage of disease recur-
rence after primary treatment (30–40%) [21].
Follow-up entails systematic evaluation by mor-
phological imaging techniques (CT, abdominal
ultrasounds) and systemic evaluation of serum
markers (carcinoembryonic antigen, or CEA) to
detect relapse or metastatic spread. Recurrence
can be local, regional (lymph node localizations),
peritoneal seeding, or metastatic liver/lung
lesions, and it is closely correlated with primary
tumor characteristics. The recurrence rate in

locally advanced tumors is about 20% and rises
to around 50% in the presence of initial lymph
node involvement.

Current Role of Nuclear Medicine

Of the nuclear imaging modalities for managing
patients with colorectal cancer, PET/CT with
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is
the most widely used. It is considered the most
useful technique for achieving clinical objectives
and has been added to standard imaging tech-
niques as a new “strategic” tool in this scenario.

Several studies have demonstrated that whole-
body [18F]FDG-PET is an accurate noninvasive
technique in staging/restaging several types of
malignancies, and its usefulness has also been
proved in the management of patients with colo-
rectal cancer [22–24]. [18F]FDG-PET is recog-
nized as appropriate in restaging patients with
suspected recurrence of colorectal cancer, ele-
vated serum tumor markers such as CEA, and a
negative or inconclusive standard diagnostic
workup and in presurgical evaluation of patients
with recurrence of disease and potentially resect-
able metastatic lesions.

In the preoperative initial staging of disease,
[18F]FDG-PET is considered potentially useful
but not yet sufficiently demonstrated [25].

Finally, [18F]FDG-PET in colorectal cancer
holds promise for systematic follow-up and eval-
uation of response to therapy, especially in the
evaluation of chemoradiation therapy in meta-
static cancer (late and early response) or of local
treatment efficacy such as radiofrequency ablation
of liver metastases. Furthermore, because positiv-
ity and intensity of [18F]FDG uptake are an
expression of tumor aggressiveness, [18F]FDG-
PET is also considered as a prognostic tool [26].

Classic, standard nuclear imaging techniques
such as 99mTc-HDP bone scan in disease staging
and restaging are limited to the evaluation of
secondary bone lesions. Finally, nuclear tech-
niques such as treatment with intra-arterial 90Y-
microspheres for unresectable liver metastases are
becoming increasingly available.
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The current and potential uses of nuclear med-
icine techniques will be discussed in the following
paragraphs.

Presurgical Staging of Primary
Colorectal Cancer

Because few studies on a small number of patients
are currently available, the role of [18F]FDG-PET
in the presurgical staging of primary disease
remains controversial. Primary cancer is detected
and studied by morphological imaging, oral con-
trast CT, and endo-ultrasonography which also
allows for biopsy and histological confirmation
[27, 28].

Several studies reported a high sensitivity of
[18F]FDG-PET (95–100%) in detecting the pri-
mary tumor, even when in situ [29–31]. The
tumor’s histopathological features and lesion
diameter are closely correlated with these data.
False-negative results have been reported in
cases of mucinous carcinoma and of small tumor
foci in tubulovillous polyps or villous adenoma
[29, 30, 32]. Abdel-Nabi et al. reported false-
positive PET findings (positive predictive value
[PPV] 90%) in patients without colorectal cancer
but with IBD or previous diagnostic polypectomy
[29]. Although [18F]FDG-PETappears to be more
useful in detecting regional lymph node involve-
ment and liver metastases, conflicting results have
been reported. Abdel-Nabi and Kantorova both
found higher sensitivity (78–88%) with PET
than with contrast-enhanced abdominal/pelvic
CT (38–67%) or ultrasonography (25%), with
high specificity (96–100%) in detecting liver
metastases [29, 30]. Furukawa reported that,
when compared with multidetector helical CT
for routine staging, [18F]FDG-PET did not
seem superior in terms of sensitivity and accu-
racy [31]. In this study, [18F]FDG-PET accuracy
in detecting lymph node involvement did not
show a statistical difference in comparison with
CECT accuracy (59% vs. 62%). Patel et al. in a
systematic review reported that for extrahepatic
lesions (three studies, 178 patients), PET/CTwas
more sensitive than CT, while specificity was
similar (PET/CT sensitivity [SN] = 75–89%

and specificity [SP] = 95–96% vs. CT SN =
58–64% and SP = 87–97%). For hepatic lesions
(five studies; 316 patients), PET/CT had higher
SN and SP than CT (PET/CT SN = 91–100% and
SP = 75–100%; CT SN = 78–94% and SP =
25–98% [33].

