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Preface

This volume contains, first of all, the papers presented at the Fourteenth Interna-
tional Workshop on Intuitionistic Fuzzy Sets and Generalized Nets
(IWIFSGN-2015) organized, and collocated with the Flexible Query Answering
Systems 2015 (FQAS-2015) held on October 26–28, 2015 in Cracow, Poland.
Moreover, the volume contains some papers of a particular relevance not presented
at the Workshop.

This Workshop is a next edition of a series of the IWIFSGN Workshops
organized for years by the Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland, Institute of Biophysics and Biomedical Engineering, Bulgarian
Academy of Sciences, Sofia, Bulgaria, and WIT—Warsaw School of Information
Technology, Warsaw, Poland, and co-organized by: Matej Bel University, Banska
Bystrica, Slovakia, Universidad Publica de Navarra, Pamplona, Spain, Universi-
dade de Tras-Os-Montes e Alto Douro, Vila Real, Portugal, Prof. Asen Zlatarov
University, Burgas, Bulgaria, Complutense University, Madrid, Spain, and the
University of Westminster, Harrow, UK.

The workshop is mainly devoted to the presentation of recent research results in
the broadly perceived fields of intuitionistic fuzzy sets and generalized nets initiated
by Professor Krassimir T. Atanassov whose constant inspiration and support is
crucial for such a widespread growing popularity and recognition of these areas.

An important contribution of the Workshop is also the fact that it greatly
facilitates, and often makes it possible, a deeper discussion on papers presented
which as a rule results then in new collaborative works and a further progress in the
areas.

The workshop has been partially supported, financially and technically, by many
organizations, notably: Systems Research Institute, Polish Academy of Sciences;
Department IV of Engineering Sciences, Polish Academy of Sciences; Cracow
Branch, Polish Academy of Sciences; Academia Europaea—The Hubert Curien
Initiative Fund; Ghent University; Polish Association of Artificial Intelligence, and
Polish Operational and Systems Research Society. Their support is acknowledged
and highly appreciated.
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We hope that the collection of main contributions presented at the workshop,
completed with papers by leading experts who have not been able to participate,
will provide a source of much needed information and inspiration on recent trends
in the topics considered.

We wish to thank all the authors for their excellent contributions and their
collaboration during the editing process of the volume. We are looking forward to
the same fruitful collaboration during the next workshops of this series that are
planned for the years to come. Special thanks are due to the peer reviewers whose
excellent and timely work has significantly contributed to the quality of the volume.

And last but not least, we wish to thank Dr. Tom Ditzinger, Dr. Leontina di
Cecco, and Mr. Holger Schaepe from Springer for their dedication and help to
implement and finish this large publication project on time maintaining the highest
publication standards.

August 2015 The Editors
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Part I
General Issues in the Representation and

Processing of Uncertainty and Imprecision



Paired Structures, Imprecision Types
and Two-Level Knowledge Representation
by Means of Opposites

J. Tinguaro Rodríguez, Camilo Franco, Daniel Gómez
and Javier Montero

Abstract Opposition-based models are a current hot-topic in knowledge
representation. The point of this paper is to suggest that opposition can be in fact
introduced at two different levels, those of the predicates of interest being repre-
sented (as short/tall) and of the logical references (true/false) used to evaluate the
verification of the former. We study this issue by means of the consideration of
different paired structures at each level. We also pay attention at how different types
of fuzziness may be introduced in these paired structures to model imprecision and
lack of knowledge. As a consequence, we obtain a unifying framework for studying
the relationships between different knowledge representation models and different
kinds of uncertainty.

Keywords Intuitionistic fuzzy sets ⋅ Bipolar fuzzy sets ⋅ Paired fuzzy sets

1 Introduction

Knowledge acquisition and representation is a complex task where many scientific
fields interact. Let simply point out here the relevance of concept representation in
our knowledge process (see, e.g., [13, 25]). Our brain is able to produce concepts
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that mean a compact, reliable and flexible representation of reality, and this rep-
resentation is the basis for an efficient decision making process, and perhaps more
important, the basis for an efficient communication language, when put into words.

But most concepts we use are complex in nature, far from being binary (hold/do
not hold), and most probably with no associated objective measure. Most of the
time, in order to understand a concept we need to explore its related concepts. Only
taking into account surrounding concepts we can capture the borders of the concept
we are considering, as well as the transition zones from one concept to the other.

Of course, concepts in a complex reality do not have a unique related concept.
But indeed our knowledge use to start by putting a single concept in front of the
concept under study. In Psychology, for example, the importance of bipolar rea-
soning in human activity has been well stated (see [19], but also [6–8]). But it is
relevant to observe that particularly in this context the semantic bipolar scale
positive/negative comes with a neutral valuation stage.

Within fuzzy sets theory we can find several models that fit into the above
approach. For example, Atanassov’s fuzzy sets (see [3, 4]) were originally pre-
sented in terms of a concept and its negation, allowing some indeterminacy state.
And Dubois and Prade offered a unifying view of three kinds of bipolarities (see
[8–10]).

This paper continues the work in [21] by analyzing the role of opposition and
imprecision in both logic and knowledge representation models through the
recently proposed notion of paired structures (see [12, 18, 20, 22]). Particularly,
here we focus on how opposition (and thus paired structures) can simultaneously
operate at two different levels, the logical and the representational ones. Our point is
that this approach enables a unifying view of different knowledge representation
models, as well as a comprehensive view of the different kinds of uncertainty and
neutrality they allow to express.

2 Opposite L-Fuzzy Sets

Let L = (L, ≤, 0L, 1L) be a lattice. In this work we will usually assume that L is
linearly ordered by ≤. In this context, a negation function has been traditionally
defined (see [26, 27]) as a non-increasing function

n: L→L

such that n(0L) = 1L and n(1L) = 0L. A negation function will be called a strong
negation if it is in addition a strictly decreasing, continuous negation being also
involutive (i.e. such that n(n(v)) = v for all v in L). In this paper we shall consider
only strong negations. Then, if we denote with FL(X) the set of all L-fuzzy sets (i.e.
predicates) over a given universe X, then any strong negation n determines a
negation operator

4 J. Tinguaro Rodríguez et al.



N:FLðXÞ→FLðXÞ

such that NðμÞðxÞ= nðμðxÞÞ for any predicate μ∈FLðXÞ and any object x∈X.

Definition 1 A function O:FLðXÞ→FLðXÞ will be called an opposition operator if
the following two properties hold:

(A1) O2 = Id (i.e. O is involutive);
(A2) μðxÞ≤ μðyÞ⇒OðμÞðyÞ≤OðμÞðxÞ for all μ∈FLðXÞ and x, y∈X;

The above definition generalizes the following definition given in [28], where a
particular negation operator N:FLðXÞ→FLðXÞ is being assumed:

Definition 2 An antonym operator is a mapping A:FLðXÞ→FLðXÞ verifying the
following properties:

(A1) A2 = Id;
(A2) μðxÞ≤ μðyÞ⇒AðμÞðyÞ≤AðμÞðxÞ for all μ∈FLðXÞ and x, y∈X;
(A3) A≤N.

Hence, the following definition seems also natural, as another family of relevant
opposites:

Definition 3 An antagonism operator is a mapping A:FLðXÞ→FLðXÞ fulfilling the
following properties:

(A1) A2 = Id;
(A2) μðxÞ≤ μðyÞ⇒AðμÞðyÞ≤AðμÞðxÞ for any μ∈FLðXÞ and x, y∈X.
(A3) A≥N.

In this way, any chosen negation N is an opposite, and it determines two main
families of opposites, antonym and antagonism, names that should be usually
assigned to any antonym or antagonism different than N. But notice that there are
opposites not being antonym or antagonism.

3 Paired Fuzzy Sets and Paired Fuzzy Structures

Previous definitions offer in our opinion an appropriate range for defining oppo-
sites, depending on a previous negation that acts as a reference. In this way we can
represent both the case in which two opposite fuzzy sets overlap and the case in
which two opposite fuzzy sets do not cover the whole reality under study.

Definition 4 Two predicates (or fuzzy sets) P, Q are paired if and only if P = O(Q),
and thus also Q = O(P), holds for a certain semantic opposition operator O.

Paired Structures, Imprecision Types … 5



In other words, a paired fuzzy set is a couple of opposite fuzzy sets. Our point is
that neutral predicates will naturally emerge from opposites: as in classification
context (see, e.g., [1, 2]), two opposite predicates (e.g., tall/short) that refer to the
same notion (height) and, depending on their semantics, can generate different
neutral concepts. When opposites overlap (e.g., more or less tall/more or less
short), both opposites are perhaps too wide and ambivalence appears as a neutral
predicate (to some extent both opposite predicates hold). But if opposites do not
overlap (e.g., very tall/very short), we find that both opposites are perhaps too strict,
and indeterminacy appears. And of course both situations might hold, depending on
the object under consideration. Indeterminacy and ambivalence therefore appear as
two main neutral valuation concepts. Alternatively, specific intermediate predicates
might appear, in some cases leading to a non-paired structure perhaps by modifying
the definition of the two basic opposite predicates and/or introducing new
non-neutral intermediate predicates, defining perhaps a linear scale (see, e.g., [14]).

But a third main neutrality can appear when opposites are complex predicates
(e.g., good/bad), mainly due to the underlying multidimensional nature of the
problem. In this context it is usually suggested a decomposition in terms of simpler
predicates, and then we can easily be faced to a conflict between different criteria.

Hence, from a basic predicate and its negation we can define an opposite that
might imply, to some extent, the existence of indeterminacy (antonym) and/or
ambivalence (antagonism), and also conflict. Hence, we have reached to a quali-
tative scale S = {concept, opposite, indeterminacy, ambivalence, conflict}, which
contains the relevant representational situations into consideration and constitute
the basis of any paired structure. The main idea of a paired structure is that the
verification (for a given object) of each of these primary, qualitative situations is
then measured in a secondary, quantitative scale L (usually a lattice).

Definition 5 Given an appropriate lattice L, paired structures are represented
through a multidimensional L-fuzzy set AL given by

AL = ⟨x; ðμsðxÞÞs∈ S⟩jx∈X
� �

,

where X is our universe of discourse and each object x∈X is assigned up to a
degree μsðxÞ∈ L to each one of the above five predicates s∈ S, S = {concept,
opposite, indeterminacy, ambivalence, conflict}.

Although more details will be found in [18], we should stress that, consistently
with [17], an appropriate logic (or logics if [15, 16] are taken into account), should
be then associated to this structure (X, S, L, AL). It is important to point out that,
consistently with [1, 2], a condition similar to Ruspini’s partiton [24]

∑
s∈ S

μsðxÞ=1L for all x inX
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is not being a priori imposed, although certain circumstances, constraints or gen-
eralizations, might suggest specific adaptations, particularly in the management of
predicates (see, e.g., [5]).

4 The Imprecision Issue

Now we follow [21] to remark that in addition to the above types of neutrality, there
are other representational situations that can be identified as a kind of neutrality,
since they produce in the decision maker some kind of symmetry among opposites.
However, this symmetry does not actually originate from the semantic tension
between reference opposites, but as a result of allowing both such references and
the formal tools we use to represent them to be imprecise. Let us discuss here these
two related types of imprecision and the way they are related to and introduced in
our paired structures.

On one hand, if we regard the reference predicates P, Q to be imprecise concepts
(such as e.g., young/old or short/tall), we need to introduce a certain kind of
gradualness in our quantitative scale L in order to enable our representation model
to express such imprecision. For example, departing from {0, 1} and iteratively
allowing intermediate valuations between each pair of previous valuations, we may
reach a continuous linear scale as L = [0, 1]. In this way, we may obtain in the limit
a fuzzy paired structure, in which our references are represented through fuzzy sets,
as well as the other representational neutralities in S. We refer to this kind of
imprecision, leading to gradual secondary scales L in which a precise degree μs ∊
L represents the verification of the primary (imprecise) categories s ∊ S, as type-1
imprecision.

In this context, whenever the considered negation n:L → L has an equilibrium
point e (i.e. an e ∊ L such that n(e) = e), some objects x∊X may for instance verify
that μP(x) = μQ(x) = e. If L = [0, 1] and n is the standard negation, we would obtain
μP(x) = μQ(x) = 0.5. In this kind of situation, decision makers find difficulties in
choosing among both opposites. But this representational symmetry does not
constitute a different (neutral) concept providing a new primary category in S as a
result of a semantic tension between references. Instead, such symmetry arises
because of the imprecise nature of the reference predicates, whenever we allow
such imprecision to be introduced in our models through a type-1 or fuzzy mod-
elling of the paired references.

On the other hand, and more importantly, once we are faced to the estimation
problem (membership functions should be somehow estimated), we should be
aware of a different imprecision issue, now associated to the difficulty of estimating
exact membership degrees μs ∊ L. Our knowledge may be not so rich to allow
estimating exact degrees, and thus imprecise degrees or estimations may be allowed
to model lack of knowledge or ignorance. Again, decision makers can find diffi-
culties in choosing among opposites under a significant level of ignorance. How-
ever, such ignorance is not semantically generated from a pair of opposing
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references, but it derives from an insufficient or imperfect knowledge of the objects
into consideration in relation with type-1 imprecise references.

Therefore, this second kind of imprecision, let us refer to it as type-2 impreci-
sion, is associated to a representational ignorance as it refers to a lack of knowledge
about the exact degree to be chosen within a (gradual) secondary scale L. The
representation of type-2 imprecision leads to consider more complex secondary
scales, as for example L =LI = f½μ, μ ̄�⊂½0, 1�g, i.e. the lattice of interval-valued
fuzzy sets. The width of the intervals is naturally associated to a measure of the
involved lack of knowledge, in such a way that in this context a valuation
μs(x) = [0, 1]∊LI is to represent a total lack of knowledge or ignorance about the
exact degree of verification of the primary category s ∊ S for object x. Such a type-2
imprecision might apply to each one of the fuzzy predicates composing a paired
structure, leading to a more complex structure.

5 Paired Structures in Logics and Knowledge
Representation

In this section, we use the framework of paired structures to analyze the relation-
ships between different logical and knowledge representation models. To this aim,
we propose an example in which we apply the previous paired approach to the
notions of truth and falsehood of classical logic. We restrict ourselves to a crisp
setting (i.e. we assume L = {0, 1}) for simplicity and clarity of exposition, since the
main point of our argument is not affected by the consideration or not of a fuzzy
framework. Indeed, as we shall see later, our main point is that opposition, and thus
paired structures, can act at both the logical and the representational level.

Therefore, let us consider two crisp poles T = true and F = false, related through
an opposition operator O, and defined for the purpose of this example on a universe
of discourse

U = fP xð Þ= John is tall, ¬P xð Þ= John is not tallg

formed by two propositions specified in terms of a single object x in X (John), and a
single property P (tall) and its negation ¬P (to be read as not-tall).

Within the paired approach we should consider also the negation of the poles
NT = not-true and NF = not-false, defined from both a negation n:{0, 1} → {0, 1},
such that n(0) = 1 and n(1) = 0, and the membership functions µT, µF:U → {0, 1},
in such a way that µNT = n ◦ µT and µNF = n ◦ µF.

Let us remark that we use two (or three) different symbols for negation, i.e. the
symbol ¬ to refer to the negation of properties at the level of the propositions on
which the poles apply, and the symbol N to refer to negation at the level of poles
(which is in turn dependent on n). We assume all these negations to be involutive.

Then, within the paired approach, evidence regarding objects u in U is evaluated
through pairs
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μPAIRED uð Þ = μT uð Þ, μF uð Þð Þ ð1Þ

and thus the following valuations of P(x) = John is tall are available (we denote
them through the symbols before the last double arrow):

• P(x) is true ↔ TP(x) ↔ µT(P(x)) = 1 and µF(P(x)) = 0;
• P(x) is false ↔FP(x) ↔ µF(P(x)) = 1 and µT(P(x)) = 0;
• P(x) is ambivalent ↔ AP(x)↔ µT(P(x)) = 1 and µF(P(x)) = 1;
• P(x) is indeterminate ↔ IP(x) ↔ µT(P(x)) = 0 and µF(P(x)) = 0;

Similarly, regarding ¬P(x) the following valuations are available:

• ¬P(x) is true ↔ T¬P(x) ↔ µT(¬P(x)) = 1 and µF(¬P(x)) = 0;
• ¬P(x) is false ↔ F¬P(x) ↔ µT(¬P(x)) = 0 and µF(¬P(x)) = 1;
• ¬P(x) is ambivalent ↔ A¬P(x) ↔ µT(¬P(x)) = 1 and µF(¬P(x)) = 1;
• ¬P(x) is indeterminate ↔ I¬P(x) ↔ µT(¬P(x)) = 0 and µF(¬P(x)) = 0.

Here we are neither concerned with interpreting this paired logical framework
nor with establishing its soundness. Rather, we use the formal framework it pro-
vides to study how different logics and/or formal models for knowledge repre-
sentation may be obtained by assuming different principles and properties.
However, let us observe that different well-founded paraconsistent logics and
semantics can be developed from this general approach (see e.g., [23, 29]) (Fig. 1).

5.1 Paired Representation of Classical Logic

From the general logical framework allowed by a paired representation of truth and
falsehood, classical logic can be obtained by assuming just two conditions. First, let
us assume

μF P xð Þð Þ= μTð¬P xð ÞÞ ð2Þ

that is, falsehood of a proposition is equal to the truth of the ¬-negated proposition.
And second, assume also

μTð¬P xð ÞÞ= μNT P xð Þð Þ ð3Þ

Fig. 1 Logical structure of a general paired approach. Truth and falsehood of a proposition P as
well as truth of P and truth of its negation ¬P are not related
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that is, negation ¬ at the level of propositions is interchangeable with negation N at
the level of the poles.

As a consequence of these two assumptions and the equality µNT = n ◦ µT, the
falsehood of P is equal to the non-truth of P, which in turn can be obtained from
just the truth value of P(x) through negation n, that is

μF P xð Þð Þ= n μT P xð Þð Þð Þ. ð4Þ

Notice that (4) entails that the poles T and F are each other complement (i.e. T = NF
and F = NT). Moreover, the so obtained logic verifies both the excluded middle
principle (EMP)

TPðxÞ∨¬PðxÞ ↔ ðTPðxÞ ∧F¬PðxÞÞ∨ ðFPðxÞ ∧T¬PðxÞÞ∨ ðTPðxÞ ∧T¬PðxÞÞ

and the no contradiction principle (NCP)

FPðxÞ∧¬PðxÞ ↔ ðTPðxÞ ∧F¬PðxÞÞ∨ ðFPðxÞ ∧ T¬PðxÞÞ∨ ðFPðxÞ ∧F¬PðxÞÞ

where ∨ and ∧ respectively represent the classical OR and AND connectives.
Particularly, notice that the valuations TP(x)∧T¬P(x) and FP(x)∧F¬P(x) are not allowed
in this framework.

In these conditions, a paired logical representation of the evidence available in
the framework of classical logic for a proposition u in U is given by pairs

μCL uð Þ= μT uð Þ, μF uð Þð Þ ð5Þ

such that µF(u) = n(µT(u)). Notice that as a consequence of the complementarity of
T and F no neutral valuations are allowed, that is, classical logic does neither admit
ambivalent nor indeterminate propositions. Obviously, the pair µCL is equivalent to
the classical representation of the sets P and ¬P through characteristic functions µP,
µ¬P:X → {0, 1} in such a way that µP(x) = µT(P(x)) and µ¬P(x) = µF(P(x)).

Let us remark that fuzzy representations of properties is basically grounded on
the same principles (2) and (3), although the verification of EMP and NCP is
dependent on the particular choice of fuzzy connectives ∨ and ∧ for representing
OR and AND. Particularly, as shown for instance in [11], both principles hold
simultaneously if only if n is a strong negation and ∨ and ∧ are Lukasiewicz-like
operators (Fig. 2).

Fig. 2 In classical logic, truth of a proposition P is identified (solid lines) with falsehood of its
negation ¬P, and the truth of P is related to the truth of ¬P through a negation n (dashed arrows)
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5.2 Paired Representation of Intuitionistic Logic

Notice that expression (2) above makes possible to interpret

μCL uð Þ= ðμT uð Þ, μTð¬uÞÞ ð6Þ

for any proposition u in U. In a crisp setting, intuitionistic logic (in the sense of [3])
retains condition (2) and the interpretation in (6), but replaces condition (3) by the
more general constraint

μTð¬P xð ÞÞ≤ μNT P xð Þð Þ ð7Þ

which asserts through (2) that the falsehood of a proposition is a more restrictive
claim than the non-truth of the same proposition, that is, a proposition may be
not-true while at the same time being not-false. Then, intuitionistic logic can be
represented in a paired logical framework through pairs

μINT uð Þ= ðμT uð Þ, μTð¬uÞÞ ð8Þ

such that µT(¬u) ≤ n(µT(u)) for any u in U.
It is important to notice that this setting allows a proposition P(x) to be evaluated

as indeterminate (and then so will be ¬P(x)), since now it is allowed that µT (P
(x)) = 0 and µF(P(x)) = µT(¬P(x)) = 0 can simultaneously hold. This last entails that
EMP does not hold in general in the framework of intuitionistic logic.

Notice also that, although the presence of indeterminacy violates the previous
strong formulation of NCP, this principle still holds in the weaker sense of not
allowing both P(x) and ¬P(x) to hold simultaneously, that is µINT(u) = (1, 1) is not
an available valuation.

It is important to remark that in the case of intuitionistic logic, the logical poles
T and F are no longer assumed to be each other complement, and thus they can
respectively differ of NF and NT. Let us observe that the basic ideas holding in this
crisp framework also hold in the fuzzy setting of [3] (Fig. 3).

Fig. 3 In intuitionistic logic, truth of a proposition P is still identified (solid lines) with falsehood
of its negation ¬P, but the truth of ¬P can no more be obtained from that of P
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5.3 Bipolar Knowledge Representation Models

Notice that in the previous examples we restricted ourselves to consider a universe
of discourse formed by just two complementary propositions, P(x) and ¬P(x). Such
a universe contains exclusively the needed propositions in order to study the logical
dependence of a proposition and its negation, the first and main issue of any logical
analysis as those of classical logic and intuitionistic logic.

However, bipolar models (in the sense of [8]) are not actually logical models
referring to the poles T and F of classical logic, but rather bipolar models deal with
knowledge representation in the presence of opposing arguments under the logical
perspective of classical (or fuzzy) logic. That is, in this case we should consider the
alternative universe

U = fP xð Þ= John is tall, ¬P xð Þ= John is not tall,

Q xð Þ= John is short, ¬Q xð Þ= John is not shortg

given by four propositions stated in terms of a single object x in X and a pair of
properties (and the corresponding negations) sharing a certain kind of opposition.
We may then assume that properties P and Q constitute a pair of poles related
through an opposition operator ∂ in the sense of Definition 1, i.e. Q = ∂(P).

Notice that we intentionally use two different symbols to differentiate the
opposition operator acting at the level of logical poles (i.e. the operator O such that
F =O(T)) from that acting at the level of the represented properties or predicates (i.e.
the operator ∂). This also allows distinguishing between the neutral valuations
arising at the logical level and those arising at the level of knowledge representation.

Particularly, we claim that most bipolar models actually admit neutral valuations
at the level of the poles P and Q, but do not admit logical neutralities at the level of
the poles T and F, similarly to classical logic. That is, bipolar models represent
evidence through pairs

μBIP uð Þ= μT uð Þ, μT ∂uð Þð Þ ð9Þ

but assume expressions (2) and (3) to hold regarding the logical relationships
between a property and its negation in terms of logical truth and falsehood.

Thus, bipolar models enable to model opposite arguments at the level of
knowledge representation, assuming two separate coordinates or dimensions
(usually referred to as positive evidence and negative evidence, respectively) of
knowledge representation, each of these dimensions in turn assuming a classical
logic framework. That is, both EMP and NCP hold in each dimension regarding
P and Q.

Moreover, these two dimensions may refer to logically independent properties
(in the sense that P and Q may not be each other complement). Nevertheless, these
two dimensions are not fully independent from a logical perspective since P and
Q are related at the logical level through the opposition operator ∂, which relates the
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logical descriptions of P and Q (i.e. their membership functions µP and µQ) in order
to guarantee that they meet the semantics of opposition (Fig. 4).

6 Conclusions

In our opinion, the proposed paired approach allows to state more precisely the
relationships between intuitionistic and bipolar models. Particularly:

• Intuitionistic models rely on a different set of logical assumptions than bipolar
models. The latter models assume a classical logical framework in each coor-
dinate, while the former do not.

• Intuitionistic models are stated in terms of a proposition and its negation, while
bipolar models work in terms of opposite properties. In other words, intu-
itionistic models introduce opposition at the level of logical poles but does not
consider opposite (but complementary) properties, while bipolar models allow
opposite properties but assumes the logical structure of classical logic at each
opposite property.

Notice that these differences make possible to think that both approaches (in-
tuitionistic and bipolar) could be in fact complementary, in the sense that we could
allow introducing opposition at both levels of knowledge representation and logic,
i.e. a paired structure at the level of the properties P to be represented and another
paired structure at the level of the logical poles T and F that evaluates the verifi-
cation of such properties. That is, nothing seems to forbid the formal specification
of a model

μBIP− INT uð Þ= ððμT uð Þ, μTð¬uÞÞ, ðμT ∂uð Þ, μTð¬∂uÞÞÞ ð10Þ

in such a way that the evaluations µT(u) and µT(¬u) as well as µT(∂u) and µT(¬∂u)
are related through a constraint similar to (7) (Fig. 5).

Here we do neither try to interpret this model nor to analyze its soundness, but
we just claim it is formally possible in a general paired framework assuming paired
structures on both the representational and logical levels. Moreover, we also claim
that this model can be further extended from the crisp setting to allow representing

Fig. 4 In bipolar models, two separate dimensions of logical representation are employed to
model opposite arguments, and are related through an opposition operator (dot-dashed arrow).
Each of these dimensions assumes a classical logic structure
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imprecise predicates and lack of knowledge, that is, type-1 and type-2 imprecision,
at both the logical and the representational levels, although this is an issue that
requires further study and research (for instance, both levels may have to share a
similar lack of knowledge).

Anyway, we think that acknowledging that opposition may operate at two dif-
ferent levels (and that in fact many current opposition-based models operate either
in one or the other), as well as that imprecision arises as a different issue from
opposition, may be a useful approach to analyze the relationships between several
models and acquire a better understanding of their representational power and the
uncertainties they are able to express.
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Suggestions to Make Dempster’s Rule
Convenient for Knowledge Combining

Ewa Straszecka

Abstract The paper deals with the Dempster’s rule for the basic probability

assignment combining from the point of view of a medical diagnosis support. The

assignment determined on different sources of information is useful to establish

symptoms weights, but often results of the combination are far from intuition. A

modification of the Dempster’s formula is proposed to make it possible to tune the

resulting assignment according to the distance between the combined assignments.

Properties of the proposed methods which are important for practical applications

are shown on simulated data.

Keywords Dempster-Shafer theory of evidence ⋅ Knowledge combining

1 Introduction

The Dempster-Shafer theory of evidence [1] still remains one of the most important

tools to represent and manage uncertainty in real-life problems of decision support.

However, its flexibility is simultaneously an advantage and a drawback of applica-

tions. We benefit from neglecting dependence of focal elements as pieces of evi-

dence, but the week point is a lack of indications in which way the basic probability

assignment (bpa) for the elements should be determined. This is particularly crucial

when the bpa expresses expert’s knowledge, for instance in medical diagnosis. In

this area a significance of a symptom is often roughly estimated and a combination

of knowledge from different sources is necessary. Small changes of values of one

bpa may be exaggerated after combination with another, also roughly determined

bpa. Deficiencies of the classical Dempster’s combination are pointed out in numer-

ous papers, but no other general and satisfactory method is proposed so far, maybe

except for the fuzzy rules aggregation, which however has its own disadvantages in
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applications [10]. Various concepts of changing Dempster’s rule of combination are

valuable and important because of their solid theoretical background, e.g. [3, 4, 9].

Still, there is no suggestion for smooth tuning of the resulting bpa, if we discover

that it does not entirely follow our intuition.

The aim of this paper is to consider introducing a factor to the combination that

will play a role similar to the fuzzifying coefficient in clustering. This means that

changing the factor we could approach soft or severe estimation of symptom weights.

Common points of the Dempster-Shafer theory and pattern recognition are noticed

in [2]. Thus, it could be profitable to use experience of the latter old and highly

developed domain to solve some application problems in knowledge combining. In

the presented method a coefficient based on the similarity of bpas is used in com-

bining. It is worth to notice that this concept can be widen for a number of similarity

definitions which can open field for further research.

The present paper tries to make several suggestions about tuning the bpa, which

hopefully are general enough to be of use in practical solutions. The proposed method

is verified through simulations of bpas designed for a model of a medical diagnosis.

2 An Interpretation of Basic Probability Assignments
as Sources of Diagnostic Knowledge

2.1 The Classical Dempster’s Combination and a Medical
Diagnosis

In medical diagnosis the bpa may represent weights of symptoms. It is particularly

convenient since dependence of symptoms can be neglected and subsets of symp-

toms which are not distinct can be freely considered. In this case the classical bpa

definition [7] is:

md(f ) = 0,
∑

Si∈𝐒,i=1,…,n
md(Si) = 1, (1)

where d denotes the diagnosis and Si is its symptom—single or complex (i.e. a subset

of symptoms). The false focal element f should be interpreted as the symptom that

is never observed. Thus, the md(Si) is the weight of the rule: IF symptom is Si THEN

diagnosis is d.

Let us assume that the bpa is set by a physician using his experience. This is not

rare and in many cases diagnostic indexes that are accepted as medical guidelines are

not entirely based on statistic data, but also on subjective estimation [10]. It is also

often that another physician has slightly different view on the diagnosis and make

his own bpa. Then a combination of the bpas according to the classical Dempster’s

formula [1] is possible:
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md(sk) =
∑

Si∩Sj=sk
md1(Si)md2(Sj)

∑
Si∩Sj≠f

md1(Si)md2(Sj)
,

k = 1… n,
i = 1… n1, j = 1… n2.

(2)

It is obvious that the denominator in (2) stands for a normalization, such that (1)

holds true. Let us denote it by:

md(sk) =
⎡
⎢
⎢⎣

∑

Si∩Sj=sk

md1(Si)md2(Sj)
⎤
⎥
⎥⎦

k = 1… n, i = 1… n1, j = 1… n2, (3)

for simplicity. Usually, the symptoms in md1 and md2 are identically defined, so

their number is stable: n = n1 = n2 and si ≡ Si, sj ≡ Sj are identical in both sets

of focal elements, but si ∩ sj ≠ ∅, because complex symptoms usually include sin-

gle symptoms which are individual focal elements in the same bpa. Let us notice,

that if f is the symptom that is never observed, then the combination deficiency

indicated by Zadeh [11], which occur when m1(a) = 0; m1(b) = 0.1; m1(c) = 0.9
and m2(a) = 0.9; m2(b) = 0.1; m2(c) = 0, is irrelevant for medical diagnosis. If

m1(a) = 0 then a should be a symptom that is never observed, so it does not occur

in m2, too. If a is a symptom that is not considered, for instance it is a result of a

laboratory test which is not performed, its bpa value should not be equal to zero,

though it could be low. Still, the classical Dempster’s combination is too restrictive

for applications for other reasons that illustrate the following example.

2.2 Example

Let us consider two bpas m1 and m2, defined for the following set of focal ele-

ments: A = {a, b, c, bc}. Assume at first that values of the bpas are set equal, i.e.

0.25, for the each element. Next let us change the bpa values, rising them by 0.05
for a and b as well as decreasing for c and ab, in m1, while doing the opposite in m2.

Thus, at the end m1(a) = m1(b) = 0.45, m1(c) = m1(bc) = 0.05; m2(a) = m2(b) =
0.05, m2(c) = m2(bc) = 0.45. The combination is: mc(a) =

[
m1(a)m2(a)

]
; mc(b) =[

m1(b)m2(b) + m1(b)m2(bc) + m2(b)m1(bc)
]
;mc(c) =

[
m1(c)m2(c) + m1(c)m2(bc)+

m2(c)m1(bc)
]
; mc(bc) =

[
m1(bc)m2(bc)

]
; Results of calculations are in Fig. 1.

It can be noticed that though values of included bpas are at first equal, the resulting

bpa shows big differences. We would prefer that mc(b) and mc(bc) would approach

more the average value of the bpa than take extremely different values. Such phe-

nomena usually contradict intuition. However, it is enough to add a modifying factor

in the form of a power, i.e. m∗
c (a) =

[(
m1(a)m2(a)

)
𝛿

]
, for instance 𝛿 = 0.5 in Fig. 1,

to diminish changes of the final bpa.
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Fig. 1 Bpas resulting from

the classical Dempster’s

formula (mc) as well as from

the modification (m∗
c ), while

gradual change of combined

bpas (m1 and m2)
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2.3 Tuning a Combination of Probability Assignments

If we choose a bpa parameter, we can allow for the classical Dempster’s combination

or its modification by the change of its value. It would be profitable to introduce a

factor that can be decided according to the shape of combined bpas and in agreement

with knowledge engineer’s experience and intuition. Such a factor can be adjusted by

investigation of similarity of the bpas. Let us consider tuning results of combination

by means of a power coefficient, as it was suggested in Sect. 2.2. Thus:

mc ∗ (sk) =
⎡
⎢
⎢
⎢⎣

⎛
⎜
⎜⎝

∑

sk=si∩sj
m1(si)m2(sj)

⎞
⎟
⎟⎠

𝛿⎤
⎥
⎥
⎥⎦

(4)

It can be noticed, that for single focal elements indeed the combined bpas are both

taken to the 𝛿 power, i.e.

[(
m1(si)

)
𝛿
(
m2(si)

)
𝛿

]
which means that we simply mod-

erate severe opinions of experts. The 𝛿 coefficient can be determined by means of

similarity. Let us assume that the similarity is defined using a distance between the

combined bpas. The distance can be formulated in several manners [6], for instance:

d(m1,m2) =
√
(𝐦𝟏 −𝐦𝟐)′𝐖(𝐦𝟏 −𝐦𝟐), (5)

where 𝐦𝟏, 𝐦𝟐 are vectors including bpa values. When 𝐖 is equal to identity matrix

(5) becomes the Euclidean distance de:

de(m1,m2) =
√
(𝐦𝟏 −𝐦𝟐)′(𝐦𝟏 −𝐦𝟐). (6)
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If cardinality of focal elements is considered [5] then the Jaccard index [6] can

be used, i.e. 𝐖 elements are equal:

J(si, sj) =
|||si ∩ sj

|||
|||si ∪ sj

|||
(7)

In case of the example from Sect. 2.2, the Jaccard index matrix is:

𝐁 =
⎡
⎢
⎢
⎢⎣

1 0 0 0
0 1 0 0.5
0 0 1 0.5
0 0.5 0.5 1

⎤
⎥
⎥
⎥⎦
,

and the distance is:

db(m1,m2) =
√
(𝐦𝟏 −𝐦𝟐)′𝐁(𝐦𝟏 −𝐦𝟐). (8)

Additionally, a measure of distance is introduced:

da(m1,m2) = min(||𝐦𝟏 −𝐦𝟐||) (9)

to find out what is an influence of the distance definition on the similarity coefficient.

Thus, the combination (4) can be used with 𝛿:

𝛿 = k
2 − d#

, d < 2 (10)

where d# is de, db or da. The k parameter in (10) allows for precise tuning of the com-

bination Fig. 4. The assumption d < 2 exclude the situation of extreme (“Zadeh’s”)

conflict between the combined bpas. In the latter case, which the author thinks is

irrelevant for practical problems of diagnosis support, the proposed modifications

cannot be used.

There is a question why not to use the average [5] instead. The reason is that

while we choose the type of the mean, for instance arithmetic, we cannot become

“more strict” or “liberal” while combining distinct or similar bpas [8]. However, let

us consider the average for a comparison of features expected from the combined

bpa in applications. Then:

mm(sk) =
1
2
(
m1(sk) + m2(sk)

)
(11)

In this way four types of combinations are compared with the classical Dempster’s

rule: three based on distances (6)–(9) and 𝛿 (10), as well as the mean (11).
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2.4 A Model of the Basic Probability Assignment
in Medical Diagnosis

In medicine many symptoms are formulated by means of laboratory tests, for instance

“test X result is low”, “test Y result is normal”. Let us use this formulation for the bpa

determination. The point of norm (xN) that indicates the symptom, is determined for

ill (diagnosis 1) and healthy (diagnosis 2) populations (see Fig. 2). The norm point

is set at the intersection of distributions of “ill” and “healthy”. If patient’s result is

x, then x < xN means “test X result is low”, while x ≥ xN indicates “test X result is

normal”.

Let us assume that the diagnosis is based on values of three tests (variables): X,

Y and Z. Tests Y and Z may be correlated, so they should be both considered as sin-

gle focal elements as well as one complex focal element. The set of focal elements

is described in Table 1 for the diagnosis 1. Results of the tests that are lower than

the norm indicate diagnosis 1 (ill), which of course is a simplification. This assump-

tion makes data simulation easier, but it does violate the generality of the diagnostic

model. Symptoms for “healthy” (diagnosis 2) are formulated in analogy, and test

results are “normal” when x ≥ xN , y ≥ yN , z ≥ zN .

Fig. 2 An interpretation of

laboratory test results:

histograms and re-scaled

normal distribution curves

for patients with the

diagnosis 1 (ill) and

diagnosis 2 (healthy). The

norm point is xN
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Table 1 Focal elements for

diagnosis 1
Denotation Heuristic meaning Determination

s1 “X is low” x < xN
s2 “Y is low” y < yN
s3 “Z is low” z < zN
s4 “Y is low” and “Z is low” y < yN and z < zN
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3 Simulations

Values of the X, Y , Z variables were generated by Matlab® normal distribution gen-

erator. Four kinds of normally distributed samples were simulated, with the mean

(𝜖) and variance (𝜎), i.e. N(𝜖i, 𝜎i): 𝜖1 = 1, 𝜎1 = 1, 𝜖2 = 1, 𝜎2 = 2, 𝜖3 = 1, 𝜎3 = 3,

𝜖4 = 5, 𝜎4 = 1. Samples simulated for the X test were generated as not correlated

with samples for Y and Z, while the latter were correlated. Each time the samples

for diagnosis 2 (healthy) were characterized by the N(𝜖4, 𝜎4) distribution (for all

three tests). Samples for the diagnosis 1 (ill) had different distributions: N(𝜖1, 𝜎1),
N(𝜖2, 𝜎2), N(𝜖3, 𝜎3). Norm points were found from samples. From these samples

basic probability assignments m1d1, m1d2, m2d1, m2d2 were calculated as normalized

frequencies of occurrence of symptoms. Afterwards, m1d1, and m2d1 were combined

to obtain md1, while m1d2, and m2d2 made md2. Calculations were performed for the

same (200/200) and different (200/100) number of data in samples used for m1dj
and m2dj j = 1, 2, determination. The cross-validation process was performed on 50
samples.

Combinations of m1dj and m2dj j = 1, 2 were performed to obtain m∗
c (4) with 𝛿

(10) for distances de (6), db (8), da (9) and the mean (11). It was necessary to define

a criterion to estimate modifications of the classical combining. The modification

results were compared to the bpa which was obtained if data from samples considered

in one step of the cross-validation procedure were embedded in one dataset. This bpa

was denoted as mall. The criterion was the average of absolute differences between

the result of a chosen modification and the mall bpa, i.e.:

vij# =
∑4

k=1
||m#(sk) − mall(sk)||

v# =
1

2500
∑

i,j vij#
(12)

where # denoted e, b, a, m or c.

4 Results

During calculations it was stated that equal or different number of data in samples

had negligible influence on the value of the difference criterion (12) (changes were

smaller than 0.001). Thus, in the following only results for the different number of

data in samples are discussed. Results of combinations are denoted in Figs. 3, 4 and

5 by the following indexes: e, b, a, m, while the index c stands for the classical

Dempster rule.

It is observable that bpas obtained as outcomes of the proposed modifications

bring values of ve, vb and va within the [vm, vc] interval. Differences among used

types of modifications are hardly influenced by the choice of the sample character-

istics. It is illustrated in the Fig. 3. The diagrams (a) and (b) were obtained for X
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Fig. 3 The average difference (12) between the result of a chosen combination: vc—classical,

vm—mean, va—minimum, vb—Jaccard index, ve—Euclidean; and the reference bpa—mall. Dia-

grams a–d for k = 1, e, f for k = 2
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Fig. 4 Values of bpas obtained for different combination manners (part 1). Bars in the sequence

denote: m1, m2, mall, mc, mm, ma, mb, me

modeled by N(𝜖3, 𝜎3), Y by N(𝜖2, 𝜎2) and Z by N(𝜖1, 𝜎1), for the diagnosis 1 and

X, Y , Z simulated by N(𝜖4, 𝜎4) for diagnosis 2. The diagrams (c) and (d) concern X
modeled by N(𝜖1, 𝜎1), Y by N(𝜖2, 𝜎2) and Z by N(𝜖3, 𝜎3), for the diagnosis 1 and X,

Y , Z simulated by N(𝜖4, 𝜎4) for diagnosis 2. Values of the v# (12) are almost the same

in the corresponding diagrams. This indicate that the method is universal enough to

be used for a variety of diagnostic tests.

It is also effective, as the influence of the type of a modification as well as of its

parameter k is visible. The vm is close to zero (Fig. 3)—which is obvious for (11)

definition. Yet, changing k in (10) we can tune the result of being closer to vc or vm.

This is observable while comparing diagrams (a) and (e), as well as (b) and (f ) in

Fig. 3, determined for the same sample characteristics. Not only v#, but also values of

bpas are regularly tuned along with the k (10) change. The Figs. 4 and 5 show values

of bpas for different methods of combinations and various k. Sample characteristics

for which bpas are calculated are the same as for diagrams (a), (b), (e), (f ) in Fig. 3.

For k = 0.5 the values of ma, mb and me are closer to mm, while for k = 2 they are

almost equal to mc.
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Fig. 5 Values of bpas obtained for different combination manners (part 2). Bars in the sequence

denote: m1, m2, mall, mc, mm, ma, mb, me

5 Discussion and Conclusions

In this paper modifications of the Dempster’s rule for combining two bpas are pro-

posed. Though the modifications do not eliminate “Zadeh’s conflict”, they can help

to approach intuition while bpas combining. The idea comes from the author’s expe-

rience from trials of diagnosis of combing information from different sources. In

medical diagnosis support it is necessary to determine bpas on the basis of medical

guidelines or expert’s experience which are not very precise.

It should be noted that bpas combing is important not only from the point of

view of calculation of the belief and plausibility of the diagnosis, but also as a tool

for determination of symptoms weights. The right weights may help in planning

diagnostic procedures, hence a moderate opinion is more valuable than two diverse

judgments. Therefore, bpas combination is inevitable.

The presented modifications are based on the distance of combined bpas and gen-

erally aim at softening counter-intuitive effects while combining very similar or quite

diverse bpas. A distance is chosen as a measure of similarity of the bpas. It is shown
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that the proposed concept works for several distance definitions. This may indicate

that not only other manners of distance determination, but also other measures of

similarity, not necessary based on distances, can be used to improve the Dempster’s

rule, by means of the introduced coefficient.

Simulations confirm that proposed methods make it possible to tune the resulting

bpa towards mean or classical rule outcomes. Thus, it is possible to obtain results

similar to the average, without explicit use of the mean. This allows for free change

of final bpa to improve its conformity with intuition, whenever it is necessary.

The proposed modifications are numerically simple and do not show dependence

on variables (symptoms) characteristics. Therefore, hopefully they can be used in

many applications of medical diagnosis support.
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On Partially Ordered Product Spaces

Považan Jaroslav and Riečan Beloslav

Abstract In the paper a very general system is presented including some known

important structures, as continous effect algebras. As an illustration the generaliza-

tion of the classical Poincaré theorem from ergodic theory is presented.

1 Introduction

In the paper we shall consider the notion of the binary product operation from the

point of view probability theory. It is interesting that 15 years ago something simi-

lar was realized in multivalued algebras. In [12] from the point of view probability

theory and in [11] from the point of view mathematical logic. And although the

proposed definitions were different, they are equivalent. A review of applications

of MV-algebras with product from the point of view probability theory has been

presented in [16].

Probably inspired by the theory of MV-algebras with product the notion of a

D-poset with product has been introduced by F. Kôpka in [9]. We have named the

structure as Kôpka D-poset ([15]).

In the theory of Atanassov intuitionistic fuzzy sets the notion of the product of

two IF-sets is natural as well as in fuzzy sets which are a special case of IF concept.

Of course it is interesting that the product corresponds with the product of two real

functions.

As an application a useful result will be presented in the general form: the

Poincaré reccurence theorem. It says that if we have a good transformation T ∶ 𝛺 →
𝛺 of a probability space (𝛺, ,P) and any set A ∈  , then almost every element of A
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will return to A infinitely many times. If 𝜔 ∈ A is such a good element, then to every

k ∈ ℕ there is n > k, such that Tn(𝜔) ∈ A i.e. 𝜔 ∈ T−n(A). The set of such elements

𝜔 ∈ A which will not return has probability zero:

P

(
A ⧵

∞⋃

n=k
T−n(A)

)
= 0

for any k ∈ ℕ. Of course, we assume that T is measure preserving, i.e. P
(
T−1(A)

)
=

P(A) for any A ∈  .

2 Product Posets

We shall consider the following definition.

Definition 1 Let P be a partially ordered set (P,≤) with a binary operation ⋆ ∶
P × P → P. We shall say that (P,≤, ⋆) is a product space if the following conditions

hold:

1. ⋆ is commutative and associative,

2. a ⋆ b ≤ a for any a, b ∈ P,

3. if an ∈ P, an ≥ an+1 (n = 1, 2,…) , then there exists

∞⋀
n=1

an ∈ P.

Example 1 Let P be a 𝜎-algebra of subsets of a set X. For A,B ∈ P put

A ≤ B ⇔ A ⊂ B

and

A ⋆ B = A ∩ B.

Evidently if An ∈ P,An ⊃ An+1 (n = 1, 2…) then

∞⋂

n=1
An ∈ P.

Example 2 A natural generalization of the previous example is the system P of all

measurable (with respect to a 𝜎-algebra) fuzzy subsets of X i.e. ([17, 18])

P = {f ∶ X → [0, 1] ; f is measurable} .

Here f ≤ g is defined by a natural way and f ⋆ g is usual product of functions.

Example 3 Consider the Atanassov IF-theory ([1, 2]). Recall that an IF-subset of a

set X is a pair A =
(
𝜇A, 𝜈A

)
of functions
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𝜇A ∶ X → [0, 1] , 𝜈A ∶ X → [0, 1]

such that

𝜇A + 𝜈A ≤ 1.

We call 𝜇A the membership function, 𝜈A the non membership function and

A ≤ B ⇔ 𝜇A ≤ 𝜇B, 𝜈A ≥ 𝜈B.

If A =
(
𝜇A, 𝜈A

)
,B =

(
𝜇A, 𝜈A

)
are two IF-sets, then we define

A ⋆ B =
(
𝜇A ⋅ 𝜇B, 1 −

(
1 − 𝜈A

)
⋅
(
1 − 𝜈B

))
=
(
𝜇A ⋅ 𝜇B, 𝜈A + 𝜈B − 𝜈A ⋅ 𝜈B

)
.

Example 4 In [14] it was proved that any IF-algebra can be embedded to an MV-

algebra. By the Mundici theorem MV-algebra can be defined as an interval [0, u] in

an l-group (G,+ ≤) , i.e. such an additive group (G,+) which is a distributive lattice

satisfying the implication a ≤ b ⇒ a + c ≤ b + c. So the MV-algebra is the interval

P = {x ∈ G, 0 ≤ x ≤ u}, where u > 0 is an element and the two following operations

⊕,⊙ are given

a⊕ b = (a + b) ∧ u, a⊙ b = (a + b − u) ∨ 0

Of course in [12] and independently in [11], there was introduced the notion of the

MV-algebra with product ⋆, what is a binary operation which is commutative, asso-

ciative and satisfies the following two identities:

u ⋆ a = a
a ⋆ (b⊙ (u − c)) = (a ⋆ b)⊙ (u − a ⋆ c) .

We must to prove that a ⋆ d ≤ a for any a, d ∈ P. Put in the second identity b =
u, c = u − d. Then

a ⋆ (b⊙ (u − c)) = a ⋆ (u⊙ d) = a ⋆ d

On the other hand

(a ⋆ b)⊙ (u − a ⋆ c) = (a ⋆ u)⊙ (u − a ⋆ (u − d)) = a⊙ (u − a ⋆ (u − d)) ≤ a,

since a⊙ v ≤ a for any v.

Example 5 The notion of a D-poset was introduced in [10] (see also [7, 8]). It is a

partially ordered set (P,≤) with a partial binary operation −. Here a − b is defined

if and only if b ≤ a. It is assumed that the following properties hold:
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a ≤ b ⇒ b − a ≤ b, b − (b − a) = a
a ≤ b ≤ c ⇒ c − b ≤ c − a, c − a − (c − b) = b − a.

In [9] there was defined the product operation. It has been applied in [15].

3 States

In the classical case, if we have a probability P ∶  → [0, 1] on a 𝜎-algebra, then for

pairwise disjoint sets A1,… ,An ∈ 
(
i.e Ai ∩ Aj = ∅ for i ≠ j

)
we have

n∑

i=1
P
(
Ai
)
= P

( n⋃

i=1
Ai

)
≤ P(𝛺) = 1.

Therefore we shall introduce the following definition.

Definition 2 Let ℙ = (P,≤, ⋆) be a product space

A mapping m ∶ P → [0, 1] is a state if the following properties hold:

∙ ∀a, b ∈ P, a ≤ b ⇒ m(a) ≤ m(b),

∙ a1,… , an ∈ P,m
(
ai ⋆ aj

)
= 0 for i ≠ j ⇒

n∑
i=1

m
(
ai
)
≤ 1.

Example 6 Let P be a 𝜎-algebra of subsets of X and m ∶ P → [0, 1] be a probability

measure, A ⋆ B = A ∩ B. Evidently A ⊂ B implies m(A) ≤ m(B). If m
(
Ai ∩ Aj

)
= 0

for i ≠ j, then
n∑

i=1
m
(
Ai
)
= m

( n⋃

i=1
Ai

)
≤ 1,

hence m satisfies also the condition 2.

Example 7 Consider a family P of measurable IF-sets A =
(
𝜇A, 𝜈A

)
. The proba-

bility has been defined constructively by P. Grzegorzewski and A. Mrowka ([6]),

descriptively by B. Riečan ([14]) as a mapping m ∶ P → [0, 1]. In [3, 4] there was

proved that to any state m ∶ P → [0, 1] there exist probability measures 𝜆 ∶  →
[0, 1] , 𝜅 ∶  → [0, 1] and 𝛼 ∈ ℝ such that

m
((
𝜇A, 𝜈A

))
=
∫

𝜇Ad𝜆 + 𝛼

(
1 −

∫

(
𝜇A + 𝜈A

)
d𝜅

)
.

The mapping m ∶ P → [0, 1] is additive because it is 𝜎-additive.

Example 8 Let P be an MV-algebra, m ∶ P → [0, 1] be a state. It was intensively

studied in [16]. And again m is additive, because it is 𝜎-additive.
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4 Dynamical Systems

The classical dynamical system is a quadrillup (𝛺, ,P,T) , where (𝛺, ,P) is a

probability space, and T ∶ 𝛺 → 𝛺 is a measure preserving map, i.e.

P
(
T−1(A)

)
= P(A),

whenever A ∈  . (Of course, T is measurable, i.e. A ∈  implies T−1(A) ∈ ).

Define 𝜏 ∶  →  by the equality

𝜏(A) = T−1(A),A ∈  .

Then 𝜏 ∶  →  is a mapping such that

P(𝜏(A)) = P(A)

for any A ∈  . It leads to the following definition.

Definition 3 Let ℙ = (P,≤, ⋆) be a product poset. The family (P,≤, ⋆, 𝜏) will be

called a p-dynamical system, if m ∶ P → [0, 1] is a state and 𝜏 ∶ P → P is such map-

ping that

∙ a ≤ b ⇒ 𝜏(a) ≤ 𝜏(b),
∙ 𝜏(a ⋆ b) = 𝜏(a) ⋆ 𝜏(b)
∙ m(𝜏(a)) = m(a)

for any a, b ∈ P

Theorem 1 Let ℙ = (P,≤, ⋆, 𝜏) be a p-dynamical system, a ↦ ¬a be a unary oper-
ation such that m(a ⋆ ¬a) = 0 for any a ∈ P. Put

an = 𝜏(¬a) ⋆⋯ ⋆ 𝜏

n(¬a), bk =
∞⋀

n=k
an

Then
m
(
a ⋆ bk

)
= 0

for any k ∈ ℕ.

Proof Put

b = a ⋆ b1.

Then b ≤ a and also b ≤ an ≤ 𝜏

n(¬a) for any n, and since 𝜏 is monotone, we have

𝜏

n(b) ≤ 𝜏

n(a), so

b ⋆ 𝜏

n(b) ≤ 𝜏

n(a) ⋆ 𝜏

n(¬a) = 𝜏

n(a ⋆ ¬a).
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Therefore for any n

m(b ⋆ 𝜏

n(b)) ≤ m(𝜏n(a) ⋆ 𝜏

n(¬a)) = m(𝜏n(a ⋆ ¬a)) = m(a ⋆ ¬a) = 0. (1)

Let i, j ∈ ℕ, i ≠ j, e.g. i < j. Then

m
(
𝜏

i(b) ⋆ 𝜏

j(b)
)
= m

(
𝜏

i(b ⋆ 𝜏

j−i(b)
))

= m
(
b ⋆ 𝜏

j−i(b)
)
= 0 (2)

by 1. Since 2 holds for any i ≠ j, we obtain by the weak additivity

n∑

i=1
m
(
𝜏

i(b)
)
≤ 1.

But m
(
𝜏

i(b)(
)
= m(b). Therefore

nm(b) =
n∑

i=1
m
(
𝜏

i(b)
)
≤ 1.

But the inequality m(b) ≤ 1
n for any n implies m(b) = 0, hence

m

(
a ⋆

∞⋀

n=1

(
𝜏(¬a) ⋆ 𝜏

2(¬a) ⋆⋯ ⋆ 𝜏

n(¬a)
)
)

= 0 (3)

Consider now 𝜏

k
instead of 𝜏. Then

m

(
a ⋆

∞⋀

n=1

(
𝜏

k(¬a) ⋆ 𝜏

2k(¬a) ⋆⋯ ⋆ 𝜏

nk(¬a)
)
)

= 0.

But

m
(
a ⋆ bk

)
= m

(
a ⋆

∞⋀

n=k

(
𝜏(¬a) ⋆ 𝜏

2(¬a) ⋆⋯ ⋆ 𝜏

n(¬a)
)
)

≤

≤ m

(
a ⋆

∞⋀

n=1

(
𝜏

k(¬a) ⋆ 𝜏

2k(¬a) ⋆⋯ ⋆ 𝜏

nk(¬a)
)
)

= 0



On Partially Ordered Product Spaces 35

5 Conclusions

We presented many examples of partially ordered product spaces. Evidently our gen-

eral Poincaré theorem can be applied in each of the examples. By this method one

can obtain new versions of the Poincaré reccurrence theorem in different algebraic

systems. It is also hopefull to study other problems of ergodic theory and probability

theory in the partially ordered product spaces.
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Various Kinds of Ordinal Sums of Fuzzy
Implications

Paweł Drygaś and Anna Król

Abstract In this contribution new ways of constructing of ordininal sum of fuzzy

implications are presented. Moreover, some of their properties are examined, in par-

ticular neutral property, identity property, and ordering property.

Keywords Fuzzy implication ⋅ Triangular norm ⋅ Ordinal sum

1 Introduction

Fuzzy implications are one of the most important fuzzy connectives in many

applications such as fuzzy reasoning and fuzzy control. For that reason new fami-

lies these of connectives are the object of examination. In [5], Mesiar and Mesiarová

obtained a special class of ordinal sum implications (called, R-ordinal sum in [2])

by residual implications of ordinal sum of t-norms. In [6] Su et al. introduced the

concept of ordinal sum implications similar to the construction of ordinal sum of

t-norms. First, in Sect. 2, we recall basic definitions and results concerning t-norms

and fuzzy implications including the construction of ordinal sums of these fuzzy

connectives. Next, in Sects. 3–6, we propose new constructions of ordinal sums of

fuzzy implications and examine some of its properties. At the end we present further

research directions for the ordinal sum of implications.
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2 Preliminaries

Here we present the notions of t-norms and fuzzy implications, as well we recall

some of the constructions of ordinal sums of these fuzzy connectives.

2.1 Triangular Norms

First, we recall some information about t-norms.

Definition 1 ([4]) A triangular norm T is an increasing, commutative associative

operation T ∶ [0, 1]2 → [0, 1] with neutral element 1.

Example 1 ([4]) Well-known t-norms are:

TM(x, y) = min(x, y), TP(x, y) = xy,

TL(x, y) = max(x + y − 1, 0), TD(x, y) =
⎧
⎪
⎨
⎪⎩

x, if y = 1
y, if x = 1
0, otherwise

,

TnM(x, y) =

{
0, if x + y ≤ 1
min(x, y), otherwise

.

Theorem 1 (cf. [4]) For an operation T ∶ [0, 1]2 → [0, 1] the following items are
equivalent (Fig. 1):

(i) T is a continuous t-norm.
(ii) T is uniquely representable as an ordinal sum of continuous Archimedean

t-norms, i.e., there exists a uniquely determined (finite or countably infinite)
index set I, a family of uniquely determined pairwise disjoint open subintervals
(ai, bi) of [0, 1] and a family of uniquely determined continuous Archimedean
t-norms (Ti)i∈I such that

T(x, y) =
{

Ti(x, y) if (x, y) ∈ (ai, bi]2
min(x, y) otherwise .

2.2 Fuzzy Implications

Here we recall the notion of fuzzy implication, its possible properties, as well as the

class of R-implications.
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Fig. 1 The structure of

ordinal sum of t-norms

0 1

1

bk

bk

ai

ai

bi

bi = ak

Ti

Tk

aj

aj

bj

bj

Tjmin

Definition 2 ([1], p. 2, [3], p. 21) A function I ∶ [0, 1]2 → [0, 1] is called a fuzzy

implication if it satisfies the following conditions:

(I1) decreasing in its first variable,

(I2) increasing in its second variable,

(I3) I(0, 0) = 1,

(I4) I(1, 1) = 1,

(I5) I(1, 0) = 0.

Directly from the definition we obtain.

Corollary 1 A fuzzy implication has a right zero element 1 and fulfils the condition

I(0, y) = 1, x, y ∈ [0, 1].

We distinguish some other properties the fuzzy implication may have.

Definition 3 (cf. [1], p. 9) We say that a fuzzy implication I fulfils:

∙ the neutral property (NP) if

I(1, y) = y, y ∈ [0, 1], (NP)

∙ the exchange principle (EP) if

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1], (EP)
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∙ the identity principle (IP)

I(x, x) = 1, x ∈ [0, 1], (IP)

∙ the ordering property (OP) if

I(x, y) = 1 ⇔ x ⩽ y, x, y ∈ [0, 1], (OP)

∙ the property (CB) if

I(x, y) ≥ y, x, y ∈ [0, 1]. (CB)

Example 2 ([1], pp. 4, 5) Operations I0 and I1 are the least and the greatest fuzzy

implication, respectively, where

I0(x, y) =

{
1, if x = 0 or y = 1
0, else

, I1(x, y) =

{
0, if x = 1, y = 0
1, else

.

The following are other examples of fuzzy implications.

I
ŁK

(x, y) = min(1 − x + y, 1), I
GG

(x, y) =

{
1, if x ≤ y
y
x , ifx > y

,

I
GD

(x, y) =

{
1, if x ≤ y
y, if x > y

, I
RS
(x, y) =

{
1, if x ≤ y
0, if x > y

,

I
RC

(x, y) = 1 − x + xy, I
YG

(x, y) =

{
1, if x, y = 0
yx, if else

,

I
DN

(x, y) = max(1 − x, y), I
FD

(x, y) =

{
1, if x ≤ y
max(1 − x, y), if x > y

,

I
WB

(x, y) =

{
1, if x ≤ 1
y, if x = 1

, I
DP

(x, y) =
⎧
⎪
⎨
⎪⎩

y, if x = 1
1 − x, if y = 0
1, if x < 1, y > 0

.

Definition 4 A function I ∶ [0, 1]2 → [0, 1] is called a residual implication if there

exists a t-norm T such that

I(x, y) = sup{t ∈ [0, 1] ∶ T(x, t) ≤ y}, x, y ∈ [0, 1].

Example 3 The following table shows R-implications obtained from basic t-norms

presented in Example 1 by the above formula.
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0 1

1

ai

ai

bi

TP

aj

aj

bj

bj

TLmin

ai

ai

bi aj

aj

bj

bj
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1

IGG

ILK
1

y

bk

bk

bi = ak
TM

bk

bk

bi = ak
IGD

Fig. 2 The structure of R-implications of ordinal sum

t-norm T R-implication IT
TM IGD
TP IGG
TL ILK
TD IWB
TnM IFD

Theorem 2 ([1, 5]) If T is a continuous t-norm with the ordinal sum structure, then
(see Fig. 2)

IT (x, y) =
⎧
⎪
⎨
⎪⎩

1, if x ≤ y
ak + (bk − ak)ITk

(
x−ak
bk−ak

,

y−ak
bk−ak

)
, if x, y ∈ [ak, bk], x > y

y, otherwise
.

3 Ordinal Sum I

The first approach to the construction of ordinal sum of implications is to obtain a

structure similar to the structure of implications, which we will get from ordinal sum

of t-norms (Fig. 3).

Definition 5 Let {Ik}k∈A be a family of implications and {(ak, bk)}k∈A be a family

of pairwise disjoint subintervals of [0, 1] with ak < bk for all k ∈ A, where A is a

finite or infinite index set. An ordinal sum of fuzzy implications I ∶ [0, 1]2 → [0, 1]
is given by

I(x, y) =
⎧
⎪
⎨
⎪⎩

1, if x ≤ y
ak + (bk − ak)Ik

(
x−ak
bk−ak

,

y−ak
bk−ak

)
, if x, y ∈ [ak, bk], x > y

y, otherwise

. (1)
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Fig. 3 The structure of

ordinal sum I
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y

bk

bk

bi = ak
Ik

Remark 1 Let us observe, that I given by (1) we can note as

I(x, y) =

{
ak + (bk − ak)Ik

(
x−ak
bk−ak

,

y−ak
bk−ak

)
, if x, y ∈ [ak, bk], y < x

IGD(x, y), otherwise

.

Lemma 1 Let {Ik}k∈A be a family of fuzzy implications. Then I given by (1) satisfies
(I2), (I3), (I4) and (I5).

Proof First, let us consider the condition (I2). Let y1 < y2, x, y1, y2 ∈ [0, 1].
If x ∈ [ak, bk] for some k ∈ A, then we obtain the following cases

1. y2 < ak or x ≤ y1 or (y1 < ak and x ≤ y2). Then I(x, y1) = IGD(x, y1) ≤ IGD(x, y2) =
I(x, y2).
2. y1 < ak ≤ y2 ≤ x. Then I(x, y1) = y1 < a ≤ ak + (bk − ak)Ik

(
x−ak
bk−ak

,

y2−ak
bk−ak

)
=

I(x, y2).
3. ak ≤ y1 ≤ y2 ≤ x. Then using monotonicity of Ik we have I(x, y1) = ak + (bk −
ak)Ik

(
x−ak
bk−ak

,

y1−ak
bk−ak

)
≤ ak + (bk − ak)Ik

(
x−ak
bk−ak

,

y2−ak
bk−ak

)
= I(x, y2).

4. ak ≤ y1 < x ≤ y2. Then I(x, y1) = ak + (bk − ak)Ik
(

x−ak
bk−ak

,

y1−ak
bk−ak

)
≤ 1 =

I(x, y2).

In other cases we have similar situation as in 1.

Directly from (1) we have I(0, 0) = I(1, 1) = 1. So I fulfils (I3) and (I4). To prove

(I5) let us consider two cases. If there exists k ∈ A such that [ak, bk] = [0, 1], then

I(1, 0) = Ik(1, 0) = 0. Otherwise I(1, 0) = y = 0. □
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Example 4 Let

I(x, y) =
⎧
⎪
⎨
⎪⎩

1, if x ≤ y
0.5IRS(2x, 2y), if x, y ∈ [0, 0.5]
y, otherwise

I does not fulfill (I1).

Theorem 3 Let {Ik}k∈A be a family of fuzzy implications. Then ordinal sum of fuzzy
implication satisfies (I1) if and only if Ik satisfies (CB) (see Definition 3) whenever
k ∈ A and bk < 1.

Proof Let Ik satisfies (CB) for k ∈ A. Consider x1 < x2, x1, x2 ∈ [0, 1].
If y ∈ [ak, bk] for some k ∈ A, then we obtain the following cases

1. x2 ≤ y or bk < x1 or (y1 ≤ y and bk < x2). Then I(x1, y) = IGD(x1, y) ≥ IGD(x2, y) =
I(x2, y).
2. x1 ≤ y < x2 ≤ bk. Then I(x1, y) = 1 ≥ I(x2, y).
3. y < x1 < x2 ≤ bk. Then using monotonicity of Ik we have I(x1, y) = ak + (bk −
ak)Ik

(
x1−ak
bk−ak

,

y−ak
bk−ak

)
≥ ak + (bk − ak)Ik

(
x2−ak
bk−ak

,

y−ak
bk−ak

)
= I(x2, y).

4. y < x1 ≤ bk < x2. Then using (CB) we have

I(x1, y) = ak + (bk − ak)Ik
(
x1 − ak
bk − ak

,

y − ak
bk − ak

)
≥

ak + (bk − ak)
y − ak
bk − ak

= y = I(x2, y).

In other cases we have similar situation as in 1. So, I satisfies (I1).

Now, let I satisfies (I1) and k ∈ A such that bk < 1. Then taking x, y ∈ [0, 1]
and z > bk we have Ik(x, y) =

I(ak+(bk−ak)x,ak+(bk−ak)y)−ak
bk−ak

≥
I(z,ak+(bk−ak)y)−ak

bk−ak
=

(ak+(bk−ak)y)−ak
bk−ak

= y. So, Ik fulfils condition (CB). □

Remark 2 If fuzzy implication satisfies (NP), then it satisfies (CB).

Theorem 4 Let {Ik}k∈A be a family of implications satisfies (CB) and I be ordinal
sum given by (1).

(i) If bk < 1 for all k ∈ A then I satisfies (OP).
(ii) If there exists k0 ∈ A such that bk = 1 then I satisfies (OP) if and only if

Ik0 (x, y) < 1 for all y < x.
(iii) If bk < 1 for all k ∈ A then I satisfies (NP).
(iv) If there exists k0 ∈ A such that bk0 = 1 then I satisfies (NP) if and only if Ik0

satisfies (NP).
(v) I satisfies (IP).
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Proof By (1) we have I(x, y) = 1 for x ≤ y. Let us observe, that for y ∈ [ak, bk], x > y
we have I(x, y) ∈ [ak, bk]. So, I(x, y) ≤ bk < 1. In the rest of domain I(x, y) = y < 1.

It means, that I satisfies (OP).

If there exists k0 ∈ A such that bk0 = 1 then I|{(x,y)∈[ak0 ,1]2∶y<x} is isomorphic with

Ik0 |{(x,y)∈[0,1]2∶y<x}. Therefore, I is different from the largest element in [0, 1] if and

only if Ik0 is different from the largest element. So, (ii) is fulfilled.

The condition (iii) is a direct result from construction (1).

If there exists k0 ∈ A such that bk0 = 1 and Ik0 satisfies (NP) then we have I(1, y) =
y for y < ak0 . If y ≥ ak0 , then

I(1, y) = ak0 + (1 − ak0 )Ik0

(
1−ak0
1−ak0

,

y−ak0
1−ak0

)

= ak0 + (1 − ak0 )Ik0

(
1,

y−ak0
1−ak0

)
= ak0 + (1 − ak0 )

y−ak0
1−ak0

= y.

It means, that I satisfies (NP).

Conversely, if I satisfies (NP) then for all y ∈ [0, 1] we have

Ik0 (1, y) =
I(1, ak0 + (1 − ak0 )y) − ak0

1 − ak0
= y,

i.e. Ik0 satisfies (NP). □

Remark 3 Let {Ik}k∈A be a family of implications satisfies (CB) and I be ordinal

sum given by (1).

If there exists k0 ∈ A such that bk = 1 and Ik0 satisfies (OP) then I satisfies (OP).

4 Ordinal Sum II

Let us note that in the ordinal sum given by (1) we use only the values Ik(x, y) for

x > y. Now we will present the construction similar to the ordinal sum of t-norms,

which uses the value of Ik in the whole unit square.

Definition 6 ([6]) Let {Ik}k∈A be a family of implications and {[ak, bk]}k∈A be a

family of pairwise disjoint close subintervals of [0, 1] with 0 < ak < bk for all k ∈ A,

where A is a finite or infinite index set. The mapping I ∶ [0, 1]2 → [0, 1] given by

I(x, y) =

{
ak + (bk − ak)Ik

(
x−ak
bk−ak

,

y−ak
bk−ak

)
, if x, y ∈ [ak, bk]

IGD(x, y), otherwise

(2)

we call ordinal sum of fuzzy implications {Ik}k∈A (Fig. 4).

