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Abstract This chapter presents a new algorithm inspired in the human visual
system to compute optical flow in real-time based on the Hermite Transform. This
algorithm is applied in a vision-based control system for a mobile robot. Its per-
formance is compared for different texture scenarios with the classical Horn and
Schunck algorithm. The design of the nature-inspired controller is based on the
agent-environment model and agent’s architecture. Moreover, a case study of a
robotic system with the proposed real-time Hermite optical flow method was
implemented for braking and steering when mobile obstacles are close to the robot.
Experimental results showed the controller to be fast enough for real-time appli-
cations, be robust to different background textures and colors, and its performance
does not depend on inner parameters of the robotic system.

Keywords Optical flow � Hermite transform � Movement detection � Navigation
system � Differential method

1 Introduction

Movement detection and characterization in a scene is a relevant task in vision
systems used in robotic applications controlled by visual features. The optical flow
approach allows to obtain the displacement (magnitude and direction) of each pixel
in the image in a given time. The quality and precision of these displacements in
real time will determine the performance of the control system. The optical flow
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problem has been treated widely in the literature. Some of them are easily imple-
mented and extended to real time applications but with low accuracy, as [12], and
others have fine implementations and high accuracy but most are impossible to use
in real time applications by hardware limitations and high processing time, as [25]
and [21]. In this chapter, we propose an algorithm in real time, using the optical
flow constraint equation of Horn and Schunck [12], as the differential approach
most used in real time applications, with improvements in accuracy due to the
proposal using the Hermite transform. The Hermite transform is a biologically
inspired image model, allowing fully describe the significant visual features in
digital images, and together with the Horn and Schunck differential approach
provide a real-time optical flow method more robust to noise and to intensity
changes in the image sequence.

Computer vision can help to sense control variables in a navigation system. This
kind of sensors is not conventional and is less used than others in navigation
systems. Particularly, optical flow models can help to measure magnitude and
direction displacement in a particular scene. In literature, there are several appli-
cations using optical flow especially in navigation problems: for aeronautical
applications was proposed an aircraft maneuvering controlled by translational
optical flow in [27], in [14] they used optical flow based on block-matching
algorithm, image-based lane departure warning (LDW) system using the
Lucas-Kanade optical flow and the Hough transform methods was proposed in [28],
application to a lunar landing scenario using optical flow sensing was addressed in
[30], for Power Assisted Wheelchair in [19] and Optical Flow Based Plane
Detection for Mobile Robot Navigation in [32], and in [37] they used a controller
design based on real time optical flow and image processing applied in a quadrotor
and a Visual Tracking of a Moving Target by a camera mounted on a robot. Other
applications not directly related to navigation systems are presented in literature as
Counting Traffic [1], real time velocity estimation based on OF and disparity [11],
and optical-flow-based altitude sensor and its integration with flapping-wing flying
microrobot [7].

This chapter is organized as follows: Sect. 2 gives the basic concepts about the
biological inspired model. The principles of optical flow methods are described in
Sects. 3 and 4 presents our approach to compute optical flow in real time and some
tests to validate our approach. Section 5 describes the implementation of our
approach in the navigation of mobile robots. A conclusion is finally reported in
Sect. 6.

2 Hermite Transform: A Biologically Inspired Model
of Digital Images

This section introduces the Hermite Transform as a bio-inspired model for represent
relevant perceptive features in digital images. First, we list the representative
bio-inspired image models. Then, the basic concepts of the Hermite Transform and
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its relationship with the human vision system is presented. Finally, we show a
steered version of the Hermite Transform, that allows describe oriented patterns.

2.1 Bio-inspired Image Models

A large number of image processing algorithms has been inspired on the human
visual perception systems. The principal task that these approaches must resolve is
to realize a good description of the image to identify, reconstructing and tracking
the objects in order to interpret the scene. Different methodologies can be divided
into two general categories: those requiring strong prior knowledge and those
requiring weak or no prior knowledge. In the second group the most important
techniques are based on psychovisual human studies [29] and biological models
[34]. The first one proposed by Gestalt Psychologists point out the importance of
visual organization or perceptual grouping in the description of the scene, partic-
ularly the objects in the scene cannot be processed separately. They define concepts
as proximity, continuity, homogeneity as principles to implement perception rules
for processing the image. The main difficulty of these approaches is the imple-
mentation of the perception rules that must be particular to each application.

Approaches based on biological models seem more adequate for image pro-
cessing due to their ability to generalize to all kind of scenes. They are inspired
directly on the response of the retina and the ganglion cells to light stimuli (see
Fig. 1) A first model proposed by Ernst Mach recognize that not just light intensities
but intensity changes influence what we see (i.e., derivatives and sum of second
derivatives in the space). The Gabor model, proposed by [26], represents the
receptive fields of the visual cortex through Gaussian modulated with complex
exponentials. Like the receptive fields, the Gabor functions are spatially local and
consist of alternating bands of excitation and inhibition in a decaying envelope.

In 1987, Young [36] proposed a receptive field model based on the Gaussian and
its derivatives. These functions, like the Gabor, are spatially local and consist of
alternating regions of excitation and inhibition within a decaying envelope. Young
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Fig. 1 Diagram of ganglion cells showing the biological inspiration for image processing
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showed that Gaussian derivative functions more accurately model the measured
receptive field data than the Gabor functions. This functions can be interpreted as
the product of Hermite polynomials and a Gaussian window. It allows to decom-
pose the image based on Hermite polynomials by defining a biological model of the
measured receptive field data in the Human Vision System (HVS) [34–36].

The Hermite Transform uses a Gaussian window to localize and analyze the
visual information where from a perceptual standpoint, the Gaussian window is a
good model of the overlapping receptive fields found in physiological experiments
[26]. Furthermore, the associate polynomials involves Gaussian derivative opera-
tors found in psychophysical models of the HVS [4, 17]. Finally, the operators used
in the Hermite Transform provide a natural agreement with the theory scale-space
[13] where the Gaussian window minimizes the uncertainty of the product of the
spatial and frequency domain [33].

