
Discriminant Function Selection in Binary
Classification Task

Robert Burduk

Abstract The ensemble selection is one of the important problems in building mul-
tiple classifier systems (MCSs). This paper presents dynamic ensemble selection
based on the analysis of discriminant functions. The idea of the selection is pre-
sented on the basis of binary classification tasks. The paper presents two approaches:
one takes into account the normalization of the discrimination functions, and in the
second approach, normalization is not performed. The reported results based on the
data sets form the UCI repository show that the proposed ensemble selection is a
promising method for the development of MCSs.

Keywords Ensemble selection · Multiple classifier system · Binary classification
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1 Introduction

The pattern recognition task is one of the trends in research on machine learning [1].
The classification task can be accomplished by a single classifier or by a team of
classifiers. In the literature, the use of multiple classifiers for a decision problem is
known asMCSs or an ensemble of classifiers [4, 11, 27]. These methods are popular
for their ability to fuse together multiple classification outputs for better accuracy of
classification. The building of MCSs consists of three phases: generation, selection,
and integration [3]. The final decision which is made in the third phase uses the
prediction of the selected classifiers. The output of an individual classifier can be
divided into three types [17].
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• The abstract level—classifier ψ assigns the unique label j to a given input x .
• The rank level—in this case for each input x , each classifier produces an integer
rank array. Each element within this array corresponds to one of the defined class
labels. The array is usually sorted with the label at the top being the first choice.

• Themeasurement level—the output of a classifier is represented by ameasurement
value that addresses the degree of assigning the class label to the given output x . An
example of such a representation of the output is a posteriori probability returned
by Bayes classifier.

Following these three types of outputs of the base classifier, various problems of
combination function (third phase) of classifier outputs are considered. The problems
studied in [19, 25] belong to the abstract level. The combining outputs for the rank
level are presented in [13] and problems studied in [16, 18] belong to the last level.
The selection of classifiers is one of the important problems in the creation ofEoC [15,
24]. This task is related to the choice of a set of classifiers fromall the available pool of
classifiers. Formally, ifwe choose one classifier, it is a classifier selection process. But
if we choose a subset of classifiers from the pool, then it is an ensemble selection.
In this work, these terms will be used interchangeably. Here you can distinguish
between the static or dynamic selection [22, 26]. In the static classifier selection one
set of classifiers is selected to create EoC. This EoC is used in the classification of all
the objects from the testing set. The main problem in this case is to find a pertinent
objective function for selecting the classifiers. One of the best objective functions for
the abstract level of classifier outputs is the simple majority voting error [23]. In the
dynamic classifier selection for each unknown sample a specific subset of classifiers
is selected [5]. It means that we are selecting different EoCs for different objects from
the testing set. In this type of classifier selection, the classifier is chosen and assigned
to the sample based on different features [28] or different decision regions [7, 14].
In this work we will consider the dynamic ensemble selection. In detail, we propose
the new selection method based on the analysis of the discriminant functions in
the contents of the binary classification. The paper presents two approaches: one
takes into account the normalization of the discrimination functions. In the second
approach, normalization is not performed. The text is organized as follows: in Sect. 2
the ensemble of classifiers and combination functions based on the sum method are
presented. Section3 contains the new method for the dynamic ensemble selection
based on the analysis of the discriminant functions. Section4 includes the description
of research experiments comparing the suggested algorithms with base classifiers.
Finally, the discussion and conclusions from the experiments are presented.

2 Ensemble of Classifiers

Let us consider the binary classification task. It means that we have two class labels
M = {1, 2}. Each pattern is characterized by a feature vector X . The recognition
algorithm maps the feature space X to the set of class labels M according to the
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general formula:

Ψ : X → M. (1)

Let us assume that K different classifiers Ψ1, Ψ2, . . . , ΨK are available to solve
the classification task. In MCSs these classifiers are called base classifiers. In the
binary classification task K is assumed to be an odd number. As a result, for all
the classifiers’ actions, their K responses are obtained. The output information from
all K component classifiers is applied to make the ultimate decision of MCSs. This
decision is made based on the predictions of all the base classifiers. One of the
possible methods for integrating the output of the base classifier is the sum rule. In
this method the score of MCSs is based on the application of the following sums:

si (x) =
K∑

k=1

p̂k(i |x), i ∈ M, (2)

where p̂k(i |x) is an estimate of the discrimination functions for class label i returned
by classifier k. The final decision of the MCSs is made following the maximum rule:

ΨS(x) = argmax
i

si (x). (3)

In the presentedmethod (3) the discrimination functions obtained from the individual
classifiers take an equal part in building MCSs. This is the simplest situation in
which we do not need additional information about the testing process of the base
classifiers except for the models of these classifiers. One of the possible methods in
which weights of the base classifier are used is presented in [2].