It may be that I given by (2) is not an implication.
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Fig. 4 The structure of

ordinal sum II

0 1

1

ai

ai

bi

bi

Ii

aj

aj

bj

bj

IjIGD

Example 5 ([6]) Let

I(x, y) =
⎧
⎪
⎨
⎪⎩

1
4 +

(
1
2 −

1
4

)
IRS

(
x−1

4
1
2−

1
4
,

x−1
4

1
2−

1
4

)
if (x, y) ∈ [ 14 ,

1
2 ]

2
,

IGD(x, y) otherwise.

It is easy to see that I
(
1
2 ,

1
3

)
= 1

4 <

1
3 = I

(
3
4 ,

1
3

)
, i.e. I does not satisfy (I1).

The next theorem gives out the conditions that I given by (2) satisfies (I1).

Theorem 5 ([6]) Let {Ik}k∈A be a family of implications. Then ordinal sum of impli-
cation given by (2) satisfies (I1) if and only if Ik satisfies (CB) whenever k ∈ A and
bk < 1.

Theorem 6 ([6]) Let {Ik}k∈A be a family of implications satisfying (CB) and I be
ordinal sum given by (2)

(i) If there exists k ∈ A such that bk < 1, then I satisfies neither (IP) nor (OP).
(ii) If cardA = 1 with a1 > 0, b1 = 1 then I satisfies (IP) if and only if I1 satisfies

(IP).
(iii) If cardA = 1 with a1 > 0, b1 = 1, then I satisfies (OP) if and only if I1 satisfies

(OP).
(iv) If bk < 1 for all k ∈ A then I satisfies (NP).
(v) If there exists k0 ∈ A such that bk0 = 1, then I satisfies (NP) if and only if Ik0

satisfies (NP).



46 P. Drygaś and A. Król

5 Ordinal Sum III

As we can see, not every implication can be used in construction (1) and (2). Below

we present a structure in which they can be used any implications.

Definition 7 Let {Ik}k∈A be a family of implications and {[ak, bk]}k∈A be a family

of pairwise disjoint close subintervals of [0, 1] with 0 < ak < bk for all k ∈ A, where

A is a finite or infinite index set. The mapping I ∶ [0, 1]2 → [0, 1] given by Fig. 5

I(x, y) =

{
ak + (bk − ak)Ik

(
x−ak
bk−ak

,

y−ak
bk−ak

)
, if x, y ∈ [ak, bk]

IRS(x, y), otherwise

(3)

we call ordinal sum of fuzzy implications {Ik}k∈A, where

I
RS
(x, y) =

{
1, if x ≤ y
0, if x > y.

Theorem 7 ([6]) Let {Ik}k∈A be a family of implications. Then ordinal sum of impli-
cation given by (3) is an implication.

In the same way as in Theorems 4 and 6 we obtain the following.

Theorem 8 Let {Ik}k∈A be a family of implications and I be ordinal sum given by (3)

(i) If there exists k ∈ A such that bk < 1, then I satisfies neither (IP) nor (OP).
(ii) If cardA = 1 with a1 > 0, b1 = 1 then I satisfies (IP) if and only if I1 satis-

fies (IP).

Fig. 5 The structure of

ordinal sum III
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(iii) If cardA = 1 with a1 > 0, b1 = 1, then I satisfies (OP) if and only if I1 satis-
fies (OP).

(iv) I satisfies (NP) if and only if cardA = 1with a1 = 0, b1 = 1 and I1 satisfies (NP).

6 Ordinal Sum IV

In both construction (2) and (3) the intervals [ak, bk] must be separable. This means

that we are unable to construction implications in which the values I(x, x) for x ∈
]0, 1[ depend on the components implications Ik. Below we present construction that

solves this problem.

Definition 8 Let {Ik}k∈A be a family of implications and {(ak, bk)}k∈A be a family

of pairwise disjoint subintervals of [0, 1] with ak < bk for all k ∈ A, where A is a

finite or infinite index set. Ordinal sum I ∶ [0, 1]2 → [0, 1] is given by (Fig. 6)

I(x, y) =
⎧
⎪
⎨
⎪⎩

ak + (bk − ak)Ik
(

x−ak
bk−ak

,

y−ak
bk−ak

)
, if x, y ∈ (ak, bk]

1, if x ≤ y
0, otherwise

(4)

Fig. 6 The structure of

ordinal sum IV
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Example 6 Let

I(x, y) =
⎧
⎪
⎨
⎪⎩

1, if x ≤ y
0.5IRC(2x, 2y), if x, y ∈ (0, 0.5]
0.5 + 0.1ILK(10x − 5, 10y − 5), if x, y ∈ (0.5, 0.6]
0, otherwise

I is an implication.

Theorem 9 Let {Ik}k∈A be a family of implications. Then ordinal sum of implication
is an implication.

Theorem 10 Let {Ik}k∈A be a family of implications and I be ordinal sum given
by (4)

(i) If there exists k ∈ A such that bk < 1, then I satisfies neither (IP) nor (OP).
(ii) If cardA = 1 with a1 ≥ 0, b1 = 1 then I satisfies (IP) if and only if I1 satis-

fies (IP).
(iii) If cardA = 1 with a1 ≥ 0, b1 = 1, then I satisfies (OP) if and only if I1 satis-

fies (OP).
(iv) I satisfies (NP) if and only if cardA = 1with a1 = 0, b1 = 1 and I1 satisfies (NP).

7 Conclusion

In this paper we introduce the concept of three various constructions of ordinal sum

of implications. Each construction has different properties. Basic properties thus

obtained implications have been examined.

In future work, we will examine which properties of components implications

are preserved by introduced ordinal sums. We will examine also, which construction

give the implications not belonging to known classes.
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A-Poset with Multiplicative Operation

Daniela Kluvancová

Abstract In this paper we will prove that the new structure called A-poset, defined

by Frič and Skřivánek (Generalized random events, 2015) is equivalent to D-posets

and effect algebras. In next section we introduce a multiplicative operation on

A-postes and prove that these two structures are isomorphic. In the last part of this

paper we try to build probability theory on A-posets.

Keywords A-poset ⋅ Effect algebra ⋅ Partial ordering

1 Introduction

The paper was motivated by the D-poset theory (see [2, 4]). Of course it was based

on Mundici’s characterization of MV-algebras by the help of 𝓁-groups [8].

It is interesting that independently there was introduced the notion of MV-algebras

with product.

More generally, in [4] was introduced the notion of the D-poset with product and

it was named as Kôpka’s D-poset and applied in the probability theory. In [9], M.

Paulínyová studied effect algebras and she showed that these two algebraic structures

are isomorphic.

In the paper we study an algebraic structure called A-poset. It was introduced by

Frič and Skřivánek [3] and they proved A-posets and D-posets are isomorphic. In

this paper we give an original proof that A-posets are isomorphic to effect algebras.

Moreover we introduced the notion of the product on any A-poset and show that

A-posets with product are isomorphic to the effect algebras with product. There-

fore Kôpka’s D-posets, A-posets with product and effect algebras with product are

isomorphic structures.
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We introduce some basic facts about the probability theory on A-posets with prod-

uct including the central limit theorem.

Recall that the probability of IF-sets [1] can be embedded to MV-algebras [11]

hence any result presented in this paper can be applied to the probability on IF-

sets too.

2 A-Posets and Effect Algebras

Definition 2.1 Let ≤ be a relation on a set A. If ≤ is:

reflective: a ≤ a ∀a ∈ A;

antisymetric: if a ≤ b and b ≤ a then a = b, a, b ∈ A;

transitive: if a ≤ b and b ≤ c then a ≤ c, a, b, c ∈ A

then ≤ is called partial ordering on A.

Definition 2.2 Let A be a nonempty set and relation ≤ be a partial ordering. Then a

pair (A,≤) is called a partially ordered set or shortly poset.

Definition 2.3 An A-poset is a structure A = (A,≤,+, 0, 1), where A is a poset with

the least element 0 and the greatest element 1 and + ∶ A × A → A is a partial binary

operation on D satisfying the conditions:

(A1) if a + b ∈ A then b + a ∈ A and a + b = b + a, a, b ∈ A;

(A2) if (a + b) + c ∈ A, then a + (b + c) ∈ A and (a + b) + c = a + (b + c),
a, b, c ∈ A;

(A3) ∀a ∈ A ∃ unique a′ ∈ A such that a + a′ = 1;

(A4) if a + b ∈ A, a1 ≤ a and b1 ≤ b, then a1 + b1 ∈ A and a1 + b1 ≤ a + b, a1, b1,
a, b ∈ A.

Definition 2.4 An effect algebra E is an algebraic structure E = (E, ⊕, 0, 1), where

0, 1 are fixed elements, ⊕ ∶ E × E → E is partial binary operation and following

properties hold:

(E1) if a ⊕ b ∈ E then b ⊕ a ∈ E and a ⊕ b = b ⊕ a, a, b ∈ E;

(E2) if (a ⊕ b)⊕ c ∈ E then a ⊕ (b ⊕ c) ∈ E and (a ⊕ b)⊕ c = a ⊕ (b ⊕ c),
a, b, c ∈ E,

(E3) ∀a ∈ E ∃ unique a′ ∈ E such that a ⊕ a′ = 1;

(E4) if a ⊕ 1 ∈ E then a = 0.

Theorem 2.1 An effect algebra and an A-poset are isomorphic structures.

We will show, that for every A-poset there exists a corresponding effect algebra and

for every effect algebra we can find a corresponding A-poset.

Let A be any given A-poset and we try to find equivalent effect algebra. We will

need following lemmas.
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Lemma 2.1 For every a ∈ A: a + 1′ = a

Proof Let (a + a′) ∈ A, then there exists exactly one element (a + a′)′ such that

(a + a′)′ + (a + a′) = 1,

and according to the definition of A-poset we can write

((a + a′)′ + a) + a′ = 1
(a + a′) + a = (a′)′ = a

1′ + a = a □

Lemma 2.2 Let A be an A-poset. Then 0 + 0 = 0.

Proof From Lemma 2.1 we have a + 1′ = a for every a ∈ A. Let a = 0, then 0 + 1′ =
0. Using this and condition A4 we get:

(0 + 1′) ∈ A, 0 ≤ 0, 0 ≤ 1′ then 0 + 0 ∈ A and 0 + 0 ≤ 0 + 1′ = 0 ≤ a

for every a ∈ A. Thus 0 + 0 = 0. □

Lemma 2.3 Let A be an A-poset. Then 0 + 1 = 1.

Proof We use the previous lemma. From axiom A3 we have 0 + 0′ = 1 and 0 + 0 =
0, so

(0 + 0) + 0′ = 1
0 + (0 + 0′) = 1

0 + 1 = 1. □

Lemma 2.4 Let A be an A-poset. Then 1′ = 0 and 0′ = 1.

Proof We have 0 + 0′ = 1 and 0 + 1 = 1, thus 0′ = 1.

An element 1′ we can write as (0′)′ = 0 = 1′. □

Theorem 2.2 Let A be an A-poset. If (a + 1) ∈ A, then a = 0.

Proof We use axiom A4. Let (a + 1) ∈ A. We have a ≤ a and a′ ≤ 1 ⇒ (a + a′) ∈ A
and 1 = (a + a′) ≤ a + 1. Thus we have a + 1 = 1 and from axiom A3 a′ = 1, so

a = (a′)′ = 1′ = 0. □

Axioms A1, A2, A3 from the definition of A-poset are equivalent to axioms E1, E2,

E3 from the definition of effect algebra and the axiom E4 is now proved so we find

an equivalent effect algebra to any given A-poset A.
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Now, let E be an effect algebra and we want to derive a corresponding A-poset.

Lemma 2.5 For every a ∈ E there it holds a ⊕ 0 = a.

Proof Let a ∈ A, then exist exactly one a′ such that a ⊕ a′ = 1. Consider a = 1. An

element (1⊕ a′) ∈ E and (1⊕ a′) = 1 thus from E4 a′ = 0, so 1⊕ 0 = 1.

Let b ∈ E, b ⊕ b′ = 1 and holds:

1 = 1⊕ 0 = (b ⊕ b′)⊕ 0 = (b ⊕ 0)⊕ b′ ⇒ (b ⊕ 0) = (b′)′ = b. □

Now we can define a partial ordering ≤ on any effect algebra E as follows:

a ≤ b ⟺ ∃c ∈ E a ⊕ c = b.

Theorem 2.3 An ordered pair (E,≤) where E is an effect algebra, is a poset.

Proof We need to show that the relation ≤ defined on E is a partial ordering.

1. Let a ∈ E, a = a + 0 ≤ a, thus a ≤ a.

2. Let a, b ∈ A and a ≤ b, b ≤ a. There exist c, d ∈ E such that a ⊕ c = b, b ⊕ d =
a. Thus we have:

a = b ⊕ d = (a ⊕ c)⊕ d = a ⊕ (c ⊕ d) ⟹ c ⊕ d = 0,

and next

d′ = d′ ⊕ 0 = d′ ⊕ (d ⊕ c) = (d′ ⊕ d)⊕ c = 1⊕ c.

The element (1⊕ c) ∈ E, thus from the axiom E4, c = 0. Now we have:

0 = c ⊕ d = 0⊕ d = d ⟹ d = 0.

Hence a = b ⊕ 0 = b.

3. Let a, b, c ∈ E and let a ≤ b and b ≤ c. There exist d, e ∈ E such that a ⊕ d = b,

b ⊕ e = c. Now we have:

c = b ⊕ e = (a ⊕ d)⊕ e = a ⊕ (e ⊕ d) ⟹ a ≤ c.

We proved that the relation ≤ satisfy all axioms of partial ordering, thus (E,≤) is a

poset. □

Theorem 2.4 An element (a ⊕ b) ∈ E ⟺ b ≤ a′.

Proof Let (a ⊕ b) ∈ E. Then

(a ⊕ b)⊕ (a ⊕ b)′ = 1 = a ⊕ (b ⊕ (a ⊕ b)′) ⟹
⟹ a′ = b ⊕ (a ⊕ b)′ ⟹ b ≤ a′.
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On the other hand, let a, b ∈ E and b ≤ a′. Then exists c ∈ E, b ⊕ c = a′. Now

we can compute and substitute:

1 = a ⊕ a′ = a ⊕ (b ⊕ c) = (a ⊕ b)⊕ c ⟹ (a ⊕ b) ∈ E. □

Let a ∈ E. Equivalently as for A-posets, for elements from effect algebras there

hold properties a + 1′ = 1, 1′ = 0 and then a + 0 = 0.

Theorem 2.5 The Theorem 2.4 is equivalent to the axiom A4 of the definition of an
A-poset.

Proof 1. Let axiom A4 holds and let a, b ∈ E, a ≤ b′. We have (b ⊕ b′) ∈ E, b ≤ b.

Thus a ⊕ b ≤ b ⊕ b′ and a ⊕ b ∈ E, so b ≤ a′.
2. Let assume that Theorem 2.4 holds. Let a + b ∈ E ⟹ a ≤ b′ and b ≤ a′. Let

a1, b1 ∈ E, a1 ≤ a, b1 ≤ b. Then b′ ≤ b′1. Now we get:

a1 ≤ a ≤ b′ ≤ b′1 ⟹ a1 ≤ b′1. (1)

Thus (a1 ⊕ b1) ∈ E □

So we introduced partial ordering on effect algebras and we showed, that it is possible

to derive an A-poset from any effect algebra.

Thus Theorem 2.1 is proved.

3 Algebraic Structures with Multiplicative Operation

Definition 3.1 An effect algebra with the multiplicative operation𝐄 = (E, ⊕, ∙, 0, 1)
is an algebraic structure, where 𝐄 = (E, ⊕, 0, 1) is an effect algebra and ∙ ∶ E × E →
E is a commutative associative binary operation satisfying:

(e1) ∀a ∈ E: a ∙ 1 = a;

(e2) ∀a, b ∈ E there exist b, c such that b′ = c ⊕ d and a = a ∙ b ⊕ c.

Definition 3.2 An A-poset with the multipicative operation 𝐀 = (A,≤,+, ⋆, 0, 1) is

an algebraic structure, where 𝐀 = (A,≤ +, 0, 1) is an A-poset and ⋆ ∶ A × A → A is

a commutative associative binary operation satisfying:

(a1) ∀a ∈ E: a ⋆ 1 = a;

(a2) a ⋆ b ≤ a and a ≤ a ⋆ b + b′
, ∀a, b ∈ E.

Theorem 3.1 An effect algebra with the multiplicative operation and an A-poset
with the multiplicative operation are isomorphic algebraic structures.

Proof First we will prove, that for each effect algebra with multiplicative operation

there exists corresponding A-poset with multiplicative operation. Let E be an effect

algebra with multiplicative operation. We want to derive both axioms of A-poset

with multiplicative operation.
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1. Let a ∈ E. Multiplication with fixed element 1 is defined by e1 as a ∙ 1 = a and

we denote it a ⋆ 1 = a.

2. Let a, b ∈ E. Then because of condition a2 there exist c, d ∈ E such that a =
a ∙ b + c. Definition of partial ordering on effect algebras implies that a ∙ b ≤ a,

so a ⋆ b ≤ a.

Now we know, that a ∙ b ≤ a and ∙ is a commutative operation, so a ∙ b = b ∙
a ≤ b. From reflexivity if follows b′ ≤ b′. Because of the axiom E4, the element

a ∙ b ⊕ b′ = f ∈ E and let b′ = c ⊕ d. Thus we have:

a ∙ b ⊕ c ⊕ d = f ⟹ a = a ∙ b ⊕ c ≤ f = a ∙ b ⊕ b′ ⇒ a ≤ a ∙ b ⊕ b′.

Now we just change the notation a ≤ a ⋆ b + b′.

Conversely, let A be an A-poset with multiplicative operation. We will show that

we can find corresponding effect algebra with multiplicative operation.

1. Let a ∈ A. Multiplication with element 1 is defined as a ⋆ 1 = 1 and we denote

it a ∙ 1 = 1.

2. Let a, b ∈ A, then a ⋆ b ≤ a, so there exists c ∈ A such that a ∗ b + c = a, thus

a ∙ b ⊕ c = a.

Next we know a ⋆ b = b ⋆ a ≤ b. Then a ⋆ b ≤ a and a ⋆ b ≤ b. Now we can

use axiom A4:

a ⋆ b ≤ b, b′ ≤ b′ ⟹ a ⋆ b + b′ ∈ A and a ⋆ b + b′ ≤ b + b′ = 1.

There holds a ≤ a ⋆ b + b′, thus there exists d ∈ A such that a + d = a ⋆ b +
b′ and we can substitute (a ⋆ b + c) + d = a ⋆ b + b′, so c + d = b′. We change

notation

c ⊕ d = b′.

Hence we proved that for each A-poset with multiplicative operation there exist cor-

responding effect algebra with multiplicative operation. □

4 Probability on A-Posets

In the previous section we proved, that A-posets and effect algebras are equivalent

systems. Similarly as on effect algebras we can build the probability theory on A-

posets. We will need two important mappings equivalent to probability measure and

random variable.

Definition 4.1 A state on an A-poset A is any mapping m ∶ A → [0, 1]

1. m(1) = 1, m(0) = 0,

2. an ↗ a ⟹ m(an) ↗ m(a), ∀an, a ∈ A,

3. an ↘ a ⟹ m(an) ↘ m(a), ∀an, a ∈ A.
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Definition 4.2 Let  = {(−∞, t), t ∈ ℝ}. An observable on an A-poset A is any

mapping x ∶  → A satisfying the following properties:

1. Bn ↗ ℝ ⟹ x(Bn) ↗ 1,

2. Bn ↘ ∅ ⟹ x(Bn) ↘ 0,

3. Bn ↗ B ⟹ x(Bn) ↗ x(B).

Theorem 4.1 Let x ∶  → A be an observable, m ∶ A → [0, 1] be a state. Then the
mapping F ∶  → [0, 1] defined by formula

F(t) = m(x((−∞, t))) = mx((−∞, t)), t ∈ ℝ

is a distribution function.

Proof Let tn ↗ t. Then (−∞, tn) ↗ (−∞, t), and by 3. of Definition 4.2 we get

x((−∞, tn)) ↗ x((−∞, t)). From 2. of Definition 4.1 we have

F(tn) = m(x((−∞, tn))) ↗ m(x((−∞, t))) = F(t),

hence F is left continuous in any t ∈ ℝ.

Similarly, let tn ↗ ∞, then (−∞, tn) ↗ ℝ, so x((−∞, tn)) ↗ 1. Now we have

F(tn) = m(x((−∞, tn))) ↗ m(1) = 1 ⟹ lim
x→∞

F(x) = 1.

Finally, let tn ↘ −∞, then (−∞, tn) ↘ ∅ and x((−∞, tn)) ↘ 0. Thus

F(tn) = m(x((−∞, tn))) ↘ m(0) = 0 ⟹ lim
x→−∞

F(x) = 0. □

Definition 4.3 An observable x ∶  → A is called integrable if there exists

E(x) =
∫ℝ

tdmx(t).

Observable x is square integrable if the dispersion

𝜎

2 =
∫ℝ

(t − E(x))2dmx(t) = ∫ℝ
t2dmx(t) − E(x)2

exists.

Very important notion in probability theory is an independence. Start with a

classical probability space (Ω, ,P), where Ω is a nonempty set,  is a 𝜎-algebra

of subsets of Ω and P ∶  → ⟨0, 1⟩ is a probability measure. Consider two ran-

dom variables 𝜉, 𝜂. These random variables are independent, if for all A, B ∈ (ℝ),
P(𝜉−1(A) ∩ 𝜂

−1(B)) = P(𝜉−1(A)) ⋅ P(𝜂−1(B)).
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Next consider random vector T ∶ Ω → ℝ2
, T(𝜔) = (𝜉(𝜔), 𝜂(𝜔)) and probability

distribution PT ∶ (ℝ2) → ⟨0, 1⟩ determined by PT (A) = P(T−1(A)) = P(h(A))
where f ∶ (ℝ2) →  is given by f (A) = T−1(A), for each A ∈ (ℝ2). Because

𝜉

−1(A) ∩ 𝜂

−1(B) = T−1(A × B), for independent random variables 𝜉, 𝜂 there holds:

PT (A × B) = P(𝜉−1(A)) ⋅ P(𝜂−1(B)) = P
𝜉

(A) ⋅ P
𝜂

(B) = (P
𝜉

× P
𝜂

)(A × B).

We can write PT = P
𝜉

× P
𝜂

and PT = P◦T−1 = P◦f thus 𝜉, 𝜂 are independent if and

only if there exists f ∶ (ℝ2) →  such that P◦f = P
𝜉

× P
𝜂

.

There exists exactly one probability measure 𝜆F
𝜉

× 𝜆F𝜂 ∶ (ℝ2) → ⟨0, 1⟩ such

that for all A,B ∈ (ℝ) holds

𝜆F
𝜉

× 𝜆F𝜂(A × B)

Now we want to define the sum of two random variables 𝜉, 𝜂. We need to define

g ∶ ℝ2 → ℝ such that g(v,w) = v + w. Hence

𝜉 + 𝜂 = g(𝜉, 𝜂) = g◦T ,

and

(𝜉−1 + 𝜂

−1)(A) = (g◦T)−1(A) = T−1(g−1(A)), A ∈ (ℝ).

Now we can apply all above on A-posets.

Definition 4.4 Let x1,… , xk ∶  → A be observables, m ∶ A → ⟨0, 1⟩ be a state

Δk
t = {(u1,… , uk) ∈ ℝk; u1 +⋯ uk < t}, k = {Δk

t , t ∈ ℝ}. The observables are

independent if there exists a mapping hk ∶ k → A with the following properties:

1. ti ↗ t ⟹ hk(Δk
ti
) ↗ hk(Δk

t ),
2. hk(

⋃∞
t=1 Δ

k
t ) = 1

3. hk(
⋂−∞

t=−1 Δ
k
t ) = 0

4. m(hk(Δk
t )) = 𝜆x1 × 𝜆x2 ×⋯ × 𝜆xk

(Δk
t ).

Let h ∶ (ℝ2) → A be a join observable. The sum of observables x1, x2 ∶  → A is

defined by:

(x + y)(A) = h(g−1(A)), A ∈  .

If g(v,w) = v + w then g−1((−∞, t)) = {(u, v); u + v < t} = Δt. Define  = {Δt,
t ∈ ℝ} thus h ∶  → A. The sum of observables (x + y) ∶  → A is defined by the

formula

(x + y)((−∞, t)) = h(Δt).
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More generally, x1,… , xk ∶  → A be independent observables and the mapping

yn ∶  →  is defined by yn =
∑n

i=1 xi i.e.

yn(−∞, t) = (
n∑

i=1
xi)(−∞, t) = h(Δn

t ), t ∈ ℝ.

Then the mapping yn is an observable and it is quite obvious from the definition

of observable. We call it a sum of observables.

In [6] it has been proved, that in Kôpka D-posets exists the mapping hk satisfying

all properties of the previous Definition. Because of Kôpka D-poset is equivalent

structure as A-poset with multiplicative operation, mapping hk must to exist on this

structure too.

Now we are able to formulate the central limit theorem.

Theorem 4.2 Let (xi)∞i=1 be independent, square integrable observables, E(x1) =
E(x2) = ⋯ = a, 𝜎(x1) = 𝜎(x2) = ⋯ = 𝜎. Then

lim
n→∞

m
(
(
√

n
𝜎

n∑

i=1
xi − a)((0, t))

)
= 1√

2𝜋 ∫

t

−∞
e−

u2
2 du = Φ(t),

for all t ∈ ℝ.

Proof Let Pn ∶ (ℝn) → ⟨0, 1⟩ be defined by Pn = 𝜆x1 × 𝜆x2 ×⋯ × 𝜆xn
. Then Pn is

a consistent system of probability measures, so

Pn(A × R) = Pn−1(A), A ∈ (ℝ), n ∈ ℕ

and there exists P ∶ 𝜎() → ⟨0, 1⟩ such that

P(𝜋−1
n (B)) = Pn(B) = 𝜆x1 × 𝜆x2 ×⋯ × 𝜆xn

(B), B ∈ (ℝ), n ∈ ℕ

where

 = {A ⊂ ℝN A = 𝜋

−1
n (B),B ∈ (ℝ), n ∈ ℕ}.

For each n ∈ ℕ we can define a canonical projection function 𝜂n ∶ ℝN → ℝ
given by

𝜂n((ui)∞i=1) = un.

Therefore

(
n∑

i=1
xi)(−∞, t) = hn(Δn

t ) = 𝜆x1 × 𝜆x2 ×⋯ × 𝜆xn
(Δn

t )

= Pn(Δn
t ) = {𝜔; 𝜂1(𝜔) +⋯ + 𝜂n(𝜔) < t}.
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Thus we get

m
(√

n
𝜎

(
n∑

i=1
xi − a)((−∞, t))

)
= m

(
(

n∑

i=1
xi)((−∞,

√
n

𝜎

(t + a))
)

= P
(
{𝜔;

√
n

𝜎

(
n∑

i=1
𝜂i − a) < t}

)
.

Then by the classical limit theorem we obtain

lim
n→∞

m
(
(
√

n
𝜎

n∑

i=1
xi − a)((−∞, t))

)

= lim
n→∞

m
(
(
√

n
𝜎

n∑

i=1
𝜂i − a)((−∞, t))

)
= Φ(t). □

5 Conclusion

In this paper we introduced just basic notions of probability theory and central limit

theorem. Of course it may be extended to the other concept, for example conditional

probability.
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Method for Uncertainty Measurement
and Its Application to the Formation
of Interval Type-2 Fuzzy Sets

Mauricio A. Sanchez, Oscar Castillo and Juan R. Castro

Abstract This paper proposes a new method for directly discovering the uncer-
tainty from a sample of discrete data, which is then used in the formation of an
Interval Type-2 Fuzzy Inference System. A Coefficient of Variation is used to
measure the uncertainty on a finite sample of discrete data. Based on the maximum
possible coverage area of the Footprint of Uncertainty of Gaussian membership
functions, with uncertainty on the standard deviation, which then are modified
according to the found index values, obtaining all antecedents in the process.
Afterwards, the Cuckoo Search algorithm is used to optimize the Interval Sugeno
consequents of the Fuzzy Inference System. Some sample datasets are used to
measure the output interval coverage.

1 Introduction

Uncertainty, as it is currently perceived, is still something of a mistified topic. Being
defined as something that is doubtful or unknown, in which by nature cannot be
directly measured, therefore showing a first problem in making use of it. Although
by nature, uncertainty is an unknown, it has not stopped engineers, scientists,
mathematicians, etc. from using it. That is, although directly not known, an
approximate of it can be modeled and used, improving the models in which it is
used. By using uncertainty in a model, that model will improve its resilience, thus
obtaining a better model in the end.
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Most current literature on uncertainty [1–6] is mainly based on having previous
knowledge of the confidence interval around certain measurements, which trans-
lates into what is the probable uncertainty which exists within certain measure-
ments, usually expressed with the plus-minus symbol ± (e.g. 10.4 ± 0.02, with in
interval representation of [10.38,10.42]).

As for models with uncertainty, there exists a logic which directly manages
uncertainty, this being Interval Type-2 Fuzzy Logic (IT2 FL) [7], which infers
Interval Type-2 Fuzzy Sets (IT2 FS) and ultimately obtains an interval or a crisp
value [8]. IT2 FS manage uncertainty directly into its logic by means of confidence
intervals [9], the best solution could be anywhere within such interval, and as such
is an excellent tool for directly applying and inference when dealing with uncer-
tainty. And as stated, the output interval can be used as the end result and a
defuzzification process can be computed upon such interval in the case that a crisp
value is required, and not an interval.

In this paper, a link is proposed between a measure of dispersion and uncer-
tainty, which is ultimately used in the formation of IT2 FS. The platform for the
model is created by a Fuzzy C-Means algorithm [10], afterwards using the Coef-
ficient of Variation is used to calculate the Fingerprint Of Uncertainty (FOU) of
each individual IT2 FS in the antecedents of the Interval Type-2 Fuzzy Inference
System (IT2 FIS), and finally, a Cuckoo Search algorithm [11] is used to optimize
Interval Type-2 Sugeno linear consequents [12]. The proposed method can be
categorized as a hybrid algorithm because it requires multiple steps/algorithm to
work in sequence for the final result to be obtained.

This paper is divided into three sections, the first is a brief introduction to the
definition of Interval Type-2 Fuzzy Sets; the following section describes in detail
both the premises and the proposed method; afterwards, some experimental results
are shown and discussed which asses the viability of the proposed method; finally,
concluding remarks are given as well as a couple of open questions as future work.

2 Interval Type-2 Fuzzy Sets

With the introduction of Fuzzy Sets in 1965 [13], it improved upon formal hard
logic, where instead of only having two choices of truth values {0,1}, any value
between [0,1] was now possible. This set an unprecedented involvement in research
that up to today is still very strong, first came Type-1 Fuzzy Sets [14], which can
only represent vagueness or imprecision, later came Interval Type-2 Fuzzy Sets,
which could now, apart from vagueness, also represent a degree of uncertainty
(which is the focus of the proposed method in this paper), although recently General
Type-2 Fuzzy Sets [15] are starting to gain traction in research, is still far from
maturity when compared to Type-1 or Interval Type-2 Fuzzy Sets.
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By nature, IT2 FS directly integrate uncertainty into its reasoning. This behavior
is best applied in the case of when it is expected to deal with uncertainty in the
system that it is modeling, or when certain confidence intervals (uncertainty) are
known a priori to designing the IT2 FIS.

The most general descriptive form of an IT2 FIS is through a block diagram, as
shown in Fig. 1, which describes the basic inner functions of the complete infer-
ence. The Fuzzifier block may or may not transform the crisp input into a FS, this is
chosen depending on the intended behavior of the system; the Inference block takes
from the Rules block and reasons upon each input’s compatibility; the Type-reducer
block processes the outputs into an interval; finally, the Defuzzifier block reduces
the interval from the previous block and obtains a single real number.

An IT2 FS eA is represented by μ
A ̃ xð Þ and μÃ xð Þ which are the lower and upper

membership functions respectively of μA ̃ xð Þ, and is expressed as eA=
R

wl ∈ μ
F ̄
l
k
xkð Þ,

h

μ
F ̄
l
k
xkð Þ�1 ̸wl. Where, x∈X, k is the kth antecedent, and l the lth rule. A sample

IT2 FS is shown in Fig. 2, here a Gaussian membership function with uncertainty in
the standard deviation.

The representation for rules in an IT2 FIS is formated as shown in Eq. 1, where,
l=1, . . . ,M rules, p=1, . . . , q inputs, eF is an antecedent IT2 FS, and eG a con-
sequent IT2 FS.

Rl: IF x1 is eFl
1 and . . . and xp is eFl

p, THEN y is eGl ð1Þ

Fig. 1 Block diagram describing an IT2 FLS. With a cripst input, two outputs are possible, a
confidence interval in which any possible point within such interval is a correct answer, or a crisp
value, in the case a singel real number is required as output
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3 Proposed Method for Measuring Uncertainty

Before giving a detailed description of the proposed method, the input data must
first be defined. As a starting point, a dataset is required, these data pairs, defined as
Eq. 2, where φ is a set of ordered input values, and γ is a set of ordered output
values, such that Γ forms a tuple of ordered sets of inputs with their respective
outputs.

Γ= ⟨φ, γ⟩ ð2Þ

Having a dataset Γ, first some pre-processing must be done in order to obtain the
required inputs to the proposed method, this process is executed in order to acquire
a description of the IT2 FIS, that is, to obtain the rule description ω as well as each
membership function’s base description, and the set of data pairs which affected the
formation of each membership function γ ∈Γ. As this is are the required inputs
ω, γf g to the proposed method, a Fuzzy C-Means (FCM) algorithm was chosen to

process the raw dataset Γ into the listed required inputs ω, γf g. The FCM provides a
description of rules by means of a center for each membership function for each
rule. Although the FCM can define consequents for the rules in a Fuzzy System,
only the antecedents are used. As the other required input is a set of data pair sets
which affected the definition of each center, this can be obtained from the partition
matrix that is given by the FCM; for each data pair there exists a membership value
[0,1] which defines how much a certain data pair belongs to a cluster, or rule of the
found FIS, to simplify building the sets of data pairs, a simple competitive rule is
used: the cluster with the highest value decides that said data pair belongs to its
formation set. With both required inputs obtained, the proposed method can now
begin.

Fig. 2 Sample IT2 FS
membership function.
A Gaussian membership
function is shown which has
uncertainty through the
standard deviation
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3.1 Dispersion in Data

Data dispersion in a sample of data pairs can be interpreted as a case of uncertainty.
An example of varying degrees of dispersion is shown in Fig. 3, where low,
medium, and high data dispersion, in relation to its center can, be perceived.

When there is low dispersion of data samples near it representative center point,
most data points are bound by only a small distances as the standard deviation is
very small. This being interpreted directly into uncertainty in data, low dispersion is
low uncertainty because its numerical evidence concludes that there is near zero
possibility that further singular samples will fall far from the central point, unto
which all previous numerical evidence is very close to. In the case of medium data
dispersion, although there is a concentration of numerical evidence near its central
point, there are still data points farther from its center, this leads to knowing that
although future reading might obtain evidence which is far from the center, the
probabilities of this occurring is low when compared to having future readings fall
near the center, although not as near in the case of lower dispersion, this behavior
points to having a medium amount of uncertainty. On the extreme case of high

Fig. 3 Example of data dispersion. a Low data dispersion, b medium data dispersion, and c high
data dispersion
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dispersion, where every sampled data point is evenly distributed throughout the
range, the available numerical evidence gives way to conclude that any future
sample may equally land on any section, therefore a high amount of uncertainty
exists.

3.2 Relation Coefficient of Variation with Uncertainty

For the purpose of converting dispersion into uncertainty, a measure is first required
which can identify a degree of dispersion in a given set, preferably a normalized
value, and as such requirement, the Coefficient of Variation cv, shown in Eq. 3,
where σ is the standard deviation, and μ is the mean of the set.

cv =
σ

μ
ð3Þ

This coefficient has some limitations which can be avoided by applying some
modifications. First, cv should only be computed on non-negative values, for the
case of existing negative values, the solution is to remap all values unto the positive
side of the axis. Second, if μ has a value of 0 (zero), this would case an error in
computation, the solution is to add ε, which is a very small value, assuring a
non-division by zero. Another note on the behavior of cv, is that in normal distri-
butions, values of [0,1] are most likeley to be obtained, but non-normal distribu-
tions can obtain values above 1. Fortunately, with the FCM, all calculated sets are
normal distributions, so this is a non-issue with the current implementation.

With the known limitations of cv, an equation which modifies a set D is proposed
which addresses the issue negative values, shown in Eq. (4), where if a value exists
that is negative then the absolute value of the minimum is added to the set, thus
remapping all values into the domain of positive values.

IF ∃x∈Dð Þ, xjx<0f gTHEND=D+ min Dð Þj j ð4Þ

In addition, a modification of Eq. (3) to surpress a possible division by zero, as
shown in Eq. (5), where ε is a very small value.

cv =
σ

μ+ ε
ð5Þ

To express a relation dispersion-uncertainty, when dealing with IT2 FS, the
Footprint of Uncertainty (FOU) is used. This relation is a direct proportion
FOU ∝ cv. When there is low dispersion, there is a small FOU, when there is a
medium amount of dispersion, there is a medium amount of FOU, and when there
exists a high amount of dispersion, there is a high amount of FOU. This is better
expressed in Fig. 4, where varying degrees of a measure of dispersion has been
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converted into a FOU which directly forms an IT2 FS, explained in the following
sub-section.

3.3 Proposed Method

To form IT2 FS for the antecedents of a FIS, the first step is to obtain rule con-
figuration, and data pair sets for each inputs on each rule, via a FCM algorithm.
Afterwards each set of data pairs is worked on independently of each other. First, a
standard deviation σ is found for the set in relation to its μ, which was found by the
FCM, then the cv is calculated. This value is now used to search for the optimal
FOU area in an IT2 FS. Considering Fig. 4c, this would be the highest possible
area. The initial search is done by first considering the highest possible area and the
σ whichs was already calculated, with discrete small steps a search is performed for
the FOU value which equals cv. The smallest value is set as σ1 = σ2, shown in
Fig. 4a. Each increment step λ affects σ as shown in Eq. (6), this is done iteratively
while σi ≤ μ, σ0k k.

Fig. 4 Examples of varying degrees of FOU. Where a FOU = 0, b FOU = 0.5, and c FOU = 1
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σ±λ ð6Þ

Once the search has found the values of σ1 and σ2 which represent the desired
FOU, the IT2 FS can be formed. Which has the form of Fig. 5, this can be formed
with the values which have been calculated, by the FCM, μ, and by the proposed
method, σ1 and σ2. This concludes the proposed method for building the ante-
cedents of an IT2 FIS.

3.4 IT2 Sugeno Fuzzy Consequents

The proposed method only obtains the IT2 FS for the antecedents of a FIS, the next
required step is to obtain the consequents of the FIS. This is done by optimizing the
IT2 Sugeno linear parameters via a Cuckoo Search algorithm. Although any other
optimization algorithm can be used.

4 Experimental Results and Discussion

To test the proposed method, various datasets were used. The validation method
was to verify that the interval output of the IT2 FIS had good coverage of the
reference targets and at the same time not overreaching too far with the output
interval.

Fig. 5 IT2 FS represented by a Gaussian membership function with uncertainty in the standard
deviation
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Among the used datasets, three were used. A synthetic dataset of a 5th Order
curve [16], with 1 input (x) and 1 output (y), and 94 total samples. And two real
datasets; engine behavior [16], with 2 inputs (fuel rate, speed) and 2 outputs (tor-
que, nitrous oxide emissions), and 1199 total samples; and Hahn1 [16], with 1 input
(temperature) and 1 output (thermex), with 236 total samples.

4.1 Experimental Results

The obtained IT2 FIS for each dataset is shown in Figs. 6, 7, 8, making emphasis on
the FOU of the individual membership functions in the antecedents, where varying
dregrees of uncertainty can be seen.

As for the output coverage for each dataset, using 40 % training and 60 %
training, Table 1 show the summary of the obtained coverage results.

The last set of results show graphical representations of the respective outputs
for each dataset, these are shown in Figs. 9, 10, 11, 12. Where the blue points
represent the output targets, and the lower and green lines represent the coverage of
the FOU.

Fig. 6 IT2 FIS for solving the 5th Order curve dataset
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Fig. 7 IT2 FIS for solving the Hahn1 dataset

Fig. 8 IT2 FIS for solving the Engine behavior dataset

Table 1 Obtained output
coverage results for the
chosen datasets

Dataset name Coverage %

5th Order curve 100
Hahn1 100
Engine behavior 99.88/99.66
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4.2 Results Discussion

With the obtained results, two facets of discussion arise, on the individual level and
on the general level. On the individual level; for the 5th Order curve, a full coverage
of the target is achieved although there are spikes where the curve changes slope,
this is caused by the linear consequents which cannot follow abrupt changes in the
curve grade due to the small amount of rules used for this FIS. A solution would be
to use more rules to compensate, but this would also cause an additional, and
unnecessary, complexity in the system. Yet the overall behavior is acceptable as
there is sufficient coverage as well as a controlled width of the output uncertainty.
For the Hahn1 solution, it has the same curve behavior of the 5th Order curve,
where with only three rules there is a pronounced visible behavior in the linear

Fig. 9 Output coverage for
the 5th Order dataset

Fig. 10 Output coverage for
the Hahn1 dataset
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output of the consequents. Yet there is good coverage, of 100 %, of the target
outputs via the controlled output uncertainty. Finally, for the engine, having two
outputs, each ones behavior was slightly different. The first output has a more
predictable behavior by better following the output targets with its coverage of
99.88 % of reference targets, whereas the second output’s behavior is not as linear,
such that it holds a tendency to expand as the x axis increases, although it has a
coverage of 99.66 % of its reference targets. It must be noted that this specific
behavior is more in line with how the Cuckoo Search algorithm optimized the
consequents, because the spreads on each individual consequent control the output
interval behavior. The solution would be to adjust the Cuckoo Search for better
performance or use another optimization algorithm that obtains a better solution.

On the general level of the obtained results, the formed antecedents give a good
representation of uncertainty based on the dispersion of the individual sets which
affected the creation of the rule configurations found by the FCM. It also depicts a

Fig. 11 Output coverage for
the Hahn1 dataset. For the
first output of the FIS

Fig. 12 Output coverage for
the Hahn1 dataset. For the
second output of the FIS
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behavior that IT2 FS are not always necessary, with low to no dispersion, and a
T1 FS would be more than enough.

Being dependent on other algorithms can limit the general performance of the
proposed method. Yet it also adds more possibilities, such as interchanging clus-
tering algorithms to one that can obtain better rule configurations and belonging sets
to be used by the proposed method. As for the optimization of the IT2 Sugeno
linear consequents, there is a vast amount of optimization algorithms which could
also be used for acquiring better results and thus improving the output interval
behavior.

5 Conclusion and Future Work

5.1 Conclusions

With the suggested relation dispersion-uncertainty, direct uncertainty extraction is
possible from existing data. This relation is found through the Coefficient of
Variation, an existing equation used to measure the amount of dispersion in a set,
this measure is a normalized value between 0 and 1, that altough higher values than
1 are possible, this is only for non-normal distributions, which, for the purposed
application, are non existent considering that the sets are created by a clustering
algorithm which only groups in normal distributions of data.

The application shown in this paper, of forming IT2 FS through the suggested
equation, which relates dispersion-uncertainty, finds this relation based on the
maximum possible achievable FOU, valued at 1, and relates to the maximum
possible Coefficient of Variation, in a normal distribution, valued also at 1. This
relation of dispersion-uncertainty-FOU is the main contribution of this paper.

With a deeper examination of the experimental results, there is much depen-
dence on the FCM algorithm, where if such algorithm fails to provide a good
model, the proposed method would fail also, since the proposed method depends on
the performance of the clustering algorithm. Fortunately, if the FCM fails, other
clustering algorithms could be used.

5.2 Future Work

Considering the limitation, as well as dependence, of the clustering algorithm,
which other clustering or non-clustering techniques could be used to create a better
pairing with the proposed method?

With the other high dependence on optimization algorithms for the consequent
section of the IT2 FIS, what other optimization algorithm could be used to best pair
with the proposed method?
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In this paper an IT2 FS was formed, represented by a Gaussian membership
function with uncertainty in the standard deviation. How would other IT2 FS
membership function be adapted to use the proposed method?

How the area was directly correlated to the FOU by means of its maximum
possible area was proposed. Is this the best approach?
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A Proposal for a Method of Defuzzification
Based on the Golden Ratio—GR

Wojciech T. Dobrosielski, Janusz Szczepański and Hubert Zarzycki

Abstract This article presents a proposal for a new method of defuzzification a

fuzzy controller, which is based on the concept of the golden ratio, derived from

the Fibonacci series [1]. The origin of the method was the observation of numerous

instances of the golden ratio in such diverse fields as biology, architecture, medi-

cine, and painting. A particular area of its occurrence is genetics, where we find

the golden ratio in the very structure of the DNA molecule [2] (deoxyribonucleic

acid molecules are 21 angstroms wide and 34 angstroms long for each full length of

one double helix cycle). This fact makes the ratio in the Fibonacci series in some

sense a universal design principle used by man and nature alike. In keeping with the

requirements, the authors of the present study first explain the essential concepts of

fuzzy logic, including in particular the notions of a fuzzy controller and a method

of defuzzification. Then, they postulate the use of the golden ratio in the process of

defuzzification and call the idea the Golden Ratio (GR) Method. In the subsequent

part of the article, the proposed GR-based instrument is compared with the classical

methods of defuzzification, including COG, FOM, and LOM. In the final part, the

authors carry out numerous calculations and formulate conclusions which serve to

classify the proposed method. At the end they present directions of further research.
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1 Introduction

Curiosity, a desire to learn, and observations of traditional areas of science -all of

these become the platforms on which new solutions are developed, which in turn

result in new products being made. Another source of inspiration is construction of

synergistic systems based mainly on concrete solutions in mechatronics. The authors

of this paper make use of the well-known Fibonacci series, and in particular the

golden ratio, as a method of defuzzification a fuzzy controller. The golden ratio

method is also the subject of the works of Euclid, an author of theoretical works

in mathematics where, in the authors’ opinion, the use of the ratio affords a new

look at the area of fuzzy logic. The use of this approach for defuzzification expands

the range of existing instruments based on such methods as center of gravity, center

of area, or methods involving maxima.

2 Fundamental Concepts

The introduction of fuzzy sets [3], along with its accompanying studies, have made

their application widespread in the world around us. The impact of the concept of

fuzzy sets is mainly seen in the use of solutions in control systems, robotics and

decision-making systems. Among other applications, such solutions are also used in

medicine, image processing or speech analysis. The essence of using such a solution

is the ability to express imprecise phenomena, where the existing, classic mathemat-

ical models that operate on binary yes/no dichotomies have been redefined to include

intermediate elements. In any field of application of fuzzy control models [4], the

system is a classic block containing input and output zones. The input zones are

provided with signals from sensors, and the outputs control their assigned actuators.

The internal structure of a fuzzy controller is presented in Fig. 1, which shows such

operations as fuzzification, inference, and defuzzification.

The first phase contains the operation of fuzzification. It is connected with calcu-

lating the degree of membership in the relevant fuzzy sets. Calculation of the result-

ing membership function concludes the inferencing stage based on input degrees of

membership. Both operations (fuzzification and inferencing) contain a number of

specific elements. The information referred to here is discussed more extensively in

numerical
data

fuzzy
input

fuzzy
output

crisp
value

fuzzification
operation

inferencing
operation

defuzzification
operation

definitions of
fuzzy sets

rules of
inferencing

defuzzification
method

Fig. 1 The internal structure of a fuzzy controller
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the available literature on the subject [5–10]. The final operation of the system is the

defuzzification block. It is characterized by providing a real value in the output. This

value will be the product of applying the method to the resultant membership func-

tion, enabling the activation of an actuator in the desired manner. In the remainder

of this article, this transformation will be referred to as defuzzification, and it will

also set the background for further work.

In specific terms, the defuzzification process comes down to the use of appropriate

methods which allow reducing a fuzzy set to a single real value. In previous research,

the main methods of defuzzification involved either operations on the maxima (FOM,

LOM, MOM, RCOM), or on the field (COG, COA). For some problems, and for

some systems, there is a need to develop new methods that address new trends in

fuzzy logic.

The concept of a fuzzy set, formulated by Zadeh in the mid-sixties as the theory

of fuzzy sets [3], was preceded the work of Łukaszewicz [11], in which the foun-

dation of the then-dominant predicate calculus based on bivalent logic was replaced

by multivalent logic. This contributed to the development of various derivative the-

ories which broadened the area under discussion. One of such theories, proposed by

Dubois and Prade [12] is a version of Zadeh’s theory introducing a limited class of

membership functions, along with two shape functions, L and R.

According to Zadeh’s definition, a fuzzy set is:

Definition 1 Fuzzy set A, in a certain area X, is the set of pairs:

A = {(x, 𝜇(x))} ∀x ∈ X (1)

where: 𝜇(x) membership function assigning to each element ∀x ∈ X (of the assumed

area of consideration of X) its degree of membership to set A, whereas:

𝜇A ∶ X → [0, 1] thus 𝜇A(x) ∈ [0, 1] (2)

Definition 2 The support for fuzzy set A in X is the non-fuzzy set supp(A), which

we define as:

supp(A) =
{
x ∶ 𝜇A(x) > 0, x ∈ X

}
(3)

Definition 3 The height of a fuzzy set A in X determines the maximum value

accepted by membership function 𝜇A(x) in the whole X set, as follows:

h(A) = height(A) = hgt(A) = supx∈X(𝜇(x)) (4)

Definition 4 We define the core of fuzzy set A in X as:

core(A) =
{
x ∶ 𝜇A(x) = 1, x ∈ X

}
(5)

A graphic interpretation of a fuzzy set, along with the respective Definitions 2, 3, 4

are shown in Fig. 2.
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Fig. 2 A fuzzy set with its

support, height, and core

support

height

core

The defuzzification process, as the final step in the three-stage model of fuzzy

control, transforms the fuzzy set to a single real value that specifies the membership

function. The expression below formally describes defuzzification:

Definition 5
W = {f ∶ X → [0, 1] } → X (6)

where: W is the defuzzification operator, f is the membership function, and X is the

set of the universe specifying the membership functions.

A process may be characterized based on characteristics which are more desir-

able for a particular system [7, 8]. With respect to the nature of the system, we can

talk about fuzzy a inference system or a fuzzy control system. For a fuzzy infer-

ence system a feature such as computational efficiency is of less importance than,

say, for a fuzzy control system, where performance is a key parameter. Sources [13]

and [14] introduced criteria of defuzzification for fuzzy numbers, against which indi-

vidual methods of defuzzification were evaluated. The main conclusion drawn from

the evaluations was that there is no universal defuzzification method. A method of

defuzzification should be selected with its use in mind. For example maxima-based

methods, which include LOM (Last Of Maxima), and FOM (First Of Maxima), are

better suited for inference systems. The authors’ previous studies demonstrated that

distribution- and field-based methods are more appropriate for those applications

where control systems are used. Among these methods we find COG (Center Of

Gravity) and COA (Center Of Area).

3 Methods of Defuzzification

It is known that the process of defuzzification [15] reduces a fuzzy set to a single real

value. The mechanism of this operation consists mainly in the use of the appropriate

defuzzification method. Among the available methods we find the classical solutions:
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FOM—first of maxima
FOM is a method based on selecting the smallest element from the core of set A,

where the real value is presented in relation (7).

FOM(A) = min core(A) (7)

LOM—last of maxima
In contrast, by selecting the largest value element from the core of set A, we are using

LOM, whose formula is shown below:

FOM(A) = max core(A) (8)

MOM—mean of maxima
Equation (9) presents the use of FOM and LOM as methods whose defuzzification

values take into account the minimum and maximum elements of the core of fuzzy

set A. The resultant value is the mean of the two methods.

MOM(A) = min core(A) + max core(A)
2

(9)

RCOM—random choice of maxima
This method is also referred to as defuzzification of the core, as the defuzzification

value is always included in the core of the fuzzy set. The defuzzification value of this

method is a random element x ∈ core(A) calculated as the probability as in (15):

RCOM(A) = P(x) = 𝜆(x)
𝜆(core(A))

(10)

where 𝜆 jest the Lebesgue measure in universe X.

MOS—mean of support
In MOS, the defuzzification value is the mean from the support of number A.

RCOM(A) = P(x) =
supp(A)

2
(11)

COG—center of gravity
This method is most widespread—it is bases on determining the center of gravity of

the system under consideration. In the process of defuzzification fuzzy number A,

the method is expressed as Eq. (12)

COG(A) =
∫
b
a x𝜇A(x)dx

∫
b
a 𝜇A(x)dx

(12)
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BADD—basic defuzzification distribution
A method of defuzzification proposed in [16], as an expansion of COG and MOM.

The defuzzification value of fuzzy set A is obtained as:

BADD(A) =
∫
b
a x𝜇𝛾

A(x)dx

∫
b
a 𝜇

𝛾

A(x)dx
(13)

Depending on parameter 𝛾 ∈ [0,∞], BADD may assume the following instances:

when 𝛾 = 0, BADD(A) = MOS(A); when = 1, BADD(A) = COG(A); when 𝛾 → ∞,

BADD(A) = MOM(A).

4 The Golden Ratio Method

In most cases, a natural way of representing information is to determine a particular

order in a given set. Considerations on this issue are broadly presented in mathemat-

ics as number series, or numerical sequences. Focusing on the numerical sequence

we think about a transformation, a function mapping the set of natural numbers in

the set of real numbers. A special representative of this operation is the Fibonacci

series. The series is based on the assumption that it starts with two ones, and each

consecutive number is the sum of the previous two. The proposal for the Golden

Ratio method of defuzzification is based on the proportion of the golden ratio. As a

result of dividing each of the numbers by its predecessor, we always obtain quotients

oscillating around the value of 1, 618033998875…—the golden ratio number. The

exact value of the limit is the golden number itself:

lim
n→0

kn+1
kn

= 1, 618033998875 · · · = 𝛷 (14)

The possibility of using this formula in the process of defuzzification will be another

example of the universality of the method, as it is applied in the new domain of fuzzy

logic theory. Calculation of the classical formula of the golden mean assumes that

two values of line segments a, and b, are in golden ratio 𝛷 to one another if:

a + b
a

= a
b
= 𝛷 (15)

In this case, one method of finding the value of 𝛷 is to transform the left-hand

fraction of Eq. (15) into:

a + b
a

= 1 + b
a
= 1 + 1

𝛷

, where b
a
= 1

𝛷

(16)
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Fig. 3 Golden ration
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Following subsequent transformations of Eq. (16) we obtain quadratic Eq. (17), for

which we will calculate the roots.

𝛷

2 −𝛷 − 1 = 0 (17)

As appropriate, using transformations of the formula in (17) we obtain two square

roots (18).

𝛷1 =
1 +

√
5

2
or 𝛷2 =

1 −
√
5

2
(18)

In view of the fact that the value of 𝛷 must be positive, in our example we select

the positive root, as in Eq. (19) (Fig. 3).

𝛷 = 𝛷1 =
1 +

√
5

2
= 1, 618033998875… (19)

In sum, the ratio between two objects a, and b is called the golden ratio when the

value of 𝛷 = 1.61803398875…
The method of the Golden Ratio (GR) for fuzzy number is the Eq. (20):

Definition 6

GA =
supp(A)

𝛷

where 𝛷 = 1, 618033998875… (20)

where: GR is the defuzzification operator, supp(A) is support for fuzzy set A in uni-

verse X.
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0 2 4 6 8 10

Fig. 4 Convex fuzzy number A

Table 1 Defuzzification measurement for a convex fuzzy number

Fuzzy number Defuzzification method

GR FOM LOM COG

A 5.09 3 4 4.11

5 Observation

The proposed Golden-Ratio-based method of defuzzification presented in section

four was designed as a simple method for convex fuzzy numbers. In this section we

will present a comparison of the proposed GR method with FOM GR, LOM and

COG. The first two methods are from the group of maxima-based methods. In First

Of Maxima, the defuzzification value is set for the first element of the core, and we

understand the core as the segment of the domain in which the membership function

reaches the maximum value of one. If the defuzzification value is related to the last

element of the core, we are dealing with the method called LOM (Last Of maxima).

The final method selected for the comparison is Center of Gravity (COG). For convex

fuzzy number A, shown in Fig. 4, the calculation results are listed in Table 1.

6 Conclusions

Balance between extremes can be well implemented in architecture, or painting, as

well as in fuzzy logic. An interpretation of this balance, according to the authors, is

using Golden Ratio method (GR) in the process of defuzzification. The instrument of

the golden mean, as proposed in this paper for fuzzy numbers may serve as another

defuzzification method. As a mathematical apparatus that affords wide-ranging pos-

sibilities in description and processing of information, it becomes a new solution in

constructing models of fuzzy controllers used as tools for inferencing or control. In

further research on this issue, it is planned to carry out tests of the method in real

control models. Future activities will concern implementation of the method in the



A Proposal for a Method of Defuzzification Based on the Golden Ratio—GR 83

measurement environment. A concurrent idea for further studies is the use of the

golden ratio in relation to methods based on field membership function of a fuzzy

number. It is planned to replace the base of the support, as shown in this study, with

the ratio of the fields of a given fuzzy number. The future solution will in a certain

way relate to the COG method, except that the balance of forces of the fields of a

given fuzzy number will be related to the golden ratio. Another challenge will be

to conduct studies of the proposed Golden Ratio method for OFN—Ordered Fuzzy

Numbers [17, 18, 24].
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A New Approach to the Equivalence
of Relational and Object-Oriented Databases

Swietłana Lebiediewa, Hubert Zarzycki and Wojciech T. Dobrosielski

Abstract In the paper the condition for equivalence of problem-oriented databases

(DB) models has been formulated. A data segment and problem-focused data manip-

ulation language of database for multi-stage recognition of objects has been charac-

terized. The relational and a corresponding object-oriented models of DB has been

described. A few assertions regarding the equivalence of the relational and object

DB models for recognition have been proved.

Keywords Equivalence of databases ⋅ Relational database ⋅ Object-oriented data-

base ⋅ Problem-oriented databases ⋅ Data manipulations language

1 Formulation of the Problem

This paper regards the possibility of cooperation of databases having different mod-

els, that is, heterogeneous DB systems. This issue is related closely to the prob-

lem of equivalence of DB models. This problems has two aspects: theoretical—

equivalence of the data structures (DS) and operations—and practical—possibility

of cooperation between heterogeneous DB systems and with numerous computer

solutions. Additionally creating some of computer systems is only possible thanks

to proper DB interfaces. There are solutions in Artificial Intelligence [1], Business
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Intelligence [2], Decision Support System [3], Expert System, ERP [4, 5], Rough

Sets [6], GIS, Fuzzy Logic [7], etc. which must be based on such technical interfaces

to properly cooperate with different DB. There are practical standard such as JDBS

designed by Sun and ODBC designed by Microsoft, which allows to align databases

of different models. The existing systems of distributed databases (DDB) are usually

based on the relational DB model where the basis for division is relation [8]. As a

result of distribution there takes place a horizontal or vertical division (fragmenta-

tion) of relations. We are going to be interested in DDB based on decomposition of a

complex multistage decision making (MDM) system and not in the fragmentation of

relations. In the MDM systems the basic unit of a DB is not a relation but a complex

DS—segment [9]. There is not assumed any uniformity of equipment, HOP, DBMS

or DB models. In the papers [9–11] there has been demonstrated the equivalence of

the hierarchical, network-based and relational models of problem-oriented DB when

it comes to multistage recognition due to basic DS and DML instructions. The aim

of this paper is to demonstrate the equivalence of relational and object models of DB

for multistage recognition [12] due to basic DS and DML instructions and therefore

the possibility of cooperation of these DB systems.

2 Database for Multistage Recognition

Multistage recognition consists in decomposition of the decisional problem, that is,

replacement of a one-time recognition with sequence of the so-called local recogni-

tions carried out in particular nodes according to the given structure of the decision

tree (DT), Fig. 1.

One of the basic tasks when designing DB for MDM is the creation of an appro-

priate user interface, namely a model of external and problem-oriented language of

Fig. 1 Decision tree
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1 [NODE] has [SUCCESSORS]
2 [in NODE] there are obtainable [OBTAINABLE CLASSES]

3 [in NODE] is used [FRAGSEQ]
4 [in NODE] there are [CHARACTERISTICS]
5 [in object] there are [CHARACTERISTICS]

6 [in NODE] are made [DECISIONS]
7 [about object] is made [DECISION]

8 [DECISION result] is an identifier of [SUCCESSOR]
9 [object] is recognizable in [NODE]

Fig. 2 E-R entity of the SEG* segment

access to the DB. The external model is a data segment, that is, a set of data to be

recognized in a node. The segment includes information on the Node, Node Suc-

cessors, Classes Obtainable from the Node, Characteristics measured in the Node

and fragment of the Learning Sequence (LS) used in the Node (FRAGSEQ). The

segment includes also information on objects recognized (OBJECTS) and decisions

made. The E-R model of a segment of data has been presented on Fig. 2.

The problem-oriented language of access to the DB (DML) contains instructions

used by the recognition algorithms. The following instructions are examples of DML

instructions [9]:

READ CHARACTERISTICS *—provide the vector of characteristics used in the

node *;

READ CLASSES*—which classes are obtainable in the node *;

READ DECISIONS *—provide all decisions made in the node *;

READ DECISIONS, O_ID *— what decisions were made in the node * regarding

the object O_ID;
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WRITE DECISIONS,O_ID *—write decision made in the node * regarding the

object O_ID;

READ CONTROL, i *—To which node should the control be handed over if the

result of the decision is an i class;

READ O_ID *, CHARACTERISTICS, NODE_NO—provide all the characteristics

of the object O_ID and the decision made (result of recognition) in the node*.

The cooperation of the recognition algorithm (1) with the database segment is as

follows:

Algorithm 1 ALGORITHM OF RECOGNIZING IN NODE*

Algorithm start
STEP 1. Read from the DB the identifier and the vector of features of the object being recognized.

STEP 2. Read the fragment of TS FRAGSEQ*, being utilized in the given node.

STEP 3. (calculation of the values of the function of recognizing the vector of features of the

object g being recognized): for all the elements of relation FRAGSEQ*: take an element of TS,

calculate the euclidean norm with the object being recognized, store the euclidean norm and the

corresponding class number of the object.

STEP 4. Write the object identifier and the number k, being the result of recognizing in NODE*,

to the relation DECISIONS* in the DB.

Algorithm stop

3 Relational Model

The relation diagram of DB reduced to a single segment (SEG*) has the following

form:

Relation NODE*(NODE_NO, NUMBER_OF_CHARACTERISTICS,

NUMBER_OF_SUCCESSORS, NUMBER_OF_PREDECESSORS, PREDECES-

SOR)

Relation OBTAINABLE_CLASSES* (CLASS_NO, DECISION, TERMINAL)

Relation SUCCESSORS* (NODE_NO, SUCCESSOR_NODE_NO, TERMINAL)

Relation CHARACTERISTICS* (C3, C4, C8)

Relation FRAQSEQ* (C3, C4, C8, CLASS_NO)

Relation OBJECTS* (O_ID, C3, C4, C8)

Relation DECISIONS* (O_ID, NODE_NO, TERMINAL)

Relation NASTÊPNIKI14 the numbers of direct successors node 14. The relation-

ship CECHY14 includes a feature vector for the node 14 and the information about

where each of the features has been (or will be) measured for the first time. Rela-

tion TAB14 (matrix measured features of objects) it includes the IDs of objects and

features of the measured values of objects. Relation DECYZJE14 includes the recog-

nition results in node 14. The relation OBTAINABLE_CLASSES_14 contains infor-

mation about the numbers of classes reachable from the node 14 with information
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Fig. 3 Segment_14 of database

on the number of a decision taken in the node. The decision is either the result of

which is the class number recognition, or the number of the node to which it will

be transferred to the control. Relation FRAGSEG14 includes a fragment of the CU

used in the node CU 14.

On Fig. 3 there has been presented a fragment of segment 14.

In the relational model there are included executable instruction of the problem-

oriented DML listed in item 2. As an example we will demonstrate the executabil-

ity of instruction 1. READ STEROWANIE, i * (to which node should the control

be handed over if the result of the decision is an i class) and 2. READ (O_ID) *,

CHARACTERISTICS*, NODE_NO* (provide all the characteristics of the object

O_ID and the decision made (result of recognition) in the node*).

1. RESTRICT ObtainableClasses WHERE ClassNo = i IF Terminal = “Yes” GO TO

EndOfRecognition ELSE PRINT “Hand control over to DecisionNo” EndOfRecog-

nition PRINT i END

2. JOIN ((RESTRICT Objects* WHERE Oid = object-id), (PROJECT Decisions

*(Oid, NodeNo)) OVER Oid

The algorithms of performance of other instructions have been presented in [9].
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4 Object-Oriented Model

Below C++ notation is used for the description of object-oriented DB scheme. The

scheme is reduced to a single segment (SEG *):

class NODE14int NODE_NO; int NUMBER_OF_CHARACTERISTICS;

int NUMBER_OF_SUCCESSORS; int NUMBER_OF_PREDECESSORS;

NODE14* DIRECT_PREDECESSOR;;

class OBTAINABLE_CLASSES14 int CLASS_NO, int NODE_NO;

bool TERMINAL; READCLASSES(); READCONTROL();;

class SUCCESSORS14int NODE_NO; int SUCCESSOR_NODE_NO; bool TER-

MINAL;;

class OCCURRING_CHARACTERISTICS14int CHARACTERSTIC_NO;

int NODE_NO;;

class SEQUENCES14 int C3; int C4; int C8; int CLASS_NO;;

class OBJECTS14 int O_ID; int C3; int C4; intC8; READIDOB();;

class DECISIONS14 int O_ID; int NODE_NO; bool TERMINAL;

WRITEDECISIONS(); READDECISIONS(); READIDOBDECISIONS();;

where NODE14* DIRECT_PREDECESSOR—is a pointer to object of type NODE14

(predecessor to current object).

The following diagram presents the structure of the object-oriented database seg-

ment covering classes, attributes, methods, and the relationship between the classes

(Fig. 4).

Fig. 4 Class diagram of the segment SEG*
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Methods available in the classes:

READCHARACTERISTICS()—provide vector of characteristics used in a node

specified by a given number;

READCLASSES()—which classes are obtainable in a node specified by a given

number;

READDECISIONS()—provide all decisions made in a node specified by a given

number;

READIDOBDECISIONS()—what decisions were made in the node specified by a

given number regarding the object O_ID;

WRITEDECISIONS()—write decision made in the node specified by a given num-

ber regarding the object O_ID;

READCONTROL()—to which node should the control be handed over if the result

of the decision is an i class;

READIDOB()—provide all the characteristics of the object O_ID and the decision

made (result of recognition) in a node specified by a given number.

5 Equivalence of the Relational Model
and Object-Oriented Model

We do state that the databases A and B are equivalent with regard to basic data

structures if each basic structure of DB A can be mapped into a basic structure of

DB B, and if each basic structure of DB B can be mapped into a basic structure of

DB [13]. Similarly, the databases A and B are equivalent with regard to operations

if each operation of DB A is executable in DB B, and if each operation of DB B is

executable in DB A. What concerns the equivalence with reference do data struc-

tures, the hierarchical, network, and relational models of general-purpose databases

(GPDBs) are equivalent [14]. In order to demonstrate the equivalence of the rela-

tional and object models of DB we will demonstrate the equivalence of basic DS

and operation of the problem-oriented DML listed in subsection 2.

Assertion 1 The relational and object models of DB for multistage recognition are

equivalent with regard to data structures.

Proof The main DS of relational and object models is a segment. We are going to

demonstrate that there exists mapping that assigns to each element of segment of a

relational model in a clear way an element of segment of an object-oriented model.

Let us define on the element of segment of a relational model the mapping taking

values in the object-oriented model in the following way:

NODE*, OBTAINABLE_CLASSES*, SUCCESSORS*, CHARACTERISTICS*,

FRAGSEQ*, OBJECTS* and DECISIONS* relations of the relational model are

mapped accordingly in the NODE, OBTAINABLE_CLASSES, SUCCESSORS,

OCCURRING_CHARACTERISTICS, SEQUENCES, OBJECTS and



92 S. Lebiediewa et al.

DECISIONS classes of the object model. This mapping is mutually unambigu-

ous since the counterimages of the NODES, OBTAINABLE_CLASSES, SUCCES-

SORS, OCCURING_CHARACTERISTICS, SEQUENCES, OBJECTS and Deci-

sions classes of the object model are, accordingly, NODES*, OBTAINABLE_

CLASSES*, SUCCESSORS*, CHARACTERISTICS*, FRAGSEQ*, OBJECTS*

AND DECISIONS* relations of the relational model.

Assertion 2 The relational and object-oriented models of DB for multistage recog-

nition are equivalent with regard to operations of the problem-oriented DML.

Proof We are going to demonstrate that each operation of the problem-oriented

DML carried out in a relational model is carried out also in the object model. READ

CHARACTERISTICS* operation corresponds to the method READCHARACTER-

ISTICS() of the class OCCURRING_CHARACTERISTICS, READ CLASSES *

operation corresponds to the method READCLASSES of the class OBTAINABLE

_CLASSES, WRITE DECISIONS, O_ID* operation operation corresponds to the

method WRITE DECISIONS() of the class DECISIONS, READ DECISIONS*

operation corresponds to the method READDECISIONS() of the class DECISIONS,

READ DECISIONS, O_ID* operation corresponds to the method READIDOBDE-

CISIONS() of the class DECISIONS, READ CONTROL, i* operation corresponds

to the method READCONTROL() of the class OBTAINABLE_CLASSES, READ

O_ID *, CHARACTERISTICS, NODE_NO operation corresponds to the method

READIDOB() of the class TAB14.

Assertion 3 The relational and object models of DB for multistage recognition are

equivalent with regard to data structures and operations of the problem-oriented

DML.