2.2 The Hermite Transform

The Hermite Transform is a special case of polynomial transform and was introduced
by Martens in 1990 [18]. First, the original image Lðx; yÞ with coordinates ðx; yÞ is
located at various positions multiplying it by a window function v2ðx� x0; y� y0Þ at
positions ðx0; y0Þ that conform a sampling lattice S. Then, the local information for
each analysis window is expanded in terms of a family of orthogonal polynomials
Gm;n�mðx; yÞ where m and ðn� mÞ denote the analysis order in x and y direction
respectively.

The Hermite Transform of an image can be computed by a convolution of the
image Lðx; yÞ with the filter functions Dm;n�mðx; yÞ obtaining the cartesian Hermite
coefficients Lm;n�mðx; yÞ:

Lm;n�mðx0; y0Þ ¼
Z1
�1

Z1
�1

Lðx; yÞDm;n�mðx0 � x; y0 � yÞdxdy

n ¼ 0; 1; . . .;1 m ¼ 0; 1; � � � ; n
ð1Þ

The filter functions Dm;n�mðx; yÞ are defined by polynomials Gm;n�mðx; yÞ that are
orthogonal with respect to an analysis window v2ðx; yÞ

Dm;n�mðx; yÞ ¼ Gm;n�mð�x;�yÞv2ð�x;�yÞ; ð2Þ

where vðx; yÞ ¼ 1
r
ffiffi
p

p exp � x2 þ y2ð Þ
2r2

� �
is a Gaussian window with normalization

factor for a unitary energy for v2ðx; yÞ.
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The polynomials orthonormal with respect to vðx; yÞ2 can then be written as

Gm;n�mðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nm!ðn� mÞ!p Hm

x
r

� �
Hn�m

y
r

� �
; ð3Þ

where HnðxÞ are the Hermite polynomials given by Rodrigues’ formula:

HnðxÞ ¼ ð�1Þn exp x2ð Þ dn

dxn
exp �x2ð Þ n ¼ 0; 1; 2; . . . ð4Þ

and Hn
x
r

� �
represents the generalized Hermite polynomials with respect to the

Gaussian function (with variance r2).
In Fig. 2, we show the Hermite polynomials HnðxÞ for n ¼ 0; 1; 2; 3; 4; 5.
The corresponding analysis Hermite filters are separable both spatial and polar

and they can be expressed by

Dm;n�mðx; yÞ ¼ DmðxÞDn�mðyÞ; ð5Þ

where the one-dimensional Hermite filters can be computed by

DnðxÞ ¼ ð�1Þnffiffiffiffiffiffiffiffiffi
2nn!

p 1
r
ffiffiffi
p

p Hn
x
r

� �
exp�

x2

r2 : ð6Þ
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Fig. 2 The Hermite
polynomials HnðxÞ for
n ¼ 0; 1; 2; 3; 4; 5
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Figure 3a shows the Hermite filters Dm;n�mðx; yÞ for N ¼ 3 (n ¼ 0; 1; . . .;N and
m ¼ 0; 1; . . .; n).

In Fig. 4a, we obtained the cartesian Hermite coefficients of the House test image
[10] for N ¼ 3 (n ¼ 0; 1; 2; 3).

D0,0 D1,0 D2,0 D3,0
D0,1 D1,1 D2,1
D0,2 D1,2
D0,3

d0,0 d1,0 d2,0 d3,0
d0,1 d1,1 d2,1
d0,2 d1,2
d0,3

(a) (b)

Fig. 3 a An ensemble of the Hermite filters Dm;n�mðx; yÞ and b their Fourier transform spectrum
dm;n�mðxx;xyÞ (right) for N ¼ 3 (n ¼ 0; 1; . . .;N and m ¼ 0; 1; . . .; n) [22]

L0,0 L1,0 L2,0 L3,0
L0,1 L1,1 L2,1
L0,2 L1,2
L0,3

L0,0 l1,0,θ l2,0,θ l3,0,θ

l0,1,θ l1,1,θ l2,1,θ

l0,2,θ l1,2,θ

l0,3,θ

(a) (b)

Fig. 4 a An ensemble of the cartesian Hermite coefficients and b the Steered Hermite coefficients
of the House test image for N ¼ 3 ðn ¼ 0; 1; 2; 3Þ [20]
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2.3 The Steered Hermite Transform

The Steered Hermite Transform (ST) is a version of the cartesian Hermite coeffi-
cients that is obtained by rotating of the cartesian coefficients towards an estimated
local orientation, according to a criterion of maximum oriented energy at each
window position.

The Hermite filters Dm;n�mðx; yÞ ¼ DmðxÞDn�mðyÞ are separable in space, and its
Fourier transform can be expressed in polar coordinates. If xx ¼ x cosðhÞ and
xy ¼ x sinðhÞ, then

dmðxxÞdn�mðxyÞ ¼ gm;n�mðhÞ � dnðxÞ; ð7Þ

where dnðxÞ is the Fourier transform of each filter function, which expresses radial
frequency selectivity of the nth derivative of the Gaussian but with a radial coor-
dinate r for x, and gm;n�mðhÞ expresses the directional selectivity of the filter

gm;n�mðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n
m

� �s
cosm h � sinn�m h ð8Þ

The orientation feature of the Hermite filters explains why they are products of
polynomials with a radially symmetric window function (Gaussian function). The
Nþ 1 Hermite filters of order n form a steerable basis for each individual filter of
order n. Filters of increasing order n analyze successively higher radial frequencies
(Fig. 3b), and filters of the same order n and different (directional) index m dis-
tinguish between different orientations in the image. Note that the radial frequency
selectivity dnðxÞ is the same for all N þ 1 filters of order n and that these filters
differ only in their orientation selectivity [18]. The resulting filters can be inter-
preted as directional derivatives of a Gaussian function.

