
The Spread of Innovatory Nature
Originated Metaheuristics in Robot
Swarm Control for Smart Living
Environments

Bo Xing

Abstract The main purpose of introducing ambient assistive living (AAL) robots is
to assist the disabled and elderly people at home. In recent years, this field has evolved
quickly because of the enormous increase in computing power and availability of the
improved variety of sensors and actuators. However, design of AAL robots control
system is a huge challenge, which require solving issues related to two classes: design
of mechanical structure and development of an efficient control system. In this
chapter, we focus on the latter topic, since even relatively low quality hardware can be
used for solving sophisticated tasks if the software control it correctly. The chapter
starts by giving a vision of what heterogeneous AAL robots is supposed to look like
and how a human is to act, navigate and function in it. Particularly, we investigate the
effect of artificial neural network (ANN) based control techniques for AAL robots. To
enhance the accuracy and convergence rate of ANN, a newmethod of neural network
training is explored, i.e., grey wolf optimization (GWO). Moreover, we provide an
overview of applying emerging metaheuristic approaches to various smart robot
control scenarios which, from the author’s viewpoint, have a great influence on
various AAL robot related activities, such as location identification, manipulation,
communication, vision, learning, and docking capabilities. The findings of this work
can provide a good source for someone who is interested in the research field of AAL
robot control. Finally, we concludes with a discussion of some of the challenges that
exist in the AAL robot control.

Keywords Ambient assisted living (AAL) � Robot control � Computational intel-
ligence (CI) � Bacteria foraging optimization (BFO) � Bees algorithm (BA) �
Glowworm swarm optimization (GSO) � Electromagnetism-like mechanism (EM) �
Intelligentwater drops (IWD) �Ambient assisted living (AAL) �Assistive technology
services (ATSs) � Nature-inspired computing � Robot control �Metaheuristics

B. Xing (&)
Computational Intelligence, Robotics, and Cybernetics for Leveraging E-Future (CIRCLE),
Faculty of Science and Agriculture, Department of Computer Science,
School of Mathematical and Computer Sciences, University of Limpopo, Private Bag X1106,
Sovenga, Limpopo 0727, South Africa
e-mail: bxing2009@gmail.com

© Springer International Publishing Switzerland 2016
H.E. Ponce Espinosa (ed.), Nature-Inspired Computing for Control Systems,
Studies in Systems, Decision and Control 40, DOI 10.1007/978-3-319-26230-7_3

39

1 Introduction

The ability to moving independently is essential for the full development of our
lives. Traditionally, for people who have mobility in their upper limbs, the use of
mechanical or electric wheelchairs represents a way to regain some of their mobile.
However, it is important that the user must acquire knowledge and skills to handle
them. In addition, the users have very limited options for take care of themselves.
For these reasons, in recent years, there is an increasing interest in the development
of assistive technology services (ATSs).

Generally speaking, ATSs aim at applying ambient intelligence technology to
support independent living of people with disabilities and special demands [1]. From
this perceptive, device-based (e.g., ambient assistive living robots, AAL robots for
short) technologies can be seen as important tools that provide high standards to
cognitive capabilities, autonomy and movement precision. Applications of AAL
robots include independent living [2], surgery [3, 4], rehabilitation [5, 6], and
entertainment [7], to name a few. As with any robotics, one of the most challenging
problems in AAL robots (in particular with heterogeneous robot members) is the
design of an appropriate control system, such as fusion of various sensor informa-
tion, high accuracy actuation, and reliable software implementation. In this chapter,
we intend to utilize artificial neural network (ANN) trained by a novel nature
originated metaheuristics for fulfilling such control task.

With this in mind, the remainder of this chapter is organized as follows: First,
Sects. 2 and 3 briefly introduce the relevant terms used throughout this study;
Second, the focal problem of this chapter is elaborated in Sect. 4 which is followed
by a detailed explanation of the employed methodology in Sect. 5; right after this,
Sect. 6 describes the experimental environment setup of this chapter; Next the
future work provided in Sect. 7 outlines several limitations of the present work;
Finally, Sect. 8 draws the conclusion of this study.

2 Background of Ambient Assisted Living (AAL) Robot

According to [8], a robot can be broadly defined as an apparatus that is designed to
act as an intelligent linkage between perceiving and acting. Under the umbrella of
this definition, mobile robots are mainly referred to the robots the can relocate
themselves from one location to another autonomously, i.e., without their sur-
rounding human beings’ interference. Unlike their industrial counterparts that can
move only along a specific trajectory, mobile robots are capable of moving around
freely within a predetermined workspace for the purpose of fulfilling a goal.
Following this trend, AAL robot has become an active research in the area of
healthcare.

The main purpose of introducing AAL robots is to assist the disabled and elderly
people at home [9–11]. Nowadays, there are many types of AAL robots being

40 B. Xing

developed in research laboratories and by companies all over the world. In general,
they can be categorized into three categories: robots assisting with daily living
activities (such as feeding and dressing), robots assisting with instrumental activi-
ties of daily living (such as housekeeping and preparing food), and robots assisting
with enhanced activities of daily living (such as communication and engaging in
hobbies) [10]. For example, “Care-O-bot” [12–14], a robot developed by
Fraunhofer IPA, is able to fetch and carry objects, communicate with older people,
and supply emergency support; “RIBA” [15, 16], a robot developed by RIKEN-TRI
Collaboration Center, can help patient transfer; “uBot5” [17], another robot from
the University of Massachusetts Amherst, is capable of achieving multiple postures
for the purpose assisting elderly in compensating for impaired upper extremity
function; “PerMMA (i.e., Personal Mobility and Manipulation Appliance)”
[18–20], a research outcome from the Carnegie Mellon University and the
University of Pittsburgh, can assist persons with severe physical disabilities;
“PaPeRo” [21–23], another case developed by NEC, is used to communicate; and
“Emiew” [24–26] developed by Hitachi, can interact with human beings; and
“Hospi-R” [27, 28], an autonomous delivery robot developed by Matsushita, can
even perform complex service tasks. The promising results of the above-mentioned
AAL robotic systems indicated that robots could be used as effective ATS tools.

3 Background of Artificial Neural Networks

The original inspiration for ANN is the highly interconnected, massively parallel,
distributed, adaptive neuron-and-synapse structure of the brain [29]. In general, the
neurons are organized in the form of layers. Each neuron in a layer has weighted
connections to neurons in other layers. The main working principle is the weights
are adjusted adaptively according to the task under execution in order to improve
the overall system performance. According to [30], there are three primary features
of ANN, namely utilization of large amounts of sensory information, collective
processing capability, and learning and adaptation capability. Broadly, ANN can be
classified into two categories: single layer perceptron (SLP) and multi-layer per-
ceptron (MLP).

3.1 Single Layer Perceptron

This network consists of two layers (see Fig.1): the input layer where data or signals
are presented to the network, and the output layer which produces the output value
of the network to a given input. That means, neurons grouped in layers with only
connections between neurons in subsequent layer. Such a network is called a
“single-layer”, since there is only output layer that performs the computation. It is
the basic form of a neural network used for the classification of a special type of

The Spread of Innovatory Nature Originated Metaheuristics … 41

patterns, which are linearly separable, i.e., patterns that lie on opposite sides of a
hyperplane [31].

In its simplest form, it would consist of set of single inputs to a single neuron,
which outputs a single output. A more useful form is illustrated in Fig. 2.

In Fig. 2, a signal xj at the input of synapse j connected to neuron k is multiplied
by the synaptic weight wkj. It also adds the concept of an applied bias, denoted by
bk. It is used to increase or lower the net input of the activation function, depending
on whether it is positive or negative, respectively.

In mathematical terms, we may describe the neuron k by writing the pair of
equations as shown in Eqs. (1)–(3) [32]:

lk ¼
Xm
j¼1

wkj � xj ð1Þ

yk ¼ u vkð Þ ð2Þ

vk ¼ lk þ bk ð3Þ

Fig. 1 Feedforward network with a single layer of neurons

42 B. Xing

where x1; x2; . . .; xm are input signals; wk1;wk2; � � � ;wkm are the respective synaptic
weights of neuron k; lk is the linear combiner output to the input signals; bk is the
bias; u �ð Þ is the activation function which defines the output of a neuron in terms of
the induced local field v; vk is the activation potential or induced local field, and yk
is the output signal of the neuron.

In the simplest case of activation function (i.e., threshold function), the output is
computed as Eq. (4) [32]:

u vkð Þ ¼ 1 if vk � 0

0 if vk\0

(
ð4Þ

Correspondingly, the output of neuron k employing such a threshold function is
expressed as Eq. (5) [32]:

yk ¼
1 if vk � 0

0 if vk\0

(
ð5Þ

It is important to understand that the form of the activation function, once it is
chosen, is will be used for all neurons in the network. In addition, the bias can be
seen as an external parameter of neuron k. So we may formulate it as Eq. (6) [32]:

vk ¼
Xm
j¼0

wkj � xj ð6Þ

Fig. 2 Nonlinear model of a neuron, labeled k

The Spread of Innovatory Nature Originated Metaheuristics … 43

In Fig. 3 a new synapse is added. Its input is shown in Eq. (7) [32]:

x0 ¼ þ 1 ð7Þ

and its weight is expressed in the form of Eq. (8) [32]:

wk0 ¼ bk ð8Þ

We may therefore reformulate the model of single neuron k as illustrated in Fig. 3.

