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Abstract In this article we present a network traffic DDoS attacks detection method
based on modeling the variability with the use of conditional average and variance
in examined time series. Variability predictions of the analyzed network traffic are
realized by estimated statistical models ARFIMA and FIGARCH. We propose sim-
ple parameter estimation models with the use of maximum likelihood function. The
choice of sparingly parameterized form of the models is realized by means of infor-
mation criteria representing a compromise between brevity of representation and the
size of the prediction error. In the described method we propose using statistical
relations between predicted and analyzed network traffic in order to detect abnormal
behavior possibly being a result of a network attack. Performed experiments con-
firmed effectiveness of the analyzed method and cogency of the statistical models.
abstract environment.
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1 Introduction

At present, the biggest challenge for information systems is providing proper
protection against threats. Growing number of attacks, their spreading range, and
complexity enforce a dynamic development of network protection systems. This is
realized by mechanisms of supervising and monitoring security of computer net-
works. They are implemented as IDS/IPS Intrusion Detection/Prevention Systems.
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They detect attacks directed onto widely understood network resources of informa-
tion systems [1]. The techniques used in IDS systems based on statisticalmethods can
be divided into two groups. The first one consists of methods using threshold analysis
examining the frequency of events and exceeding their limits in the described time
unit. The information about an attack is achieved when the examined units exceed
certain threshold values. A crucial drawback of those methods is their susceptibility
to errors connected with temporary violent rise in legal network traffic and prob-
lems connected with setting reference levels causing an alarm [2]. The second group
consists of methods detecting statistical anomalies on the basis of estimated specific
parameter profiles of a network traffic. The profiles are characterized by average
quantity values, i.e., the number of IP packages, the number of newly dialed connec-
tions per time unit, ratio of packages of individual network protocols, etc. It can also
be observed that there are some statistical dependences resulting from the part of the
day (for instance a greater network traffic strictly after starting work). It is also pos-
sible to keep statistics for individual network protocols (for example, quantity ratio
of SYN and FIN packages of TCP protocol). IDS systems based on those methods
are able to learn a typical network profile—this process lasts from few to several
weeks and then compare the current network activity with the memorized profile.
The comparison of these two profiles will provide a basis for determining whether
there is something disturbance occurring in the network (for instance an attack) [3].
The primary advantage of methods based on anomaly detection is their ability to
identify unknown attack types, because they do not depend on information how a
particular attack looks like, but on what does not correspond to regular norms of
the network traffic. Therefore, IDS/IPS systems detecting anomalies are more effec-
tive than systems using signatures in case of identifying new, unknown attack types.
Anomaly detection methods have been a topic of numerous surveys and review arti-
cles [4]. In works describing the methods there were used techniques consisting in
machine learning, neural networks, and expert systems. At present, anomaly detec-
tion methods that are particularly intensively developed are those based on statistical
models describing the analyzed network traffic. The most often used models are
autoregressive ARMA or ARIMA, and Conditional Heteroscedastic Models ARCH
and GARCH, which allow to estimate profiles of a normal network traffic [4, 5]. In
the present article, we propose using estimation of statistical models ARFIMA and
FIGARCH for defined behavior profiles of a given network traffic. The process of
anomaly detection (a network attack) is realized by comparison of parameters of a
normal behavior (predicted on the basis of tested statistical models) and parameters
of real network traffic. This paper is organized as follows. After the introduction,
in Sect. 2, the overview of DDoS attacks is presented. In Sect. 3 the ARFIMA and
FIGARCH model for data traffic prediction is described in details. Then, in Sect. 4,
the anomaly detection system based on ARFIMA—FIGARCH model estimation is
shown. Experimental results and conclusion are given thereafter.
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2 Overview of DDoS Attacks

Currently, DoS andDDoS attacks have become an important issue of broadly defined
IT infrastructure security. Victims of the attacks are often single personal computers
as well as supercomputers and vast networks. The outcomes of such activities are
experienced by regular Internet users, biggest companies dealing in new technologies
that often provide mass services, and powerful governmental organizations of many
countries. Despite substantial effort and funds directed to enhancing IT security
procedures, at present, we are not able to protect effectively against such attacks.