For local 1D patterns, the Steered Hermite Transform provides a very efficient
representation. This representation consists of a parameter h that indicates the
orientation of the pattern, and a small number of coefficients that represent the
profile of the pattern perpendicular to its orientation. For a 1D pattern with ori-
entation h, the following relation holds:

lm;n�m;hðx; yÞ ¼
Pn
k¼0

ðLk;n�kðx; yÞÞðgk;n�kðhÞÞ; m ¼ 0

0; m[ 0;

8<
: ð9Þ

where lm;n�m;hðx; yÞ are Steered Hermite coefficient for the local angle h.
This means that a Steered Hermite Transform offers a way to describe 1D

patterns explicitly on the basis of their orientation and profile [31].
In Fig. 4b, we steer the cartesian Hermite coefficients of the corresponding

coefficients of Fig. 4a according to maximum energy direction. It is noticeable that
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the energy is concentrated in only three coefficients (first row of Fig. 4b), which
represent the orientation of the different structures of the image.

3 Optical Flow Problem

This section describes the optical flow problem focused in the differential approaches
used to obtain the displacements of the objects in a sequence of image.We present the
seminal differential methods of Horn and Schunck, and Lucas and Kanade to high-
light the advantages of global and local proposal. Later, we mention the additional
constraints of recent approaches to improve robustness of classical methods.

3.1 Definition

The optical flow (OF) is defined as a two-dimensional distribution of apparent
velocities that can be associated with variations of brightness patterns in a sequence
of images [9]. The obtained vector field shows the displacement of each pixel at
some time in the image sequence and represents the motion of objects in the scene
or the relative motion of the sensor.

To illustrate the optical flow concept, we show in Fig. 5 the vector field obtained
from the frames 43 and 44 of the Cameramotion sequence [15], where the apparent

Fig. 5 Optical flow representation in a sequence of images [20]. a Frame 43 of the Cameramotion
sequence. b Frame 44 of the Cameramotion sequence. c Optical flow result
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motion of the car of the left is highlighted by the side view mirror within the
red circle.

The vector of displacements obtained in two successive images can be obser-
ved by:

• The motion of objects in the scene.
• The relative movement between the observer and the scene.
• Variations in scene illumination.

Various methods have been proposed to calculate the optical flow in image
sequences since 1980. Barron et al. [2] performed the first classification of the
existing optical flow methods into four groups:

• Differential methods
• Region-based matching methods
• Energy-based methods
• Phased-based methods

The benchmarks of Barron et al. [2] in 1994 and Galvin et al. [8] in 1998 showed
that the differential methods and phase-based methods were the techniques with
better performance. Their study emphasizes the measurement accuracy and con-
cludes that the most accurate methods are the differential proposals, where methods
using global smooth constraint appear to produce visually attractive flow fields.

Differential techniques compute image velocity from spatiotemporal derivatives
of image intensities or filtered versions of the image. The first approaches use first
order derivatives and are based on image translation assuming intensity conserva-
tion. Second order differential methods use the Hessian of the intensity function to
constrain 2D velocity. There are global and local first- and second-order methods,
where global methods use the additional global constraint to compute dense optical
flows over large image regions. Local methods use normal velocity information in
local neighborhoods to perform a least squares minimization to find the best fit for
the vertical and horizontal components of displacement [3].

3.2 Differential Optical Flow Methods

The differential methods are based on the work by Horn and Schunck (HS) [12],
which proposes the Constant Intensity Constraint assuming that the intensities of
the pixels of the objects remain constant:

LðXþWÞ � LðXÞ ¼ 0; ð10Þ

where LðX; tÞ is an image sequence, with X ¼ ðx; y; tÞT representing the pixel
location within a rectangular image domain X; W :¼ u; v; 1ð ÞT is a vector that
defined the displacement u and v of each a pixel at position ðx; yÞwithin the sequence
of images at a time t to a time ðtþ 1Þ in the directions x and y; respectively.
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Considering linear displacements (10) is expanded by Taylor’s series, obtaining
the Optical Flow Constraint equation

WT r3Lð Þ ¼ 0; ð11Þ

where r3L :¼ Lx; Ly; Lt
� �T

and L � :¼ @L
@ � .

The optical flow constraint Eq. (11) incorporates the Ill-posed Aperture Problem,
and it is not sufficient to determine the two unknown functions u ans v uniquely,
i.e., in homogeneous areas where movement is observed locally, only the normal
component of the movement can be estimated. To overcome this problem, some
additional constraints are required.

In 1981, Horn and Schunck [12] proposed the Smoothness Constraint that
assumed that the apparent speed of the intensity pattern in the image varies
smoothly; that is, neighboring points of the objects have similar velocities. To
recover the optical flow the approach of Horn and Schunck minimizes a energy
functional of the type

EHSðWÞ ¼
Z
X

ðWT r3Lr3L
T� �
W þ ajrW j2ÞdX: ð12Þ

The functional of (12) is a global differential method which allows to obtain
dense vector fields. The first term is a data term requiring that the optical flow
constraint equation is fulfilled, while the second term penalizes deviations from
smoothness. The smoothness term jrW j2 ¼ jruj2 þ jrvj2 is called regularizer and
the positive smoothness weight a is the regularization parameter. One would expect
that the specific choice of the regularizer has a strong influence on the result.

One classic local differential approach that minimizes (11) was proposed by
Lucas and Kanade (LK) [16] in 1981. They consider the flow constant within a
neighborhood q (Gaussian function Kq of standard deviation q), and determine the
two constants u and v at a point ðX; tÞ using a weighted least squares approach: a
weighted least squares approach:

ELKðWÞ ¼ WTJqðr3LÞW ; ð13Þ

where

Jq r3Lð Þ :¼ Kq ~ ðr3Lr3L
TÞ ð14Þ

and ~ represents the convolution operator.
The local differential methods have the advantage of being robust against noise,

but with the disadvantage that they do not get dense flows and an additional inter-
polation step is required to recover the displacement vector in each pixel of the scene.

To improve robustness to global differential methods, recent approaches have
emerged and have suggested some additional constraints [6].
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An immediate problem of (12) is that the intensity does not always remain
constant from one image to another, therefore an independent intensity change
measure is required. In [23, 24] a Constant Gradient Constraint (generally used in
local methods to handle the aperture problem) is proposed:

rLðXþWÞ � rLðXÞ ¼ 0: ð15Þ

Different approaches have been proposed to obtain accurate fields of displace-
ments, one such methods is a combination of global (Horn and Schunck) and local
(Lucas and Kanade) methods to generate dense flow fields, and robust against noise
[5, 6].

