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Abstract Is it true that everybody knows how to compare classifiers in terms of
reliability? Probably not, since it is so common that just after reading a paper we
feel that the classifiers’ performance analysis is not exhaustive and we would like
to see more information or more trustworthy information. The goal of this paper is
to propose a method of multi-classifier comparison on several benchmark data sets.
The proposed method is trustworthy, deeper, and more informative (multi-aspect).
Thanks to this method, we can see much more than overall performance. Today, we
needmethods which not only answer the question whether a givenmethod is the best,
because it almost never is. Apart from the general strength assessment of a learning
machine we need to know when (and whether) its performance is outstanding or
whether its performance is unique.

1 Introduction

The proposed method of classifiers comparison is based on known statistical
elements like accuracy, statistical tests, and rankings in general. For clarity, let us
define accuracy as the fraction of correctly classified instances to the whole number
of instances m:

acc(m, D) = 1 − err(m, D) = 1

m

∑

〈x,y〉∈D,y=m(x)

1 (1)

In highly unbalanced cases (when the numbers of class instances differ significantly),
it is recommended to use a balanced version of accuracy:
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bacc(m, D) = 1

K

K∑

k=1

∑
x∈Dk ,m(xi )=k 1

|Dk | , (2)

where K is the number of classes, and Dk = {〈xi , yi 〉 : 〈xi , yi 〉 ∈ D ∧ yi = k} is
a set of pairs belonging to the kth class. As it can be seen that an error in classifi-
cation of an instance of a smaller class is more strongly weighted, accordingly to
class counts’ proportions. The most common testing tool is the cross-validation test
which divides randomly a given data set D into p equally counted subsets Di . In con-
sequence, we obtain p training–testing data set pairs [D′

i , Di ], where D′
i = D\Di .

Next, we have p phases of classifier learning and testing. The average accuracy
over the testing part defines estimated accuracy (eacc = 1/p

∑p
i=1 acc(mi , Di )),

where mi is a classifier learnt on the D′
i data. However, such estimation should not

be considered trustworthy, and it is recommended to repeat the cross-validation
process q times (usually 10 times). For more about parametrization of cross-
validation and their statistical relations see [2]. Now, the accuracy estimation is
based on much more tests. Assume that

EaccD
m = [acc1, . . . , accpq ] (3)

is a vector of accuracies for all p test parts and for all q repetitions of cross-
validation (p ∗ q single tests). It is highly recommended to use a stratified ver-
sion of cross-validation. This test additionally keeps the proportions of classes in
subsequent Di sets to be close to the proportions of class counts in D. To keep
the process of classifier comparison as trustworthy as possible it is also recom-
mended to control the seed in the drawing process of training and testing parts.
This means that each classifier should be trained and tested on the same training
data and testing data. This is even more important when we use statistical tests like
paired tests (e.g., paired t-test). In case of paired tests, it is obligatory to train and
test all classifiers on the same data. Except the accuracy and the error, the reader
should in some cases consider usage of other factors like recall, precision, specificity
or confusion matrix, for more see [3, 6]. Statistical tests can serve as an impor-
tant tool in classifier comparison. The reason for that is quite simple. Let us con-
sider an example of two tests where average accuracies were equal to 0.87 and
0.879. In such case, we cannot directly claim that one of those classifiers is signifi-
cantly better than the other one, however they differ in accuracy values. It is because
the variances of classification of test data for both classifiers have a crucial role.
Thanks to the statistical tests, the significance of results can be calculated. For detailed
description on how to calculate statistical test, see [2, 8]. The most oftenly used sta-
tistical test in the context of machine learning is the t-test, which goal is to check
whether the accuracy mean of the first classifier is significantly greater than the accu-
racy mean of the second classifier (in such case we use the one tail test version). The
null hypothesis is that the first classifier is not better than the second one. Another
possibility is to check whether the accuracy means of two populations are signif-
icantly different or not (this is two tail test version). The one tail is slightly more
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advised, as we usually have to choose the better one. And to calculate this test for
two classifiers m and m ′ the accuracy differences EaccD