Attacks such as distributed denial of service (DDoS) use already known tech-
niques of denial of service (DoS) realized with new technology. DoS attack has two
crucial restrictions. First, it is performed from a single computer whose Internet con-
nection bandwidth is too low compared to the bandwidth of the victim. Second, while
performing the attack from one computer, the attacker may be subjected to a faster
detection. Therefore, DoS attack is often conducted on smaller servers containing
WWW sites. Attacks on bigger objects, for instance a portal or DNS server, require
using a more sophisticated method DDoS, i.e., Distributed Denial of Service, which
was created as a response to DoS limitations. The main difference between both
methods concerns quantity factor. In DDoS, an attack is performed not from a single
computer, but simultaneously from numerous overtaken machines. The sole idea of
DDoS attack is therefore simple. However, what constitutes a challenge is its prepa-
ration which sometimes lasts many months. The reason is obvious, it is necessary
to take over so many computers that will make the attack successful. The period of
preparations is the longer, the more powerful are the victims system resources.

Why are the DDoS attacks so dangerous? Most of all, they are difficult to deter
due to the fact that their source is greatly distributed. What is worse, the hosts
administrators most often do not realize that they are actively participating in the
attacks. The statistics are appalling a survey carried out by University of California,
San Diego, point that monthly there are performed approximately 15,000 DDoS
attacks.

There are a number of methods for conducting a DDoS attack. First, every oper-
ational system requires free memory space. If the attacker succeeds in allocating
the whole available memory, theoretically, the system will stop functioning, or at
least its performance will fall drastically. Such a brutal attack is able to block normal
work of even the most efficient IT systems. The second method is based on the use of
restrictions of file systems. The thirdmeans consists in usingmalfunctioning network
applications or the kernel or errors in the operating system configuration. It is much
easier to protect against the above-mentioned kind of attack by proper configuration
of such a system. Most of all, it is characteristic for DoS method, which in con-
trast with DDoS, usually is not based on sending a great number of requests. Errors
in TCP/IP stacks of different operational systems constitute an example here. In
extreme cases, sending a few packages will be enough to remotely hang the server.
The last method is generating a sufficiently big network traffic so that routers or
servers cannot handle it [6].
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Attacks of this kind are becoming a more and more serious problem. According
to quarterly reports published by Prolexic company, within the last 12 months the
number of DDoS attacks has risen by 22%. Campaigns last longer-not 28.5h as
previously, but 34.5h (a rise by 21%). The average traffic generated during the attack
is approximately 2GB/s and is more or less 25% greater than in 2013. The record
so far was an attack on the Spamhaus, an organization dedicated to the fight against
spam. In March 2013, a hostile network traffic was directed toward servers of that
organizationwith the speedof 300GB/s.However, according toArbor company,most
of attacks (over 60%) still do not exceed 1GB/s. Nevertheless, they still constitute a
serious threat [7].

The reason for DDoS attacks being so problematic is that nowadays there are
no effective means and methods allowing to protect the IT systems from them. It is
only possible to limit the outcomes of those attacks by early identification. One of
such solutions is detection of network traffic anomalies that are aftermath of a DDoS
attack.

3 Statistical Models for Network Traffic Prediction

Most research on statistical analysis of time series concerns processes character-
ized by lack of or poor connection between variables which are separated by some
time period. Nevertheless, in numerous uses there is a need for modeling processes
whose autocorrelation function is slowly decreasing, and the relation between dis-
tant observations—even though it is not big—is essential. An interesting approach
toward properties of long-memory time series was applying the autoregression with
moving average in the process of fractional diversification. As a result, ARFIMA
model (Fractional Differenced Noise and Auto Regressive Moving Average) was
obtained and implemented by Grange, Joyeux, and Hosking [8, 9]. ARFIMA is a
generalization of ARMA and ARIMA models. Another approach describing time
series was taking into account the dependence of the conditional variance of the
process on its previous values with the use of ARCH model (Autoregressive Con-
ditional Heteroskedastic Model) introduced by Engel [10]. Generalization of this
approach was FIGARCH model (Fractionally Integrated GARCH) introduced by
Baillie et al. [11].