Another proposal is a spacetime formulation performing a convolution with a
three-dimensional Gaussian function and considering soft flows in the temporal
direction. This improves robustness to noise and in those cases where the lin-
earization of (10), and in consequence (11), is not valid for large displacements,
multi-resolution strategies are used [5]. One option is to propose functionals that
combine local constraints (intensity constraint and gradient constraint), a spa-
tiotemporal smoothness constraint and a multi-scale approach [25].

In this sense, the Hermite Transform can be used to define a functional that
performs a polynomial decomposition using the Steered Hermite Transform of two
consecutive images in a short period of time. This decomposition represents the
local characteristics of images from an perceptual approach within a
multi-resolution scheme [21].

4 Real Time Hermite Optical Flow Method

This section defines the real-time optical flow method using the Hermite transform,
the local constraints of Horn and Schunck approach are defined using the zero order
and steered Hermite coefficients as local descriptors of visual features of the images.

4.1 Optical Flow Using the Hermite Transform

The main disadvantages of the recent differential methods for real time applications
are their high computational time and difficult to implement. On the other hand, the
Horn and Shunk [12] approach is a fast method with low implementation com-
plexity. The main disadvantage of the Horn and Shunck method is its low accuracy.
In those applications that require an approximation of the displacements, such
method is sufficient in most cases.

We proposed a modified version of Horn and Shunck approach that allows to
increase the accuracy of the optical flow by using the Hermite Transform as a
biological image model. An expansion of the Constant Intensity Constraint (10),
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with the incorporation of the Steered Hermite Coefficient Constraint of the Hermite
Transform, is defined as follows

	
L0ðXþWÞ � L0ðXÞ



þ c

XN
n¼1

ln;hðX þWÞ �
XN
n¼1

ln;hðXÞ
" #

¼ 0; ð16Þ

where c is a weight parameter.
Equation (16) includes the local characteristics of the both images that represent

the homogenous regions (low frequencies) in the zero order coefficients (L0) and the
edges, textures and complex structures (high frequencies) in the steered Hermite
coefficients (ln;h). In Fig. 6 we show the L0 and ln;h Hermite coefficients from the
image 42 and 43 of Cameramotion sequence, where there is a displacement ðWÞ of
the pixels in the position ðXÞ between an image at time t and another image at time
ðtþ 1Þ.

Considering linear displacements of (16) and expanded by Taylor series, we
obtain the Optical Flow Hermite Constraint equation

u
@L0ðXÞ
@x

þ v
@L0ðXÞ
@y

þ @L0ðXÞ
@t

	 


þ c
XN
n¼1

u
@ln;hðXÞ

@x
þ v

@ln;hðXÞ
@y

þ @ln;hðXÞ
@t

	 

¼ 0:

ð17Þ

The one-dimensional spatial derivatives can be reduced considering that the
one-dimensional Hermite coefficients are achieved by the inner product between the
signal located by the Gaussian window and the Hermite polynomials:

Fig. 6 Hermite coefficients from images 42 (first row) and 43 (second row) of Cameramotion
sequence [20]. In first row are shown the coefficients L0;0ðXÞ, l1;hðXÞ, l2;hðXÞ and l3;hðXÞ at time t.
Second row shows the coefficients L0;0ðX þWÞ, l1;hðXþWÞ, l2;hðXþWÞ and l3;hðX þWÞ at time
tþ 1
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Lk ¼ LðxÞ;Hk
x
r

� �D E
: ð18Þ

It can be demonstrated that the derivative of the Hermite coefficients holds [21]:

Lk ¼ LðkÞðxÞ ¼ @kLðxÞ
@k

; ð19Þ

and therefore,

@L0ðX þWÞ
@x

¼ L1;0ðX þWÞ;
@

@x

XN
n¼1

ln;hðXÞ ¼
XN
n¼1

ln;hðmÞþ 1ðXÞ;
ð20Þ

and in a similar way for the derivatives of y.
The Optical Flow Hermite Constraint equation can be rewritten as:

uL0;1ðXÞþ vL1;0ðXÞþ @L0ðXÞ
@t

	 


þ c
XN
n¼1

uln;hðmÞþ 1ðXÞþ vln;hðnÞþ 1ðXÞþ
@ln;hðXÞ

@t

	 

¼ 0;

ð21Þ

where:

ln;hðmÞþ 1ðXÞ ¼
XN
n¼1

LðmÞþ 1;n�mðXÞ � gm;n�mðhÞ; ð22Þ

ln;hðnÞþ 1ðXÞ ¼
XN
n¼1

Lm;ðnþ 1Þ�mðXÞ � gm;n�mðhÞ: ð23Þ

The original functional of Horn and Schunck [12] (12) can be expressed using
(21) to define the real-time Hermite optical flow (RT-HOF) as follows

ERT�HOFðWÞ ¼
Z
X

uL0;1ðXÞþ vL1;0ðXÞþ @L0ðXÞ
@t

� �	

þ c
XN
n¼1

uln;hðmÞþ 1ðXÞþ vln;hðnÞþ 1ðXÞþ
@ln;hðXÞ

@t

� �

þ ajrW j2
i
dX:

ð24Þ
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Using variational calculus, the corresponding Euler-Lagrange equations are:

L20;1ðXÞþ cL0;1ðXÞ
XN
n¼1

ðln;hðnÞþ 1ðXÞÞ
" #

u

þ L0;1ðXÞL1;0ðXÞþ cL0;1ðXÞ
XN
n¼1

ln;hðmÞþ 1ðXÞ
� �" #

v

¼ a2r2u� L0;1ðXÞL0tðXÞþ c
XN
n¼1

ln;htðXÞ
� �" #

;

ð25Þ

L0;1ðXÞL1;0ðXÞþ cL1;0ðXÞ
XN
n¼1

ln;hðnÞþ 1ðXÞ
� �" #

u

þ L21;0ðXÞþ cL1;0ðXÞ
XN
n¼1

ln;hðmÞþ 1ðXÞ
� �" #

v

¼ a2r2v� L1;0ðXÞL0tðXÞþ c
XN
n¼1

ln;htðXÞ
� �" #

;

ð26Þ

where L0tðXÞ ¼ @L0ðXÞ
@t , ln;htðXÞ ¼ @ln;hðXÞ

@t and r2u represents the Laplacian of u.
Finding the solution of (25, 26) for u and v and applying Gauss-seidel iterative

method, the final equations hold

unþ 1 ¼ �un � L0;1ðXÞ L0;1ðXÞþ c
XN
n¼1

ln;hðnÞþ 1ðXÞ
� � !"