3.2 Multi-layer Perceptron

In the literature, a feedforward neural network (FNN) with hidden layers is often
referred to as multi-layer perceptron (MLP). The term “hidden” refers to all other
layers with no direct connections from or to the outside. The function of hidden
neuron is to intervene between the external input and the network output in some
useful manner. According to [32], the basic features of MLPs are: (i) there are one
or more layers that are hidden from both the input and output nodes; (ii) the net-
work exhibits a high degree of connectivity; and (iii) the model of each neuron in
the network has a nonlinear activation function which is differentiable. The per-
formance of the multi-layer neural network is influenced greatly by the number of
hidden layers and the number of nodes in a hidden layer. By adding one or more

Fig. 3 Another nonlinear model for neuron, labeled k

44 B. Xing

hidden layers, the network has the capability to extract higher-order statistics from
its input. Overall, the output of MLPs are calculated through the following steps
[32]:

First, the weighted sums of inputs are computed via Eq. (9) [32]:

vj nð Þ ¼
Xm
i¼0

wji nð Þ � yi nð Þ ð9Þ

where vj nð Þ is the induced local field produced at the input of the activation function
associated with neuron j; m is the total number of inputs (excluding the bias)
applied to neuron j; wji shows the connection weight from the ith node in the input
layer to the jth node in the hidden layer; the synaptic weight wj0 (corresponding to
the fixed input y0 ¼ þ 1) equals the bias bj applied to neuron j. Hence, the function
signal yj nð Þ appearing at the output of neuron j at iteration n is obtained via Eq. (10)
[32]:

yj nð Þ ¼ uj vj nð Þ� � ð10Þ

Then the induced local field for neuron k is expressed in Eq. (11) [32]:

vk nð Þ ¼
Xm
i¼0

wkj nð Þ � yj nð Þ ð11Þ

where m denotes the total number of inputs (excluding the bias) applied to neuron k;
the synaptic weight wk0 nð Þ is equal to the bias bk nð Þ applied to neuron k; and the
corresponding input is fixed at the value +1.

Next, if neuron j is in the first hidden layer of the network, then m ¼ m0 and the
index i refers to the ith input terminal of the network, for which we can write
Eq. (12) [32]:

yi nð Þ ¼ xi nð Þ ð12Þ

where xi nð Þ is the ith element of the input vector (pattern).
On the other hand, if, neuron j is in the output layer of the network, then m ¼ mL

and the index j refers to the jth output terminal of the network, for which Eq. (13)
can be obtained [32]:

yj nð Þ ¼ Oj nð Þ ð13Þ

where Oj nð Þ is the jth element of the output vector of the MLP. This output is
compared with the desired response dj nð Þ, obtaining the error signal ej nð Þ for the jth
output neuron.

The Spread of Innovatory Nature Originated Metaheuristics … 45

Finally, the activation function commonly used in MLP is sigmoidal nonlin-
earity. It is defined via Eq. (14) [32]:

uj vj nð Þ� � ¼ 1
1þ exp �avj nð Þ� � ; a[0 ð14Þ

where vj nð Þ is the induced local field of neuron j, and a is an adjustable positive
parameter.

For a neuron j located in the output layer, i.e., yj nð Þ ¼ Oj nð Þ, we may express the
local gradient for neuron j in the form of Eq. (15) [32]:

dj nð Þ ¼ ej nð Þ � u0 vj nð Þ� �
¼ a � dj nð Þ � Oj nð Þ� � � Oj nð Þ � 1� Oj nð Þ� �

; neuron j is an output node

ð15Þ

where Oj nð Þ is the function signal at the output of neuron j, and dj nð Þ is the desired
response for it.

On the other hand, for an arbitrary hidden neuron j, we may express the local
gradient through Eq. (16) [32]:

dj nð Þ ¼u0 vj nð Þ� � �X
k

dk nð Þ � wkj nð Þ

¼ a � yj nð Þ � 1� yj nð Þ� � �X
k

dk nð Þ � wkj nð Þ; neuron j is hidden
ð16Þ

3.3 Artificial Neural Network in Robot Control

Many problems in robotics are unknown, stochastic, and highly non-linear
dynamics which offer significant challenges to traditional control methods. To cope
with those problems, in recent years, artificial neural network (ANN) based control
technique has become more and more popular. A neural network is a massive
system of parallel distributed processing elements connected in a graph topology
[32]. Usually, the networks are designed to direct a manipulator (e.g., motor) based
on sensor data. According to the literature [32–34] the key factors of using ANN
control scheme for robotics include: (i) no mathematical process model or
rule-based knowledge required; (ii) highly adaptation; (iii) learning capability, such
as supervised or unsupervised learning; (iv) fault tolerance; (v) massive parallelism;
and (vi) generalization.

Until now, ANN based control has been applied in different robots control areas.
For example, the authors of [34] presented a systematic design methodology to a
motion adaptive control based on ANN. In [35], a ANN-based controller was

46 B. Xing

developed for the tracking control of an n rigid-link robot manipulator. In addition,
paper [36] employed an observer-based adaptive wavelet neural network tracking
control scheme to tackle problems such as system uncertainties, multiple
time-delayed state uncertainties, and external disturbances. More recently, a new
ANN-based control platform called spiking neural network (SNN) has been used
for mobile robot controllers. It used pulse codings to incorporate spatial-temporal
information in communication and computation, like real neurons do. Interested
readers please refer to [37–39] for more details.

4 Problem Statement

There are many extant versions of ANNs, despite their discrepancies, they all share
one common feature that is learning which emphasize an ANN’s capability of
improving its performance based on the accumulated experience. Briefly, the
learning capability of an artificial neuron is achieved by adjusting the weights in
accordance to the chosen learning algorithm. Similarly to biological neurons, ANNs
have been equipped with mechanisms to adapt themselves to a set of given inputs.
Normally, there are two types of learning here: supervised and unsupervised. In the
supervised learning, the ANN is provided with feedbacks from an external source
(i.e., supervisor). In the latter case, however, an ANN adapts itself to inputs (aka
learn) without any extra external feedbacks [40]. In general, the approach that offers
learning to an ANN is called trainer. A trainer takes in charge of training NNs to
achieve the highest performance for new sets of given inputs. In the supervised
learning, a training approach first provides ANNs with a set of data called training
data. The trainer then adjusts the structural parameters of the ANN in each training
step for the purpose of improving the performance. Once the training phase is
accomplished, the trainer is omitted and ANN is ready to use. The trainer if thus
often regarded as the most important component of any ANNs.

Typically, there are two types of training approaches in the literature: deter-
ministic versus stochastic. In the first sort, back propagation (BP) and
gradient-based methods are often employed. In such techniques, the training phase
results in the same performance if the training samples remain consistent. The
trainers in this group are mostly mathematical optimization techniques that aim to
find the maximum performance (minimum error). In contrast, the trainers in the
stochastic camp utilize stochastic optimization techniques to fulfil the goal of
maximizing performance of an ANN. The advantages of the deterministic trainers
lie in their simplicity and converging speed. Deterministic training algorithm nor-
mally starts with a solution and guides it toward an optimum. Though the con-
vergence speed is indeed very fast, quality of the obtained solution highly depends
on the initial solution input. Also, there is a high probability of trapping in a local
optima which is often referred to the sub-optimal solutions in a search space that
might misleading us that the global optimum is obtained. The daunting issue here is

The Spread of Innovatory Nature Originated Metaheuristics … 47

the unknown number of runs that a trainer needs to be restarted with different initial
solutions so as to increase the hope of finding global optimum. On the contrary,
stochastic trainers start the training process with random solution(s) and evolve it
(them). Randomness is the essential component of the stochastic trainers that apply
to both initial solutions and method of solution’s improvement during the training
process. Though they are generally much slower than their deterministic counter-
parts, the advantage of stochastic methods is the high capability of local optima
avoidance. This merit verifies the reasons of why stochastic training methods have
been gaining much attention recently [40].