3.1 ARFIMA Model

The autoregressive fractional integrated moving average model called ARFIMA (p,
d, q) is a combination of fractional differenced noise and auto regressive moving
average which is proposed by Grange, Joyeux, and Hosking, in order to analyze the
long-memory property [8, 9]. The ARFIMA (p, d, q) model for time series yt is
written as
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Φ(L)(1 − L)dyt = Θ(L)εt, t = 1, 2, . . . , Ω, (1)

where yt is the time series, εt ∼ (0,σ2) is the white noise process with zero-mean and
variances σ2,Φ(L) = 1−φ1L −φ2L2 −· · ·−φpLp is the autoregressive polynomial
and Θ(L) = 1+ θ1L + θ2L2 +· · ·+ θqLq is the moving average polynomial, L is the
backward shift operator, and (1 − L)d is the fractional differencing operator given
by the following binomial expansion:

(1 − L)d =
∞∑

k=0

(
d
k

)
(−1)kLk (2)

and

(
d
k

)
(−1)k = Γ (d + 1)(−1)k

Γ (d − k + 1)Γ (k + 1)
= Γ (−d + k)

Γ (−d)Γ (k + 1)
, (3)

where Γ (∗) denotes the gamma function and d is the number of differences required
to give a stationary series and (1− L)d is the dth power of the differencing operator.
When d ∈ (−0, 5 , 0, 5), the ARFIMA(p, d, q) process is stationary, and if d ∈ (0
, 0, 5) the process presents long-memory behavior. Forecasting ARFIMA processes
are usually carried out using an infinite autoregressive representation of (1), written
as Π(L) yt = εt,

yt =
∞∑

i=1

πiyt−i + εt, (4)

whereΠ(L) = 1 − π1L−π2L2−· · · = Φ (L) (1 − L)d Θ (L)−1. In terms of practical
implementation, this form needs truncation after k lags, but there is no obvious way
of doing it. This truncation problem will also be related to the forecast horizon
considered in predictions (see [12]). From (4), it is clear that the forecasting rule
will pick up the influence of distant lags, thus capturing their persistent influence.
However, if a shift in the process occurs, this means that pre-shift lags will also
have some weight on the prediction, which may cause some biases for post-shift
horizons [13].

3.2 FIGARCH Model

The model enabling description of long-memory in variance series is FIGARCH
(p, d, q) (fractionally integrated GARCH) introduced by Baillie, Bollerslev, and
Mikkelsen et al. [11]. The FIGARCH (p, d, q) model for time series yt can be written
as

yt = μ + εt, t = 1, 2, . . . , Ω, (5)
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εt = zt

√
ht, εt|Θt−1 ∼ N (0, ht) , (6)

ht = α0 + β (L) ht + [
1 − β (L) − [1 − φ (L)] (1 − L)d

]
ε2t , (7)

where zt is a zero-mean and unit variance process, ht is a positive time-dependent
conditional variance defined as ht = E

(
ε2t |Θt−1

)
and Θt−1 is the information set

up to time t − 1. The FIGARCH (p, d, q) model of the conditional variance can be
motivated as ARFIMA model applied to the squared innovations

ϕ (L) (1 − L)d ε2t = α0 + (1 − β (L))ϑt, ϑt = ε2t − ht, (8)

where ϕ (L) = ϕ1L − ϕ2L2 − · · · − ϕpLp and β (L) = β1L + β2L2 + · · · + βqLq

and (1 − β (L)) have all their roots outside the unit circle, L is the lag operator and
0 < d < 1 is the fractional integration parameter. If d = 0, then FIGARCH model
is reduced to GARCH; for d = 1 though, it becomes IGARCH model. However,
FIGARCH model does not always reduce to GARCH model. If GARCH process
is stationary in broader sense, then the influence of current variance on its fore-
casting values decreases to zero in exponential pace. In IGARCH case, the cur-
rent variance has indefinite influence on the forecast of conditional variance. For
FIGARCH process, the mentioned influence decreases to zero far more slowly than
in GARCH process, i.e., according to the hyperbolic function [11, 14]. Rearranging
the terms in (8), an alternative representation for the FIGARCH(p, d, q)modelmaybe
obtained as