Other studies confirmed low PET sensitivity
(around 30%) primarily due to false-negative find-
ings in cases of micrometastases or the presence
of metastatic lymph nodes adjacent to the primary
tumor [34]. In a review byVriens et al., other more
recent studies on a small group of patients showed
that [18F]FDG-PET can change patient manage-
ment in 12–27% of cases when added to CT
and/or pelvic magnetic resonance imaging
(MRI) and ultrasonography, leading the bulk of
cases to cancelation of surgery after unexpected
metastatic lesions were detected, or to extension
of the surgical plan or the radiotherapy field, or to
neoadjuvant treatment after detection of patholog-
ical lymphadenopathy missed at morphological
imaging [35–40].

In brief, the weighted mean change in the man-
agement of colorectal cancer calculated in the
reviewwas about 10.7% (95% confidence interval
[CI] 7.6–14.5%) [41]. The discordant findings
among the different studies can be explained by
the patient selection bias, which showed a major
impact of [18F]FDG-PET in patients with a high
metastatic potential, while in localized disease
[18F]FDG-PET added less additional information
to the standard diagnostic workup (contrast-
enhanced CT and colonoscopy).

What can be said at present is that the use of
PET in staging primary colorectal cancer can lead
to a change in clinical management when com-
pared to standard diagnostic workup, but its sys-
tematic use in this application is not yet
recognized.

We evaluated the role of [18F]FDG-PET/CT in
preoperative staging of rectal carcinoma and com-
pared it to the conventional imaging techniques.
With the collaboration of two PET centers and a
total of four PET/CT scanners, 141 patients with
diagnosis of rectal adenocarcinoma were studied
from October 2006 to November 2014. For the
evaluation of N stage, in 92/141 cases we found
correlation between PET and conventional
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imaging: 47/92 cases with evidence of lymph
node metastases (N+) and 45/92 without evidence
of lymph node metastases (N�). In the remaining
49 cases, PET and conventional imaging were
discordant: in 38/49 PET did not identify small
“mesorectal” lymph nodes (38/49); in 11 cases
PET showed some “pelvic” unexpected lymph
node metastases. In the M staging, in 106/141
patients (75%) we found correlation between
PET and conventional imaging, with the same
final stage of disease: in 46/106 patients without
evidence of distant metastases (M�) and in 60/106
with evidence of distant metastases (liver, lung,
skeletal, peritoneal, adrenal). In the remaining
35/141 patients (25%), there was discordance
between PET and conventional imaging in the M
stage: in 9/35 cases PET identified unexpected
metastases (three skeletal and six liver and/or
lung; out of these we had one false positive case
in the lung). In the remaining 26/35 patients, PET
excluded distant metastases to the liver, spleen,
and lung (out of these we had three lung false-
negative findings and two liver false-negative
findings). PET also identified seven cases of syn-
chronous neoplasia (five in the colon, one gastric,
and one thymoma). So, in our study PET showed
high false-negative rate in the locoregional lymph
nodes staging due to the spatial resolution limita-
tions, but increased accuracy in the identification
of lymph node metastases in less common areas;
PET has also provided additional and/or comple-
mentary information regarding distant metastases;
finally, PET identified unexpected neoplasia in
4% of patients. Considering the different and
complementary information derived from PET
and conventional imaging, at the moment we sug-
gest the use of both techniques for rectal cancer
staging [42, 43].

Recurrent Colorectal Cancer

The suspicion of colorectal cancer recurrence is
oftentimes prompted by a rise in serum marker
values (CEA) or abnormal findings at anatomical
imaging (CECT, MRI) during follow-up and/or
occurrence of new symptoms. [18F]FDG-PET
remains the mainstay of nuclear imaging in the