We can roughly divide stochastic training algorithms (in the context of training
ANNs) into two groups: single-solution and multi-solution based algorithms. In the
first sort, a trainer starts the training with a single randomly constructed ANN and
evolves it repeatedly until the stopping criterion are satisfied. Examples of
single-solution-based trainers are such as simulated annealing and hill climbing. In
the second camp, a multiple-solution-based algorithm initiates the training process
by a set of randomly created ANNs and evolves them with respect to each other
until the termination conditions are met. The literature indicates that stochastic
algorithms with multiple solutions often offer higher ability of escaping from local
optima trap. Some of the most popular multi-solution trainers in the literature can be
further grouped into two classes: conventional and innovatory metaheuristics [41].
The word heuristic has its origin in the old Greek word heuriskein, which means the
art of discovering new strategies (rules) to solve problems. The suffix meta, also a
Greek word, means “upper level methodology.” Metaheuristic search approaches
can be defined as upper level general methodologies (templates) that can be used as
guiding strategies in designing underlying heuristics to solve specific optimization
problems [42].

• Conventional metaheuristics: genetic algorithm (GA), particle swarm opti-
mization (PSO), ant colony optimization (ACO), and differential evolution (DE)

• Innovatory metaheuristics: artificial bee colony (ABC), hybrid central force
optimization and particle swarm optimization (CFO-PSO), social spider opti-
mization (SSO) algorithm, chemical reaction Optimization (CRO), charged
system search (CSS), invasive weed optimization (IWO), and teaching-learning
based optimization (TLBO).

The reason as to why these optimization techniques have been employed as
training algorithms is their outstanding performance in terms of approximating the
global optimum.

To summarize, although many applications of ANNs (e.g., robot control) can be
found in the literature, training ANNs is always a challenging task. As we can see
from previous discussion, the weights and biases are responsible for defining the
final output of MLPs from given inputs. Finding proper values for weights and
biases in order to achieve a desirable relation between the inputs and outputs is the
core of training MLPs. Bearing this in mind, the focal problem of this chapter is
placed in the background of AAL with a focus of training MLPs for the purpose of
controlling robot swarm.

48 B. Xing

5 Employed Methodology

In order to meet the chapter theme, we employ a newly developed algorithm called
grey wolf optimizer (GWO) [43] which is inspired by the grey wolves hunting and
searching behaviours. In [43], the authors classified the wolves into 4 groups, i.e.,
alphas, betas, deltas, and omegas. In addition, they assumed that among the groups,
alpha (the fittest solution), beta, and delta have better knowledge about the potential
location of prey [43]. Overall, the GWO can be seen as a two-stage method, i.e.,
encircling the prey during the hunting process using hyper-cubes framework and
then employing an intensive local search mechanism for optimization. Like many
other novel CI algorithms, GWO also includes a balance between
exploitation/exploration. This offers the advantage of enhanced search ability while
maintaining adequate exploitation capability.

5.1 Fundamentals of GWO

In the following, we describe the steps to be taken for obtaining an efficient
implementation of GWO.

• Step 1: Generate the initial the grey wolf population, Xi, i ¼ 1; 2; . . .; n.
• Step 2: Initialize the algorithm parameters (a; A; and C) as follows [43]:

A
!¼ 2 a!� r!1 � a!

C
!¼ 2 � r!2

ð17Þ

where A
!

and C
!

are coefficient vectors, the components of a! are linearly
decreased from 2 to 0 over the course of iterations, and r!1 and r!2 are random
vectors in 0; 1½ �.

• Step 3: Evaluating the fitness value, i.e., Xa, Xb, and Xd.
• Step 4: Position correction-cooperation between current search agents by

Eqs. (18) and (19), respectively [43]:

D
!

a ¼ C
!

1 � X!a � X
!��� ���

D
!

b ¼ C
!

2 � X!b � X
!��� ���

D
!

d ¼ C
!

3 � X!d � X
!��� ���

8>>><
>>>:

ð18Þ

The Spread of Innovatory Nature Originated Metaheuristics … 49

X
!

1 ¼ X
!

a � A
!

1 � D
!

a

� �
X
!

2 ¼ X
!

b � A
!

2 � D
!

b

� �
X
!

3 ¼ X
!

d � A
!

3 � D
!

d

� �

8>>>>><
>>>>>:

ð19Þ

where D
!

is the distance of each candidate solution from the prey,

X
!

a; X
!

b; and X
!

d are the positions vector of the prey, t represents the current

iteration, and X
!

indicates the position vector of a grey wolf.
• Step 5: Updating the best location of the hunting wolves through Eq. (20) [43]:

X
!

tþ 1ð Þ ¼ X
!

1 þ X
!

2 þ X
!

3

3
ð20Þ

• Step 6: Evaluating the stopping criteria. If yes, generate output; otherwise, go
back to Step 2.

Although the GWO is designed in a very simple manner, i.e., only three main
parameters need to be adjusted, each parameter has its own functionalities. For
example, the objective for parameters a and A is to find a reasonable balance
between two factors: first, a too narrow focus of the search process, which in the
worst case may lead to stagnation; second, a too weak guidance of the search,
which can cause excessive exploration, i.e., when Aj j\1, the wolves will attack
towards the prey; otherwise, the wolves keep searching for prey. In addition,
parameter C has two features: First, it provides random weights for prey in order to
stochastically emphasize (C[1) or deemphasize (C\1) the effect of prey in
defining the distance; Second, it represents the effect of obstacles to approaching
prey in nature [43].

5.2 Training MLP via GWO

In general, the following common design questions [42, 44], namely, the repre-
sentation, the objective, and the evaluation/cost function, are the key to a successful
implementation of all metaheuristics. Loosely speaking, the representation refers
how a computer keeps the candidate solutions and objects that it handles in the
process of searching for new ones; the objective stands for the goal that one is
planning to achieve; and the evaluation/cost function denotes a way of verifying the
quality of the obtained solution to the problem. In summary, these three pillars form
a strategic troika which means one has to give a careful consideration to each
element.

50 B. Xing

The meanings of this statement, in the context of training ANN via meta-
heuristics, are threefold: first, formulating the problem of training MLP in an
acceptable way of utilizing a particular metaheuristic; second, setting up the training
purpose, i.e., reducing the difference between the desirable outputs and the obtained
outcomes; third, defining a suitable evaluation function that can guide the search of
an employed metaheuristic. The following subsections elaborate how this could be
done.

5.2.1 Solution Representation

In practice, the alternative candidate solutions are often encoded via representation
for manipulating purpose, and thus it is often regarded as one of the fundamental
design questions in the development of metaheuristics. For each tackled problem,
the search space and its associated size are often determined by how a potential
solution is represented and its corresponding interpretations. This statement implies
that the efficiency and effectiveness of any implemented metaheuristic are often
largely influenced by the chosen representation and the selected way of encoding,
rather than by the problem itself. Picking out the right search pace is the first and
foremost in implementing a metaheuristic. If an appropriate domain is not targeted
at the very beginning of each search, one may fall into two embarrassing situations:
either adding a large amount of unfeasible or repeated possible solutions to the
shortlist, or excluding the potential right answer(s) from the selected search space.

Although the specific solution representation is often scenario dependent, some
general rules can still be concluded as follows [42]:

• Comprehensiveness: A complete set of all possible solutions associated with the
tackled problem have to be represented.

• Convexity: There is always a search path exists between any two solutions of
the search space.

• Efficacy: The easy-to-manipulate (e.g., time and space complexities) degree of a
representation must be high.

In the literature, there are many straightforward encoding methods can be used
for dealing with some conventional families of optimization problems (see Fig. 4).
In practice, these representation can be combined to form new type of represen-
tations for addressing new scenarios.

According to [40], the variables in vector form are suitable for GWO, therefore
weights and biases of an MLP are described as Eq. (21) [40]:

V ¼ w; hf g ¼ w1;1;w1;2; . . .;wn;n; h1; h2; . . .; hh
	
 ð21Þ

where the number of the input nodes is denoted by n, wi;j represents the connection
weight from the ith to the jth node, hj shows the threshold bias of the jth hidden
node.

The Spread of Innovatory Nature Originated Metaheuristics … 51

5.2.2 The Objective

Once the search space has been confirmed after the representation stage, one has to
decide what the objective of the targeted problem at hand is. This is more like a task
statement (in mathematical form) which concludes what need to be achieved. In the
context of MLP training, the main purpose of training an MLP is to achieve the
highest accurate degree in terms of classification, approximation, or predication for
both training and testing samples. A commonly used measurement for quantifying
such achievement is to calculate the mean square error (MSE), which means the
difference between the desirable outputs (di) and the obtained outcomes (yi), after a
set of training samples being applied to an MLP. The objective of training an MLP
can thus be interpreted simply as Eq. (22) [40]:

min
X

di � yið Þ2 ð22Þ

Mathematically, Eq. 23 [40] can be employed to calculate such difference.

MSE ¼
Xm
i¼1

dki � yki
� �2 ð23Þ

Fig. 4 Typical encoding examples

52 B. Xing

where m denotes the number of outputs/outcomes, dki and yki refer to the desired
output and actual outcome, respectively, of the ith input node when the kth training
sample is applied.