�un

þ L1;0ðXÞþ c
XN
n¼1

ln;hðmÞþ 1ðXÞ
� � !

�vn

þ L0tðXÞþ c
XN
n¼1

ln;ht
� �#=

a2 þ L20;1ðXÞþ cL0;1ðXÞ
XN
n¼1

ln;hðnÞþ 1ðXÞ
� � !"

þ L21;0ðXÞþ cL1;0ðXÞ
XN
n¼1

ln;hðmÞþ 1ðXÞ
� � !#

;

ð27Þ
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vnþ 1 ¼ �vn � L1;0ðXÞ L0;1ðXÞþ c
XN
n¼1

ln;hðnÞþ 1ðXÞ
� � !"

�un

þ L1;0ðXÞþ c
XN
n¼1

ln;hðmÞþ 1ðXÞ
� � !

�vn

þ L0tðXÞþ c
XN
n¼1

ln;ht
� �#=

a2 þ L20;1ðXÞþ cL0;1ðXÞ
XN
n¼1

ln;hðnÞþ 1ðXÞ
� � !"

þ L21;0ðXÞþ cL1;0ðXÞ
XN
n¼1

ln;hðmÞþ 1ðXÞ
� � !#

;

ð28Þ

where the Laplacian was approximated by ru � k �ui;j � ui;j
� �

and the local average
was defined by performing a convolutions of u with the kernel

1
12

1
6

1
12

1
6

0
1
6

1
12

1
6

1
12

2
666664

3
777775:

To compare the real-time Hermite optical flow with the proposal of Horn and
Schunck, both methods were implemented in MATLAB®.

For the Horn and Schunck method, the solution of (12) is given by [12]:

unþ 1 ¼ �un� LxðXÞðLxðXÞ�un þ LyðXÞ�vn þ LtðXÞÞ
� �

=

a2 þ L2xðXÞþ L2yðXÞ
h i ð29Þ

vnþ 1 ¼ �vn� LyðXÞðLxðXÞ�un þ LyðXÞ�vn þ LtðXÞÞ
� �

=

a2 þ L2xðXÞþ L2yðXÞ
h i

:
ð30Þ

In Algorithms 1 and 2, we show the pseudocode for the iterative solution by
Gauss-Seidel of the Horn and Schunck and real-time Hermite optical flow methods
respectively.
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Algorithm 1 Horn and Schunck’s optical flow estimation.
1: procedure Horn and Schunck optical flow method
2: α ← Smoothing parameter
3: Num of itera ← Number of iterations
4: img1 ← Imagen in time t
5: img2 ← Imagen in time t + 1
6: u ← Matrix of zeros of size of img1
7: v ← Matrix of zeros of size of img1
8: G ← Square Gaussian filter of size σ/6
9: img1 = img1 G Smoothing images img1 and img2

10: img2 = img2 G

11: Lx = 1
4 img1

−1 1
−1 1

+ img2
−1 1
−1 1

Compute spatiotemporal derivatives

12: Ly = 1
4 img1

−1 −1
1 1

+ img2
−1 −1

1 1

13: Lt = 1
4 img1

1 1
1 1

+ img2
−1 −1
−1 −1

14: for i = 1 to Num of itera do

15: ū = u

⎡
⎣

1
12

1
6

1
12

1
6 0 1

6
1
12

1
6

1
12

⎤
⎦ Compute local averages of the flow

16: v̄ = v

⎡
⎣

1
12

1
6

1
12

1
6 0 1

6
1
12

1
6

1
12

⎤
⎦

17: Update u and v using the Eq. (29) and (30)
18: end for
19: return u, v
20: end procedure
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Algorithm 2 Real-time Hermite optical flow estimation.
1: procedure Real-time Hermite optical flow method
2: α ← Smoothing parameter
3: γ ← Weight parameter
4: Num of itera ← Number of iterations
5: N ← Maximum Hermite polynomial degree
6: M ← Square Gaussian window size (M + 1)
7: img1 ← Imagen in time t

8: img2 ← Imagen in time t + 1
9: u ← Matrix of zeros of size of img1

10: v ← Matrix of zeros of size of img1
11: Compute the analysis Hermite filters Dm,n−m from Eq. (5) and (6):
12: for n = 0 to N do
13: for m = 0 to n do
14: Lm,n−m = img1 Dm,n−m Cartesian Hermite coefficients img1
15: Lwm,n−m = img2 Dm,n−m Cartesian Hermite coefficients img2
16: θ = arctan L0,1

L1,0
Phase of the gradient of Hermite coefficients img1

17: θw = arctan Lw0,1
Lw1,0

Phase of the gradient of Hermite coefficients img2

18: gm,n−m(θ) =
n

m
cosm θ · sinn−mθ Angle functions img1

19: gwm,n−m(θw) =
n

m
cosm θw · sinn−m Angle functions img2

20: ln,θ = N
n=1 Lm,n−m gm,n−m(θ) ST coefficients img1

21: ln,θ(m)+1
(X) = N

n=1 L(m)+1,n−m(X) · gm,n−m(θ)

22: ln,θ(n)+1
(X) = N

n=1 Lm,(n+1)−m(X) · gm,n−m(θ)

23: lwn,θ = N
n=1 Lwm,n−m gwm,n−m(θ) ST coefficients img2

24: end for
25: end for
26: L0t = Lw0,0 − L0,0 Temporal derivatives
27: ln,θt = N

n=1 lwn,θw − N
n=1 ln,θ

28: for i = 1 to Num of itera do

29: ū = u

⎡
⎣

1
12

1
6

1
12

1
6 0 1

6
1
12

1
6

1
12

⎤
⎦ Compute local averages of the flow

30: v̄ = v

⎡
⎣

1
12

1
6

1
12

1
6 0 1

6
1
12

1
6

1
12

⎤
⎦

31: Update u and v using the Eq. 27 and 28
32: end for
33: return u, v
34: end procedure
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5 Implementation on Navigation Mobile Robots

This section describes a case study in which a mobile robot implements a move-
ment detection controller based on the Hermitian optical flow approach presented
earlier. For experimental purposes, this controller was developed and implemented
in a LEGO® robot with a mounted webcam, and the whole system communicates
with MATLAB which computes the control system. In that sense, the whole robotic
system is introduced in this section as well as the design of the control law.