follow-up of patients with colorectal cancer. In
cases of elevated serum CEA values and negative
morphological imaging findings, [18F]FDG-PET is
advised because of its ability to detect early disease
and to reveal metabolic changes in normal-size
structures before morphological findings appear.
Literature data show that in about two out of three
cases, whole-body [18F]FDG-PET identifies recur-
rence of disease, making its use in an early phase of
patient follow-up recommended [44]. Flamen
et al. showed that [18F]FDG-PETcan detect disease
recurrence in more than 80% of patients (43/50)
[45]. In this study, disease recurrence missed at
morphological imaging was located in the liver
(27%), locally (20%), the lung (9%), other abdom-
inal sites (36%), and other extra-abdominal non--
pulmonary lesions (9%). These results were
confirmed by both previous andmore recent studies
[46–48]. Lu et al. in a meta-analysis reported that
106 patients (106/510 = 20.8%) had true-negative
[18F]FDG-PET/CT results in detection of recurrent
CRC when rising CEA. The pooled estimates of
sensitivity and specificity and positive and negative
likelihood ratios of [18F]FDG-PET in the detection
of tumor recurrence in CRC patients with elevated
CEA were 90.3% (95% CI, 85.5–94.0%), 80.0%
(95% CI, 67.0–89.6%), 2.88 (95% CI,
1.37–6.07%), and 0.12 (95% CI, 0.07–0.20%),
respectively. The pooled estimates of sensitivity
and specificity and positive and negative likelihood
ratios of [18F]FDG-PET/CT in the detection of
tumor recurrence in CRC patients with elevated
CEA were 94.1% (95% CI, 89.4–97.1%), 77.2%
(95% CI, 66.4–85.9%), 4.70 (95% CI,
0.82–12.13%), and 0.06 (95% CI, 0.03–0.13%),
respectively [49, 50]. Gade et al. showed in their
study that PET/CT demonstrated recurrence with a
sensitivity of 85.7%, a specificity of 94.7%, a pos-
itive predictive value of 93.8%, and a negative
predictive value of 87.8% [51]. [18F]FDG-PET is
recommended when indeterminate lesions at con-
ventional morphological imaging need to be char-
acterized, in order to differentiate disease recurrence
from scar tissue [52–55]. Identification of presacral
recurrences in particular, which develop in a high
percentage of patients, poses a considerable clinical
challenge. Assessment with conventional pelvic
imaging studies (CECT, transrectal ultrasound
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[TREUS]) is problematic for differentiating post-
surgical or radiotherapy residual fibrotic tissue from
disease recurrence, which candidates the patient for
further treatments (Fig. 1). Flamen et al. showed
that [18F]FDG-PET offers additional diagnostic
value in 56% of cases compared to contrast-
enhanced CT alone and in 20% of cases compared
to contrast-enhanced CT in combination with
TREUS [56]. Even-Sapir et al. demonstrated that
PET/CT in patients with colorectal cancer who
underwent abdominoperineal or anterior resection
had 98% sensitivity, 96% specificity, 90% positive
predictive value (PPV), 97% NPV, and 93% accu-
racy in distinguishing benign from malignant pre-
sacral abnormalities [57]. When recurrence is
confirmed at morphological imaging, [18F]FDG-
PET is recommended to complete disease staging,
because it can identify additional unexpected meta-
static sites (upstaging) compared to CECT alone
(Fig. 2). The general usefulness and the additional
diagnostic value of [18F]FDG-PET for this purpose
were demonstrated in a meta-analysis by Huebner
et al. showing that [18F]FDG-PET leads to a change

in clinical management in about 30% of patients
with recurrent colorectal disease when added to
standard imaging techniques in the evaluation of
this patient subset [58]. In another study, Flamen
et al. evaluated [18F]FDG-PET and CECT perfor-
mance in 103 patients with suspected recurrence of
colorectal cancer [56]. [18F]FDG-PET showed
higher sensitivity thanCECT in detectingmetastatic
lymph nodes in the abdominal cavity negative at
CECT, especially those located in retroperitoneal
andmesenteric sites. A statistically significant addi-
tional value of [18F]FDG-PETwas also found in the
evaluation of extra-abdominal regions, where it
identified unexpected metastases, most of which
were located in the lung. Deleau et al. also reported
a significant impact in the management of patients
with CRC (40%) due to a higher sensitivity of PET
than CT [59]. The literature reports discordant
results for the evaluation of liver involvement. In
the study by Flamen et al., no additional value of
[18F]FDG-PET in terms of sensitivity was found
compared with normal CECTand/or MRI findings,
but PET did allow to correctly classify anatomically

Fig. 1 Metabolic characterization of undetermined presacral
lesions by [18F]FDG-PET/CT. The nature of the lesions was
confirmed by histological evaluation after the PET study.
CT. (a, b) Suspected, undetermined presacral lesions at CT

(arrows); PET. PET scan shows: (a, b) intense [18F]FDG
uptakes at the lesions level indicating disease recurrence;
the fused PET/CT [18F]FDG-PET images allows to easily
localize and to characterize [18F]FDG uptakes

784 E. Pelosi et al.



undefined liver lesions [56]. Truant et al. showed
that the sensitivity of [18F]FDG-PET was equiva-
lent to that of contrast-enhancedCT for hepatic sites
(79% for both) and highly superior for extrahepatic
abdominal sites (63% vs. 25%) [60]. A subsequent
meta-analysis demonstrated that [18F]FDG-PET
can also be superior to conventional diagnostic
techniques (CT, ultrasonography, MRI) in the
detection of liver metastases (sensitivity around
90%) and that it can be considered as the most
sensitive noninvasive imaging modality for the
detection of hepatic metastases arising from gastro-
intestinal tract (GI) tumors, especially in colorectal
cancer [61]. An interesting study by Sobhani
et al. on 130 randomized patients undergoing com-
plete follow-up (physical examination, biomarker
assay, conventional imaging, and [18F]FDG-PET)
found that the time to recurrence detection was
shorter for the patients studied by [18F]FDG-PET
than those who underwent conventional imaging
(12.1 vs. 15.4 months), which led to the possibility
to initiate a more curative treatment [62]. In a large
group of patients (n = 115) presenting with recur-
rent colorectal cancer, Valk et al. reported that PET
had a global sensitivity of 93% and a global spec-
ificity of 98% in detecting metastatic sites, com-
pared with 69% and 96%, respectively, for CECT
alone, confirming that [18F]FDG-PET should be
routinely performed in the follow-up of these
patients. The most relevant finding emerging from
this study was that PET identified unexpected
metastases in 29% of patients presenting with only
one site of recurrent disease at CECT, leading to an
upstaging of disease [46]. Several studies later eval-
uated the impact of [18F]FDG-PET or [18F]FDG-
PET/CT on the management of patients presenting
with potentially curable liver metastases who