5.2.3 The Evaluation Function

The evaluation function is generally not the same thing as the previously described
objective. It is most commonly a mapping from the potential candidate solutions’
space (under the selected representation scheme) to a set of numbers (e.g., the
reals). In other words, the evaluation function f �ð Þ associates with each candidate
solution (belonging to the search space) a numeric value to indicate the quality or
the fitness of the solution, e.g., f : S ! R. The evaluation function gives one an
opportunity to compare the usefulness of a present solution with its alternative
counterparts. Sometimes, the evaluation function is ordinal since it only offers a
ranking of all possible solutions; whereas it may also be numeric by offering not
only the order of the solutions but also their corresponding quality degrees [42, 44].

The evaluation function is a crucial element in implementing a metaheuristic
since it will guide the search towards “optimal” or “good-enough” solutions within
the search space. In a word, regardless of whatever metaheuristic algorithm is
employed, no feasible solutions can be obtained if the evaluation function is not
properly defined. Nevertheless, in almost all real-world problems, the evaluation
function does not come with the problem by itself. How should one go about
making such choice? A good rule of thumb is a solution can be regarded as the best
evaluation when it meets the objective thoroughly. In other words, it is unaccept-
able for an evaluation function to conclude that a solution (unable to meet the
objective) is better than the other one (successfully meet the objective). But this is
too elementary to design a suitable evaluation function.

Often, the objective implies a particular evaluation function. Based on our
previous description, an MLP can be regarded as effective only if it is able to adapt
itself to the whole training sample set. Accordingly, Eq. (24) below can be used to
verify such effectiveness [40]:

MSE ¼
Xs

k¼1

Pm
i¼1 dki � yki

� �2
s

ð24Þ

where s represents the number of training samples, and other parameters follow the
same definition described in Eq. (7).

By now, the problem of training an MLP can be summarized and formulated as
Eq. (25) below [40]:

minimize : f Vð Þ ¼ MSE ð25Þ

The Spread of Innovatory Nature Originated Metaheuristics … 53

But, what if one cannot always derive valuable evaluation function from the
objective? In these cases, one has to be clever enough to resort to some substitute
evaluation functions that suit the needs of the problem at hand, the selected rep-
resentation, and the operators that we implement to go from one solution to the
next. The selection of such evaluation function is certainly out of the scope of this
chapter, interested readers please refer to [44] for more details.

5.2.4 Training Progress

The generalized process of training an MLP via GWO is depicted in Fig. 5, from
which we can see that GWO first takes the MSE from MLP, and then return MLP
with the adjusted weights and biases. This process is performed recursively by
GWO algorithm where the value of weights and biases are continuously rearranged
so that the MSE can be largely minimized for all training data. An expanded version
of this training process can be found in [40].

5.3 Concise Summary of Training Performance

As one of the most cited and test datasets, the Iris dataset [45], which comprises 4
attributes, 150 training/test samples, and 3 classes, is also employed to test the
performance of training MLP through GWO. Due to the characteristics of Iris
dataset, the MLP is constructed as a 4-9-3 structure and the problem thus has 75
variables in total. By testing the GWO-bolstered MLP trainer on the Iris dataset, we
can obtain the following experimental results (see Fig. 6 for illustration): MSE ¼
0:229� 0:0032 and the classification rate equals to 92 %. The results verify the
GWO’s merits of superior local optimal avoidance capability, and outstanding
accuracy achievability. Interested readers please refer to [40] for more evidence of
GWO’s advanced performance.

Fig. 5 Flowchart of GWO training MLP [40]

54 B. Xing

6 Experimental Environment Setup

6.1 Focal Scenario

Mobile robots can be roughly classified into the following groups: grounded mobile
robots, nautical mobile robots, and aeronautical mobile robots. A complete AAL
robot army can certainly involve all these members, say, grounded ones for
interaction with elderly people, nautical ones for sewage cleaning, and aeronautical
ones for house surroundings surveillance. Nevertheless, this seems too large for our
experimental case to handle. So we decide to pay our attention only to the grounded
mobile robots with a particular interest in human rescue task. The team members
involved in our grouped mobile robots group are legged and wheeled robots.
Typically, a heterogeneous robot team comprise distinct robots with different type
of designs or functionalities that are most often complementary to each other for the
purpose of accomplishing jobs more efficiently [46]. Unfortunately, the realization
of a heterogeneous swarm of robots in real-world turns out to be an uphill work.
The most daunting issue lies in that how the underlying control scheme could be
designed and operated for dealing with the complex behavioural regulation and
hardware arrangement [46]. Fortunately, by observing the behaviour of a swarm of
social animals (e.g., ants, birds, herd, and fish) such as the features of
self-organizing, decentralization, and emergence of collective actions, we can find
inspiration of calibrating the desired robot team’s control strategy [47]. For
instance, the behaviour of ants [48] has inspired a number of researchers in pur-
suing collective robotics [49–53] design and analysis. An interesting initiative is
“Swarmanoid” project [46, 54], which provides a modular framework for hetero-
geneous robot groups’ control. Meanwhile, some researchers (e.g., [55]) also have
explored heterogeneity at the hardware level (e.g., different sets of sensors or
effectors). Bearing all this ongoing studies in mind, we make an attempt in this
chapter to study the effectiveness of employing a novel control scheme, i.e., GWO
algorithm trained MLP, in manipulating a heterogeneous swarm of ALL robots.

Fig. 6 Converging curve of
MLP trained by GWO

The Spread of Innovatory Nature Originated Metaheuristics … 55

6.2 Mechatronic Design of Heterogeneous Robot Team

6.2.1 Design Blueprint

An important phase of building any robot swarm is its hardware design which is
rather interactive since all components and/or parts will be used to assemble the
final prototype. Since most existing work, at the hardware level, have been focusing
on exploring the collective behaviour with homogeneous concept. Instead, in this
project, we decided to exploit reconfigurability, and modularity using heteroge-
neous robots with decentralized control algorithms which are influenced by ants,
bees colony, and insects behaviours [7]. One of the main characteristics of the
designed heterogeneous robot swarm is that team members can perceive their
surrounding environmental physical properties via various sensors, and can then
executing auto-manipulation and fulfil self-localization through different actuators.
The application of the developed robot warm is not only restricted to a research
platform but also towards any potential deployment in real-world environments.
The modular hardware architecture comprises independent sensory units, actuator
modules, and communication kits, which help the swarm system to achieve the
scalability and flexibility so that additional sensors and/or actuators could be added
without bothering changing the overall architecture.

When designing and implementing the hardware platform for our targeted
heterogeneous robot team, there are a lot of issues that need to be taken into
account. Some of them are outlined as below:

• For wheel type of robots, a suitable diameter size for the shaft which houses the
friction wheels.

• Select right type of wheels for avoiding slipping off while passing through
special terrains, e.g., high inclines.

• Due to the rapid development of various techniques such as microcontroller,
sensor units, and actuator kits, the platform’s upgradability, modifiability, and
compatibility need to be carefully considered.

• When integrating modularity and flexibility platform design concepts, one
should not sacrifice the feature of user friendly.

• The reconfigurability of the platform should also be enhanced by fully
embracing the software and middleware’s upgrading.

• A sustainable power consumption plan, say, incorporating a high capacity
battery which will lead to less power losses over the circuitry regulation.

• A wireless communication capability is a must for our robot team and thus a low
cost but still effective information exchange plan should be investigated for both
indoor and outdoor scenarios.

• The factors of size, shape, and weight of the potential platform also require an
examination for the sake of robots’ movability and manoeuvrability.

• The functionality, coordination, cooperation, and communicability between
robots are also worth a scrutiny.

56 B. Xing

Bearing the abovementioned key points in mind, we set out to construct our
heterogeneous robot team. By the time of compiling this chapter, we have pre-
liminary completed two types of living assistant robots (wheel- and crocodile-robot)
which are wholly assembled and ready to test for various applications such as
simultaneously localization and mapping, avoiding obstacle, performing painting
task, and executing rescue duty. The simplicity of the design allows an easy
replication of each type of robot which can then form a swarm of robots. By
utilizing local information and following some basic rules, these robot agents are
able to sense, localize, and actuate for accomplishing complex work. For the rest of
this section, the key modules of our robot (including both mechanical and electronic
components) are briefed together with their working principles.

6.2.2 Input—Perception

Sensors are vital components of robotics system, since they provide information
that allows us to monitor and to control the operation of these systems. Without the
availability of sensory information, automated systems cannot operate. In our test
environment, the functional movements of a limb involved for achieving a task are
generally complex, therefore there is the need of combining different sensor
modalities to improve the control process, such as proximity measurement (e.g.,
ultrasonic and infrared sensors), position measurement (e.g., encoders), temperature
measurement (e.g., thermistors), vibration measurement (e.g., accelerometers),
chemical measurement (e.g., gas sensors), GPS measurement, and video mea-
surement (e.g., cameras) [56].