5.1 Description of the System

In this case study, a mobile robot was implemented with the LEGO® Mindstorms
EV3 as both the mechanical and the electrical platform because it is easy and
practical to use. In particular, the mobile robot was built as in a tank configuration
using two direct current (DC) motors and two rubber bands as actuators, and the
robot was planned to be in a differential steering configuration. In addition, a
webcam was mounted on the robot to be used as the sensor. For experimental
purposes, the intelligent brick of the LEGO® Mindstorms EV3 set was used as an
interface between the mobile robot and a computer with MATLAB®, as the latter
was employed to compute the control of the whole system. Both the webcam and
the intelligent brick communicated with the computer via USB. Figure 7 shows a
diagram of the robotic system. The technical specifications of the robotic system are
summarized in Table 1.

computer with MATLAB

webcam (sensor)

DC motors (actuators)

intelligent brick

LEGO Mindstorms EV3 robot

USB 
communication

Fig. 7 Diagram of the robotic system employed in the case study
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5.2 Characterization of Hermite Optical Flow Method
in Robot Navigation

In order to develop a nature-inspired control law for robot navigation, a charac-
terization of the real-time Hermite optical flow method was performed. This
characterization considered a description of the performance of the RT-HOF in
terms of the displacement values measured between two images. Two experiments
were conducted: a displacement measurement using RT-HOF without timeout
limitations between frames (soft real-time system), and the second experiment
measures the displacement values using RT-HOF with hard timeout deadlines
between frames (hard real-time system).

5.2.1 Characterization in a Soft Real-Time Hermite
Optical Flow System

The first experiment for characterizing the proposed real-time Hermite optical flow
algorithm was developed under a soft real-time framework avoiding any deadline
times, i.e., the software is free to use unlimited time for computing displacements
between two images. In the experiment, the LEGO® robot was located statically in
front of a reconfigurable wall. That wall worked as the background of the scene,
with four possible configurations: white, dry-leaves, blue-square, and red-stripes
backgrounds, as shown in Fig. 8. Then, another LEGO® robot started to move in
front of the main robot with a certain speed (also configurable in three possible
states: low, medium and hard). A short video was recorded using the same webcam
mounted on the main robot.

For analysis purposes, a test point marked in red color was previously located at
the middle of the secondary robot. Then, manual segmentation was done to find the
test point in every frame of the short video. After that, the RT-HOF algorithm
measured the displacement of the test point in the whole video. Figure 9 shows the
mean of magnitude and phase of the displacement at the test point for some rep-
resentative cases, best and worst results, of the secondary robot using all back-
grounds. In Tables 2 and 3, we show the results in magnitude and phase of the

Table 1 Technical specifications of the robotic system

Component Description

Webcam sensor 1.3 M pixels, 1280 × 1024 max resolution

DC motor actuators 9 V-input, 0.55 A nominal, 2.03 W mechanical power, 4.95 W
electrical power, 160 rpm max nominal

USB
communication

9600 baud rate

Windows-based
workstation

Intel® Xeon® six-core processor 2.6 GHz, 32 GB RAM
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vector of displacement at the test point for each speed case and for each back-
ground. Notice that the displacement of the test point relatively measures the dis-
placement of the whole secondary robot (e.g., as a dynamic obstacle). It is evident
from Fig. 9 that the RT-HOF method can distinguish different levels of speed in
mobile obstacles in both plain and texturized backgrounds without any difficulties.
For comparison purposes, the Horn method was also computed as seen in Fig. 9.

5.2.2 Characterization in a Hard Real-Time Hermite
Optical Flow System

The second experiment for characterizing the proposed RT-HOF method was
developed under a hard real-time framework with a time rate of 100 ms. The same
scene was occupied with four different backgrounds (see Fig. 8) and three levels of
speed in the dynamic obstacle. However, an automated segmentation was employed
to extract only the measured displacements of the dynamic obstacle online (sec-
ondary robot), and then the mean displacement (magnitude and angle) was obtained
for each pair of frames in the webcam streaming. Figure 10 shows some the mean
displacement at the mobile obstacle for each speed case using all background
configurations, and Tables 4 and 5 summarizes the whole experimental results.

Some conclusions can be drawn from Figs. 9 and 10, and Tables 4 and 5. First,
the Horn-based method generates a greater angle than Hermite-based method.

Fig. 8 Examples of backgrounds used in the experiments: a white, b dry leaves, c blue squares,
d red stripes
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While Horn-based method can distinguish large speeds in both white and
blue-squares backgrounds, it cannot recognize large speeds in both dry-leaves and
red-stripes backgrounds significantly. In addition, Hermite-based method can
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Fig. 9 Displacement characterization for a soft real-time system, best and worst results for the
mean of magnitude and phase: a best absolute magnitude error with red stripes background at
speed one, b worst absolute magnitude error with dry leaves background at speed two, c best
absolute phase error with blue squares background at speed three, d worst absolute phase error
with squares background at speed three