underwent PET for complete restaging of disease
[63–66]. McLeish et al. reported that hepatic metas-
tases were identified on standard imaging in
232 (39.7%) patients, and [18F]FDG-PET con-
firmed hepatic metastasis in 203 cases, including
22 cases with new lesions, and clarified presence of
disease in 34/37 (92%) cases with equivocal stan-
dard imaging. In 54 patients, [18F]FDG-PET was
performed for disease assessment before hepatic
resection. [18F]FDG-PET had substantial manage-
ment plan impact in 36/54 (66.7%) patients [67]. In
this patient subset, PET allowed complete preoper-
ative staging, determination of whether other neo-
plastic foci were present, and the choice of the most
adequate treatment, thus avoiding unnecessary sur-
gery. Lai et al. demonstrated that PET identified
unexpected metastases in 25% of patients referred
for presurgical staging to evaluate liver metastases
resectability [63]. A 2005 review by Wiering
et al. including all studies that had evaluated
patients referred for presurgical staging for resect-
able liver metastases showed that [18F]FDG-PET
had sensitivity and specificity rates for liver lesions
of 88% and 96.1%, respectively, and 91.5% and
95.4%, respectively, for extrahepatic lesions [68].
[18F]FDG-PET resulted superior to CT in all cases
but overall in detecting extrahepatic lesions. Patient
management changed in about 32%, with cancel-
ation of surgery and planning of systemic
chemoradiation therapy in most cases. The review
by Vriens et al. of 25 papers found a pooled mean
management change of 22.3% in 1,060 patients
[41]. With the introduction of combined PET/CT,
the evaluation of many tumors and of colorectal
cancer as well has improved even further, since it
allows correlations between abnormal tissue meta-
bolic changes detected at PET and anatomical

Fig. 2 Patient treated for primary colorectal cancer and referred for restaging. [18F]FDG-PET/CT scan identified
unexpected metastases in the liver not seen at CECT
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structures defined at CT, with accurate localization
and characterization of lesions [69–71]. A review
evaluating the potential of PET/CT in comparison
with CECT, MRI, and PET alone suggested that,
when available, [18F]FDG-PET/CT appears to be
the diagnostic tool of choice in early evaluation of
recurrent colorectal disease [72]. Furthermore, the
use of low-dose CT scanning to correct PET emis-
sion images for attenuation (instead of radioactive
sources, as in the past) shortens the time needed to
complete whole-body acquisition [73]. Still unclear
is the influence of [18F]FDG-PET on disease-free
survival and overall survival in patients with recur-
rent colorectal cancer, owing to the difficulty of
comparison between studies of different patient
subgroups with different treatment plans; nonethe-
less, whole-body [18F]FDG-PET has a key role in
clinical practice and provides additional value to
standard diagnostic workup and a high clinical
impact [74].

In this subset of patients, [18F]FDG-PET
should be considered as an essential tool for better
clinical management. Given its high NPV (around
95%), when a PET scan in this patient subgroup is
negative, the presence of detectable disease recur-
rence could be excluded with [18F]FDG-PET,
though close clinical follow-up should still be
undertaken. While there is considerable evidence
for the usefulness of [18F]FDG-PET, certain
limitations to the technique deserve mention.
[18F]FDG-PET can produce false-positive find-
ings at evaluation of abdominal recurrence when
postsurgical inflammation and inflammatory dis-
ease are present (i.e., abscesses, colitis, rectal fis-
tula). The physiological [18F]FDG uptake in the GI
and genitourinary tracts due to the excretion of the
tracer itself can mimic but also hide pathological
sites. The risk of false-negative findings is high in
the presence of miliary liver metastatic spread, due
to the physiological uptake of [18F]FDG in the liver
parenchyma and to a low lesion-to-background
ratio or low [18F]FDG uptake in diffuse peritoneal
effusion. Besides anatomical sites, lesion size is
another important factor affecting PET accuracy
and may be responsible for false-negative results.
This is true especially in lymph node or hepatic
lesions <1 cm in diameter, near the technique’s
lower limit of effective spatial resolution. Finally,