m − EaccD
m ′ are used (the

paired version of test). For classifiers’ comparison the t-test can be used in one of
two versions: paired or unpaired. The unpaired version has to be used only if the
classifiers learned on different draws from data set. Practically, for a machine learn-
ing task it is not difficult to use the same distribution for learning and testing. If we
used the same data distribution in cross-validation (or Monte Carlo as well), then
the paired version is a more reliable test and we should avoid using the unpaired
version if possible. The necessary condition to use one of the t-tests is that the test
samples are approximately normally distributed. In a case where test samples are not
normally distributed, there are two other interesting options. For the paired case, the
Mann–Whitney test can be used and for unpaired, theWilcoxon test. The last two test
are ranked tests (accuracies are first transformed to ranks and are then further ana-
lyzed). Another resourceful test for computational intelligence which is rarely used
is the McNemmar test. This test is designed to analyze whether the correctnesses of
instance vectors for two classifiers are not statistically different. In that case, the test
is not based on accuracies (or equivalently on errors) but on the correctness of each
data instance. Even if two classifiers are characterized by the samemeans and similar
variations theymay differ in classification of appropriate instances. To comparemore
than two classifiers, the Anova test can be used, but its usability is somewhat limited.
The base goal of this test is to calculate whether any two classifiers in a group are
significantly unequal. The limitation of this test stems from the fact that in a case
of comparing several classifiers, we are usually sure that same classifiers will differ,
but we are interested in how they differ, not just whether they differ.

1.1 Common Traps in Learning Machine Comparison

The description below mostly concerns classification testing traps, but indeed most
of the traps are of universal behavior. The ultimate solution or a trap? In so many
cases a seemingly trustworthy comparison can be easily misleading. There are some
types of commonly repeated errors in numerous articles. To avoid those problems in
the future we can enumerate some of them.

1. The overall average accuracy as a measure of classifier performance. In some
papers average accuracies are averaged over several data sets for given learning
machines. Of course this information can be useful, however if we try to compare
such averages obtained from two (or more) learning machines, such comparison
is not trustworthy. It happens that in case of one or few data sets in a tested group
the average accuracies differ strongly between classifiers and then, even if one
classifier has a better overall accuracy, realistically, in case of most data sets, its
performance may be significantly worst.

2. Another commonly observed scheme of classifier comparison is calculating how
many of the given classifierswere notworse (the average accuracywas not smaller
significantly) than others. The results of such calculation is the number of wins for
all classifiers over several data sets. Such information is really interesting because
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winners are certainly positive.However, it is somewhat risky in the following case:
assume the first classifier wins a few times more than the second classifier and
each win was significantly better, but just by a bit. A problem arises if for the
second classifier the wins are much more than just a bit significant.

3. In some cases, benchmark data set was originally divided into two parts: the
training and testing. If for a given classifier’s configuration we train the classifier
just once using the training part and then test use the testing part, then the test
result is trustworthy. A problem arises when we repeatedly: learn a classifier,
test the classifier, then basing on the test results we tune the configuration of the
classifier. In such scenarios, researchers do not test different configurations but
learn with validation using the testing data as validation data. Presentation of such
results means a presentation of unreliable data.

4. One of the very typical errors in comparing classifiers is when the cross-validation
testing is prepared after supervised1 data transformation/preprocessing. Any
supervised preprocessing must be embedded inside each cross-validation fold—
before every classifier learning, first the data must be preprocessed for each cv-
fold. Without following this scenario, the results can differ too strongly and are
unreliable.

5. In some articles authors propose a newmethod but the conclusions are sometimes
based just on a few data set benchmarks. However, the authors claim that the
method works always and is universal (really?). Such scenario should also raise
suspicions—just a few data sets should mean ‘sometimes’, not almost ‘always’.
A close problem to the above one is when authors claim that a method is scalable
while the results are presented only on small data sets and the computational
complexity is not investigated and is probably far from linear. Although it happens
that a new method is proposed just in context of one problem (one data set) and
this scenario can be correct.

6. Another unfair type of construction of comparisons is based on consciously mis-
leading testing procedures. One of the most common examples of such problem
is the usage of atypical parametrization of a test. For example, the usage of monte
carlo randomization in place of commonly used cross-validation for given bench-
marks. Generally, monte carlo randomization is correct, but if in context of the
results for benchmark data sets all previous authors used cross-validation, then
if we see monte carlo randomization, we can be sure of one thing: we cannot
compare those results with the previous ones. They should be considered neg-
ligible. Another way of erring in the test procedure is to select different error
measures, even though the author knows which measure was selected in previous
articles about the considered problem (benchmark). Again, new results will not
be trustworthily compared. Of course some of traps are entered unconsciously
while others, consciously. I hope the above examples will help to avoid some
mistakes in the future. The goal of the following part is to present how to plan a
classifier comparison to be clear, trustworthy, informative and deep.