[1 − β (L)] ht = α0 + [1 − β (L) − ϕ (L)] (1 − L)d ε2t . (9)

From (10), the conditional variance ht of yt is given by

ht = α0 [1 − β (1)]−1 + λ (L) ε2t , (10)

where λ (L) = λ1L +λ2L2 +· · · Of course, for the FIGARCH (p, d, q), for (8) to be
well-defined, the conditional variance in the ARH (∞) representation in (10) must
be non-negative, i.e.,λk = 0 for k = 1, 2, . . . Solving the problem of forecasting
using Eq. (10) may be obtained as

ht+1 = α0 [1 − β (1)]−1 + λ1ε
2
t + λ2ε

2
t−1 + · · · (11)

The one-step ahead forecast of ht is given by

ht (1) = α0 [1 − β (1)]−1 + λ1ε
2
t + λ2ε

2
t−1 + · · · (12)

By analogy, the two-step ahead forecast is given by

ht (2) = α0 [1 − β (1)]−1 + λ1ht (1) + λ2ε
2
t + · · · (13)
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In general, the n-step ahead forecast is can be written as

ht (n) = α0 [1 − β (1)]−1 +λ1ht (n − 1)+· · ·+λn−1ht (1)+λnε
2
t +λn+1ε

2
t−1 +· · ·

(14)
In practical application, we stop at a large N and this leads to the forecasting equation

ht (n) ≈ α0 [1 − β (1)]−1 +
n−1∑

i=1

λiht (n − i) +
N∑

j=0

λn+jε
2
t−j. (15)

The parameters will have to be replaced by their corresponding estimates [14].

4 Parameters Estimation and the Choice of Model

The most often used methods of estimation of autoregressive models parameters
are: maximum likelihood method (MLE) and quasi-maximum likelihood method
(QMLE). This is due to the fact that estimation of the parameters by means of both
methods is relatively simple and effective. The basic problem of computing with
MLE method is finding a solution to the equation

∂ ln (LΩ (ρ))

∂θ
= 0, (16)

where θ is the estimated set of parameters, LΩ(ρ) is the likelihood function, and
Ω is a number of observations. Mostly, in general case the analytic solution to
the Eq. (16) is impossible and then numerical estimation is employed. The basic
problem occurringwhile using themaximum likelihoodmethod is necessity to define
the whole model, and consequently the sensitivity of the resulting estimator for
any errors in the specification of the AR and MA polynomials responsible for the
dynamics of the process [15, 16]. There is no universal criterion for the choice of the
model. Usually, the case is as follows: the more complex model, the greater is the
value of the likelihood function. As a result, adjusting the model to the data is more
effective. However, estimation of a higher number of parameters is connected with
bigger errors. Therefore, it is crucial to find a compromise between the quantity of
parameters occurring in the model and the value of likelihood function. The choice
of the economic form of the model is often based on information criteria such as
Akaike (AIC) or Schwarz (SIC). Values of the mentioned criteria can be estimated
on the basis of the following formulas:

AIC (ρ) = −2 ln (LΩ (ρ)) + 2ρ, (17)

SIC (ρ) = −2 ln (LΩ (ρ)) + ρ ln (Ω) , (18)
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where ρ is the number of the model’s parameters. From different forms of the model,
the one that is chosen has the smallest information criterion value [12, 17]. In our
article, we proposed the maximum likelihood method for parameters estimation
and the choice of the form of the model. The method was chosen due to its relative
simplicity and computational efficiency. For ARFIMAmodel, we used HR estimator
(described in Haslett and Raftery [18]) and automatic model selection algorithm
based on the information criteria (seeHyndman andKhandakar [19]). For FIGARCH
model estimation, we used methodology described in the present article [14].