Assertion 3 results from Assertions 1 and 2.

6 Concluding Remarks

The aim of the paper was to examine the condition for cooperation of problem-

oriented databases (PODB) irrespective of the LDB model. The basis for the pro-

posed approach is the user interface from PODB—a data segment (external model

of the user) and problem-oriented DML. The equivalence of various models with

regard to basic DS and DML instructions is of large practical significance. Firstly, the

proposes approach ensures independence from hardware, software and DB model.

There has been considered the equivalence of object-oriented and relational models

of DB, but the IDEN PODB may be executed as an hierarchical or network-based

BD. Secondly, the definition of POBD equivalence presented in subsection 4 is of

general nature: the equivalence with regard to operations does not assume the iden-

tity of every instruction of a problem-oriented JMD in various DB models but within

a certain subset of these instructions. For example, in each DB model for RW there
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is assumed execution of instruction of a problem-oriented DML used by the recog-

nition algorithms in the node. On the other hand, certain queries for DB (e.g. queries

regarding the DD structure or list of all the object belonging to a specific class) that

are carried out in relational and network-based DB models cannot be carried out in a

hierarchical model [9]. Thirdly, similar DS and problems related to them may occur

in other similar IT systems, e.g. used for purposes of multistage identification or mul-

tilevel controlling [15]. In the paper [9–11] there was considered the equivalence of

hierarchical, network based and relational models of REC DB. However, REC DB

can be created as an ODB—(complex DB structure, connections between segments,

heredity) or, after adding decision rules (recognition algorithms), as a deductive DB.
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Intuitionistic Fuzzy Implications
and Klir-Yuan’s Axioms

Nora Angelova and Krassimir Atanassov

Abstract During years of research, there have been defined 149 intuitionistic fuzzy

implications. In the paper, it is checked which of these implications satisfy Klir-

Yuan’s axioms, whether as (classical) tautologies or as intuitionistic fuzzy tautologies.

Keywords Implication ⋅ Intuitionistic fuzzy logic ⋅ Klir-Yuan’s axioms

1 Introduction

In a series of publications, (see, e.g. [1, 2]), 153 different operations “implication”

in intuitionistic fuzzy propositional calculus, have been intorduced. 149 of them are

non-parametricones. They have been found to generate 45 operations “negation” over

intuitionistic fuzzy sets.

In the present paper, we study which of these implications and their respective

netations satisfy which axioms of Klir-Yuan’s axioms, and whether, doing so, they

behave tautologies or as intuitionistic fuzzy tautologies.

In intuitionistic fuzzy propositional calculus, if x is a variable, then its truth-value

is represented by the ordered couple

V(x) = ⟨a, b⟩,

so that a, b, a + b ∈ [0, 1], where a and b are degrees of validity and of non-validity

of x.
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For the needs of the discussion below, we shall define the notion of tautology and

of Intuitionistic Fuzzy Tautology (IFT, see, e.g. [1, 2]) by:

x is an IFT if and only if for V(x) = ⟨a, b⟩ it holds that a ≥ b,

and

x will be a (classical) tautology if and only if a = 1 and b = 0.

Obiously, each tautology is intuitionistic fuzzy tautology, but the opposite is not

true.

2 On the Operations “Implication” and “Negation”
in Intuitionistic Fuzzy Propositional Calculus

Below, we shall assume that for the two variables x and y the equalities: V(x) = ⟨a, b⟩
and V(y) = ⟨c, d⟩ (a, b, c, d, a + b, c + d ∈ [0, 1]) hold.

In some definitions, we need to use the auxiliary functions sg and sg defined by,

sg(x) =

{
1 if x > 0
0 if x ≤ 0

, sg(x) =

{
0 if x > 0
1 if x ≤ 0

The list of all currently existing intuitionistic fuzzy implications and negations

are given in Tables 1 and 2, respectively.

The relations between the implications and negations are the following: negation

¬1 is generated by implications →1,→4,→5,→6,→7,→10,→13,→61, →63, →64,
→66,→67,→68,→69,→70, →71,→72,→73,→78,→80,→124,→125,→127; negation

¬2 – by →2,→3,→8,→11,→16,→20,→31,→32, →37,→40,→41,→42; negation

¬3 – by →9,→17,→21; ¬4 – by →12,→18,→22,→46,→49,→50,→51,→53, →54,
→91,→93,→94,→95,→96, →98,→134,→135,→137; ¬5 – by →14,→15,→19,→23,
→47,→48,→52,→55, →56,→57; ¬6 – by →24,→26,→27,→65; ¬7 – by →25,
→28,→29,→62; ¬8 – by →30,→33,→34,→35,→36,→38,→39,→76, →82,→84,
→85,→86,→87,→89,→129,→130,→132; ¬9 – by→43,→44,→45,→83; ¬10 – by→58,
→59,→60,→92; ¬11 – by →74,→97; ¬12 – by →75; ¬13 – by →77,
→88; ¬14 – by →79; ¬15 – by →81; ¬16 – by →90; ¬17 – by →99; ¬18 – by →100;

¬19 – by →101; ¬20 – by →102,→108; ¬21 – by →103; ¬22 – by →104; ¬23 – by

→105; ¬24 – by →106; ¬25 – by →107; ¬26 – by →109,→110,→111,→112,→113;

¬27 – by →114,→115,→116,→117,→118; ¬28 – by →119,→120,→121,→122,→123;

¬29 – by →126; ¬30 – by →128; ¬31 – by →131; ¬32 – by →133; ¬33 – by →136;

¬34 – by →138; ¬35 – by →139; ¬36 – by →140; ¬37 – by →141; ¬38 – by →142,→143 ;

¬39 – by →144,→145 ; ¬40 – by →146,→147 ; ¬41 – by →148,→149 ; ¬42– by →149;

¬43 – by →150; ¬44 – by →151; ¬45– by →152.
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Table 1 IF Implications

→1 ⟨max(b,min(a, c)),min(a, d)⟩
→2 ⟨sg(a − c), d.sg(a − c)⟩
→3 ⟨1 − (1 − c).sg(a − c)), d.sg(a − c)⟩
→4 ⟨max(b, c),min(a, d)⟩
→5 ⟨min(1, b + c),max(0, a + d − 1)⟩
→6 ⟨b + ac, ad⟩
→7 ⟨min(max(b, c),max(a, b),max(c, d)),max(min(a, d),min(a, b),min(c, d))⟩
→8 ⟨1 − (1 − min(b, c)).sg(a − c),max(a, d).sg(a − c), sg(d − b)⟩
→9 ⟨b + a2c, ab + a2d⟩
→10 ⟨c.sg(1 − a) + sg(1 − a).(sg(1 − c) + b.sg(1 − c)), d.sg(1 − a)

+a.sg(1 − a).sg(1 − c)⟩
→11 ⟨1 − (1 − c).sg(a − c), d.sg(a − c).sg(d − b)⟩
→12 ⟨max(b, c), 1 − max(b, c)⟩
→13 ⟨b + c − b.c, a.d⟩
→14 ⟨1 − (1 − c).sg(a − c) − d.sg(a − c).sg(d − b), d.sg(d − b)⟩
→15 ⟨1 − (1 − min(b, c)).sg(a − c).sg(d − b) − min(b, c).sg(a − c).sg(d − b),

1 − (1 − max(a, d)).sg(sg(a − c) + sg(d − b)) −max(a, d).sg(a − c).sg(d − b)⟩
→16 ⟨max(sg(a), c),min(sg(a), d)⟩
→17 ⟨max(b, c),min(a.b + a2, d)⟩
→18 ⟨max(b, c),min(1 − b, d)⟩
→19 ⟨max(1 − sg(sg(a) + sg(1 − b)), c),min(sg(1 − b), d)⟩
→20 ⟨max(sg(a), sg(c)),min(sg(a), sg(c))⟩
→21 ⟨max(b, c.(c + d)),min(a.(a + b), d.(c2 + d + c.d))⟩
→22 ⟨max(b, 1 − d), 1 − max(b, 1 − d)⟩
→23 ⟨1 − min(sg(1 − b), sg(1 − d)),min(sg(1 − b), sg(1 − d))⟩
→24 ⟨sg(a − c).sg(d − b), sg(a − c).sg(d − b)⟩
→25 ⟨max(b, sg(a).sg(1 − b), c.sg(d).sg(1 − c)),min(a, d)⟩
→26 ⟨max(sg(1 − b), c),min(sg(a), d)⟩
→27 ⟨max(sg(1 − b), sg(c)),min(sg(a), sg(1 − d))⟩
→28 ⟨max(sg(1 − b), c),min(a, d)⟩
→29 ⟨max(sg(1 − b), sg(1 − c)),min(a, sg(1 − d))⟩
→30 ⟨max(1 − a,min(a, 1 − d)),min(a, d)⟩
→31 ⟨sg(a + d − 1), d.sg(a + d − 1)⟩
→32 ⟨1 − d.sg(a + d − 1), d.sg(a + d − 1)⟩
→33 ⟨1 − min(a, d),min(a, d)⟩
→34 ⟨min(1, 2 − a − d),max(0, a + d − 1)⟩
→35 ⟨1 − a.d, a.d⟩
→36 ⟨min(1 − min(a, d),max(a, 1 − a),max(1 − d, d)),max(min(a, d),

min(a, 1 − a),min(1 − d, d))⟩
→37 ⟨1 − max(a, d).sg(a + d − 1),max(a, d).sg(a + d − 1)⟩

(continued)
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Table 1 (continued)

→38 ⟨1 − a + (a2.(1 − d)), a.(1 − a) + a2.d⟩
→39 ⟨(1 − d).sg(1 − a) + sg(1 − a).(sg(d) + (1 − a).sg(d)),

d.sg(1 − a) + a.sg(1 − a).sg(d)⟩
→40 ⟨1 − sg(a + d − 1), 1 − sg(a + d − 1)⟩
→41 ⟨max(sg(a), 1 − d),min(sg(a), d)⟩
→42 ⟨max(sg(a), sg(1 − d)),min(sg(a), sg(1 − d))⟩
→43 ⟨max(sg(a), 1 − d),min(sg(a), d)⟩
→44 ⟨max(sg(a), 1 − d),min(a, d)⟩
→45 ⟨max(sg(a), sg(d)),min(a, sg(1 − d))⟩
→46 ⟨max(b,min(1 − b, c)), 1 − max(b, c)⟩
→47 ⟨sg(1 − b − c), (1 − c).sg(1 − b − c)⟩
→48 ⟨1 − (1 − c).sg(1 − b − c), (1 − c).sg(1 − b − c)⟩
→49 ⟨min(1, b + c),max(0, 1 − b − c)⟩
→50 ⟨b + c − b.c, 1 − b − c + b.c⟩
→51 ⟨min(max(b, c),max(1 − b, b),max(c, 1 − c)), max(1 − max(b, c),

min(1 − b, b),min(c, 1 − c))⟩
→52 ⟨1 − (1 − min(b, c)).sg(1 − b − c), 1 − min(b, c).sg(1 − b − c)⟩
→53 ⟨b + (1 − b)2.c, (1 − b).b + (1 − b)2.(1 − c)⟩
→54 ⟨c.sg(b) + sg(b).(sg(1 − c) + b.sg(1 − c)),

(1 − c).sg(b) + (1 − b).sg(b).sg(1 − c)⟩
→55 ⟨1 − sg(1 − b − c), 1 − sg(1 − b − c)⟩
→56 ⟨max(sg(1 − b), c),min(sg(1 − b), (1 − c))⟩
→57 ⟨max(sg(1 − b), sg(c)),min(sg(1 − b), sg(c))⟩
→58 ⟨max(sg(1−b), sg(1−c)), 1−max(b, c)⟩
→59 ⟨max(sg(1 − b), c), (1 − max(b, c))⟩
→60 ⟨max(sg(1 − b), sg(1 − c)),min((1 − b), sg(c))⟩
→61 ⟨max(c,min(b, d)),min(a, d)⟩
→62 ⟨sg(d − b), a.sg(d − b)⟩
→63 ⟨1 − (1 − b).sg(d − b), a.sg(d − b)⟩
→64 ⟨c + b.d, a.d⟩
→65 ⟨1 − (1 − min(b, c)).sg(d − b),max(a, d).sg(d − b).sg(a − c)⟩
→66 ⟨c + d2.b, b.d + d2.a⟩
→67 ⟨b.sg(1 − d) + sg(1 − d).(sg(1 − b) + c.sg(1 − b)),

a.sg(1 − d) + d.sg(1 − d).sg(1 − b)⟩
→68 ⟨1 − (1 − b).sg(d − b), a.sg(d − b).sg(a − c)⟩
→69 ⟨1 − (1 − b).sg(d − b) − a.sg(d − b).sg(a − c), a.sg(a − c)⟩
→70 ⟨max(sg(d), b),min(sg(d), a)⟩
→71 ⟨max(b, c),min(c.d + d2, a)⟩
→72 ⟨max(b, c),min(1 − c, a)⟩
→73 ⟨max(1 − max(sg(d), sg(1 − c)), b),min(sg(1 − c), a)⟩

(continued)
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Table 1 (continued)

→74 ⟨max(sg(b), sg(d)),min(sg(b), sg(d))⟩
→75 ⟨max(c, b.(a + b)),min(d.(c + d), a.(b2 + a) + a.b)⟩
→76 ⟨max(c, 1 − a),min(1 − c, a)⟩
→77 ⟨(1 − min(sg(1 − a), sg(1 − c))),min(sg(1 − a), sg(1 − c))⟩
→78 ⟨max(sg(1 − c), b),min(sg(d), a)⟩
→79 ⟨max(sg(1 − c), sg(b)),min(sg(d), sg(1 − a))⟩
→80 ⟨max(sg(1 − c), b),min(d, a)⟩
→81 ⟨max(sg(1 − b), sg(1 − c)),min(d, sg(1 − a))⟩
→82 ⟨max(1 − d,min(d, 1 − a)),min(d, a)⟩
→83 ⟨sg(a + d − 1), a.sg(a + d − 1)⟩
→84 ⟨1 − a.sg(a + d + 1), a.sg(a + d + 1)⟩
→85 ⟨1 − d + d2.(1 − a), d.(1 − d) + d2.⟩
→86 ⟨(1 − a).sg(1 − d) + sg(1 − d).sg(a + min(1 − d, sg(a))),

a.sg(1 − d) + d.sg(1 − d).sg(a)⟩
→87 ⟨max(sg(d), 1 − a),min(sg(d), a)⟩
→88 ⟨max(sg(d), sg(1 − a)),min(sg(d), sg(1 − a))⟩
→89 ⟨max(sg(d), 1 − a),min(d, a)⟩
→90 ⟨max(sg(a), sg(d)),min(d, sg(1 − a))⟩
→91 ⟨max(c,min(1 − c, b)), 1 − max(b, c)⟩
→92 ⟨sg(1−b−c),min(1−b, sg(1−b−c))⟩
→93 ⟨(1 − min(1 − b, sg(1 − b − c)),min(1 − b, sg(1 − b − c))⟩
→94 ⟨c + (1 − c)2.b, (1 − c).c + (1 − c)2.(1 − b)⟩
→95 ⟨min(b, sg(c)) + sg(c).(sg(1 − b) + min(c, sg(1 − b))), (min(1 − b, sg(c))

+min(1 − c, sg(c), sg(1 − b))⟩
→96 ⟨max(sg(1 − c), b),min(sg(1 − b), 1 − c)⟩
→97 ⟨max(sg(1 − c), sg(b)),min(sg(1 − c), sg(b))⟩
→98 ⟨max(sg(1 − c), b), 1 − max(b, c)⟩
→99 ⟨max(sg(1 − c), sg(1 − b)),min(1 − c, sg(b))⟩
→100 ⟨max(min(b, sg(a)), c),min(a, sg(b), d)⟩
→101 ⟨max(min(b, sg(a)),min(c, sg(d))),min(a, sg(b), sg(c), d)⟩
→102 ⟨max(b,min(c, sg(d))),min(a, sg(c), d)⟩
→103 ⟨max(min(1 − a, sg(a)), 1 − d),min(a, sg(1 − a), d)⟩
→104 ⟨max(min(1 − a, sg(a)),min(1 − d, sg(d))), min(a, sg(1 − a), d, sg(1 − d))⟩
→105 ⟨max(1 − a,min(1 − d, sg(d))),min(a, d, sg(1 − d))⟩
→106 ⟨max(min(b, sg(1 − b)), c),min(1 − b, sg(b), 1 − c)⟩
→107 ⟨max(min(b, sg(1 − b)),min(c, sg(1 − c))), min(1 − b, sg(b), 1 − c, sg(c))⟩
→108 ⟨max(b,min(c, sg(1 − c))),min(1 − b, 1 − c, sg(c))⟩
→109 ⟨b + min(sg(1 − a), c), a.b + min(sg(1 − a), d))⟩
→110 ⟨max(b, c),min(a.b + sg(1 − a), d)⟩
→111 ⟨max(b, c.d + sg(1 − c)),min(a.b + sg(1 − a), d.(c.d + sg(1 − c)) + sg(1 − d))⟩

(continued)
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Table 1 (continued)

→112 ⟨b + c − b.c, a.b + sg(1 − a).d⟩
→113 ⟨b + c.d − b.(c.d + sg(1 − c)), (a.b + sg(1 − a)).(d.(c.d + sg(1 − c)) + sg(1 − d))⟩
→114 ⟨1 − a + min(sg(1 − a), 1 − d), a.(1 − a) + min(sg(1 − a), d)⟩
→115 ⟨1 − min(a, d),min(a.(1 − a) + sg(1 − a), d)⟩
→116 ⟨max(1 − a, (1 − d).d + sg(d)),min(a.(1 − a) + sg(1 − a), d.((1 − d).d

+sg(d)) + sg(1 − d))⟩
→117 ⟨1 − a − d + a.d, (a.(1 − a) + sg(1 − a)).d⟩
→118 ⟨1 − a + (1 − d).d − (1 − a).((1 − d).d + sg(d)), (a.(1 − a) + sg(1 − a))

.d.((1 − d).d + sg(d)) + sg(1 − d)⟩
→119 ⟨b + min(sg(b), c), (1 − b).b + min(sg(b), 1 − c)⟩
→120 ⟨max(b, c),min((1 − b).b + sg(b), 1 − c)⟩
→121 ⟨max(b, c.(1 − c) + sg(1 − c)),min((1 − b).b + sg(b), (1 − c).(c.(1 − c)

+ sg(1 − c))) + sg(c)⟩
→122 ⟨b + c − b.c, ((1 − c).b + sg(b)).(1 − c)⟩
→123 ⟨b+c.(1−c)−(b.(c.(1−c)+sg(1−c))),

((1 − b).b + sg(b)).(((1 − c).(c.(1 − c) + sg(1 − c))) + sg(c))⟩
→124 ⟨c + min(sg(1 − d), b), c.d + min(sg(1 − d), a)⟩
→125 ⟨max(b, c),min(c.d + sg(1 − d), a)⟩
→126 ⟨max(c, a.b + sg(1 − b)),min(c.d + sg(1 − d), a.(a.b

+sg(1 − b)) + sg(1 − a))⟩
→127 ⟨b + c − b.c, (c.d + sg(1 − d)).a⟩
→128 ⟨c + a.b − c.(a.b + sg(1 − b)), (c.d + sg(1 − d)).(a.(a.b + sg(1 − b))

+sg(1 − a))⟩
→129 ⟨1 − d + min(sg(1 − d), 1 − a), d.(1 − d) + min(sg(1 − d), a)⟩
→130 ⟨1 − min(d, a),min(d.(1 − d) + sg(1 − d), a)⟩
→131 ⟨max(1 − d, (1 − a).a + sg(a)),min(d.(1 − d) + sg(1 − d),

a.((1 − a).a + sg(a)) + sg(1 − a))⟩
→132 ⟨1 − a.d, (d.(1 − d) + sg(1 − d)).a⟩
→133 ⟨1 − d + (1 − a).a − (1 − d).((1 − a).a + sg(a)),

(d.(1 − d) + sg(1 − d)).(a.((1 − a).a + sg(a)) + sg(1 − a))⟩
→134 ⟨c + min(sg(c), b), (1 − c).c + min(sg(c), (1 − b))⟩
→135 ⟨max(b, c),min((1 − c).c + sg(c), 1 − b)⟩
→136 ⟨max(c, (b.(1 − b) + sg(1 − b))),min((1 − c).c + sg(c),

(1 − b).(b.(1 − b) + sg(1 − b)) + sg(b))⟩
→137 ⟨b + c − b.c, ((1 − c).c + sg(c)).(1 − b)⟩
→138 ⟨c+b.(1−b)−c.(b.(1−b) + sg(1−b)),

((1 − c).c + sg(c)).((1 − b).(b.(1 − b) + sg(1 − b)) + sg(b))⟩
→139 ⟨ b+c

2
,

a+d
2
⟩

→140 ⟨ b+c+min(b,c)
3

,

a+d+max(a,d)
3

⟩
→141 ⟨ b+c+max(b,c)

3
,

a+d+min(a,d)
3

⟩
→142 ⟨ 3−a−d−max(a,d)

3
,

a+d+max(a,d)
3

⟩
(continued)
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Table 1 (continued)

→143 ⟨ 1−a+c+min(1−a,c)
3

,

2+a−c−min(1−a,c)
3

⟩
→144 ⟨ 1+b−d+min(b,1−d)

3
,

2−b+d+min(b,1−d)
3

⟩
→145 ⟨ b+c+min(b,c)

3
,

3−b−c−min(b,c)
3

⟩
→146 ⟨ 3−a−d−min(a,d)

3
,

a+d+min(a,d)
3

⟩
→147 ⟨ 1−a+c+max(1−a,c)

3
,

2+a−c−max(1−a,c)
3

⟩
→148 ⟨ 1+b−d+max(b,1−d)

3
,

2−b+d−max(b,1−d)
3

⟩
→149 ⟨ b+c+max(b,c)

3
,

3−b−c−max(b,c)
3

→150,𝜆 ⟨ b+c+𝜆−1
2𝜆

,

a+d+𝜆−1
2𝜆

, where 𝜆 ≥ 1
→151,𝛾 ⟨ b+c+𝛾

2𝛾+1
,

a+d+𝛾−1
2𝛾+1

, where 𝛾 ≥ 1
→152,𝛼,𝛽 ⟨ b+c+𝛼−1

𝛼+𝛽
,

a+d+𝛽−1
𝛼+𝛽

, where 𝛼 ≥ 1, 𝛽 ∈ [0, 𝛼]
→153,𝜀,𝜂 ⟨min(1,max(𝜇B(x), 𝜈A(x) + 𝜀)),max(0,min(𝜈B(x), 𝜇A(x) − 𝜂))⟩

where 𝜀, 𝜂 ∈ [0, 1] and 𝜀 ≤ 𝜂

Table 2 IF negations

¬1 ⟨b, a⟩
¬2 ⟨sg(a), sg(a)⟩
¬3 ⟨b, a.b + a2⟩
¬4 ⟨b, 1 − b⟩
¬5 ⟨sg(1 − b), sg(1 − b)⟩
¬6 ⟨sg(1 − b), sg(a)⟩
¬7 ⟨sg(1 − b), a⟩
¬8 ⟨1 − a, a⟩
¬9 ⟨sg(a), a⟩
¬10 ⟨sg(1 − b), 1 − b⟩
¬11 ⟨sg(b), sg(b)⟩
¬12 ⟨b.(b + a),min(1, a.(b2 + a + b.a))⟩
¬13 ⟨sg(1 − a), sg(1 − a)⟩
¬14 ⟨sg(b), sg(1 − a)⟩
¬15 ⟨sg(1 − b), sg(1 − a)⟩
¬16 ⟨sg(a), sg(1 − a)⟩
¬17 ⟨sg(1 − b), sg(b)⟩
¬18 ⟨b.sg(a), a.sg(b)⟩
¬19 ⟨b.sg(a), 0⟩
¬20 ⟨b, 0⟩
¬21 ⟨min(1 − a, sg(a)),min(a, sg(1 − a))⟩
¬22 ⟨min(1 − a, sg(a)), 0⟩
¬23 ⟨1 − a, 0⟩
¬24 ⟨min(b, sg(1 − b)),min(1 − b, sg(b))⟩
¬25 ⟨min(b, sg(1 − b)), 0⟩

(continued)
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Table 2 (continued)

¬26 ⟨b, a.b + sg(1 − a)⟩
¬27 ⟨1 − a, a.(1 − a) + sg(1 − a)⟩
¬28 ⟨b, (1 − b).b + sg(b)⟩
¬29 ⟨max(0, b.a + sg(1 − b)),min(1, a.(b.a + sg(1 − b)) + sg(1 − a))⟩
¬30 ⟨a.b, a.(a.b + sg(1 − b)) + sg(1 − a)⟩
¬31 ⟨max(0, (1 − a).a + sg(a)),min(1, a.((1 − a).a + sg(a)) + sg(1 − a))⟩
¬32 ⟨(1 − a).a, a.((1 − a).a + sg(a)) + sg(1 − a)⟩
¬33 ⟨b.(1 − b) + sg(1 − b), (1 − b).(b.(1 − b) + sg(1 − b)) + sg(b))⟩
¬34 ⟨b.(1 − b), (1 − b).(b.(1 − b) + sg(1 − b)) + sg(b)⟩
¬35 ⟨ b

2
,

1+a
2
⟩

¬36 ⟨ b
3
,

2+a
3
⟩

¬37 ⟨ 2b
3
,

2a+1
3

⟩
¬38 ⟨ 1−a

3
,

2+a
3
⟩

¬39 ⟨ b
3
,

3−b
3
⟩

¬40 ⟨ 2−2a
3

,

1+2a
3

⟩
¬41 ⟨ 2b

3
,

3−2b
3

⟩
¬42,𝜆 ⟨ b+𝜆−1

2𝜆
,

a+𝜆
2𝜆

, where 𝜆 ≥ 1
¬43,𝛾 ⟨ b+𝛾

2𝛾+1
,

a+𝛾
2𝛾+1

, where 𝛾 ≥ 1
¬44,𝛼,𝛽 ⟨ b+𝛼−1

𝛼+𝛽
,

a+𝛽
𝛼+𝛽

, where 𝛼 ≥ 1, 𝛽 ∈ [0, 𝛼]
¬45,𝜀,𝜂 ⟨min(1, 𝜈A(x) + 𝜀),max(0, 𝜇A(x) − 𝜂)⟩ where 𝜀, 𝜂 ∈ [0, 1] and 𝜀 ≤ 𝜂

3 Intutionistic Fuzzy Implications and Klir and Yuan’s
Axioms

First, we mention that the last four from the above intutionistic fuzzy implica-

tions (→150,𝜆,→151,𝛾 ,→152,𝛼,𝛽 ,→152,𝛼,𝛽) contain parameters and by this reason the

method used here is not applicable to them.

Now, we discuss the properties of the first 149 intuitionistic fuzzy implications

taking into account the classic Georg Klir and Bo Yuan’s book [6] that it is conve-

nient for our purposes. However, a similar, if not practically identical, analyses can

be performed in the new settings and views related to fuzzy implications, notably

included in the Baczynksi and Jayaram’s book [4].

Some variants of fuzzy implications (marked by I(x, y)) are described in [6] and

the following nine axioms are discussed, where

I(x, y) ≡ x → y.
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Table 3 IF implications and the axioms

No A1 A2 A3 A
∗
3 A4 A

∗
4 A5 A

∗
5 A6 A7 A

∗
7 A8 A

∗
8

1 ∙ ∙ ∙ ∙ ◦

2 ∙ ∙ ∙ ∙ ∙ ∙ ∙
3 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
4 ∙ ∙ ∙ ∙ ∙ ◦ ∙ ∙ ∙ ∙
5 ∙ ∙ ∙ ∙ ∙ ◦ ∙ ∙ ∙ ∙
6 ∙ ∙ ∙ ∙ ◦

7 ◦ ∙ ◦ ∙ ∙ ∙
8 ∙ ∙ ∙ ∙ ∙ ∙ ∙
9 ∙ ∙ ∙ ∙ ◦

10 ∙ ∙ ∙ ∙
11 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
13 ∙ ∙ ∙ ∙ ∙ ◦ ∙ ∙ ∙ ∙
14 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
15 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
16 ∙ ∙ ∙ ∙ ∙ ∙ ∙
17 ∙ ∙ ∙ ∙ ◦ ∙
18 ∙ ∙ ∙ ∙ ∙ ◦ ∙ ∙
19 ∙ ∙ ∙ ∙ ∙ ∙ ∙
20 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
21 ∙ ∙ ◦

22 ∙ ∙ ∙ ∙ ◦ ∙ ∙ ∙ ∙
23 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
24 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
25 ∙ ∙ ∙ ∙ ∙ ∙
26 ∙ ∙ ∙ ∙ ∙ ∙ ∙
27 ∙ ∙ ∙ ∙ ◦ ∙ ∙ ∙ ∙
28 ∙ ∙ ∙ ∙ ∙ ◦ ∙ ∙
29 ∙ ∙ ∙ ∙ ◦ ∙
30 ∙ ∙ ∙ ◦

31 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
32 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
33 ∙ ∙ ∙ ∙ ◦ ∙
34 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
35 ∙ ∙ ∙ ∙ ◦ ∙
36 ◦ ◦ ∙
37 ∙ ∙ ∙ ∙ ∙ ∙ ∙
38 ∙ ∙ ∙ ◦

39 ∙ ∙ ∙
40 ∙ ∙ ∙ ∙ ∙ ∙ ∙

(continued)
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Table 3 (continued)

No A1 A2 A3 A
∗
3 A4 A

∗
4 A5 A

∗
5 A6 A7 A

∗
7 A8 A

∗
8

12 ∙ ∙ ∙ ∙ ∙
41 ∙ ∙ ∙ ∙ ∙
42 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
43 ∙ ∙ ∙ ∙ ∙
44 ∙ ∙ ∙ ∙ ◦

45 ∙ ∙ ∙ ∙ ◦

46 ∙ ∙ ∙
47 ∙ ∙ ∙ ∙
48 ∙ ∙ ∙ ∙ ∙
49 ∙ ∙ ∙ ∙ ∙
50 ∙ ∙ ∙ ∙ ∙
51 ◦ ∙
52 ∙ ∙ ∙ ∙
53 ∙ ∙ ∙
54 ∙ ∙ ∙
55 ∙ ∙ ∙ ∙
56 ∙ ∙ ∙ ∙ ∙
57 ∙ ∙ ∙ ∙ ∙
58 ∙ ∙ ∙ ∙
59 ∙ ∙ ∙ ∙
60 ∙ ∙ ∙ ∙
61 ∙ ◦ ∙ ◦

62 ∙ ∙ ∙ ∙ ∙ ∙ ∙
63 ∙ ∙ ∙ ∙ ∙ ∙ ∙
64 ∙ ◦ ∙ ◦

65 ∙ ∙ ∙ ∙ ∙ ∙ ∙
66 ∙ ◦ ◦

67 ∙ ∙ ∙ ∙
68 ∙ ∙ ∙ ∙ ∙ ∙ ∙
69 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
70 ∙ ∙ ∙ ∙
71 ∙ ∙ ∙ ◦

72 ∙ ∙ ∙ ∙ ◦

73 ∙ ∙ ∙ ∙
74 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
75 ∙ ∙ ◦

76 ∙ ∙ ∙ ∙ ◦ ∙ ∙ ∙ ∙
77 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
78 ∙ ∙ ∙ ∙

(continued)
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Table 3 (continued)

No A1 A2 A3 A
∗
3 A4 A

∗
4 A5 A

∗
5 A6 A7 A

∗
7 A8 A

∗
8

79 ∙ ∙ ∙ ∙ ◦ ∙ ∙ ∙ ∙
80 ∙ ∙ ∙ ∙ ◦

81 ∙ ∙ ∙ ∙ ◦ ∙ ∙
82 ∙ ◦ ◦

83 ∙ ∙ ∙ ∙ ∙ ∙ ∙
84 ∙ ∙ ∙ ∙ ∙ ∙ ∙
85 ∙ ◦ ◦

86 ∙ ∙ ∙
87 ∙ ∙ ∙ ∙
88 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
89 ∙ ∙ ∙ ∙ ◦

90 ∙ ∙ ∙ ∙ ◦

91 ∙ ◦

92 ∙ ∙ ∙ ∙
93 ∙ ∙ ∙ ∙
94 ∙ ◦

95 ∙ ∙ ∙
96 ∙ ∙ ∙ ∙
97 ∙ ∙ ∙ ∙ ∙
98 ∙ ∙ ∙ ∙
99 ∙ ∙ ∙ ∙
100 ◦ ◦ ◦ ◦ ∙ ◦

101 ◦ ◦ ◦ ◦ ◦ ◦ ∙
102 ◦ ◦ ∙ ∙ ◦ ◦ ∙
103 ◦ ◦ ◦ ◦ ◦

104 ◦ ◦ ◦ ◦ ◦

105 ◦ ◦ ∙ ∙ ◦ ◦

106 ◦ ◦ ◦ ◦

107 ◦ ◦ ◦ ◦ ∙
108 ◦ ◦ ∙ ∙ ◦ ◦ ∙
109 ∙ ∙ ∙ ∙
110 ∙ ∙ ∙ ∙ ◦ ∙
111 ∙ ∙ ◦

112 ∙ ∙ ∙ ∙ ◦ ∙
113 ◦ ◦

114 ∙ ∙ ∙ ◦

115 ∙ ∙ ∙ ◦

116 ∙ ∙ ◦

117 ∙ ∙ ∙ ◦

(continued)
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Table 3 (continued)

No A1 A2 A3 A
∗
3 A4 A

∗
4 A5 A

∗
5 A6 A7 A

∗
7 A8 A

∗
8

118 ◦ ◦

119 ∙ ∙ ∙
120 ∙ ∙ ∙
121 ∙ ∙
122 ∙ ∙ ∙
123 ◦

124 ∙ ◦

125 ∙ ∙ ∙ ◦

126 ∙ ∙ ◦

127 ∙ ∙ ∙ ◦

128 ◦ ◦

129 ∙ ◦ ◦

130 ∙ ∙ ∙ ◦

131 ∙ ∙ ◦

132 ∙ ∙ ∙ ◦

133 ◦ ◦

134 ∙ ◦

135 ∙ ∙ ∙
136 ∙ ∙
137 ∙ ∙ ∙
138 ◦

139 ◦ ◦ ◦ ◦

140

141 ◦ ◦ ◦ ◦

142

143

144

145

146 ◦ ◦ ◦ ◦

147 ◦ ◦ ◦ ◦

148 ◦ ◦ ◦ ◦

149 ◦ ◦ ◦

Axiom 1 (∀x, y)(x ≤ y → (∀z)(I(x, z) ≥ I(y, z))),
Axiom 2 (∀x, y)(x ≤ y → (∀z)(I(z, x) ≤ I(z, y))),
Axiom 3 (∀y)(I(0, y) = 1),
Axiom 4 (∀y)(I(1, y) = y),
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Axiom 5 (∀x)(I(x, x) = 1),
Axiom 6 (∀x, y, z)(I(x, I(y, z)) = I(y, I(x, z))),
Axiom 7 (∀x, y)(I(x, y) = 1 iff x ≤ y),
Axiom 8 (∀x, y)(I(x, y) = I(N(y),N(x))), where N is a negation operation,

Axiom 9 I is a continuous function.

For our research, having in mind the specific forms of the intuitionistic fuzzy

implications, we modify five of these axioms, as follows.

Axiom 3∗ (∀y)(I(0, y) is an IFT),

Axiom 4∗ (∀y)(I(1, y) ≤ y),
Axiom 5∗ (∀x)(I(x, x) is an IFT),

Axiom 7∗ (∀x, y)( if x ≤ y, then I(x, y) = 1),

Axiom 8∗ (∀x, y)(I(x, y) = N(N(I(N(y),N(x))))).

Here, we ignore Axiom 9, because, obviously, it is valid for the implications that

do not contain operations sg and sg.

Theorem The intuitionistic fuzzy implications that satisfy Klir and Yuan’s axioms
as (classical) tautologies, are marked in Table 3 by “∙” and these that satisfy the
same axioms (only) as IFTs—by “◦”.

The check of the validity of the Theorem was made by the software application

IFSTool [3, 5], developed as a tool for automatic check of the properties of intuition-

istic fuzzy implications and negations. The software has an option—to either check

for intuitionistic fuzzy tautologies or only for fuzzy tautologies. For the needs of the

present paper, each axiom was tested with all implications and their corresponding

negations, and manual backup checks of some of the properties were made, as well.

4 Conclusion: Open Problems

We finish with the following interesting open problem.

Open problem To determine criteria that show the most suitable axioms that can

have real applications.

In a next research, other properties of the implications will be studied.
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On Separability of Intuitionistic Fuzzy Sets

Evgeniy Marinov, Peter Vassilev and Krassimir Atanassov

Abstract Intuitionistic fuzzy sets prove very useful in modelling uncertain and

imprecise information when in the evaluations, concerned with a bipolar type of

evidence, the “pro” and “contra” estimations do not sum to one (truth) but there is

a degree of uncertainty. Relying on the concept of IF-neighbourhoods, introduced

in Marinov et al. (On intuitionistic fuzzy metric neighbourhoods, 2015), we propose

in this paper a few notions of separability between intuitionistic fuzzy sets and give

some applications employing the extended modal operators.

Keywords Distances ⋅ Intuitionistic fuzzy sets ⋅ Operators ⋅ Separability

1 Introduction

An essential part of this work is founded on the concept of distances between Intu-

itionistic Fuzzy Sets (IFSs) (see [2, 3]), which are an extension of the concept of

Zadeh’s fuzzy sets (FSs) (cf. [18]). They are especially useful in modelling uncer-

tain and imprecise information when the evaluations are concerned with a bipolar

type of evidence. The generalization here is that the “pro” and “contra” estimations

do not sum to one (truth) but there is a degree of uncertainty. Many distance mea-

sures have been proposed and studied in the context of IFSs, notably those which are

counterparts of the respective distance measures proposed for fuzzy sets [6, 7, 14].

Our point of departure is the standard definition of neighbourhood for metric spaces
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(taking the base of open balls to construct the metric topological spaces) in the frame-

work of the already proposed metrics for IFSs. Further relying on the previously

introduced IF-neighbourhood and IF-ball we explore the idea of separability of IFSs

in Sect. 3. Normally, the two words “metric” and “distance” are interchangeable, as

they will be used in this paper.

2 General Definitions and Notions About Metrics

Before continuing with our main idea and results we remind some facts and useful

definitions from topology.

2.1 Definitions and Notions About Metrics

In what follows with (X) = {A ∣ A ⊂ X} or 2X = {μ ∣ μ ∶ X → {0, 1}} we will

denote the set of subsets of any set X. In fact the above defined concepts are bijec-

tive, as one can easily see by taking the mapping A = μ−1(1). In what follows we

will consider the set X as a general topological space, and then explain how we can

generate such a topological space through the so called basis elements or a base for

the topology. For more detailed information about general topology one can refer to

[1, 9].

Definition 1 A topological structure, or just a topology, on a set X is given by a

collection τ ⊂ (X) of subsets of X, each called open set and satisfying the following

three axioms:

1. ∅ ∈ τ and X ∈ τ .

2. (∀τ0)(τ0 ⊂ τ and τ0 is finite ⇒ ∩τ0 ∈ τ ).
3. (∀τ1)(τ1 ⊂ τ ⇒ ∪τ1 ∈ τ ).

We call the pair (X, τ ) a topology in X, and sometimes the underlying set X can be

omitted. The complement of any open subset in regard to X is called closed set.

For any point x ∈ X and any A ⊂ X, A is called a neighborhood of X if there exists

a A0 ∈ τ , such that x ∈ A0 ⊂ A.

Let us now take a collection  ⊂ (X) of subsets of X, where the following state-

ments hold [9]:

∙ ∪ = X, which exactly means that (∀x ∈ X)(∃B ∈ )(x ∈ B)
∙ (∀B1,B2 ∈ )(∀x ∈ X)(x ∈ B1 ∩ B2 ⇒ (∃B3 ∈ )(x ∈ B3))

Definition 2 The above described collection  is called base (and its elements are

called basis elements) for a special topology, named the topology (X, τ) generated

by , which is obtained by defining the open sets to be the union of the empty set

and arbitrary unions of basis elements:
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τ = {∪τ0 ∣ τ0 ⊂ }.

In the above definition, when we use ∪τ0, by this denotation we mean the union of

the elements of τ0, which are, in our case elements of , i.e. subsets of the base set

X.

We will also remind the following theorem

Theorem 1 (cf. [1, Theorem 1.4, p. 45]) Let X be a set and  be a base for the
topology τ. Then U is open in τ iff for all x ∈ U there exists a basis element
Bx ∈  such that x ∈ Bx ⊂ U.

A metric (topological) space can be thought as a very basic space that satisfies

a few axioms. The ability to measure and compare distances between elements of

a set is often crucial, and it provides more structure than general topological space

possesses. When we refer to the elements or “points” of the underlying set, we do not

necessarily refer to geometrical points, although this is how most of us usually visu-

alize them. They may be objects of any type, such as sequences, functions, images,

sounds, signals, decisions, etc.

Definition 3 (cf. [1]) A metric on a set X is a function d ∶ X × X → ℝ with the

following properties:

1. d(x, y) ≥ 0 for all x, y ∈ X, with d(x, y) = 0 iff x = y.
2. d(x, y) = d(y, x) for all x, y ∈ X (symmetry).

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (the triangle inequality).

We call d(x, y) the distance between x and y, and the pair (X, d) a metric space.

It is evident that d has the properties we expect when we measure distance

between points in rigid geometry. Let us now remind three of the most popular met-

rics in ℝn
, for any positive integer n.

Definition 4 (cf. [1]) For any x =
(
x1,… , xn

)
, y =

(
y1,… , yn

)
∈ ℝn

, let us define:

1. Euclidean metric:

d2(x, y) =

√√√√
n∑

i=1
(xi − yi)2

2. Manhattan (Hamming) metric:

d1(x, y) =
n∑

i=1

||xi − yi
||

3. Chebychev (max) metric:

d∞(x, y) = max{||xi − yi
|| ∶ i ∈ 1, n}
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Definition 5 Let (X, d) be a metric space. Then the d-open ball (briefly, open ball)

of radius ε, centered in x ∈ X, is defined by:

(x, d, ε) = {y ∣ y ∈ X & d(x, y) < ε}

and the corresponding closed ball is defined by:

(x, d, ε) = {y ∣ y ∈ X & d(x, y) ≤ ε}.

On Fig. 1 one can see a graphical representation of the balls in ℝ2
with center the

point (0, 0) in respect to the three main metrics proposed in Definition 4.

Definition 6 (cf. [11]) Let us take ℝ2
as universe and ξ1, ξ2 > 0, then the open

(ξ1, ξ2)-neighbourhood, centered in x = (x1, x2) ∈ ℝ2
, is defined by:

(x, ξ) = {y ∣ y ∈ ℝ2 & |x1 − y1| < ξ1 & |x2 − y2| < ξ2},

and the corresponding closed (ξ1, ξ2)-neighbourhood is defined by:

(x, ξ) = {y ∣ y ∈ ℝ2 & |x1 − y1| ≤ ξ1 & |x2 − y2| ≤ ξ2}.

2.2 Intuitionistic Fuzzy Sets and Metrics

We provide now some preliminary information about intuitionistic fuzzy sets

(cf. [2, 3]) and the standard distance measures on them (cf. [6, 14, 17]).

Fig. 1 The basis elements,

i.e. the open balls of equal

radius, in regard of the

metrics (ℝ2
, d2), (ℝ2

, d1),
(ℝ2

, d∞), stated in

Definition 4
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Fig. 2 Triangular

representation of the

intuitionistic fuzzy set

A ∈ IFS(X) in a particular

point x ∈ X, where fA(x)
stands for the point on the

plane with coordinates

(μA(x), νA(x)). □A and ♢A
stand for the two modal

operators “necessity” and

“possibility” acting on A and

the others are the extended

modal operators

Let us consider a fixed set X as universe. An IFS A in the universe X is an object

of the form (see, e.g., [2, 3]):

A = {⟨x,μA(x), νA(x)⟩|x ∈ X}, (1)

where the functions μA ∶ X → [0, 1] and νA ∶ X → [0, 1] define the degree of mem-

bership and the degree of non-membership of the element x ∈ X, respectively, and

for every x ∈ X:

0 ≤ μA(x) + νA(x) ≤ 1. (2)

Let us denote fA = (μA, νA) and fA(x) = (μA(x), νA(x)), respectively. There are a

few graphical representations of IFSs, we will employ the triangular representation

shown on Fig. 2.

An additional concept for each IFS in X, that is an obvious result of (1) and (2),

is called

πA(x) = 1 − μA(x) − νA(x)

a degree of uncertainty of x ∈ A. It expresses a lack of knowledge of whether x
belongs to A or not (cf. [2]). It is obvious that 0 ≤ πA(x) ≤ 1, for each x ∈ X. Uncer-

tainty degree turns out to be relevant for both the applications and the development

of theory of IFSs.

Distances between IFSs are calculated in the literature in two ways, using two

parameters only (e.g., [2, 3, 6, 14]) or all three parameters ([8, 13–17]) describing

the elements belonging to the sets. Both ways correctly define a metric space, that is,

the three axioms for distance (non-negativity, symmetry and triangular inequality)

are satisfied. Comparing the results obtained by the two different ways, one cannot

say that both are equal. In [15–17], it is shown why in the calculation of distances

between IFSs one should prefer all three parameters describing IFSs. Examples of

the distances between any two IFSs A and B in X = {x1, x2,… , xn} while using

three parameter representation can be found in [15–17]. A normalized distance or
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normalized metric d in X is a metric such that d∶X × X → [0, 1] ⊂ ℝ≥0. Sometimes

it is more convenient and easier to work with normalized metrics. Every metric can

be normalized (cf. [1]). For a more generalized notion of distances between IFSs

(the so called Modified weighted Hausdorff distance—MWHD) the reader may refer

to [10].

Let us give the definition of the main metrics in IFSs.

∙ the Hamming distance (Szmidt and Kacprzyk form):

l3,IFS
(A,B) =

n∑

i=1
(||μA(xi) − μB(xi)|| + ||νA(xi) − νB(xi)|| + ||πA(xi) − πB(xi)||)

∙ the Euclidean distance (Szmidt and Kacprzyk form):

e3,IFS
(A,B) = (

n∑

i=1
(μA(xi) − μB(xi))2 + (νA(xi) − νB(xi))2 + (πA(xi) − πB(xi))2)

1
2

Both distances, corresponding to the two former, are from the interval [0,1]. That

is they are their corresponding normalized distances.

∙ the normalized Hamming distance:

L3,IFS
(A,B) = 1

2n
l3,IFS

(A,B)

∙ the normalized Euclidean distance:

E3,IFS
(A,B) =

√
1
2n

e3,IFS
(A,B) (3)

The counterparts of the above distances while using the first two parameter rep-

resentation of IFSs are given, e.g., in [2]:

∙ the Hamming distance:

l2,IFS
(A,B) =

n∑

i=1
(||μA(xi) − μB(xi)|| + ||νA(xi) − νB(xi)||)

∙ the Euclidean distance:

e2,IFS
(A,B) = (

n∑

i=1
(μA(xi) − μB(xi))2 + (νA(xi) − νB(xi))2)

1
2

The normalized distances of the above two are stated as follows.
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∙ the normalized Hamming distance:

L2,IFS
(A,B) = 1

2n
l2,IFS

(A,B)

∙ the normalized Euclidean distance:

E2,IFS
(A,B) =

√
1
2n

e2,IFS
(A,B)

Further we will briefly remind the definition of intuitionistic fuzzy neighbourhood

(IF-neighbourhood).

Definition 7 (cf. [11]) Let us be given a universe set X, A,B ∈ IFS(X) and a real

number ε ∈ [0, 1]. We shall say that:

∙ 
IF
(A, dj, ε) = {B ∣ B ∈ IFS(X) & (∀x ∈ X)(dj(fA(x), fB(x)) < ε)} is open IF-ball

with center A and radius ε (see Definition 5).

∙ 
IF
(A, dj, ε) = {B ∣ B ∈ IFS(X) & (∀x ∈ X)(dj(fA(x), fB(x)) ≤ ε)} is closed IF-

ball with center A and radius ε (see Definition 5).

Analogically let us define the open and closed IF-neighbourhoods.

Definition 8 Let us be given a universe set X, A,B ∈ IFS(X) and ξ, η ∈ [0, 1].

∙ 
IF
(A, ξ, η) = {B ∣ B ∈ IFS(X) & (∀x ∈ X)(fA(x) ∈ (fB(x), ξ, η))} is open (ξ, η)-

IF-neighbourhood of A (see Definition 6)

∙ 
IF
(A, ξ, η) = {B ∣ B ∈ IFS(X) & (∀x ∈ X)(fA(x) ∈ (fB(x), ξ, η))} is closed IF-

(ξ, η)-neighbourhood of A (see Definition 6)

Now having recalled all basic definitions and notions we are ready to introduce

the new concept of separability.

3 Separability of Intuitionistic Fuzzy Sets

In general topology, one says that a and b, where Y is any topological space and a
and b—elements or subsets of Y , are separable iff there are two open and disjoint

subsets A and B of Y , containing a and b, respectively (cf. [9, 12]). Moreover, if we

take the base of the metrical topology (Y , d) as the open d-balls, it is clear that every

two elements a and b of Y are separable. If d(a, b) > ε for a small enough ε > 0 it

is enough to take A = (a, d, ε

2 ) and B = (b, d, ε

2 ), which provides that A ∩ B = ∅.

Therefore, one can say that a and b are (ε, d)-separable iff b ∉ (a, ε, d).
Let us now introduce a new concept of separability, which turns out to be more

general than the standard definition in the theory of metric spaces.
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Definition 9 For any ε, ξ, η ∈ (0, 1] such that ξ + η < 1, we say that A and B ∈
IFS(X) are:

1. (ε, dj)-IF-separable (j ∈ {0, 1,∞}) in X1 ⊆ X iff B ∈ 
X1
IF
(A, dj, ε), where


X1
IF
(A, dj, ε) = {D ∣ D ∈ IFS(X) & (∀x ∈ X1)

(dj(fA(x), fD(x)) ≥ ε)} is a subfamily of IFS(X).
2. (ξ − η)-IF-separable in X1 ⊆ X iff B ∈ 

X1
IF
(A, ξ, η), where


X1
IF
(A, ξ, η) = {D ∣ D ∈ IFS(X) & (∀x ∈ X1)

(|μA(x) − μD(x)| ≥ ξ & |νA(x) − νD(x)| ≥ η)} is a subfamily of IFS(X).

Taking the standard concept of separability stated in the beginning of this section

and the IF-neighbourhood (see Definition 7), one would say that A and B ∈ IFS(X)
are (ε, dj)-IF-separable iff

B ∉ 
IF
(A, ε, dj).

From Definition 7 it follows that A and B ∈ IFS(X) are (ε, dj)-IF-separable exactly

when there exists at least one point x0 ∈ X such that dj(fA(x), fB(x)) ≥ ε, i.e.

B ∈ 
{x0}
IF

(A, dj, ε).

Analogically can be stated the (ξ − η)-IF-separability. On the other hand, we will

say that,

Definition 10 A and B ∈ IFS(X) are completely (ε, dj)-IF-separable iff

B ∈ X
IF
(A, dj, ε). (4)

Analogically, A and B are completely (ξ − η)-IF-separable iff

B ∈ X
IF
(A, ξ, η). (5)

For every IFS A a lot of operators are defined (see, e.g., [2, 3]), the most important

of which, related to the applications of the present research, are (α,β ∈ [0, 1]) the

standard modal IF operators

A = {⟨x,μA(x), 1 − μA(x)⟩|x ∈ X};
♢A = {⟨x, 1 − νA(x), νA(x)⟩|x ∈ X};
Fα,β(A) = {⟨x,μA(x) + απA(x), νA(x) + βπA(x)⟩ | x ∈ X},

where α + β ≤ 1;
Gα,β(A) = {⟨x,αμA(x),βνA(x)⟩ | x ∈ X};
Hα,β(A) = {⟨x,αμA(x), νA(x) + βπA(x)⟩ | x ∈ X};
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H∗
α,β

(A) = {⟨x,αμA(x), νA(x) + β(1 − αμA(x) − νA(x))⟩ | x ∈ X};
Jα,β(A) = {⟨x,μA(x) + απA(x),βνA(x)⟩ | x ∈ X};
J∗
α,β

(A) = {⟨x,μA(x) + α(1 − μA(x) − βνA(x)),βνA(x)⟩ | x ∈ X};
C(A) = {⟨x,KA,LA⟩|x ∈ X};
I(A) = {⟨x, kA, lA⟩|x ∈ X}.

where

KA = sup
y∈X

μA(y),LA = inf
y∈X

νA(y)

kA = inf
y∈X

μA(y), lA = sup
y∈X

νA(y)

On Fig. 2 one may see the regions of operation of the extended modal operators.

Let us take,

PA = sup
y∈X

πA(y), pA = inf
y∈X

πA(y).

The following theorems about extended modal operators hold.

Theorem 2 For every IFS A and for every ξ, η ∈ [0, 1] we have that A is completely
(ξ, η)-IF-separable with:

1. Fα,β(A) iff

1 ≥ α ≥
ξ

pA
and 1 ≥ β ≥

η

pA
,

where α + β ≤ 1;
2. Gα,β(A) iff

max(0, 1 − ξ

kA
) ≥ α ≥ 0 and max(0, 1 − η

LA
) ≥ β ≥ 0;

3. Hα,β(A) iff

max(0, 1 − ξ

kA
) ≥ α ≥ 0 and 1 ≥ β ≥

η

pA
;

4. Jα,β(A) iff

1 ≥ α ≥
ξ

pA
and max(0, 1 − η

LA
) ≥ β ≥ 1;

5. H∗
α,β

(A) iff

max(0, 1 − ξ

kA
) ≥ α ≥ 0 and 0 ≤ β ≤ min(1, η

1 − αμA(x∗) − νA(x∗)
);

6. J∗
α,β

(A) iff
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0 ≤ α ≤ min(1, ξ

1 − μA(x∗) − βνA(x∗)
) and max(0, 1 − η

LA
) ≤ β ≤ 1,

where x∗ ∈ X satisfies the equality μA(x∗) + νA(x∗) = 1 − pA.

Proof Let us prove only (1) since the proofs of the next points are similar. Suppose

that A and Fα,β(A) are completely (ξ, η)-IF-separable. From the definition of Fα,β(A)
it follows that for every x ∈ X: απA(x) ≥ ξ and βπA(x) ≥ η, which is satisfied iff

αpA ≥ ξ and βpA ≥ η. Therefore, A and Fα,β(A) are completely (ξ, η)-IF-separable

iff 1 ≥ α ≥
ξ

pA
and 1 ≥ β ≥

η

pA
, which completes the proof of (1).

Finally, let us introduce the concept of total separability with the following definition.

Definition 11 Let us take again A and B ∈ IFS(X). We will call the two IFSs:

1. totally (ξ, η)-IF-separable or briefly (ξ, η)-separable (see Fig. 3) iff

{
KA < kB and kB − KA ≥ ξ

lB < LA and LA − lB ≥ η.
(6)

or {
KB < kA and kA − KB ≥ ξ

lA < LB and LB − lA ≥ η.
(7)

2. totally π − (ξ, η)-IF-separable or briefly (ξ, η) − π-separable (see Fig. 4) iff

{
KA < kB and kB − KA ≥ ξ

lA < LB and LB − lA ≥ η.
(8)

Fig. 3 The IFSs A and B are

totally (ξ, η)-IF-separable
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Fig. 4 The IFSs A and B are

totally π − (ξ, η)-IF-

separable
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or {
KB < kA and kA − KB ≥ ξ

lB < LA and LA − lB ≥ η.
(9)

From Definition 11 easily follows the next theorem.

Theorem 3 Let again A and B ∈ IFS(X).

1. If A and B are (ξ, η)-separable then they are completely (ξ, η)-IF-separable. That
is (see (5))

B ∈ X
IF(A, ξ, η).

2. If A and B are (ξ, η)-separable then they are completely (ξ, η)-IF-separable. That
is (see (5))

B ∈ X
IF(A, ξ, η).

Proof Let us prove only (1) since the proof of (2) is similar. If A and B are (ξ, η)-
separable let us take any point x from the universe X. From the definition of KA, kA
and lA,LA and Definition 11 it follows that |μB(x) − μA(x)| ≥ kB − KA ≥ ξ and |νB(x)
− νA(x)| ≥ LA − lB ≥ η, which holds for any x form the universe. Therefore, A and B
are completely (ξ, η)-IF-separable. The theorem is proved.

The proof of the next theorem is left as an exercise for the reader.

Theorem 4 If A and B are (ξ, η)-separable, then C(A) ⪇ I(B) or C(B) ⪇ I(A). On
the other hand, if C(A) ⪇ I(B), then there are ξ, η ∈ (0, 1] such that A and B are
(ξ, η)-separable.
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4 Conclusion

In summary, relaying on the notions of IF-neighbourhoods and IF-balls defined in

[11], we have introduced the concepts of IF-separability in different points of the

universe X. The weakest form of separability between A and B ∈ IFS(X) in the stan-

dard sense happens when we have separability in at least one point of the universe

X. Whereas a stronger form, i.e. separability in all the points of X, corresponds to

the newly introduced concept of complete IF-separability. Lastly we have defined the

notion of total IF-separability which turns out to be the strongest form of separability

proposed in this paper. All the forms of separability introduced in this paper help us

to measure how far or “distinct” two IFSs from each other are in a more sensitive way

compared to using only the standard properties of metric spaces (that is employing

only the three axioms for distances). Many relations between them and the extended

modal operators have also been stated as application to the theory proposed in this

work.

In a next research of the authors, the introduced concept of IF-separabilities will

be used for extending of some procedures related to InterCriteria Analysis (see

[4, 5]). For example, the discussed in the paper distances will be used for deter-

mining of the degrees of consonance and dissonance between two criteria.

Acknowledgments The authors are grateful for the support provided by Grant DFNI-I-02-5 “Inter-

Criteria Analysis—A New Approach to Decision Making” of the Bulgarian National Science Fund.
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On an Intuitionistic Fuzzy
Probability Theory

Čunderlíková Katarína and Riečan Beloslav

Abstract We present some basic facts about a probability theory on IF-events. It is

based on the Lukasiewicz operations and on the corresponding probability theory.

We present a representation theorem originally published, as reported by Riečan

(Soft Methodology and Random Information Systems, pp 243–248, [21]). We also

show that the probability IF algebra can be embedded to a probability MV-algebra.

1 Probability Theory on a Family of IF-events

The first definition of probability on IF-events has been suggested in [7]. Consider a

probability space (𝛺, ,P) and the family

 = {A = (𝜇A, 𝜈A);𝜇A, 𝜈A ∶ 𝛺 → [0, 1] 𝑎𝑟𝑒  − 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒, 𝜇A + 𝜈A ≤ 1}

Then they defined the probability P(A) as a compact interval

P(A) =
[
∫
𝛺

𝜇A dP, 1 −
∫
𝛺

𝜈A dP
]
,

for A ∈  . Hence P is a mapping P ∶  →  , where  is the family of all compact

subintervals of the unit interval [0, 1]. They showed some properties of the mapping

P, too.

In [20] an axiomatic definition of probability was suggested as a mapping  ∶
 →  . We consider only the pair (𝛺,) without P, since the definition of  does
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not depend on P. Recall that in  a partial ordering is used

A ≤ B ⟺ 𝜇A ≤ 𝜇B, 𝜈A ≥ 𝜈B,

i.e. A is less than B if the membership function of A is less than the membership

function of B, and the nonmembership function of A is greater than the nonmem-

bership function of B. With respect to this ordering the greatest element of  is

(1, 0) and the least element is (0, 1), where 0, 1 ∶ 𝛺 →  are the constant functions

defined by 0(𝜔) = 0, 1(𝜔) = 1 for each 𝜔 ∈ 𝛺. Therefore in the axiomatic approach

the probability of the maximal element is maximal


(
(𝟏, 𝟎)

)
= [1, 1] = {1}

and the probability of the minimal element is minimal


(
(𝟎, 𝟏)

)
= [0, 0] = {0}.

The classical additivity of the Kolmogorov probability measure

A ∩ B = ∅ ⟹ P(A ∪ B) = P(A) + P(B)

must be substituted by operations on IF-sets. In [20] the Lukasiewicz connectives

have been used. If a, b ∈ [0, 1] then

a⊕L b = min(a + b, 1), a⊙L b = max(a + b − 1, 0).

Evidently these connectives corresponds to the usual union and intersection. If 𝜒A is

the characteristic function of A (i.e. 𝜒A(𝜔) = 1, if 𝜔 ∈ A and 𝜒A(𝜔) = 0, if 𝜔 ∉ A),

then

𝜒A∪B(𝜔) = min(𝜒A(𝜔) + 𝜒B(𝜔), 1),
𝜒A∩B(𝜔) = max(𝜒A(𝜔) + 𝜒B(𝜔) − 1, 0).

Extending the Lukasiewicz connectives to the IF-case, we can for each A,B ∈ 

such that A = (𝜇A, 𝜈A),B = (𝜇B, 𝜈B) define

A⊕L B = (𝜇A ⊕L 𝜇B, 𝜈A ⊙L 𝜈B),
A⊙L B = (𝜇A ⊙L 𝜇B, 𝜈A ⊕L 𝜈B).

With respect to the operations the additivity means

A⊙L B = (0, 1) ⟹ (A⊕L B) = (A) + (B)

Here [a, b] + [c, d] is defined as [a + c, b + d].
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Finally continuity can be defined as follows:

An ↗ A ⟹ (An) ↗ (A).

Of course, An = (𝜇An , 𝜈An ) ↗ A = (𝜇A, 𝜈A) means (according to the ordering in

 ) that

𝜇An (𝜔) ↗ 𝜇A(𝜔), 𝜈An(𝜔) ↘ 𝜈A(𝜔), for each 𝜔 ∈ 𝛺.

On the other hand in 

[an, bn] ↗ [a, b] ⟺ an ↗ a, bn ↗ b.

Let ∶  →  be a probability (i.e. an additive, a continuous mapping satisfying

the boundary conditions). In [22] there was proved that there exists a probability

P ∶  → [0, 1] (in the Kolmogorov sense) and two numbers 𝛼, 𝛽 ∈ [0, 1], 𝛼 ≤ 𝛽 such

that for each A = (𝜇A, 𝜈A) ∈  there holds

(A) =
[
(1 − 𝛼)

∫
𝛺

𝜇AdP + 𝛼

(
1 −

∫
𝛺

𝜈AdP
)
, (1 − 𝛽)

∫
𝛺

𝜇AdP + 𝛽

(
1 −

∫
𝛺

𝜈AdP
)]

.

We can see that the Grzegorzewski—Mrówka definition [7] is a special case,

when 𝛼 = 0, 𝛽 = 1,

(A) =
[

∫
𝛺

𝜇AdP, 1 − ∫
𝛺

𝜈AdP
]
.

Similarly, if we put 𝛼 = 𝛽 = 1
2 , then we obtain the probability

(A) =
[
1
2 ∫

𝛺

𝜇AdP + 1
2

(
1 −

∫
𝛺

𝜈AdP
)
,

1
2 ∫

𝛺

𝜇AdP + 1
2

(
1 −

∫
𝛺

𝜈AdP
)]

=

=
{

1
2 ∫

𝛺

𝜇AdP + 1
2

(
1 −

∫
𝛺

𝜈AdP
)}

,

what is the definition by Gerstenkorn and Manko (see [6]).

Of course, in [9] another definition was suggested. Instead of the Lukasiewicz

connectives to use the Gödel connectives

a⊕M b = max(a, b) = a ∨ b, a⊙M b = min(a, b) = a ∧ b,

hence for A,B ∈  ,A = (𝜇A, 𝜈A),B = (𝜇B, 𝜈B)

A⊕M B = (𝜇A ∨ 𝜇B, 𝜈A ∧ 𝜈B),
A⊙M B = (𝜇A ∧ 𝜇B, 𝜈A ∨ 𝜈B).
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In this case the additivity of  ∶  →  means that

A⊙M B = (0, 1) ⟹ (A⊕M B) = (A) + (B).

Defining the continuity and the boundary conditions as before, we obtain again a

good probability theory (see [25]).

Inspiring by these successes, two further definitions have been suggested in [2]:

A⊕Q B =
(√

𝜇

2
A + 𝜇

2
B ∧ 1,

(
1 −

√
(1 − 𝜈A)2 + (1 − 𝜈B)2

)
∧ 1

)
,

A⊙Q B =
(
(𝜇A + 𝜇B − 1) ∨ 0, (𝜈A + 𝜈B) ∧ 1

)
,

with the additivity

A⊙Q B = (0, 1) ⟹ (A⊕Q B) = (A) + (B).

And

A⊕P B = (𝜇A + 𝜇B − 𝜇A ⋅ 𝜇B, 𝜈A ⋅ 𝜈B),
A⊙P B = (𝜇A ⋅ 𝜇B, 𝜈A + 𝜈B − 𝜈A ⋅ 𝜈B),

with the additivity

A⊙P B = (0, 1) ⟹ (A⊕P B) = (A) + (B).

Of course, in this paper we shall develop only the first theory.

2 Representation of L-Probability

Definition 1 By an L-probability on  we understand each function  ∶  → 

satisfying the following properties:

(i) ((𝟏, 𝟎)) = [1, 1] = 1 ; ((𝟎, 𝟏)) = [0, 0] = 0;

(ii) if A⊙L B = (𝟎, 𝟏) and A,B ∈  , then (A⊕L B) = (A) + (B);
(iii) if An ↗ A, then (An) ↗ (A).

Of course, each (A) is an interval, denote it by (A) = [♭(A),♯(A)]. By this

way we obtain two real functions

♭ ∶  → [0, 1],♯ ∶  → [0, 1]

and some properties of  can be characterized by some properties of ♭

,♯

.
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Definition 2 By an L-state on  we understand each function m ∶  → [0, 1]
satisfying the following properties:

(i) m((𝟏, 𝟎)) = 1 ; m((𝟎, 𝟏)) = 0;

(ii) if A⊙L B = (𝟎, 𝟏) and A,B ∈  , then m(A⊕L B) = m(A) + m(B);
(iii) if An ↗ A, then m(An) ↗ m(A).

Theorem 1 Let  ∶  →  and (A) = [♭(A),♯(A)] for each A ∈  . Then  is

an L-probability if and only if ♭

and ♯

are L-states.

Proof Let  be an L-probability, A = (𝜇A, 𝜈A),B = (𝜇B, 𝜈B),A⊙L B = (𝟎, 𝟏). Then

[♭(A⊕L B),♯(A⊕L B)] = (A⊕L B) = (A) + (B) =
= [♭(A) + ♭(B),♯(A) + ♯(B)],

hence

♭(A⊕L B) = ♭(A) + ♭(B),
♯(A⊕L B) = ♯(A) + ♯(B).

On the other hand, let ♭

,♯ ∶  → [0, 1] be L-states, A⊙L B = (𝟎, 𝟏). Then

♭(A⊕L B) = ♭(A) + ♭(B),
♯(A⊕L B) = ♯(A) + ♯(B).

hence also

(A⊕L B) = [♭(A⊕L B),♯(A⊕L B)] = [♭(A) + ♭(B),♯(A) + ♯(B)] =
= [♭(A),♯(A)] + [♭(B),♯(B)] = (A) + (B),

hence  is L-additive.

Each L-probability has two special properties, whose we can use. First, we can

represent it by integrals and secondly, we are able to embed L-probability theory to

MV-algebra probability theory.

Theorem 2 To each L-state m ∶  → [0, 1] there exists a probability measure P ∶
 → [0, 1] and a real number 𝛼 ∈ [0, 1] such that for each A = (𝜇A, 𝜈A) ∈  there

holds

m(A) = (1 − 𝛼)
∫
𝛺

𝜇AdP + 𝛼

(
1 −

∫
𝛺

𝜈AdP
)
.

Proof With Respect to the Butnariu—Klement theorem [24] (Theorem 8.1.12) we

shall find the value in the form f (x, y), where x = ∫
𝛺

𝜇AdP, y = ∫
𝛺

𝜈AdP, and
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f ∶ △ → [0, 1],△ = {(u, v); u ≥ 0, v ≥ 0, u + v ≤ 1}. From the boundary condi-

tions we obtain

f (1, 0) = f
(

∫
𝛺

𝟏 dP,
∫
𝛺

𝟎 dP
)

= m(𝟏, 𝟎) = 1,

f (0, 1) = f
(

∫
𝛺

𝟎 dP,
∫
𝛺

𝟏 dP
)

= m(𝟎, 𝟏) = 0.

Now the additivity gives

(
𝟏
𝟐
,

𝟏
𝟐

)
⊙L

(
𝟏
𝟐
,

𝟏
𝟐

)
= (𝟎, 𝟏),

(
𝟏
𝟐
,

𝟏
𝟐

)
⊕L

(
𝟏
𝟐
,

𝟏
𝟐

)
= (𝟏, 𝟎),

hence

f
(
1
2
,

1
2

)
+ f

(
1
2
,

1
2

)
= f (1, 0) = 1,

f
(
1
2
,

1
2

)
= 1

2
.

Similarly

(
𝟏
𝟒
,

𝟑
𝟒

)
⊙L

(
𝟏
𝟒
,

𝟑
𝟒

)
= (𝟎, 𝟏),

(
𝟏
𝟒
,

𝟑
𝟒

)
⊕L

(
𝟏
𝟒
,

𝟑
𝟒

)
=
(
𝟏
𝟐
,

𝟏
𝟐

)
,

hence

2f
(
1
4
,

3
4

)
= 1

2
,

f
(
1
4
,

3
4

)
= 1

4
.