1Supervised process (learning of data transformation) means to use the class labels.
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2 The Multi-ranked Classifier Comparison

The main goal of this section is to present the multi-ranked classifiers comparison
which will analyze a series of classifiers over a sequence of benchmark data sets.
Except the standard mean accuracies and the number of wins, we plan to present
additional supporting information which significantly simplify the estimation of the
role of a given classifier compared to others. Let us assume we have a sequence of
benchmark data sets Di (i ∈ {1, . . . d}) and a series of classifiersm j ( j ∈ {1, . . . , T }).
First, as usually, we need the accuracy vectors from cross-validation tests for every
classifier and for every benchmark data set. This gives us amatrix of EaccDi

m j
(remem-

ber that EaccDi
m j

is a vector, not a scalar). The matrix of mean test accuracies āi
j for

a machine m j and benchmark Di is the base of further presentation. Strictly, the āi
j

is the mean of EaccDi
m j

vector accuracies. Additionally, we define the σ i
j to be the

standard deviation of EaccDi
m j
.

2.1 Machine Ranks and Significance Groups

For given data Di , we can group machines in accordance with their mean accuracies
using the paired t-test.2 Such groups will be assigned to a rank. We can define the
rank assignment for machines as follows:

• the machine with highest accuracy mean is ranked 1,
• all machines whose accuracy means are not significantly smaller (measured with
t-test) are also ranked with 1,

• rank 2 is assigned to the machine of highest accuracy amongst those whose accu-
racy is significantly smaller than the machine’s first ranked with 1,

• rank2 is assigned to allmachineswhich have not been rankedyet,whose accuracies
are insignificantly smaller than the first machine’s ranked with 2,

• the following ranks are assigned in the same way.

All machines with the same rank compose a significance group. Let’s define r i
j as

the rank of machine m j obtained for benchmark data Di . Such ranks forms rank
groups, each group is composed of machines which are characterized by the same
(insignificantly different) performance. This feature is so important because for dif-
ferent benchmark data sets the spread between accuracies varies. Additionally, ranks
are independent of the differences between mean accuracies of different benchmark
data sets. This feature is important for comparing the results for two (or more)
benchmarks, basing on ranks, instead of comparing mean accuracies for different

2To compute paired t-test for machine s and t and data Di use the vector of differences: EaccDi
ms −

EaccDi
mt .
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benchmarks. Additionally, let us define r̄ j to be a mean rank for machine m j across
benchmarks and σ r

j as the standard deviation of ranks for a given machine m j . The
mean ranking is the best estimate of overall performance. If it is close to 1, it means
that the machine is usually the winning one. And standard deviation informs us of the
changes across benchmark data sets. Winners versus ranking: Typically, authors of
classifier comparisons use the division into two parts for a given benchmark: winners
(machines with best accuracies-insignificantly different) and losers (machines which
perform significantly worse than the best one). Such binary spread is sometimes not
adequate—in some cases the mean accuracies naturally form more than two groups
of performance and division into two groups in fact hides some information. The
reader will able to observe in the example below that in case of some benchmarks,
the ranks form several groups of performance which reflect several levels of per-
formance degradation. And across several benchmarks we can simply observe how
frequently the performance of a given classifier degraded and how deeply.

2.2 Winners and Unique Winners

Observation ofmachineswhichwin for given data sets is important, but apart from the
observation of winners we should also observe machines which are unique winners.
A unique winner is a machine which is the best for a given data set and no other
machine is insignificantly worse. Such machines are not redundant in contrary to
nonunique winners, which can be substituted by another machine(-s). Define the wi

to be the number of wins for machine mi (win means that machine is the best one
for given data or insignificantly worse). Define the ui to be a count of unique wins
of machine mi , which is the number of wins while no other machine has the same
rank (unique win means that only one machine has rank 1 for given benchmark).

2.3 Multi-ranked Classifiers Comparison

The above part of this section has presented all necessary definitions to present the
proposed classifier comparison. This comparison will consist of

• mean accuracy and standard deviation for each machine and each benchmark with
its rank,

• overall mean accuracy per machine with its standard deviation,
• overall mean rank per machine with its standard deviation,
• wins count and unique wins count.
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All this information is nested in the matrix below:

m1 m2 · · · m p

D1 ā1
1 ± σ 1

1 (r11 ) ā1
2 ± σ 1

2 (r12 ) · · · ā1
p ± σ 1

p(r
1
p)

D2 ā2
1 ± σ 2

1 (r21 ) ā2
2 ± σ 2

2 (r22 ) · · · ā2
p ± σ 2

p(r
2
p)