• Proximity measurement: Proximity sensors, used to determine the presence of
nearby objects, were devised to extend the sensing range beyond that offered by
direct-contact tactile sensors [57–59]. In our study, the main purpose of using
these types of sensors is to detect obstacle and avoid collision. Based on specific
properties used to initiate a switching action, they can be classified into several
types: magnetic, inductive, ultrasonic, microwave, optical, and capacitive.
Among these, ultrasonic sensors were found to be more accurate and have a
much larger detection distance than other types of proximity sensors [59]. In
addition, we employ infrared proximity sensors in motion detectors as well.

– Ultrasonic sensors: Ultrasonic proximity sensors are available with an analog
output voltage that is a function of the distance of the object away from the
sensor or with two states of digital output that indicate object
presence/absence within a defined zone. One feature of ultrasonic sensors is
that they are not affected by the colour, transparency, or lighting conditions
of the object being detected.

– Infrared sensors: Infrared sensors consist of two parts: an infrared emitter and
receiver. The emitter is actually an LED that emits light that’s invisible to the
human eye, and the receiver part of the switch collects the IR light that is
reflected back. The working principle is that the obstacles cause more light

The Spread of Innovatory Nature Originated Metaheuristics … 57

than usual to be reflected, which tells you that there is something in front of
the sensor.

• Position measurement: Position sensors are ones that that provide information
about the change in the position of a rigid body [57–59]. These types of sensors
can be classified as those that provide analog output (such as potentiometers and
resolvers) and those that provide digital output (such as encoders).

– Digital optical encoders: A digital optical encoder is a non-contact,
optical-based device that converts motion into a sequence of digital pulses
[60]. They have both linear and rotary configurations. The former are used to
measure the linear position and velocity of a translating object, and the latter
are used to measure the angular position and velocity for a rotating shaft.
According to the literature [61], rotary encoders are the most widely used
position sensors in robotic applications, since they provide acceptable res-
olution with good noise immunity at low cost.

• Temperature measurement: Temperature is a basic quantity in process control
systems, and there are several types of sensors available to measure temperature,
such as thermistors, thermocouples, resistance temperature detector (RTD), and
IC sensors.

• Vibration measurement: Vibratory motion commonly occurs in machinery and
flexible structures. Measurement of vibration is important for machine health
monitoring of motors, pumps, fans, gearboxes, machine tool spindles, blowers,
and chillers. It is usually measured by either accelerometers or vibrometers.

• Chemical measurement: There are many sensors available for detecting chem-
icals of various kinds, such as smoke, gas, moisture, etc.

– Gas sensors: Gas sensors contain a small heating element and a catalytic
detector to detect concentrations of gases. Using such a device involves
supplying a voltage to the heating element and putting the sensors pins in a
voltage divider arrangement with a fixed resistor to create a measureable
output voltage.

• GPS measurement: GPS relies on a constellation of satellites. Each satellite
contains a highly accurate clock that is synchronized with all the other satellites
in the constellation. The satellites then broadcast this time signal.

• Cameras: Cameras are considered as complex environmental sensing systems
that can be used for capturing and tracking objects locations, recognizing motion
patterns, and so on.

6.2.3 Output—Action

In the context of mobile robots, mobility may refer to many actions such as the
maximum obstacle size that a mobile robot can get over, the steepest slope that a
mobile robot can go up, the largest amount of stairs that a mobile robot can climb,

58 B. Xing

the deepest swamp that a mobile robot can traverse, the highest distance that a
mobile robot can jump, and the widest crevasse that a mobile robot can leap. But all
these actions seem to be covered by a more generic concept, that is, mobility system
which contains all necessary actuator components for constructing mobile robots.
Since wheeled and legged mobile robots are the main focus of this case study, only
key mobile system components needed by these robots are elaborated as below.

• Wheel size: The main objective in the control of wheeled robots is to remain
balanced and avoid toppling [62]. In general, a bump which the mobile robots
climb over, is one-third or less of the diameters of robot’s wheels. As a result, to
have the enough precession rate for balancing, design parameters of the wheel
such as a diameter, a width, a mass, and spinning speed, which determine the
size of the wheel that should be selected appropriately.

• Wheel structure: There are many structure alternatives for designing wheeled
mobile robots, from more popular type with four-wheels to relatively unusual
type with one-wheel. A robot with a single wheel has limited mobility, but
enhances its obstacle-crossing ability, smoothness of motion and rolling effi-
ciency [63]. Interested readers please refer to [64] for illustrative examples. For
two wheels, there are two obvious layouts, i.e., bicycle-type, and
inverted-pendulum type. The former is easier to control at low speeds, but it is not
inherently stable; the latter is possible to achieve static stability by accurately
placing the center of gravity on the wheel axle, but it always required for dynamic
balancing. Three wheels are the minimum required for static stability. They come
in many varieties, from very simple two-actuator differential drive, synchronous
drive, to complicated holonomic omnidirectional type (e.g., an omnimobile robot
with Swedish wheels, active caster wheels, and steerable wheels). Finally, the
four wheeled layouts. The well-known one is the car-like structure, i.e., the front
two wheels are synchronously steered to keep the same instantaneous center of
rotation. A major advantage of this type is that it is stable during high-speed
motion. However, it requires a slightly complicated steering mechanism.

• Leg geometry: Like wheeled robots, stability is a major concern in legged robots
as well, since they tend to be tall and top heavy. As a result, the types of leg
geometries are the key factors for the realization of proper walking capability.

• Leg actuator: One of the greatest problems in the realization of legged robots is
the leg actuators which are responsible for the locomotion. In general, there are
three major techniques for moving legs on a mobile robot, i.e., linear actuators,
direct-drive rotary, and cable driven.

By now, we have our prototype robots (see Fig. 7) designed, built, and ready to
be controlled.

6.2.4 Control—Inference

In general, mobile robot design problem can be classified into two directions:
design of mechanical structure and development of an efficient control system.

The Spread of Innovatory Nature Originated Metaheuristics … 59

Typically, robot control systems include open-loop and closed-loop. The archi-
tecture of an open-loop system is based on the current state and model of the
system, whereas a control system that makes use of feedback is called a closed-loop
system. Since the robots usually need to work in an unstructured environment, the
closed-loop control system (i.e., with a means of responding to the problems) has
been shown more powerful. In particular, if sufficient knowledge can be provided
through an autonomous learning process, the control system can result in more
autonomous and robust context. Nowadays, computational intelligence algorithms
(e.g., artificial neural networks, genetic algorithm, and fuzzy logic) are well known
to be computational tools to improve the performance of control techniques.
Among others, artificial neural networks (ANNs) worth a mention due to their
capability of learning, strong noise toleration, and generalizing. In this chapter, we
employ supervised MLP (i.e., multi-layer perceptron) due to its popularity and
simplicity (see Fig. 8 for illustration).

Fig. 7 Prototype robot platform

Fig. 8 Schematic
representation of supervisied
MLP

60 B. Xing

The structure of supervise learning neuron robot control is shown in Fig. 9. As we
can see from Fig. 9, the supervisor controller (i.e., GWO in the context of this study)
trains the neurocontroller via different training patterns that can control the robot
successfully. In detail, during the control period by the supervisor, each neuron is
manipulated as a “black box” and all possible combination of neuron input signal
and outputs/states of the robotic system are sampled, stored and analysed for the
training of the neural network. After the training period, the neurocontroller takes the
control actions, and the supervisor is deconnected from the system.

7 Limitations and Future Work

The limitations of the present work are threefold.

7.1 The Implementation of GWO Trained ANN
into Heterogeneous Robot Control

In this chapter, we have successfully introduced the GWO trained MLP into our
robot swarm control scenario. An immediate future work of the present study is to
perform real-world testing on our robot team. The testing is envisioned as below:
Initially only MLP controlled robots are employed and the time of completing the
pulling task is recorded. Later on, GWO trained MLP control strategy should be
introduced and the duration of task finishing is again recorded. For the purpose of
evaluation, different time consumption and the achieved task accuracy can be
compared between distinct robot deployments. Meanwhile interest readers can
tailor their own arrangement to reach the best overall system performance.

Fig. 9 Structure of neurocontrolled robot with supervised learning

The Spread of Innovatory Nature Originated Metaheuristics … 61

7.2 Training ANN via Other Innovatory Nature
Originated Algorithms

Recently, there are wide spread of nature originated metaheuristics across the lit-
erature. Nevertheless, according to our preliminary overview, the application of this
algorithms in training MLP is limited. Apart from several attempts mentioned in the
beginning of this chapter, there are still a large amount of approaches left untouched
such as bat inspired algorithms, biogeography-based optimization algorithm, cat
swarm optimization algorithm, cuckoo inspired algorithms, luminous insect
inspired algorithms, fish inspired algorithms, frog inspired algorithms, fruit fly
optimization algorithm, group search optimizer algorithm, music inspired algo-
rithms, imperialist competitive algorithm, amoeboid organism algorithm, artificial
search swarm algorithm, artificial tribe algorithm, bar systems algorithm, bean
optimization algorithm, to name a few. Interested readers please refer to [41] for
more details.