Analogously

(
𝟑
𝟒
,

𝟏
𝟒

)
⊙L

(
𝟏
𝟒
,

𝟑
𝟒

)
= (𝟎, 𝟏),

(
𝟑
𝟒
,

𝟏
𝟒

)
⊕L

(
𝟏
𝟒
,

𝟑
𝟒

)
= (𝟏, 𝟎),
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hence

f
(
3
4
,

1
4

)
+ f

(
1
4
,

3
4

)
= 1,

f
(
3
4
,

1
4

)
= 1 − 1

4
= 3

4
.

Generally using additivity and continuity we can obtain the equality

f (x, 1 − x) = x, x ∈ [0, 1].

Put f (0, 0) = 𝛼. By a similar procedure as before we can obtain

f (0, y) = 𝛼(1 − y), y ∈ [0, 1].

Finally let (x, y) ∈ △ be an arbitrary element, then

(x, 1 − x)⊙L (0, x + y) = (0, 1),
(x, 1 − x)⊕L (0, x + y) = (x, y).

Therefore

f (x, y) = f (x, 1 − x) + f (0, x + y) = x + 𝛼(1 − x − y) =
= (1 − 𝛼)x + 𝛼(1 − y),

hence

m(A) = (1 − 𝛼)
∫
𝛺

𝜇A dP + 𝛼

(
1 −

∫
𝛺

𝜈A dP
)
.

Theorem 3 Let  ∶  →  be an L-probability. Then there exists a probability

measure P ∶  → [0, 1] and real numbers 𝛼, 𝛽 ∈ [0, 1] such that 𝛼 ≤ 𝛽 and for each

A = (𝜇A, 𝜈A) ∈  there holds

(A) =
[
(1 − 𝛼)

∫
𝛺

𝜇AdP + 𝛼

(
1 −

∫
𝛺

𝜈AdP
)
, (1 − 𝛽)

∫
𝛺

𝜇AdP + 𝛽

(
1 −

∫
𝛺

𝜈AdP
)]

.

Proof Consider the boundary values ♭

,♯

of  . By Theorem 2

♭(A) = (1 − 𝛼)
∫
𝛺

𝜇AdP + 𝛼

(
1 −

∫
𝛺

𝜈AdP
)
,

♯(A) = (1 − 𝛽)
∫
𝛺

𝜇AdP + 𝛽

(
1 −

∫
𝛺

𝜈AdP
)
.
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Put ∫
𝛺

𝜇AdP = u, ∫
𝛺

𝜈AdP = v, evidently u + v ≤ 1. Therefore

(𝛽 − 𝛼)u ≤ (1 − v)(𝛽 − 𝛼)
(1 − 𝛼)u − (1 − 𝛽)u ≤ (1 − v)(𝛽 − 𝛼)
(1 − 𝛼)u + 𝛼(1 − v) ≤ (1 − 𝛽)u + 𝛽(1 − v),

hence ♭(A) ≤ ♯(A), so that (A) = [♭(A),♯(A)] is actually an interval.

Theorem 4 Each L-probability  is strongly additive, i.e.

(A) + (B) = (A⊕L B) + (A⊙L B)

for each A,B ∈  .

Proof It follows by Theorem 3 and the equality

a + b = a⊕L b + a⊙L b

holding for each real numbers a, b.

3 Embedding

To embed  to a suitable MV-algebra it seems to be more convenient to use the

definition of an MV-algebra by the help of an l-group.

Definition 3 By an 𝓁-group we shall mean the structure (G,+,≤) such that the

following properties are satisfied:

(i) (G,+) is an Abelian group;

(ii) (G,≤) is a lattice;

(iii) a ≤ b ⟹ a + c ≤ b + c.

For each 𝓁-group G, an element u ∈ G is said to be a strong unit of G, if for all a ∈ G
there is an integer n ≥ 1 such that nu ≥ a (nu is the sum u +⋯ + u with n) [23].

Example 1 Consider G = R2
,

(a, b) +̂ (c, d) = (a + c, b + d − 1),
(a, b) ≤ (c, d) ⟺ a ≤ c, b ≥ d.

then (R2
, +̂,≤) is a lattice ordered group.

Evidently the operation +̂ is commutative and associative, (0, 1) is the neutral

element, since

(0, 1) +̂ (a, b) = (a + 0, b + 1 − 1) = (a, b),



On an Intuitionistic Fuzzy Probability Theory 133

and (−a, 2 − b) is the inverse element, since

(a, b) +̂ (−a, 2 − b) = (0, 1).

Further ≤ is a partial order with

(a, b) ∨ (c, d) = (max(a, c),min(b, d)),
(a, b) ∧ (c, d) = (min(a, c),max(b, d)).

Finally

(a, b) ≤ (c, d) ⟹ a ≤ c, b ≥ d,

hence

a + e ≤ c + e,
b + f − 1 ≥ d + f − 1,

(a, b) +̂ (e, f ) = (a + e, b + f − 1) ≤ (c + e, d + f − 1) = (c, d) +̂ (e, f ).

Definition 4 ([23]) An MV-algebra is an algebraic system (M, ⊕,⊙,¬, 0, u), where

⊕,⊙ are binary operations, ¬ is a unary operation, 0, u are fixed elements, which

can be obtained by the following way: there exists a lattice group

(G,+,≤)

such that

M = {x ∈ G; 0 ≤ x ≤ u}

where 0 is the neutral element of G, u is a strong unit of G, and

a⊕ b = (a + b) ∧ u = min(a + b, u),
a⊙ b = (a + b − u) ∨ 0 = max(a + b − u, 0),

¬a = u − a.

There ∨,∧ are the lattice operations with respect to the order and −a is the opposite

element of the element a with respect to the operation of the group.

Example 2 Let ([0, 1], ⊕,⊙,¬, 0, 1) be an MV-algebra, where a⊕ b =
min(a + b, 1), a⊙ b = max(a + b − 1, 0),¬a = 1 − a. The corresponding group is

(R,+,≤) where + is usual sum, and ≤ is the usual ordering.
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Example 3 Let ([0, 1]2, ⊕,⊙,¬, (0, 1), (1, 0)) be an MV-algebra, where

(a, b)⊕ (c, d) = (min(a + c, 1),max(b + d − 1, 0)),
(a, b)⊙ (c, d) = (max(a + c − 1, 0),min(b + d, 1)),

¬(a, b) = (1 − a, 1 − b).

Here the corresponding group is (R2
, +̂,≤) considered in Example 1.

Definition 5 Let (M, ⊕,⊙,¬, 0, u) is an MV-algebra. By an MV-probability on M
we understand each function P ∶ M →  satisfying the following properties:

(i) P(u) = [1, 1] = 1 ; P(0) = [0, 0] = 0;

(ii) a⊙ b = 0 ⟹ P(a⊕ b) = P(a) + P(b) for each a, b ∈ M;

(iii) if an ↗ a, then P(an) ↗ P(a).

Definition 6 By anMV-state onM we consider each mapping m ∶ M → [0, 1] satis-

fying the following conditions:

(i) m(u) = 1,m(0) = 0;

(ii) a⊙ b = 0 ⟹ m(a⊕ b) = m(a) + m(b);
(iii) an ↗ a ⟹ m(an) ↗ m(a).

Theorem 5 If (M, ⊕,⊙,¬, 0, u) is an MV-algebra,  ∶ M →  is a mapping,

(a) = [♭(a),♯(a)], then  is an MV-probability if and only if ♭ ∶ M → [0, 1],
♯ ∶ M → [0, 1] are MV-states.

Proof It is the same as in Theorem 1.

Theorem 6 Let (𝛺,) be a measurable space,  the family of all pairs A =
(𝜇A, 𝜈A), where 𝜇A, 𝜈A ∶ 𝛺 → [0, 1] are -measurable functions, 𝟏 ∶ 𝛺 → 1, 𝟎 ∶
𝛺 → 0,

A ≤ B ⟺ 𝜇A ≤ 𝜇B, 𝜈A ≥ 𝜈B,

A⊕L B =
(
(𝜇A + 𝜇B) ∧ 𝟏, (𝜈A + 𝜈B − 1) ∨ 𝟎

)
,

¬A = (1 − 𝜇A, 1 − 𝜈A).

Then the system (, ⊕L, ⊙L,¬, (𝟎, 𝟏), (𝟏, 𝟎)) is anMV-algebra, ⊂  and for each

L-probability on  , ∶  →  there exists exactly one probability ̄ ∶  → 

such that ̄ ∣  =  .

Proof To see that  is an MV-algebra, consider the group  of all mappings from

𝛺 to (R2
, +̂,≤), (𝜇A, 𝜈A) ∈ , 𝜇A, 𝜈A are -measurable (see Example 1), where

((𝜇A, 𝜈A) +̂ (𝜇B, 𝜈B))(𝜔) = (𝜇A(𝜔), 𝜈A(𝜔)) +̂ (𝜇B(𝜔), 𝜈B(𝜔)),
(𝜇A, 𝜈A) ≤ (𝜇B, 𝜈B) ⟺ 𝜇A ≤ 𝜇B, 𝜈A ≥ 𝜈B.
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Now

 = {(𝜇A, 𝜈A); 𝟎 ≤ 𝜇A ≤ 𝟏, 𝟎 ≤ 𝜈A ≤ 𝟏} =
= {A; (𝟎, 𝟏) ≤ A = (𝜇A, 𝜈A) ≤ (𝟏, 𝟎)}.

Evidently  ⊂ . Let  ∶  →  be a probability, (A) = [♭(A),♯(A)].
Define

̄♭

(
(𝜇A, 𝜈A)

)
= ♭

(
(𝜇A, 0)

)
− ♭

(
(0, 1 − 𝜈A)

)
,

̄♯

(
(𝜇A, 𝜈A)

)
= ♯

(
(𝜇A, 0)

)
− ♯

(
(0, 1 − 𝜈A)

)
,

̄(A) = [ ̄♭(A), ̄♯(A)].

It is not difficult to prove that ̄♭

,
̄♯ ∶  → [0, 1] are MV-states, hence ̄ ∶

 →  is an MV-probability.

If A = (𝜇A, 𝜈A) ∈  , then

(𝜇A, 𝜈A)⊙L (𝟎, 𝟏 − 𝜈A) = (𝟎, 𝟏),
(𝜇A, 𝜈A)⊕L (𝟎, 𝟏 − 𝜈A) = (𝜇A, 𝟎)

hence


(
(𝜇A, 𝟎)

)
= 

(
(𝜇A, 𝜈A)

)
+ 

(
(𝟎, 𝟏 − 𝜈A)

)
,

♭

(
(𝜇A, 𝟎)

)
= ♭

(
(𝜇A, 𝜈A)

)
+ ♭

(
(𝟎, 𝟏 − 𝜈A)

)
,

♯

(
(𝜇A, 𝟎)

)
= ♯

(
(𝜇A, 𝜈A)

)
+ ♯

(
(𝟎, 𝟏 − 𝜈A)

)
.

Therefore

♭

(
(𝜇A𝜈A)

)
= ♭

(
(𝜇A, 𝜈A)

)
− ♭

(
(𝟎, 𝟏 − 𝜈A)

)
= ̄♭

(
(𝜇A, 𝜈A)

)
,

♯

(
(𝜇A𝜈A)

)
= ♯

(
(𝜇A, 𝜈A)

)
− ♯

(
(𝟎, 𝟏 − 𝜈A)

)
= ̄♯

(
(𝜇A, 𝜈A)

)
,

hence ̄(A) = [ ̄♭(A), ̄♯(A)] = [♭(A),♯(A)] = (A).
If  ∶  →  is a probability such that | =  and (A) = (♭(A),♯(A)),

then ♭

,♭ ∶  → [0, 1] are L-states on  . Therefore for each A ∈ 

♭((𝜇A, 𝜈A)) = ♭((𝜇A, 0)) −♭((0, 1 − 𝜈A)) =
= ♭((𝜇A, 0)) − ♭((0, 1 − 𝜈A)) = ̄♭(A)

hence ♭ = ̄♭

. Similarly ♯ = ̄♯

. Therefore

(A) = (♭(A),♯(A)) = ( ̄♭(A), ̄♯(A)) = ̄(A)

for each A ∈ .
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Abstract In this paper properties of Atanassov intuitionistic fuzzy relations are

examined, i.e.: semi-reflexivity, semi-irreflexivity, semi-symmetry, semi-connect-

edness, semi-asymmetry, semi-transitivity. The special attention is paid to the

semi-transitivity property. Its characterization is given and connections with other

transitivity properties are presented, i.e. transitivity itself and weak transitivity.

Moreover, transformations of Atanassov intuitionistic fuzzy relations in the con-

text of preservation of the given semi-properties of these relations are presented.

The transformations that are considered: lattice operations, the converse, the com-

plement, the composition of relations are the basic ones.
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1 Introduction

Atanassov intuitionistic fuzzy sets and relations (originally called intuitionistic fuzzy

sets and relations, cf. [1]) are applied for example in group decision making [16],

optimization problems, graph theory and neural networks (cf. [4]), medicine [9].

The concept of an Atanassov intuitionistic fuzzy set generalizes the concept of a

fuzzy set introduced by Zadeh (cf. [18]). Namely, not only the degree of membership

to a given set is considered but also the degree of non-membership to this set is taken

into account in such way that the sum of both values is less than or equal to one.

Atanassov intuitionistic fuzzy relations may have diverse types of properties (cf. [3,

5]) and there are many interesting problems to deal with in this area (cf. for example

[6]).

In this paper we study the new class of properties, i.e. semi-reflexivity, semi-irre-

flexivity, semi-symmetry, semi-connectedness, semi-asymmetry, semi-transitivity

and consider dependencies between semi-transitivity and other transitivity proper-

ties. Moreover, the problem of preservation of these properties by basic transforma-

tions is presented, especially we take into account the complement, the converse and

composition of a relation and we also examine lattice operations. The regarded trans-

formations are of the type 𝔉 ∶ AIFR(X)n → AIFR(X), n ∈ N, where AIFR(X) stands

for the family of all Atanassov intuitionistic fuzzy relations described in a given

set X. Semi-properties of Atanassov intuitionistic fuzzy relations may be important

because of their possible applications for preference procedure which is of great

interest nowadays (cf. for example [9, 14, 15, 17]).

2 Basic Notions

Now we recall some definitions which will be helpful in our investigations.

Definition 1 ([2]) Let X ≠ ∅, R,Rd ∶ X × X → [0, 1] be fuzzy relations fulfilling

condition

R(x, y) + Rd(x, y) ⩽ 1, (x, y) ∈ (X × X). (1)

A pair 𝜌 = (R,Rd) is called an Atanassov intuitionistic fuzzy relation. The family of

all Atanassov intuitionistic fuzzy relations in the set X is denoted by AIFR(X).

The boundary elements in AIFR(X) are 1 = (1, 0) and 0 = (0, 1), where 0, 1 are

the constant fuzzy relations. Basic operations for 𝜌 = (R,Rd), 𝜎 = (S, Sd) ∈ AIFR(X)
are the union and the intersection, respectively

𝜌 ∨ 𝜎 = (R ∨ S,Rd ∧ Sd), 𝜌 ∧ 𝜎 = (R ∧ S,Rd ∨ Sd). (2)
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Similarly, for arbitrary set T ≠ ∅

(
⋁

t∈T
𝜌t)(x, y) = (

⋁

t∈T
Rt(x, y),

⋀

t∈T
Rd
t (x, y)),

(
⋀

t∈T
𝜌t)(x, y) = (

⋀

t∈T
Rt(x, y),

⋁

t∈T
Rd
t (x, y)).

Moreover, the order is defined by

𝜌 ⩽ 𝜎 ⇔ (R ⩽ S, Sd ⩽ Rd). (3)

If condition (3) will not be fulfilled we will write 𝜌  𝜎 or 𝜌 > 𝜎. The pair (AIFR
(X),⩽) is a partially ordered set. Operations ∨,∧ are the binary supremum and infi-

mum in the family AIFR(X), respectively. Moreover, the family (AIFR(X),∨,∧) is a

complete, distributive lattice.

Let us recall, useful in further considerations, definition of the composition and

dual composition of fuzzy relations considered in the family FR(X) = {R|R ∶ X ×
X → [0, 1]} of all fuzzy relations in a given set X ≠ ∅.

Definition 2 (cf. [18]) Let R, S ∈ FR(X). The composition of fuzzy relations R and

S is the fuzzy relation (R◦S) ∈ FR(X) such that

(R◦S)(x, z) = sup
y∈X

min(R(x, y), S(y, z)), (x, z) ∈ X × X. (4)

The dual composition of fuzzy relations R and S is the fuzzy relation (R◦′S) ∈ FR(X)
such that

(R◦′S)(x, z) = inf
y∈X

max(R(x, y), S(y, z)), (x, z) ∈ X × X. (5)

Now, let us recall the notion of the composition and dual composition for Atanas-

sov intuitionistic fuzzy relations

Definition 3 (cf. [4, 13]) Let 𝜌 = (R,Rd), 𝜎 = (S, Sd) ∈ AIFR(X). Then:

∙ the composition of relations 𝜌, 𝜎 is the relation

𝜌◦𝜎 = (R◦S,Rd◦
′Sd) ∈ AIFR(X),

∙ the dual composition of relations 𝜌, 𝜎 is the relation

𝜌◦
′
𝜎 = (R◦′S,Rd◦Sd) ∈ AIFR(X),

where operations ◦ and ◦
′

are described by the formulas (4) and (5).

For other operations on Atanassov intuitionistic fuzzy relations please see [8] and

other types of compositions [5].
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Definition 4 (cf. [2]) For arbitrary 𝜌 = (R,Rd) ∈ AIFR(X) the following relations

are defined:

∙ the converse relation: 𝜌
−1 = (R−1

, (Rd)−1), where R−1(x, y) = R(y, x) and (Rd)−1
(x, y) = Rd(y, x) for x, y ∈ X.

∙ the complement: 𝜌
′ = (Rd

,R).

3 Properties for Atanassov Intuitionistic Fuzzy Relations

3.1 Semi-properties

Now, we present semi-properties of Atanassov intuitionistic fuzzy relations. We fol-

low the concept of such properties given by Drewniak (cf. [10]) for fuzzy relations

but we restrict ourselves only to parameter 𝛼 = 0.5. This is why we will call these

properties semi-properties.

Definition 5 ([11]) An Atanassov intuitionistic fuzzy relation 𝜌 = (R,Rd) ∈ AIFR
(X) is called:

∙ semi-reflexive if

∀
x∈X

𝜌(x, x) ⩾ (0.5, 0.5), (6)

∙ semi-irreflexive if

∀
x∈X

𝜌(x, x) ⩽ (0.5, 0.5), (7)

∙ semi-symmetric if

∀
x,y∈X

𝜌(x, y) ⩾ (0.5, 0.5) ⇒ 𝜌(y, x) = 𝜌(x, y), (8)

∙ semi-asymmetric if

∀
x,y∈X

𝜌(x, y) ∧ 𝜌(y, x) ⩽ (0.5, 0.5), (9)

∙ semi-antisymmetric if

∀
x,y∈X,x≠y

𝜌(x, y) ∧ 𝜌(y, x) ⩽ (0.5, 0.5), (10)

∙ totally semi-connected if

∀
x,y∈X

𝜌(x, y) ∨ 𝜌(y, x) ⩾ (0.5, 0.5), (11)
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∙ semi-connected if

∀
x,y∈X,x≠y

𝜌(x, y) ∨ 𝜌(y, x) ⩾ (0.5, 0.5), (12)

∙ semi-transitive if

∀
x,y,z∈X

𝜌(x, y) ∧ 𝜌(y, z) ⩾ (0.5, 0.5) ⇒ 𝜌(x, z) ⩾ 𝜌(x, y) ∧ 𝜌(y, z). (13)

Example 1 Let card X = 3, 𝜌 = (R,Rd), 𝜎 = (S, Sd) ∈ AIFR(X) be presented by

matrices:

R =
⎡
⎢
⎢⎣

0.5 0.2 0.9
0.7 0.5 0
0 0.9 0.5

⎤
⎥
⎥⎦
, Rd =

⎡
⎢
⎢⎣

0.5 0.6 0
0.3 0.5 1
1 0 0.5

⎤
⎥
⎥⎦
, S =

⎡
⎢
⎢⎣

0.6 0.7 0.3
0.7 0.5 0.3
0.1 0.4 1

⎤
⎥
⎥⎦
, Sd =

⎡
⎢
⎢⎣

0.3 0.2 0.7
0.2 0.4 0.6
0.6 0.6 0

⎤
⎥
⎥⎦
.

𝜌 is semi-reflexive, semi-irreflexive, semi-asymmetric, semi-antisymmetric, totally

semi-connected, semi-connected and 𝜎 is semi-symmetric. An example of a semi-

transitive relation one may find in Example 2.

Theorem 1 ([11]) Let 𝜌 = (R,Rd) ∈ AIFR(X) be an Atanassov intuitionistic fuzzy
relation. Relation 𝜌 is semi-transitive if and only if

∀
x,z∈X

𝜌

2(x, z) ⩾ (0.5, 0.5) ⇒ 𝜌(x, z) ⩾ 𝜌

2(x, z). (14)

3.2 Transitivity Properties for Atanassov Intuitionistic Fuzzy
Relations

Since transitivity is an important property for relations in decision making problems

(it is one of the ways to guarantee the consistency of choices of decision makers [7])

we will compare presented in the previous section semi-transitivity with the other

transitivity properties.

Definition 6 (cf. [17]) An Atanassov intuitionistic fuzzy relation 𝜌 = (R,Rd) ∈
AIFR(X) is:

∙ transitive, if

∀
x,y,z∈X

𝜌(x, y) ∧ 𝜌(y, z) ⩽ 𝜌(x, z), (15)

∙ weakly transitive, if

∀
x,y,z∈X

𝜌(x, y) ⩾ (0.5, 0.5) ∧ 𝜌(y, z) ⩾ (0.5, 0.5) ⇒ 𝜌(x, z) ⩾ (0.5, 0.5). (16)
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Corollary 1 (cf. [3]) An Atanassov intuitionistic fuzzy relation 𝜌 = (R,Rd) ∈ AIFR
(X) is transitive, if and only if 𝜌◦𝜌 ⩽ 𝜌 (𝜌2 ⩽ 𝜌).

By definition of weak transitivity and that of composition, we can provide a char-

acterization of weak transitivity.

Theorem 2 Let 𝜌 = (R,Rd) ∈ AIFR(X). 𝜌 is weakly transitive if and only if

∀
x,z∈X

𝜌

2(x, z) ⩾ (0.5, 0.5) ⇒ 𝜌(x, z) ⩾ (0.5, 0.5). (17)

Proof If 𝜌 is weakly-transitive, applying the tautologies for quantifiers we obtain

∀
x,y,z∈X

min(R(x, y),R(y, z)) ⩾ 0.5 ⇒ R(x, z) ⩾ 0.5

and

∀
x,y,z∈X

max(Rd(x, y),Rd(y, z)) ⩽ 0.5 ⇒ Rd(x, z) ⩽ 0.5.

As a result,

∀
x,z∈X

( ∀
y∈X

min(R(x, y),R(y, z)) ⩾ 0.5 ⇒ R(x, z) ⩾ 0.5)

and

∀
x,z∈X

( ∀
y∈X

max(Rd(x, y),Rd(y, z)) ⩽ 0.5 ⇒ Rd(x, z) ⩽ 0.5) .

This implies that

∀
x,z∈X

sup
y∈X

min(R(x, y),R(y, z)) ⩾ 0.5 ⇒ R(x, z) ⩾ 0.5 (18)

and

∀
x,z∈X

inf
y∈X

max(Rd(x, y),Rd(y, z)) ⩽ 0.5 ⇒ Rd(x, z) ⩽ 0.5, (19)

so by definition of compositions we get (17).

Let us assume that the condition in (17) is fulfilled, which is equivalent to those in

(18) and (19). We will prove that 𝜌 is weakly-transitive. Let x, y, z ∈ X and 𝜌(x, y) ⩾
(0.5, 0.5), 𝜌(y, z) ⩾ (0.5, 0.5). As a result we have R(x, y) ⩾ 0.5, R(y, z) ⩾ 0.5 and

Rd(x, y) ⩽ 0.5, Rd(y, z) ⩽ 0.5. We also have

sup
y∈X

min(R(x, y),R(y, z)) ⩾ min(R(x, y),R(y, z)) ⩾ 0.5
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and

inf
y∈X

max(Rd(x, y),Rd(y, z)) ⩽ max(Rd(x, y),Rd(y, z)) ⩽ 0.5.

By (18), (19) we have R(x, z) ⩾ 0.5 and Rd(x, z) ⩽ 0.5, so 𝜌(x, z) ⩾ (0.5, 0.5).
By the definition of order for Atanassov intuitionistic fuzzy relations the result

follows. □

It is easy to see that if 𝜌 ∈ AIFR(X) is transitive, then it is weakly transitive and

semi-transitive (it is enough to apply Corollary 1 and Theorems 1 and 2).

Example 2 Let card X = 3. The following relation 𝜌 = (R,Rd) ∈ AIFR(X)

R =
⎡
⎢
⎢⎣

0.6 0 0.5
0.4 0.3 0
0.2 0 0.4

⎤
⎥
⎥⎦
, Rd =

⎡
⎢
⎢⎣

0.4 1 0.5
0.6 0.7 1
0.8 1 0.6

⎤
⎥
⎥⎦
,

is not transitive (see Corollary 1), but it is semi-transitive (see Theorem 1).

Note that semi-transitivity is a more restrictive (stronger) than weak transitivity.

Proposition 1 Let 𝜌 ∈ AIFR(X). If 𝜌 is semi-transitive, then it is weakly transitive.

Example 3 Let card(X) = 3. The following 𝜌 = (R,Rd) ∈ AIFR(X) is weakly tran-

sitive (see Theorem 2), but it is not semi-transitive (so it is also not transitive), where

𝜎 = 𝜌

2
, 𝜎 = (S, Sd) and

R =
⎡
⎢
⎢⎣

0.5 0.5 0.5
0.6 0.6 0.5
0.5 0.5 0.6

⎤
⎥
⎥⎦
,Rd =

⎡
⎢
⎢⎣

0.4 0.5 0.3
0.2 0.4 0.5
0.5 0.5 0.4

⎤
⎥
⎥⎦
, S =

⎡
⎢
⎢⎣

0.5 0.5 0.5
0.6 0.6 0.5
0.5 0.5 0.6

⎤
⎥
⎥⎦
, Sd =

⎡
⎢
⎢⎣

0.4 0.5 0.4
0.4 0.4 0.3
0.5 0.5 0.4

⎤
⎥
⎥⎦
.

We see that 𝜎23 = (0.5, 0.3) ⩾ (0.5, 0.5) and 𝜌23 = (0.5, 0.5)  𝜎23 = (0.5, 0.3) (cf.

Theorem 1 and definition of order (3)).

4 Transformations and Semi-properties

Now, some transformations of Atanassov intuitionistic fuzzy relations having semi-

properties will be considered (cf. [12]). Similar considerations for other properties

of Atanassov intuitionistic fuzzy relations one may find in [3–5].

Proposition 2 Let 𝜌 ∈ AIFR(X). 𝜌 is semi-reflexive (semi-irreflexive) if and only if
𝜌

′ is semi-irreflexive (semi-reflexive). 𝜌 is semi-asymmetric (semi-antisymmetric) if
and only if 𝜌′ is totally semi-connected (semi-connected). 𝜌 is totally semi-connected
(semi-connected) if and only if 𝜌′ is semi-asymmetric (semi-antisymmetric).
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Example 4 Let cardX = 3. We consider relation 𝜌 = (R,Rd) ∈ AIFR(X) from Exam-

ple 2. This relation is semi-transitive but 𝜌
′ = (W,Wd), is not semi-transitive because

s11 = 0.6 ⩾ 0.5 and w11 = 0.4  s11 (see Theorem 1), where

W =
⎡
⎢
⎢⎣

0.4 1 0.5
0.6 0.7 1
0.8 1 0.6

⎤
⎥
⎥⎦
, Wd =

⎡
⎢
⎢⎣

0.6 0 0.5
0.4 0.3 0
0.2 0 0.4

⎤
⎥
⎥⎦
, S = W◦W =

⎡
⎢
⎢⎣

0.6 0.7 1
0.8 1 0.7
0.6 0.8 1

⎤
⎥
⎥⎦
.

Now, let card X = 3. We consider semi-symmetric relation 𝜎 from Example 1. Rela-

tion 𝜎

′ = (T ,Td), where

T =
⎡
⎢
⎢⎣

0.3 0.2 0.7
0.2 0.4 0.6
0.6 0.6 0

⎤
⎥
⎥⎦
,Td =

⎡
⎢
⎢⎣

0.6 0.7 0.3
0.7 0.5 0.3
0.1 0.4 1

⎤
⎥
⎥⎦

is not semi-symmetric because t13 ⩾ 0.5 but t13 ≠ t31.

Proposition 3 Let 𝜌 ∈ AIFR(X). 𝜌 is semi-reflexive (semi-irreflexive, semi-sym-
metric, semi-asymmetric, semi-antisymmetric, semi-connected, totally semi-connec-
ted, semi-transitive) if and only if 𝜌−1 is semi-reflexive (semi-irreflexive, semi-symm-
etric, semi-asymmetric, semi-antisymmetric, semi-connected, totally semi-connected,
semi-transitive).

Theorem 3 Let 𝜌, 𝜎 ∈ AIFR(X). If 𝜌 is semi-irreflexive, then 𝜌 ∧ 𝜎 is semi-irreflex-
ive. If 𝜌, 𝜎 are semi-reflexive (semi-symmetric, semi-asymmetric, semi-antisymmetric,
semi-connected, totally semi-connected, semi-transitive), then 𝜌 ∧ 𝜎 is semi-reflexive
(semi-symmetric, semi-asymmetric, semi-antisymmetric, semi-connected, totally
semi-connected, semi-transitive).

Proof Let x, y ∈ X, 𝜌 = (R,Rd), 𝜎 = (S, Sd) ∈ AIFR(X). If 𝜌 is semi-irreflexive then

(R ∧ S)(x, x) = min(R(x, x), S(x, x)) ⩽ min(0.5, S(x, x)) ⩽ 0.5 regardless of the value

S(x, x). Similarly (Rd ∨ Sd)(x, x) = max(R(x, x), S(x, x)) ⩾ max(0.5, Sd(x, x)) ⩾ 0.5
for any value Sd(x, x). As a result (𝜌 ∧ 𝜎)(x, x) ⩽ (0.5, 0.5), so 𝜌 ∧ 𝜎 is semi-irre-

flexive.

Now we will prove the property for semi-symmetry. If 𝜌 and 𝜎 are semi-symmetric

and (𝜌 ∧ 𝜎)(x, y) ⩾ (0.5, 0.5) then min(R(x, y), S(x, y)) ⩾ 0.5 and max(Rd(x, y), Sd
(x, y)) ⩽ 0.5. Thus R(x, y) ⩾ 0.5, S(x, y) ⩾ 0.5, Rd(x, y) ⩽ 0.5 and Sd(x, y) ⩽ 0.5, so

𝜌(x, y) ⩾ (0.5, 0.5) and 𝜎(x, y) ⩾ (0.5, 0.5). As a result 𝜌(x, y) = 𝜌(y, x), 𝜎(x, y) =
𝜎(y, x) and (𝜌 ∧ 𝜎)(x, y) = (𝜌 ∧ 𝜎)(y, x), so 𝜌 ∧ 𝜎 is semi-symmetric. Other proper-

ties may be justified in a similar way. □

Example 5 Intersection of arbitrary two semi-connected and totally semi-connected

Atanassov intuitionistic fuzzy relations need not be semi-connected, totally semi-

connected, respectively. It follows from the fact that fuzzy relations representing

the membership values of the given Atanassov intuitionistic fuzzy relation which is

semi-connected, totally semi-connected need not be semi-connected, totally semi-

connected, respectively (see [10], p. 78–79, where 𝛼 = 0.5).
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Theorem 4 Let 𝜌, 𝜎 ∈ AIFR(X). If 𝜌 is semi-reflexive, then 𝜌 ∨ 𝜎 is semi-reflexive.
If 𝜌, 𝜎 are semi-irreflexive (semi-symmetric, semi-asymmetric, semi-antisymmetric,
semi-connected, totally semi-connected, semi-transitive), then 𝜌 ∨ 𝜎 is semi-irre-
flexive (semi-symmetric, semi-asymmetric, semi-antisymmetric, semi-connected,
totally semi-connected, semi-transitive).

Proof We will prove only the property for semi-symmetry. Let x, y ∈ X, 𝜌 = (R,Rd),
𝜎 = (S, Sd) be semi-symmetric and (𝜌 ∨ 𝜎)(x, y) ⩾ (0.5, 0.5). Thus max(R(x, y),
S(x, y)) ⩾ 0.5 and min(Rd(x, y), Sd(x, y)) ⩽ 0.5. There are four possible cases:

(10) R(x, y) ⩾ S(x, y) and Rd(x, y) ⩾ Sd(x, y),
(20) R(x, y) ⩾ S(x, y) and Rd(x, y) ⩽ Sd(x, y),
(30) R(x, y) ⩽ S(x, y) and Rd(x, y) ⩾ Sd(x, y),
(40) R(x, y) ⩽ S(x, y) and Rd(x, y) ⩽ Sd(x, y).

We will consider the first case and proof for the rest is analogous. >From semi-

symmetry of 𝜌 and 𝜎 it follows that R(x, y) ⩾ 0.5 ⇒ R(x, y) = R(y, x), Rd(x, y) ⩽
0.5 ⇒ Rd(x, y) = Rd(y, x), S(x, y) ⩾ 0.5 ⇒ S(x, y) = S(y, x), Sd(x, y) ⩽ 0.5 ⇒ Sd
(x, y) = Sd(y, x). Thus form the first case it follows that R(x, y) ⩾ 0.5 and Sd(y, x) ⩽
0.5, so R(x, y) = R(y, x) and Sd(x, y) = Sd(y, x). We will show that R(x, y) ⩾ S(y, x).
Suppose that R(x, y) < S(y, x). Then from assumptions of the first case we obtain

0.5 ⩽ R(x, y) < S(y, x) so from semi-symmetry of 𝜎 we have S(x, y) = S(y, x). As a

result R(x, y) < S(x, y) which contradicts to assumptions of the first case. So

max(R(x, y), S(x, y)) = R(x, y), max(R(y, x), S(y, x)) = max(R(x, y), S(y, x)) = R(x, y)
and this implies (R ∨ S)(x, y) = (R ∨ S)(y, x). Similarly we can prove that (Rd ∧
Sd)(x, y) = (Rd ∧ Sd)(y, x). As a result (𝜌 ∨ 𝜎)(x, y) = (𝜌 ∨ 𝜎)(y, x), so 𝜌 ∨ 𝜎 is sym-

metric. □

Example 6 Let card X = 3, 𝜌 = (R,Rd), 𝜎 = (S, Sd) ∈ AIFR(X) be presented by

matrices

R =
⎡
⎢
⎢⎣

0.7 0 0
0.8 0.9 0
0.8 0.9 0.8

⎤
⎥
⎥⎦
, Rd =

⎡
⎢
⎢⎣

0.2 1 1
0.1 0 1
0 0 0

⎤
⎥
⎥⎦
, S =

⎡
⎢
⎢⎣

0.7 0.8 0.8
0 0.9 0.9
0 0 0.8

⎤
⎥
⎥⎦
, Sd =

⎡
⎢
⎢⎣

0.2 0.1 0
1 0 0
1 1 0

⎤
⎥
⎥⎦
.

Relations 𝜌 and 𝜎 are semi-transitive. Relation 𝜌 ∨ 𝜎 = (T ,Td) is presented by the

following matrices

T = R ∨ S =
⎡
⎢
⎢⎣

0.7 0.8 0.8
0.8 0.9 0.9
0.8 0.9 0.8

⎤
⎥
⎥⎦
, Td = Rd ∧ Sd =

⎡
⎢
⎢⎣

0.2 0.1 0
0.1 0 0
0 0 0

⎤
⎥
⎥⎦
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and it is not semi-transitive. We can check it with the use of Theorem 1 where

W = T◦T =
⎡
⎢
⎢⎣

0.8 0.8 0.8
0.8 0.9 0.9
0.8 0.8 0.9

⎤
⎥
⎥⎦
, Td◦

′Td =
⎡
⎢
⎢⎣

0 0 0
0 0 0
0 0 0

⎤
⎥
⎥⎦
.

Relation 𝜌 ∨ 𝜎 is not semi-transitive because t11 ⩾ 0.5 and t11  w11.

Example 7 Sum of any two semi-asymmetric and semi-antisymmetric Atanassov

intuitionistic fuzzy relations need not be semi-asymmetric, semi-antisymmetric,

respectively. It is the consequence of the fact that fuzzy relations representing

the membership values of the given Atanassov intuitionistic fuzzy relation which

is semi-asymmetric, semi-antisymmetric need not be semi-asymmetric, semi-anti-

symmetric, respectively ([10], p. 78–79, where 𝛼 = 0.5).

Theorem 5 Let 𝜌 ∈ AIFR(X). If 𝜌 is semi-reflexive (semi-irreflexive), then 𝜌◦𝜌 is
semi-reflexive (semi-irreflexive).
Proof Let x ∈ X, 𝜌 ∈ AIFR(X) be semi-reflexive. Thus R(x, x) ⩾ 0.5 and Rd(x, x) ⩽
0.5, so (R◦R)(x, x) = supy∈X min(R(x, y),R(y, x)) ⩾ supy=xmin(R(x, y),R(y, x)) ⩾
min(0.5, 0.5) = 0.5 and (Rd◦

′Rd)(x, x) = inf y∈X max(Rd(x, y),Rd(y, x)) ⩽ inf y=xmax
(Rd(x, y),Rd(y, x)) ⩽ max(0.5, 0.5). What is equal to 0.5, which means that (𝜌◦𝜌)
(x, x) ⩾ (0.5, 0.5) and 𝜌◦𝜌 is semi-reflexive. Similarly we can prove the case of

irreflexivity. □

The composition or dual composition of semi-asymmetric, semi-antisymmetric,

semi-connected, totally semi-connected, semi-symmetric and semi-transitive rela-

tion 𝜌 ∈ AIFR(X) by itself is not semi-asymmetric, semi-antisymmetric, semi-

connected, totally semi-connected, semi-symmetric, semi-transitive, respectively.

We present one of the suitable examples.

Example 8 Let card X = 3, 𝜌 = (R,Rd) ∈ AIFR(X). Relation 𝜌 is semi-asymmetric.

However, the composition of this relation by itself is not semi-asymmetric because

min(t13, t31) = 0.6 > 0.5, where

𝜌 =
⎡
⎢
⎢
⎢⎣

(0.3, 0.6) (0.6, 0.4) (0.2, 0.5) (0.2, 0.7)
(0.3, 0.6) (0.2, 0.7) (0.6, 0.4) (0.2, 0.5)
(0.7, 0.2) (0.4, 0.5) (0.5, 0.5) (0.6, 0.3)
(0.8, 0.2) (0.7, 0.1) (0.4, 0.5) (0.4, 0.6)

⎤
⎥
⎥
⎥⎦
,T = R◦R =

⎡
⎢
⎢
⎢⎣

0.3 0.3 0.6 0.2
0.6 0.4 0.5 0.6
0.6 0.6 0.5 0.5
0.4 0.6 0.6 0.4

⎤
⎥
⎥
⎥⎦
.

5 Conclusion

Semi-properties of Atanassov intuitionistic fuzzy relations were discussed. Espe-

cially, basic transformations 𝔉 ∶ AIFR(X)n → AIFR(X), n ∈ N, of this type of rela-

tions were considered. For the future work it may be interesting to consider other

transformations, for example aggregations.
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Intuitionistic Fuzzy Complete Lattices

Soheyb Milles, Ewa Rak and Lemnaouar Zedam

Abstract In this paper, the concept of intuitionistic complete lattices is introduced.

Some characterizations of such intuitionistic complete lattices are given. The Tarski-

Davis fixed point theorem for intuitionistic fuzzy complete lattices is proved, which

establish an other criterion for completeness of intuitionistic fuzzy complete lattices

in terms of fixed points of intuitionistic monotone maps.

Keywords Intuitionistic fuzzy set ⋅ Intuitionistic fuzzy order ⋅ Intuitionistic fuzzy

complete lattice ⋅ Tarski-Davis fixed point theorem

1 Introduction

The notion of a fuzzy set was first introduced by Zadeh [25] by assuming the stan-

dard negation that the non-membership degree is equal to one minus membership

degree and this makes the fuzzy sets compliment. In logical area, membership degree

and non-membership degree can be interpreted as positive and negative. This means

that if the membership is correct, then the non membership is wrong. Obviously it

explains that the contraries relation exists.

In 1983 Atanassov [1] proposed a generalization of Zadeh non-membership

degree and introduced the notion of intuitionistic fuzzy set (A-IFSs for short). The

non-membership degree used for Atanassov’s intuitionistic fuzzy set is a more-or-

less independent degree: the only condition is that the non-membership degree is less
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or equal to the one minus membership degree. Certainly fuzzy sets are intuitionistic

fuzzy sets, but not conversely.

Inspired by the notion of intuitionistic fuzzy set, Burillo and Bustince [12, 13]

introduced intuitionistic fuzzy relations as a natural generalizations of fuzzy rela-

tions. Intuitionistic fuzzy relations theory has been applied to many different fields,

such as decision making, mathematical modelling, medical diagnosis, machine learn-

ing and market prediction, etc.

One of the important problems of fuzzy and intuitionistic fuzzy ordered set is to

obtain an appropriate concepts of particular elements on a such structure like maxi-

mum, supremum, maximal elements and their duals, in particular, specific subclasses

of fuzzy and intuitionistic fuzzy ordered sets. Several theoretical and applicational

results connected with this problem can be found, e.g. in Bělohlávek [9], Boden-

hofer and Klawonn [10], Bustince and Burillo [15, 16], Coppola et al. [17], Tripathy

et al. [23], Zadeh [26], Zhang et al. [29].

In this paper, according to the intuitionistic fuzzy order introduced by Burillo and

Bustince [12, 13] and based on the notions of supremum and infimum of subsets on

a universe X with respect to an intuitionistic fuzzy order defined on it introduced by

Tripathy et al. [23], we propose a notion of an intuitionistic fuzzy complete lattice

which is a generalization of the crisp complete lattice notion. Some characteriza-

tions of such intuitionistic fuzzy complete lattice expressed in terms of supremum,

infimum, chains and maximal chains are given.

One of the consequence of Tarski and Davis fixed point theorems in crisp lattices

[18, 22] is that they established a criterion for completeness of lattices in terms of

fixed points of monotone maps. In the last section we will focus on this criterion

and Tarski-Davis fixed point theorem for intuitionistic fuzzy complete lattices will

be proved.

2 Preliminaries

This section contains the basic definitions and properties of intuitionistic fuzzy sets,

intuitionistic fuzzy relations, intuitionistic fuzzy lattices and some related notions

that will be needed in the next sections of this paper. At first we recall some

basic concepts of intuitionistic fuzzy sets. More details can be found in [1–8, 11,

20, 21, 27].

Let X be a universe, then a fuzzy set A = {⟨x, 𝜇A(x)⟩ ∕ x ∈ X} defined by Zadeh

[25] is characterized by a membership function𝜇A ∶ X → [0, 1], where𝜇A(x) is inter-

preted as the degree of a membership of the element x in the fuzzy subset A for each

x ∈ X.
In [1] Atanassov introduced another fuzzy object, called intuitionistic fuzzy set

(briefly IFS or A-IFS) as a generalization of the concept of fuzzy set, shown as fol-

lows

A = {⟨x, 𝜇A(x), 𝜈A(x)⟩ ∕ x ∈ X},
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which is characterized by a membership function 𝜇A ∶ X → [0, 1] and a non-

membership function 𝜈A ∶ X → [0, 1] with the condition

0 ≤ 𝜇A(x) + 𝜈A(x) ≤ 1 , (1)

for any x ∈ X. The numbers 𝜇A(x) and 𝜈A(x) represent, respectively, the membership

degree and the non-membership degree of the element x in the intuitionistic fuzzy

set A for each x ∈ X.
In the fuzzy set theory, the non-membership degree of an element x of the universe

is defined as 𝜈A(x) = 1 − 𝜇A(x) (using the standard negation) and thus it is fixed. In

intuitionistic fuzzy setting, the non-membership degree is a more-or-less indepen-

dent degree: the only condition is that 𝜈A(x) ≤ 1 − 𝜇A(x). Certainly fuzzy sets are

intuitionistic fuzzy sets by setting 𝜈A(x) = 1 − 𝜇A(x), but not conversely.

Definition 1 Let A be an intuitionistic fuzzy set on universe X, the support of A is

the crisp subset of X given by

Supp(A) = {x ∈ X ∕ 𝜇A(x) > 0 or (𝜇A(x) = 0 and 𝜈A(x) < 1)}.

An intuitionistic fuzzy relation from a universe X to a universe Y is an intuition-

istic fuzzy subset in X × Y , i.e. is an expression R given by

R = {⟨(x, y), 𝜇R(x, y), 𝜈R(x, y)⟩ ∕ (x, y) ∈ X × Y} , where 𝜇R ∶ X × Y → [0, 1], 𝜈A ∶
X × Y → [0, 1] with the condition

0 ≤ 𝜇R(x, y) + 𝜈R(x, y) ≤ 1 , (2)

for any (x, y) ∈ X × Y . The value 𝜇R(x, y) is called the degree of a membership of

(x, y) in R and 𝜈R(x, y) is called the degree of a non-membership of (x, y) in R.

Next, we need the following definitions.

Let R be an intuitionistic fuzzy relation from a universe X to a universe Y . The

transposition Rt
of R is the intuitionistic fuzzy relation from the universe Y to the

universe X defined by

Rt = {⟨(x, y), 𝜇Rt (x, y), 𝜈Rt (x, y)⟩ ∣ (x, y) ∈ X × Y},

where 𝜇Rt (x, y) = 𝜇R(y, x) and 𝜈Rt (x, y) = 𝜈R(y, x), for any (x, y) ∈ X × Y .
Let R and P be two intuitionistic fuzzy relations from a universe X to a universe

Y . R is said to be contained in P or we say that P contains R (notation R ⊆ P) if for

all (x, y) ∈ X × Y 𝜇R(x, y) ≤ 𝜇P(x, y) and 𝜈R(x, y) ≥ 𝜈P(x, y).
The intersection (resp. the union) of two intuitionistic fuzzy relations R and P

from a universe X to a universe Y is defined as

R
⋂

P = {⟨(x, y), 𝜇R∩P(x, y), 𝜈R∩P(x, y)⟩},

where 𝜇R∩P(x, y) = min(𝜇R(x, y), 𝜇P(x, y)) and 𝜈R∩P(x, y) = max(𝜈R(x, y), 𝜈P(x, y))
for any (x, y) ∈ X × Y .
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The union of two intuitionistic fuzzy relations R and P from a universe X to a

universe Y is defined as

R
⋃

P = {⟨(x, y), 𝜇R∪P(x, y), 𝜈R∪P(x, y)⟩},

where 𝜇R∪P(x, y) = max(𝜇R(x, y), 𝜇P(x, y)) and 𝜈R∪P(x, y) = min(𝜈R(x, y),
𝜈P(x, y)) for any (x, y) ∈ X × Y .

In general, if A is a set of intuitionistic fuzzy relations from a universe X to a

universe Y , then

⋂

R∈A
R = {⟨(x, y), 𝜇∩R∈AR(x, y), 𝜈∩R∈AR(x, y)⟩},

where 𝜇∩R∈AR(x, y) = infR∈A 𝜇R(x, y) and 𝜈∩R∈AR(x, y) = supR∈A 𝜈R(x, y) for any (x, y)
∈ X × Y; ⋃

R∈A
R = {⟨(x, y), 𝜇∪R∈AR(x, y), 𝜈∪R∈AR(x, y)⟩},

where 𝜇∪R∈AR(x, y) = supR∈A 𝜇R(x, y) and 𝜈∪R∈AR(x, y) = infR∈A 𝜈R(x, y) for any (x, y)
∈ X × Y .

Let R be an intuitionistic fuzzy relation from a universe X to a universe X (intu-

itionistic fuzzy relation on a universe X, for short). The following properties are

crucial in this paper (see e.g. [12, 16, 19, 23, 24, 28]):

(i) Reflexivity: 𝜇R(x, x) = 1 for any x ∈ X. Just notice that 𝜈R(x, x) = 0 for any x ∈
X.

(ii) Antisymmetry: if for any x, y ∈ X, x ≠ y then

⎧
⎪
⎨
⎪⎩

𝜇R(x, y) ≠ 𝜇R(y, x)
𝜈R(x, y) ≠ 𝜈R(y, x)
𝜋R(x, y) = 𝜋R(y, x)

,

where 𝜋R(x, y) = 1 − 𝜇R(x, y) − 𝜈R(x, y).

(iii) Perfect antisymmetry: if for any x, y ∈ X with x ≠ y
𝜇R(x, y) > 0 or (𝜇R(x, y) = 0 and 𝜈R(x, y) < 1) then 𝜇R(y, x) = 0 and 𝜈R(y, x) =
1.

(iv) Transitivity: R ⊇ R◦𝛼,𝛽
𝜆,𝜌

R.

Remark 1 The definition of perfect antisymmetry given in (iii) is equivalent to the

following one for any x, y ∈ X, (𝜇R(x, y) > 0 and 𝜇R(y, x) > 0) or (𝜈R(x, y) < 1 and

𝜈R(y, x) < 1) implies that x = y.

The composition R◦𝛼,𝛽
𝜆,𝜌

R in the above definition of transitivity means that

R◦𝛼,𝛽
𝜆,𝜌

R = {⟨(x, z), 𝛼y∈X{𝛽[𝜇R(x, y), 𝜇R(y, z)],
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𝜆y∈X{𝜌[𝜈R(x, y), 𝜈R(y, z)]⟩ ∣ x, z ∈ X},

where 𝛼, 𝛽, 𝜆 and 𝜌 are t-norms or t-conorms taken under the intuitionistic fuzzy

condition

0 ≤ 𝛼y∈X{𝛽[𝜇R(x, y), 𝜇R(y, z)] + 𝜆y∈X{𝜌[𝜈R(x, y), 𝜈R(y, z)] ≤ 1 ,

for any x, z ∈ X.
The properties of this composition and the choice of 𝛼, 𝛽, 𝜆 and 𝜌, for which

this composition fulfills a maximal number of properties, are investigated in [12–16,

19]. If no other conditions are imposed, in the sequel we will take 𝛼 = sup, 𝛽 = min,

𝜆 = inf and 𝜌 = max.

Notice that in [15], Bustince and Burillo mentioned that the definition of intuition-

istic antisymmetry does not recover the fuzzy antisymmetry for the case in which the

considered relation R is fuzzy. However, the definition of intuitionistic perfect anti-

symmetry does recover the definition of fuzzy antisymmetry given by Zadeh [26]

when the considered relation is fuzzy. This note justifies the following definition of

intuitionistic fuzzy order used in this paper.

Definition 2 ([12, 13]) Let X be a nonempty crisp set and R = {⟨(x, y), 𝜇R(x, y),
𝜈R(x, y)⟩ ∣ x, y ∈ X} be an intuitionistic fuzzy relation on X. R is called an intuition-

istic fuzzy order or a partial intuitionistic fuzzy order if it is reflexive, transitive and

perfect antisymmetric.

A nonempty set X with an intuitionistic fuzzy order R defined on it is called an

intuitionistic fuzzy ordered set and we denote it by (X, 𝜇R, 𝜈R).

Notice that any partially ordered set (X,≤) and generally any fuzzy ordered set

(X,R) can be regarded as intuitionistic fuzzy ordered sets.

Example 1 Let m, n ∈ N. Then, the intuitionistic fuzzy relation R defined for all

m, n ∈ N by

𝜇R(m, n) =
⎧
⎪
⎨
⎪⎩

1 , if m = n
1 − m

n , if m < n
0 , if m > n

,

and

𝜈R(m, n) =
⎧
⎪
⎨
⎪⎩

0 , if m = n
m
2n , if m < n
1 , if m > n

is an intuitionistic fuzzy order on N.

On the basis of the above definition of perfect antisymmetry we define linear or

total intuitionistic fuzzy order as follows.
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Definition 3 An intuitionistic fuzzy order R on a universe X is linear (or total) if for

every x, y ∈ X [𝜇R(x, y) > 0 or (𝜇R(x, y) = 0 and 𝜈R(x, y) < 1)]
or

[𝜇R(y, x) > 0 or (𝜇R(y, x) = 0 and 𝜈R(y, x) < 1)].

Definition 4 An intuitionistic fuzzy ordered set (X, 𝜇R, 𝜈R) in which R is linear is

called a linearly intuitionistic fuzzy ordered set or an intuitionistic fuzzy chain.

For an intuitionistic fuzzy ordered set (X, 𝜇R, 𝜈R) and x ∈ X, the intuitionistic

fuzzy sets R≥[x] and R≤[x] are defined in X by

R≥[x] = {⟨y, 𝜇R≥[x] (y), 𝜈R≥[x] (y)⟩ ∕ y ∈ X}, where 𝜇R≥[x] (y) = 𝜇R(x, y) and

𝜈R≥[x] (y) = 𝜈R(x, y).
R≤[x] = {⟨y, 𝜇R≤[x] (y), 𝜈R≤[x] (y)⟩ ∕ y ∈ X}, where𝜇R≤[x] (y) = 𝜇R(y, x) and 𝜈R≤[x] (y) =

𝜈R(y, x). R≥[x] and R≤[x] are called the dominating class of x and the class dominated

by x, respectively.

Remark 2 The notions of the dominating class of x and the class dominated by x are

generalizations of the classical notions ↑ x and ↓ x in a usual poset.

Next, we recall the definition of upper bounds, lower bounds, supremum and infi-

mum on intuitionistic fuzzy ordered sets.

Definition 5 ([23]) Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy ordered set and A be a

subset of X.

(i) The set of upper bounds of A with respect to R is the intuitionistic fuzzy subset

of X defined by

U(R,A)(y) =
⋂

x∈A
R≥[x](y) (3)

for any y ∈ X;

(ii) The set of lower bounds of A with respect to R is the intuitionistic fuzzy subset

of X defined by

L(R,A)(y) =
⋂

x∈A
R≤[x](y) (4)

for any y ∈ X.

Definition 6 ([23]) Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy ordered set and A be a

subset of X. An element x ∈ X is called the least upper bound (or a supremum) of A
with respect to R if

(i) x ∈ Supp(U(R,A)) and

(ii) for all other y ∈ Supp(U(R,A)), 𝜇R(x, y) > 0 or (𝜇R(x, y) = 0 and

𝜈R(x, y) < 1).

An element x ∈ X is called the greatest lower bound (or an infimum) of A with

respect to R if
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(i) x ∈ Supp(L(R,A)) and

(ii) for all other y ∈ Supp(L(R,A)), 𝜇R(y, x) > 0 or (𝜇R(y, x) = 0 and 𝜈R(y, x) < 1).

Remark 3 Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy ordered set and A be a subset of

X. If the supremum and the infimum ofAwith respect toR exist, then from the perfect

antisymmetry of R they are unique and denoted by supR(A) and infR(A), respectively.

Definition 7 An intuitionistic fuzzy ordered set (X, 𝜇R, 𝜈R) is called an intuitionis-

tic fuzzy ordered lattice with respect to the intuitionistic fuzzy order R (or simply,

intuitionistic fuzzy lattices) if each pair of elements {x, y} of X has a supremum and

an infimum.

Next, we introduce the notion of intuitionistic fuzzy complete lattices which is a

natural generalization of the notion of crisp complete lattices.

Definition 8 An intuitionistic fuzzy ordered set (X, 𝜇R, 𝜈R) is called an intuitionistic

fuzzy complete lattice if supR(A) and infR(A) exist for every nonempty subset A ⊆ X.

Definition 9 Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy ordered set.

(i) An element ⊤ ∈ X is called the greatest element (the maximum) of X with

respect to R or the intuitionistic fuzzy maximum of X if

𝜇R(x, ⊤) > 0 or (𝜇R(x, ⊤) = 0 and 𝜈R(x, ⊤) < 1) for all x ∈ X.

(ii) An element ⊥ ∈ X is called the least element (the minimum) of X with respect

to R or the intuitionistic fuzzy minimum if

𝜇R(⊥, x) > 0 or (𝜇R(⊥, x) = 0 and 𝜈R(⊥, x) < 1) for all x ∈ X.

Remark 4 Every intuitionistic fuzzy complete lattice must have a greatest element

(or a maximum) and a least element (or a minimum). The greatest element will be

denoted ⊤X and the least element ⊥X . It is easily follows that

⊤X = supR(X) = infR(∅) and ⊥X = infR(X) = supR(∅).

In the last section we will need the following definitions.

Definition 10 Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy ordered set. Then a map

f ∶ X → X is called intuitionistic fuzzy monotone if 𝜇R(f (x), f (y)) ≥ 𝜇R(x, y) and

𝜈R(f (x), f (y)) ≤ 𝜈R(x, y) for all x, y ∈ X.

Definition 11 An element x ∈ X is called a fixed point of a map f ∶ X → X if f (x) =
x. The set of all fixed points of f will be denoted by Fix(f ) .

3 Characterizations of Intuitionistic Fuzzy
Complete Lattices

In this section we will provide an interesting characterization of intuitionistic fuzzy

complete lattices in terms of supremum and infimum of its subsets, as well as in

terms of its intuitionistic fuzzy chains and maximal intuitionistic fuzzy chains.
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The following lemma is immediate.

Lemma 1 Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy ordered set, A be a subset of X
and x ∈ X. Then, it holds that

(i) x = supR(A) with respect to R if and only if x = infRt (A) with respect to Rt;
(ii) x = infR(A) with respect to R if and only if x = supRt (A) with respect to Rt;
(iii) (X, 𝜇R, 𝜈R) is intuitionistic fuzzy complete lattice if and only if (X, 𝜇Rt , 𝜈Rt ) is

intuitionistic fuzzy complete lattice.

Theorem 1 Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy ordered set. Then, it holds that

(i) (X, 𝜇R, 𝜈R) is an intuitionistic fuzzy complete lattice if and only if supR(A) exists
for all A ⊆ X;

(ii) (X, 𝜇R, 𝜈R) is an intuitionistic fuzzy complete lattice if and only if infR(A) exists
for all A ⊆ X.

Proof Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy ordered set and A ⊆ X.

(i) It is obvious that if (X, 𝜇R, 𝜈R) is an intuitionistic fuzzy complete lattice, then

supR(A) exists for all A ⊆ X.

Conversely, suppose that supR(A) exists for all A ⊆ X and we will show that

every nonempty subset A ⊆ X has an infimum. Let L(R,A) be the intuition-

istic fuzzy set of lower bounds of A with respect to R. Then, it holds that

supR(Supp(L(R,A))) exists. Setting that m = supR(Supp(L(R,A))) and we show

that m = infR(A). First, since m ∈ Supp(U(R, Supp(L(R,A)))), then it holds that

𝜇U(R,Supp(L(R,A)))(x) > 0 or [𝜇U(R,Supp(L(R,A)))(x) = 0 and 𝜈U(R,Supp(L(R,A)))(x) < 1].

By (3) we know that

U(R, Supp(L(R,A)))(y) =
⋂

x∈Supp(L(R,A))
R≥[x](y).

Since R≥[x] = {⟨y, 𝜇R≥[x] (y), 𝜈R≥[x] (y)⟩ ∕ y ∈ X}, where 𝜇R≥[x] (y) = 𝜇R(x, y) and

𝜈R≥[x] (y) = 𝜈R(x, y) and by the fact that R≥[x] = Rt
≤[x] and U(R,A) = L(Rt

,A), it

follows that

U(R, Supp(L(R,A)) = L(Rt
, Supp(L(R,A))) = L(R,A).

Hence,

m ∈ Supp(L(R,A)).

In the same way, for all y ∈ Supp(L(R,A)), it holds that𝜇R(y,m) > 0 or (𝜇R(y,m) =
0 and 𝜈R(y,m) < 1).

Thus m = infR(A), which implies that infR(A) exists. Therefore, (X, 𝜇R, 𝜈R) is an

intuitionistic fuzzy complete lattice.

(ii) Follows from Lemma 1 and (i).
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Remark 5 In the above Theorem 1 the existence of infR(∅) guarantees the greatest

element of (X, 𝜇R, 𝜈R), and in similar way, the existence of supR(∅) guarantees the

least element of (X, 𝜇R, 𝜈R). So an equivalent formulation of Theorem 1 can be writ-

ten in the following way

(i) (X, 𝜇R, 𝜈R) is an intuitionistic fuzzy complete lattice if and only if it has the least

element and supR(A) exists for all nonempty A ⊆ X;

(ii) (X, 𝜇R, 𝜈R) is an intuitionistic fuzzy complete lattice if and only if it has the

greatest element and infR(A) exists for all nonempty A ⊆ X.

Theorem 2 Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy lattice. Then the following are
equivalent:

(i) (X, 𝜇R, 𝜈R) is intuitionistic fuzzy complete lattice;
(ii) (X, 𝜇R, 𝜈R) is intuitionistic fuzzy chain-complete (i.e. every nonempty intuition-

istic fuzzy chain in (X, 𝜇R, 𝜈R) has a supremum and an infimum);
(iii) Every maximal intuitionistic fuzzy chain of X is an intuitionistic fuzzy complete

lattice.

Proof (i)⇒ (ii) is obvious.

To prove (ii)⇒ (iii), let C be a maximal intuitionistic fuzzy chain (with respect to

set inclusion) of X.

First, we will show that C has an intuitionistic fuzzy maximum and an intuition-

istic fuzzy minimum. Since C is an intuitionistic fuzzy chain in (X, 𝜇R, 𝜈R) then it

holds from (ii) that C has a supremum and an infimum. By using the fact that C is

maximal (with respect to set inclusion) we obtain that c1 = supR(C) is the maximum

and c2 = infR(C) is the minimum.

Second, letA ⊆ C. SinceA ⊆ C then it holds thatA is an intuitionistic fuzzy chain.

By (ii) we know that supR(A) exists in (X, 𝜇R, 𝜈R) and we denoted it by m. Now, it

suffices to show that m ∈ C. Suppose that m ∉ C, then it follows three cases:

(a) If [𝜇R(x,m) > 0 or (𝜇R(x,m) = 0 and 𝜈R(x,m) < 1] or [𝜇R(m, x) > 0 or

(𝜇R(m, x) = 0 and 𝜈R(m, x) < 1] for all x ∈ C, then C ∪ {m} is intuitionistic

fuzzy chain in (X, 𝜇R, 𝜈R). This is a contradiction with the fact that C is max-

imal.

(b) If there exist x ∈ C such that [𝜇R(x,m) = 0 and 𝜈R(x,m) = 1], then it holds from

the transitivity of R that

𝜇R(x, c1) ∧ 𝜇R(c1,m) ≤ 𝜇R(x,m)

and

𝜈R(x, c1) ∨ 𝜈R(c1,m) ≥ 𝜈R(x,m).

Since [𝜇R(x,m) = 0 and 𝜈R(x,m) = 1], then it holds that 𝜇R(c1,m) = 0 and

𝜈R(c1,m) = 1. Hence supR{c1,m} ∉ C. Thus,C
⋃
{supR{c1,m}} is an intuition-

istic fuzzy chain, which is a contradiction with maximality of C.



158 S. Milles et al.

(c) If there exist x ∈ C such that [𝜇R(m, x) = 0 and 𝜈R(m, x) = 1], then it follows

similarly as (b).

As consequence of the above cases we get m ∈ C. Thus, A has a supremum in C.

Therefore, C is an intuitionistic fuzzy complete lattice which follows from

Theorem 1.

(iii)⇒ (i) Suppose that every maximal intuitionistic fuzzy chain of X is an intu-

itionistic fuzzy complete lattice and we will show that (X, 𝜇R, 𝜈R) is intuitionistic

fuzzy complete lattice.

LetA ⊆ X and(Supp(U(R,A))) denote the set of all intuitionistic fuzzy fuzzy

chains C ⊆ Supp(U(R,A)), ordered in classical way by C1 ⊑ C2 if and only f C1 is

an intuitionistic fuzzy filter of C2. This means that C1 ⊆ C2 or [if x ∈ C1 and y ∈ C2
with 𝜇R(x, y) > 0 or (𝜇R(x, y) = 0 and 𝜈R(x, y) < 1) then y ∈ C1].

Next, let {Ci ∶ i ∈ I ⊆ N} be a chain of (Supp(U(R,A))) under the crisp

order defined above. On the one hand, since Ci is an intuitionistic fuzzy chain of

Supp(U(R,A)) and Ci ⊆ Ci+1 for all i ∈ I, then
⋃

i∈I Ci is an intuitionistic fuzzy

chain of Supp(U(R,A)). Hence,
⋃

i∈I Ci ∈ (Supp(U(R,A))). On the other hand,⋃
i∈I Ci is an upper bound of {Ci}i∈I .
By Zorn’s Lemma, we know that (Supp(U(R,A))) has a maximal element

denoted by Cm with respect to the above crisp order ⊑.

Let K be a maximal intuitionistic fuzzy chain such that Cm ⊆ K. By hypothesis,

K is an intuitionistic fuzzy complete lattice, which implies that Cm has a an infimum

denoted by c in (K, 𝜇R, 𝜈R).
Now, we will show that c = supR(A). Indeed, let x ∈ A. Since Cm ⊆

Supp(U(R,A)), then it holds that 𝜇R(x, y) > 0 or (𝜇R(x, y) = 0 and 𝜈R(x, y) < 1)
for all y ∈ Cm. Hence 𝜇R(x, c) > 0 or (𝜇R(x, c) = 0 and 𝜈R(x, c) < 1). Thus, c ∈
Supp(U(R,A)). For all other y ∈ Supp(U(R,A)), it holds that 𝜇R(c, y) > 0 or (𝜇R(c, y)
= 0 and 𝜈R(c, y) < 1). Otherwise, we get a contradiction with the maximality of Cm.

Thus, c = supR(A). Now, (X, 𝜇R, 𝜈R) is an intuitionistic fuzzy complete lattice fol-

lows from Theorem 1(i).

4 Tarski-Davis Fixed Point Theorem for Intuitionistic
Fuzzy Complete Lattices

Tarski and Davis in their results established a criterion for completeness of lattices

in terms of fixed points of monotone maps. In the last section, we will show that this

criterion also stay valid for intuitionistic fuzzy complete lattices.

Additionally we need the following definition.

Definition 12 Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy ordered set and {ai}i∈I⊆N be

a subset of elements of X. Then
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(i) {ai}i∈I⊆N is called an intuitionistic fuzzy ascending chain (or an ascending

chain with respect toR) if𝜇R(ai, ai+1) > 0 or (𝜇R(ai, ai+1) = 0 and 𝜈R(ai, ai+1) <
1), for all i ∈ I. Descending intuitionistic fuzzy chain (or an descending chain

with respect to R) is defined dually.

(ii) (X, 𝜇R, 𝜈R) is said to be satisfy the intuitionistic fuzzy ascending chain condition

(or the ACCR, for short) if every intuitionistic fuzzy ascending chain {ai}i∈I⊆N
of elements of X is eventually stationary (i.e. there exist a positive integer n ∈ I
such that am = an for all m > n). In other words, (X,R) contains no infinite

intuitionistic fuzzy ascending chain.

(iii) Similarly, (X, 𝜇R, 𝜈R) is said to be satisfy the intuitionistic fuzzy descending

chain condition (or the DCCR, for short) if every intuitionistic fuzzy descending

chain {ai}i∈I⊆N of elements of X is ultimately stationary.

From Theorems 1 and 2, we derive the following results (unfortunately without

very extensive proofs).

Proposition 1 Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy lattice. If (X, 𝜇R, 𝜈R) is not
intuitionistic fuzzy complete lattice, then there exist an intuitionistic fuzzy chain C
satisfying the ACCR and having no infimum and an intuitionistic fuzzy chain D sat-
isfying the DCCR and having no supremum, such that

(i) 𝜇R(d, c) > 0 or (𝜇R(d, c) = 0 and 𝜈R(d, c) < 1) for any d ∈ D and c ∈ C ;
(ii) For all x ∈ X, either there exists c ∈ C with (𝜇R(x, c) = 0 and 𝜈R(x, c) = 1) or

there exists d ∈ D with (𝜇R(d, x) = 0 and 𝜈R(d, x) = 1), i.e. there is no element
x ∈ X such that x ∈ Supp(L(R,C))

⋂
Supp(U(R,D)).

Theorem 3 Let (X, 𝜇R, 𝜈R) be an intuitionistic fuzzy lattice. Then (X, 𝜇R, 𝜈R) is an
intuitionistic fuzzy complete lattice if and only if every intuitionistic fuzzy monotone
map f ∶ X → X has a fixed point. Moreover, the set Fix(f ) of all fixed points of f is
an intuitionistic fuzzy complete lattice.

5 Conclusion

In this paper we have introduced the notion of intuitionistic fuzzy complete lattice

and investigated its most interesting properties. Some characterizations of intuition-

istic fuzzy complete lattice expressed in terms of supremum, infimum, chains and

maximal chains are given. Moreover, the Tarski-Davis fixed point theorem for intu-

itionistic fuzzy complete lattices is presented (without the extensive proof), which

establish an other criterion for completeness of intuitionistic fuzzy complete lattices

in terms of fixed points of intuitionistic monotone maps.
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in the Intuitionistic Fuzzy Interpretation
Triangle
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Abstract In this leg of research, we explore the question of traversing and ranking
elements of an intuitionistic fuzzy set in the intuitionistic fuzzy interpretation tri-
angle. This is necessary in the light of the new developments of the InterCriteria
Analysis (ICA), a decision support approach based on intuitionistic fuzzy sets and
index matrices. In the ICA, from the data about the evaluations or measurements of a
set of objects against a set of criteria, we perform pairwise comparisons of any two
objects against each pair of criteria, and perform computations that yield in result
intuitionistic fuzzy pairs of numbers in the [0; 1]-interval that give the levels of
correlation between any two of the evaluation criteria. In previous works, the cor-
relations between the criteria (hence the term ‘intercriteria’) were analysed sepa-
rately, by first setting priority on either the membership, or the non-membership
component, and plotting them linearly; while currently the efforts are oriented to
handling both IF components simultaneously by plotting them in the plane of the
intuitionistic fuzzy interpretation triangle.
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1 Introduction

Here we give a new line of research in the area of a novel decision support approach
based on intuitionistic fuzzy sets and index matrices, titled InterCriteria Analysis.