high patient blood glucose levels (>150 mg/dL)
can deteriorate the [18F]FDG-PET image quality,
and somemetastatic lesions, especially those in the
liver, can be missed [75]. This is why blood glu-
cose levels should be accurately kept under control
with at least 6 h fasting before scanning. A meta-
analysis by Huebner et al. evaluated the influence
of false-positive and false-negative results on [18F]
FDG-PET sensitivity and specificity in patients
with recurrent disease [58]. The final data showed
that false positives had a greater impact than false
negatives. In fact, the sensitivity of whole-body
[18F]FDG-PET resulted high (97%), with similar
rates for the detection of liver (91–96%) and pelvic
(94%) involvement. Specificity values in the eval-
uation of recurrence differed for total body (76%)
and liver and pelvis (97–99%) due to the greater
likelihood of false-positive results in extrahepatic
and extrapelvic regions than in isolated organs.
Furthermore, a study by Akhurst et al. [76] on a
group of patients who underwent [18F]FDG-PET
for presurgical staging demonstrated that sensitiv-
ity was lower in those who received neoadjuvant
chemotherapy due to the risk of the stunning phe-
nomenon that leads to false-negative results when
[18F]FDG-PET is performed too early after the end
of treatment.

Treatment Response Evaluation

The identification of responders to chemotherapy
is of interest for selecting patients who may be
expected to benefit from continued treatment and
for selecting those who could be treated with other
drugs. Evaluation of response to treatment is ordi-
narily based on morphological assessment of tar-
get lesions and of changes in lesion diameter over
time. Currently, the Response Evaluation Criteria
in Solid Tumors (RECIST) is the most widely
used set of rules to define disease response to
treatment: complete response is defined as disap-
pearance of target lesions at morphological imag-
ing; partial response, a minimum reduction of
30% in lesion diameter; disease progression, a
minimum increase of 20% in lesion diameter or
appearance of new lesions; and stable disease,
neither partial response nor disease progression
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[77]. With [18F]FDG-PET came the need to have
similar criteria for metabolic response, but con-
sensus is still lacking. A significant decrease or
increase in [18F]FDG uptake in target lesions dur-
ing treatment has always been considered as a sign
of treatment response or disease progression,
respectively; nevertheless, lacking standardized
limits and standardized timing of response assess-
ment, each study uses its own criteria. One limi-
tation to [18F]FDG-PET is its limited ability to
detect minimal residual disease below the range
of system spatial resolution. [18F]FDG uptake is
detectable in lesions measuring 5–10mm in diam-
eter, which correspond to about 108–109 tumor
cells. But even with this limitation, a negative
PET scan during or at the end of treatment is
predictive of good prognosis since it indicates
disease response. Furthermore, the interval
required for a positive [18F]FDG-PET/CT scan
to become negative during treatment is a prognos-
tic factor and a predictive element for final tumor
response. If after 2 cycles of chemotherapy a PET
scan is negative, as demonstrated in lymphoma-
tous disease, the chances of obtaining remission at
the end of the treatment are high, whereas the
chances of remission with a few more chemother-
apy cycles are lower if PET scans taken early at
the beginning of treatment remain persistently
positive [78–80]. Treatment response evaluated
by [18F]FDG-PET is clearly related to a better
overall survival and disease-free survival in most
types of tumors. Metabolic response to treatment
is normally evaluated quantitatively by measuring
variation in SUVmax (standardized uptake value),
which is a more practical and reproducible way
than with qualitative visual methods, even if many
studies have employed the latter, with good strat-
ification of subsequent prognosis [81–84].

Quantitative evaluation has to be reproducible,
which means that pre-therapy and post-therapy
scans have to be made in the same way, with the
same scanner, similar injected activity, and the
same patient preparation (body weight, blood glu-
cose level) [85]. The problem is to determine
which percentage in SUVmax reduction is consid-
ered significant for defining the clinical response.
Many studies have proposed their own cutoff
values (25–35%) for the drop in SUVmax [86,