2.1 Selection of Discrimination Functions

The classifier selection phase is often criticized due to usually observed high compu-
tational cost [3]. Bearing this in mind, we propose the dynamic selection of discrim-
ination functions, which has minor computing requirements. It uses the assumption
that the more credible the classifier, the larger the differences in the discrimination
function. In the discussed binary classification task this means that during the selec-
tionwe compare the discriminant functions | p̂k(1|x) − p̂k(2|x)| < α. The parameter
α determines the size of the difference in the discriminant functions. The values are
derived from the interval < α ∈ [0, 1). For value α = 0 the selection process does
not occur. The proposed selection process is performed before the calculation of the
coefficients si (x). The final decision is made according to the sum rule, and MCSs
with the selection is labelled as Ψ α

SO N
. In MSCs model labeled as Ψ α

SN
, in addition

the normalization of the discrimination functions is carried out. Normalization is
performed for each label class i according to the rule:
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p̂′
k(i |x) = p̂k(i |x) − min( p̂1(i |x), . . . , p̂k(i |x))

max( p̂1(i |x), . . . , p̂k(i |x)) − min( p̂1(i |x), . . . , p̂k(i |x))
, k ∈ K .

(4)

The aim of the experiments presented in the next section was among other things, to
compare two proposed methods of selection.

3 Experimental Studies

Aseries of experimentswere carried out to illustrate the quality of classifications. The
aim of the experiments was to compare the proposed selection method algorithms
with the base classifiers and ensemble classifiers based on the majority voting and
sum methods. In the experiential research 11 benchmark data sets were used. Two
of them were generated randomly—they are the so-called Banana and Highleyman
sets. The other nine benchmark data sets come from the UCI repository [10]. All the
data sets concern the binary classification task. The numbers of attributes, examples,
and ration in the classes are presented in Table1. The studies did not include the
impact of the feature selection process on the quality of classifications. Therefore,
the feature selection process [12, 21] was not performed. The results are obtained via
tenfold-cross-validation method. In experiment 7, base classifiers were used. Two of
them work according to k − N N rule where the k parameter is equal to 5 or 7. Two
base classifiers are used as decision trees algorithms, with the number of branches
denoted as 2 and the depth of the precision tree having at most 6 levels. In the
decision-making nodes the Gini index or entropy is used. One of the classifiers uses
a combination of the decision trees’ base models. It is Gradient boosting algorithm.
The other two classifiers use Support Vector Machines models. One of them uses
Least Squares SVM method and the second Decomposed Quadratic Programming

Table 1 Description of data
sets selected for the
experiments

Data set Example Attribute Ration
(0/1)

Banana 400 2 1.0

Blood 748 5 3.2

Breast cancer wisconsin 699 10 1.9

Highleyman 400 2 1.0

Ionosphere 351 34 1.8

Indian liver patient 583 10 0.4

Mammographic mass 961 6 1.2

Parkinson 197 23 0.3

Pima Indians diabetes 768 8 1.9

Sonar (mines versus rocks) 208 60 0.9

Statlog 690 14 0.8
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Table 2 Classification accuracy and mean rank positions for the proposed selection algorithmwith
normalization produced by the Friedman test

Data set ΨSN with α =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Banana 0.975 0.975 0.975 0.975 0.977 0.977 0.977 0.977