5 Experimental Results

In this section, we presented some results in case of ARFIMA and FIGARH statis-
tical model usage for DDoS attack detection. We simulated real-world DDoS and
application specific DDoS attacks for single LAN test network. As a network sen-
sor we used SNORT IDS [20]. SNORT in our case is responsible for traffic capture
and extracting network traffic features (see Table1). Additionally we also used traf-
fic testbed that contains DDoS attacks [21]. Twelve traffic features were used for
evaluation of presented ARFIMA and FIGARH statistical models. Obviously, not
all traffic features were sufficient for detecting all simulated attacks because they

Table 1 Network traffic
features used for experiments

Traffic feature Traffic feature description

f1 Number of TCP packets

f2 In TCP packets

f3 Out TCP packets

f4 Number of TCP packets in
LAN

f5 Number of UDP datagrams

f6 Number of UDP datagrams
in LAN

f7 Number of ICMP packets

f8 Out ICMP packets

f9 Number of ICMP packets in
LAN

f10 Number of TCP packets with
SYN and ACK flags

f11 Out TCP packets (port 80)

f12 In TCP packets (port 80)
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Table 2 Detection Rate DR (%) and False Positive FP (%) for a given network traffic features

Traffic feature FIGARH ARFIMA Traffic Feature FIGARH ARFIMA

f1 5.26 8.26 f1 5.46 4.23

f2 5.26 12.52 f2 5.17 4.84

f3 0.00 12.52 f3 5.45 4.22

f4 15.78 10.52 f4 5.44 4.02

f5 10.52 14.52 f5 5.64 4.23

f6 25.22 35.24 f6 5.24 4.24

f7 90.73 98.43 f7 7.68 6.12

f8 83.68 96.43 f8 1.22 0.32

f9 80.42 85.95 f9 6.34 4.20

f10 10.52 14.22 f10 5.23 4.56

f11 0.00 8.26 f11 4.58 3.26

f12 0.00 14.22 f12 4.86 3.52

Table 3 Evaluation of proposed method with the use of real world network traffic testbed [21] for
4 days of traffic

Trace date 2008-05-21 2008-08-20 2008-11-15 2009-01-15

ARFIMA DR (%) 85 80 95 82

FIGARH DR (%) 80 70 85 75

Table 4 Evaluation of proposed method with the use of real world network traffic testbed [21] for
4 days of traffic

Trace date 2008-02-20 2008-02-21 2009-05-21 2009-02-15

ARFIMA DR (%) 82 81 92 81

FIGARH DR (%) 79 75 84 77

have not got impact on entire set of traffic features presented in Table1. In Table2
we presented detection rate DR and false positive FP values for 12 traffic features.
Additionally in Tables3 and 4, there are results for external testbed for 4 days of
network traffic, respectively. We can conclude that ARFIMA model gives us better
results in case of DR and FP for the used testbed in our experiments.

6 Conclusion

Cybersecurity of information systems is contemporarily a key research factor. The
growing number of DDoS attacks, their expending reach, and the level of complex-
ity stimulate the dynamic development of network defensive systems. The tech-
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niques of statistical anomaly detections are recently the most commonly used for
monitoring as well as detecting the attacks. In the present article, the construction
of statistical autoregressive models, ARFIMA and FIFARCH, has been described.
The above-mentioned models present the statistic variability of modeled parameters
by means of the average or conditional variance. For estimation of parameters and
identification of models the maximum likelihood method together with information
criteria were used. As a result of their work the satisfying statistic measurements for
researched signals of network trafficwere obtained. The process of anomaly (attacks)
detecting consist in comparison of estimated behavior parameters with real network
traffic factors. The obtained results outstandingly signify that the anomalies included
in the network traffic signal can be detected by suggested methods.
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