7.3 Comparing GWO Trained ANN with Other Versatile
Versions of Nature Originated Algorithms in Robot
Control

The third limitation of this study is the lack of the comparison between GWO
trained ANN and the other nature originated algorithms in terms of robot control. At
the end of this study, we briefly overview the corresponding literature with a hope
of directing future research in this regard.

7.3.1 Bacteria Foraging Optimization in Robot Control

Bacterial foraging optimization (BFO) algorithm was originally proposed in
Passino [65] where the foraging strategy of E. Coli bacteria has been simulated.
Typically, the BFO consists of four main mechanisms: chemotaxis, swarming,
reproduction, and elimination-dispersal event. Based on the basic BFO, an
improved version was proposed in [66] to deal with robot navigation problem. Two
simulation scenarios, namely, (i) fixed obstacle and target; and (ii) randomly
moving obstacles and fixed target, were considered by the authors of [66].
10 standard deviation values of path lengths were assigned to each testing scenarios
where the obtained results are classified into three groups, i.e., best, worst, and
average. By comparison the experiment results, both BFO algorithms (improved
and basic version) outperform the traditional particle swarm optimization algorithm.
At the end of their study, the authors claimed that BFO is very powerful in fulfilling
the robot path navigation task.

62 B. Xing

7.3.2 Bees Algorithm in Robot Control

Inspired by natural foraging behavior of honey bees, the bees algorithm (BA) was
proposed by the authors of [67]. Mobile robots for public service have always been
a great research interest both for academic and industry. During the past few years,
the study of robot swarm and its related topic has become a hot area. In [68], the
authors utilized BA to study a group of reconfigurable mobile robots which are
designed to provide daily service in hospital environments for different kinds of
tasks such as guidance, cleaning, delivery, and monitoring. The fulfilment of each
job requires an associated functional module that can be installed onto various robot
platforms via a standard connection interface. Since the classic BA focuses mainly
on single-objective functional optimization problems, a variant called binary BA
(BBA for short) was proposed by the authors of [68] to deal with the
multi-objective multi-constraint combinatorial optimization task. In BBA, a bee is
describe as two binary matrixes MR and RH, standing for how to assign the M
tasks to the R robots and the R robots to the H homes, respectively. The size of MR
is M � R in which its R columns represent the R robots, while the M missions is
represented by the M rows. The authors evaluated the BBA with an example
problem (20 missions, 8 robots, and 4 homes) with a size of 820 � 48 ¼ 276

combinations. At first, 12 stochastic solutions are obtained by scout bees through
global search in which six elite bees survive after the non-dominated selection. The
final experiments demonstrated that BBA is a suitable candidate tool in treating
workload balancing issue among a team of swarm robots.

7.3.3 Glowworm Swarm Optimization in Robot Control

The glowworm swarm optimization (GSO) algorithm was proposed by the authors
of [69]. This algorithm gets its inspiration from the behavior from glowworms and
it shares some common points with other population-based algorithms such as ant
colony optimization and particle swarm optimization. The agents in GSO are a
group of glowworms that carry a luminescent quantity call luciferin. Normally,
GSO starts by randomly placing n glowworms in the search space so that they are
well distributed. Initially, all glowworms carry an equal quantity of luciferin l0.
Typically, each iteration of GSO algorithm consists of three rules, namely,
luciferin-update rule, movement rule, and transition rule.

In [70], the authors built a team of four wheeled-mobile robot named Kinbots,
and employ GSO algorithm to fulfill the collective robot control. In the work, they
equipped their Kinbots with infrared sensor-based interaction modules which can
offer a hardware capability to perform luciferin emission or detection and a
behavior of leader-following. In a subsequent study [71], the same authors con-
ducted a preliminary experiment to demonstrate the performance of GSO in robot
swarm control. A set of three glowworms (i.e., Kinbots) A, B, and C are initially
located at the corners of an equilateral triangle (side is 50 cm). Kinbots A and B

The Spread of Innovatory Nature Originated Metaheuristics … 63

remained stationary during the study, and emitted a luciferin value of 128 and 60,
respectively, while a luciferin value of 40 was glowed by the Kinbot C. At each
iteration, the sweep platform performs three tasks: first, homes by turning
clock-wise until it make a proper angle with the heading direction of the Kinbots;
second, does a 180� scanning to acquire intensity samples and localize the neigh-
bors; and third, aligns along the line-of-sight of each neighbor to receive the
luciferin value emitted by itself. The sensing phase of the first cycle is completed at
10 s. For simplicity, the authors of [71] introduced a maximum-neighbor selection
rule that is a Kinbot chooses to move toward a neighbor which emits maximum
luciferin. The simulation results demonstrated the suitability of applying GSO in
dealing with the problem of multiple source localization encountered in the domain
of robot control.

7.3.4 Electromagnetism-like Mechanism in Robot Control

Similar to that in the elementary electromagnetism, the authors of [72] regarded
teach sample point as a charged particle that is released to a space. In the proposed
electromagnetism-like mechanism (EM) approach, the objective function value is
associated with the charge of each point which determines the magnitude of
attraction/repulsion of the point over the sample population. In other words, the
higher the magnitude of attraction, the better the objective function value. Once we
get the value of these charges, we can use them to look for a direction, usually
obtained through the evaluation of a combination force that exerts on the point via
other points, where each point can move toward in the subsequent iterations. Like
the electromagnetic forces, by adding vectorially the forces from each of the other
points, we can obtain the required force. Typically, the EM algorithm consists of
four phases, namely, initialization, local search, total force calculation, and the
movement.

In order to deal with the path tracking problem, in [73], the authors employed
EM to minimize the mobile robot controller’s cost function in real time manner.
The authors made the comparisons between two algorithm, namely, EM and the
reference algorithm. From the simulation results, it is observed that the linear and
angular velocities of the target mobile robot optimized by EM method have a faster
convergence speed. The study of [73] successfully demonstrated that the EM
approach present a good performance in minimizing the cost function. The major
advantage of employing EM algorithm was, concluded at the end of [73], the ability
to provide an effective and simple predictive control strategy.

7.3.5 Intelligent Water Drops Algorithm in Robot Control

The inspiration of intelligent water drops (IWD) algorithm comes from the water
drops that flow into rivers, lakes, and seas. The core concept is that gravitational
form of the earth drags the water drops in a river to flow towards their final

64 B. Xing

destination. The author of [74] invented this algorithm in 2007. With the recent
technological advancement, the development of unmanned vehicular systems, in
particular the unmanned combat aerial vehicle (UCAV), have been proved to be
beneficial in both military and civilian applications. Nevertheless, the complete
benefits of such unmanned systems can only be fulfilled and utilized when their
operations could achieve an autonomous level. One of the key requirements for
realizing such autonomy is the ability of detecting internal and external changes,
and reacting to them in a safe and efficient manner, especially without the inter-
vention from their human operators. Under such circumstance, the trajectory
planning becomes a nontrivial task. Typically, the goal of trajectory planning is to
generate a space path between an initial location and the desired destination that has
an optimal or near-optimal performance under different constraint conditions. In
[75], the authors made an attempt to solve this imperative task by utilizing IWD
algorithm. Since the generated UCAV optimal trajectory using the proposed IWD
algorithm is normally difficult to be implemented in real flying environment due to
the potential turning points on the optimized trajectory, the authors of [75] further
adopted a class of dynamically feasible trajectory smooth strategy named
k-trajectory. Finally, a series of case studies were conducted in their study under
complicated combating environments. From the experimental results, it can be
observed that the proposed IWD algorithm can find a feasible and optimal trajectory
for the single UCAV. Meanwhile, the adopted k-trajectory approach is also every
effective in smoothing the UCAV trajectory with a small computational load and
real-time simulation possibility.

7.3.6 Gravitational Search Algorithm in Robot Control

Gravitational search algorithm (GSA) was originally proposed by Rashedi et al.
[76]. In GSA, all the individuals can be mimicked as objects with masses. Based on
the Newton’s law of universal gravitation, the objects attract each other by the
gravity force, and the force makes all of them move towards the ones with heavier
masses. In addition, each mass of GSA has four characteristics: position, inertial
mass, active gravitational mass, and passive gravitational mass. The first one cor-
responds to a solution of the problem, while the other three are determined by
fitness function. More detailed discussions regarding GSA can be found in [41, 76].

Although legged robots are slower and more complicated, they have many
advantages under certain conditions, such as better adaptability to irregular terrain
conditions, and better climbing and obstacle overcrossing capability, which enable
them to be more flexible than other types of locomotive mechanisms and can thus
be deployed in multitude of dynamically changing situations. While building
walking robot, stability is a key factor that needs to be considered since it is
fundamental to the overall performance of terrestrial locomotion. In [77], the author
made an attempt to use the characteristics of genetic and GSA to generate gait for a
hexapod walking robot. The experimental results demonstrated that, in general, the
increase of fitness of transformed gaits can be achieved in comparison with the

The Spread of Innovatory Nature Originated Metaheuristics … 65

fitness of the initial gait population. At the end of the study, the author of [77]
suggested that supplementary mechanisms can be added for compensating the
deviation of the robot path from pre-set trajectory.