In a previous paper [10] from this leg of the research, one of the authors dis-
cussed a new approach to represent the results of the InterCriteria Analysis, using
the IF pairs as coordinates of points plotted onto the IF interpretational triangle with
vertices (0; 0), (1; 0) and (0; 1), staying respectively for the complete uncertainty,
complete truth and complete falsity.

Using this geometrical interpretation, we benefit from the possibility to see the
exact shape of the intuitionistic fuzzy set of correlations in between a given set of
criteria, but also from the possibility to have a new, and supposedly more precise,
method of determining the top-correlating InterCriteria pairs and individual criteria.
The proposed method is related to the use of two predefined thresholds α, β for the
membership and the non-membership parts of the IF pair, forming the trapezium
cut-out adjacent to the (1; 0) point and more generally to computing for each point
in this cut-out its distance to the (1; 0) point, and then ranking the points according
to the so calculated distances.

The proposed method requires that these threshold values α, β are known in
advance and predefined, which for various reasons may not always be the case. In
such cases, we need to find a method of defining these threshold values, and the
present work aims to propose several such methods that may facilitate or objectify
the process of decision making, and may further prompt new ideas of development
of the InterCriteria Analysis approach.

2 Working Concepts

2.1 Intuitionistic Fuzzy Sets

Let X be a fixed universe. The intuitionistic fuzzy set over X has the form

A= f⟨x, μA xð Þ, nA xð Þ⟩jx∈Xg,

where µA(x), νA(x) are degrees of membership and non-membership of elements
x ∈ X to a fixed set A ⊂ X, with 0 ≤ µA(x), νA(x) ≤ 1 and 0 ≤ µA(x) + νA(x) ≤ 1.

Intuitionistic fuzzy sets were defined by Atanassov, originally in 1983 [1] and
extensively presented in [3, 5, 7].

The IFSs have different geometrical interpretations (see, e.g., [5, 7]). One of
them is linear, in analogy with the visualization of the ordinary fuzzy sets. In
another, completely IFS-specific interpretation, first introduced in [4] (also, [5, 7]),
the membership and non-membership values of each element x of the set A are
interpreted as points into the an orthogonal triangle, with coordinates (0; 0), (1; 0)
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and (0; 1), where the hypotenuse is the graphical representation of the [0; 1], to
which elements of the ordinary fuzzy set belong.

Over IFS, a number of operations, relations and operators have been defined. For
the needs of the present research, the two major topological operators in use,
defined by Atanassov in 1985 and later extended (see [2, 5, 6]).

2.2 InterCriteria Analysis

Here we will briefly repeat the theoretical framework of the proposed approach,
firstly proposed in [9], while slightly improving in this part the notation from [11].

The approach of InterCriteria Analysis (see the ICA Research portal [14]) was
originally devised in 2014 as an approach for IFS-based identification of correla-
tions among a set of criteria involved in a decision making process. This is needed
in problems, where measuring according to some of the criteria in the set is slower
or more expensive, thus resulting in delay or raising the cost of the overall process
of decision making. When such problems are being solved, the decision maker may
deem appropriate to reasonably eliminate these criteria, in order to achieve econ-
omy and efficiency, while not compromising the overall level of accuracy. The ICA
approach has been developed in order to address exactly such class of problems.
Since then the approach has been extensively explored in both theoretical and
applied direction. The aim is to have it approbated with real life examples with two
major goals. The results may validate the approach by detecting patterns of cor-
relations between the criteria, which are expected or known in advance through
other methods, and furthermore the results may lead to discovery of new, previ-
ously unknown patterns that may.

The approach employs an index matrix (IM, see [8]) M of m rows {O1, …, Om}
and n columns {C1, …, Cn}, where for every p, q (1 ≤ p ≤ m, 1 ≤ q ≤ n), Op in an
evaluated object, Cq is a evaluation criterion, and eOpCq is the evaluation of the p-th
object against the q-th criterion, defined as a real number or another object that is
comparable according to relation R with all the rest elements of the index matrix M.
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From the requirement for comparability above, it follows that for each i, j, k it
holds the relation R(aOiCk, aOjCk). The relation R has dual relation R, which is true in
the cases when relation R is false, and vice versa.

For the needs of our decision making method, pairwise comparisons between
every two different criteria are made along all evaluated objects. During the com-
parison, it is maintained one counter of the number of times when the relation
R holds, and another counter for the dual relation.

Let Sμk, l be the number of cases in which the relations R(eOiCk, eOjCk) and R(eOi
Cl, eOjCl) are simultaneously satisfied. Let also Sνk, l be the number of cases in which
the relations R(eOiCk, eOjCk) and the dual relation R(eOiCl, eOjCl) are simultaneously
satisfied. As the total number of pairwise comparisons between the object is m.n.
(n – 1)/2, it is seen that there hold the inequalities:

0≤ Sμk, l + Sνk, l ≤
nðn− 1Þ

2
.

For every k, l, such that 1 ≤ k ≤ l ≤ m, and for n ≥ 2 two numbers are defined:

μCk ,Cl
=2

Sμk, l
nðn− 1Þ , νCk ,Cl =2

Sνk, l
nðn− 1Þ .

The pair constructed from these two numbers plays the role of the intuitionistic
fuzzy evaluation of the relations that can be established between any two criteria Ck

and Cl. In this way the index matrix M that relates evaluated objects with evaluating
criteria can be transformed to another index matrix M* that gives the relations
among the criteria:

1 1 1 1 1 1

1 1

1

1 ,C ,C ,C ,C

,C ,C ,C ,C

* ., ,

, ,

m m

m m m m m m

m

C C C C

m C C C C

C C
M
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C
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From practical considerations, it has been more flexible to work with two index
matrices Mμ and Mν, rather than with the index matrix M* of IF pairs.

The final step of the ICA algorithm is to determine the degrees of correlation
between the criteria, depending on the user’s choice of µ and ν. We call these
correlations between the criteria: ‘positive consonance’, ‘negative consonance’ or
‘dissonance’. Let α, β ∈ [0; 1] be the threshold values, against which we compare
the values of µCk,Cl and νCk,Cl. We call that criteria Ck and Cl are in:

• (α, β)-positive consonance, if µCk,Cl > α and νCk,Cl < β;
• (α, β)-negative consonance, if µCk,Cl < β and νCk,Cl > α;
• (α, β)-dissonance, otherwise.
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The present work is a next step of the research, which was branched out in [10]
in a new direction, different from the extensive studies related to the adequate
methods to defining thresholds, among which [11–13].

3 Main Results

When we have an (arbitrary) IFS plotted on the IF interpretational triangle, we can
apply to it the topological operators Closure and Interior, which are defined using
the following formulas, and illustrated in Fig. 1. (see [2, 5, 7]).

C Að Þ= f⟨x, sup
y∈E

μAðyÞ, infy∈E
νAðyÞ⟩jx∈Eg

I Að Þ= f⟨x, inf
y∈E

μAðyÞ, sup
y∈E

νAðyÞ⟩jx∈Eg

We will note that since, in the context of InterCriteria Analysis we are only
working with finite sets ofm objects, of n criteria, and therefore with a resultant finite
set of n(n – 1)/2 InterCriteria pairs, we can safely replace the functions ‘supremum’

and ‘infimum’, respectively by the functions ‘maximum’ and ‘minimum’.
We will note that depending on the particular set, it may have the form of a

triangle, in the case of fuzzy set, all of which elements are plotted onto the hypo-
tenuse, or a trapezium, or a pentagon, see Fig. 2. Let us consider the most general
case of a pentagon.

We are interested to find an appropriate procedure to rank the points corre-
sponding to the InterCriteria pairs, and we have to make the stipulation that here we

(0;0) (1;0)

(0;1)

I(A)

C(A)

R

Fig. 1 An IFS, plotted onto
the IF Triangle, with the
indicated places of the
topological operators Closure
and Interior
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are considering a problem for which solution with the ICA method, we need to
discover the highest possible consonances between the criteria, which back to the IF
triangular interpretation means that we are looking for ranking them per their
proximity to the point (1; 0).

The procedure for ranking the InterCriteria pairs, hence, comprises two phases:
1. To define the unit lengths of the rectangular grid that will divide the pentagon; 2.
To define the consequence of traversing the so-defined subrectangles of the grid.

3.1 Defining the Rectangular Grid

A possible way to define the unit lengths a, b of the rectangular grid is given with
the following two formulas:

a=
max
y∈E

μAðyÞ− min
y∈E

μAðyÞ
nðn− 1Þ

2

, b=
max
y∈E

νAðyÞ− min
y∈E

νAðyÞ
nðn− 1Þ

2

The lengths PQ and QR are divided by the total number of points in the plotted
set, and this is the finest possible division for the grid.

Another approach is to assign to a and b, respectively, the smallest possible
positive, non-null difference in the first coordinates of any two points of the set, and
the smallest possible positive, non-null difference in the second coordinates of any
two points in the set, by the formulas:

a= min
i, j∈A

ðjμi − μjjÞ, b= min
k, l∈A

ðjνk − νljÞ.

A simple check with arbitrary values can show that the results returned are not
the identical.

For the sake of completeness, we can also note the most obvious way of defining
the unit lengths of the rectangular grid by dividing PQ and QR into predefined

Fig. 2 Triangle, trapezium or pentagon are the possible shapes of the zone, enclosed by the
topological operators Closure and Interior, and the hypotenuse of the IF Triangle
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number(s), not necessarily the same number of sections per side. Then, for pre-
defined numbers u, w, the formulas will have the following forms:

a=
max
y∈E

μAðyÞ− min
y∈E

μAðyÞ
u

, b=
max
y∈E

νAðyÞ− min
y∈E

νAðyÞ
w

It is to be noted that the idea for the grid and its divisions is to a certain extent an
analogue of the idea of setting a threshold.

3.2 Traversing the Subrectangles of the Grid

The question of the consequence of traversing the subrectangles of the grid, and
thus determining the ordering of the InterCriteria pairs, is very interesting by itself,
and reduces to the essential question of how we prioritize between the three intu-
itionistic fuzzy components of membership, non-membership and uncertainty.
Different strategies, or scenarios, can be discussed here. Let us illustrate our dis-
cussions with the IFS from Fig. 3, and the grid in which the unit lengths have been
determined in one of the possible ways, discussed above in Sect. 3.1.

(1) Strategy “Max μ First”
In response to this strategy, we start with the subrectangle with the maximal
membership and minimal non-membership, i.e. the one containing the set’s closure,
and traverse through the grid in vertical direction (bottom-to-top), in a way that
preserves the membership part as high as possible, while running through the
gradually increasing non-membership parts, as illustrated in Fig. 4.

P

Q R

S 

T 

Fig. 3 The segment from the IF Triangle, containing the pentagonal zone, enclosed by the
topological operators Closure and Interior (points R and P) and the hypotenuse, gridded in red with
unit rectangles
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The following pseudocode gives it in a more formal way:

(2) Strategy “Min ν First”
In response to this strategy, we again start with the subrectangle with the

maximal membership and minimal non-membership, but this time we traverse
through the grid in horizontal direction (right-to-left), in a way that preserves the
non-membership part as low as possible, while running through the gradually
decreasing membership parts. The illustration of this strategy follows by analogy,
Fig. 5.

The following pseudocode gives it in a more formal way:

(3) Diagonal Strategy
We start with the subrectangle with the maximal membership and minimal

nonmembership. As a next step, we take the simultaneously the union of the
subrectangles that are located one up and one left of the previous, and so forth, as
illustrated in Fig. 4 and by the following pseudocode (Fig. 6).

P

Q R

S 

T 

…

Fig. 4 Traversing the subrectangles of the grid, following the strategy “max μ first”

P

Q R

T

…

…

Fig. 5 Traversing the subrectangles of the grid, following the strategy “min ν first”
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Any of the strategies in A. can be combined with whichever strategy from B.,
per expert’s decision, which makes the list of possible choices for the expert wide
enough. New alternative options are also possible.

4 Example and Discussions

We will demonstrate the proposed strategies for traversing and ranking with an
example. In a series of publications, we have illustrated these subsequent steps of
elaborating the theory of ICA with a case study aimed at application of the ICA
approach to data sourced from the World Economic Forum’s annual Global
Competitiveness Reports (GCRs), for the 28 EU member states from years
2008–2009 to 2013–2014, taking as a motivation the WEF’s general address to
policy makers to ‘identify and strengthen the transformative forces that will drive
future economic growth’ [16].

Here, we will present this new step of developing the theory of ICA with data
from the GCR for the year 2014–2015. The data extracted from the GCR are the
evaluations of the 28 EU Member States (in ICA: objects) according to the 12
pillars of competitiveness (in ICA: criteria), which by the adopted methodology of
WEF are numbers between 1 and 7, with precision of one number after the decimal
point. The 12 criteria are ‘1. Institutions’; ‘2. Infrastructure’; ‘3. Macroeconomic
stability’; ‘4. Health and primary education’; ‘5. Higher education and training’; ‘6.
Goods market efficiency’; ‘7. Labor market efficiency’; ‘8. Financial market
sophistication’; ‘9. Technological readiness’; ‘10. Market size’; ‘11. Business
sophistication’; ‘12. Innovation’. These evaluations are input in the form of an
index matrix with dimensions 28 × 12.

A software application implementing the algorithm of ICA has performed the
computations over this matrix and has produced the following two 12 × 12
matrices, which contain the membership and the non-membership components of
the intuitionistic fuzzy pairs that represent for each pair of criteria the degree of

P

Q R

S

T 

…

Fig. 6 Traversing the grid, following the diagonal strategy
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either positive or negative consonance, or dissonance. The two matrices are sym-
metrical according to their main diagonal, along which all the IF pairs are all
identical to the perfect Truth, μ = 1, ν = 0, since every criterion would perfectly
correlated only with itself.

Taking the results produced by the ICA, with the IF pairs distributed in two
index matrices Mμ and Mν, collected respectively in Tables 1, 2, we plot them onto
the IF interpretational triangle in Fig. 7.

Table 1 Discovered membership values with the application of ICA for 2014–2015

Mμ 1 2 3 4 5 6 7 8 9 10 11 12

1 0.696 0.585 0.690 0.796 0.839 0.772 0.706 0.833 0.497 0.783 0.817

2 0.696 0.460 0.659 0.714 0.651 0.563 0.545 0.751 0.648 0.775 0.765

3 0.585 0.460 0.407 0.529 0.595 0.664 0.704 0.585 0.439 0.540 0.548

4 0.690 0.659 0.407 0.751 0.667 0.558 0.492 0.661 0.495 0.698 0.698

5 0.796 0.714 0.529 0.751 0.743 0.653 0.598 0.759 0.577 0.762 0.812

6 0.839 0.651 0.595 0.667 0.743 0.780 0.675 0.770 0.476 0.751 0.738

7 0.772 0.563 0.664 0.558 0.653 0.780 0.722 0.728 0.418 0.656 0.683

8 0.706 0.545 0.704 0.492 0.598 0.675 0.722 0.677 0.516 0.656 0.664

9 0.833 0.751 0.585 0.661 0.759 0.770 0.728 0.677 0.542 0.786 0.786

10 0.497 0.648 0.439 0.495 0.577 0.476 0.418 0.516 0.542 0.614 0.603

11 0.783 0.775 0.540 0.698 0.762 0.751 0.656 0.656 0.786 0.614 0.857

12 0.817 0.765 0.548 0.698 0.812 0.738 0.683 0.664 0.786 0.603 0.857

Table 2 Discovered non-membership values with the application of ICA for 2014–2015

Mν 1 2 3 4 5 6 7 8 9 10 11 12

1 0.222 0.349 0.169 0.135 0.071 0.140 0.212 0.106 0.447 0.138 0.114

2 0.222 0.460 0.188 0.198 0.241 0.331 0.354 0.175 0.294 0.132 0.159

3 0.349 0.460 0.460 0.405 0.312 0.246 0.217 0.352 0.508 0.378 0.381

4 0.169 0.188 0.460 0.108 0.177 0.278 0.339 0.190 0.373 0.140 0.146

5 0.135 0.198 0.405 0.108 0.177 0.249 0.315 0.175 0.368 0.159 0.114

6 0.071 0.241 0.312 0.177 0.177 0.106 0.212 0.143 0.447 0.153 0.161

7 0.140 0.331 0.246 0.278 0.249 0.106 0.172 0.188 0.497 0.235 0.220

8 0.212 0.354 0.217 0.339 0.315 0.212 0.172 0.243 0.410 0.257 0.254

9 0.106 0.175 0.352 0.190 0.175 0.143 0.188 0.243 0.405 0.138 0.148

10 0.447 0.294 0.508 0.373 0.368 0.447 0.497 0.410 0.405 0.320 0.336

11 0.138 0.132 0.378 0.140 0.159 0.153 0.235 0.257 0.138 0.320 0.069

12 0.114 0.159 0.381 0.146 0.114 0.161 0.220 0.254 0.148 0.336 0.069
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Fig. 7 Example with the ICA
results for the year
2014–2015, plotted on the IF
triangle

Table 3 Ranking of the InterCriteria consonance pairs

Rank # Pairs Criteria μ ν

1 4 11. Business sophistication—12. Innovation 0.857 0.069
1. Institutions—6. Goods market efficiency 0.839 0.071
1. Institutions—9. Technological readiness 0.833 0.106
1. Institutions—12. Innovation 0.817 0.114

2 2 5. Higher education and training—12. Innovation 0.812 0.114
1. Institutions—5. Higher education and training 0.796 0.135

3 10 9. Technological readiness—11. Business sophistication 0.786 0.138
9. Technological readiness—12. Innovation 0.786 0.148
1. Institutions—11. Business sophistication 0.783 0.138
6. Goods market efficiency—7. Labor market efficiency 0.780 0.106
2. Infrastructure—11. Business sophistication 0.775 0.132
1. Institutions—7. Labor market efficiency 0.772 0.140
6. Goods market efficiency—9. Technological readiness 0.770 0.143
2. Infrastructure—12. Innovation 0.765 0.159
5. Higher education and training—11. Business
sophistication

0.762 0.159

5. Higher education and training—9. Technological readiness 0.759 0.175
(continued)
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Table 3 (continued)

Rank # Pairs Criteria μ ν

4 6 4. Health and primary education—5. Higher education and
training

0.751 0.108

6. Goods market efficiency—11. Business sophistication 0.751 0.153
2. Infrastructure—9. Technological readiness 0.751 0.175
5. Higher education and training—6. Goods market efficiency 0.743 0.177
6. Goods market efficiency—12. Innovation 0.738 0.161
7. Labor market efficiency—9. Technological readiness 0.728 0.188

5 8 7. Labor market efficiency—8. Financial market
sophistication

0.722 0.172

2. Infrastructure—5. Higher education and training 0.714 0.198
1. Institutions—8. Financial market sophistication 0.706 0.212
3. Macroeconomic stability—8. Financial market
sophistication

0.704 0.217

4. Health and primary education—11. Business
sophistication

0.698 0.140

4. Health and primary education—12. Innovation 0.698 0.146
1. Institutions—2. Infrastructure 0.696 0.222
1. Institutions—4. Health and primary education 0.690 0.169

6 5 7. Labor market efficiency—12. Innovation 0.683 0.220
8. Financial market sophistication—9. Technological
readiness

0.677 0.243

6. Goods market efficiency—8. Financial market
sophistication

0.675 0.212

4. Health and primary education—6. Goods market efficiency 0.667 0.177
3. Macroeconomic stability—7. Labor market efficiency 0.664 0.246

7 7 8. Financial market sophistication—12. Innovation 0.664 0.254
4. Health and primary education—9. Technological readiness 0.661 0.190
2. Infrastructure—4. Health and primary education 0.659 0.188
7. Labor market efficiency—11. Business sophistication 0.656 0.235
8. Financial market sophistication—11. Business
sophistication

0.656 0.257

5. Higher education and training—7. Labor market efficiency 0.653 0.249
2. Infrastructure—6. Goods market efficiency 0.651 0.241

8 1 2. Infrastructure—10. Market size 0.648 0.294

9 4 10. Market size—11. Business sophistication 0.614 0.320
10. Market size—12. Innovation 0.603 0.336
5. Higher education and training—8. Financial market
sophistication

0.598 0.315

3. Macroeconomic stability—6. Goods market efficiency 0.595 0.312
(continued)
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Let us assume that the unit length of the introduced rectangular grid is defined in
the easiest possible way, with a = b = 0.05. Let us also assume that the traversing
strategy adopted in the diagonal strategy discussed above. With respect to the listed
steps, the ranking of the InterCriteria pairs is as follows in Table 3.

We will only note here that depending on the shape of IFS, obtained by its
plotted elements, we can consider optimizing the traversing procedures, by skipping
subrectangles of the grid that do not contain set elements. To do this, we should use
the four topological operators ГL(A), ГR(A), ГU(A), ГD(A), which give the minimal
convex region that completely contains the set A, per the definitions and formulas
given in [15].

5 Conclusions

Despite the fact that the above proposed algorithms for traversing and ranking of
the elements of an IFS have been developed for the needs of the InterCriteria
Analysis, they can be used in any other relevant context, as well. The authors will
be interested in their wider adoption and applicability.

Table 3 (continued)

Rank # Pairs Criteria μ ν

10 5 1. Institutions—3. Macroeconomic stability 0.585 0.349
3. Macroeconomic stability—9. Technological readiness 0.585 0.352
5. Higher education and training—10. Market size 0.577 0.368
2. Infrastructure—7. Labor market efficiency 0.563 0.331
4. Health and primary education—7. Labor market efficiency 0.558 0.278

11 3 3. Macroeconomic stability—12. Innovation 0.548 0.381
2. Infrastructure—8. Financial market sophistication 0.545 0.354
9. Technological readiness—10. Market size 0.542 0.405

12 5 3. Macroeconomic stability—11. Business sophistication 0.540 0.378
3. Macroeconomic stability—5. Higher education and
training

0.529 0.405

8. Financial market sophistication—10. Market size 0.516 0.410
1. Institutions—10. Market size 0.497 0.447
4. Health and primary education—10. Market size 0.495 0.373

13 3 4. Health and primary education—8. Financial market
sophistication

0.492 0.339

6. Goods market efficiency—10. Market size 0.476 0.447
2. Infrastructure—3. Macroeconomic stability 0.460 0.460

14 1 3. Macroeconomic stability—10. Market size 0.439 0.508
15 2 7. Labor market efficiency—10. Market size 0.418 0.497

3. Macroeconomic stability—4. Health and primary
education

0.407 0.460
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This research is an essential development of previous works where the corre-
lations between the criteria (hence the term ‘InterCriteria’) were analysed sepa-
rately, by first setting priority on either the membership, or the non-membership
component, and plotting them linearly. Starting from [10], and continuing here,
however, we have started exploring a much more adequate approach for handling
both IF components simultaneously by plotting them in the plane of the intu-
itionistic fuzzy interpretation triangle.

In future, it will be interesting to discuss the possibility of the usage of the
six generalizations of the two topological operators Closure and Interior, as defined
in [7].
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A Novel Similarity Measure Between
Intuitionistic Fuzzy Sets for Constructing
Intuitionistic Fuzzy Tolerance

Janusz Kacprzyk, Dmitri A. Viattchenin, Stanislau Shyrai
and Eulalia Szmidt

Abstract This paper deals with the problem of constructing intuitionistic fuzzy
tolerance from a family of intuitionistic fuzzy sets. A method to calculate the
intuitionistic fuzzy tolerance degrees between intuitionistic fuzzy sets on the basis
of the Euclidean distance is proposed. An illustrative example used to compare the
proposed similarity measure with other similarity measures and an application of
the proposed similarity measure to clustering problem is considered. Preliminary
conclusions are formulated.

Keywords Intuitionistic fuzzy set ⋅ Intuitionistic fuzzy tolerance ⋅ Similarity
measure ⋅ Clustering

1 Introduction

Since the original Atanassov’s [1] paper was published, intuitionistic fuzzy set
theory has been applied to many areas and new concepts were introduced. Intu-
itionistic fuzzy set theory was developed by different researchers and monographs
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[2, 3] are most informative bibliographical sources in this area. Intuitionistic fuzzy
clustering procedures were also elaborated by different researchers. Different rela-
tional and prototype-based intuitionistic fuzzy clustering procedures are presented
in literature. For example, intuitionistic fuzzy-set clustering methods are described
by Xu in [4].

Distance measurement is a basis for clustering techniques. Different distances
and similarity measures between intuitionistic fuzzy sets are considered in [5].
Moreover, similarity measures between intuitionistic fuzzy sets for constructing
intuitionistic fuzzy tolerance relation were proposed in [6, 7].

In this paper, we propose a new method of construction of intuitionistic fuzzy
tolerances based on a similarity measure between intuitionistic fuzzy sets. The
proposed similarity measure is based on generalization of normalized Euclidean
distance. So, the contents of this paper is as follow: in the second section some
definitions of the intuitionistic fuzzy set theory are described, in the third section
two similarity measures between intuitionistic fuzzy sets for constructing intu-
itionistic fuzzy tolerance are considered, in the fourth section a novel similarity
measure is proposed, in the fifth section the new similarity measure is illustrated by
a short example, in the sixth section an application of the proposed similarity
measure to clustering is given in comparison with the similarity measure based on
generalization of normalized Hamming distance, in the seventh section some pre-
liminary conclusions are given.

2 Basic Definitions of the Intuitionistic Fuzzy Set Theory

Let us remind some basic definitions of the Atanassov’s intuitionistic fuzzy set
theory [1–3]. All concepts will be considered for a finite universe X = fx1, . . . , xng.

An intuitionistic fuzzy set IA in X is given by ordered triple IA= ⟨xi, μIAðxiÞ,f
νIAðxiÞ⟩jxi ∈Xg, where μIA, νIA: X→ ½0, 1� should satisfy a condition

0≤ μIAðxiÞ+ νIAðxiÞ≤ 1, ð1Þ

for all xi ∈X. The values μIAðxiÞ and νIAðxiÞ denote the degree of membership and
the degree of non-membership of element xi ∈X to IA, respectively. For each
intuitionistic fuzzy set IA in X an intuitionistic fuzzy index [1] of an element xi ∈X
in IA can be defined as follows

ρIAðxiÞ=1− μIAðxiÞ+ νIAðxiÞð Þ. ð2Þ

The intuitionistic fuzzy index ρIAðxiÞ can be considered as a hesitancy degree of
xi to IA. It is seen that 0≤ ρIAðxiÞ≤ 1 for all xi ∈X. Obviously, when
νIAðxiÞ=1− μIAðxiÞ for every xi ∈X, the intuitionistic fuzzy set IA is an ordinary
fuzzy set in X. For each ordinary fuzzy set A in X, we have ρAðxiÞ=0, ∀xi ∈X.
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Let X = fx1, . . . , xng be an ordinary non-empty set. The binary intuitionistic
fuzzy relation IR on X is an intuitionistic fuzzy subset IR of X × X, which is given
by the expression

IR= ⟨ðxi, xjÞ, μAðxi, xjÞ, νAðxi, xjÞ⟩jxi, xj ∈X
� �

, ð3Þ

where μIR:X ×X→ ½0, 1� and νIR: X ×X→ ½0, 1� satisfy the condition 0≤ μIRðxi, xjÞ
+ νIRðxi, xjÞ≤ 1 for every ðxi, xjÞ ∈ X ×X [8].

Let IFRðXÞ denote the set of all intuitionistic fuzzy relations on some universe
X. An intuitionistic fuzzy relation IR∈ IFRðXÞ is reflexive if for every xi ∈X,
μIRðxi, xiÞ=1 and νIRðxi, xiÞ=0. An intuitionistic fuzzy relation IR∈ IFRðXÞ is
called symmetric if for all ðxi, xjÞ∈X ×X, μIRðxi, xjÞ= μIRðxj, xiÞ and νIRðxi, xjÞ
= νIRðxj, xiÞ. An intuitionistic fuzzy relation IT in X is called an intuitionistic fuzzy
tolerance if it is reflexive and symmetric. So, any intuitionistic fuzzy tolerance can
be presented by a matrix rn× n = ½μITðxi, xjÞ, νITðxi, xjÞ�, i, j=1, . . . , n, where a
tolerance coefficient rðxi, xjÞ= μITðxi, xjÞ, νITðxi, xjÞ

� �
, i, j∈ f1, . . . , ng is called a

closeness degree of xi and xj [6].

3 Constructing an Intuitionistic Fuzzy Tolerances Based
on Measurement of Similarities Between Intuitionistic
Fuzzy Sets

The method for constructing the intuitionistic fuzzy tolerance relation was proposed
by Wang et al. in [6]. The similarity measure is based on the normalized Hamming
distance and the similarity measure can be expressed by a formula

rðIA, IBÞ=

1, 0ð Þ, IA= IB

1−
1
n
∑
n

i=1
νIAðxiÞ− νIBðxiÞj j− 1

n
∑
n

i=1
ρIAðxiÞ− ρIBðxiÞj j,

1
n
∑
n

i=1
νIAðxiÞ− νIBðxiÞj j

0

BBB@

1

CCCA
, IA≠ IB

8
>>>>>><

>>>>>>:

,

ð4Þ

for all i, j=1, . . . , n. That is why the closeness degree rðIA, IBÞ= μITðIA, IBÞ,ð
νITðIA, IBÞÞ of intuitionistic fuzzy sets IA and IB can be constructed according to
the formula (4).

On the other hand, the method for constructing the intuitionistic fuzzy tolerance
which based on the normalized Hausdorff distance was proposed in [7]. The cor-
responding similarity measure can be expressed by a formula
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hðIA, IBÞ=
1−

1
n
∑
n

i=1
max νIAðxiÞ− νIBðxiÞj j, ρIAðxiÞ− ρIBðxiÞj jf g,

1
n
∑
n

i=1
max νIAðxiÞ− νIBðxiÞj j

0

BB@

1

CCA, ð5Þ

for all i, j=1, . . . , n.
Corresponding intuitionistic fuzzy relations possesses the symmetry property

and the reflexivity property. Moreover, the condition 0≤ μITðIA, IBÞ+ νITðIA, IBÞ
≤ 1 is met for any intuitionistic fuzzy sets IA and IB. These facts were proved in
[6, 7].

4 The Proposed Similarity Measure

The method for constructing the intuitionistic fuzzy tolerance can be developed for
a case of the normalized Euclidean distance. So, the corresponding similarity
measure can be written as a

eðIA, IBÞ=
1−

1
2n

∑
n

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νIAðxiÞ− νIBðxiÞð Þ2 + ρIAðxiÞ− ρIBðxiÞð Þ2

q
,

1
2n

∑
n

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νIAðxiÞ− νIBðxiÞð Þ2

q

0

BBB@

1

CCCA
, ð6Þ

for all i, j=1, . . . , n.
Let us consider some basic properties of the proposed similarity measure (6). In

the first place, we need to check whether 0≤ μITðIA, IBÞ+ νITðIA, IBÞ≤ 1 holds or
not.

Lemma 1 Let IA and IB be two intuitionistic fuzzy sets on X = fx1, . . . , xng and IT
be a binary intuitionistic fuzzy relation on X. The condition 0≤ μITðIA, IBÞ+
νITðIA, IBÞ≤ 1 is met for the closeness degree of intuitionistic fuzzy sets IA and IB
which is constructed according to the formula (6).

Proof Let eðIA, IBÞ= μeðIA, IBÞ, νeðIA, IBÞð Þ. So,

μeðIA, IBÞ+ νeðIA, IBÞ=1−
1
2n

∑
n

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νIAðxiÞ− νIBðxiÞð Þ2 + ρIAðxiÞ− ρIBðxiÞð Þ2

q

+
1
2n

∑
n

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νIAðxiÞ− νIBðxiÞð Þ2

q
≤ 1−

1
2n

∑
n

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νIAðxiÞ− νIBðxiÞð Þ2 + ρIAðxiÞ− ρIBðxiÞð Þ2

q

+
1
2n

∑
n

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νIAðxiÞ− νIBðxiÞð Þ2 + ρIAðxiÞ− ρIBðxiÞð Þ2

q
=1.

On the other hand, an equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p
≤ aj j+ bj j is met. That is why
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μeðIA, IBÞ+ νeðIA, IBÞ≥ 1−
1
2n

∑
n

i=1
νIAðxiÞ− νIBðxiÞj j− 1

2n
∑
n

i=1
ρIAðxiÞ− ρIBðxiÞj j

+
1
2n

∑
n

i=1
νIAðxiÞ− νIBðxiÞj j=1−

1
2n

∑
n

i=1
ρIAðxiÞ− ρIBðxiÞj j≥ 0,

which completes the proof. □

Lemma 2 The binary intuitionistic fuzzy relation IT on X which is constructed
according to the formula (6) is the reflexive intuitionistic fuzzy relation on X.

Proof The proof is straightforward. □

Lemma 3 The binary intuitionistic fuzzy relation IT on X which is constructed
according to the formula (6) is the symmetric intuitionistic fuzzy relation on X.

Proof The proof is straightforward. □

The corollary from these lemmas is the proposition that the intuitionistic fuzzy
relation IT constructed according to the formula (6) is the intuitionistic fuzzy
tolerance.

5 An Illustrative Example

Let us consider an example which was described by Wang, Xu, Liu, and Tang in
[6]. Five different cars xi, i=1, . . . , 5 must be classified into several kinds. Each car
has six evaluation attributes which represent the oil consumption, coefficient of
friction, price, comfortable degree, design and safety coefficient evaluated for five
cars. Denote oil consumption by x1, coefficient of friction by x2, price by x3,
comfortable degree by x4, design by x5 and safety coefficient by x6. The charac-
teristics information of the cars is presented in Table 1.

So, each car can be considered as an intuitionistic fuzzy set xi, i=1, . . . , 5, and
μxiðxtÞ∈ ½0, 1�, i=1, . . . , 5, t=1, . . . , 6 are their membership degrees and
νxiðxtÞ, i=1, . . . , 5, t=1, . . . , 6 are their non-membership degrees. In other words,
each intuitionistic fuzzy set xi, i=1, . . . , 5 is defined on the universe of attributes

Table 1 The initial data set, [4]

Objects Attributes

x1 x2 x3 x4 x5 x6

x1 (0.3, 0.5) (0.6, 0.1) (0.4, 0.3) (0.8, 0.1) (0.1, 0.6) (0.5, 0.4)
x2 (0.6, 0.3) (0.5, 0.2) (0.6, 0.1) (0.7, 0.1) (0.3, 0.6) (0.4, 0.3)
x3 (0.4, 0.4) (0.8, 0.1) (0.5, 0.1) (0.6, 0.2) (0.4, 0.5) (0.3, 0.2)
x4 (0.2, 0.4) (0.4, 0.1) (0.9, 0.0) (0.8, 0.1) (0.2, 0.5) (0.7, 0.1)
x5 (0.5, 0.2) (0.3, 0.6) (0.6, 0.3) (0.7, 0.1) (0.6, 0.2) (0.5, 0.3)
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fxtjt=1, . . . , 6g. That is why the membership degree μxiðxtÞ can be interpreted as
the degree of expressiveness of some attribute xt, t∈ f1, . . . , 6g for the object
xi, i∈ f1, . . . , 5g and the non-membership degree νxiðxtÞ can be considered as the
degree of non-expressiveness of the attribute. Thus, if X = fx1, . . . , xng is the set of
objects which are defined on the universe of attributes fxtjt=1, . . . ,mg then the
formula (4) can be rewritten as follows:

rðxi, xjÞ=

1, 0ð Þ, xi = xj

1−
1
m

∑
m

t=1
νxiðxtÞ− νxjðxtÞ
�� ��−

1
m

∑
m

t=1
ρxiðxtÞ− ρxjðxtÞ
���

���,

1
m

∑
m

t=1
νxiðxtÞ− νxjðxtÞ
�� ��

0

BBB@

1

CCCA
, xi ≠ xj

8
>>>>>><

>>>>>>:

,

ð7Þ

for all i, j=1, . . . , n. In order of priority, the formula (5) can be rewritten as
follows:

hðxi, xjÞ=
1−

1
m

∑
m

t=1
max νxiðxtÞ− νxjðxtÞ

�� ��, ρxiðxtÞ− ρxjðxtÞ
���

���
n o

,

1
m

∑
m

t=1
max νxiðxtÞ− νxjðxtÞ

�� ��

0

BB@

1

CCA, ð8Þ

for all i, j=1, . . . , n, and the formula (6) can be rewritten in similar manner as
follows:

eðxi, xjÞ=
1−

1
2m

∑
m

t=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

νxiðxtÞ− νxjðxtÞ
� �2 + ρxiðxtÞ− ρxjðxtÞ

� 	2
r

,

1
2m

∑
m

t=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νxiðxtÞ− νxjðxtÞ
� �2

q

0

BBB@

1

CCCA
, ð9Þ

for all i, j=1, . . . , n. By applying the formula (7), the matrix of intuitionistic fuzzy
tolerance relation was obtained [6]. The matrix is presented in Table 2.

The matrix of intuitionistic fuzzy tolerance obtained by using formula (8) is
equal to the matrix of intuitionistic fuzzy tolerance which was obtained by using
formula (7). By applying the formula (9) to the initial data set, the matrix of
intuitionistic fuzzy tolerance relation was also obtained. The matrix is presented in
Table 3.

Thus, values μITðxi, xjÞ are different and values νITðxi, xjÞ are equal for all pairs
ðxi, xjÞ in Tables 2 and 3.
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6 An Application to Clustering

Let us consider the results of processing the initial attributive intuitionistic fuzzy
data by the D-PAIFC-TC-algorithm [9] for similarity measures (7) and (9).

In the first place, consider the result, obtained by using the similarity measure
(7). By executing the D-PAIFC-TC-algorithm, the principal allotment IR*

PðXÞ
among two intuitionistic fuzzy clusters was obtained. Membership functions and
non-membership functions of two classes are presented in Fig. 1.

Table 2 The matrix of intuitionistic fuzzy tolerance obtained by using formula (7)

IT x1 x2 x3 x4 x5
x1 (1.00, 0.00)
x2 (0.80, 0.10) (1.00, 0.00)
x3 (0.72, 0.12) (0.82, 0.08) (1.00, 0.00)
x4 (0.75, 0.13) (0.72, 0.10) (0.70, 0.05) (1.00, 0.00)
x5 (0.65, 0.22) (0.68, 0.18) (0.63, 0.23) (0.63, 0.25) (1.00, 0.00)

Table 3 The matrix of intuitionistic fuzzy tolerance obtained by using formula (9)

IT x1 x2 x3 x4 x5
x1 (1.00, 0.00)
x2 (0.91, 0.10) (1.00, 0.00)
x3 (0.88, 0.12) (0.92, 0.08) (1.00, 0.00)
x4 (0.90, 0.13) (0.89, 0.10) (0.86, 0.05) (1.00, 0.00)
x5 (0.85, 0.22) (0.87, 0.18) (0.84, 0.23) (0.85, 0.25) (1.00, 0.00)

Fig. 1 The membership
values and non-membership
values of two intuitionistic
fuzzy clusters obtained by
using similarity measures (7)
and (8)
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In the second place, by executing the D-PAIFC-TC-algorithm for the formula
(9), the allotment IR*

PðXÞ among two intuitionistic fuzzy clusters was obtained.
Membership functions and non-membership functions of two classes are presented
in Fig. 2.

Membership values of the first class are represented by ○, non-membership
values of the first class are represented by ●, membership values of the second
class are represented by □ and non-membership values of the second class are
represented by ■ in Figs. 1 and 2. The third object is the typical point of the first
intuitionistic fuzzy cluster and the fifth object is the typical point of the second
intuitionistic fuzzy cluster in both experiments.

The illustrative example shows that membership values and non-membership
values of elements depend on the selected similarity measure.

7 Conclusions

The new method for the similarity measurement between intuitionistic fuzzy sets is
presented in the paper. The method is based on the normalized Euclidean distance.
This distance was used to generate a new similarity measure to calculate the degree
of similarity and degree of dissimilarity between intuitionistic fuzzy sets. Some
properties of the proposed similarity measure are considered and results of appli-
cation of the proposed similarity measure in comparison with the similarity measure
which based on generalization of normalized Hamming distance to clustering the
intuitionistic fuzzy data are discussed.

Fig. 2 The membership
values and non-membership
values of two intuitionistic
fuzzy clusters obtained by
using similarity measure (9)
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A New Proposal of Defuzzification
of Intuitionistic Fuzzy Quantities

Luca Anzilli and Gisella Facchinetti

Abstract In this paper we propose a method to defuzzify an intuitionistic fuzzy

quantity that, depending on two parameters, recover previous methods and leaves

freedom to the user.

Keywords Fuzzy sets ⋅ Fuzzy quantities ⋅ Intuitionistic fuzzy sets ⋅ Evaluation

1 Introduction

In many practical applications the available information corresponding to a fuzzy

concept may be incomplete, that is the sum of the membership degree and the non-

membership degree may be less than one. A possible solution is to use “Intuitionistic

fuzzy sets” (IFSs) introduced by Atanassov [3–5].

Working in a fuzzy context, for different reasons, an optimization problem, a deci-

sion making problem and a control system need to transform the fuzzy result into

a crisp value. In a fuzzy intuitionistic context the same problem occurs. This step

is classically called “defuzzification”. Many results are present in several papers for

fuzzy numbers. There are in literature different approaches. One of the most recur-

ring consists of the choice of a function that maps fuzzy numbers into the reals.

This idea offers two opportunities. The first is to associate a real number to a fuzzy

set, the second is to transfer the total order present into the reals to fuzzy numbers

permitting to choose the better solution. One of the more used function is called the

“centroid” that is the abscissa of the centre of gravity of output membership function

hypograph. This method has the advantage to be useful even for a general fuzzy set.

In the intuitionistic context the literature is not so wide. The problems in this context
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are more than one. First of all an IFS is defined by two membership functions, the

second one is that the fuzzy sets they identify an IFS may be non-normal and/or non-

convex and so any result of defuzzification method introduced for fuzzy numbers is

unusable. In [6, 7] the Authors present two methods, they call “de-i-fuzzification”,

to transform the IFS to evaluate in a fuzzy set. The solution to the problem they pro-

pose, justified by an optimization problem, is an average of the membership function

(μ) and one minus the non membership function (ν). Starting from this idea, Yager

in [9] propose a defuzzification way, in the discrete case, that matches the centroid.

In this paper we propose a different idea and approach for the second step. Even

if the two membership functions that individuate an IFS are non-normal and non-

convex we use an α-cut method and, solving an optimization problem, we introduce

a defuzzification method that has its generality in the presence of two sets of weights.

For a particular case of the weights we recover the centroid. But changing the weights

we found other methods present in literature for non-normal and non-convex fuzzy

sets. Our result is a sort of “generator” of defuzzification methods that, thanks to the

presence of the two families of weights, leaves to the user a wide choice depending

on his preferences and perceptions.

In Sect. 2 we give basic definitions and notations. In Sect. 3 we deal with defuzzi-

fication of intuitionistic fuzzy sets. In Sect. 4 we introduce intuitionistic fuzzy quan-

tities. In Sect. 5 we propose an evaluation of intuitionistic fuzzy quantities.

2 Preliminaries and Notation

2.1 Fuzzy Sets

Let X denote a universe of discourse. A fuzzy set A in X is defined by a membership

function μA ∶ X → [0, 1] which assigns to each element of X a grade of membership

to the set A. The height of A is hA = height A = supx∈X μA(x). The support and the

core of A are defined, respectively, as the crisp sets supp(A) = {x ∈ X;μA(x) > 0}
and core(A) = {x ∈ X;μA(x) = 1}. A fuzzy set A is normal if its core is nonempty.

The union of two fuzzy sets A and B is the fuzzy set A ∪ B defined by the membership

function μA∪B(x) = max{μA(x),μB(x)}, x ∈ X. The intersection is the fuzzy set A ∩
B defined by μA∩B(x) = min{μA(x),μB(x)}.

The α-cut of a fuzzy set A, with 0 ≤ α ≤ 1, is defined as the crisp set Aα ={
x ∈ X;μA(x) ≥ α

}
if 0 < α ≤ 1 and as the closure of the support if α = 0.

We say that A ⊆ B if μA(x) ≤ μB(x) for each x ∈ X. Note that A ⊆ B ⟺ Aα ⊆

Bα ∀α.

A fuzzy set is called convex if each α-cut is a closed interval Aα = [aL(α), aR(α)],
where aL(α) = inf Aα and aR(α) = supAα.
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2.2 Intuitionistic Fuzzy Sets

An intuitionistic fuzzy set (IFS) A in X is defined as

A =
{
⟨x,μA(x), νA(x)⟩ ; x ∈ X

}

where μA ∶ X → [0, 1] and νA ∶ X → [0, 1] satisfy the condition

0 ≤ μA(x) + νA(x) ≤ 1 .

The numbers μA(x), νA(x) ∈ [0, 1] denote the degree of membership and a degree

of non-membership of x to A, respectively. For each IFS A in X, we denote

πA(x) = 1 − μA(x) − νA(x)

the degree of the indeterminacy membership of the element x in A, that is the hesita-

tion margin (or intuitionistic index) of x ∈ A which expresses a lack of information

of whether x belongs to A or not. We have 0 ≤ πA(x) ≤ 1 for all x ∈ X.

3 Defuzzification of IFSs

We now deal with the problem to defuzzificate an IFS A. A way to associate to an

IFS A a real number may be described by the following procedure:

(i) transform the IFS A into a (standard) fuzzy set;

(ii) evaluate the standard fuzzy set by using a defuzzification method.

For step (i), in [7] the Authors called “de-i-fuzzification” a procedure to obtain

a suitable fuzzy set starting from an IFS. Furthermore, they proposed to use the

operator introduced in [4]

Dλ(A) =
{
⟨x,μA(x) + λπA(x), νA(x) + (1 − λ)πA(x)⟩; x ∈ X

}

with λ ∈ [0, 1]. Note thatDλ(A) is a standard fuzzy subset with membership function

μλ(x) = μA(x) + λπA(x)

In particular, they proposed λ = 0.5, as solution of the minimum problem

min
λ∈[0,1]

d(Dλ(A),A)
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where d is the Euclidean distance. In this case the fuzzy set D0.5(A) is characterized

by the membership function

μ(x) = 1
2
(1 + μA(x) − νA(x)). (1)

For step (ii), in agreement with the approach suggested in [9, Sect. 10], we may

evaluate the IFS A by computing the center of gravity (COG) of the obtained fuzzy

set, that is

Valλ(A) =
∫
+∞
−∞ xμλ(x) dx

∫
+∞
−∞ μλ(x) dx

(2)

with λ = 0.5.

Our aim is to propose a defuzzification method for an IFS A using α-cuts. In the

following we will present a defuzzification procedure for intuitionistic fuzzy quanti-

ties.

4 Intuitionistic Fuzzy Quantities

4.1 Fuzzy Quantities

We now introduce the concept of fuzzy quantity as defined in [1, 2].

Definition 1 Let N be a positive integer and let a1, a2,… , a4N be real numbers with

a1 < a2 ≤ a3 < a4 ≤ a5 < a6 ≤ a7 < a8 ≤ a9 < ⋯ < a4N−2 ≤ a4N−1 < a4N .

We call fuzzy quantity

A = (a1, a2,… , a4N ; h1, h2,… , hN , h1,2, h2,3,… , hN−1,N) (3)

where 0 < hj ≤ 1 for j = 1,… ,N and 0 ≤ hj,j+1 < min{hj, hj+1} for j = 1,
… ,N − 1, the fuzzy set defined by a continuous membership function μ ∶ ℝ →
[0, 1], with μ(x) = 0 for x ≤ a1 or x ≥ a4N , such that for j = 1, 2,… ,N

(i) μ is strictly increasing in [a4j−3, a4j−2], with μ(a4j−3) = hj−1,j and μ(a4j−2) =
hj,

(ii) μ is constant in [a4j−2, a4j−1], with μ ≡ hj,
(iii) μ is strictly decreasing in [a4j−1, a4j], with μ(a4j−1) = hj and μ(a4j) = hj,j+1,

and for j = 1, 2,… ,N − 1

(iv) μ is constant in [a4j, a4j+1], with μ ≡ hj,j+1,

where h0,1 = hN,N+1 = 0. Thus the height of A is hA = maxj=1,…,N hj.



A New Proposal of Defuzzification of Intuitionistic Fuzzy Quantities 189

Fig. 1 Piecewise linear T1

FQ (N = 2)
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We observe that in the case N = 1 the fuzzy quantity defined in (3) is fuzzy con-

vex, that is every α-cut Aα is a closed interval. If N ≥ 2 the fuzzy quantity defined

in (3) is a non-convex fuzzy set with N humps and height hA = maxj=1,…,N hj.
Figure 1 shows an example of piecewise linear fuzzy quantity with N = 2.

Proposition 1 Let A be the T1 FQ defined in (3) with height hA. Then for each α ∈
[0, hA] there exist an integer nAα, with 1 ≤ nAα ≤ N, and Aα

1 ,… ,Aα
nAα

disjoint closed
intervals such that

Aα =
nAα⋃

i=1
Aα
i =

nα⋃

i=1
[aLi (α), a

R
i (α)], (4)

where we have denoted Aα
i = [aLi (α), a

R
i (α)], with Aα

i < Aα
i+1 (that is aRi (α)

< aLi+1(α)). Thus n
A
α is the number of intervals producing the α-cut Aα.

From decomposition theorem for fuzzy sets and using previous result, we get the

representation

A =
⋃

α∈[0,hA]
αAα =

⋃

α∈[0,hA]
α

nAα⋃

i=1
Aα
i =

⋃

α∈[0,hA]

nAα⋃

i=1
αAα

i . (5)

4.2 Intuitionistic Fuzzy Quantities

Definition 2 We call intuitionistic fuzzy quantity (IFQ) an IFS A = ⟨μA, νA⟩ of the

real line such that μA and 1 − νA are membership functions of fuzzy quantities.
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Fig. 2 IFQ A = (B,C)
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If A is an IFQ we denote by A+
the fuzzy quantity with membership function μA+ =

μA and by A−
the fuzzy quantity with membership function μA− = 1 − νA. An IFQ

A may be indifferently denoted by A = ⟨μA, νA⟩ or A = (A+
,A−).

For the sake of notation simplicity, in the following an IFQ A = (A+
,A−) will be

denoted by

A = (B,C).

Thus, B and C are fuzzy quantities with membership functions μB = μA+ = μA and

μC = μA− = 1 − νA, respectively (Fig. 2).

5 Evaluation of Intuitionistic Fuzzy Quantities

A useful tool for dealing with fuzzy subsets are their α-cuts. In the case of an IFQ

A = (B,C) we have followed the procedure suggested in [8] and we call

Bα =
{
x ∈ X;μA(x) ≥ α

}

and

Cα =
{
x ∈ X; 1 − νA(x) ≥ α

}
.

From (5) the α-cuts of fuzzy quantities B and C can be decomposed as

Bα =
nBα⋃

i=1
Bα
i , Cα =

nCα⋃

j=1
Cα
j .

Such decompositions enables us to introduce the family  of all the closed intervals

Bα
i ,C

α
j , that is

 = {Bα
1 ,… ,Bα

nBα
,Cα

1 ,… ,Cα
nCα
; 0 ≤ α ≤ h}
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where

h = max{hB, hC} = hC.

For convenience, by defining

Aα
i =

{
Bα
i i = 1,… , nBα

Cα
i−nBα

i = nBα + 1,… , nAα
α ∈ [0, h] (6)

where

nAα = nBα + nCα , (7)

we can represent  as the family of all the closed intervals Aα
i = [aLi (α), a

R
i (α)], that

is

 = {Aα
i ; i = 1,… , nAα, 0 ≤ α ≤ h}. (8)

Our idea is to associate to IFQ A the nearest point to  respect to the Euclidean

distance that depends on two parameters p and f . These two parameters will work as

weights so we can say that we are looking for the real number k∗ = k∗(A; p, f ) which

minimizes the weighted mean of the squared distances.

Definition 3 We say that the real number k∗ is an evaluation of the IFQ A with

respect to (p, f ) if it minimizes the weighted mean of the squared distances


(2)
p,f (k;) =

∫

hA

0

nAα∑

i=1

[
(k − aLi (α))

2 + (k − aRi (α))
2] pi(α) f (α) dα (9)

among all k ∈ ℝ, where, for each level α, the weights p(α) = (pi(α))i=1,…,ñα
satisfy

the properties

pi(α) ≥ 0
nAα∑

i=1
pi(α) = 1, (10)

the weight function f ∶ [0, 1] → [0,+∞[ fulfil the condition

∫

h

0
f (α) dα = 1. (11)

The weights we have introduced work in a different manner: p(α) gives the pos-

sibility to evaluate in a different way the several intervals that produce anye α-cut,

the weighting function f offers the possibility to give different importance to each

α-level.
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Theorem 1 The real number k∗ whichminimizes (9) with respect to (p, f ) is given by

k∗ =
∫

h

0

nAα∑

i=1
mid(Aα

i ) pi(α) f (α) dα, (12)

where

mid(Aα
i ) =

aLi (α) + aRi (α)
2

denotes the middle point of the interval Aα
i = [aLi (α), a

R
i (α)].

Proof We have to minimize the function g ∶ ℝ → ℝ+ defined by

g(k) =
∫

hA

0

nAα∑

i=1

[
(k − aLi (α))

2 + (k − aRi (α))
2] pi(α) f (α) dα.

We have

g′(k) = 2
∫

hA

0

nAα∑

i=1

[
2k − aLi (α) − aRi (α)

]
pi(α) f (α) dα.

By solving g′(k) = 0, taking into account that p and f satisfy conditions (10) and

(11), respectively, we easily obtain that the solution k∗ is given by (12). Moreover

we get g′′(k) = 4 > 0 and thus k∗ minimizes g. □

In the following we indicate the evaluation of the IFQ A = (B,C) as

V(A) = V(A; p, f ) =
∫

h

0

nAα∑

i=1
mid(Aα

i ) pi(α) f (α) dα. (13)

5.1 The Centroid as Particular Case

Let us consider an IFQ A = (B,C). We show that defuzzification (2) with λ = 0.5,

that is

Val(A) =
∫
+∞
−∞ xμ(x) dx

∫
+∞
−∞ μ(x) dx

where μ is defined as μ(x) = (μB(x) + μC(x))∕2, may be obtained by the evaluation

(13) we propose choosing particular values of the parameters involved.

In order to achieve this, we recall a previous result [2, Proposition 9.3] for fuzzy

quantities.
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Lemma 1 Let A be a fuzzy quantity as defined in (3) with membership function μA,
height hA and α-cuts given by (4). Then for t ≥ 0

∫

+∞

−∞
xt μA(x) dx =

1
t + 1 ∫

hA

0

nAα∑

i=1

(
aRi (α)

t+1 − aLi (α)
t+1) dα.

In particular, for t = 0

∫

+∞

−∞
μA(x) dx = ∫

hA

0

nAα∑

i=1
|Aα

i | dα =
∫

hA

0
|Aα| dα (14)

and, for t = 1

∫

+∞

−∞
xμA(x) dx = ∫

hA

0

nAα∑

i=1
mid(Aα

i ) |A
α
i | dα, (15)

where |Aα
i | = aRi (α) − aLi (α) is the length of interval Aα

i and |Aα| is the Lebesgue
measure of Aα.

Proposition 2 Let A = (B,C) be an IFQ. Let Aα
i be the closed intervals defined in

(6). If we choose

pi(α) =
|Aα

i |
∑nAα

j=1 |A
α
j |
, f (α) =

∑nAα
j=1 |A

α
j |

∫
h
0
∑nAα

j=1 |A
α
j | dα

(16)

then we obtain
V(A) = Val(A).

Proof Substituting the weights (p, f ) given in (16) in the expression of V(A) (13) we

obtain

V(A) =
∫

h

0

nAα∑

i=1
mid(Aα

i ) pi(α) f (α) dα =
∫
h
0
∑nAα

i=1 mid(A
α
i ) |A

α
i | dα

∫
h
0
∑nAα

i=1 |A
α
i | dα

.
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Thus from (6) and (7) we get

V(A) =
∫
hB
0

∑nBα
i=1 mid(B

α
i )|B

α
i | dα + ∫

hC
0

∑nCα
j=1 mid(C

α
j )|C

α
j | dα

∫
hB
0

∑nBα
i=1 |B

α
i | dα + ∫

hC
0

∑nCα
j=1 |C

α
j | dα

=
∫
+∞
−∞ xμB(x) dx + ∫

+∞
−∞ xμC(x) dx

∫
+∞
−∞ μB(x) dx + ∫

+∞
−∞ μC(x) dx

= Val(A)

where in the second equality we have applied (14) and (15) to the fuzzy quantities B
and C. □

In a similar way we show the following result.

Proposition 3 Let A = (B,C) be an IFQ. Let Aα
i be the closed intervals defined in

(6). If we choose

pi(α) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

(1−λ)|Bα
i |

(1−λ)
∑nBα

i=1 |B
α
i |+λ

∑nCα
j=1 |C

α
j |

i = 1,… , nBα
λ|Cα

i |

(1−λ)
∑nBα

i=1 |B
α
i |+λ

∑nCα
j=1 |C

α
j |

i = nBα + 1,… , nAα

and

f (α) =
(1 − λ)

∑nBα
i=1 |B

α
i | + λ

∑nCα
j=1 |C

α
j |

(1 − λ) ∫ h
0
∑nBα

i=1 |B
α
i | dα + λ ∫

h
0
∑nCα

j=1 |C
α
j | dα

then we obtain
V(A) = Valλ(A),

where Valλ(A) is defined in (2).

6 Conclusion

Our proposal of defuzzification for IFSs is given depending of two groups of parame-

ters that are real weights. As we have said the pi(α) weights act on the several inter-

vals of every α-cut, while the second weight f works along the vertical axis changing

its importance for different level of α. These two actions give a wide opportunity of

freedom to the operator taking into account his behaviour more pessimistic or opti-

mistic. Our proposal has in itself even the centroid that works on x axis. In this case,

as we have seen in (16), the weight pi(α), with α fixed, is the width the ith interval

that forms an α-cut, suitably normalized. The weight f (α) is, for every α fixed, the
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total length of that α cut suitably normalized. As in [7] the Authors conclude their

work looking for an analogous study for other operators like Fα,β , we are also work-

ing in this direction to see if our new general defuzzification method provides some

new interesting results.

References

1. Anzilli, L., Facchinetti, G., Mastroleo, G.: Evaluation and interval approximation of fuzzy quan-

tities. In: 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-

13), pp. 180–186 (2013)

2. Anzilli, L., Facchinetti, G., Mastroleo, G.: A parametric approach to evaluate fuzzy quantities.

Fuzzy Sets Syst. 250, 110–133 (2014)

3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy sets Syst. 20(1), 87–96 (1986)

4. Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg

(1999)

5. Atanassov, K.T.: Intuitionistic fuzzy sets: past, present and future. In: EUSFLAT Conference,

pp. 12–19 (2003)

6. Atanassova, V., Sotirov, S.: A new formula for de-i-fuzzification of intuitionistic fuzzy sets. In:

Notes on Intuitionistic Fuzzy Sets, 16th International Confrence on IFSs, Sofia, vol. 910, p. 4951

(2012)

7. Ban, A., Kacprzyk, J., Atanassov, K.: On de-i-fuzzification of intuitionistic fuzzy sets. Comptes

Rendus de lAcademie bulgare des Sciences, Tome 61(12), 1535–1540 (2008)

8. Grzegorzewski, P.: Distances and orderings in a family of intuitionistic fuzzy numbers. In:

EUSFLAT Conference, pp. 223–227 (2003)

9. Yager, R.R.: Some aspects of intuitionistic fuzzy sets. Fuzzy Optim. Decis. Mak. 8(1), 67–90

(2009)



Part III
Intuitionistic Fuzzy Sets: Applications



A New Heuristic Algorithm of Possibilistic
Clustering Based on Intuitionistic Fuzzy
Relations

Janusz Kacprzyk, Jan W. Owsiński, Dmitri A. Viattchenin
and Stanislau Shyrai

Abstract This paper introduces a novel intuitionistic fuzzy set-based heuristic
algorithm of possibilistic clustering. For the purpose, some remarks on the
fuzzy approach to clustering are discussed and a brief review of intuitionistic fuzzy
set-based clustering procedures is given, basic concepts of the intuitionistic fuzzy set
theory and the intuitionistic fuzzy generalization of the heuristic approach to pos-
sibilistic clustering are considered, a general plan of the proposed clustering pro-
cedure is described in detail, two illustrative examples confirm good performance of
the proposed algorithm, and some preliminary conclusions are formulated.

Keywords Intuitionistic fuzzy set ⋅ Intuitionistic fuzzy tolerance ⋅ Similarity
measure ⋅ Clustering

1 Introduction

Cluster analysis aims at identifying groups of related objects and, hence, helps to
discover assignment of objects and correlations in large data sets. The idea of data
grouping is simple to use and in its nature is very near to the human method of
thinking; whenever they are presented with a large amount of the data, humans are

J. Kacprzyk (✉) ⋅ J.W. Owsiński
Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
e-mail: Janusz.Kacprzyk@ibspan.waw.pl

J.W. Owsiński
e-mail: jan.owsinski@ibspan.waw.pl

D.A. Viattchenin ⋅ S. Shyrai
Department of Software Information Technology, Belarusian State University of Informatics
and Radio-Electronics, Minsk, Belarus
e-mail: viattchenin@mail.ru

S. Shyrai
e-mail: ashaman410@gmail.com

© Springer International Publishing Switzerland 2016
K.T. Atanassov et al. (eds.), Novel Developments in Uncertainty Representation
and Processing, Advances in Intelligent Systems and Computing 401,
DOI 10.1007/978-3-319-26211-6_17

199



tend to summarize this huge number of the data into a small number of classes or
categories in order to further facilitate its analysis.

A possibilistic approach to clustering was proposed by Krishnapuram and Keller
[1]. Constraints in the possibilistic approach to clustering are less strong than
constraints in the fuzzy objective function-based approach to clustering and values
of the membership function of a possibilistic partition can be considered as typi-
cality degrees. So, the possibilistic approach to clustering is more general and
flexible approach to clustering than the fuzzy approach.

Since the fundamental Atanassov’s [2] paper was published, intuitionistic fuzzy
set theory has been developed in monographs [3, 4] and other publications.
Moreover, this theory was applied to many areas. In particular, intuitionistic fuzzy
clustering procedures were elaborated by different researchers. The intuitionistic
fuzzy clustering methods are considered in [5].

Major clustering procedures are objective function-based algorithms of classi-
fication. However, heuristic clustering procedures display low level of complexity
and high level of essential clarity. Some heuristic clustering algorithms are based on
a definition of the cluster concept and the aim of these algorithms is cluster
detection conform to a given definition. Such algorithms are called algorithms of
direct classification or direct clustering algorithms.

A heuristic approach to possibilistic clustering is proposed in [6]. The essence of
the heuristic approach to possibilistic clustering is that the sought clustering
structure of the set of observations is formed based directly on the formal definition
of fuzzy cluster and possibilistic memberships are determined also directly from the
values of the pairwise similarity of observations. A concept of the allotment among
fuzzy clusters is basic concept of the approach and the allotment among fuzzy
clusters is a special case of the possibilistic partition [1]. The heuristic approach to
possibilistic clustering is generalized for a case of intuitionistic fuzzy tolerance and
the corresponding relational D-PAIFC-algorithm is described in [6]. Some intu-
itionistic fuzzy-set prototype-based heuristic algorithms of possibilistic clustering
were also proposed in [7, 8].

The aim of the presented paper is a consideration of the novel intuitionistic
fuzzy-set relational heuristic algorithm of possibilistic clustering. So, the contents of
this paper are the following: in the second section basic definitions of the intu-
itionistic fuzzy set theory are described, in the third section basic concepts of the
intuitionistic fuzzy generalization of the heuristic approach to possibilistic clus-
tering are considered, in the fourth section a general plan of the D-AIFC(c)-algo-
rithm is proposed, in the fifth section an illustrative example is given, in sixth
section some preliminary conclusions are formulated.

2 Basic Notions of the Intuitionistic Fuzzy Set Theory

Let us remind some basic definitions of the Atanassov’s intuitionistic fuzzy set
theory [2–4] which will be used in further considerations.
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An intuitionistic fuzzy set IA in X is given by ordered triple
IA= ⟨xi, μIAðxiÞ, νIAðxiÞ⟩jxi ∈Xf g, where μIA, νIA : X→ ½0, 1� should satisfy a
condition

0≤ μIAðxiÞ+ νIAðxiÞ≤ 1, ð1Þ

for all xi ∈X. The values μIAðxiÞ and νIAðxiÞ denote the degree of membership and
the degree of non-membership of element xi ∈X to IA, respectively. For each
intuitionistic fuzzy set IA in X an intuitionistic fuzzy index [2] of an element xi ∈X
in IA can be defined as follows

ρIAðxiÞ=1− μIAðxiÞ+ νIAðxiÞð Þ. ð2Þ

The intuitionistic fuzzy index ρIAðxiÞ can be considered as a hesitancy degree of
xi to IA. It is seen that 0≤ ρIAðxiÞ≤ 1 for all xi ∈X. Obviously, when
νIAðxiÞ=1− μIAðxiÞ for every xi ∈X, the intuitionistic fuzzy set IA is an ordinary
fuzzy set in X. For each fuzzy set A in X, we have ρAðxiÞ=0, for all xi ∈X.

Let IFSðXÞ denote the set of all intuitionistic fuzzy sets in X. Basic operations on
intuitionistic fuzzy sets were defined by Atanassov in [2–4] and other publications.
In particular, if IA, IB∈ IFSðXÞ then

IA∩ IB= ⟨xi, μIAðxiÞ∧ μIBðxiÞ, νIAðxiÞ∨ νIBðxiÞ⟩jxi ∈Xf g, ð3Þ

and

IA∪ IB= ⟨xi, μIAðxiÞ∨ μIBðxiÞ, νIAðxiÞ∧ νIBðxiÞ⟩jxi ∈Xf g. ð4Þ

Moreover, some properties of intuitionistic fuzzy sets were given also in [9]. For
example, if IA, IB∈ IFSðXÞ, then

IA≤ IB⇔ μIAðxiÞ≤ μIBðxiÞ and νIAðxiÞ≥ νIBðxiÞ, ∀xi ∈X, ð5Þ

IA≺ IB⇔ μIAðxiÞ≤ μIBðxiÞ and νIAðxiÞ≤ νIBðxiÞ, ∀xi ∈X, ð6Þ

IA= IB⇔ IA≤ IB and IA≥ IB, ∀xi ∈X, ð7Þ

IA = ⟨xi, νIAðxiÞ, μIAðxiÞ⟩jxi ∈Xf g. ð8Þ

An α, β-level of an intuitionistic fuzzy set IA in X can be defined as

IAα, β = xi ∈XjμIAðxiÞ≥ α, νIAðxiÞ≤ βf g, ð9Þ
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where the condition

0≤ α+ β≤ 1 ð10Þ

is met for any values α and β, α, β∈ ½0, 1�.
The concept of the ðα, βÞ-level intuitionistic fuzzy subset was defined in [6] as

follows. The ðα, βÞ-level intuitionistic fuzzy subset IAðα, βÞ in X is given by the
following expression:

IAðα, βÞ = ⟨xi ∈ IAα, β, μIAðα, βÞ ðxiÞ= μIAðxiÞ, νIAðα, βÞ ðxiÞ= νIAðxiÞ⟩
n o

, ð11Þ

where α, β∈ ½0, 1� should satisfy the condition (10) and IAα, β is the α, β-level of an
intuitionistic fuzzy set IA which is satisfied the condition (9).

If IA is an intuitionistic fuzzy set in X, where X is the set of elements, then the
ðα, βÞ-level intuitionistic fuzzy subset IAðα, βÞ in X, for which

μIAðα, βÞ ðxiÞ=
μIAðxiÞ, if μIAðxiÞ⩾ α

0, otherwise

(

, ð12Þ

and

νIAðα, βÞ ðxiÞ=
νIA ðxiÞ, if νIAðxiÞ≤ β
0, otherwise

�
. ð13Þ

is called an ðα, βÞ-level intuitionistic fuzzy subset IAðα, βÞ of the intuitionistic fuzzy
set IA in X for some α, β∈ ½0, 1�, 0≤ α+ β≤ 1.

Obviously, that the condition IAðα, βÞ≺ IA is met for any intuitionistic fuzzy set IA
and its ðα, βÞ-level intuitionistic fuzzy subset IAðα, βÞ for any
α, β∈ ½0, 1�, 0≤ α+ β≤ 1. The important property will be very useful in further
considerations.

Let us remind some basic definitions which were considered by Burillo and
Bustince in [9, 10]. In cluster analysis, one is only interested in relations in a set
X of classified objects.

Let X = fx1, . . . , xng be an ordinary non-empty set. The binary intuitionistic
fuzzy relation IR on X is an intuitionistic fuzzy subset IR of X ×X, which is given
by the expression

IR= ⟨ðxi, xjÞ, μAðxi, xjÞ, νAðxi, xjÞ⟩jxi, xj ∈X
� �

, ð14Þ

where μIR : X ×X→ ½0, 1� and νIR: X ×X→ ½0, 1� satisfy the condition
0≤ μIRðxi, xjÞ+ νIRðxi, xjÞ≤ 1 for every ðxi, xjÞ∈X ×X [6].