Table 2 Displacement characterization in magnitude for a soft real-time system

Background Method Mean magnitude error l� r [px]

m1 m2 m3

White Horn 1:34� 0:02 1:94� 0:44 2:16� 0:63

Hermite 1:10� 0:07 1:64� 0:36 1:86� 0:55

Dry-leaves Horn 1:28� 0:03 1:70� 0:41 1:85� 0:58

Hermite 1:09� 0:07 1:46� 0:33 1:66� 0:54

Blue squares Horn 1:18� 0:04 1:62� 0:38 1:78� 0:53

Hermite 1:00� 0:09 1:34� 0:28 1:55� 0:47

Red stripes Horn 1:90� 0:56 1:75� 0:41 1:90� 0:56

Hermite 1:04� 0:08 1:42� 0:32 1:60� 0:48
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Table 3 Displacement characterization in phase for a soft real-time system

Background Method Mean angle error l� r [�]
h1 h2 h3

White Horn 19:61� 9:31 30:79� 14:45 34:79� 15:53

Hermite 14:39� 5:24 13:09� 6:70 14:07� 7:33

Dry-leaves Horn 16:61� 9:94 30:17� 19:23 32:23� 20:91

Hermite 15:55� 5:38 17:98� 7:47 18:57� 10:00

Blue squares Horn 14:85� 16:17 22:93� 15:04 24:82� 16:05

Hermite 16:17� 5:87 15:26� 6:90 14:57� 7:84

Red stripes Horn 15:25� 9:94 25:75� 16:04 28:32� 2:11

Hermite 13:81� 5:23 13:90� 6:44 13:82� 7:526
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Fig. 10 Examples of the displacement characterization for a hard real-time system: a white
background, b dry-leaves background, c blue squares background, d red stripes background.
(strong-line) Hermite-based method, (dashed-line) Horn-based method. Arrows represent vectors
of displacement
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distinguish between speeds in any background. The overall results of these
experiments are that real-time Hermite optical flow can be used as a nature-inspired
control law because its performance can distinguish between different levels of
speeds in dynamic obstacles, and it responds well in hard real-time framework.

5.3 Design of the Nature-Inspired Control Law

The LEGO® robot was controlled using a nature-inspired control law, based on the
real-time Hermite optical flow method. Following, we describe the methodology to
design the nature-inspired controller.

This work adopted the agent-environment cycle methodology for designing the
control law in the robot, as shown in Fig. 11. This aims that the robot perceives the
state of the environment (e.g., the scene in which the robot is interacting), then a
specific robot architecture defines how this perception is interpreted to finally get a
decision of the type of action it will perform in the environment. Once the action is
selected, the robot executes it and the agent-environment cycle assumes that the

Table 4 Displacement characterization in magnitude for a hard real-time system

Background Method Magnitude l� r [px=s]

m1 m2 m3

White Horn 0:74� 0:09 0:88� 0:08 0:93� 0:06

Hermite 0:74� 0:07 0:90� 0:09 0:98� 0:05

Dry-leaves Horn 0:72� 0:063 0:88� 0:05 0:91� 0:07

Hermite 0:74� 0:062 0:92� 0:04 0:98� 0:05

Blue squares Horn 0:70� 0:06 0:94� 0:10 1:01� 0:05

Hermite 0:78� 0:07 1:02� 0:04 1:11� 0:02

Red stripes Horn 0:69� 0:07 0:86� 0:08 0:92� 0:040

Hermite 0:74� 0:08 0:90� 0:11 1:00� 0:042

Table 5 Displacement characterization in phase for a hard real-time system

Background Method Angle l� r [�]
h1 h2 h3

White Horn 15:10� 3:19 20:56� 4:27 26:90� 5:21

Hermite 12:84� 1:89 17:33� 3:96 25:02� 4:43

Dry-leaves Horn 12:38� 3:20 16:60� 3:47 22:47� 6:56

Hermite 13:04� 2:34 17:48� 3:09 24:23� 2:38

Blue squares Horn 11:22� 2:82 17:47� 4:16 22:65� 4:38

Hermite 10:99� 2:11 15:05� 1:94 22:47� 4:08

Red stripes Horn 15:33� 3:57 20:68� 2:97 27:41� 4:96

Hermite 14:87� 2:66 19:06� 2:48 27:54� 3:59
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state of the environment changes, giving the opportunity to the robot to start the
process again.

Thus, the design of the nature-inspired control law in this work refers to find a
suitable robot architecture. In Fig. 12 the final design of the robot architecture used
in this case study is depicted. As shown, the robot starts the process acquiring
images at 100 ms of frame rate. Then, a pair of two adjacent images are analyzed
using the real-time Hermite optical flow. A map of the displacements is then
obtained showing where objects in images are moving. Next, an automated seg-
mentation is done in order to get only the displacements that reaches an empirical
threshold, assuming that dynamic obstacles perform displacements greater than this

environment

agent

architecture
perception action response

Fig. 11 Agent-environment cycle

IMAGE
ACQUISITION

REAL-TIME HERMITE
OPTICAL FLOW

AUTOMATED
SEGMENTATION

MEAN-VALUES
COMPUTATION

RULES-BASED
CONTROLLER

two adjacent images

global displacements

perception

local displacements (object detection)

u , v

action response

^ ^

Fig. 12 Diagram of the
nature-inspired controller
used in the case study
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threshold. For this case study, a threshold value of Tseg ¼ 0:5 was selected (using a
trial-and-error approach). In addition, this case study supposes that there is one
dynamic obstacle in front of the LEGO® robot at most. Thus, the automated seg-
mentation finds the dynamic obstacle and computes its local displacements.

In Fig. 13, we show an example of the field of displacements segmented
observed by the LEGO® robot when it moves and other robot approximates.

Later on, the robot computes the mean value û of the horizontal component of
displacements and the mean value v̂ of the vertical component of the displacements.
Also, the resultant angle ĥ of the displacements is computed. All these values give to
the robot some advice about the movement of the dynamic object in the two
dimensions projected on the image. Then, a rule-based controller was designed in
terms of the mean values û and v̂ and the angle ĥ. Algorithm 3 shows the prototype of
the rules-based controller. As noted, it requires two thresholds Tu and Tv associated to
the horizontal and vertical components of the dynamic obstacle’s displacement.