8 Conclusion

The research of AAL robot has for sure not yet reached its frontiers and there is still
a lot of work could be done to narrow the gap between academia’s know-how and
practitioners’ requirements. In this work, MLP, an algorithm that is planned to be
used for heterogeneous AAL robot team control, was trained via a new proposed
GWO algorithm. In order to get desired results, the training problem was first
formulated to fit the needs of GWO algorithm. The optimal values for weights and
biases of MLP are then determined by GWO. The capability of performing high
level of exploration and exploitation proved GWO’s usefulness of training
MLP. Another contribution made by this study lies in that it also provided a picture
about some newly developed nature originated metaheuristic algorithms and how
are they being applied to smart robot control area. Though this work is not com-
pleted without certain limitations, the study itself is exploratory in nature. It is
believed that this chapter can, through the scattered literature, open a new window
to other scholars who share the similar research interests.

References

1. Anonymous.: Ambient Assisted Living Roadmap. European Ambient Assisted Living
Innovation Alliance. IOS Press, Amsterdam, The Netherland (2010)

2. Borja, R., de la Pinta, J.R., Álvarez, A., Maestre, J.M.: Integration of service robots in the
smart home by means of UPnP: a surveillance robot case study. Robot. Auton. Syst. 61,
153–160 (2013)

3. Schauer, D., Hein, A., Lueth, T.C.: RoboPoint—an autoclavable interactive miniature robot
for surgery and interventional radiology. Int. Congr. Ser. 1256, 555–560 (2003)

4. Pisla, D., Gherman, B., Vaida, C., Suciu, M., Plitea, N.: An active hybrid parallel robot for
minimally invasive surgery. Robot. Comput. Integr. Manuf. 29, 203–221 (2013)

5. Yu, H., Huang, S., Chen, G., Thakor, N.: Control design of a novel compliant actuator for
rehabilitation robots. Mechatronics 23, 1072–1083 (2013)

6. Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., Xie, S.S.: Recent development of mechanisms
and control strategies for robot-assisted lower limb rehabilitation. Mechatronics (in press)

7. Banks, M.R., Willoughby, L.M., Banks, W.A.: Animal-assisted therapy and loneliness in
nursing homes: use of robotic versus living dogs. J. Am. Med. Directors Assoc. 9, 173–177
(2008)

8. Tzafestas, S.G.: Introduction to Mobile Robot Control. Elsevier Inc., London (2014), ISBN
978-0-12-417049-0

9. Wu, Y.-H., Wrobel, J., Cristancho-Lacroix, V., Kamali, L., Chetouani, M., Duhaut, D., et al.:
Designing an assistive robot for older adults: the ROBADOM project. IRBM 34, 119–123
(2013)

66 B. Xing

10. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults.
IEEE J. Biomed. Health Inform. 17, 579–590 (2013)

11. Feil-Seifer, D., Matarić, M.J.: Defining socially assistive robotics. In: Proceedings of the 2005
IEEE 9th International Conference on Rehabilitation Robotics, June 28–July 1, 2005. Chicago,
IL, USA (2005)

12. Graf, B.: (2014). Care-O-bot. http://www.care-o-bot.de/en/care-o-bot-3.html. Accessed on 30
July 2015

13. Graf, B., Hans, M., Schraft, R.D.: Care-O-bot II: development of a next generation robotic
home assistant. Auton. Robots 16, 193–205 (2004)

14. Graf, B., Parlitz, C., Hägele, M.: Robotic home assistant Care-O-bot 3 product vision and
innovation platform. In: Jacko JA (ed.) Human-Computer Interaction, Part II, (HCII 2009),
LNCS 5611, pp. 312–320. Springer, Berlin (2009)

15. RIKEN-TRI Collaboration Center.: RIBA. http://rtc.nagoya.riken.jp/RIBA/index-e.html.
Accessed on 30 July 2015

16. Mukai, T., Hirano, S., Nakashima, H., Kato, Y., Sakaida, Y., Guo, S., et al.: Development of a
nursing-care assistant robot RIBA that can lift a human in its arms. In: Presented at the The
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18–22,
2010. Taipei, Taiwan (2010)

17. Kuindersma, S.R., Hannigan, E., Ruiken, D., Grupen, R.A.: Dexterous mobility with the
uBot-5 mobile manipulator. In: Presented at the International Conference on Advanced
Robotics (ICAR), June 2009, pp. 1–7 (2009)

18. Xu, J., Grindle, G.G., Salatin, B., Vazquez, J.J., Wang, H., Ding, D., et al.: Enhanced
bimanual manipulation assistance with the personal mobility and manipulation appliance
(PerMMA). In: Presented at the The 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, October 18–22, 2010. Taipei, Taiwan (2010)

19. Wang, H., Grindle, G.G., Candiotti, J., Chung, C., Shino, M., Houston, E., et al.: The personal
mobility and manipulation appliance (PerMMA): a robotic wheelchair with advanced mobility
and manipulation. In: Presented at the The 34th Annual International Conference of the
IEEE EMBS, San Diego, California USA, 28 Aug–1 Sept 2012

20. Cooper, R.A., Grindle, G.G., Vazquez, J.J., Xu, J., Wang, H., Candiotti, J., et al.: Personal
mobility and manipulation appliance-design, development, and initial testing.
Proceddings IEEE 100, 2505–2511 (2012)

21. Sato, M., Sugiyama, A., Ohnaka, S.: Auditory system in a personal robot, PaPeRo. In: 2006
Digest of technical Papers International Conference on Consumer Electronics (ICCE 06),
pp. 19–20. 7–11 Jan 2006

22. Sato, M., Iwasawa, T., Sugiyama, A., Nishizawa, T., Takano, Y.: A single-chip speech
dialogue module and its evaluation on a personal robot, PaPeRo-mini. In: Presented at the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3697–3700, 19–24 April. Taipei, Taiwan (2009)

23. Fujiwara, N., Hagiwara, Y., Choi, Y.: Development of a learning support system with PaPeRo.
In: Presented at the The 12th International Conference on Control, Automation and Systems,
pp. 1912–1915, 17–21 October. Jeju Island, Korea (2012)

24. Hosoda, Y., Yamamoto, K., Ichinose, R., Egawa, S., Tamamoto, J.: Collision-avoidance
algorithm for human-symbiotic robot. In: Presented at the International Conference on
Control, Automation and Systems 2010, pp. 557–561, 27–30 October. Gyeonggi-do, Korea
(2010)

25. Hosoda, Y., Egawa, S., Tamamoto, J., Yamamoto, K., Nakamura, R., Togami, M.: Basic
design of human-symbiotic robot EMIEW. In: Presented at the Proceedings of the 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5079–5084, 9–15
October. Beijing, China (2006)

26. HITACHI.: Robotics: EMIEW 2. http://www.hitachi.com/rd/portal/research/robotics/emiew2_
01.html (2014). Accessed on 30 July 2015

27. Falconer, J.: HOSPI-R drug delivery robot frees nurses to do more important work. http://
www.gizmag.com/panasonic-hospi-r-delivery-robot/29565/ (2013). Accessed on 30 July 2015

The Spread of Innovatory Nature Originated Metaheuristics … 67

http://www.care-o-bot.de/en/care-o-bot-3.html
http://rtc.nagoya.riken.jp/RIBA/index-e.html
http://www.hitachi.com/rd/portal/research/robotics/emiew2_01.html
http://www.hitachi.com/rd/portal/research/robotics/emiew2_01.html
http://www.gizmag.com/panasonic-hospi-r-delivery-robot/29565/
http://www.gizmag.com/panasonic-hospi-r-delivery-robot/29565/

28. Murai, R., Sakai, T., Kawano, H., Matsukawa, Y.: A novel visible light communication
system for enhanced control of autonomous delivery robots in a hospital. In: Presented at the
IEEE/SICE International Symposium on System Integration (SII), pp. 510–516, 16–18
December. Kyushu University, Fukuoka, Japan (2012)

29. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson
Education, Inc., Upper Saddle River (2010), ISBN 978-0-13-604259-4

30. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Pearson Education,
Inc., Delhi, India, (1999), ISBN 8I-7808-300-0

31. Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, Washington, DC (1962)
32. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, Inc., Upper

Saddle River (2009), ISBN 978-0-13-147139-9
33. Erdem, H.: Application of neuro-fuzzy controller for sumo robot control. Expert Syst. Appl.

38, 9752–9760 (2011)
34. Patiño, H.D., Carelli, R., Kuchen, B.R.: Neural networks for advanced control of robot

manipulators. IEEE Trans. Neural Networks 13, 343–354 (2002)
35. Wai, R.-J.: Tracking control basedon neural network strategy for robot manipulator.