Blood 0.657 0.660 0.655 0.655 0.660 0.665 0.657 0.647

Cancer 0.947 0.945 0.945 0.947 0.947 0.942 0.942 0.940

Higle 0.955 0.955 0.955 0.952 0.952 0.952 0.952 0.952

Ion 0.967 0.970 0.972 0.970 0.960 0.957 0.962 0.955

Liver 0.602 0.597 0.595 0.622 0.647 0.667 0.660 0.662

Mam 0.625 0.620 0.615 0.632 0.637 0.640 0.632 0.632

Park 0.977 0.977 0.987 0.980 0.985 0.985 0.980 0.982

Pima 0.572 0.575 0.572 0.582 0.592 0.577 0.582 0.577

Sonar 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980

Statlog 0.912 0.912 0.915 0.915 0.915 0.920 0.922 0.910

Mean rank 4.36 4.36 4.09 3.36 2.45 2.72 3.18 4.63

method. The experiments were performed in an SAS Enterprise Miner environment.
Table2 shows the results of the classification for the proposed classifier selectionwith
normalization of the posteriori probability functions. Additionally, the mean ranks
obtained by the Friedman test were presented. The values show that the best value of
the parameter α is 0.4 for that classifier selection method. Table3 shows the results

Table 3 Classification accuracy and mean rank positions for the proposed selection algorithm
without normalization produced by the Friedman test

Data set ΨSO N with α =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Banana 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977

Blood 0.672 0.672 0.660 0.605 0.647 0.660 0.662 0.572

Cancer 0.942 0.945 0.945 0.945 0.940 0.940 0.937 0.935

Higle 0.952 0.952 0.950 0.952 0.952 0.957 0.957 0.940

Ion 0.962 0.962 0.965 0.962 0.957 0.960 0.950 0.960

Liver 0.675 0.675 0.655 0.662 0.665 0.665 0.665 0.617

Mam 0.642 0.637 0.632 0.632 0.632 0.635 0.625 0.625

Park 0.987 0.990 0.990 0.992 0.990 0.987 0.987 0.982

Pima 0.600 0.602 0.597 0.605 0.595 0.587 0.585 0.580

Sonar 0.987 0.987 0.985 0.985 0.985 0.980 0.980 0.977

Statlog 0.910 0.910 0.907 0.907 0.910 0.912 0.910 0.907

Mean rank 2.18 1.63 3.63 3.09 3.81 3.63 4.54 6.81
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for the case where there is no normalization of the posteriori probability functions.
For this case the optimal value of the parameter α is 0.1. Classifiers with the selected
values of parameter α were comparedwith the base classifiers and ensemblemethods
based on the majority voting and sum methods. The results of classification with the
mean ranks obtained by the Friedman test are presented in Table4. To compare the
results the post-hoc Nemenyi test was used [24]. The critical difference for this test at
p = 0.05 is equal toC D = 4.51. Since the difference betweenΨSum and the proposed
algorithms Ψ 0.4

SN
, Ψ 0.1

SO N
is already smaller than 4.51, we can conclude that the post-

hoc test is not powerful enough to detect any significant differences between these
algorithms. However, the proposed selection of the posteriori probability functions
algorithm achieved the best result, which is the lowest average rank (Table3).

4 Conclusion

This paper discusses the classifier selection for the binary classification task. The
proposal in the paper process concerns the selection of the posteriori probability
functions. The paper presents two approaches. In one of them normalization of the
posteriori probability functions is carried out. In the second case under consideration,
normalization is not performed. The distributed computing approaches enable the
efficient and parallel processing of the complicated data analysis task, also in the con-
text of classification systems with multiple classifiers [20]. The methods of classifier
selection presented in the paper show the ability to work in a parallel and distributed
environment. Parallel processing provides the possibility to speed up the selection of
the posteriori probability functions, whose results are needed to make the decision
by the classifier ensemble. Additionally, the proposed approach can be applied in
various practical tasks involving multiple elementary classification tasks [6, 8, 9].
In the paper several experiments were carried out on the data sets available from
the UCI repository and on the synthetical data sets. The aim of the experiments was
to compare the proposed selection method algorithms with the base classifiers and
ensemble classifiers based on themajority voting and summethods. For the proposed
selection method, we obtained improvement of the classification quality measured
by average values from the Friedman test. However, the difference in average ranks is
too small to detect statistically significant differences between the proposed selection
method and the ensemble method based on the sum rule.
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