Let IFRðXÞ denote the set of all intuitionistic fuzzy relations on some universe
X. An intuitionistic fuzzy relation IR∈ IFRðXÞ is reflexive if for every
xi ∈X, μIRðxi, xiÞ=1 and νIRðxi, xiÞ=0. An intuitionistic fuzzy relation IR∈ IFRðXÞ
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is called symmetric if for all ðxi, xjÞ∈X ×X, μIRðxi, xjÞ= μIRðxj, xiÞ and
νIRðxi, xjÞ= νIRðxj, xiÞ. An intuitionistic fuzzy relation IT in X is called an intu-
itionistic fuzzy tolerance if it is reflexive and symmetric.

An intuitionistic fuzzy relation IT in X is called an intuitionistic fuzzy tolerance
if it is reflexive and symmetric. An intuitionistic fuzzy relation IS in X is called an
intuitionistic fuzzy similarity relation if it is reflexive, symmetric and transitive.

An n-step procedure by using the composition of intuitionistic fuzzy relations
beginning with an intuitionistic fuzzy tolerance can be used for construction of the
transitive closure of an intuitionistic fuzzy tolerance IT and the transitive closure is
an intuitionistic fuzzy similarity relation IS. The procedure is a basis of the clus-
tering procedure which was proposed by Hung et al. in [11].

An α, β-level of an intuitionistic fuzzy relation IR in X was defined in [11] as

IRα, β = ðxi, xjÞjμRðxi, xjÞ≥ α, νRðxi, xjÞ≤ β
� �

, ð15Þ

where the condition (10) is met for any values α and β, α, β∈ ½0, 1�. So, if
0≤ α1 ≤ α2 ≤ 1 and 0≤ β2 ≤ β1 ≤ 1 with 0≤ α1 + β1 ≤ 1 and 0≤ α2 + β2 ≤ 1, then
IRα2, β2 ⊆ IRα1, β1 . The proposition was formulated in [11].

The ðα, βÞ-level intuitionistic fuzzy relation IRðα, βÞ in X was defined in [6] as
follows:

IRðα, βÞ = ⟨ ðxi, xjÞ∈ IRα, β, μIRðα, βÞ ðxi, xjÞ= μIRðxi, xjÞ,
νIRðα, βÞ ðxi, xjÞ= νIRðxi, xjÞ ⟩

� �
, ð16Þ

where α, β∈ ½0, 1� should satisfy the condition (10) and IRα, β is the α, β-level of an
intuitionistic fuzzy relation IR which is satisfied the condition (15).

The concept of the ðα, βÞ-level intuitionistic fuzzy relation will be very useful in
further considerations.

3 An Intuitionistic Fuzzy Generalization of the Heuristic
Approach to Possibilistic Clustering

Let us consider intuitionistic extensions of basic concepts of the heuristic approach
to possibilistic clustering, which were introduced in [6]. Let X = fx1, . . . , xng be the
initial set of elements and IT be some binary intuitionistic fuzzy tolerance on
X = fx1, . . . , xng with μITðxi, xjÞ∈ ½0, 1� being its membership function and
νITðxi, xjÞ∈ ½0, 1� being its non-membership function. Let α and β be the α, β-level
values of IT , α∈ ð0, 1�, β∈ ½0, 1Þ, 0≤ α+ β≤ 1. Columns or lines of the intu-
itionistic fuzzy tolerance matrix are intuitionistic fuzzy sets fIA1, . . . , IAng.

Let fIA1, . . . , IAng be intuitionistic fuzzy sets on X, which are generated by an
intuitionistic fuzzy tolerance IT. The ðα, βÞ-level intuitionistic fuzzy set
IAl

ðα, βÞ = ðxi, μIAlðxiÞ, νIAlðxiÞÞjμIAlðxiÞ≥ α, νIAlðxiÞ≤ β, xi ∈Xf g is intuitionistic fuzzy
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ðα, βÞ-cluster or, simply, intuitionistic fuzzy cluster. So IAl
ðα, βÞ ⊆ IAl, α∈ ð0, 1�,

β∈ ½0, 1Þ, IAl ∈ fIA1, . . . , IAng and μli is the membership degree of the element
xi ∈X for some intuitionistic fuzzy cluster IAl

ðα, βÞ, α∈ ð0, 1�, β∈ ½0, 1Þ, l∈
f1, . . . , ng. On the other hand, νli is the non-membership degree of the element
xi ∈X for the intuitionistic fuzzy cluster IAl

ðα, βÞ.Value of α is the tolerance threshold
of intuitionistic fuzzy clusters elements and value of β is the difference threshold of
intuitionistic fuzzy clusters elements.

The membership degree of the element xi ∈X for some intuitionistic fuzzy cluster
IAl

ðα, βÞ, α∈ ð0, 1�, β∈ ½0, 1Þ, 0≤ α+ β≤ 1, l∈ f1, . . . , ng can be defined as a

μli =
μIAl ðxiÞ, xi ∈ IAl

α, β
0, otherwise

�
, ð17Þ

where an α, β-level IAl
α, β of an intuitionistic fuzzy set IAl is the support of the

intuitionistic fuzzy cluster IAl
ðα, βÞ. So, condition IAl

α, β = SuppðIAl
ðα, βÞÞ is met for

each intuitionistic fuzzy cluster IAl
ðα, βÞ. The membership degree μli can be inter-

preted as a degree of typicality of an element to an intuitionistic fuzzy cluster.
On the other hand, the non-membership degree of the element xi ∈X for an

intuitionistic fuzzy cluster IAl
ðα, βÞ, α∈ ð0, 1�, β∈ ½0, 1Þ, 0≤ α+ β≤ 1, l∈ f1, . . . , ng

can be defined as a

νli =
νIAl ðxiÞ, xi ∈ IAl

α, β
0, otherwise

�
ð18Þ

So, the non-membership degree νli can be interpreted as a degree of
non-typicality of an element to an intuitionistic fuzzy cluster. In other words, if
columns or lines of intuitionistic fuzzy tolerance IT matrix are intuitionistic fuzzy
sets fIA1, . . . , IAng on X then intuitionistic fuzzy clusters fIA1

ðα, βÞ, . . . , IA
n
ðα, βÞg are

intuitionistic fuzzy subsets of fuzzy sets fIA1, . . . , IAng for some values α∈ ð0, 1�
and β∈ ½0, 1Þ, 0≤ α+ β≤ 1. So, a condition 0≤ μli + νli ≤ 1 is met for some intu-
itionistic fuzzy cluster IAl

ðα, βÞ.
If conditions μli =0 and νli =0 are met for some element xi ∈X and for some

intuitionistic fuzzy cluster IAl
ðα, βÞ, then the element will be called the residual

element of the intuitionistic fuzzy cluster IAl
ðα, βÞ. The value zero for a fuzzy set

membership function is equivalent to non-belonging of an element to a fuzzy set.
That is why values of tolerance threshold α are considered in the interval ð0, 1�. So,
the value of a membership function of each element of the intuitionistic fuzzy
cluster is the degree of similarity of the object to some typical object of fuzzy
cluster. On the other hand, the value one for an intuitionistic fuzzy set
non-membership function is equivalent to non-belonging of an element to an
intuitionistic fuzzy set. That is why values of difference threshold β are considered
in the interval ½0, 1Þ.
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Let IT is an intuitionistic fuzzy tolerance on X, where X is the set of elements,
and fIA1

ðα, βÞ, . . . , IA
n
ðα, βÞg is the family of intuitionistic fuzzy clusters for some

α∈ ð0, 1� and β∈ ½0, 1Þ. The point τle ∈ IAl
α, β, for which

τle = argmax
xi

μli, ∀xi ∈ IAl
α, β ð19Þ

is called a typical point of the intuitionistic fuzzy cluster IAl
ðα, βÞ. Obviously, the

membership degree of a typical point of an intuitionistic fuzzy cluster is equal one
because an intuitionistic fuzzy tolerance IT is the reflexive intuitionistic fuzzy
relation. So, the non-membership degree of a typical point of an intuitionistic fuzzy
cluster is equal zero. Moreover, a typical point of an intuitionistic fuzzy cluster does
not depend on the value of tolerance threshold and an intuitionistic fuzzy cluster can
have several typical points. That is why symbol e is the index of the typical point.

Let IRα, β
cðzÞðXÞ= IAl

ðα, βÞjl=1, c, c≤ n, α∈ ð0, 1�, β∈ ½0, 1Þ
n o

be a family of

intuitionistic fuzzy clusters for some value of tolerance threshold α∈ ð0, 1� and
some value of difference threshold β∈ ½0, 1Þ, 0≤ α+ β≤ 1. These intuitionistic
fuzzy clusters are generated by some intuitionistic fuzzy tolerance IT on the initial
set of elements X = fx1, . . . , xng. If a condition

∑
c

l=1
μli >0, ∀xi ∈X, ð20Þ

and a condition

∑
c

l=1
νli ≥ 0, ∀xi ∈X ð21Þ

are met for all IAl
ðα, βÞ, l=1, c, c≤ n then the family is the allotment of elements of

the set X = fx1, . . . , xng among intuitionistic fuzzy clusters fIAl
ðα, βÞ, l=1, c, 2≤

c≤ ng for some value of the tolerance threshold α∈ ð0, 1� and some value of the
difference threshold β∈ ½0, 1Þ. It should be noted that several allotments IRα, β

cðzÞðXÞ
can exist for some pair of thresholds α and β. That is why symbol z is the index of
an allotment.

The condition (20) requires that every object xi, i=1, n must be assigned to at
least one intuitionistic fuzzy cluster IAl

ðαÞ, l =1, c, c≤ n with the membership degree
higher than zero and the condition is similar to the definition of the possibilistic
partition [1]. The condition 2≤ c≤ n requires that the number c of intuitionistic
fuzzy clusters in IRα, β

cðzÞðXÞ must be more than two. Otherwise, the unique intu-

itionistic fuzzy cluster will contain all objects, possibly with different positive
membership and non-membership degrees. The number c of fuzzy clusters can be
equal the number of objects, n. This is taken into account in further considerations.
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Allotment IRα, β
I ðXÞ= IAl

ðα, βÞjl=1, n, α∈ ð0, 1�, β∈ ½0, 1Þ
n o

of the set of objects

among n intuitionistic fuzzy clusters for some pair of thresholds α and
β, 0≤ α+ β≤ 1, is the initial allotment of the set X = fx1, . . . , xng. In other words,
if initial data are represented by a matrix of some intuitionistic fuzzy tolerance
relation IT then lines or columns of the matrix are intuitionistic fuzzy sets
IAlα, l=1, n and ðα, βÞ-level fuzzy sets IAl

ðα, βÞ, l=1, n, α∈ ð0, 1�, β∈ ½0, 1Þ are
intuitionistic fuzzy clusters. These intuitionistic fuzzy clusters constitute an initial
allotment for some pair of thresholds α and β and they can be considered as
clustering components.

If a condition

⋃c
l=1IA

l
α, β =X, ð22Þ

and a condition

cardðIAl
α, β ∩ IAm

α, βÞ=0, ∀IAl
ðα, βÞ, IA

m
ðα, βÞ, l≠m, α, β∈ ð0, 1� ð23Þ

are met for all intuitionistic fuzzy clusters IAl
ðα, βÞ, l=1, c of some allotment

IRα, β
cðzÞðXÞ= IAl

ðα, βÞjl=1, c, c≤ n, α∈ ð0, 1�, β∈ ½0, 1Þ
n o

then the allotment is the

allotment among fully separate intuitionistic fuzzy clusters.
Intuitionistic fuzzy clusters in the sense of definition (17), (18) can have an

intersection area. If the intersection area of any pair of different intuitionistic fuzzy
clusters is an empty set, then conditions (22) and (23) are met and intuitionistic
fuzzy clusters are called fully separate intuitionistic fuzzy clusters. Otherwise,
intuitionistic fuzzy clusters are called partially separate intuitionistic fuzzy clusters
and w∈ f0, . . . , ng is the maximum number of elements in the intersection area of
different intuitionistic fuzzy clusters. For w = 0 intuitionistic fuzzy clusters are fully
separate intuitionistic fuzzy clusters. Thus, the conditions (22) and (23) can be
generalized for a case of particularly separate intuitionistic fuzzy clusters. So, a
condition

∑
c

l=1
cardðAl

α, βÞ≥ cardðXÞ, ∀Al
ðα, βÞ ∈ IRα, β

ðzÞ ðXÞ, α∈ ð0, 1�, β∈ ½0, 1Þ, ð24Þ

and a condition

cardðAl
α, β ∩Am

α, βÞ≤w, ∀Al
ðα, βÞ,A

m
ðα, βÞ, l≠m, α∈ ð0, 1�, β∈ ½0, 1Þ ð25Þ

are generalizations of conditions (22) and (23). Obviously, if w = 0 in conditions
(24) and (25) then conditions (22) and (23) are met. The adequate allotment
IRα, β

cðzÞðXÞ for some value of tolerance threshold α∈ ð0, 1� and some value of the

difference threshold β∈ ½0, 1Þ is a family of fuzzy clusters which are elements of the
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initial allotment IRα, β
I ðXÞ for values of α and β and the family of fuzzy clusters

should satisfy the conditions (24) and (25). So, the construction of adequate
allotments IRα, β

cðzÞðXÞ= fAl
α, βjl=1, c, c≤ ng for values α and β is a trivial combi-

natorial problem. Thus, the problem of cluster analysis can be defined in general as
the problem of discovering the unique allotment IR*

cðXÞ, resulting from the clas-
sification process, which corresponds to either most natural allocation of objects
among intuitionistic fuzzy clusters or to the researcher’s opinion about classifica-
tion. In the first case, the number of intuitionistic fuzzy clusters c is not fixed. In the
second case, the researcher’s opinion determines the kind of the allotment sought
and the number of intuitionistic fuzzy clusters c can be fixed. Detection of the a
priori given number c of partially separated intuitionistic fuzzy clusters can be
considered as the aim of classification. Several allotments among intuitionistic
fuzzy clusters can exist for some pair of thresholds α and β. Thus, the problem
consists in the selection of the unique principal allotment IR*

cðXÞ among c partially
intuitionistic fuzzy clusters from the set BðcÞ of allotments, BðcÞ= fIRα, β

cðzÞðXÞg,
which is the class of possible solutions of the concrete classification problem. The
symbol z is the index of the allotments. The selection of the unique allotment
IR*

cðXÞ from the set BðcÞ= fIRα, β
cðzÞðXÞg of allotments must be made on the basis of

evaluation of allotments. The criterion

FðIRα, β
cðzÞðXÞ, α, βÞ= ∑

c

l=1

1
nl

∑
nl

i=1
μli − α ⋅ c

� �
− ∑

c

l=1

1
nl

∑
nl

i=1
νli − β ⋅ c

� �
, ð26Þ

where c is the number of intuitionistic fuzzy clusters in the allotment IRα, β
cðzÞðXÞ and

nl = cardðIAl
α, βÞ, IAl

ðα, βÞ ∈ IRα, β
cðzÞðXÞ is the number of elements in the support of the

intuitionistic fuzzy cluster IAl
ðα, βÞ can be used for evaluation of allotments.

Maximum of criterion (28) corresponds to the best allotment of objects among a
priori given number c of intuitionistic fuzzy clusters. So, the classification problem
can be characterized formally as determination of the solution IR*

cðXÞ satisfying

IR*
cðXÞ= arg max

IRα, β
cðzÞðXÞ∈BðcÞ

FðIRα, β
c ðXÞ, α, βÞ, ð27Þ

where BðcÞ= fIRα, β
cðzÞðXÞg is the set of allotments of objects among a priori given

number c of intuitionistic fuzzy clusters corresponding to the pair of thresholds α
and β.

A clustering procedure is based on the decomposition of initial intuitionistic
fuzzy tolerance IT [6]. That is why basic concepts of the method of decomposition
must be considered. Let IT be an intuitionistic fuzzy tolerance in X. Let ITðα, βÞ be
ðα, βÞ-level intuitionistic fuzzy relation and the condition (10) is met for values α
and β, α∈ ð0, 1�, β∈ ½0, 1Þ. Let ITα, β be a α, β-level of an intuitionistic fuzzy
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tolerance IT in X and ITα, β be the support of ITðα, βÞ. The membership function
μITðα, βÞ ðxi, xjÞ can be defined as

μITðα, βÞ ðxi, xjÞ=
μITðxi, xjÞ, if μITðxi, xjÞ≥ α

0, otherwise

�
, ð28Þ

and the non-membership function νITðα, βÞ ðxi, xjÞ can be defined as

νITðα, βÞ ðxi, xjÞ=
νITðxi, xjÞ, if νITðxi, xjÞ≤ β

0, otherwise

�
. ð29Þ

Obviously, that the condition ITðα, βÞ≺ IT is met for any intuitionistic fuzzy
tolerance IT and a ðα, βÞ-level intuitionistic fuzzy relation ITðα, βÞ for any
α∈ ð0, 1�, β∈ ½0, 1Þ, 0≤ α+ β≤ 1. Thus we have the proposition that if αℓðαÞ ≤
αℓ+1ðαÞ and βℓ+1ðβÞ ≤ βℓðβÞ with 0≤ αℓðαÞ + βℓðβÞ ≤ 1, 0≤ αℓ+1ðαÞ + βℓ+1ðβÞ ≤ 1
then the condition ITðαℓ+1ðαÞ, βℓ+1ðβÞÞ≺ ITðαℓðαÞ, βℓðβÞÞ is met. So, the ordered sequences
0< α0 ≤⋯≤ αℓðαÞ ≤⋯≤ αZðαÞ ≤ 1 and 0≤ βZðβÞ ≤⋯≤ βℓðβÞ ≤⋯≤ β0 < 1 must be
constructed for the decomposition of an intuitionistic fuzzy tolerance IT. A method
of construction of sequences was developed in [6].

4 A General Plan of the D-AIFC(c)-Algorithm

Constructing the allotment IR*
cðXÞ among a priori given number c of partially

separate intuitionistic fuzzy clusters can be considered as the aim of classification.
The corresponding D-AIFC(c)-algorithm for detecting the allotment IR*

cðXÞ is an
eleven-step procedure of classification as given below.

1. Let w ≔ 0
2. Construct ordered sequences 0 < α0 ≤⋯≤ αℓðαÞ ≤⋯≤ αZðαÞ ≤ 1 and

0≤ βZðβÞ ≤⋯≤ βℓðβÞ ≤⋯≤ β0 < 1 of thresholds values; let ℓðαÞ ≔ 0 and
ℓðβÞ ≔ 0;

3. The following condition is checked:

if the condition 0≤ αℓðαÞ + βℓðβÞ ≤ 1 is met
then construct the ðα, βÞ-level intuitionistic fuzzy relation ITðα, βÞ in the
sense of definition (16) and go to step 3
else the following condition is checked:

if the condition ℓðβÞ<ZðβÞ is met
then let ℓðβÞ ≔ ℓðβÞ+1and go to step 3;

4. Construct the initial allotment IRα, β
I ðXÞ= fIAl

ðα, βÞjl=1, n, α∈ ð0, 1�, β∈ ½0, 1Þg
for calculated values αℓðαÞ and βℓðβÞ;
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5. The following condition is checked:

if for some intuitionistic fuzzy cluster IAl
ðα, βÞ ∈ IRα, β

I ðXÞ the condition

cardðIAl
α, βÞ= n is met

then let ℓðβÞ ≔ ℓðβÞ+1 and go to step 3
else go to step 6;

6. Construct allotments among a priori given number c of intuitionistic fuzzy
clusters IRα, β

cðzÞðXÞ= fIAl
ðα, βÞjl=1, c, c≤ ng, α= αℓðαÞ, β= βℓðβÞ which satisfy

conditions (24) and (25) for the pair of values αℓðαÞ and βℓðβÞ from the
sequences 0< α0 ≤⋯≤ αℓðαÞ ≤⋯≤ αZðαÞ ≤ 1 and 0≤ βZðβÞ ≤⋯≤ βℓðβÞ
≤⋯≤ β0 < 1;

7. The following condition is checked:

if allotments among a priori given number c of intuitionistic fuzzy clusters
IRα, β

cðzÞðXÞ= fIAl
ðα, βÞjl=1, c, c≤ ng, α= αℓðαÞ, β= βℓðβÞ which satisfy condi-

tions (24) and (25) are not constructed
then the following condition is checked:

if the condition ℓðβÞ= ZðβÞ is met let ℓðαÞ≔ ℓðαÞ+1 and ℓðβÞ≔ 0 and
go to step 3
else let ℓðβÞ≔ ℓðβÞ+1 and go to step 3

else go to step 8;

8. The following condition is checked:

if allotments among a priori given number c of intuitionistic fuzzy clusters
IRα, β

cðzÞðXÞ= fIAl
ðα, βÞjl=1, c, c≤ ng, α= αℓðαÞ, β= βℓðβÞ which satisfy condi-

tions (24) and (25) are not constructed
then let w ≔ w + 1 and go to step 2
else go to step 9;

9. Construct the class of possible solutions of the classification problem
BðcÞ= fIRα, β

cðzÞðXÞg, which satisfy conditions (24) and (25) for the calculated

pair of values αℓðαÞ and βℓðβÞ and for the given number of fuzzy clusters c as
follows:

if for some allotment IRα, β
cðzÞðXÞ the condition cardðIRα, β

cðzÞðXÞÞ= c is met

then IRα, β
cðzÞðXÞ∈BðcÞ;

10. Calculate the value of the criterion (26) for each allotment IRα, β
cðzÞðXÞ∈BðcÞ;

11. The result IR*
cðXÞ of classification is formed as follows:

if for some unique allotment IRα, β
cðzÞðXÞ∈BðcÞ the condition (27) is met
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then the allotment is the result of classification IR*
cðXÞ

else the number c of classes is suboptimal.

The unique allotment IR*
cðXÞ among the a priori given number c of partially

separate intuitionistic fuzzy clusters and corresponding values of the tolerance
threshold α and the difference threshold β, 0≤ α+ β≤ 1 are results of classification.

5 Experimental Results

Firstly, let us consider the result of classification, which was presented by Hung
et al. in [11]. The result was obtained by applying the clustering procedure to the
relational intuitionistic fuzzy data. An original intuitionistic fuzzy tolerance relation
matrix is given in Table 1.

An intuitionistic fuzzy similarity relation matrix IS= ½μISðxi, xjÞ, νISðxi, xjÞ�, i,
j=1, . . . , 10 was obtained by the n-step max− T3 &min− S3 composition pro-
cedure [9]. A hard partition is the result of application of the clustering method to
the intuitionistic fuzzy similarity relation IS. The partition fx1, x4, x8g, fx2, x5,
x9, x10g, fx3g, fx6g, fx7g was obtained for α=0.55 and β=0.35.

Table 1 The matrix of intuitionistic fuzzy tolerance

IT x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x1 (1.0,

0.0)
x1 (0.2,

0.7)
(1.0,
0.0)

x3 (0.5,
0.5)

(0.3,
0.6)

(1.0,
0.0)

x4 (0.8,
0.1)

(0.6,
0.4)

(0.5,
0.4)

(1.0,
0.0)

x5 (0.6,
0.3)

(0.7,
0.2)

(0.3,
0.6)

(0.7,
0.2)

(1.0,
0.0)

x6 (0.2,
0.7)

(0.9,
0.1)

(0.4,
0.5)

(0.3,
0.6)

(0.2,
0.7)

(1.0,
0.0)

x7 (0.3,
0.7)

(0.2,
0.7)

(0.1,
0.9)

(0.5,
0.4)

(0.4,
0.5)

(0.1,
0.7)

(1.0,
0.0)

x8 (0.9,
0.1)

(0.8,
0.2)

(0.3,
0.6)

(0.4,
0.6)

(0.5,
0.5)

(0.3,
0.7)

(0.6,
0.3)

(1.0,
0.0)

x9 (0.4,
0.5)

(0.3,
0.7)

(0.7,
0.2)

(0.1,
0.8)

(0.8,
0.1)

(0.7,
0.2)

(0.1,
0.8)

(0.0,
0.9)

(1.0,
0.0)

x10 (0.3,
0.7)

(0.2,
0.7)

(0.6,
0.3)

(0.3,
0.7)

(0.9,
0.1)

(0.2,
0.7)

(0.3,
0.7)

(0.2,
0.8)

(0.1,
0.8)

(1.0,
0.0)
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For comparison, the D-AIFC(c)-algorithm was applied to the matrix of the
intuitionistic fuzzy tolerance IT directly for c∈ f2, . . . , 4g. Let us consider the
result of the experiment.

By executing the D-AIFC(c)-algorithm for c = 2, the allotment IR*
cðXÞ among

two partially separate intuitionistic fuzzy clusters, which corresponds to the result,
is received for the value of tolerance threshold α=0.1 and the value of difference
threshold β=0.5.

Membership functions and non-membership functions of two classes are pre-
sented in Fig. 1, where membership values of the first class are represented by
symbol ○, non-membership values of the first class are represented by symbol •,
membership values of the second class are represented by symbol □ and
non-membership values of the second class are represented by symbol ▪.

The third object is the typical point of the first intuitionistic fuzzy cluster and the
eighth object is the typical point of the second intuitionistic fuzzy cluster.

By executing the D-AIFC(c)-algorithm for c = 3, the allotment IR*
cðXÞ among

three partially separate intuitionistic fuzzy clusters, which corresponds to the result,
is received for the value of tolerance threshold α=0.4 and the value of difference
threshold β=0.6. Figure 2 shows membership functions and non-membership
functions of three classes.

In Fig. 2 membership values of the first class are represented by ○,
non-membership values of the first class are represented by •, membership values
of the second class are represented by □, non-membership values of the second
class are represented by ▪, membership values of the third class are represented by
▿ and non-membership values of the third class are represented by ▾.

Fig. 1 Membership values
and non-membership values
of two intuitionistic fuzzy
clusters
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The sixth object is the typical point of the first intuitionistic fuzzy cluster, the
eighth object is the typical point of the second intuitionistic fuzzy cluster and the
tenth object is the typical point of the third intuitionistic fuzzy cluster.

By executing the D-AIFC(c)-algorithm for c = 4, the allotment IR*
cðXÞ among

four partially separate intuitionistic fuzzy clusters is obtained for the value of
tolerance threshold α=0.1 and the value of difference threshold β=0.3. Mem-
bership functions and non-membership functions of four classes are presented in
Fig. 3.

Membership values of the first class are represented by ○ in Fig. 3, non-
membership values of the first class are represented by •, membership values of the
second class are represented by □, non-membership values of the second class are

Fig. 2 Membership values
and non-membership values
of three intuitionistic fuzzy
clusters

Fig. 3 Membership values
and non-membership values
of four intuitionistic fuzzy
clusters
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represented by ▪, membership values of the third class are represented by ▿,
non-membership values of the third class are represented by ▾, membership values
of the fourth class are represented by Δ and non-membership values of the fourth
class are represented by ▲.

The sixth object is the typical point of the first intuitionistic fuzzy cluster, the
eighth object is the typical point of the second intuitionistic fuzzy cluster, the tenth
object is the typical point of the third intuitionistic fuzzy cluster and the fourth
object is the typical point of the fourth intuitionistic fuzzy cluster.

6 Conclusions

The novel relational heuristic D-AIFC(c)-algorithm of possibilistic clustering based
on intuitionistic fuzzy set theory is proposed in the paper. Constructing the allot-
ment IR*

cðXÞ among given number c of partially separate intuitionistic fuzzy clusters
is the aim of classification.

The D-AIFC(c)-algorithm was tested on the illustrative data set for different
number of intuitionistic fuzzy clusters in the sought allotment. The results of
application of the proposed algorithm to the data show that the proposed algorithm
is the effective tool for solving the classification problem under ambiguity of the
initial data.

Acknowledgements The authors are grateful to Prof. Eulalia Szmidt for her useful remarks and
fruitful discussions during the paper preparation.
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Aggregation of Inconsistent Expert Opinions
with Use of Horizontal Intuitionistic
Membership Functions

Andrzej Piegat and Marek Landowski

Abstract Single expert opinion expressed in form of an intuitionistic member-

ship function (IMF) has uncertainty of the second order because it consists of the

membership—𝜇(x) and of the non-membership function 𝜈(x). Two different, con-

siderably inconsistent expert opinions have an increased uncertainty order. Often we

do not know, which of the opinion is more or less credible. Hence, IMF represent-

ing both aggregated opinions cannot be a standard IMF. It should have an increased

order of uncertainty. Possibility of appropriate modeling aggregated opinions offers

theory of fuzzy sets type-2 developed mainly by J. Mendel. In this paper authors

show how application of this theory in connection with horizontal version of IMFs

allows for constructing of an aggregated IMF of two inconsistent intuitionistic expert

opinions.

Keywords Intuitionistic fuzzy sets ⋅ Type-2 fuzzy sets ⋅ Expert opinion aggrega-

tion ⋅ Horizontal membership functions ⋅ RDM—Relative Distance Measure

1 Introduction

Expert opinions usually are only partly inconsistent. But sometimes they can be con-

siderably inconsistent. Examples of two such opinions A and B are shown in Fig. 1.

What can be the reason of such inconsistency? If e.g. the opinions concern a firm

value then reason of inconsistency can lie in the difference of information about the

firm possessed by expert A and B. Expert A can possess more negative and B more

positive information about the firm. Therefore expert B evaluated the firm higher
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Fig. 1 Aggregated

inconsistent expert opinions

A and B expressed in form of

intuitionistic membership

𝜇A(x), 𝜇B(x) and

non-membership functions

𝜈A(x), 𝜈B(x). xLA, xLB, xRA,

xRB—the minimal (left) and

the maximal (right) function

borders

and A lower. Because both experts had partly different information about the firm

we cannot say that one evaluation is better or worse. Both evaluations are important,

should be taken into account and aggregated in one general evaluation. The difficult

problem of expert opinions aggregation is described e.g. in [11]. The book shows

multitude of aggregation methods and their disputability. Authors of this paper have

not meet methods of opinions aggregation expressed in form of IFSs. Hence they

propose own method. Notion of intuitionistic fuzzy sets (IFSs) has been introduced

by Atanassov [4]. In [3] he gives basic operations on IFSs such as logical sum AUB

of two sets. However, such operation cannot be used in the case of inconsistent IFSs

[11]. In [5] following definition of IFSs is given: “IFS theory basically defies the

claim that from fact that an element x “belongs” to a given degree (say 𝜇A(x)) to a

fuzzy set A, naturally follows that x should “not belong” to A to the extent 1 − 𝜇A(x),
an assertion implicit in the concept of a fuzzy set. On the contrary, IFSs assign to

each element of the universe both a degree of membership 𝜇A(x) and one of non-

membership 𝜈A(x) such that 𝜇A(x) + 𝜈A(x) ≤ 1, thus relaxing the enforced duality

𝜈A(x) = 1 − 𝜇A(x) from fuzzy set theory”. A method of identification of member-

ships (MFs) 𝜇A(x) and non-memberships (NMFs) 𝜈A(x) can be found in e.g. [2].

Standard formula of MF is of vertical character 𝜇A(x) = f (x). In this paper a horizon-

tal model of IFSs based on Relative Distance Measure (RDM) will be used [12, 13].

As IFSs triangle functions described e.g. in [10] will be applied. Authors will explain

the aggregation method on example of two intuitionistic expert opinions shown in

Fig. 1.

Type-2 fuzzy sets introduced by L. Zadeh and developed mainly by J. Mendel

and co-workers [7, 8, 10, 11] open new possibilities for aggregation of inconsistent

IFSs. Inconsistent opinions can be interpreted as follows: the experts in different

way evaluate position of the minimal (left) xL and of the maximal (right) border

xR of their evaluations. Thus, the left border xLE and the right border xRE of the

aggregated evaluation AgB is uncertain (g means operation of aggregation), Fig. 2.

A possible, left border xLE of the aggregated IMF 𝜇AgB(x) in terms of interval

FSs Type-2 (FST2) is called left embedded border and a possible right border xRE is

called embedded right border. Figure 3 shows one of possible, embedded aggregated

IMFs type-1 generated by two possible left and right borders xLE and xRE. Figure 3

also shows denotations used in further formula derivations.
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Fig. 2 Uncertainty zone

(zone of possible position) of

the left border xLE and the

right border xRE of the

aggregated opinion AgB

(a)

(b)

Fig. 3 Intuitionistic

membership functions 𝜇A(x),
𝜇B(x) and one of possible,

embedded, aggregated

functions 𝜇AgB(x) of Type-1,

𝛼L-RDM variable of the left
border transformation,

𝛼R-RDM variable of the

right border transformation,

𝛼E—inner RDM variable of

the embedded IMF Type-1

2 Determining the Aggregated, Intuitionistic, Horizontal
Membership Function (IMF) xAgB

Formulas (1)–(4) give values x for points C1, C2, C3, C4 which characterize embed-

ded IMFs—Type-1.

C1 = a1 + 𝛼L(b1 − a1) = 2 + 9𝛼L, 𝛼L ∈ [0, 1], 𝛼L ≤ 𝛼R (1)

C2 = a2 + 𝛼L(b2 − a2) = 4 + 10𝛼L (2)

C3 = a2 + 𝛼R(b2 − a2) = 4 + 10𝛼R, 𝛼R ∈ [0, 1], 𝛼R ≥ 𝛼L (3)

C4 = a3 + 𝛼R(b3 − a3) = 7 + 9𝛼R (4)
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Formulas (5) and (6) allow for calculation of 𝜔C2
, 𝜔C3

which inform about two

important characteristic points of embedded IMFs Type-1.

𝜔C2
= 𝜔A + 𝛼L(𝜔B − 𝜔A) = 0.6 + 0.2𝛼L, 𝛼L ∈ [0, 1], 𝛼L ≤ 𝛼R (5)

𝜔C3
= 𝜔A + 𝛼R(𝜔B − 𝜔A) = 0.6 + 0.2𝛼R, 𝛼R ∈ [0, 1], 𝛼R ≥ 𝛼L (6)

On the basis of formulas (1)–(6) for 𝜇 ≤ 𝜔C2
horizontal model (7) of the left

uncertain border xLLE of the embedded, aggregated IMF is achieved.

xLLE = [a1 + 𝛼L(b1 − a1)] +
[(a2−a1)+𝛼L(a1+b2−a2−b1)]𝜇

𝜔A+𝛼L(𝜔B−𝜔A)
𝛼L ∈ [0, 1], 𝜇 ∈ [0, 𝜔C2

], 𝛼L ≤ 𝛼R
(7)

For concrete parameter values of functions shown in Fig. 3 formula (7) takes

form (8).

xLLE = (2 + 9𝛼L) +
(2+𝛼L)𝜇
0.6+0.2𝛼L

𝛼L ∈ [0, 1], 𝜇 ∈ [0, 𝜔C2
], 𝛼L ≤ 𝛼R

(8)

The right, uncertain border xLRE of the aggregated IMF is determined by (9).

xLRE = [a3 + 𝛼R(b3 − a3)] −
[(a3−a2)+𝛼R(a2+b3−a3−b2)]𝜇

𝜔A+𝛼R(𝜔B−𝜔A)
𝛼R ∈ [0, 1], 𝜇 ∈ [0, 𝜔C2

], 𝛼R ≥ 𝛼L
(9)

For numerical values of function parameters given in Fig. 3 formula (9) takes

form (10).

xLRE = (7 + 9𝛼R) −
(3−𝛼R)𝜇
0.6+0.2𝛼R

𝛼R ∈ [0, 1], 𝜇 ∈ [0, 𝜔C2
], 𝛼R ≥ 𝛼L

(10)

RDM variable 𝛼E ∈ [0, 1] transforms (Fig. 3) the left border xLLE in the right

function border xLRE. The full, complete, horizontal model of the aggregated IMFs

x𝜇AgB = f (𝛼L, 𝛼R, 𝛼E) is determined by (11).

xLAgB = xLE + 𝛼E(xRE − xLLE), 𝛼E ∈ [0, 1], 𝜇 ∈ [0, 𝜔C2
] (11)

Model (11) can be used only for 𝜇 ∈ [0, 𝜔C2
]. For values 𝜇 ∈ [𝜔C2

, 𝜔C3
] another

formula should be used what is explained in Fig. 3. In this range of membership 𝜇 the

left border xULE is different than for 𝜇 ∈ [0, 𝜔C2
]. For distinction the left IMF-border

for the range 𝜇 ∈ [𝜔C2
, 𝜔C3

] will be denoted as xULE. Instead, the right border xRE is

identical as for the range 𝜇 ∈ [0, 𝜔C2
], Fig. 3, formulas (9) and (10). The left border

is determined by function (12).
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xULE = a2 + (b2 − a2)
𝜇 − 𝜔A
𝜔B − 𝜔A

, 𝜇 ∈ [𝜔C2
, 𝜔C3

] (12)

For numerical parameter values of function (12) shown in Fig. 3 xULE is given

by (13).

xULE = −26 + 50𝜇, 𝜇 ∈ [𝜔C2
, 𝜔C3

] (13)

The full upper part xULE of the embedded IMF for the range 𝜇 ∈ [𝜔C2
, 𝜔C3

] is

determined by (14). RDM variable 𝛼E ∈ [0, 1] transforms in this formula the left

uncertain border xULE given by (12), into the right border xRE given by (9).

xUAgB = xULE + 𝛼E(xRE − xULE), 𝛼E ∈ [0, 1] (14)

Summarizing: the full horizontal model of the aggregated IMF consists of two

parts. The lower part xLAgB which concerns the range 𝜇 ∈ [0, 𝜔C2
], formula (11), and

the upper part xUAgB, formula (14). Aggregated IMF is shown in Fig. 4.

How the achieved result can be interpreted? Inconsistent IFSs A and B generate

one IFS Type-2 being a family of embedded IFST1. It means that the true but pre-

cisely unknown x-value that was evaluated by the experts A and B can be contained in

one of IFSsT1 imbedded in the achieved IFST2, which membership function is visu-

alized in Fig. 4. Each possible IMFT1 can be achieved by choice of values of RDM

variables 𝛼L, 𝛼R ∈ [0, 1], 𝛼R ≥ 𝛼L. Example the pair 𝛼L = 0, 𝛼R = 0 generates trian-

gle, embedded IMFT1 determined by formula xE = (2 + 3.333𝜇) + 𝛼E(5 − 8.333𝜇)
shown in Fig. 5a. The pair 𝛼L = 0.5 and 𝛼R = 0.5 generates also triangle IMFT1

determined by formula xE = (6.5 + 3.57𝜇) + 𝛼E(5 − 7.143𝜇) shown in Fig. 5a. The

pair 𝛼L = 1 and 𝛼R = 1 generates triangle, embedded IMFT1 determined by for-

mula xE = (11 + 3.75𝜇) + 𝛼E(5 − 6.25𝜇) shown in Fig. 5a. The pair 𝛼L = 0.25 and

𝛼R = 0.75 generates trapezoidal, embedded IMFT1 determined by formula xLE =
(4.25 + 3.46154𝜇) + 𝛼E(9.5 − 6.46154𝜇) for 𝜇 ∈ [0, 0.65] and xUE = (−26 + 50𝜇) +
𝛼E(39.75 − 53𝜇) for 𝜇 ∈ [0.65, 0.75], Fig. 6. The pair 𝛼L = 0 and 𝛼R = 1 generates

the outer trapezoidal, embedded IMF determined by formula xLE = (2 + 3.333𝜇) +
𝛼E(14 − 5.8333𝜇) for 𝜇 ∈ [0, 0.6] and xUE = (−26 + 50𝜇) + 𝛼E(4252.5𝜇) for 𝜇 ∈
[0.6, 0.8) shown in Fig. 5b.

Fig. 4 Visualisation of IMF

Type-2 xUAgB representing

aggregation of IMFs A and B
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Fig. 5 Examples of IMFs

T1 embedded in IMFT2 xAgB
generated by different pairs

of RDM variables (𝛼L, 𝛼R)
from the horizontal,

intuitionistic membership

function xAgB of aggregated

sets A and B

(a)

(b)

Fig. 6 IN-MFs of

aggregated sets A and B,

example of a trapezoidal,

embedded IN-MF type-1 of

AgB and denotations used in

formula derivation

3 Determining of the Aggregated, Intuitionistic, Horizontal
Non-membership Function (IN-MF) x∗AgB

Figure 6 shows IN-MFs of type-1 𝜈A and 𝜈B of the aggregated sets A and B and one

of trapezoidal, embedded IN-MFs T1 with denotations.

Parameters shown in Fig. 6 can be calculated according to (15).

c∗1 = a∗1 + 𝛼L(b∗1 − a∗1) = 1 + 9𝛼L, 𝛼L ∈ [0, 1], 𝛼L ≤ 𝛼R
c∗2 = a2 + 𝛼L(b2 − a2) = 4 + 10𝛼L, 𝛼L ∈ [0, 1], 𝛼L ≤ 𝛼R
c∗3 = a2 + 𝛼R(b2 − a2) = 4 + 10𝛼R, 𝛼R ∈ [0, 1], 𝛼R ≥ 𝛼L
c∗4 = a∗3 + 𝛼R(b∗3 − a∗3) = 8 + 9𝛼R, 𝛼R ∈ [0, 1], 𝛼R ≥ 𝛼L
𝜎C2

= 𝜎A − 𝛼L(𝜎B − 𝜎A) = 0.3 − 0.2𝛼L, 𝛼L ∈ [0, 1], 𝛼L ≤ 𝛼R
𝜎C3

= 𝜎A − 𝛼R(𝜎B − 𝜎A) = 0.3 − 0.2𝛼R, 𝛼R ∈ [0, 1], 𝛼R ≥ 𝛼L

(15)
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RDM variable 𝛼L with its increasing values transforms the left border x∗LA of the

IN-MF 𝜈A in the left border x∗LB of function 𝜈B. RDM variable 𝛼R transforms the

right border x∗RA of function 𝜈A in the right border x∗RB of function 𝜈B. RDM variable

𝛼E ∈ [0, 1] transforms the left, uncertain border x∗LE of the embedded IN-MF of in

its right border x∗RE. For the range 𝜈 ∈ [𝜎C2
, 1] the left border x∗LA of function 𝜈A is

determined by (16).

x∗LA = a∗1 + (a2 − a∗1)
(

1 − 𝜈

1 − 𝜎A

)
= 5.1857 − 4.2857𝜈, 𝜈 ∈ [0, 1] (16)

The left border x∗LB of function 𝜈B is determined by formula (17).

x∗LB = b∗1 + (b2 − b∗1)
(

1 − 𝜈

1 − 𝜎B

)
= 14.4444 − 4.4444𝜈, 𝜈 ∈ [𝜎C2

, 1] (17)

The left uncertain, upper border xU∗
LE of the aggregated IN-MF 𝜈AgB of sets A and

B is given by (18).

xU∗
LE = xLA + 𝛼L(xLB − xLA), 𝛼L ∈ [0, 1], 𝛼L ≤ 𝛼R

xU∗
LE = (5.1857 − 4.2857𝜈) + 𝛼L(9.2587 − 0.1587𝜈), 𝜈 ∈ [𝜎C2

, 1]
(18)

The right border of IN-MF 𝜈A is given by formula (19).

x∗RA = a∗3 − (a∗3 − a2)
(

1 − 𝜈

1 − 𝜎A

)
= 2.2857 + 5.7143𝜈, 𝜈 ∈ [𝜎C2

, 1] (19)

The right border x∗RB of IN-MF 𝜈B is determined by formula (20).

x∗RB = b∗3 − (b∗3 − b2)
(

1 − 𝜈

1 − 𝜎B

)
= 13.6667 + 3.3333𝜈, 𝜈 ∈ [𝜎C2

, 1] (20)

The right uncertain border of embedded IN-MF 𝜈AgB determines formula (21).

x∗RE = xRA + 𝛼R(xRB − xRA), 𝛼R ∈ [0, 1], 𝛼R ≥ 𝛼L
x∗RE = (2.2857 + 5.7143𝜈) + 𝛼R(11.3809 − 2.3810𝜈), 𝜈 ∈ [𝜎C3

, 1] (21)

RDM variable 𝛼E ∈ [0, 1] transforms with its increasing values the left uncertain

border xU∗
LE in the right upper border xU∗

RE of the aggregated function 𝜈AgB, formula

(22), where xU∗
LE is determined by (18) and xU∗

RE by (21).

xU∗
E = xU∗

LE + 𝛼E(x∗RE − x∗LE), 𝛼E ∈ [0, 1], 𝜈 ∈ [𝜎C2
, 1] (22)
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Fig. 7 Visualisation of the

membership function of type

2 𝜇AgB and of the

non-membership function

𝜈AgB of two aggregated,

inconsistent intuitionistic

fuzzy sets A and B

For the range 𝜈 ∈ [𝜎C3
, 𝜎C2

] formula for x∗E has other form than (22). It results

from the fact that the left, lower border xL∗LE is different than for the range 𝜈 ∈ [𝜎C2
, 1],

formula (23).

xL∗LE = b2 −
(
b2 − a2
𝜎A − 𝜎B

)
(𝜈 − 𝜎B) = 19 − 50𝜈, 𝜈 ∈ [𝜎C3

, 𝜎C2
] (23)

In the range 𝜈 ∈ [𝜎C3
, 𝜎C2

] formula for x∗EL has form (24), where xL∗LE is determined

by (23) and x∗RE by (21).

xL∗E = xL∗LE + 𝛼E(x∗RE − x∗LE), 𝛼E ∈ [0, 1], 𝜈 ∈ [𝜎C3
, 𝜎C2

] (24)

Formulas (22) and (24) together define the aggregated IN-MFT2 𝜈AgB. For cho-

sen values 𝛼L, 𝛼R, 𝛼R ≥ 𝛼L, they generate an infinitive set of embedded IN-MFs of

type-1 of triangle and trapezoidal, possible IN-MFs, similarly as for MFs, as shown

in Figs. 4 and 5. Figure 7 shows both aggregated functions: the IMF 𝜇AgB given in its

horizontal form by formulas (11) and (14) and IN-MF 𝜈AgB given by (22) and (24).

4 Conclusions

Interval-valued fuzzy sets theory and horizontal RDM membership functions allow

for aggregation of uncertain intuitionistic fuzzy sets which express inconsistent

expert opinions or inconsistent measurements. Interval-valued FST2-theory allows

for new understanding and interpretation of inconsistent expert opinions. Each opin-

ion delivers right and left border of a fuzzy set. Two opinions deliver two right and

two left borders. It means that the aggregated borders are uncertain and that they gen-

erate a fuzzy set with uncertain borders. Hence, the aggregated IMF has uncertainty

of higher order than each of the single component opinions.
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Intuitionistic Fuzzy Evaluations
of the Elbow Joint Range of Motion

Simeon Ribagin, Anthony Shannon and Krassimir Atanassov

Abstract Following (Ribagin et al. 2015, In: 19th International Workshop on IFSs,
[8]), in this paper it is proposed a technique to evaluate the functional capacity of
the elbow joint during a complex movement using intuitionistic fuzzy and interval
valued intuitionistic fuzzy sets. The membership and non-membership values are
not always possible up to our satisfaction, but in deterministic (hesitation) part has
more important role here, the fact that in decision making, particularly in case of
orthopedic physical assessment, there is a fair chance of the existence of a non-zero
hesitation part at each moment of evaluation. Based on our previous study here we
will introduce intuitionistic fuzzy estimations of flexion-extension and
pronation-supination movements of the elbow joint.
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1 Introduction and Biological Motivation

The elbow is the anatomic area that joints the arm or “brachium” with the forearm
or “antebrachium”. The bony structures of the elbow are the distal part of the
humerus and the proximal ends of the forearm bones (radius and ulna). The distal
end of the humerus is formed by the pulley-shaped trochlea medially and the
convex capitulum laterally. The trochlea of the humerus articulates with the deep
trochlear notch found on the proximal end of the ulna. The superior surface of the
head of the radius is concave for articulation with the capitulum, with the raised
margin articulating with the capitulutrochlear groove. Structurally, the joint is
classed as a synovial joint, and functionally as a hinge joint. Like all synovial joints
the elbow joint has a capsule enclosing the joint. The elbow joint capsule wraps all
three bones and both functional joints. Within the elbow complex there are three
separate synovial articulations: humeroulnar joint, humeroradial joint and the
proximal radioulnar joint. The humeroulnar joint is the articulation between the
trochlea of the humerus and the trochlear notch of the ulna. The bones of this joint
are shaped so that the axis of movement is not horizontal but instead passes
downward and medially, going through an arc of movement. This position leads to
carrying angle at the elbow. Typically the normal range of the carrying angle is
between 10° and 15° [5]. The humeroradial joint is a uniaxial hinge joint and
consist of the spheroidal capitulum of the humerus and the proximal surface of the
head of the radius. The proximal radioulnar joint is the articulation between the
head of the radius and the radial notch of the proximal ulna. This joint is classed as
a uniaxial cone-shaped pivot joint. Stability of the elbow complex is provided
mainly by the ligamentous apparatus surrounding the joint and the interlocking
mechanism of the articulating surfaces. The elbow complex allows two degrees of
freedom in the sagittal plane: flexion-extension and pronation-supination. In [8] we
discussed the flexion-extension movements of the elbow. Now we will briefly
describe the pronation-supination movements of the elbow and forearm.

The pronation-supination movements of forearm occur at the distal and proximal
radioulnar joints of the elbow. The rotational movements are a pair of unique
movements possible only in the forearms and hands, allowing the human body to
flip the palm either face up or face down. The muscles, bones, and joints of the
human forearm are specifically arranged to permit these unique and important
rotations of the hands. Movement takes place around the longitudinal axis of the
forearm [7], which passes obliquely from the distal aspect of ulnar head at the
fovea, to the center of the radial head proximally. The normal pronation-supination
arc of the intact elbow ranges from 160 to 180°. Pronation and supination should be
assessed with the elbow in 90° of flexion, with the thumb-up position considered as
a neutral. In the neutral position the radius and ulna lie next to each other, but in full
pronation the radius has crossed over the ulna diagonally. This is possible only
because of the direction of the fibers of the interosseous membrane. The radial
tuberosity thereby turns towards the ulna. Active pronation is considered to be
approximately 80–90° [3], so that the palm faces down. This movement is limited
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by stretching of the interosseous membrane and squeezing of the flexor muscles. As
the radius crosses over in pronation, the distal end of the ulna moves laterally [4].
The opposite occurs during supination. In full supination the two bones lie parallel
to each other and the movement is limited by the interosseous membrane, oblique
cord, anterior ligament of the distal radioulnar joint and the pronator muscles.
Active supination should be 90° [7], so that the palm faces up. Although the radius
rotates during pronation and supination, the radial head remains otherwise in a fixed
position relative to the ulna. The relative position and movement of the radius about
the elbow is essential for the proper functioning of the elbow and forearm. For both
pronation and supination, only about 75° of movement occurs in the forearm
articulations, the remaining 15° is the result of wrist action [5].

Forearm rotation permits a rotatory displacement of objects that are grasped by the
hand and proves essential for a number of manual tasks, including personal hygiene,
tool use and feeding. Supination occurs in many functional activities that require the
palm to be turned up, such as feeding, washing the face, opening a door etc.
Pronation, in contrast, is involved with activities such as grabbing an object, drinking
from a cup or cutting with a knife. Most of these activities can be accomplished with a
functional range of 100° of forearm rotation, with 50° of both pronation and
supination [6]. Elbow and forearm motion serves to position the hand in space. For a
normal upper extremity functioning is required a freely mobile and stable elbow
joint. Loss of elbow and forearm motion can impact most of the activities of daily
living. The purpose of the present study is to give a possible example for evaluation
of the complex elbow movements using IFD and IVIFSs.

2 Intuitionistic Fuzzy Evaluations
of the Flexion-Extension and Pronation-Supination
Movements of the Elbow

In intuitionistic fuzzy logic (IFL) [1, 2], if p is a variable then its truth-value is
represented by the ordered pair

V pð Þ= ⟨M pð Þ, N pð Þ⟩, ð1Þ

so that M(p), N(p), M(p) + N(p) ∈ [0, 1], and M(p) and N(p) are respectively degrees
of validity and of non-validity of p. These values can be obtained applying different
formula depending on the problem considered. If we like to use Interval-Valued IF
(IVIF) values (see, e.g., [1]), then (1) obtains the same form, but now

M pð Þ= inf M pð Þ, supM pð Þ½ �⊂ 0, 1½ �,
N pð Þ= inf N pð Þ, supN pð Þ½ �⊂ 0, 1½ �,
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and

supM pð Þ+ supN pð Þ≤ 1.

Now, we shall give an IF estimation of the functional capacity in the elbow joint
during the pronation-supination movement together with the flexion-extension
movement of the person p. In our previous study (see [8]) we assume that the
anatomical barrier of the elbow joint is in interval [–10°, 160°] and the active range
of motion is in interval [0°, −145°].

Let the movement of person p be between angles α(p) and β(p), where
α(p) < β(p). Then

ω pð Þ= β pð Þ− α pð Þ.

Therefore,

M pð Þ= β− α

170◦
.

N pð Þ=1−
β− α

170◦
.

Let the active range of motion during the physical examination of a person p be:

ω pð Þ= β1 pð Þ− α2 pð Þ<145◦.

Therefore,

M pð Þ= β1 − α2
170◦

<
145◦

170◦
.

The restricted range of motion which will not be accomplished even with an
additional passive force applied is:

φðpÞ=170◦ − ðβ2ðpÞ− α1ðpÞÞ>25◦

and

N pð Þ=1−
β− α

170◦
>

35◦

170◦
.

So, for patient p we determine his/her personal IF estimation is the form 〈M(p),
N(p)〉.

Now we shall apply the same approach by giving an IF estimation of the
functional capacity in the elbow joint during the pronation-supination movement.
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The expected maximal range of pronation-supination movements of the elbow
and forearm is R: 90° −0° −90°. Let p be a patient for whom γ(p) ∈ [−90°, 0°] and
δ(p) ∈ [0°, −90°].

Therefore,

RðpÞ= 90◦ + γ
180◦

and

SðpÞ= 90◦ − δ
180◦

Because,

0≤R pð Þ+S pð Þ= 180◦ + ðγ− δÞ
180◦

=1−
γ− δð Þ
180◦

<1−
ð90◦ − δÞ
180◦

≥ 1,

then the pair 〈R(p), S(p)〉 is an intuitionistic fuzzy pair. Hence, we can define
function,

T pð Þ=1−R pð Þ− S pð Þ= ðγ− δÞ
180◦

If we like to give an IVIF-estimation, it will have the form 〈M(p), N(p), R(p), S
(p)〉 = 〈[α1, α2], [β1, β2], [γ], [δ]〉, where α1, α2, β1, β2, γ, δ are above described
estimations for patient (p).

3 Intuitionistic Fuzzy Estimation of a Complex Movement
of the Elbow

Let us have a patient (p) with concrete α, β, γ and δ parameters. Therefore, we can
estimate his/her capacity of the elbow joint during a complex movement. The
estimation can obtain different values and can be interpreted by different ways. Here
we introduce the following five estimations:

• Strong pessimistic estimation: 〈M(p).R(p), N(p) + S(p) − N(p).S(p)〉,
• Pessimistic estimation: 〈min(M(p), R(p)), max(N(p) + S(p))〉,

• Average estimation: 〈M pð Þ+RðpÞ
2 , N(p) + S(p)〉,

• Optimistic estimation: 〈max(M(p), R(p)), min(N(p) + S(p))〉,
• Strong optimistic estimation: 〈M(p) + R(p) − M(p).R(p), N(p).S(p)〉.
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4 Conclusions

Somatic dysfunction of the elbow joint occurs when there is a restriction of motion
occurring within the normal range of movement. A thorough and accurate assess-
ment of a subject’s elbow joint complex range of motion is essential for correct
diagnosis, treatment and determination of rehabilitation potential. However, all
assessment and testing in clinical practice is based on the assumption of uncertainty.
By employing IF evaluations of we can express a hesitation concerning examined
objects. The method proposed in this article, assigning IF values and numeric
grades of flexion-extension and pronation-supination movements of the elbow joint
will significantly improve the overall assessment of the elbow joint range of motion.
Appling the propose intuitionistic fuzzy estimations will give the possibility of
improving the overall assessment method by considering the possibility of
assigning relative weight coefficients for all movement values since for some joint
dysfunctions some particular joint motions are more important than others.
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Using Phi Coefficient to Interpret Results
Obtained by InterCriteria Analysis

Lyudmila Todorova, Peter Vassilev and Jivko Surchev

Abstract The authors propose an algorithm for assessment of the estimates of “cor-

respondence” and “opposition” obtained by InterCriteria Analysis (ICA) in the form

of intuitionistic fuzzy vector pairs. For this aim the modified Pearson coefficient

of Karl Pearson, called ϕ coefficient (“mean square contingency coefficient”). The

algorithm is applied on real data from neurosurgery. The statistical significance of

the relations between the considered criteria is verified by data found in literature.

The authors believe this approach for data exploration may prove useful in many

areas.

Keywords InterCriteria analysis ⋅ Pearson phi ⋅ Correlation ⋅ Intuitionistic fuzzy

vector pairs

1 Introduction and Preliminary Definitions

The term “correlation” is introduced for statistical purposes by Francis Galton [1].

Despite the fact that the correlation dependencies are objective, the variation of the

variable Y in the general case is not completely determined by the variation of the

factor X. The correlation relation is not occurring in all of the observed case, but

only in the mass occurrence of the events. In other words not every variation of the

factor leads to a predetermined change in the result. The magnitude and direction of
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influence between two statistical variables is measured by the correlation coefficient

of Karl Pearson:

r =

n∑
i=1

(
xi − x

) (
yi − y

)

√
n∑
i=1

(
xi − x

)2
√

n∑
i=1

(
yi − y

)2
(1)

where the sets X = x1,… , xn and Y = y1,… , yn, of the dependent and independent

variable, respectively, have n values.

The values for the correlation coefficients calculated in accordance with formula

(1) vary between –1 and 1. The values close to those two extreme values correspond

to the near-linear relationship between the variables. The sign of the coefficient is

positive when the two variables are changed in the same “direction” - namely, the

increase/decrease of one is related to the increase/decrease of the other. A nega-

tive sign corresponds to the opposite relationship increase/decrease of one leads to

decrease/increase of the other, respectively. Two scales to assess the degree of cor-

relation are commonly applied (Tables 1 and 2): When both variables are discrete

dichotomies, the correlation is calculated based on:

∙ The modified coefficient of Karl Pearson, called phi-factor ϕ, by the formula:

ϕ = ad − bc√
(a + b) (c + d) (a + c) (b + d)

(2)

where: a, b, c, d—are the frequencies (number of individuals) characterized in an

appropriate manner with respect to the two features X, Y as shown in Table 3. The

table columns are values of the independent variable, in the rows of the dependent.

A restriction for the application of the Pearson correlation coefficient is that it is

Table 1 First correlation

scale
0 < R < 0.3 Weak correlation

0.3 < R < 0.5 Moderate correlation

0.5 < R < 0.7 Significant correlation

0.7 < R < 0.9 High correlation

0.9 < R < 1.0 Very high correlation

Table 2 Second correlation

scale
0 < R < 0.2 Weak correlation

0.2 < R < 0.4 Moderate correlation

0.4 < R < 0.6 Significant correlation

0.6 < R < 0.8 High correlation

0.8 < R < 1.0 Very high correlation
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Table 3 Tabular representation of Dependent vs. Independent variable

X
Independent variable

Yes No Totals

Y Yes a b a + b
No c d c + d

Dependent

variable

Totals a + c b + d n

applicable for a linear kind of dependence. The InterCriteria Analysis (ICA) [2] also

estimates the relation between parameters without imposing such restriction.

Given an IM (see [3]) with index sets consisting of the names of the criteria (for

rows) and objects (for columns) with real numbers as components, for any two “cri-

teria” a vector of “agreement” of their internal comparisons may be constructed.

Let O denote the set of all objects being evaluated (in our case these correspond

to the patients), and C(O) denote the set of values assigned by a given criteria C to

theses objects, i.e.

O
def
= {O1,O2,… ,On}, C(O)

def
= {C(O1),C(O2),… ,C(On)}.

Let C∗(O)
def
= {⟨x, y⟩| x ≠ y & ⟨x, y⟩ ∈ C(O) × C(O)}.

To construct the “vector of correspondence” of two criteria, the array of all inter-

nal comparisons which must fulfill exactly one of three relations R, R and ̃R is

first constructed. It is assumed that for a fixed criterion C and any ordered pair

⟨x, y⟩ ∈ C∗(O) it is true:

⟨x, y⟩ ∈ R ⇔ ⟨y, x⟩ ∈ R, (3)

⟨x, y⟩ ∈ ̃R ⇔ ⟨x, y⟩ ∉ (R ∪ R), (4)

R ∪ R ∪ ̃R = C∗(O). (5)

For the effective calculation of the array of internal comparisons (denoted further

by V(C)), only lexicographically ordered pairs ⟨x, y⟩ need to be considered, since

from (3)–(5) it follows that if the relation between x and y is known, the relation

between y and x is known as well. Denoting Ci,j = ⟨C(Oi),C(Oj)⟩, for a fixed crite-

rion C the following array is obtained:

V(C) = {C1,2,C1,3,… ,C1,n,C2,3,C2,4,… ,C2,n,C3,4,… ,C3,n,… ,Cn−1,n}.



234 L. Todorova et al.

It is easy to see that it has
n(n−1)

2 elements. To simplify our considerations, the vector

V(C) is replaced with ̂V(C), where for the k-th component (1 ≤ k ≤ n(n−1)
2 ) it is true:

̂Vk(C) =
⎧
⎪
⎨
⎪⎩

1 iff Vk(C) ∈ R,
−1 iff Vk(C) ∈ R,
0 otherwise.

To each two criteria we juxtapose two vectors–of “correspondence” (“agreement”)

and of (“opposition”) based on ̂V(C) and ̂V(C′) as shown in the pseudocode in

Algorithm 1.

We note that the obtained vectors V
corr

and V
opp

can be regarded as intuitionistic

fuzzy vector pairs by analogy with intuitionistic fuzzy pairs [4] in the following

sense:

̂0 ≤ V
corr

+ V
opp

≤ ̂1,

Algorithm 1 Correspondence and opposition vectors between two criteria

Require: Vectors ̂V(C) and ̂V(C′)
1: function CORRESPONDENCE( ̂V(C), ̂V(C′))
2: V ← ̂V(C) − ̂V(C′)
3: V

corr
← [0, 0,… , 0]

⏟⏞⏞⏞⏟⏞⏞⏞⏟

n − 1
2

- times

4: for i ← 1 to
n(n−1)

2
do

5: if V(i) = 0 then
6: V

corr
(i) ← 1

7: end if
8: end for
9: return V

corr

10: end function

11: function OPPOSITION( ̂V(C), ̂V(C′))
12: V ← ̂V(C) − ̂V(C′)
13: V

opp
← [0, 0,… , 0]

⏟⏞⏞⏞⏟⏞⏞⏞⏟

n − 1
2

- times

14: for i ← 1 to
n(n−1)

2
do

15: if abs(V(i)) = 2 then ⊳ abs: absolute value

16: V
opp

(i) ← 1
17: end if
18: end for
19: return V

opp

20: end function
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where

̂0
def
= [0, 0,… , 0]

⏟⏞⏞⏞⏟⏞⏞⏞⏟

n − 1
2

- times

; ̂1
def
= [1, 1,… , 1]

⏟⏞⏞⏞⏟⏞⏞⏞⏟

n − 1
2

- times

2 Proposed Algorithm and Example

Further we propose the following algorithm

1. For the considered classes the above considered variant of ICA is used. As a result

for each class binary vector for every feature is obtained.

2. The values for a, b, c, and d are determined as in Table 4

3. The Phi coefficient is calculated by formula (2)

4. Based on the obtained values the correlation between the considered features is

interpreted in accordance with one of the scales presented in Tables 1 and 2.

The developed algorithm is applied to the data from neurosurgery and covers

a contingent of 106 patients who underwent due to infantile hydrocephalus. The

valves were implanted in the Department of Neurosurgery at the University Hospital

“St. Ivan Rilski”, Medical University—Sofia in the period 1984–2003. All patients

included in the study were shunted in childhood (up to 18 years), and have undergone

at least one revision.

Hydrocephalus is defined [5] as an abnormal accumulation of fluid in the ventric-

ular system (in whole or in part of it), which is associated with increased intracranial

pressure. This pathology is particularly common in childhood and especially—in

nursing. It is worked for the surgical treatment of hydrocephalus, and after the intro-

duction of the shunts surgeries—and in the treatment of their complications, which

generally can be divided into three groups:

∙ infections;

∙ mechanical complications;

∙ functional complications (due to inadequate drainage of normal functioning shunt

systems).

Table 4 Determining the binary values from the variant ICA

1 0 Totals

1 a b a + b
0 c d c + d
Totals a + c b + d n
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Shunt infections lead to increased risk of mental retardation, development of locular

hydrocephalus and even death [6–8]. Non-infection shunt complications are associ-

ated with a low but real risk of death and require surgical revision, with all related

surgical risks [9–11]. Despite the continuous development of neurosurgical science

and the introduction of other forms of treatment outside shunts, they retain an impor-

tant place in the treatment of pediatric hydrocephalus. This is the reason to analyze

their complications, to seek ways and means of reducing their number. This will con-

tribute to reduced morbidity and will have a huge socio-economic impact due to the

large financial resources used for the treatment of complications.

In this work the following relations:

∙ (“Criterion 1”) age at implantation—(“Criterion 2”) frequency (number) of com-

plications (following revisions).

∙ length of the interval between the implantation and the first revision—(“Criterion

3”) number of complications.

∙ age at implantation—length of the interval between the implantation and the first

revision.

The contingent of patients is divided in two classes:

(a) patients who underwent only one revision for the whole observation period (53

in number);

(b) patients who underwent 2 or more revisions for the observed period (53 in num-

ber).

2.1 Results

According to the proposed algorithm in Sect. 2 for the considered classes we obtain

the following:

Case I. For each class the obtained binary vectors for the features has “1” in the

case of “correspondence” and “0” otherwise

Case II. For each class the obtained binary vectors for the features has “1” in the

case of “opposition” and “0” otherwise

The obtained values for a, b, c, d, as well as the modified coefficient of Karl

Pearson ϕ are given in Table 5.

For comparison the correlation between the three parameters is calculated as

(see Table 6):

∙ Pearson Correlation (P.C.) [12]

∙ Kendall rank correlation coefficient (Kendall’s tau coefficient) (K.T.C.) [13]

∙ Spearman’s rank correlation (Spearman’s rho) (S.R.) [14].
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Table 5 Obtained by the variant ICA values for a, b, c, d and ϕ

a b c d ϕ

Case I Criterion 1/Criterion 2 128 1250 480 898 −0.3080
Criterion 1/Criterion 3 606 772 688 690 −0.0596
Criterion 2/Criterion 3 1 1377 510 868 −0.4752

Case II Criterion 1/Criterion 2 0 1378 475 903 −0.4563
Criterion 1/Criterion 3 645 733 606 772 0.02842

Criterion 2/Criterion 3 0 1378 493 885 −0.4668

Table 6 Pearson Coefficient, Kendall’s tau coefficient and Spearman’s rho for the criteria

Criterion 1 Criterion 2 Criterion 3

P.C. Criterion 1 1 0.002 −0.123
Criterion 2 0.002 1 −0.348a

Criterion 3 −0.123 −0.348a 1

K.T.C. Criterion 1 1.000 0.090 −0.024
Criterion 2 0.090 1.000 −0.308a

Criterion 3 −0.024 −0.308a 1.000

S.R. Criterion 1 1.000 0.118 −0.044
Criterion 2 0.118 1.000 −0.411a

Criterion 3 −0.044 −0.411a 1.000

a
Correlation is significant at the 0.01 level

2.2 Discussion of the Results

By applying the proposed in the present work algorithm we found statistically sig-

nificant correlation between:

∙ Age of implantation and number of revisions. The correlation is negative, i.e. the

smaller the age of the patient is, the more revisions he/she incurs subsequently.

Also it varies from moderate to significant depending which of the two cases we

consider and which of the two scales is applied. None of the other statistical meth-

ods provides a statistically significant difference.

∙ Age of implantation length of the interval between the implantation and the first

revision. Our method, as well as the other three statistical methods did not find a

correlation between this two features.

∙ the interval between the implantation and the first revision and the number of

revisions. The correlation is negative, i.e. the smaller the length of the interval,

the greater the number of subsequent revisions and in both cases is moderate or

significant depending on the chosen scale.

From the results obtained over the considered data we can conclude, that since

the correlation dependencies discovered by our method are stated by other sources

[15–17], it is capable to capture more subtle relations.
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3 Conclusion

In the present paper a new algorithm for assessment of the estimates of “correspon-

dence” and “opposition” obtained by InterCriteria Analysis (ICA). The results seem

to indicate that it is possible to use it in exploratory manner to investigate possi-

ble correlations between the “correspondence” and “opposition” levels of different

features (“criteria”).
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Part IV
Generalized Nets and Neural Networks



Modeling Logic Gates and Circuits
with Generalized Nets

Lenko Erbakanov, Todor Kostadinov, Todor Petkov, Sotir Sotirov
and Veselina Bureva

Abstract In this paper, modeling of logic gates is presented for the first time. Four
models of Generalized Nets (GN)—AND gate, a binary to decimal decoder, delay
type flip-flop, n-bit binary counter and logical circuits are presented in the following
paper. Here we also suggest using the recently proposed approach of InterCriteria
Analysis, based on index matrices and intuitionistic fuzzy sets, which aim to detect
possible correlations between pairs of criteria. We can perform the measurements, if
we have a set of several logical circuits that can be used to obtain identical output
data. The aforementioned logical circuits must be composed of different logical
elements. By using several measurement points and different schematics, we can
suggest the best solution for the considered type of task.