Neurocomputing 51, 425–445 (2003)
36. Yu, W.-S., Weng, C.-C.: An observer-based adaptive neural network tracking controlof

robotic systems. Appl. Soft Comput. 13, 4645–4658 (2013)
37. Oniz, Y., Kaynak, O.: Control of a direct drive robot using fuzzy spiking neural networks with

variable structure systems-based learning algorithm. Neurocomputing 149, 690–699 (2015)
38. Wang, X., Hou, Z.-G., Zou, A., Tan, M., Cheng, L.: A behavior controller based on spiking

neural networks for mobile robots. Neurocomputing. 71, 655–666 (2008)
39. Wang, X., Hou, Z.-G., Lv, F., Tan, M., Wang, Y.: Mobile robots’modular navigation

controller using spiking neural networks. Neurocomputing 134, 230–238 (2014)
40. Mirjalili, S.: How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl.

Intell. 43, 150–161 (2015)
41. Xing, B., Gao, W.-J.: Innovative Computational Intelligence: A Rough Guide to 134 Clever

Algorithms. Springer International Publishing Switzerland, Cham (2014), ISBN
978-3-319-03403-4

42. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009), ISBN
978-0-470-27858-1

43. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61
(2014)

44. Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristics, 2nd edn. Springer, Berlin
(2004), ISBN 3-540-22494-7

45. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms, 2nd edn. Wiley,
Hoboken (2014), ISBN 978-1-118-31523-1

46. Dorigo, M., Floreano, D., Gambardella, L. M.F., Mondada, F., Nolfi, S., Baaboura, T., et al:
Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot.
Autom. 20, 60–71 (2013)

47. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004), ISBN
0-262-04219-3

48. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L.: The
dynamics of collective sorting robot-like ants and ant-like robots. In: Presented at the
Proceedings of 1st Conference on Simulation of Adaptive Behavior (1991)

49. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robot. Auton. Syst. 30,
85–101 (2000)

50. Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective robotics.
Artif. Life 5, 173–202 (1999)

51. Caro, G.D.: A society of ant-like agents for adaptive routing in networks. Unpublished Master
Thesis, Universite Libre de Bruxelles, Brussels, Belgium (2002)

52. Dorigo, M.: Swarms of self-assembling robots. In: Weyns D., Brueckner S.A., Demazeau Y.
(eds.) EEMMAS 2007, LNAI 5049, pp. 1–2. Springer, Berlin (2008)

68 B. Xing

53. Dorigo, M., Tuci, E., Trianni, V., Groß, R., Nouyan, S., Ampatzis, C., et al.: SWARM-BOT:
design and implementation of colonies of self-assembling robots. In: Yen G.Y., Fogel D.B.
(eds.) Computational Intelligence: Principles and Practice, pp. 103–135. IEEE Computational
Intelligence Society, New York (2006)

54. Ferrante, E.: A control architecture for a heterogeneous swarm of robots: the design of a
modular behavior-based architecture. Doctor of Philosophy, Universite Libre de Bruxelles
(2009)

55. Brunete, A., Hernando, M., Gambao, E., Torres, J.E.: A behaviour-based control architecture
for heterogeneous modular, multi-configurable, chained micro-robots. Robot. Auton. Syst. 60,
1607–1624 (2012)

56. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. The MIT Press,
Cambridge (2004), ISBN 0-262-19502-X

57. Regtien, P.P.L.: Sensors for Mechatronics. Elsevier Inc., London (2012), ISBN
978-0-12-391497-2

58. Scherz, P., Monk, S.: Practical Electronics for Inventors. McGraw-Hill, New York (2013),
ISBN 978-0-07-177134-4

59. Jouaneh, M.: Fundamentals of mechatronics. Cengage Learning, Stamford (2013), ISBN
978-1-111-56901-3

60. Sinclair, I.R., Dunton, J.: Practical Electronics Handbook, 6th edn. Newnes, Elsevier Ltd.,
Oxford (2007), ISBN 978-0-75-068071-4

61. Kurfess, T.R. (ed.): Robotics and Automation Handbook. CRC Press LLC, Danvers (2005),
ISBN 0-8493-1804-1

62. Chan, R.P.M., Stol, K.A., Halkyard, C.R.: Review of modelling and control of two-wheeled
robots. Annu. Rev. Control 37, 89–103 (2013)

63. Xu, Y., Ou, Y.: Control of Single Wheel Robots. Springer, Berlin (2005), ISBN
978-3-540-28184-9

64. Park, J.H., Jung, S.: Development and control of a single-wheel robot: practical mechatronics
approach. Mechatronics 23, 594–606 (2013)

65. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Syst. Manage. 22, 52–67 (2002)

66. Hossain, M.A., Ferdous, I.: Autonomous robot path planning in dynamic environment using a
new optimization technique inspired by bacterial foraging technique. Robot. Auton. Syst. 64,
137–141 (2015) (in press)

67. Pham, D.T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm—a
novel tool for complex optimisation problems. In: Second International Virtual Conference on
Intelligent production machines and systems (IPROMS), pp. 454–459 (2006)

68. Xu, S., Ji, Z., Pham, D.T., Yu, F.: Bio-inspired binary bees algorithm for a two-level
distribution optimisation problem. J. Bionic Eng. 7, 161–167 (2010)

69. Krishnanand, K.N., Ghose, D.: Glowworm swarm optimization for simultaneous capture of
multiple local optima of multimodal functions. Swarm Intell. 3, 87–124 (2009)

70. Krishnanand, K.N., Ghose, D.: Detection of multiple source locations using a glowworm
metaphor with applications to collective robotics. In: IEEE Swarm Intelligence Symposium
(SIS), pp. 84–91 (2005)

71. Krishnan, K.N., Amruth, P., Guruprasad, M.H., Bidargaddi, S.V., Ghose, D.:
Glowworm-inspired robot swarm for simultaneous taxis towards multiple radiation sources.
In: IEEE International Conference on Robotics and Automation (ICRA), pp. 958–963. May,
Orlando, Florida, USA (2006)

72. Birbil, Şİ., Fang, S.-C.: An electromagnetism-like mechanism for global optimization.
J. Global Optim. 25, 263–282 (2003)

73. Wang, Y., Yang, Y., Yuan, X., Yin, F., Wei, S.: A model predictive control strategy for
path-tracking of autonomous mobile robot using electromagnetism-like mechanism. In:
International Conference on Electrical and Control Engineering (ICECE), pp. 96–100 (2010)

74. Shah-Hosseini, H.: Problem solving by intelligent water drops. In: IEEE Congress on
Evolutionary Computation (CEC), pp. 3226–3231, 25–28 September (2007)

The Spread of Innovatory Nature Originated Metaheuristics … 69

75. Duan, H., Liu, S., Wu, J.: Novel intelligent water drops optimization approach to single
UCAV smooth trajectory planning. Aerosp. Sci. Technol. 13, 442–449 (2009)

76. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf.
Sci. 179, 2232–2248 (2009)

77. Seljanko, F.: Hexapod walking robot gait generation using genetic-gravitational hybrid
algorithm. In: 15th International Conference on Advanced Robotics, pp. 253–258, 20–23 June.
Tallinn University of Technology, Tallinn, Estonia (2011)

70 B. Xing

	3 The Spread of Innovatory Nature Originated Metaheuristics in Robot Swarm Control for Smart Living Environments
	Abstract
	1 Introduction
	2 Background of Ambient Assisted Living (AAL) Robot
	3 Background of Artificial Neural Networks
	3.1 Single Layer Perceptron
	3.2 Multi-layer Perceptron
	3.3 Artificial Neural Network in Robot Control

	4 Problem Statement
	5 Employed Methodology
	5.1 Fundamentals of GWO
	5.2 Training MLP via GWO
	5.2.1 Solution Representation
	5.2.2 The Objective
	5.2.3 The Evaluation Function
	5.2.4 Training Progress

	5.3 Concise Summary of Training Performance

	6 Experimental Environment Setup
	6.1 Focal Scenario
	6.2 Mechatronic Design of Heterogeneous Robot Team
	6.2.1 Design Blueprint
	6.2.2 Input---Perception
	6.2.3 Output---Action
	6.2.4 Control---Inference

	7 Limitations and Future Work
	7.1 The Implementation of GWO Trained ANN into Heterogeneous Robot Control
	7.2 Training ANN via Other Innovatory Nature Originated Algorithms
	7.3 Comparing GWO Trained ANN with Other Versatile Versions of Nature Originated Algorithms in Robot Control
	7.3.1 Bacteria Foraging Optimization in Robot Control
	7.3.2 Bees Algorithm in Robot Control
	7.3.3 Glowworm Swarm Optimization in Robot Control
	7.3.4 Electromagnetism-like Mechanism in Robot Control
	7.3.5 Intelligent Water Drops Algorithm in Robot Control
	7.3.6 Gravitational Search Algorithm in Robot Control

	8 Conclusion
	References