87]. Recently, Wahl et al. have proposed the Pos-
itron Emission Tomography Response Criteria in
Solid Tumors (PERCIST) as standardized criteria
to define metabolic response to treatment. These
criteria include standardized patient preparation:
fasting at least 4–6 h before injection; serum glu-
cose <200 mg/dL; insulin administration before
[18F]FDG-PET not indicated; image acquisition
obtained 50–70 min after injection and
reconstructed with the same software for baseline
and post-therapeutic scan, with up to 15 min dif-
ference between the acquisition of the two scans;
and SUVmax corrected for lean body mass as
calculated by a region of interest (ROI) system
of detection. Furthermore, it is recommended to
choose up to five target lesions, two for organs
with the highest [18F]FDG uptake, better if about
2 cm in diameter. These target lesions will usually
correspond to the target lesions considered by
RECIST. Response to therapy is evaluated as a
continuous variable expressed as the drop in the
percentage of SUVmax between the pre- and post-
therapeutic scans. Complete metabolic response is
defined as the disappearance of all metabolic
active tumor, with the target lesion showing the
same uptake as the liver and indistinguishable
from the surrounding background; a partial
response, as a decrease of >30% in SUVmax of
the most intense lesion; and progressive disease,
an increase of >30% in SUVmax of the most
intense lesion or a visible increase in the extent
of [18F]FDG uptake. Still debated is the number of
chemotherapy cycles after which [18F]FDG-PET
has to be performed to evaluate the response and
the delay in time between the last treatment and
[18F]FDG-PET; the PERCIST committee con-
siders them as treatment-specific criteria. Several
studies demonstrated that SUVmax begins to drop
after only one cycle of chemotherapy, at which
time early response can be detected [87, 88].
Based on previous studies, especially in lympho-
matous disease, the suggested delay between the
end of the treatment and the final [18F]FDG-PET
is around 10 days to 3 weeks for chemotherapy
and 3 months after radiotherapy to avoid either the
stunning risk or the occurrence of false-positive
results, respectively [89]. [18F]FDG-PET has
been demonstrated to be a useful tool to evaluate
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tumor response to treatment and to stratify
patients for prognosis also in colorectal cancer
[90]. Several studies have demonstrated the use-
fulness of performing [18F]FDG-PET to evaluate
response to neoadjuvant treatment, i.e.,
chemoradiation therapy with cytoreduction intent
before surgery, during chemotherapy in advanced
metastatic tumor, and after local treatment of liver
metastases to detect complete/incomplete treat-
ment [91, 92]. Maffione et al. correlated PERCIST
criteria and a new criterion developed in their
center that they named PET Residual Disease in
Solid Tumor (PREDIST) with tumor regression
grade (TRG) classification of pathologic response
to neoadjuvant chemoradiotherapy (CRT) in
patients affected by rectal cancer. [18F]FDG-
PET/CT scan is an accurate tool to preoperatively
predict the response to CRT in patients with
locally advanced rectal cancer. The novel pro-
posed criterion (PREDIST) seems to be helpful
to discriminate responders from nonresponders
[93, 94]. Evaluation of response to radiotherapy
is very difficult by anatomic imaging alone
because residual tissue persists after irradiation,
making it impossible for CTor MRI to distinguish
persistent disease from fibrosis (accuracy
30–60%) [95–97]. A review by Wahl et al. of
19 studies published between 1992 and 2008
reported a NPV for [18F]FDG-PET of 83–100%
and a PPVof 77–100%, depending on the criteria
used to define the response [77]. All these studies
differed in the definition of response criteria,
the delay between treatment and [18F]FDG-PET
acquisition, and clinical endpoints (metabolic
response and histological verification vs. overall
survival and disease-free survival). The
studies considering histological confirmation of
[18F]FDG-PET findings as an endpoint demon-
strated a significant correlation between [18F]
FDG-PET residual uptake and histological
response (viable tumor cells). In the majority, a
decrease in SUVmax after a median of 3–6 weeks
after irradiation seemed to predict good response
to radiotherapy. Most of the studies proposed
quantitative evaluation of tumor response by
using a decrease in SUVmax or SUVmean after
treatment, but with different cutoff values
(30–60%); others proposed kinetic models