Keywords Generalized nets ⋅ Digital logic ⋅ Intercriteria analysis

1 Introduction

The theory of Generalized Nets is a proper tool to describe and test the digital
circuits.
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A comprehensive description of the theory of Generalized Nets (GN) is provided
in [1, 2]. Useful information concerning the research application of GNs can be
found in [3].

Formally, every transition (Fig. 1) is described by a seven interconnected
transitions:

Z = ⟨L′,L′′, t1, t2, r,M, γ⟩

where:

• L′ and L″ are finite, non-empty sets of the transition’s input and output positions,
respectively (for the transition in Fig. 1 these positions are L′ = fl′1, l′2, . . . , l′mg,
L′′ = fl′′1 , l′′2 , . . . , l′′ngÞ;

• t1 is the current time-moment of the transition’s firing;
• t2 is the current value of the duration of the transition’s active state;
• r is the transition’s condition that determine which tokens will transfer from the

input to the output of the transition. The parameter r can be represented as an
index matrix [4]:

• where ri,j is the predicate that gives the transfer condition from the i-th input
point to the j-th output point. When ri,j has a value “true”, then the token from
the i-th input point can be transferred to the j-th output point; otherwise, this is
impossible;

• M is an IM of the capacities of transition’s arcs:

• γ is called transition type. It represents a Boolean expression; the variables it
contains can be specified as the symbols used as labels for the transition’s input
points; when the value of the type is “true”, the transition can become active,
otherwise it cannot.
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The main goal of this paper is to represent the function of several different types
of logical gates by generalized networks. Then the GN models can be used to
present a particular electrical circuit. The presented sample circuit uses a clock
input, and a PWM (Pulse Width Modulated) output, where the duty cycle of the
output PWM signal depends on the position of the switches S1–S4.

By developing several different schematics that produce equivalent output, for
analysis purposes of the parameters of several points ICRA algorithm can be used
in order to suggest the best logical elements for the implementation of a certain type
of circuits.

2 GN Model of an AND Gate

Let’s assume we have an AND gate with n inputs. We will present the gate as a
single transition “ZAND” that consists of n + 1 input and two output places (Fig. 2).

Initially at the input points X0, X1, … Xn−1 the tokens α0, α1, … αn-1, are located
respectively, with characteristics: “αk logic state”, where k = 0 ÷ n − 1. The γ token
with characteristic xγ0 = 0 is located in place C.

Fig. 1 GN transition in
general form, featuring
m inputs and n outputs

Y

ZAND

X1

X0

C

Xn

Fig. 2 GN model of n-input
“AND” gate
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The transition ZAND is represented as follows:

ZAND = ⟨fX0,X1, . . . ,Xn− 1,Cg, fY ,Cg,RAND, ∧ ðX0,X1, . . . ,Xn− 1,CÞ⟩

where:
WCY = “The logic function is calculated”.
The tokens from places X0, X1, … Xn−1 are merged in place C, where the token γ

obtains the following characteristic:

xγcu = xα1cu ∧ xα2cu ∧ . . . ∧ xαn− 1
cu ,

where αi (i = 0 ÷ n − 1) is the token that stays in the i-th place of the transition ZAND.
The token γ from place C enters place Y without a characteristic change.

3 GN Model of a Binary to Decimal Decoder (0 of n−1)

This type of combinational logic circuit has multiple inputs and multiple outputs,
where for every unique input bit states, only one output is activated. For example if
the binary combination of the integer value k is applied to the inputs, only Yk output
would be set (Yk = “1”), and all of the rest output states would be “0”.

Assume we have a decoder with n inputs. Hence the number of outputs will be
2n. We will present the gate as a single transition “ZDEC” that consists of n + 1 input
and 2n + 1 output places (Fig. 3).

Initially in the input places X0, X1, … Xn−1 stay tokens α0, α1, … αn−1,
respectively, with characteristics: “αk logic state”, where k = 0 ÷ n − 1. In place C a
token γ with characteristic: xγ0 = 0 is positioned.

The transition ZDEC is represented by the following expression:

ZDEC = ⟨fX0,X1, . . . ,Xn− 1,Cg, fY0, Y1, . . . , Y2n− 1 ,Cg,RDEC , ∧ ðX0,X1, . . . ,Xn− 1,CÞ⟩,
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The tokens α0, α1, … αn − 1 are merged in place C, where token γ obtains the
following characteristic:

xγcu =2
∑
n− 1

i=0
2ixαicu

− 1,

where xαicu is the characteristic of the α token that stays in the i-th place of the
transition ZDEC (i = 0 ÷ n − 1).

The token γ splits in 2n tokens in places Y0,Y1, . . . ,Y2n− 1 , where the token γk
obtains characteristic: “k-th bit of xγcu” (k = 0 ÷ 2n−1).

4 GN Model of a Delay Type Flip-Flop (D Latch)

The GN model of this sequential logic circuit consists of one transition ZD (Fig. 4).
Initially, there are tokens located in places D and C, respectively:

Y0

ZDEC

X1

X0

Xn

Y1

Y2
n

C

Fig. 3 GN model of n-input
binary to decimal decoder

Q

ZD

D

C

Fig. 4 GN model of D-latch
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• α token with characteristic “data state”;
• β token with characteristic “clock state”.

The transition ZD is represented by the following expression:

ZD = ⟨fD,Cg, fQ,Cg,RD, ∧ ðD,CÞ⟩,

where
WDQ = “There is a clock edge”.
The token α from place D enters place Q and does not change its characteristic.

5 GN Model of n-Bit Binary Counter

The GN model of the counter consists (Fig. 5) of one transition ZC. Initially, there
are tokens in places C and CLK, respectively:

• α token with characteristic: xαcu =0;
• β token with characteristic “clock state”.

The transition ZC is represented by the following expression:

ZC = ⟨fCLK,Cg, fQ0,Q1, . . .Qn− 1,Cg,RC, ∧ ðCLK,CÞ⟩

Q0

ZC

C

Q1

Qn-1

CLK

Fig. 5 GN model of n-bit
counter
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where
WCQ = “There is a clock edge”.
The token from place C splits in n + 1 tokens, where the token that enters place

C obtains a new characteristic: xαt = xαt− 1 + 1
The token that enters place Qi obtains characteristic: “i-th bit of xαt ”, where i = 0

÷ n − 1.
The token β enters place C and does not change its characteristic.

6 GN Model of an Example Digital Circuit

The circuit, shown on Fig. 6 has a clock input, and a PWM (Pulse Width Modu-
lated) output, where the duty cycle of the output PWM signal depends on the
position of the switches S1–S4. The duty cycle varies between 0 and 94 ℅ (15/16).

There are four logical gates in the circuit, two 4-bit binary counters, a D-type
flip-flop, and four switches. The counters have an additional reset (R) input, with an
active “HIGH” level. The D-type flip-flop also possesses another output (⌐Q). The
four switches define the duty cycle of the PWM output signal.

Fig. 6 Example digital circuit
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The time diagram of the digital circuit is shown in Fig. 7.
The generalized net that describe the process of work of the example circuit is

shown in Fig. 8. It is presented by the following set of transitions:

Fig. 7 Clock and output signals, when S0 and S1 are closed

Fig. 8 Generalized net of the example circuit
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A= fLG1, LG2,LG3, LG4,C1,C2,D, Sg

The transitions describe the following processes:

• LG1—performs a logical operation “2-AND”;
• LG2—performs a logical operation “4-AND”;
• LG3—performs a logical operation “4-AND”;
• LG4—performs a logical operation “2-OR”;
• C1—4-bit binary counting;
• C2—4-bit binary counting;
• D—toggle triggering;
• S—duty cycle configuration.

Initially, the following tokens are defined:

• ξ token in place CLK1 with characteristic “clock signal”;
• ω1 token in place CNT1 with characteristic: xω1

0 = 0;
• ω2 token in place CNT2 with characteristic: xω2

0 = 0;
• δ token in place CD with characteristic xδ0 = 0;
• μ0 token in place SI0 with characteristic xμ00 = 0;
• μ1 token in place SI1 with characteristic xμ10 = 0;
• μ2 token in place SI2 with characteristic xμ20 = 0;
• μ3 token in place SI3 with characteristic xμ30 = 0;
• γ token in place SF with characteristic xγ0 = 0;
• λ1 token in place LF1 with characteristic xλ10 = 0;
• λ2 token in place LF2 with characteristic xλ20 = 0;
• λ3 token in place LF3 with characteristic xλ30 = 0;
• λ4 token in place LF4 with characteristic xλ40 = 0.

The transition C1 is represented by the following expression:

C1 = ⟨fMR,CLK11,CNT1g, fQ10,Q11,Q12,Q13,CNT1g,RC1, ∧ ðMR,CLK11,CNT1Þ⟩

where
WC1 = “There is a clock edge”.
The token ω1 in place CNT1 obtains characteristic: x

ω1
t = ρðxω1

t− 1 + 1Þ, where t is
the current moment, t − 1 is the previous moment, and ρ is the token in place MR.
Then the token ω1 splits in four tokens ω10, ω11, ω12, ω13, which enter places Q10,
Q11, Q12, Q13 respectively.
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The tokens ω1k in places Q1k obtain characteristics: “k-th bit of the ω1”, where
k = 0 ÷ 3.

The transition C2 is represented by the following expression:

C2 = ⟨fCLK21,CNT2g, fQ20,Q21,Q22,Q23,CNT2g,RC2, ∧ ðCLK21,CNT2Þ⟩,

where
WC2 = “There is a clock edge”.
The token ω2 in place CNT2 obtains characteristic: x

ω2
t = xω2

t− 1 + 1, where t is the
current time instance and t − 1 is the previous one. Then the token ω2 splits in four
tokens ω20, ω21, ω22, ω23, which enter places Q20, Q21, Q22, Q23 respectively.

The tokens ω2k in places Q2k obtain the characteristic: “k-th bit of the ω2”, where
k = 0 ÷ 3.

The transition S is represented by the following expression:

S= ⟨fSI0, SI1, SI2, SI3,Q10,Q11,Q12,Q13, SFg, fSO0, SO1, SO2, SO3, SFg,
RS, ∧ ðSI0, SI1, SI2, SI3,Q10,Q11,Q12,Q13, SFÞ⟩,

where
WS = “There is a new input configuration”.
The tokens from places SI0, SI1, SI2, SI3, Q10, Q11, Q12 and Q13 are merged in

place SF. Then the token γ from place SF splits in four tokens γ0, γ1, γ2, γ3, located
in places SO0, SO1, SO2 and SO3 respectively, where they obtain characteristics:
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xγkcu = SIk ∧Q1kð Þ∨ SIk where k= 0÷ 3.

The transition LG2 is represented by the following expression:

LG2 = ⟨fSO0, SO1, SO2, SO3, LF2g, fMR,GO2, LF2g,RLG2, ∧ ðSO0, SO1, SO2, SO3, LF2Þ⟩,

where
WLF2 = “There is a new input configuration”.
The tokens γ0, γ1, γ2, γ3 from places SO0, SO1, SO2 and SO3 are merged in place

LF2, where the token λ2 obtains characteristic: xλ2cu = xγ0cu ∧ xγ1cu ∧ xγ2cu ∧ xγ3cu.
The token λ2 splits in two tokens ρ and λ20, in places MR and GO2 respectively,

where it does not change its characteristic: xρcu = xλ20cu = xλ2cu.
The transition LG3 is represented by the following expression:

LG3 = ⟨fQ20,Q21,Q22,Q23,LF3g, fGO3,LF3g,RLG3, ∧ ðQ20,Q21,Q22,Q23,LF3Þ⟩,

where
WLF3 = “There is a new input configuration”.
The tokens from places Q20, Q21, Q22 and Q23 are merged in place LF3, where

the token λ3 obtains characteristic: xλ3cu = xω20
cu ∧ xω21

cu ∧ xω22
cu ∧ xω23

cu .
The token λ3 enters place GO3, and does not change its characteristic.
The transition LG4 is represented by the following expression:

LG4 = ⟨fGO2,GO3,LF4g, fCLKD, LF4g,RLG4, ∧ ðGO2,GO3,LF4Þ⟩,
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where
WLF4 = “There is a new input configuration”.
The tokens λ20 and λ3 from places GO2 and GO3 are merged in place LF4, where

the token λ4 obtains characteristic: xλ4cu = xλ20cu ∨ xλ3cu.
The token λ4 enters place CLKD and does not change its characteristic.
The transition D is represented by the following expression:

D= ⟨fCLKD,CDg, fQD,PWM,CDg,RD, ∧ ðCLKD,CDÞ⟩,

where
WQD = “if xλ4t =1 and xλ4t− 1 = 0”, and the xλ4t and xλ4t− 1 are the new and the old

characteristic of the token λ4 respectively.

The tokens δ in place CD obtains characteristic: xδt = xδt− 1x
λ4
t− 1 = 0”, where the xδt

and xδt− 1 are the new and the old characteristic of the token δ respectively.
The token δ splits in two tokens, in places QD and PWM, without changing the

characteristic.
The transition LG1 is represented by the following expression:

LG1 = ⟨fCLK1,QD, LF1g, fCLK11,CLK12, LF1g,RLG1, ∧ ðCLK1,QD,LF1Þ⟩

where
WLF1 = “There is a new input configuration”.
The token ξ from place CLK1 splits in two tokens. First one enters place CLK12

always and has the same characteristic as ξ. The second one merges with the token
δ from place QD in place LF1, where the token λ1 obtains characteristic:
xλ1cu = xξcu ∧ xδcu.

The token λ1 from place LF1 enters place CLK11 always and does not change its
characteristic.
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7 InterCriteria Analysis Method Application

The ICRA-method [5–7] is based on two concepts: intuitionistic fuzzy sets and
index matrices.

The Intuitionistic Fuzzy Sets (IFSs, see [8–11]) represent an extension of the
concept of fuzzy sets, as defined by Zadeh [12], exhibiting function µA(x) defining
the membership of an element x to the set A, evaluated in the [0; 1]-interval. The
difference between fuzzy sets and intuitionistic fuzzy sets (IFSs) is in the presence
of a second function νA(x) defining the non-membership of the element x to the set
A, where µA(x) ∈ [0; 1], νA(x) ∈ [0; 1], under the condition

μA xð Þ+ νA xð Þ∈ 0; 1½ �.

The final step of the algorithm is to determine the degrees of correlation between
the criteria, depending on the user’s choice of µ and ν. We call these correlations
between the criteria: ‘positive consonance’, ‘negative consonance’ or ‘dissonance’.
For practical purposes, it carries the most information when either the positive or
the negative consonance is as large as possible, while the cases of dissonance are
less informative and are skipped.

If it is possible to propose different schematic solutions that satisfy the required
conditions (or the requested result) by the analysis of logical circuits, certain
parameters can be used as criteria. By reaching a certain number of schematics
criteria—ICRA [13], a recommendation for the implementation of circuits of a
certain type can be applied.

8 Conclusions

A novel approach for medeling of logical circuits is presented in the present article.
Four Generalized Nets models of the logical circuits of an AND gate, binary to
decimal decoder, a D-type flip flop and a n-bit binary counter have been presented.
We proposed the application of the recently discovered InterCriteria Analysis
approach, based on index matrices and intuitionistic fuzzy sets. This algorithm aims
to discover possible correlations between the criteria pairs. As a result, if there are
more than one circuits composed of different set of logical gates available that can
obtain identical results, the measurements can be taken.

In the presence of several measurement points and different set of circuits, the
best solution of the considered task can be suggested by the use of ICRA method.

Acknowledgements The authors are grateful for the support provided by the National Science
Fund of Bulgaria under grant DFNI-I-02-5/2014 and the Project NIH-355, 2015 of University
“Prof. Asen Zlatarov”.
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Generalized Net Model of Person
Recognition Using ART2 Neural Network
and Viola-Jones Algorithm

Todor Petkov, Sotir Sotirov and Stanimir Surchev

Abstract In this paper we present a method for the purpose to detect a certain
person in an image. We use the tools of neural networks and face recognition
algorithm to achieve our goal. The type of neural network is unsupervised adaptive
resonance theory 2 (ART2). It is trained by the set of person images and divided
into two clusters—the first cluster represents the human who has to be found and
the second one represents the other people. The algorithm which is used for face
detection is Viola-Jones and the combination with neural networks helps to identify
the person. The generalized net model is used to describe the recognition process.

Keywords ART2 neural network ⋅ Face recognition ⋅ Generalized nets

1 Introduction

In present years a lot of papers were devoted to the field of neural networks [2, 6]
and face recognition [5, 12], here we combine them to achieve the results that could
be significant in many areas. In order to achieve it, first the neural network has to be
trained with a set of images of the person that we want to detect and another set
with faces of other persons. The algorithm that is used for face detection is
viola-jones [8, 9, 11], thus when a face is detected it has to be tested and the result
of the procedure is whether the face belongs to the person whom we search for or it
belongs to the other group of persons.
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ART2 [3, 4, 6] (Fig. 1) is an unsupervised [7, 10] neural network which is
designed to preform operations over continuous valued input vectors or binary
input vectors that have noise. Basically the network consists of two layers com-
posed of neurons that are fully connected with a set of weights also known as
bottom-up and top-down and an orienting sub system. The first layer (F1) consists
of three sub layers of neurons and each one of them supports a combination of
normalization of the vector and suppression of noise. The second layer (F2) is a
competitive one which means that the neuron with maximum value is going to learn
its weights according to the vector. The orienting sub—system is responsible for
taking decision about the current neuron with maximum value and if it responds to
the criteria it is going to learn its weights, if not—the winner is going to be rejected.
The learning algorithm is expressed in [6].

The viola jones is the most popular algorithm [8, 9] that is used for face
recognition in many human applications. The algorithm consists basically of four
procedures that are applied to the image:

1. Image features also known as Haar-like features (Fig. 2) represent the human
characteristics and the pixel values in white region are subtracted from the pixel
values of the black region.

2. The integral image makes feature extraction easier and the value at pixel (x, y) is
the sum of the pixel above and to the left, thus instead to compute all pixels we
have one value for each rectangle and the computation process speeds up.

3. All possible haar-like features are 160,000 but not all of them are relevant
(Fig. 3) so in order to decrease them the adaboost algorithm is applied.

4. The final step is to apply Haar-like features in cascade way.

vu

R

w x

qp

s

F1

F2

Reset module
Fig. 1 The structure of
ART2 neural network
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2 Results and Discussion

In order to train the network a set of images with size of 35 × 40 pixels for people is
used, in Table 1 are shown some of them from both sets. The first set contains
images of the person who has to be found and the second set contains the images of
other people. The set of images represents matrices with three pixel values of R, G,
B (red, green, blue) colors. At first the red layer from the images are extracted and
the matrix with pixel values is converted into a vector. When the procedure is
applied over images, all vectors for training enter into the ART2 neural network
which is divided into two clusters. When the network is trained the clusters have to
be verified to see which cluster responds to the desired person. The results show
that first cluster is for the desired person and second one is for the other people. The

Fig. 2 Haar-like features

Relevant feature Irrelevant feature

Fig. 3 An example of relevant and irrelevant features

Table 1 Images for training

First set

Second set

Table 2 Parameters for
ART2 NN

Parameters ϴ ρ α Units

Value 0.0295 0.8157 0.6 2
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significant parameters of the ART2 neural network are shown in Table 2.
where

ϴ—noise suppression parameter;
Ρ—vigilance threshold;
Α—learning rate;
Units—number of clusters.

When the network is verified a random image is taken then the viola-jones
algorithm is applied on it in order to find faces. The red layer from each face is
extracted then the matrix of pixels is normalized with size of 35 × 40 pixels. The
normalized images at the final step before entering into the network have to be
converted into vectors. When the identified faces are tested the ART2 neural net-
work returns three answers—the face belongs to first cluster, the face belongs to the
second one or neither of the clusters responds to the image criteria. In Fig. 4 is
shown the test image—on the left side is the origin image and on the right side is
the image after its proceeding through the process of person detection. It can be
seen that the person is recognized and the result is that its face is depicted in black
rectangle.

3 GN-Model

Initially the following tokens enter the Generalized Net (GN) [1].
In place L1 there is one α token with characteristic “input image for testing”;
In place L5 there is one β token with characteristic “input training set”;

The origin image Resulted image

Fig. 4 The origin and resulted images
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In place L10 there is one γ token with characteristic “values for ART2 neural
network”.

The GN shown in Fig. 5 is introduced by the following set of transitions:

Z1 = “Applying viola-jones algorithm and extraction of the face from the
image”;
Z2 = “Division the training set”;
Z3 = “Normalization of the face and extraction of the red layer”;
Z4 = “Converting the matrix into vector”;
Z5 = “Training the neural network”;
Z6 = “Testing the neural network”;
Z7 = “Visualization of the results in the image”.

GN–model consists of seven transitions with the following description:

Z1 = ⟨ L1,L4,L15f g, L2, L3, L4f g,R1, ∨ ðL1, ∧ L4, L15ð ÞÞ⟩,

where

W4,2 = “There is activation token from place L15”;
W4,3 = “The components are tested”

Z1

L1

L2

L3

L4

Z3

Z2

Z4

Z5

Z6

Z7

L6
L5

L7

L10

L8

L9

L11

L12

L13

L14

L15

L16

L17

L18

L19

Fig. 5 GN model of the process of human recognition using ART2 neural network

Generalized Net Model of Person Recognition … 261



Token α from place L1 splits in two tokens and enters places L3 and L4. The
tokens do not obtain any new characteristic.

Token ζ from place L15 unites with token α in place L4 and obtain characteristic

δ= “Extracted new face component”

Token δ from place L4 that enters place L2 does not obtain new characteristic.

Z2 = ⟨ L5f g, L6,L7f g,R2, ∨ L5ð Þ⟩,

where

Token β from place L5 splits in two tokens (β′, β″) and enters places L6 and L7
accordingly.

Z3 = ⟨ L2, L9f g, L8, L9f g,R3, ∨ L2,L9ð ÞÞ⟩,

where

W9,8 = “The face is processed”

Token δ from place L2 that enters place L9 does not obtain new characteristic.
Token δ from place L9 that enters place L8 obtains characteristic

δ’ = “Normalized image component”.

Z4 = ⟨ L8,L12f g, L11,L12f g,R4, ∨ L8, L12ð Þ⟩,

where

W12,11 = “The matrix is converted”.
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Token δ′ from place L8 that enters place L12 does not obtain new characteristic.
Token δ′ from place L12 that enters place L11 obtains characteristic

δ” = “Converted vector for testing”.

Z5 = ⟨ L6, L10,L14f g, L13,L14f g,R5, ∨ ðL10, ∧ L6, L14ð ÞÞ⟩,

where

W14,13 = “The network is learned”.
Token γ from place L10 that enters place L14 does not obtain new characteristic.
Token β′ from place L6 unites with token γ in place L14 and enters place L13 with

characteristic

ε= “Learned ART2 neural network”.

Z6 = ⟨ L7,L11, L13,L17f g, L15,L16,L17f g,R6, ∨ ð∧ L11,L17ð Þ∧ L7,L13ð ÞÞ⟩,

where

W17,15 = “The current component is tested”;
W17,16 = “The all components are tested”.

Tokens β″ and ε from places L7 and L13 unites in place L17 with characteristic

ε’ = “Verified ART2 neural network”.
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Tokens δ″ and ε′ from places L11 and L17 unites and enters place L15 with
characteristic

ζ= “Request for new face component”.

Token from place L15 that enters place L16 obtains characteristic

ζ’ = “Human information”.

Z7 = ⟨ L3,L16, L19f g, L18,L19f g,R7, ∨ ðL19 ∧ L3,L16ð ÞÞ⟩,

where

W19,18 = “The coordinates are applied”.
Tokens α and ζ′ from places L3 and L16 unites and enters place L19 with

characteristic

η= “Applied coordinates of human information”.

Token η from place L19 enters place L18 with characteristic

η’ = “Visualization of the results”.

4 Conclusion

In this paper was described a process that combines the use of ART2 neural
network and Viola-Jones algorithm. Viola-jones algorithm is useful for the purpose
of finding faces in the image, the ART2 neural network was used to identify a
certain person among others. It was seen that both algorithms successfully achieved
their goals thus with their combination there can be resolved different problems in
many areas. In this paper the ART2 neural network was trained with a set of images
of a certain person and a set of images of other persons. The Viola-Jones algorithm
was used in order to find a face in an image. When the face is found, several
procedures were applied and then it enters into the network. It was seen that the
network recognized the person successfully and the goal was achieved. The gen-
eralized net model is used in order to describe the process of recognition, which can
be analyzed easily in more details.
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Optimization of the LVQ Network
Architectures with a Modular Approach
for Arrhythmia Classification

Jonathan Amezcua and Patricia Melin

Abstract In this paper, the optimization of LVQ neural networks with modular
approach is presented for classification of arrhythmias, using particle swarm opti-
mization. This work focuses only in the optimization of the number of modules and
the number of cluster centers. Other parameters, such as the learning rate or number
of epochs are static values and are not optimized. Here, the MIT-BIH arrhythmia
database with 15 classes was used. Results show that using 5 modules architecture
could be a good approach for classification of arrhythmias.

Keywords Classification ⋅ PSO ⋅ LVQ ⋅ Neural networks ⋅ Arrhythmias

1 Introduction

In this paper the optimization of a modular LVQ neural network architecture [1, 4]
with Particle Swarm Optimization (PSO) for arrhythmia classification [22, 24] is
presented. The optimization focuses on the number of modules and the number of
cluster centers. Other parameters such as the epochs or learning rate are static
values, obtained from a previous research on optimization of parameters [2].

LVQ is an adaptive learning method used to solve classification problems;
although it uses supervised training, LVQ applies unsupervised data clustering
techniques, to pre-process the dataset and obtain the centers of the clusters [13].

Particle Swarm Optimization (PSO) is used for the architecture optimization,
which is a stochastic optimization technique based on the social behavior of ani-
mals. In this work PSO is applied to optimize the number of modules in the
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architecture of the LVQ network [7, 8], which is variable in a range of [2, 5]. The
distribution of classes in each module depends of the number of modules in the
architecture.

The rest of this paper is organized as follows, in Sect. 2 some basic concepts of
PSO are described, Sect. 3 presents the problem statement of this work, Sect. 4
shows the proposed model, in Sect. 5 presents the simulation results and finally in
Sect. 6 the conclusions.

2 PSO Method

Particle Swarm Optimization (PSO) [2, 6, 9, 14] is a technique based on social
behaviors observed in animals. This method has gained popularity as a robust
technique for solving optimization problems. In PSO, individual particles of a
swarm represent possible solutions to the problem.

The position of each particle is adjusted according to its velocity and the dif-
ference between its current position and the best position found by its neighbors,
and the best position found so far. The position of a particle i is updated as follows:

vij t+1ð Þ= vij tð Þ+ c1r1j tð Þ yij tð Þ− xij tð Þ
� �

+ c2r2j tð Þ y ̂j tð Þ− xij tð Þ
� � ð1Þ

where vij(t) is the velocity of a particle i in dimension j at time step t, xij(t) is the
position of a particle i in dimension j at time step t; c1 and c2 are constants used to
scale the contribution of the cognitive and social components and r1j(t) and r2j(t) are
random values in the range of [0, 1] that introduce stochastic element to the
algorithm.

The personal best position yi is the best position the particle has visited, the
personal best position at a time step t + 1 is calculated as follows:

yiðt+1Þ= yiðtÞ, f ðxiðt+1Þ≥ yiðtÞÞ
xiðt+1Þ, f ðxiðt+1Þ< yiðtÞÞ

(

ð2Þ

The global best position ŷ(t) at a time step t is defined as:

y ̂ tð Þϵfy0 tð Þ, . . . , yns tð Þgjf y ̂ tð Þð Þ=minðfy0 tð Þ, . . . , ynsðtÞgÞ ð3Þ

where ns is the total number of particles in the swarm. The definition in Eq. (3)
states that ŷ is the best position discovered by any of the particles so far.
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The algorithm for the PSO [28, 29] model is as follows, where S.xi is used to
denote the position of particle i in the swarm S.

3 Problem Statement

As mentioned above, PSO is a bio-inspired optimization method that has proved to
be successful in the implementation of various problems, such as the optimization
of membership functions of fuzzy systems, parameters optimization of neural net-
works, and fuzzy systems as well, and, in this case, the optimization of a modular
neural network architecture for classification. In this work, such optimization
consists into find the architecture for the minimum error accuracy in the classifi-
cation of arrhythmias [3, 5, 21, 23].

On the other hand, classification tasks consists into assigning objects to only one
of many predefined categories, a widespread problem that covers many different
areas of application, such as spam detection in emails, classification of galaxies,
among others [24]. In this research, modular LVQ network [12, 17, 18] was used as
classification technique, Fig. 1 shows the architecture of a LVQ network [15].

3.1 Arrhythmia Dataset

Arrhythmias are expressed as changes in the normal sequences of electrical hearth
impulses, these impulses may happen too fast, to slowly or erratically, and can be
measured with a Holter device in ECG signals [10]. Figure 2 shows an example of
one of these ECG signals [11].

The MIT-BIH [19] arrhythmia dataset was used for this research. This database
consists of 15 different types of arrhythmias. This database contains 48 half-hour
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excerpts of ECG recordings, obtained from 47 subjects studied by BIH Arrhythmia
Laboratory. The recordings were digitized at 360 samples per second per channel
with 11-bit resolution over a 10 mV range. The recordings were preprocessed at as
follows:

• Analog outputs were filtered using a passband from 0.1 to 100 Hz. The passband-
filtered signals were digitized at 360 Hz per signal.

• Taking the R point [27] as reference, in the obtained signals was located the start
and end point for each wave.

• The 38 higher voltages and 38 lower voltages of each vector were taken,
resulting in vectors of 76 voltages.

In the next section we discuss the proposed optimization model for modular
LVQ network architecture.

Fig. 1 Architecture of LVQ network
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4 Proposed Model

In this work, the development of a PSO [16, 20] model for the optimization of a
modular LVQ network architecture for classification is presented. In this section,
we explain in depth the architecture of the PSO model and its parameters as well,
and how are used for the optimization of a modular LVQ network architecture.

Within the architecture of modular LVQ network there is a parameter that
defines how many cluster centers the network will be training with. Therefore we
have a 2-dimension problem, the optimal number of modules in the modular
architecture, and the number of cluster centers for each of the modules.

Table 1 shows the parameters, range, minimal and maximal values that PSO
model works with. The values for the number of cluster centers were taken from
[2], where the optimization of parameters for LVQ [25, 26] networks is presented,
and it was with this range of cluster centers that the best classification accuracy was
achieved.

About the number of modules in the architecture, in the work of [18] many
architectures were developed to work with this same arrhythmia database, one of
the best architectures with high classification accuracy was composed by 5 mod-
ules, so for this reason was it decided to develop this research working with a range
of [2, 5] for the number of modules. Table 2 shows the rest of parameters for the
PSO method.

So far we have that PSO model works with 2-dimension problem, the opti-
mization of the number of modules in a modular architecture, and the number of
cluster centers. In Sect. 4.1 we discuss how the database was partitioned, since it
was quite difficult because of the dynamical number of modules and the information
was to be evenly distributed in each module.

Table 1 Parameters of the
architectures included in PSO
model

Parameter Minimal
value

Maximal
value

Number of modules 2 5
Number of clusters
centers

15 30

Table 2 PSO parameters Parameter Value

Population size 15
Maximum number of iterations 15
C1 2
C2 4 – C1

Inertia weight Linear decreasing
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4.1 Partitioning the Database

As mentioned earlier, MIT-BIH arrhythmia database consists of 15 classes. In this
work was considered to have the classes the most evenly distributed in each
module. The classes are labeled from 1 to 15, so to solve this particular problem, a
method was developed; this method takes the total number of classes and divided it
by the number of modules, depending on the architecture to evaluate. For example,
if the PSO method is evaluating a five-module architecture, then this method dis-
tributes 3 classes in each module.

When PSO method is evaluating a two-module architecture, then classes are
distributed 8 classes in the first module, and 7 classes in the second one. The classes
are consecutively distributed, which means that in a two-module architecture, first
module contains classes 1–8, and the second one, classes 9–15, and so on for each
of the architectures to evaluate by the PSO method.

The rest of the LVQ network architecture, such as the learning rate (LR), and the
maximum number of epochs, were left static, in 0.0994 and 200 respectively, taking
into account that these parameters were already optimized in [2] achieving a good
classification percentage.

5 Simulation Results

A set of 15 experiments were conducted using de PSO model described above,
Table 3 shows the obtained results, where Time is expressed in HH:MM format.
Experiments were performed in a Windows 7 PC x64, Quad-Core i7 processor and
16 GB of RAM.

Notice that for all experiments, the best LVQ network architecture consisted of 5
modules, which makes sense since the smaller number of data in each module is
easier to train the LVQ network. The errors reached in each experiment are very
similar, so basing on the obtained error the best experiment was the number 3.

6 Conclusions

In this paper, a PSO model to find an optimal modular LVQ [30] network archi-
tecture for classification of arrhythmias [1, 22] was presented. The results show that
a five modules LVQ network architecture can be an optimal architecture for the
classification of arrhythmias.

The main reason for these results is that, like many other methods, if a LVQ
network module receives several records for training, the classification accuracy for
that module tends to be lower, in this case this is for the similarity grade between
certain records; there are many training records that are very similar each other but
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they belong to different classes in the network module, therefore, with less training
records in each module this grade of similarity is low, and the classification per-
centage tends to be higher.

Regarding with the PSO model, it has proved to be a good approach for the
optimization of the LVQ network model presented, for the classification of
arrhythmias.
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Imperialist Competitive Algorithm
with Fuzzy Logic for Parameter
Adaptation: A Parameter Variation Study

Emer Bernal, Oscar Castillo and José Soria

Abstract This paper applies the imperialist competitive algorithm (ICA) to
benchmark mathematical functions with the original method to analyze and perform
a study of the variation of the results obtained with the ICA algorithm as we vary
the parameters manually for 4 mathematical functions. The results demonstrate the
efficiency of the algorithm to optimization problems and give us the pattern for
future work in dynamically adapting these parameters.

Keywords Imperialist competitive algorithm ⋅ ICA ⋅ Mathematical functions

1 Introduction

Swarm Intelligence techniques have become increasingly popular during the last
two decades due to their capability to find a relatively optimal solution for complex
combinatorial optimization problems. They have been applied in the fields of
Engineering, Economy, Management Science, Industry, etc. Problems that benefit
from the application of Swarm Intelligence techniques are generally very hard to
solve optimally in the sense that there is no such exact algorithm for solving them in
polynomial time. These optimization problems are also known as NP-hard prob-
lems [2].

An algorithm that is well recognized in the domain of evolutionary computation
is the imperialist competitive algorithm (ICA), which was introduced by
Atashpaz-Gargari and Lucas in [1]. ICA has been inspired by the concept of
imperialism; where in this case powerful countries attempt to make a colony of
other countries. These algorithms have recently been used in several engineering
applications [4].
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We describe the imperialist competitive algorithm in its original form. The
algorithm parameters adjustment is performed manually by varying the parameters
to see how the behavior of the algorithm is affected. This algorithm was applied to
benchmark mathematical functions, and the results of the ICA algorithm by varying
the parameters are presented in Sect. 4.

The study of the algorithm is performed in order to show the effectiveness of the
imperialist competitive algorithm (ICA) when applied to optimization problems,
and to take this as a basis for future works.

Some of the papers that have applied the imperialist competitive algorithm can
be described as follows. In [4] the imperialist competitive algorithm combined with
refined high-order weighted fuzzy time series (RHWFTS–ICA) for short term loads
forecasting. In this study, a hybrid algorithm based on a refined high-order weighted
fuzzy algorithm and an imperialist competitive algorithm (RHWFTS–ICA) is
developed. This method is proposed to perform efficiently under short-term load
forecasting (STLF) [4]. In another paper [3] an imperialist competitive algorithm
with PROCLUS classifier for service time optimization in cloud computing service
composition, CSSICA is proposed to make advances toward the lowest possible
service time of composite service; in this approach, the PROCLUS classifier is used
to divide cloud service providers into three categories based on total service time
and assign a probability to each provider. An improved imperialist competitive
algorithm is then employed to select more suitable service providers for the required
unique services [3].

The paper is organized as follows: in Sect. 2 a description about the imperialist
competitive Algorithm ICA is presented, in Sect. 3 a description of the mathe-
matical functions is presented, in Sect. 4 the experiments results are described for
we can to appreciate the ICA algorithm behavior by varying the parameters, in
Sect. 5 the conclusions obtained after the study of the imperialist competitive
algorithm versus mathematical functions are presented.

2 Imperialist Competitive Algorithm

In the field of evolutionary computation, the novel ICA algorithm is based on
human social and political advancements [1], unlike other evolutionary algorithms,
which are based on the natural behaviors of animals or physical events.

ICA starts with an initial randomly generated population, in which the indi-
viduals are known as countries. Some of the best countries are considered impe-
rialists, whereas the other countries represent the imperialist colonies [3].

All the colonies of the initial population are divided among the mentioned
imperialists based on their power. The power of an empire which is the counterpart
of the fitness value in GA and is inversely proportional to its cost [1].
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2.1 Forming Initial Empires (Initialization)

In order to represent an appropriate solution format, a 1 × Nvar array of variables
represents a country, and a country is defined by [2]:

Country= ½p1, p2, . . . , pN var� ð1Þ

where N var is the number of variables to be considered of interest about a country
and pi is the value of i-th variable.

The variable values in the country are represented as floating point numbers.
The cost of a country is found by evaluating the cost function f at the variables
(p1, p2,…, pn) then [1].

Cost= f Countryð Þ= f p1, p2, . . . , pnð Þ ð2Þ

In the initialization step, we need to generate an initial population size of Npop.
Select Nimp of the most powerful countries to form empires. The remaining Ncol

population will be the colonies each of which belongs to an empire [1].

NcoI =Npop −Nimp ð3Þ

To form empires, the colonies are divided among the imperialist countries
according to the power of the imperialists. The normalized cost of each imperialist
is determined by [2].

Cn = max
i
fcig−Cn ð4Þ

where, cn is the n-th imperialist’s cost, and Cn is the normalized cost of n-th
imperialist.

Therefore, the power of each imperialist is calculated based on the normalized
cost [2]:

pn =
Cn

∑Nimp

i=1 Ci

ð5Þ

where pn is the power of n-th imperialist. The normalized power of n-th imperialist
is the number of colonies that are possessed by that imperialist, calculated by:

NCn =RoundfpnNcolg ð6Þ

where, NCn is the number of initial colonies possessed by the n-th imperialist; Ncol

is the total number of colonies in the initial population, and round is a function that
gives the nearest integer of a fractional number.
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2.2 Moving the Colonies of an Empire Toward
the Imperialist (Assimilation)

As shown in Fig. 1 the colony moves x distance along with the d direction towards
its imperialist. The moving at x distance is a random number generated by random
distribution within the interval (0, βd) [2].

x∼Uð0, βdÞ ð7Þ

where β is a number greater than 1 and d is the distance between the colony and the
imperialist.

As shown in Fig. 2, to search for different locations around the imperialist we
add a random amount of deviation to the direction of motion, which is given by [1]:

θ∼Uð− γ, γÞ ð8Þ

Where θ is a random number with uniform distribution and γ is a parameter that
adjusts the deviation from the original direction.

Fig. 2 Movement of the
colonies toward their relevant
imperialist in a randomly
direction deviation

Fig. 1 Movement of the
colonies toward the
imperialist
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2.3 Exchanging the Positions of a Colony
and an Imperialist

While moving towards the imperialist, a colony can reach a position of lower cost
than the imperialistic. If so, the imperialist is moved to the position of that colony
and vice versa. Then the algorithm will continue with the imperialist in a new
position and the colonies begin to move toward this position [1]. In Fig. 3, the best
colony of the empire is shown in darker color. This colony has a lower cost than
imperialist. Figure 4 shows the whole empire after exchanging the position of the
imperialist and the colony.

2.4 Total Power of an Empire

The power of an empire is calculated based on the power of its imperialist and a
fraction of the power of its colonies. This fact has been modeled by defining the
total Cost given by [2]:

TCn =CostðImpÞ+ ξmeanfCostðColÞg ð9Þ

where TCn is the total cost of n-th Empire and ξ is a positive number between
0 and 1.

2.5 Imperialist Competition

To start the competition, first, we find the probability of possession of each empire
based on the total power. The normalized total cost is obtained by [1]:

NTCn = max
i

TCif g− TCn ð10Þ

Fig. 3 Position change between the imperialist and a colony
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where NTCn is the Normalized total cost and TCn is the total cost of empire. Then
the probability of possessing a colony is computed by:

ppn =
NTCn

∑Nimp

i=1 NTCi

ð11Þ

where ∑
Nimp

i=1
ppi =1.

2.6 Elimination of Weaker Empires

Weaker empires lose their colonies gradually to stronger empires, which in turn
grow more powerful and cause the weaker empires to collapse over time. In Fig. 5,
the weakest empire is eliminated by losing its last colony during the imperialist
competition [2].

2.7 Convergence

Similar to other metaheuristic algorithms, ICA continues until a stopping criteria are
met, such as predefined running time or a certain number of iterations. The ideal
stopping criterion is when all empires have collapsed and only one (grand empire)
remains (Fig. 6).

2.8 Pseudocode of ICA

The pseudocode it ICA is defined as follows:

1. Select some random points on the function and initialize the empires.
2. Move the colonies toward their relevant imperialist (assimilation).

Fig. 4 Position after exchanging Empire imperialist and the colony

282 E. Bernal et al.



3. If there is a colony in an empire which has lower cost than that of imperialist,
exchange the positions of that colony and the imperialist.

4. Calculate the total cost of all empires (related to the power of both imperialist
and its colonies).

5. Pick the weakest colony (colonies) from the weakest empire and give it (them)
to the empire that has the most likelihood to possess it (imperialistic
competition).

6. Elimínate the powerless empires.
7. If there is just one empire, stop, if not go to step 2.

3 Benchmark Mathematical Functions

In this section, the benchmark functions that are used are listed to evaluate the
performance of the ICA algorithm by varying its parameters and to analyze the
results obtained.

In the area of the metaheuristics for optimization the use of mathematical
functions is common, and they are used in this work: consisting of an optimization
algorithm based on imperialism in which the variation of its parameters will be
analyzed for obtain its optimum values.

Fig. 5 Elimination of the weakest empire

Fig. 6 Representation of
convergence in ICA
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The mathematical functions are shown below:

• Sphere

f ðxÞ= ∑
nx

j=1
x2j ð12Þ

Witch xj ∈ ½− 100, 100� and f *ðxÞ=0.0
• Quartic

f ðxÞ= ∑
nx

j=1
x4j + randomð0, 1Þ ð13Þ

Witch xi ∈ ½− 1.28, 1.28� and f *ðxÞ=0.0 + noise
• Rosenbrock

f ðxÞ= ∑
nx 2̸

j=1
½100ðx2j − x22jÞ2 + ð1− x2j− 1Þ2� ð14Þ

Witch xj ∈ ½− 2.048, 2.048� and f *ðxÞ=0.0
• Rastrigin

f ðxÞ= ∑
nx

j=1
x2j − 10 cosð2πxjÞ+10 ð15Þ

With xj ∈ ½− 5.12, 5.12� and f *ðxÞ=0.0

4 Simulation Results

In this section the imperialist competitive algorithm (ICA) is implemented with 4
benchmark mathematical functions with 30 variables by varying their parameters
and the results obtained by the ICA algorithm are shown in separate tables by
parameter.

The parameters used in the imperialist competitive algorithm are:

• Number of variables: 30
• Number of countries: 200
• Number of imperialist: 10
• Number of decades: 3000

Table 1 shows that after executing the ICA Algorithm 10 times, by varying the
revolution parameter, we can find the best, average and worst results for the dif-
ferent mathematical functions benchmark.
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Table 2 shows that after executing the ICA Algorithm 10 times, by varying the β
(Beta) parameter, we can find the best, average and worst results for the different
mathematical functions benchmark.

Table 3 shows that after executing the ICA Algorithm 10 times, by varying the γ
(Gama) parameter, we can find the best, average and worst results for the different
mathematical functions benchmark.

Table 4 shows that after executing the ICA Algorithm 10 times, by varying the ξ
(Eta) parameter, we can find the best, average and worst results for the different
mathematical functions benchmark

5 Conclusions

By analyzing the ICA algorithm by varying the parameters, we noticed that the
parameter that affected most the operation is the β parameter in the range of 1.4–1.6
good results for the sphere and quartic functions.

For the Rosenbrock and Rastrigin functions the results are not good for
30 variables, but with fewer variables the algorithm performs better.

The remaining parameters though apparently do not affect significantly the
operation of the algorithm these can be in the range of 0.2–0.5 in the revolution,
from 0.4 to 0.6 for and small values of ξ the algorithm behaves better.
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Fuzzy Logic for Improving Interactive
Evolutionary Computation Techniques
for Ad Text Optimization

Quetzali Madera, Mario Garcia and Oscar Castillo

Abstract The description of a product or an ad’s text can be rewritten in many
ways if other text fragments similar in meaning substitute different words or
phrases. A good selection of words or phrases, composing an ad, is very important
for the creation of an advertisement text, as the meaning of the text depends on this
and it affects in a positive or a negative way the interest of the possible consumers
towards the advertised product. In this paper we present a method for the opti-
mization of advertisement texts through the use of interactive evolutionary com-
puting techniques. The EvoSpace platform is used to perform the evolution of a
text, resulting in an optimized text, which should have a better impact on its readers
in terms of persuasion.

1 Introduction

Text content is plays a very important role in e-commerce applications, as this is
one of the most common ways of giving information about a commercial product to
the consumers [1]. When the author of an advertisement text is an expert ad writer,
the product should have a better chance of receiving a positive response from the
consumers. The combination of words or phrases (blocks of text) that the experts
decide to use when writing the text of an ad is important, because this particular
combination could be the one that persuades the consumer into buying the product.
If an inexperienced writer decides to write an advertisement text, it would be very
difficult for him to choose a correct combination of the blocks of text that is
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successful into persuading the majority of the consumers. In this work, we propose
that a writer of any level of experience can create an ad with different inter-
changeable blocks of text carrying the same meaning, and a third party could
optimize it.

Evolutionary algorithms are commonly used to solve optimization problems [2]
and that’s why we decided to use this kind of techniques to optimize the adver-
tisement texts. We believe that if a group of people can evaluate, in terms of
persuasion, different combinations of the same ad, after many generations of evo-
lution we can find an optimal ad, which will have a better impact on the majority of
the consumers.

2 Basic Concepts

In this section we present some basic concepts for understanding this work, and the
essential parts that compose this project. One of the most important components is
EvoSpace, which turned to be a crucial tool for the implementation of the genetic
algorithm used in this work.

2.1 Evolutionary Algorithms

Evolutionary algorithms are a subfield of artificial intelligence. They are mainly
used in optimization problems where the search space is very large and aren’t lineal.
These algorithms search for solutions based on the theory of the Darwinian
evolution.

The methods of this kind generate a set of individuals that represent possible
solutions. These solutions are usually generated randomly at the beginning of the
evolution process. After each generation, the best solutions share part of their
information to create other possible, better, solutions. All of the individuals com-
pete to be the more fit solutions; the better solutions are conserved, while the worse
are destroyed, according to a fitness function that evaluates their performance [3].

2.2 Genetic Algorithms

Genetic algorithms (see Fig. 1) are inspired in biological evolution; they evolve a
population of individuals by performing genetic recombination and mutation.
A selection of the best solutions is made by the use of certain criterion and a fitness
function, and based on their performances, the more fit individuals survive and the
less fit are discarded. Optimization based on genetic algorithms is a search method
based on probability [4].

292 Q. Madera et al.



This is an elitist algorithm as it always conserves the best individual of the
population unchanged. As the number of generations or iterations increases, the
probability of finding the optimum solution tends to increase.

2.3 Interactive Evolutionary Computation

Interactive evolutionary computing is a variation of evolutionary computing where
the fitness of an individual is determined through the subjective evaluation per-
formed by a human being. In traditional evolutionary computing, a human being
requires a computational process to solve a problem. To do this, a person gives a
problem’s description as input to a solution model, and this model returns a result
that has to be interpreted by a human being. But in interactive evolutionary com-
puting the roles are inverted: there’s an algorithm that asks a human being or a
group of human beings to solve a problem, and then it gathers this information to
interpret it later [5].

2.4 Article Spinning

Article spinning is a method used to create multiple versions of a text article
without creating versions considered as plagiarism, due to the uniqueness achieved
of the generated content. Duplicated content is not accepted by several search
engines like Google, Yahoo and Bing, so this method is used to generate many
different versions of a single article that have a higher probability of being con-
sidered as unique content by these search engines. Words and phrases are randomly

Fig. 1 Genetic algorithm
diagram
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changed by other text blocks that have the same meaning, resulting in another
version of the article with the same meaning, but different text content [6].

2.5 EvoSpace

EvoSpace is a cloud’s space or habitat where evolutionary algorithms can be stored,
developed, tested and be put into production. EvoSpace is very versatile, as the
population is independent to the evolutionary model being used, and this allows us
to make modifications to the evolutionary algorithm at any time. The client pro-
cesses, called EvoWorkers, interact dynamically and asynchronously, and they can
be displayed in remote clients like in the platform storing the server [7].

2.6 Online Advertisement

Online advertisement is performed based on the content of a website. For the
creation of this type of advertisement, which has the objective of giving information
about a product on Internet, it must contain different media elements such as text,
links, images, videos, animations, etc. There are companies like Google that have
created systems for the creation of online advertisement campaigns, like AdSense
and AdWords [8]. AdSense positions ads in websites related to the textual content
being displayed in the web pages. Users owning these ads pay a certain amount of
money for each click on their ads.

3 Related Work

In this section we will explain the platform EvoSpace-Interactive, which is the
platform that we used to build the graphical interfaced used by the users to choose
what ads they considered were more persuasive.

3.1 EvoSpace-Interactive

EvoSpace-interactive was initially tested by implementing an interactive evolu-
tionary computation program called Shapes. This software evolved images formed
by equilateral triangles that could have one of twelve possible colors. Currently,
EvoSpace has made modifications to the images displayed by changing the shape to
more attractive animations that last for a short period of time. For this work, we
modified EvoSpace to be capable of displaying text ads instead of images [9].
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4 Problem Description

If an inexperienced article writer decided to create many different versions of a text
ad, where he changed some words and phrases to other text blocks of similar
meaning, and he showed them to some friends and asked them to vote for the
version they think is the best one, he would be performing a small optimization to
his text. This is because his text isn’t based only on his opinion, but on the opinion
of all of his friends and his own, and now the winning text could be considered
more attractive to a higher percentage of readers.

Based on this example, we believe that a more effective optimization of the text
for an ad should take into consideration thousands of possible versions, and dozens
of people should give their opinion on what blocks of text are better to increase the
persuasion of the text.

5 Methodology

5.1 Article Format

The text (see Fig. 2) is contains different sections enclosed by curly braces, which
contain different blocks of text (the blocks of text can be of any size, from a single
word to whole sentences and paragraphs). These blocks of text are separated by
bars. The text blocks that are outside of the curly braces (represented by grey text in
Fig. 2) won’t have any modifications when the texts evolve.

Fig. 2 Text format
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A vector generates each version of the text, where each number in it represents
the corresponding option. In this example (see Fig. 3), if we want to know what
number is the word “Fabricamos”, we have to look in the options to find out it’s the
third option. So, in the first position of the vector we’ll have the number 3. The rest
of the vector represents the rest of the options that should be printed in the gen-
erated text.

5.2 Implementation of EvoSpace-Interactive

EvoSpace was modified to be able to evolve advertisement texts. The tex, using the
format explained before, must be analyzed by the program to determine how many
text segments will be changing, and how many and what are their options. This way
a vector can be generated, which would represent the chromosome of an individual.
EvoSpace creates 100 random individuals when it initializes its population.

Changes were also made to the graphical user interface (see Fig. 4). The amount
of likes an individual currently has was removed so it wouldn’t act as a bias during
the decision process of the user. By default, in EvoSpace users can create a

Fig. 3 Representation of the vector

Fig. 4 User Interface
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collection of their favorite individuals, and this feature was also removed as we
consider this isn’t necessary for our experiments. The general design was modified
so the texts stand out from the rest of the elements of the interface.

5.3 System Configuration

The population is initialized with 100 randomly generated individuals. For the
evaluation of the individuals, the users are presented with two texts. A user can
choose what text (or texts) he considers would be more persuasive. If no text is
considered as a good choice, the user can also decide not to choose any of the
options. When a selection is made, the selected texts are sent to EvoSpace and
stored in its database, and the user is immediately presented with two more options,
so he can continue with the selection process.

6 Results

The system started operation at http://text.evospace.org since December 4th 2013,
and a total of 75 users have participated in the selection process, generating more
than 180 samples.

The best chromosome was extracted from the database and it was compared
against the worst generated chromosome. This best chromosome was also com-
pared against an actual ad that advertises a Chevrolet car created by an expert. This
ad, similar in size to the evolved text, was taken from Chevrolet’s website [10].

A total of 30 people were surveyed, showing them two paper sheets containing
two texts (see Fig. 5). On the first paper sheet, the text representing our best
individual and the text created by the expert were shown. The second paper sheet
showed the texts generated by our best and worst individuals. The texts were shown
in different positions to discard the possibility of a person choosing an option due to
its position (for example, if a person likes more a text because it’s on the right side).

In our first case, 60 % of the people chose the text generated by our genetic
algorithm, and 40 % chose the text generated by the expert. In the second case,
63.3 % of the people surveyed chose the text represented by the best individual,
while 36.7 % chose the text represented by the worst individual.

The fuzzy rules that can control the evolutionary process are:

1. Si (Tiempo es Bajo) y (CTR es Bajo) y (Precio es Bajo) entonces (Precio es Bajo)
2. Si (Tiempo es Bajo) y (CTR es Bajo) y (Precio es Medio) entonces (Precio es

Bajo)
3. Si (Tiempo es Bajo) y (CTR es Bajo) y (Precio es Alto) entonces (Precio es Bajo)
4. Si (Tiempo es Bajo) y (CTR es Medio) y (Precio es Bajo) entonces (Precio es

Bajo)
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5. Si (Tiempo es Bajo) y (CTR es Medio) y (Precio es Medio) entonces (Precio es
Bajo)

6. Si (Tiempo esBajo) y (CTResMedio) y (Precio esAlto) entonces (Precio esBajo)
7. Si (Tiempo es Bajo) y (CTR es Alto) y (Precio es Bajo) entonces (Precio es Bajo)
8. Si (Tiempo esBajo) y (CTResAlto) y (Precio esMedio) entonces (Precio esBajo)
9. Si (Tiempo es Bajo) y (CTR es Alto) y (Precio es Alto) entonces (Precio es Bajo)

10. Si (Tiempo es Medio) y (CTR es Bajo) y (Precio es Bajo) entonces (Precio es
Medio)

11. Si (Tiempo es Medio) y (CTR es Bajo) y (Precio es Medio) entonces (Precio es
Alto)

12. Si (Tiempo es Medio) y (CTR es Bajo) y (Precio es Alto) entonces (Precio es *)
13. Si (Tiempo es Medio) y (CTR es Medio) y (Precio es Bajo) entonces (Precio es

Medio)
14. Si (Tiempo es Medio) y (CTR es Medio) y (Precio es Medio) entonces (Precio es

Alto)
15. Si (Tiempo esMedio) y (CTR esMedio) y (Precio es Alto) entonces (Precio es *)
16. Si (Tiempo es Medio) y (CTR es Alto) y (Precio es Bajo) entonces (Precio es *)
17. Si (Tiempo esMedio) y (CTR es Alto) y (Precio es Medio) entonces (Precio es *)
18. Si (Tiempo es Medio) y (CTR es Alto) y (Precio es Alto) entonces (Precio es *)
19. Si (Tiempo es Alto) y (CTR es Bajo) y (Precio es Bajo) entonces (Precio es *)

Fig. 5 Survey texts

298 Q. Madera et al.



20. Si (Tiempo es Alto) y (CTR es Bajo) y (Precio es Medio) entonces (Precio es *)
21. Si (Tiempo es Alto) y (CTR es Bajo) y (Precio es Alto) entonces (Precio es *)
22. Si (Tiempo es Alto) y (CTR es Medio) y (Precio es Bajo) entonces (Precio es *)
23. Si (Tiempo es Alto) y (CTR esMedio) y (Precio es Medio) entonces (Precio es *)
24. Si (Tiempo es Alto) y (CTR es Medio) y (Precio es Alto) entonces (Precio es *)
25. Si (Tiempo es Alto) y (CTR es Alto) y (Precio es Bajo) entonces (Precio es *)
26. Si (Tiempo es Alto) y (CTR es Alto) y (Precio es Medio) entonces (Precio es *)
27. Si (Tiempo es Alto) y (CTR es Alto) y (Precio es Alto) entonces (Precio es *)

Simulation results using these fuzzy rules are encouraging, but we are still in the
process of making more experiments.

7 Conclusions

The evolution of advertisement texts written by an inexperienced person in the field
of marketing, through the use of interactive evolutionary techniques and fuzzy
logic, is a viable alternative for the creation of texts with a higher probability of
persuading consumers into buying the advertised product.

8 Future Work

We are currently working on the implementation of a clustering algorithm for
grouping [11] users according to their profiles, and perform interactive evolution to
generate optimal advertisement texts for each cluster of people.
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InterCriteria Analysis of Generation Gap
Influence on Genetic Algorithms
Performance

Olympia Roeva and Peter Vassilev

Abstract In this investigation InterCriteria Analysis (ICA) is applied to examine the

influences of one of the genetic algorithms parameters—the generation gap (ggap).

The investigation is carried out during the model parameter identification of E. coli
MC4110 cultivation process. The apparatuses of index matrices and intuitionistic

fuzzy sets, which are the core of ICA, are used to establish the relations between

ggap and GAs outcomes (computational time and decision accuracy), on one hand,

and cultivation process model parameters on the other hand. The obtained results

after ICA application are analyzed in terms of convergence time and model accuracy

and some conclusions about derived interactions are reported.

Keywords Intercriteria analysis ⋅Genetic algorithms ⋅Generation gap ⋅ Parameter

identification ⋅ E. coli

1 Introduction

Microorganisms have been a subject of particular attention as a biotechnological

instrument. Numerous useful bacteria, yeasts and fungi are widely available in

nature. Bacteria Escherichia coli is now the most important model organism in biol-

ogy [9, 31]. E. coli has come to prominence not only in academic and commercial

genetic engineering, pharmaceutical production, and experimental microbial evolu-

tion, but also in the biotechnology industry [9, 18].

To provide new ways of analyzing and understanding microorganisms, modelling

approaches are applied. In this paper, mathematical modelling of an E. coli fed-batch

cultivation process is considered. To describe the bacteria growth kinetic, the Monod
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model is used [25]. In order to obtain a model with a high degree of accuracy, ade-

quate estimates of the Monod model should be done. It is known that in parameter

identification when the Monod kinetic is fitted to a set of experimental data, the sub-

strate affinity constant kS values vary with the maximum specific growth rate 𝜇max
[21]. The question of whether and to what extent the observed changes in Monod

model parameters are a result of this high correlation between them is still unan-

swered [19]. To bring some more clarity to the existing correlations and dependences

between Monod model parameters, InterCriteria Analysis (ICA) [1] is applied. Any

increase in the knowledge of E. coli expands the range of biological phenomena for

which its strains can be used as models to study [9].

ICA implements the apparatuses of index matrices (IM) [3, 4] and intuitionis-

tic fuzzy sets (IFS) [5] in order to compare some criteria or objects estimated by

them. Up to now there has been one published application of ICA examining the

influences of GA parameters—number of individuals (nind) and number of genera-

tions (ngen)—during the model identification of E. coli and S. cerevisiae cultivation

processes [28]. In the current research genetic algorithms (GAs) [16] are considered

as the most successfully performing meta-heuristics. Their effectiveness has been

already demonstrated for model parameter identification of cultivation processes [8,

24, 27, 29]. To identify the E. coli model parameters, real-coded GAs are applied.

The optimization variables are represented as floating point numbers to avoid time-

consuming encoding and decoding in each step, large memory requirement and loss

of precision due to quantization error [17, 24, 30]. Since the GAs parameters val-

ues have a great impact on performance and efficacy of the algorithm [15, 26], GAs

require setting of the algorithm parameters values. Usually, in the parameters tuning a

compromise between solution quality (J) and search time (J) should be done. Similar

to research [28], the investigation here includes an analysis of the GA parameter—

generation gap (ggap).

The parameter ggap is considered as a design factor with 51 levels. The analysis

of the mean GA results is conducted to find the influence of the design factor and its

optimal value for a fed-batch cultivation processes of bacteria E. coli.
The paper is organized as follows: the formulation of the identification problem

is given in Sect. 2. In Sect. 3 the background of ICA is presented. Numerical results

are discussed in Sect. 4, and conclusion remarks are given in Sect. 5.

2 Model Parameter Identification Problem

2.1 E. Coli Fed-Batch Cultivation Model

The model is presented by a system of non-linear differential equations [7, 27]:

dX
dt

= 𝜇max
S

kS + S
X − F

V
X (1)
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dS
dt

= − 1
YS∕X

𝜇max
S

kS + S
X + F

V
(So − S) (2)

dV
dt

= F, (3)

where X is biomass concentration, [g/l]; S—substrate concentration, [g/l]; F—

feeding rate, [l/h]; V—bioreactor volume, [l]; So—substrate concentration in the

feeding solution, [g/l]; 𝜇max—the maximum values of the specific growth rate, [1/h];

kS—saturation constant (substrate affinity constant), [g/l]; YS∕X—yield coefficient,

[-].

Using Monod kinetics [25], the growth rate relates to the concentration of a single

growth-controlling substrate (𝜇 = f (S)) via two kinetic parameters: 𝜇max and kS. The

growth and substrate utilization linearly relates the stoichiometric parameter YX∕S (a

measure for the conversion efficiency of a growth substrate into cell material) to the

specific rates of biomass growth and substrate consumption [19].

The parameter vector that should be identified for the model Eqs. (1)–(3) is u =
[𝜇max kS YS∕X].

Experimental data for biomass and glucose concentration of an E. coli MC4110

fed-batch process are used for the purposes of model parameters identification. The

detailed description of the process conditions and experimental data can be found

in [27].

For the considered problem, the objective function is defined as:

J = ‖Z‖2 → min, (4)

where ‖‖ denotes the 𝓁2
-vector norm, Z = Z

mod
− Z

exp
, Z

mod

def
= [X

mod
S

mod
] are

model predictions for biomass and substrate, and Z
exp

def
= [X

exp
S

exp
] are known

experimental data for both process variables.

2.2 Genetic Algorithm

Model parameter identification of cultivation process models has become a research

field of particularly great interest. Since the considered problem has been known

to be NP-complete, using meta-heuristic techniques can solve this problem more

efficiently than exact or traditional methods [20]. Some of the most successfully

performing meta-heuristics are the GAs [16].

Real-coded GAs can be regarded as GAs that operate on the actual candidate

solutions (phenotype). For real-coded GAs, no genotype-to-phenotype mapping

is needed. Compared to binary-coded GAs, real-coded GAs have several distinct

advantages, such as: amended computation complexity, improved computation effi-

ciency and much higher solution precision than that of binary-coded GAs [12, 20,

22, 23].
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Table 1 Main GA operators and parameters

Operators and parameters Type/value

Encoding Real-coded

Crossover operator Extended intermediate recombination

Mutation operator Real-value mutation

Selection operator Roulette well selection

ggap 0.5 ∶ 0.01 ∶ 1
ngen 100

nind 100

xovr 0.8

mutr 1/nind

GAs workability is guided mainly by different operators and parameters that

can be implemented specifically in different problems. The first attempt to evalu-

ate empirically GAs performance with overlapping populations has been done by

De Jong [14]. De Jong has introduced the generation gap that defines the percentage

of the population that is replaced with each GAs generation. It is found that at low

values of ggap the algorithm has a severe loss of alleles, which results in poor search

performance [11, 14].

In this research ggap is used as a design factor of GA performance in model

identification of an E. coli MC4110 fed-batch cultivation process. The parameter

ggap takes 51 different values (levels)—from 0.5 to 1, with step 0.01. The rest of the

GA operators and parameters, summarized in Table 1, are tuned based on several

pre-tests.

3 InterCriteria Analysis Approach

Here the idea proposed in [1] is expanded. Following [1, 5], an Intuitionistic Fuzzy

Pair (IFP) [2] with the degrees of “agreement” and “disagreement” between two

criteria applied on different objects is obtained. An IFP is an ordered pair of real

non-negative numbers ⟨a, b⟩ such that: a + b ≤ 1.

Let an IM (see [3]) whose index sets consist of the names of the criteria (for rows)

and objects (for columns) be given. The elements of this IM are further supposed to

be real numbers. An IM with index sets consisting of the names of the criteria (for

rows and for columns) with elements IFPs corresponding to the “agreement” and

“disagreement” of the respective criteria will be obtained. Two things are further

assumed: (i) all criteria provide an evaluation for all objects and all these evaluations

are available; (ii) all the evaluations of a given criteria can be compared amongst

themselves.
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The set of all objects being evaluated is denoted by O, and the set of values

assigned by a given criteria C to the objects by C(O), i.e.

O
def
= {O1,O2,… ,On}, C(O)

def
= {C(O1),C(O2),… ,C(On)}.

Let C∗(O)
def
= {⟨x, y⟩| x ≠ y & ⟨x, y⟩ ∈ C(O) × C(O)}.

In order to compare two criteria, the vector of all internal comparisons of each

criteria which fulfill exactly one of three relations R, R and ̃R must be constructed. It

is required that for a fixed criterion C and any ordered pair ⟨x, y⟩ ∈ C∗(O) it is true:

⟨x, y⟩ ∈ R ⇔ ⟨y, x⟩ ∈ R, (5)

⟨x, y⟩ ∈ ̃R ⇔ ⟨x, y⟩ ∉ (R ∪ R), (6)

R ∪ R ∪ ̃R = C∗(O). (7)

From the above it is seen that only a subset of C(O) × C(O) has to be considered

for the effective calculation of the vector of internal comparisons (denoted further

by V(C)), since from (5)–(7) it follows that if the relation between x and y is known,

the relation between y and x is known as well. Thus, only lexicographically ordered

pairs ⟨x, y⟩ are considered. Let, for brevity, Ci,j = ⟨C(Oi),C(Oj)⟩. Then, for a fixed

criterion C the following vector is constructed:

V(C) = {C1,2,C1,3,… ,C1,n,C2,3,C2,4,… ,C2,n,C3,4,… ,C3,n,… ,Cn−1,n}.

It can be easily seen that it has exactly
n(n−1)

2 elements. Further, to simplify our

considerations, the vector V(C) is replaced with ̂V(C), where for each 1 ≤ k ≤ n(n−1)
2

for the k-th component it is true:

̂Vk(C) =
⎧
⎪
⎨
⎪⎩

1 iff Vk(C) ∈ R,
−1 iff Vk(C) ∈ R,
0 otherwise.

Then, when comparing two criteria, the degree of “agreement” between the two

is the number of matching components (divided by the length of the vector for nor-

malization purposes). The degree of “disagreement” is the number of components

of opposing signs in the two vectors (again normalized by the length).

The above described algorithm for calculating the degrees of “agreement” (𝜇)

and degrees of “disagreement” (𝜈) between two criteria C and C′
is realized in Mat-

lab environment. A pseudo-code of the Algorithm 1 used in this study is presented

below.
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Algorithm 1 Calculating “agreement” and “disagreement” between two criteria

Require: Vectors ̂V(C) and ̂V(C′)
1: function DEGREE OF AGREEMENT( ̂V(C), ̂V(C′))
2: V ← ̂V(C) − ̂V(C′)
3: 𝜇C,C′ ← 0
4: for i ← 1 to

n(n−1)
2

do
5: if Vi = 0 then
6: 𝜇C,C′ ← 𝜇C,C′ + 1
7: end if
8: end for
9: 𝜇C,C′ ←

2
n(n−1)

𝜇C,C′

10: return 𝜇C,C′

11: end function

12: function DEGREE OF DISAGREEMENT( ̂V(C), ̂V(C′))
13: V ← ̂V(C) − ̂V(C′)
14: 𝜈C,C′ ← 0
15: for i ← 1 to

n(n−1)
2

do
16: if abs(Vi) = 2 then ⊳ abs: absolute value

17: 𝜈C,C′ ← 𝜈C,C′ + 1
18: end if
19: end for
20: 𝜈C,C′ ←

2
n(n−1)

𝜈C,C′

21: return 𝜈C,C′

22: end function

It is obvious that for 𝜇C,C′ , 𝜈C,C′ , we have 𝜇C,C′ = 𝜇C′
,C, 𝜈C,C′ = 𝜈C′

,C. Also,

⟨𝜇C,C′ , 𝜈C,C′⟩ is an IFP. In most of the obtained pairs ⟨𝜇C,C′ , 𝜈C,C′⟩, the sum 𝜇C,C′ +
𝜈C,C′ is equal to 1. However, there may be some pairs, for which this sum is less than

1. The following difference is considered as a degree of “uncertainty”:

𝜋C,C′ = 1 − 𝜇C,C′ − 𝜈C,C′ . (8)

4 Numerical Results and Discussion

A series of identification procedures of model parameters vector u using real-coded

GAs has been performed. For each value of ggap (51 design levels) thirty inde-

pendent runs of GA have been fulfilled. Average values of the obtained model

parameters estimates and resulting values of objective function (J) and total com-

putational time (T) have been calculated. To perform ICA, an IM A(ggap) (Eq. 9)

has been constructed, where T , J, ggap, 𝜇max, kS and YS∕X are considered as criteria

C1,C2,… ,C6, respectively, for 51 designed levels, i.e. as objects O1,O2,… ,O51,

in accordance with ICA theory. The full IM A(ggap) is available at http://intercriteria.

net/studies/gengap/e-coli/.

http://intercriteria.net/studies/gengap/e-coli/
http://intercriteria.net/studies/gengap/e-coli/
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A(ggap) =

C1 C2 C3 C4 C5 C6
O1 4.846773 34.272917 0.50 0.519918 0.017989 0.494683
O2 4.581270 35.021875 0.51 0.502164 0.014447 0.494507
... ... ... ... ... ... ...