Algorithm 3 Rules–based controller used in the case study.
1: if û > Tu and v̂ > Tv then
2: if θ̂ > Tθ then
3: braking or steering–to–the–right
4: else if θ̂ < Tθ and θ̂ ! = 0 then
5: braking or steering–to–the–left
6: else
7: go–forward
8: end if
9: else

10: go–forward
11: end if

Two experiments were conducted to find the thresholds Tu and Tv for the
rules-based controller. The first experiment consisted on having a fixed obstacle in
front of the LEGO® robot, and this one moves straight until reached the fixed

Fig. 13 An example of the field observed by the robot
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obstacle. The webcam mounted in the robot acquired images at 100 ms of frame
rate. The real-time Hermite optical flow with automated segmentation obtained the
mean values û and v̂ during the translation. Then both mean values were plotted as
shown in Fig. 14. As noted, when the robot is far from the obstacle the v̂ value is
small, when the robot is close to the obstacle the v̂ value is large (slope of 0.02
px/s). The û value is not affected (slope of 7.1 × 10 − 4 px/s). The same experiment
was repeated but now the fixed obstacle was replaced with a dynamic obstacle with
constant speed. Results of this experiment are shown in Fig. 15. Notice that when û
is minimum and v̂ is maximum, the mobile obstacle is placed in front of the robot.
From the latter figures it can be seen that the most appropriate threshold values are
Tu ¼ 0:6 px and Tv ¼ 0:5 px.
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Fig. 14 Experiment 1 for extracting the threshold values of the components in displacements
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In addition, a threshold Th is needed for determining the direction of the mobile
obstacle. In this case study, a value of Th ¼ 40� was used (obtained by
trial-and-error). At last, the robot takes a decision from the rules-based controller,
picking the more suitable action. For this case study three possible actions were
designed: go-forward, braking, or steering. Once the LEGO® robot performs the
action, the whole process is repeated again.

5.4 Experimental Results for Dynamic Obstacles Avoidance

This case study implemented the proposed real-time Hermite optical flow method
as a nature-inspired controller for dynamic obstacles avoidance in robots (Fig. 12).
In particular, a LEGO® robot with a webcam, as the unique sensor, was employed.
Two experiments were performed as follows: a braking action and a steering action.

5.4.1 Braking Action

This experiment consisted on braking the LEGO® robot when a mobile obstacle is
presented in front of it. Once the obstacle moves on, the robot can go straight again.
Figure 16 show the trajectories of the robot in that situation with three possible
constant speeds of the mobile obstacle: low, medium and high. It is evident from
Fig. 16 that in all cases the LEGO® robot can stop without colliding with the obstacle.

(a)

(b) (c)

Fig. 16 An example of the trajectories and evidence of the braking actions in the robot, using a
mobile obstacle with a low, b medium and c high speed
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In Fig. 17 we show the image sequence of the trajectory followed for the
LEGO® robot for the medium speed, where the braking action is observed in the
three images of the central row.

Fig. 17 Image sequence of the trajectory of robot for braking action in medium speed

(a) (b)

(c)

Fig. 18 An example of the trajectory and evidence of the steering action in the robot: a turns left,
b turns right and c avoidance behavior when a mobile obstacle moves diagonally
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5.4.2 Steering Action

This experiment consisted on steering the LEGO® robot when a mobile obstacle is
presented in front of it. In particular, the robot steers in the opposite direction of the
obstacle. The trajectory obtained from the experiment when the robot turns left and
when it turns right are shown in Fig. 18a–b, and when it avoids a mobile obstacle

Fig. 19 Image sequence of the trajectory of robot for the left turn action

Fig. 20 Image sequence of the trajectory of robot for the right turn action
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that moves diagonal is shown in Fig. 18c. Notice that the LEGO® robot can avoid
mobile obstacles in all situations.

The paths followed for the LEGO® robot are shown in the image sequences of
Figs. 19 and 20 respectively, where the turn’s choice of robot in both cases is
opposite to direction of the obstacle in motion. In Fig. 21 we show the image
sequence for the avoidance behavior of a mobile obstacle that moves diagonal.

6 Conclusions and Future Work

This work presented and described a new Hermite optical flow (RT-HOF) method
for real-time purposes as a nature-inspired technique for computer vision. As
described, this new real-time Hermite optical flow method is easier to implement
and faster than the original Hermite optical flow method. In particular, this work
focuses on using that approach for controlling a mobile robot.

As a case study, a LEGO robot with a webcam was occupied to design a
controller for mobile obstacles avoidance. A detailed description of the design
methodology of the controller was included, from an agent-environment based
model to the robot’s architecture. Different tests were run for characterizing and
validating the controller. In fact, several comparisons between the proposed
RT-HOF method with Horn and Schunck-based algorithm were developed in terms
of background textures and velocities of mobile obstacles, in which RT-HOF
method resulted to be very effective for real-time purposes. On the other hand, the
design of the nature-inspired controller was described such that the robot can

Fig. 21 Image sequence of the path followed for the robot when a mobile obstacle moves
diagonally
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perform actions based on its perception of the environment. Some guidelines were
also presented to find empirical parameters in the controller.

Results confirm that the nature-inspired controller based on the new real-time
Hermite optical flow method can avoid mobile obstacles in two different approa-
ches: braking and steering when mobile obstacles are close to the robot. In addition,
background textures and colours did not affect the performance of the controller. To
this end, it is remarkable to say that this nature-inspired approach allows robots
avoid mobile obstacles even though the parameters of the whole robotics system are
unknown. In contrast with other works that perform obstacle avoidance with optical
flow methods, the proposed RT-HOF: (i) is fast enough to compute an approximate
solution of displacements between images that can be used as a visual perception in
robotic systems, (ii) is robust to different background textures and colours, (iii) al-
lows designing a nature-inspired controller, and (iv) its performance does not
depend on parameters of a robotic system.

In future work, other improvements to the real-time Hermite optical flow method
will be attended to increase the accuracy in the approximation of displacements and
multi-resolution approaches will also be considered. Hardware independence is also
considered for autonomous navigation of robots. In addition, other environmental
characteristics will be evaluated, e.g. variation of light intensity. Also, the set of
actions in the robot will be increased to perform better obstacle avoidance. Lastly,
applications of this approach in the real-world will be investigated.
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