which, although reproducible, are more difficult
to perform in clinical practice. The study by Mel-
ton et al. in particular, which compared quantita-
tive methods (decrease in SUVmax >70% and
decrease in total lesion glycolysis [TLG]) versus
qualitative visual methods, showed that for the
evaluation of response to neoadjuvant treatment
for colorectal cancer, the quantitative is more
accurate than the qualitative method [98]. Of
note, however, is the risk of false-positive results
due to post-irradiation inflammatory processes
and false-negative results due to minimal residual
viable disease under the detection limits of [18F]
FDG-PET. A decrease in the SUVmax in patients
undergoing treatment is not only the expression of
tumor response, and the SUVmax itself is not only
the expression of tumor absolute [18F]FDG avid-
ity: both need to be interpreted for their prognostic
meaning. Some studies demonstrated that patients
considered responders to [18F]FDG-PET after
chemoradiation therapy of the primary tumor
had a better median overall survival and disease-
free survival [84, 99–102]. Other studies demon-
strated that the absolute SUVmax or SUVmean can
stratify patients with a better or worse overall
survival, but at which cutoff is not yet clear.
Calvo et al., for example, showed that patients
with a pre-therapeutic tumor SUVmax �6 had a
better overall survival at 3 years after neoadjuvant
and surgical treatment than those with a higher
tumor SUVmax (92% vs. 60%) [103]. Riedl
et al. proposed different ranges of SUVmax with
different prognosis as expressed by median over-
all survival [104]. The role of [18F]FDG-PET in
the evaluation of systemic chemotherapy in
advanced metastatic tumors is also under evalua-
tion. A recent review by De Gesus Oei gives an
overview of the results of five studies [105–110].
All such studies evaluated the response to treat-
ment after a few cycles of chemotherapy in order
to differentiate responder patients from nonre-
sponders in order to optimize treatment. Maffione
et al., also, reported that PET showed high accu-
racy in early prediction response during preoper-
ative CRT. In the era of tailored treatment, early
assessment of nonresponder patients allows mod-
ification of the subsequent strategy especially the
timing and the type of surgical approach [111].
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The problem is to define the correct timing for
[18F]FDG-PET so as to obtain a good correlation
between global response and prognosis. These
studies compared [18F]FDG-PET findings at 1 or
2 weeks after the start of chemotherapy and then at
1–3 months. The majority demonstrated that the
clinical correlation between metabolic response
and treatment outcome was better detected at
1–3 months after the start of chemotherapy.
Here, too, quantitative evaluation by SUVmax or
SUVmean is considered a better way to evaluate
metabolic response than qualitative assessment.
Furthermore, Dimitrakopoulou et al. demon-
strated that the absolute SUVmean of the most
avid lesions at pre-therapeutic PET could predict
response to treatment, a second-line chemother-
apy in this study, thus supporting the concept that
the higher the [18F]FDG avidity as expressed by
SUVmax or SUVmean, the more resistant the
lesions are to treatment [108]. The introduction
of targeted therapy with anti-angiogenesis or anti-
tyrosine kinase drugs for treating colorectal can-
cer has opened new frontiers to the use of [18F]
FDG-PET in evaluating response to treatment,
given that this kind of therapy exhibits a cytostatic
rather than a cytoreductive effect and that tumor
metabolic change reflects response better than
anatomic changes detectable by CT. Future, pro-
spective studies are needed to elucidate this point
[112, 113]. Skougaard et al. in their recent study
compared European Organization for Research and
Treatment of Cancer (EORTC) criteria with PET
Response Criteria in Solid Tumors (PERCIST) for
response evaluation of patients with metastatic
colorectal cancer treated with a combination of the
chemotherapeutic drug irinotecan and themonoclo-
nal antibody cetuximab. A total of 61 patients and
203 PET/CT scans were eligible for response eval-
uation. With EORTC criteria, 38 had PMR, 16 had
SMD, and 7 had PMD as their BOmR. With
PERCIST, 34 had PMR, 20 had SMD, and 7 had
PMD as their BOmR. There was agreement
between EORTC criteria and PERCIST in 87% of
the patients [114]. Finally, [18F]FDG-PET has an
important role in the evaluation of response
to local treatment of liver and lung metastases
by radiofrequency ablation (RFA), laser thermo-
therapy, or cryotherapy. [18F]FDG-PET can detect

incomplete treatment at a much earlier stage than
CT and can better detect relapse of disease. After
RFA, necrotic tissue and fibrotic scar formation in
the treated lesion are frequently associated with
inflammatory phenomena. Contrast enhanced CT
does not reliably differentiate between persistent
tumoral disease and inflammation. [18F]FDG-PET
shows different types of [18F]FDG uptake in persis-
tent active disease (focal and high [18F]FDG
uptake) versus inflammatory processes (more dif-
fuse, circular, and mild uptake) (Fig. 3a–c). The
review by De Gesus Oei looked at five studies
[115–119]. All reported an NPV value for [18F]
FDG-PET of around 100% in an early stage
(1–3 weeks after treatment), which means that
[18F]FDG-PET has to be performed early to define
complete response to treatment. The wide range in
PPV (80–97%) across the studies underlined again
that, although [18F]FDG-PET can detect relapse or
persistent viable disease earlier than CT, there
remains the risk of false-positive results due to
inflammatory or infective phenomena.

New Prospects

PET/MRI

PET combined with magnetic resonance imaging
(PET/MRI) seems to be a promising modality in
different fields of tumor imaging. With the high
soft tissue contrast of MRI and the superior ability
of [18F]FDG-PET to detect vital tumor tissue prior
to morphological changes, the advent of com-
bined PET/MRI will open new perspectives in
noninvasive imaging. The combination of PET
with MRI also opens up options to acquire multi-
modal molecular imaging parameters simulta-
neously. This may contribute to a more detailed
characterization of molecular processes in vivo
[120–122]. Some studies also report results for
colorectal cancer. Paspulati et al. reported their
initial experience showing a high diagnostic accu-
racy of PET/MRI in T staging of rectal cancer
compared with PET/CT. In addition, PET/MRI
shows at least comparable accuracy in N and M
staging as well as restaging to PET/CT. However,
the small sample size limits the possibility to
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assume these results as definitive. It is expected
that PET/MRI would yield higher diagnostic
accuracy than PET/CT considering the high soft
tissue contrast provided by MRI compared with
CT, but larger studies are necessary to fully assess
the benefit of PET/MRI in colorectal cancer [123].