· · · · · · · · · · · · · · ·
Dq āq

1 ± σ
q
1 (rq

1 ) āq
2 ± σ

q
2 (rq

2 ) · · · āq
p ± σ

q
p (rq

p)

Mean Accuracy ā∗
1 ± σ ∗

1 ā∗
2 ± σ ∗

2 · · · ā∗
p ± σ ∗

p

Mean Rank r̄1 ± σ r
1 r̄2 ± σ r

2 · · · r̄ p ± σ r
p

Wins[unique wins] w1[u1] w2[u2] · · · wp[u p]

(4)

2.4 An Example of Multi-ranked Comparison

Probably, the best way to see the attractiveness of the presented comparison method
is to analyze a real world example. 40 benchmark data sets from the UCI machine
learning repository [7] were selected to present the comparison below. Two neural
networks, k Nearest neighbor [1], and two types of Support Vector Machines (linear
and gaussian) [9]were selected to comparewith the proposedmethod. Thefirst neural
network is a simple linear model (no hidden layer) learned by pseudo-inverse matrix
(via singular values decomposition). The linear model g(x) = wT x is learned by:

w = (XT X)−1XT y = X†y (5)

where X is a matrix of input data, y label (class) vector and X† is pseudo-inverse
matrix. The above equation is a solution for the goal:

Js(w) = ||Xw − y||2 =
m∑

i=1

(wT xi − yi )
2 (6)

obtained by zeroing the gradient. The next neural network is a nonlinear model
generated by a set of gaussian kernels (k1, . . . , kl ), and learned in a similar way
as above networks after transforming the original space into the space obtained by
kernels. It means that instead of X in Eq.5 the matrix F is used:

Fi j = k j (xz j ; xi ), (7)

where xz j are randomly selected between all data vectors. Such construction of neural
networks is equivalent to Extreme learning machines [4, 5]. Note that the parameters
of all learning machines were not optimized because the goal of this paper is not to
achieve optimal performance of given machines, but to present the attractiveness of
the comparison method.
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All results in accordance with the above definitions was presented in Tables1
and 2 which have the same form as matrix in the Eq.4. The difference between
tables lies in the number of kernels used to learn the NN-Gauss neural network—the
numbers of kernels were equal to 80 and 160, respectively. Starting from the top of
Table1 we can analyze significance groups for selected benchmark data. In contrary
to a presentation based only on wins and defeats here we can observe that in case of
several benchmarks data the numbers of significance groups spread from 2 even up to
5 (5 is the maximum of course). The number of significance groups is very often
relatively huge—it is close to themaximum—and is directly related to the diversity of
model’s performance. Divergent performance of quality is directly correlated with
the numbers of significance groups. In case of a presentation based on wins and
defeats, this feature is invisible. After the rows which present accuracies statistics
and significance groups we come to the sum-up information. The first row informs
about commonly used average accuracies over all benchmark data sets. Next row
presents the information about the average rank for each classifier. The best ranking
informs us about the best classifier over all benchmarks. Note that the best average
accuracy over all benchmarks may not be as good an estimation of the best classifier
as the machine with the best average rank. It is because the magnitudes of average
accuracy for machines are independent, which can significantly bias the rank, and
this can be seen in Table2. The last row informs us about the number of wins and
the number of unique wins. The best number of wins is quite closely related to the
best rank. But more special information is captured by the unique wins. This informs
us about the uniqueness of a given machine. Larger number of unique wins means
a more unique and more significant machine. If the number of unique wins is really
small, it means that such machine can be simply substituted by another machine.
It shows that machine redundancy can be very easily analyzed. Compare the two
tables to see how the redundancy can change. Additionally, all non-small unique win
counters are connected with nonredundant winning machines.

3 Summary

Model selection is one ofmost important tasks inmachine learning and computational
intelligence. The comparison of classifiers should as informative as possible, and
should not hide any important information. Typically, we observe that classifiers
comparisons are oversimplified and in consequence, to select a model, we need
another results which comment the behavior of learning and the obtained results. The
proposed scheme of multi-ranked classifiers comparison bases on the same statistical
tools but calculates more and different features for the prepared test. Thanks to the
proposed scheme, we can easily analyze information like
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• significance groups which describe difference in performance for a given bench-
mark without the bias of variance,

• the overall best classifier information is basedmostly on the averaged ranks, which
may be additionally compared with the win counts,

• machine uniqueness and machine redundancy,
• the best winner machine (the machine with the most wins),
• detailed information about performance for a given machine and a given bench-
mark.

Such classifier comparison significantly simplifies the process of results analysis and
the model(-s) selection is simplified.
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