Radiotherapy Volume Planning

[18F]FDG-PET is often used in clinical practice to
identify target volume in radiotherapy treatment,
especially in lung cancer [124–127]. Some studies
also report results for colorectal cancer. Promising
preliminary results in esophageal, pancreatic, and
anorectal cancers and colorectal liver metastasis
suggest that [18F]FDG-PET might provide addi-
tional information useful in target volume
delineation. Poor image resolution and a low

sensitivity for lymph node detection currently
limit its widespread implementation [128].
Ciernik et al. demonstrated that PET/CT-derived
planning target volume (PTV) is as accurate as
CT-derived PTV [129]. In the future, perhaps
PET/CT alone will be sufficient for planning
radiotherapy target volume.

Therapy with Transarterial
90Y-Microspheres

In unresectable liver metastases and advanced
liver metastases, radioembolization treatment
with microspheres containing the beta emitter
yttrium-90 is becoming a valid alternative to
other treatments such as chemoembolization and
radiofrequency. Microspheres are injected into
an artery and, because of their diameter (20 to

Fig. 3 Patient with colorectal cancer, liver metastases
treated by RF, and abdominal lymphadenopathy. Evalua-
tion of RF ablation efficacy by [18F]FDG-PET. (a) MIP
image, (b1) axial PET image showing physiological aspect
of liver metastases after radiofrequency ablation (homoge-
neous and peripherical mild [18F]FDG uptake), (b2) axial

fusion image of the same lesion, (c1) axial PET image
showing relapse of disease in liver metastases treated by
RF ablation (heterogeneous and focal pattern of [18F]FDG
uptake), (c2) fusion axial image of the same lesion
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60 μm), become entrapped by embolization in the
microvascular tissues. The half-life of yttrium-90
is 64.1 h, and the administered dose is closely
correlated with body surface area and tumor bur-
den. Although few studies have evaluated its effi-
cacy and feasibility to date, the results are
promising in terms of tumor response and overall
survival. A study by Whitney et al. evaluating
application of this technique for liver metastases
from different cancers, including colorectal can-
cer, demonstrated that it reduces tumor burden
and can be followed by surgical resection of
metastases [130]. In the bulk of studies, tumor
response is based on CT according to RECIST,
but there is also mounting evidence that
[18F]FDG-PET could be a useful tool and a more
accurate technique even in this field to better
characterize tumor response according to meta-
bolic criteria. Necrosis, inflammatory, or fibrotic
processes can lead to an increase in lesion size
after treatment, which can be interpreted as dis-
ease progression at anatomic imaging [131–134].
Wong et al. showed that [18F]FDG-PET detected
more partial responses than CT, as clinically con-
firmed by the decrease in serum CEA levels [135].
In phase I–II studies, therapy with yttrium-90
microspheres can be combined with adjuvant che-
motherapy to increase tumor radiosensitivity with
good patient tolerability [136–139]. The most
common side effects of this treatment are abdom-
inal pain, transient hepatotoxicity with elevated
transaminase, hyperbilirubinemia, and hyper-
splenism; occasional cases of important neutrope-
nia possibly induced by bone marrow irradiation
when combined with adjuvant chemotherapy
have been reported [140]. Further studies on
large-scale patient populations are needed to con-
firm these preliminary results.

Carcinoid Tumors

Endocrine tumors can be found in the GI tract and
in the rectal tract in particular. Their management,
treatment, and prognosis differ substantially from
adenocarcinomas. Oftentimes, they are discovered
after the onset of local symptoms such as
rectorrhagy. Prognosis is closely correlated with

tumor size and local extension. Frequently, a sim-
ple endoscopic resection is sufficient for obtaining
complete remission; more complex surgery is cho-
sen as first intention treatment for more advanced
local tumors. Distant metastases are infrequent.
Tumor extension is local in almost 70% of cases.
Nuclear medicine offers an array of imaging tech-
niques to study endocrine tumors, all of which are
based on the affinity these tumors have for somato-
statin receptors [141, 142]. Historically, 111In-
DTPA-octreotide scintigraphy is the most widely
used technique to characterize the primary tumor
and perform disease staging and follow-up of endo-
crine tumors. The sensitivity of this technique in
endocrine tumor staging is between 60% and
100%, and it depends on tumor differentiation
grade, somatostatin receptor density, origin, site,
and size [143, 144]. Other approaches for evaluat-
ing intestinal endocrine tumor are now available:
18F-DOPA-PET (18F-6-fluoroDOPA), [11C]HTP-
PET ([11C]5-hydroxytryptophane), 68Ga-DOTA-
TOC, and 68Ga-DOTA-NOC, all tracers with an
affinity for somatostatin receptors or that are
involved in endogenous amine metabolism.
Although several studies on small groups of
patients have shown the superiority of these tech-
niques over traditional somatostatin analog scintig-
raphy [145–147], further studies are needed to
confirm their accuracy and to identify standard
recommendations for their use [148–155].
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