O29 4.462116 51.234375 0.78 0.484761 0.011293 0.494725
... ... ... ... ... ... ...

O50 4.569453 63.318750 0.99 0.496026 0.013495 0.494479
O51 4.880437 63.164063 1.00 0.499184 0.014268 0.494324

(9)

As the number of objects influences the proper ICA estimations, ICA is performed

for 6 different groups of objects. In this way the influence of the object number on the

ICA results has be investigated. The groups involve 6, 11, 21, 31, 41 and 51 objects,

respectively. The first group G1 has 6 objects, namely, for the following values

of ggap ∶ G1 = {0.5, 0.6, 0.7, 0.8, 0.9, 1}, i.e. in the input IM only the objects

O1,O11,O21, O31, O41 and O51 are included for the corresponding six criteria. The

second group G2 consists of 11 objects, which are constructed by adding some new

values of ggap to the first group, namely, G2 = {G1 ∪ {x + 0.05|x ∈ G1 ⧵ {1}}}.

In the same manner the other groups may be represented as Gi = {Gi−1 ∪ G′
i , i =

3, 4, 5, 6}, where

G′
i = {x + 2i − 4

100
|x ∈ G1 ⧵ {1}} ∪ {x + 2i − 4 + (−1)max(0,2i−9) ∗ 5

100
|x ∈ G1 ⧵ {1}}.

Based on the defined six IMs, following the presented ICA algorithm (Algorithm
1), ninety IFPs ⟨𝜇, 𝜈⟩ (for every two pairs of the considered criteria) are obtained.

The results are summarized in Table 2. In all cases the degree of “uncertainty” 𝜋 = 0
is observed.

Observing the obtained values of the degrees of “agreement” (𝜇) and the degrees

of “disagreement” (𝜈), the criteria relations and dependences are discussed according

to the scale proposed in [6] (see Table 3). In Fig. 1 a graphical representation of the

ICA results is shown.

The results show that there is a clear dependence of the object numbers on the

𝜇- and 𝜈-values obtained by ICA. For example, 𝜇-values of the criteria C2 ↔ C4
and C3 ↔ C4 start from 𝜇 = 0.07 (NC) in case of 6 objects and finish with 𝜇 = 0.38
(D) in case of 51 objects. Also, 𝜇-values of the criteria C2 ↔ C5 and C3 ↔ C5 start

from 𝜇 = 0.2 (WNC) in case of 6 objects and finish with 𝜇 = 0.39 (D) in case of

51 objects. This means that there should be as more as possible object numbers to

perform ICA and to define the exact dependence between any two considered criteria.

In the case of an insufficient number of objects the ICA could lead to some wrong

conclusions. Thus, it could be considered that there is NC between the following

four pair combinations: T and 𝜇max (C2 ↔ C4), T and kS (C2 ↔ C5), ggap and 𝜇max
(C3 ↔ C4), ggap and kS (C3 ↔ C5). Actually, these criteria are in dissonance.

Another example is the correlation between the criteria C1 ↔ C4 and C1 ↔ C5.

If the results from ICA based on 6 objects are considered, the conclusion is that

these criteria are in WD. Actually, they are in PC—the model parameters identifi-

cation results show that estimates of 𝜇max higher than 0.5 lead to higher values of
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Table 2 Results from the ICA

Criteria

correlation

Number of objects

6 11 21 31 41 51

⟨𝜇, 𝜈⟩ ⟨𝜇, 𝜈⟩ ⟨𝜇, 𝜈⟩ ⟨𝜇, 𝜈⟩ ⟨𝜇, 𝜈⟩ ⟨𝜇, 𝜈⟩
C2 ↔ C1 ⟨0.33, 0.67⟩ ⟨0.42, 0.58⟩ ⟨0.53, 0.47⟩ ⟨0.51, 0.49⟩ ⟨0.47, 0.53⟩ ⟨0.47, 0.53⟩
C3 ↔ C1 ⟨0.33, 0.67⟩ ⟨0.42, 0.58⟩ ⟨0.53, 0.47⟩ ⟨0.51, 0.49⟩ ⟨0.47, 0.53⟩ ⟨0.47, 0.53⟩
C4 ↔ C1 ⟨0.73, 0.27⟩ ⟨0.85, 0.15⟩ ⟨0.89, 0.11⟩ ⟨0.88, 0.12⟩ ⟨0.88, 0.12⟩ ⟨0.89, 0.11⟩
C5 ↔ C1 ⟨0.73, 0.27⟩ ⟨0.87, 0.13⟩ ⟨0.88, 0.12⟩ ⟨0.88, 0.12⟩ ⟨0.89, 0.11⟩ ⟨0.90, 0.10⟩
C6 ↔ C1 ⟨0.60, 0.40⟩ ⟨0.45, 0.55⟩ ⟨0.42, 0.58⟩ ⟨0.43, 0.57⟩ ⟨0.39, 0.61⟩ ⟨0.38, 0.62⟩
C3 ↔ C2 ⟨1.00, 0.00⟩ ⟨1.00, 0.00⟩ ⟨1.00, 0.00⟩ ⟨1.00, 0.00⟩ ⟨0.99, 0.01⟩ ⟨1.00, 0.00⟩
C4 ↔ C2 ⟨0.07, 0.93⟩ ⟨0.27, 0.73⟩ ⟨0.41, 0.59⟩ ⟨0.40, 0.60⟩ ⟨0.37, 0.63⟩ ⟨0.38, 0.62⟩
C5 ↔ C2 ⟨0.20, 0.80⟩ ⟨0.33, 0.67⟩ ⟨0.43, 0.57⟩ ⟨0.41, 0.59⟩ ⟨0.38, 0.62⟩ ⟨0.39, 0.61⟩
C6 ↔ C2 ⟨0.73, 0.27⟩ ⟨0.78, 0.22⟩ ⟨0.72, 0.28⟩ ⟨0.71, 0.29⟩ ⟨0.69, 0.31⟩ ⟨0.68, 0.32⟩
C4 ↔ C3 ⟨0.07, 0.93⟩ ⟨0.27, 0.73⟩ ⟨0.41, 0.59⟩ ⟨0.40, 0.60⟩ ⟨0.37, 0.63⟩ ⟨0.38, 0.62⟩
C5 ↔ C3 ⟨0.20, 0.80⟩ ⟨0.33, 0.67⟩ ⟨0.43, 0.57⟩ ⟨0.41, 0.59⟩ ⟨0.37, 0.63⟩ ⟨0.39, 0.61⟩
C6 ↔ C3 ⟨0.73, 0.27⟩ ⟨0.78, 0.22⟩ ⟨0.72, 0.28⟩ ⟨0.72, 0.28⟩ ⟨0.70, 0.30⟩ ⟨0.68, 0.32⟩
C5 ↔ C4 ⟨0.87, 0.13⟩ ⟨0.95, 0.05⟩ ⟨0.98, 0.02⟩ ⟨0.98, 0.02⟩ ⟨0.99, 0.01⟩ ⟨0.99, 0.01⟩
C6 ↔ C4 ⟨0.33, 0.67⟩ ⟨0.31, 0.69⟩ ⟨0.31, 0.69⟩ ⟨0.31, 0.69⟩ ⟨0.29, 0.71⟩ ⟨0.29, 0.71⟩
C6 ↔ C5 ⟨0.33, 0.67⟩ ⟨0.33, 0.67⟩ ⟨0.31, 0.69⟩ ⟨0.31, 0.69⟩ ⟨0.29, 0.71⟩ ⟨0.29, 0.71⟩

Table 3 Consonance and

dissonance scale [6]
Value of 𝜇C,C′ Meaning

[0–0.5] Strong negative consonance (SND)

(0.5–0.15] Negative consonance (ND)

(0.15–0.25] Weak negative consonance (WND)

(0.25–0.33] Weak dissonance (WD)

(0.33–0.43] Dissonance (D)

(0.43–0.57] Strong dissonance (SD)

(0.57–0.67] Dissonance (D)

(0.67–0.75] Weak dissonance (WD)

(0.75–0.85] Weak positive consonance (WPC)

(0.85–0.95] Positive consonance (PC)

(0.95–1.00] Strong positive consonance (SPC)
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the objective criteria. The estimates of 0.49 lead to higher model accuracy. The sit-

uation is the same with the model parameter kS. As could be seen in Table 2, the

parameters 𝜇max and kS (criteria C4 and C5) are in SPC with 𝜇 = 0.99. This means

that the two parameters are not completely independent, in fact they “draw” each

other during the fitting procedure as also discussed in [21]. Changing 𝜇max in such a

procedure will also immediately lead to a small adjustment of kS, and they will not be

varied independently, unlike what one would expect theoretically. The 𝜇max∕kS ratio

referred to as specific affinity, bridges the kinetics of enzymatic substrate uptake and

microbial growth [10, 19]. Any combination of the two parameters that results in the

same 𝜇max∕kS ratio will fit equally well in the parameter estimation procedure. This

is a practical problem of the parameter identifiability for growth models containing

non-linearities of the type Michaelis-Menten [10, 13].

The obtained high correlation for criteria C2 ↔ C3 is obvious. With the increase

of the value of ggap floating point operations exponentially increase, as well as,

consequently, the resulting computation time T . The observed dependence between

ggap and T for all 51 values of ggap and for every 30 algorithm runs is presented

in Fig. 2. In Fig. 3 the influence of ggap on the value of the objective function J is

presented. As the ICA results show (𝜇 = 0.47, i.e. SD), there is no clear relation

between ggap and J (C1 ↔ C3). Some dependences or relations between ggap and J
can be found at ICA when the rest of GA parameters are varied at the same precision

(i.e. such fine variations of the values of nind, ngen, etc.).

According to the obtained results, the criteria pairs C1 ↔ C2, C1 ↔ C3, C4 ↔ C6
and C5 ↔ C6 are in WD or SD, i.e. it can be concluded that between them there are

no dependences. For example, for the pair C1 ↔ C2 such behavior is explained by
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Fig. 3 Influence of ggap on the objective function value J

the stochastic nature of the GAs. If the algorithm is ran for a short running time, it is

very likely that only bad solutions will be achieved. At the same time, long running

time cannot guarantee achieving good solutions.

The physical meaning of the model parameters [7, 19, 21] explains the obtained

dissonance considering the pairs C4 ↔ C6 and C5 ↔ C6, as well as the SPC consid-

ering pair C4 ↔ C5.

If the results discussed here (Table 2) are compared to those presented in [28],

it can be seen that there are large discrepancies between them. This is due to the

reported very high values of the “uncertainty” 𝜋. For example, for the criteria pair

C4 ↔ C5 the 𝜋-value is 𝜋 = 0.8 [28]. Therefore, such results cannot be regarded

as credible. Although in the results in [28] higher values of 𝜋 are observed and a

small number of objects are considered, there are a few close matches. Similar esti-

mates of 𝜇-values for the pairs C1 ↔ C6, C2 ↔ C4, C2 ↔ C5 and C4 ↔ C6 have

been obtained. This comparison shows once more that the number of objects in the

ICA is essential for the accuracy of the obtained results.

5 Conclusion

The aim of this paper is to explore the idea of applying the recently proposed Inter-

Criteria Analysis for establishing certain relations, considering parameters identifi-

cation of an E. coli fed-batch cultivation model by use of Genetic algorithms. The

investigation is particularly focused on the relations between the model parameters

𝜇max, kS and YX∕S, on one hand, and the GA parameter ggap, the convergence time

and the model accuracy, on the other hand.
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Microbial growth kinetics, i.e., the relationship between the specific growth rate

(𝜇) of a microbial population and the substrate concentration (S), is an indispensable

tool in all fields of microbiology, and a key step in cultivation processes control and

optimization. Therefore, the ICA of the existing correlations between the studied

kinetic and stoichiometric parameters is an important investigation.

The dependences or independences obtained from ICA can be explaned both

by the physical meaning of the considered model parameters and by the stochastic

nature of the used meta-heuristic techniques—GAs. Moreover, the derived additional

knowledge will be useful in further identification procedures of cultivation process

models to obtain more accurate estimations and achieve better GAs performance.

Acknowledgments The work is supported by the Bulgarian National Scientific Fund under the

grant DFNI-I-02-5 “InterCriteria Analysis—A New Approach to Decision Making”.
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Proposed CAEva Simulation
Method for Evacuation of People
from a Buildings on Fire

Jacek M. Czerniak, Łukasz Apiecionek, Hubert Zarzycki
and Dawid Ewald

Abstract This paper presents practical applications of the cellular automata theory

for building fire simulation using the CAEva method. Thanks to the tests carried out

using appropriately configured program, realistic results of simulated evacuation of

people from the building have been achieved. The paper includes the references to

actual fire disasters and provides numbers of their resulting casualties. Using such a

kind of predication in civil engineering should increase the fire safety of buildings.

Simulations described in this paper seem to be very useful, particularly in case of

building renovation or temporary unavailability of escape routes. Using them, it is

possible to visualize potential hazards and to avoid increased risk in case of fire.

Inappropriate operation of buildings, including insouciant planning of renovations

are among frequent reasons of tragic accidents cited by fire brigade information ser-

vices. Similar problems are encountered by inspectors who assess spontaneous fire

accidents or arsons during mas events, where wrong safety procedures or inappro-

priate attempts to cut costs resulted in tragedy. Thanks to the proposed solutions it

shall be easier to envisage consequences of problematic decisions causing tempo-

rary or permanent unavailability of escape routes. This is exactly the problem ana-

lyzed by this paper. It does not take into account, by the rule, the influence of CO2
and other gases on evacuation difficulty. The described method has been analyzed

using descriptions of real life fires, the participants of which were neither asleep

nor asphyxiated with carbon monoxide, while the escape was hindered by fire, room
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layout as well as stress and number of the event participants. The results achieved

for such conditions are approximate to the actual (reallife) outcomes, which proved

the method to be correct.

1 Introduction

Cellular automata are classified to one of IT branches, namely to artificial intelli-

gence. They include a network of cells, each of which is characterized by some spe-

cific state and a set of rules. Change of a current state of a given cell is the outcome

of the above mentioned properties and interrelations with the neighboring cells. The

theory of cellular automata was first introduced by an American scientist of Hun-

garian origin, John von Neumann. He showed, among other things, that even sim-

ple machines are characterized by reproduction ability; that feature was previously

regarded as a fundamental feature observed in living organisms [7–9, 16, 18]. For

many years cellular automata had been subject to theoretical studies only. With the

development of computers and software, optimizing methods based on that attitude

have been more and more frequently studied and implemented in practice. Thanks

to their versatility, cellular automata are applied in many real life fields, such as:

biology, physics, mathematics and in different fields of IT, such as cryptography or

computer graphic.

1.1 Application of Cellular Automata

Cellular automata have been applied in practice. One of the examples of such appli-

cations is the simulation of the traffic, where specifically defined cellular automaton

controls the street traffic. The traffic is controlled basically at the specific segment of

a given traffic intensity [1, 11]. This applies for example to traffic intensity control

in highways of the Ruhr in Germany. The monitoring centers designed especially

for that purpose collect data from selected sections of highways. Then the data is

analyzed and used to prepare shorttime simulations of the traffic intensity using cel-

lular automata [2, 3]. Web sites of that project include statistical information about

performed studies on behavior of drivers who were prewarned about possible traf-

fic problems [1, 3, 9] that might occur over several following hours [6, 12]. Demo-

graphic simulations for a given region are among other examples of cellular automata

applications. The aim of such simulations is to generate the structure showing the

size of population at a given area in a way to create a map of forecasted population

density [4]. Simulations of this type can be based on the wellknown “Game of Life”

[14]. This is possible, because following some modifications of the algorithm, it can

count life occurring in observed cells. Implementations of other automata include

image processing, generation of textures, simulation of waves, wind as well as the

program CAEva (Cellular Automata simulation of Evacuation) developed also for
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Fig. 1 Types of grids: 1D,

2D, 3D [source [5]]

the purposes of this study. The aim of the proposed algorithm is to simulate escape

of people from the building on fire with a given number of exits and fire sources [5,

13, 15, 19].

1.2 The Grid of Cellular Automata

A grid or a discrete space, where cellular automata evolution takes place is totally

built of identical cells. All the cells must be surrounded by the same number of

neighbors and must be characterized by the same number of states. There are three

structural factors which significantly influence the grid form and, as a consequence,

the behavior of the entire cellular automaton [2, 9, 16]

∙ the size of a space depends on the magnitude of the studied problem, the examples

of which are shown in Fig. 1 (grid 1D, 2D, 3D);

∙ regularity condition, which requires complete filling of the grid with identical

cells;

∙ the number of neighbors (dependent on both the above factors).

2 Forecasting the Fire Hazard

Fire is an element against which man is often helpless, especially when the fire breaks

out inside rooms. Thus the designs of residential, commercial or other public build-

ings must meet complicated firesafety requirements. Width of corridors, number of
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escape exits and permissible number of persons which can stay in a room at the same

time significantly influences safety of people inside. Obviously, it is not sufficient

to include escape exists in the plan, but the door must be unlocked too. Casualties

in many fires were caused by locked emergency exits [10, 17, 19]. Recently, there

were many disasters caused by fire in buildings, e.g. the fire of the hotel in Kamień

Pomorski (PL) with 23 casualties (where emergency exit turned out to be locked) or

the fire of hypermarket in Nowy Targ (PL), caused probably by welding works inside.

Another example is the fire of a block of flats in Koluszki (PL), were one person died.

When designing buildings, architects meet requirements of binding firesafety stan-

dards, but this is often insufficient to avoid a tragedy. Additional simulation studied

could help to solve that problem. Moreover, even the best architectural design cannot

prevent fire if a building is incorrectly operated. It is not rare to encounter renova-

tion plans ignoring the fact that escape routes or some exits from a building would

be temporarily unavailable during the renovation. From the statistical point of view,

fire hazard increases during renovation works. The program CAEva is an implemen-

tation of the CAEva method, the pseudocode of which is shown below. It has been

developed in order to test escape of people from a building as a result of fire hazard.

It allows comparison of different simulation results and development of appropriate

conclusions. The program has been implemented in the C++Builder environment,

which is an objectoriented programming tool in Windows environment and is avail-

able free of charge at the AIRlab web site. Using the program it is possible to draw

a board of any size including the plan of a singlestorey building, to locate people

inside and to indicate the place of fire. The board consists of the grid of cells. Each

cell can assume only one of the following states: fire, wall, person, person on fire

or an empty cell. Figure 2 shows the diagram of states for a single cell in the fire

simulation automaton.

Fig. 2 Diagram of cell

states
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Fig. 3 Boundary conditions (rebound from the grid edges)

2.1 Boundary Conditions

The discrete space, where different evolution of cellular automata take place includes

d-dimensional, theoretically infinite grid. As a grid of that type cannot be imple-

mented into a computer application, it is represented in the form of a finite table.

Thus it is necessary to set boundary conditions at the grid borders, i.e. at the table

limits. The set of basic conditions is shown in Fig. 3. Those conditions are analogous

for the rotation by 90◦, so they were skipped as trivial ones.

The following rules were used for the simulation of the cell motion in the wall

direction:

∙ straight motion—unchanged state of a cell,

∙ diagonal motion—state of a cell changes into empty one, angle of incidence equals

the angle of rebound and, as a consequence, the state of a cell in the mirror image

shall change into the state of the cell that initiated the motion,

motion conditions:

∙ motion is possible if a target cell is in the empty state. Otherwise the cell shall not

change the state,

∙ the attempt of the motion of the cell in “person” state to the cell in “fire” state

increases the number of burns of the initiating cell.

A special case is an attempt of the motion from the corner of the board. Rebound

in three initiating directions does not change the state of a cell and the attempt of

the motion in the remaining five directions may cause such change. It should be also

noted that motion rules and conditions apply to the cells in the “person” state as

well as in the “fire” state. The fields to which motion cannot be made are cells in

“wall” state. Rebound conditions occur at the edge of the cellular automata grid,

which constitutes a barrier from which moving virtual objects rebound (in visual

sense). Those conditions are used to simulate encased empirical spaces. Figure 4

shows seven consecutive phases of cell generations visualizing rebound of objects

from the grid edges.
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Fig. 4 Sample seven steps of the evolution

2.2 Transfer Function

Evolution of cellular automata takes place in discrete time determining consecutive

processing cycles. Each discrete moment t = {0, 1, 2, n} is used for updating the

state of individual cells, thus each automaton is a dynamic object over time. In every

iteration, the transfer function can process (calculate) all the cells in the grid one by

one according to specific rules. Each processed cell receives its new state based on

calculation of its current state and states of the neighboring cells. Transfer rules and

the state space as well as defined neighborhood are inherent elements of the cellular

automata evolution process.

Once executed, the program displays main screen ready to draw the building plan

and to arrange individual elements inside. Once the board is drawn and all the com-

ponents are arranged there, one can start configuration of fire and people parameters

and setting of the group effect.

Fire parameters:

∙ fire goes out alone, if the number of neighbors is less than 1,

∙ fire goes out from overpopulation, if the number of neighbors is more than 3,

∙ new fire is generated when the number of neighbors is at least 3,

∙ but not more than 4.

Parameters of people:

∙ probability that a person goes towards the exit 50,

∙ number of burns resulting in death 5,

∙ group effect On/Off.

The Fig. 5 shows the result of the program after creating 50 generations of evo-

lution. There are points in the screen simulating people escaping towards the exit

and the propagating fire. All the events are recorded in the table of statistics. They

include: number of people remaining within the board, saved from and died in fire

or by crushing. That data shall be used to draw conclusions from experiments.
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Fig. 5 The result of the

program after creating 50

generations of evolution

The test including simulation of a building on fire was based on certain rules

and relations. Setting of the following parameters, selection of versions and inherent

rules altogether make up an environment influencing the mortality rate of people

during fire of a building for the proposed simulations:

∙ layouts of the building floors, including the number and location of doors,

∙ distribution of defined number of people inside the building at specified places,

∙ setting the fire parameters:

– fire goes out alone, if there are less than one neighbor,

– fire goes out because of overpopulation, if there are more than 3 neighbors,

– new fire is generated when there are at least 3 neighbors, but not more than 4.

∙ setting of the parameters for people (live cells):

– number of burns resulting in death is by default set to 5,

∙ location of the fire source on the board:

– specifying the probability, with which people go towards the exit (four options):

25, 50, 75, 100%,

– specifying whether people go towards the exit in groups (two options): with or

without a group effect.
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3 The Experiment

The authors assumed in the experiment that three boards are always used with the

same arrangement of walls as well as location of fire and people, but with different

number of doors (1 to 3). The board pl_1drzwi_ogień1 shown in Fig. 6 is provided

with only one exit from the building and includes seven rooms, where 70 blue points

simulating people were located and the fire was set using red points (lower left corner

of the board). The remaining two boards pl_2drzwi_ogień1 and pl_3drzwi_ogień1

differ from each other in the number of doors. In the board pl_2drzwi_ogień1 there

are two doors and in the board pl_3drzwi_ogień1 there are three doors (Fig. 6).

The results of performed experiments using CAEva program as regards the behav-

ior of people at the moment of fire outbreak in building are presented in Table 1.

Results of the experiments have been classified considering the group effect and

probability with which people go towards the emergency exit. 8 tests were performed

for each board and obtained numerical results of the tests concerned people, who:

∙ died in the fire,

∙ were crushed in the crowd,

∙ were saved from the fire.

Fig. 6 Sample boards of the building
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Table 1 Mortality rate of people as a result of fire

Building plans Group effect

Yes No

Probability that people go towards Probability that people go towards

the exit the exit

25 % 50 % 75 % 25 % 50 % 75 %

Number of people die/crushed/saved from the fire

bd_1door_fire1 64/0/6 47/0/23 9/3/58 65/0/5 38/0/32 11/0/59

bd_2doors_fire1 38/0/32 24/0/46 7/0/63 40/0/30 21/0/49 5/0/65

bd_3doors_fire1 43/1/26 24/0/46 9/0/61 39/1/30 18/0/52 11/0/59

bd_1door_fire2 57/0/13 24/2/44 3/0/67 58/0/12 16/0/54 2/0/68

bd_2doors_fire2 40/0/30 3/0/67 1/0/69 31/0/39 10/0/60 0/0/70

bd_3doors_fire2 28/0/42 1/0/69 0/0/70 23/0/47 5/0/65 0/0/70

bd_1door_fire3 59/0/11 25/2/43 1/2/67 56/0/14 16/1/53 1/0/69

bd_2doors_fire3 50/0/20 12/1/57 7/0/63 53/0/17 13/0/57 7/0/63

bd_3doors_fire3 42/0/28 3/0/66 0/0/70 41/0/29 5/0/65 0/0/70

The mortality rate depends on the place of the fire outbreak. If the fire blocks

any room, then people staying there are not able to escape and to reach the exit

even if they go towards the exit with 100 % probability. The group effect used in the

program does not necessarily help in escape of people from a building. It can cause

crowd as people are looking for other people to form groups and thus crushes can

occur. When a person does not have any direction when he/she could move he/she

is crushed. Figures 7 and 8 show the number of saved people who went towards the

exit with the probability of 50 and 75 %.

Fig. 7 Probability that people go towards the exit = 50 %
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Fig. 8 Probability that people go towards the exit = 75 %

4 Conclusions

It is extremely difficult to simulate real fire inside a building. Behavior of people

during fire can be stochastic and unpredictable. Authors of this study managed to

present simulation of the escape of people from a building by means of cellular

automata, the implementation of which was used in the study.

Following appropriate configuration of the program using the probability with

which a person goes towards exit, setting the fire parameters and selecting proper

option for the group effect one can draw the following conclusions:

Number of people saved from fire thanks to the group effect is comparable to the

result without the group effect. The results differ depending on the type of the board

and location of fire, but they are essentially very similar to each other.

When group effect is used in the program, the number of people who die as a

result of crushing is larger than when no group effect is used. This happens when

a person is not able to move in any direction. This is due to the fact that simulated

individuals gathering in groups create areas of high density which results in death

as a consequence of crushing.

In the implementation used for the experiments, people who go towards the exit

way with 100 % probability are most likely to survive. To be realistic about the obser-

vations of people escaping from a building on fire, about their stress and the con-

stantly increasing fire intensity, more probable value of probability with which they

escape shall optimally be below 75 %. Hindrances that affect the decision making

process during evacuation include, among others, limited visibility smoke result-

ing from combustion of flammable materials, high temperature and toxic gases. It is
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obvious here that no person would be able to pass the shortest way 100 % probability

under such conditions during evacuation.

Number of doors on the board of the program is of high importance for the escape

route. The more emergency exits the higher chance for people inside a building to

escape and save.

Simulations of the presented experiments confirm the thesis that insouciant or

unlawful blocking of escape routes inside buildings may result in tragic conse-

quences at each stage of the building operation. Personnel responsible for fire safety

and structural safety inspections may apply such tools to justify their decisions that

sometimes could seem too strict. To make the simulation even more realistic, it is

worth considering the option of automatic change of the parameter of the program

related to the probability with which a person goes towards an exit. It is commonly

known fact that the analysis of underlying causes and conditions of disasters show

that the probability of survival decreases with the passing of time. Thus future exper-

iments should take into account this fact.
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The CutMAG as a New Hybrid Method
for Multi-edge Grinder Design Optimisation

Jacek M. Czerniak, Marek Macko and Dawid Ewald

Abstract This article is a part of the series dedicated to AI Methods Inspired by

Nature and their implementation in the mechatronic systems. The CutMAG algo-

rithm uses hybrid approach to optimisation, i.e. a combination of classic genetic algo-

rithms (GA) with morphologic optimisation (M) thus creating innovative approach

to optimisation of cutting disk design (Cut) for the multi-edge grinder. The input data

include population of individuals. Each individual is represented by a set of cutting

disks. Whereas the fitness function was assumed as a combination of several postu-

lates of the mechanical design foundations. The method includes mechanical, design

and energy aspects. Each individual constitutes a complete solution of the disk set

whereas the population represents the entire class of solutions. The fitness function

of an individual is calculated as the average fitness of each disk supplemented by

information describing the relationship between both adjacent disks. The method

for calculation of function values was selected so as to ensure its maximisation in

the process of evolution. Although promising results of the genetic algorithms oper-

ation were achieved, one can consider further improvement of the method efficiency.

The authors used morphological operations in order to better adopt the method to the

task.

1 Introduction

Grinding is one of the key issues in polymer plastic processing and recycling as

well as in the food, wood and chemical industries and the grinding method deter-

mines grinding product quality and energy consumption during the process. Many
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researchers have been trying to improve the design of grinders and to increase the

process efficiency [1, 4, 6, 8, 10, 11, 17, 20, 22, 24, 25]. The efficiency is influ-

enced by innovation of the design and technology of working components as well

as by the type of the material, shape of grinded parts and expected average size

(geometric form) of the ground particles. It is possible to identify, implement and

use the most advantageous conditions thanks to thorough analysis of energy estima-

tors for selected design solutions and proposed universal system based on correct

rules of knowledge codification. The purpose of plastic grinding is, on one hand, to

reduce average size of ground parts, and on the other hand, to achieve material with

specific properties influencing its further processing, i.e. mainly the process of intro-

ducing plastic into plasticizing systems of moulding machines and extruding presses.

Appropriate form, size and roughness of particles results first of all from the design

of the grinding assembly. Apart from the size, also qualitative characteristics of the

granulated product and its form are important. The ground product should have reg-

ular, usually cylindrical (but also cubical or cubicoid etc.) shape. Results obtained

from the numerical analysis are more and more used to find efficient design solu-

tions over recent years [18, 23]. It seems to be very popular now to create 3D CAD

models which are basis for preparation of detailed documentation as well as kine-

matical and strength analysis using finite elements method (FEM) and artificial intel-

ligence (AI) [7, 26]. Based on the analysis of the available Polish literature on the

subject (such as Brożek M., Ciesielska D., Chwiej M., Drzymała Z., Flizikowski J.,

Hawrylak H., Heim A., Konieczka R., Mielczarek E., Opielak M., Otwinowski H.,

Rokach I., Sidor J., Sikora R., Siwiec A., Sokołowski M., Tumidajski T., Zawada

J. and others] as well as foreign literature [such as Armarego E.J.A., Bauer W.,

Berger B.S., Csöke B., Fang Q., Grellmann W., Justin A. Gantt, Melkote S.N., Mellor

S.H., Pahl M.H., Pasikatan M.C., Pwu H.Y., Richman M.W., Salman A.D., Shamoto

E., Schubert W., Wanibe Y., Weichert R., Yan J., Strenkowski S.J., Schubert G.,

Peukert W.) one can conclude that this subject has not been systematically studied so

far as regards grinding models in view of further process ability of polymer materi-

als, with AI implementations. Existing, but distributed data bases concerning design

solutions of the grinders and their working characteristics for specific group of plas-

tics as well as descriptions of the ground product properties are also only the basis for

systematizing the methods of identification and assessment of the grinding quality.

Also the professional literature on ant colony optimization and other selected meta-

heuristic methods using AI available to the authors (Dorigo M., Stützle T., Bersini

H., diCaro G., Corne D., Gloger F., Siarry P., Fogel D., Michalewicz Z. et al.) [20,

22, 24, 25] do not include proven studies on application of those methods to grinder

design optimization. Nevertheless, there are known engineering applications using

genetic algorithms [5, 9, 13, 15, 16, 19, 21]. That potential gap seems to be a very

interesting area of innovative research conducted at the meeting of two disciplines:

mechanical engineering and machine operation, and artificial intelligence.
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2 The Design of the Multi-edge Grinder

Thanks to proper geometry of holes in their disks, drums or strips as well as due to

appropriate relationship of the movement between neighbouring edges, multiedge

grinders are able to grind plastic using the neighbouring edges [1, 11, 12, 14, 17].

Similarly as for knife grinders, the main operation of multiedge grinders is cutting.

Cutting takes place as a result of mating between the rotating knife (disk or drum) and

the fixed one (installed in the grinder housing) (Fig. 1). During the cutting process, a

plastic part is supported on the tool rake surface of the fixed knife. The design prob-

lem here consists in appropriate shape of the working space of the machine (grinder)

to achieve required form of the ground product with minimum energy consumption

and maximum grinding quality. Grinding process is characterised by the parameter

of the unit energy consumption as the measure of energy needed to grind 1 kg of

plastic and it is associated with the process efficiency issue.

To identify and assess properties of grinding products based on selected mul-

tiedge grinding technologies in recycling, the following design solutions (from the

allowable set) were assumed: which maximize (efficiency, output, degree of fineness)

or minimize (power demand, unit energy consumption, energy dissipation, torque,

angular, linear and rotational speed) values of selected operational characteristics

[12, 17]. Like for other complex technological processes, the course of grinding

depends on many factors that can be classified into system and design related factors

(associated with grinding assembly and its equipment) and process related factors.

The first group of factors includes: applied grinding system (of periodical, continu-

ous or periodically-cyclic type), number of grinding machines and their grouping, the

system of connections between grinders and plasticizing equipment as well as char-

acteristics of applied equipment (sort, type, peripheral speed, grinding components

and their design properties etc.) [2, 3]. Integrated system allows to determine per-

missible range of variables (design properties) of the grinder in laboratory circum-

stances thanks to used computer aided experiment, design and operation of grinders

[1, 11, 14]. To allow objective assessment of the efficiency, authors used the mea-

suring system that features recording of momentary values of torque and momen-

tary values of rotational speed of the drive shaft. The test station was designed to

allow replacement of the working assembly (knife-, disk- or beater system) as well

as change of orientation (from horizontal to vertical). The solution presented here

Fig. 1 The overview of

design solutions used in

multiedge grinders—of drum

type (a) and disk type (b)
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Fig. 2 The layout of the

laboratory grinder disks

uses one of the variants with three disks installed in the grinder chamber. Disk no. 2

is mounted on the rotating shaft whereas disks 1 and 3 are fixed (Fig. 2).

Based on geometric analysis performed using CAD applications, disks with the

following hole geometry and layout were proposed.

3 The Research Methodology

The following assumptions were made in the research methodology used for multi-

edge grinders:

1. The multi-edge assembly is a set of disks with holes made over coaxial perime-

ters. The disks are made of steel plates and are brought into rotation by the system

of bushes and couplings permanently fixed with them.

2. The disks move relative to each other with constant angular speed (gradient) and

angular speed of each disk is different but constant.

3. According to available literature and own research of the authors, it was noted that

grinding using the multi-edge grinder provides potential possibility to improve

operational characteristics of the process compared to other disintegration meth-

ods thanks to introduction of design modification of the working assembly. The

solutions concern the area of expertise and description of operational character-

istics of grinding process from an independent range of design properties (Ck):

∙ number of disks (lt),
∙ number of disk holes (lotw),

∙ number of hole rows in the first and in the remaining disks (lrz),
∙ the gap between adjacent disks (si−k),
∙ hole diameters and geometry (dotw),

∙ disk holes pitch diameters (Dro),

∙ angles of cutting edges (𝛽ij),
∙ grinding speed (vri).
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Fig. 3 Selected geometric versions of grinder disks

3.1 Implementation of CutMAG Algorithm

The algorithm uses hybrid approach to optimisation, i.e. a combination of classic

genetic algorithms (GA) with morphologic optimisation (M) thus creating innova-

tive approach to optimisation of cutting disk design (Cut) for the multi-edge grinder.

The input data include population of individuals. Each individual is represented

by a set of cutting disks. The fitness function of an individual is calculated as the

fitness average of each disk supplemented by information describing the relation-

ship between both disks. The method for calculating function values was selected to

ensure its maximisation in the process of evolution (Fig. 3).

F(t) = FT1(t) + FT2(t) + FT1T2(t)
FTx = FPW (t) + FMIN(t) + FMINO(t) (1)

where,

F(t)—resultant fitness function,

FT1(t), FT2(t)—fitness functions for a particular disk,

FT1T2(t)—fitness functions for a set of disks,
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FPW (t)—the function of free area (holes),

FMIN(t)—function of the minimum thickness of the material,

FMINO(t)—the function of the minimum hole.

The modified roulette wheel method was used as a way of selection. This will

allow for further improvement of the algorithm efficiency in the future by using

more optimum methods. Crossing and mutation operators are described in the para-

graphs below. The algorithm is terminated when the population includes the indi-

vidual with the fitness function value not lower than the assumed one. If there is no

such an individual and the algorithm stops at a relative extreme, the algorithm will

be automatically terminated when 10,000 populations are exceeded. It is also worth

mentioning that the proposed approach meets J.H. Hollan’s postulate and represents

classic algorithm without memory, characterized by overwriting (replacement) of

the parent population with the population of children.

Base structures of the algorithm The cutting disk design optimisation algorithm

is a genetic algorithm. Compared to a classic genetic algorithm, this algorithm differs

in the block of “Morphologic optimisation”. Morphological transformations men-

tioned there are slightly similar to filters. However, an image element is not always

modified, but only if a specified condition is satisfied. Such a conditional modifica-

tion applicable only to those image points the surrounding of which complies with

the structural element makes it possible to plan transformations very precisely.

Classic morphological transformations include dilatation, erosion and their com-

bination, i.e. opening and closing. Those transformations turned out to be very useful

in solving the cutting disk problem, as some disks received numerous small holes as

a result of crossing and mutation operations. Although such holes can be machined

using modern laser machine tools, but usefulness of that seems to be doubtful.

The distribution of results obtained from the selection of individuals should corre-

spond to actual distribution occurring in the reality. So overmuch determinism is not

desirable here. Although the selection process is random, it is conducted so that indi-

viduals with the highest value of the fitness function were most likely to be selected

for reproduction. This method has already been mentioned in the introduction to

this paragraph, but as it constitutes the base for modification used in the CutMAG

algorithm, it seems to be advisable to provide more details. Consecutive phases of

that selection method are as follows: calculating the fitness function eval(vi) for each

chromosome vi, where i ∈ [1,max_pop] calculating total fitness of the population

F =
max_pop∑

i=1
eval(vi), (2)

calculating the probability of selection pi for each chromosome vi, where i ∈
[1,max_pop] calculating total fitness of the population

∀i∈[1,max_pop], pi =
eval(vi)

F
(3)



The CutMAG as a New Hybrid Method . . . 333

calculating the cumulative distribution function qi for each chromosome vi, where

i ∈ [1,max_pop]

qi =
i∑

j=1
pi (4)

generating a random real number r from the range [0, 1] if r < q1, then the chro-

mosome vi should be selected; otherwise select the chromosome vi, where i ∈
[2,max_pop], for which qi−1 < r ≤ qi. The figure below shows the visualisation of

the roulette wheel method. As it may be seen, the name of the method seems to

stem from the scheme described in the literature. Individuals are searched for in the

roulette wheel calibrated proportionally to the fitness factors achieved by individual

chromosomes.

Below we presented modified form of the classic roulette wheel method. Calculat-

ing the fitness function strength(vi) (maximal values of strength were disks or drums

will not be damaged) for each individual vi, where i ∈ [1,max_pop], calculating the

sum of all fitness function values

F =
max_pop∑

i=1
strength(vi), (5)

improvement of the pseudocode generator properties by rescaling F= F*100, sorting

individuals in the ascending order with regard to fitness function

∃Z(𝛹 )

⎧
⎪
⎨
⎪⎩

Z(𝛹 ) = 𝛷,where (𝛹 = (vi, .., vk, .., vj))∧[
(𝛷 = 𝛹 )∧

(strength(v1) ≤ ⋅⋅ ≤ strength(vi))

]
⎫
⎪
⎬
⎪⎭

(6)

random selection of an integral number from the range [0, F]

∃r∈C[(0 ≤ r) ∧ (r ≤ F)] (7)

selection of the first individual that fulfils the relationship below

∃i∈[1,max_pop]

max_pop∑

i=1
[(S = S + strength(vi)),

((r ≤ S ∗ 100) ⇒ (i = max_pop))] (8)

Selection of chromosomes designed for reproduction is done according to mod-

ified method of the roulette wheel. It is also worth mentioning that the situation

resembles the X-axis with a scale. Starting from zero in the direction of the sum, the

system checks whether the previously randomly selected number is located within

the range (Fig. 4). If it exceeds the range, the searching is continued. Otherwise it
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Fig. 4 Visualisation of the

modified roulette wheel

method

Table 1 Sample data set for selection (for the roulette wheel)

a b c d e f

Quantity 18 45 9 27 54 27

[%] 10 25 5 15 30 15

indicates that an individual for procreation has been selected. Visualisation of the

roulette wheel method presented in the previous paragraph was based on the data

set included in the table below. To give better picture of it, the visualisation of the

modified roulette wheel method was based on the same data. This visualisation is

shown in the last figure of the paragraph (Table 1).

Crossing and mutation operators The core of the method consists in application

of crossing and mutation adequate to the problem. Figure 5a shows result of crossing

of two disks. The layout of the disks is presented and described in section one. Disks

are crossed at corresponding positions. Random selection of the disk out of the pair

has not been implemented and its impact on the convergence of the algorithm has

not been analysed, but this can be the subject of future research. The disk presented

in the next figure is generated as a result of the crossing. In order to optimise the

geometry of cutting holes, one can use implemented morphologic operations. The

Fig. 5 Consecutive stages

of the grinder disk

modification
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figure below shows four stages of processing for the same disk. Point Fig. 5a shows a

“raw” result of the crossing. It includes small holes, which, although technologically

feasible, do not make any difference for the structure. Point Fig. 5b presents the disk

after morphological optimisation (i.e. after closing operation). The smallest holes

disappeared and the disk geometry seems to be proper. Whereas figure Fig. 5c shows

places (holes) to be eliminated as a result of mutation applied to the disk. The effect

of that operation can be seen in figure Fig. 5d. Morphology is a technique of image

processing based on shapes. The value of each pixel in the output image is based on

a comparison of the corresponding pixel in the input image with its neighbors. By

choosing the size and shape of the neighborhood, you can construct a morphological

operation that is sensitive to specific shapes in the input image. Morphologic opera-

tions are especially suited to the processing of binary images and greyscale images.

Dilation and erosion are two fundamental morphological operations. Dilation adds

pixels to the boundaries of objects in an image, while erosion removes pixels on

object boundaries.

The image D = I ⊕ S is the dilation of image I by structuring element S .

D(x) =
{

1 in S hits I at x
0 otherwise (9)

D = {x ∶ x − s, y ∈ I and s ∈ S} (10)

Erosion and dilation are dual operations:

(I ⊖ S)C = IC ⊕ S (11)

Commutativity and associativity

I ⊕ S = S⊕ I (IC ⊕ S)⊕ T = I ⊕ (S⊕ T) (12)

I ⊖ S ≠ S⊖ I (IC ⊖ S)⊖ T = I ⊖ (S⊕ T) (13)

Combining Dilation and Erosion Morphological Opening is defined as an erosion,

followed by a dilation. The opening of I by S is

I ◦ S = (I ⊖ S)⊕ S (14)

Morpholohical Closing is defined as a dilation, followed by on erosion.

I ⋅ S = (I ⊕ S)⊖ S (15)
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4 Conclusion

Despite promising results of genetic algorithms operation, one can consider improve-

ment of the method efficiency. The improvement efforts can be made in two direc-

tions, the first of them shall remain in GA domain and will require using selection

methods characterised by higher determinism. The second one them seems to be

more interesting. Here the problem is solved by genetic algorithms and it is interest-

ing how other AI optimising methods will cope with it. Special attention should be

drawn to potential application of ACO (Ant Colony Optimization) as well as particle

swarm optimisation. The following tasks can be carried out as part of future studies:

∙ description of the functional model of the mechanical grinder system,

∙ development of the optimising methodology for the structure of multi-edge

grinders using ant colony optimisation and the variant of particle swarm optimi-

sation,

∙ implementation the appropriate software designed to perform optimising calcula-

tions,

∙ integration of the developed software with the commercial CAD/CAM system,

∙ assessment of energy consumption per grinding unit,

∙ assessment of operating conditions for laboratory and industrial grinding,

∙ grinding product analysis.
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A Proposal of a Fuzzy System
for Hypertension Diagnosis

Juan Carlos Guzmán, Patricia Melin and German Prado-Arechiga

Abstract One of the most dangerous diseases for humans is the Arterial Hyper-
tension, which this kind of disease that often leads to fatal outcomes, such as heart
attack, stroke and renal failure. The hypertension seriously threats the health of the
people worldwide. One of the dangerous aspects of the hypertension is that you
may not know that you have it. In fact, nearly one-third of people who have high
blood pressure don’t know it. The only way to know if the blood pressure is high is
through the regular checkups. The evaluation of a patient with Hypertension should
(1) confirm the diagnosis of hypertension, (2) detect causes of secondary hyper-
tension y (3) assess cardio vascular risk and organ damage. Therefore, is very
important a correct measurement of the blood pressure (BP). Traditionally, office
BP measurement has been performed using a sphygmomanometer and stethoscope.
Recently, automated office and home BP measurements has been proposed as an
alternative to traditional measurement. It has several advantages over manual BP,
especially in routine clinical practice. Therefore, we have developed a Fuzzy
System for the diagnosis of the Hypertension. Firstly, the input parameters include
Systolic Blood Pressure and Diastolic Blood Pressure. Secondly, we have as an
output parameter: Blood Pressure Levels (BPL). The input linguistic value includes
Low, Low Normal, Normal, High Normal, High, Very High, Too High and Isolated
Systolic Hypertension. Finally, we have 14 fuzzy rules to determine the diagnosis
output.
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1 Introduction

Nowadays different techniques of artificial intelligence, such as fuzzy systems are
largely used in medical areas. As we know, the control of the hypertension is
considered when the systolic blood pressure >140 mmHg and the diastolic blood
pressure >90 mmHg. Thus, the use of an expert system that provides information to
the user about the factors and dangers of high blood pressure is very important.

Fuzzy logic is used to model nonlinear systems, which are difficult to model
mathematically. It is a logic system that is based on fuzzy set theory and continuous
variables. Conclusions that are based on vague, imprecise, missing input information
are simply provided by fuzzy logic (FL). Fuzzy logic uses different concepts, i.e.
fuzzification, defuzzification, membership function, linguistic variables, domain,
rules etc. In Boolean algebra or Boolean logic crisp sets are used, which have only
two values 0 and 1, but in fuzzy logic, sets have an infinite number of values between
0 and 1. In Boolean logic an element is completely inclusive or exclusive mem-
bership is used, but in a FL completely inclusive, exclusive or between these two
memberships is used. Also the fuzzy system is a system in which fuzzy rules are used
with membership functions (MF) to find the conclusion or result. Fuzzy logic has
been applied to many areas or fields of application, for example fuzzy logic has
played an important role in the field of medicine [5, 6 and 8]. They are used in
control, automobiles, household appliances and decision making systems.

Hypertension or high blood pressure, sometimes called arterial hypertension, is a
chronic medical condition in which the blood pressure in the arteries is elevated
[14]. The optimal level for blood pressure is below 120/80, where 120 represent the
systolic measurement (peak pressure in the arteries) and 80 represents the diastolic
measurement (minimum pressure in the arteries). Systolic BP between 120–129
and/or Diastolic BP between 80–84 is called Normal BP. And Systolic BP between
130–139 and/or Diastolic BP 85–89 is called High Normal. And a blood pressure of
140/90 or above is considered hypertension in three different grades and other like
the Isolated systolic hypertension that is Systolic BP over 140 and Diastolic BP
under 90 mm hg ESH/ESC guidelines [10].

Hypertension may be classified as essential or secondary. Essential hypertension
is the term for high blood pressure with an unknown cause [15]. It accounts for
about 95 % of cases. Secondary hypertension is the term for high blood pressure
with a known direct cause, such as kidney disease, tumors or others.

The paper is organized as follows: in Sect. 2 a methodology of hypertension is
presented, in Sect. 3 simulation and results of the prediction of the data that will be
the input to the fuzzy system are presented, in Sect. 4 the design and development
of the fuzzy logic system is described, and in Sect. 5 the conclusion obtained after
tests the fuzzy system of diagnosis of hypertension.
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2 Methodology

2.1 Type of Blood Pressure Diseases

Hypertension is the most common disease and it markedly increases both morbidity
and mortality from cardiovascular and many other diseases [12]. Different types of
hypertension are observed when the disease is sub-categorized. These types are
shown in Table 1.

In Table 1 the blood pressure (BP) category is defined by the highest level of BP,
whether systolic or diastolic. And should be graded 1, 2 or 3 according to the
systolic or diastolic BP value. Isolated systolic hypertension it is according to the
systolic BP value in the ranges indicated.

2.2 Risk Factors

Some of the primary risk factors for essential hypertension include the
following [1]:

• Obesity
• Lack of exercise
• Smoking
• Consumption of salt
• Consumption of alcohol
• Stress level
• Age
• Sex
• Genetic factors

Table 1 Definitions and
classification of the blood
pressure levels (mmHg)a

Category Systolic Diastolic

Hypotension <90 and/or <60
Optimal <120 and <80
Normal 120–129 and/or 80–84
High normal 130–139 and/or 85–89
Grade 1 hypertension 140–159 and/or 90–99
Grade 2 hypertension 160–179 and/or 100–109
Grade 3 hypertension ≥180 and/or ≥110
Isolated systolic
hypertension

≥140 and <90
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2.3 Fuzzy Logic and Hypertension

Nowadays we cannot be comfortable with the traditional medical analysis because
the complexity of medical practices makes traditional quantitative approaches of
analysis inappropriate [13]. Every trust worthy expert knows that his/her medical
knowledge and resulting diagnosis are pervaded by uncertainty with imprecise
formulations. Medical processes can be so complex and unpredictable that physi-
cians sometimes must make decisions based on their experience or intuition or
sometimes they might requires a specialization like Cardiology, Internal Medicine,
etc. Computers are capable of making calculations at high and constant speed and
of recalling large amounts of data and can, therefore, be used to manage decision
networks of high complexity [11]. Fuzzy logic developed by Zadeh [16] makes it
possible to define these inexact medical entities as fuzzy sets. Fuzzy logic together
with the appropriate rules of inference provides a power framework for managing
uncertainties pervaded in medical diagnosis [3, 4, 7, 9]. Fuzzy logic technology is
adopted in this paper for the diagnosis of hypertension. This is because, fuzzy logic
can adequately address the issue of uncertainty and lexical imprecision of knowl-
edge [2], but fuzzy systems still requires human expert to discover rules about data
relationship.

By applying fuzzy logic, a fuzzy rule base system for the diagnostic of hyper-
tension was developed with the help of the domain expert.

3 Simulation and Results

The following graphic interface in Fig. 1 shows the information to be simulated and
used for prediction of blood pressure following the result is selected.

The following graphic interface in Fig. 2 simulates the monitoring of blood
pressure of a patient, which is based on the information given. A prediction of its
next blood pressure is performed, and the result of the prediction is systolic and
diastolic and this information is the input to the fuzzy system.

4 Design and Development of the Fuzzy Logic System

A fuzzy logic system is a collection of membership functions and fuzzy rules that
are used to determine the diagnosis. This design has been divided into several steps.
The steps are fuzzification, rule evaluation and finally defuzzification. To design the
system, the FIS tool in MATLAB R2013a is used.
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In this study, we propose a fuzzy system for the diagnosis of the hypertension.
The fuzzy system has 2 inputs including the Systolic and Diastolic, and 1 output
BP_level, in the inputs we have eight membership functions, such as Low, low
normal, normal, high normal, high, very high, too high and isolated systolic
Hypertension(ISH) and in the output there are eight member functions such as
Hypotension, Optimal, Normal, High normal, Grade 1, Grade 2, Grade 3 and
Isolated Systolic Hypertension (ISH) and Mamdani inference engine and centroid
defuzzification.

The analysis focused on how to design a fuzzy logic system for diagnosis
hypertension. This is performed by using a range of systolic and diastolic blood
pressure. First, the linguistic values and corresponding membership functions have
been determined in the next figures: Fig. 3 shows the fuzzy system of diagnosis of
hypertension, Fig. 4 shows linguistic variable and membership function of “Sys-
tolic”, Fig. 5 shows linguistic variable and membership function of the input
“Diastolic”, Fig. 6 shows the linguistic variable and membership function of the
output “BP_level”.

Fig. 1 Graphic interface and select file window
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Now we will show in the following more details of the fuzzy system: Fig. 7
shows the rules of our fuzzy system of diagnosis of hypertension, Fig. 8 shows the
result of rules of the fuzzy system of diagnosis of hypertension and finally Fig. 9
shows the surface view of the fuzzy system of diagnosis of hypertension.

Fig. 2 Simulation and results of the graphic interface

Fig. 3 Fuzzy system for diagnosis of hypertension
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Fig. 4 Linguistic variable and membership functions of “Systolic”

Fig. 5 Linguistic variable and membership functions of the input “Diastolic”

Fig. 6 Linguistic variable and membership functions of the output “BP_level”
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Fig. 7 Fuzzy rules of the fuzzy system for diagnosis of hypertension

Fig. 8 The inference with the rules of the fuzzy system for diagnosis of hypertension
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5 Conclusions

This type of fuzzy systems actually implements the human intelligence and rea-
soning. Using a set of decision rules, provide different suggestions for diagnosing
diseases, in this case hypertension. This is a very efficient, less time consuming and
more accurate method to diagnose the risk and the grade of hypertension. Finally
we can see that is a very effective method for an early and accurate diagnostic of
hypertension, which can help a physician to get a better medical treatment when
giving a diagnosis to the patient.
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Using Intercriteria Analysis
for Assessment of the Pollution Indexes
of the Struma River

Tatiana Ilkova and Mitko Petrov

Abstract In this paper we are presenting the recently proposed approach Inter-
criteria Analysis (ICrA) for assessment of the pollution index of the Struma River in
Bulgaria. The approach is based on the apparatus of the index matrices and the
intuitionistic fuzzy sets. At the first we have investigated all indexes at the all
measurement point with ICrA and we have searched the dependences between
points. Results show the measurement points are dependent criteria and we have
ignored some over others. At the second we have applied the ICrA to establish the
pollution relations and the model structure based on different criteria involved in the
Struma River. The investigations show that there are three positive consonances and
dissonances between criteria. Using of a Modification of the Time Series Analysis
(MTSA) method we have developed an adequate mathematical model of the pol-
lution dynamic as function of time.

Keywords Intercriteria analysis ⋅ Index matrices ⋅ Intuitionistic fuzzy sets ⋅
Pollution index ⋅ Modelling ⋅ Modification times series analysis ⋅ Struma river

1 Introduction

The transboundary Struma River is located in the western part of Bulgaria and
Greece. Its spring is near to the peak Cherni vrah in the Vitosha mountain. The river
flows into Strimonikos bay of the Aegean Sea with the. The Struma River catch-
ment area is the second largest catchment area in Bulgaria. It is shown in Fig. 1.
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In this paper we will investigate the river pollution dynamic. We have modelled
the organic and biogenic water pollution using the following indices—Biological
oxygen demand (BOD5), Permanganate oxidation (KMn3O4-oxidation) (these are
the indices for organic pollution), and the indices for biogenic pollution—Ammonia
nitrogen (N-NH4), Nitrate nitrogen (N-NO3), Nitrite nitrogen (NN), Phosphates–-
general (PO4), Orthophosphates (OPh), Dissolved substances (DS) and Unsolved
substances (US).

In order to model the pollution through these and other indices of rivers in
Bulgaria, we have used a modification of the Time Series Analysis (MTSA) method
and a Modification of the Regression Analysis (MRA) method. We have obtained a
series of adequate models [1–3].

Fig. 1 The Struma River catchment area
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The assessment of the river pollution indexes is based in a multicriteria analysis
method called Intercriteria Analysis (ICrA) [4]. The ICrA is based on the apparatus
of the index matrices (IMs) and the intuitionistic fuzzy sets (IFs). The approach
employs the concept of IMs, making particular use of some of the operations
introduced over them, and the concept of the intuitionistic fuzzy sets fuzziness,
giving us the tools, to construct the IMs of intuitionistic fuzzy pairs (IFPs), defining
the presence or absence of dependency/correlation between any pair of criteria
within the set. The role of both concepts for the ICrA approach has been presented
in details in [5–9].

Atanassova and co-authors [10, 11] use ICrA for an analysis of EU member
states competitiveness. They investigated [12, 13] the possibility of defining intu-
itionistic fuzzy threshold values which enable the definition of the positive con-
sonance, negative consonance and dissonance among the criteria. Ilkova et al. [13]
used ICrA for modelling the Mesta River pollution.

In this paper we have used the ICrA for assessment of the pollution indexes of
the Struma River.

2 The Intercriteria Analysis Method

2.1 Short Remarks on Intuitionistic Fuzzy Pairs

The IFPs [9] is an object in the form of an ordered pair ⟨a+ b⟩≤ 1, where
a, b∈ ½0, 1� and a+ b≤ 1. It is used as an evaluation of an object or a process and its
components (a and b) are interpreted respectively as degrees of membership and
non-membership to a given set, degrees of validity and non validity, degrees of
correctness and non-correctness, etc. Let us have two IFPs x= ⟨a, b⟩ and y= ⟨c, d⟩.
Atanassov et al. defined the relations [6]:

x< y iff a< c and b< d

x≤ y iff a≤ c and b≥ d

x= y iff a= c and b= d

x≥ y iff a≥ c and b≤ d

x> y iff a> c and b< d

2.2 Short Remarks on Index Matrix (IMs)

Atanassov [5–7] has presented the concept of IMs and has given the basic defini-
tions and properties. Let I be a fixed set of indices and ℜ be the set of all numbers.
By IMs with index sets K and L ðK, L⊂ IÞ, we mean the following object:
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where K = fk1, k2, . . . , kmg, L= fl1, l2, . . . , lng and for 1≤ i≤m, and
1≤ j≤ n: aki , lj ∈ℜ.

On the basis of the above definition, Atanassov [4] has introduced the new object
—the Intuitionistic Fuzzy Index Matrix (IFIM) in the form:
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≡〉〈 }],{,[
jiji lklkLK νμ

1k 〉〈
1111 ,, , lklk νμ 〉〈

2121 ,, , lklk νμ 〉〈
nn lklk ,, 11

,νμ

mk 〉〈
11 ,, , lklk mm

νμ 〉〈
22 ,, , lklk mm

νμ 〉〈
nmnm lklk ,, ,νμ

where 1≤ i≤m, 1≤ j≤ n, 0≤ μki , lj , νki, lj , μki , lj + νki , lj ≤ 1, i.e. ⟨μki, lj , νki , lj⟩ is an
IFPs.

2.3 The Proposed Intercriteria Decision Making Method

Let us have an IM:

O1 Ok Ol On

C1 11 ,OCa kOCa ,1 lOCa ,1 nOCa ,1

Ci 1,OCi
a

ki OCa , li OCa , ni OCa ,

A=

Cj 1,OC j
a

kj OCa ,
lk OCa , nk OCa ,

Cm 1,OCm
a

km OCa , lm OCa , nm OCa ,

where for every p, qð1≤ p≤m, 1≤ q≤ nÞ:
• Cp is a criterion, taking part in the evaluation,
• Oq is an object, being evaluated.
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• aCp,Oq is a real number or another object, that is comparable to relation R with
other a-object, so that for each i, j, k:RðaCk ,Oi , aCkOjÞ is defined.
Let R ̄ be the dual relation of R in the sense that if R is satisfied, then R ̄ is not

satisfied and vice versa. For example, if “R” is the relation “<”, then R̄ is the
relation “>”, and vice versa.

Let Sμk, l be the number of cases in which RðaCk ,Oi , aCkOjÞ and RðaCl,Oi , aClOjÞ are
simultaneously satisfied. Let Sνk, l be the number of cases is which RðaCk ,Oi , aCkOjÞ
and R̄ðaCl ,Oi , aClOjÞ are simultaneously satisfied.

Obviously,

Sμk, l + Sνk, l ≤
nðn− 1Þ

2

Now, for every k, l such that 1≤ k< l≤m, and for n≥ 2, it can be defined:

μCk ,Cl
=

2Sμk, l
nðn− 1Þ , νCk ,Cl =

2Sνk, l
nðn− 1Þ

Therefore, ⟨μCk ,Cl
, νCk ,Cl⟩ is an IFPs. The IMs can construct:

C1 Cm

C1 〉〈
1111 ,, , CCCC νμ 〉〈

mm CCCC ,, 11
,νμ

Cm 〉〈
11 ,, , CCCC mm

νμ 〉〈
mmmm CCCC ,, ,νμ

that determined the degrees of correspondence between criteria C1, …, Cm.
Let α, β∈ ½0, 1� be given, so that α+ β≤ 1. We say that criteria Ck and Cl are in:

• ðα, βÞ—positive consonance, if ðμCk ,Cl
> αÞ and ðνCk ,Cl < βÞ;

• ðα, βÞ—negative consonance, if ðμCk ,Cl
< βÞ and ðνCk ,Cl > αÞ;

• ðα, βÞ—dissonance, otherwise.

The method is used for assessment of pollution index of the Struma River.

3 Results and Discussion

The investigations for the water quality were conducted along the entire river using
data from all measuring points. The information used was provided by the West
Aegean Water Basin Directorate, Ministry of Environmental and Water of Bulgaria.
We have investigated the following measurement point in the Struma River
catchment area—Point 50 (P50) it is on Waste water purification station in the city
of Batanovtsi, Point 80 (P80)—at the village of Nevestino, Point 90 (P90)—at the
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Dzherman River, Point 105 (P105)—before the city of Blagoevgrad, Point 120
(P120)—before the village of Krupnik, Point 123 (P123)—at the village of Leb-
nitsa, Point 140 (P140)—after the city of Petrich and Point 150 (P150)—it is on the
Bulgarian-Greek border.

The program has been developed that realizes ICrA and calculates membership
function (µ), and non membership function (ν). We have investigated all indexes at
the all measurement point with ICrA. We have searched if there were measurement
errors also if the pollution in the different points have had materially divergences, if
there were the dependences between points. The calculated IFPs for the investigated
measurement Points are shown in Table 1.

Figure 2 shows the relations between μ and ν for the different measurement
points.

Let us see the Table 1 and Fig. 2. The membership function (µ) is changed in the
interval μ∈ ½0.89, 0.99�, the non-membership function (ν) is changed in the interval
ν∈ ½0.01, 0.09�, and we have a bit of uncertainty (π) which is changed in the interval
π ∈ ½0.00, 0.03�. The values of the membership function µ are high comparatively,
the values of the non membership function—low high.

Since the experimental data of the river pollution are random values for deter-
mination of the positive consonance, negative consonance and dissonance the
following minimal values are assumed ðα, βÞ= ð0.85, 0.15Þ.

The obtained results (Table 1) show we have positive consonance for all
investigated pairs of pollution indexes. That shows the measurement points are
dependent criteria and we can ignore some over others. Thus we have investigated
the P150.

We have modelled the following indexes for the water quality in the P150: BOD
(C1), KMn3O4 (C2), N-NH4 (C3), NN (C4), N-NO3 (C5), PO4 (C6), OPh (C7), DS
(C8), and US (C9). With the help of the program that realizes ICrA we have
obtained the calculates membership function (µ), and non membership function (ν)
for all pollution criteria. The calculated IFPs are shown in Table 2.

Figure 3 shows the relations between μ and ν for the different criteria (pollution
indexes).

Let us see the Table 2 and Fig. 3. The membership function (µ) is changed in the
interval μ∈ ½0.39, 0.90�, the non-membership function (ν) is changed in the interval
ν∈ ½0.04, 0.59�, and we have a bit of uncertainty (π) which is changed in the interval
π ∈ ½0.00, 0.07�. The obtained results (Table 2) show we have 3 positive conso-
nances and dissonances the other investigated pairs of pollution indexes. We have
positive consonances of 〈C3–C4〉, 〈C4–C5〉 and 〈C6–C7〉. That shows we can ignore
NN over N-NH4 and N-NO3, also OPh over PO4. The rest the pollution indexes
have dissonance—they are independent criteria and we cannot ignore some over
others.

At the end in this paper we have modelled the C1, C2, C3, C5, and C6 using a
MTSA method. We have not modelled DS and US because in this case [2, 3] they
are not significant for the water river pollution. The authors have developed this
modification [1]. The main difference between the TSA and the MTSA is that
intend of using polynomial third degree for the trend function a polynomial of
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higher degree is used. Furthermore, instead of using Fourier components for the
periodical component, periodical functions are used which have been defined in the
process of modelling.

3.1 Short Remark of MTSA

For modelling water pollution, a Time Series Analysis (TSA) method is a deter-
mined component—xT describing the regularity of the development of the exam-
ined phenomenon, periodical component—xP and stochastic variable—εt [15, 16]:

x= xT + xP + εt ð1Þ

where x is the vector of the pollution indexes, x= x½C1, C2, C3, C5, C6�T.
The determined component—xT is a polynomial of 1st to 3rd degrees and the

periodical component—xP is described by the order of Fourier.
In contrast to the conventional method of TSA the determined component is a

polynomial with a high degree [1–3]:

xT = ∑
r

j=0
ajt j ð2Þ

where aj—coefficients of polynomial, j = 0, …, r—a degree of the polynomial,
r ≤ 5.

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 2 Relations between μ
and ν for the measurement
Points
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The main trend shows the main tendencies in the alteration of the studied
indices, and it is a straight line:

xMT =A0 +A1t ð3Þ

In contrast to the classical method for analyzing temporary series, where the
Fourier series are used, the present research proposes the uses of the periodical
functions of the type:

xP = ∑
p

k=0
bk sin 2πt c̸k + dkð Þ ð4Þ

where: p—number of the periodical functions; bk, ck and dk—coefficients in the
periodical functions, k = 0,…, p.

The polynomial degree (2), and the number of the periodical functions p in (4)
are determined on basis of the statistical criteria—experimental Fisher coefficient
(FE) and experimental correlation coefficient (R2

E).
Then the model (1) for analysis and prognosis has the following form (εt = 0):

x= ∑
r

j=0
ajt j + ∑

p

k=0
bk sin 2πt c̸k + dkð Þ ð5Þ

The established statistical model for water quality change can be used for
modelling the water ecosystem condition. The results obtained by using a statistical
water pollution model a together with the data of the National Monitoring Network
can be used for water strategy management.

We have developed a validation of the models by the experimental correlation
coefficient (R2

E). The experimental correlation coefficients for the models are from

Fig. 3 Relations between μ
and ν for the different criteria
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R2
E =0.88 to R2

E =0.95. The tabular correlation coefficient is R2
T =0.35 [17]. The

results have shown that all models are adequate.
The simulation with MTSA method (5) and experimental data are shown in

Figs. 4, 5, 6, 7 and 8.
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Fig. 4 Experimental and model data for BOD
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Fig. 5 Experimental and model data for KMn3O4-oxydation
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Fig. 6 Experimental and model data for N-NH4
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Fig. 7 Experimental and model data for N-NO3
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4 Conclusion

In this paper we have used a method named ICrA for assessment of index pollution
at the different points of the Struma River in the Bulgarian area. The method has
shown that there are positive consonances between different points, that means the
measurement points are dependent criteria. The method also has presented are three
positive consonances and dissonances between criteria. For these indexes that have
dissonances and we could not develop a pollution model in which the criteria
depend on each other. The ICrA proves that there are no correlations between
criteria and each of these criteria are a time functions. The investigations are
completed with in a part of stage of ICrA. In the following steps we will develop a
commparise analysis with popular methods for multicriteria analysis.

We have modelled pollution by a MTSA method. The obtained models are
adequate. Using of MTSA method for modeling of river ecosystems is completely
enough. The integration of the determinate and statistical methods is necessary for
the retrospective analysis and prognosis of water quality and the ecological pro-
cesses in river flows.
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Application of the InterCriteria Decision
Making Method to Universities Ranking

Maciej Krawczak, Veselina Bureva, Evdokia Sotirova
and Eulalia Szmidt

Abstract In this paper we present an application of the InterCriteria Decision
Making (ICDM) approach to real data extracted from the Polish University Ranking
System [13] in the years 2012–2014. The aim is to analyze the correlations between
the indicators used by the Ranking System.

Keywords Intuitionistic fuzzy intercriteria analysis method ⋅ Intuitionistic fuzzy
sets ⋅ Index matrix ⋅ University ratings ⋅ Multicriteria decision making

1 Introduction

In this paper we present the second application of the ICDM method for the ratings
of universities. The purpose of this development is to identify the most correlated
indicators in the Ranking System for the Polish universities. By applying the ICDM
approach over extracted data for ratings of the universities, we can find the indi-
cators that have the highest dependencies. In this way we can observe the behavior
of them in time (several years). Analogously we can receive the opposite indicators
or indicators that frequently are independent from each other. In the current
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investigation we analyze the data over the period 2012–2014. This application of
the ICDM method using Ratings of Polish University Ranking System can help to
determine the precision and confirm the current weights of the indicators [13].

We explore real data extracted from Universities Ranking System, i.e., from the
sites of a relevant rating system which provide free access to data. Using
InterCriteria Decision Making (ICDM) approach the behavior of the objects or
criteria can be monitoring and optimized. For illustration we use data sets from
overall ranking of the academic institutions (universities) of Perspektywy Univer-
sity Ranking in Poland [13].

2 Presentation of the ICDM Analysis

The ICDM method helps to discover the relationships and examine the correlations
between the indicators used in the Bulgarian university ratings. The ICDM method
is introduced by Atanassov et al. [1]. Several applications of the method have been
already published [5–9]. The method is based on the theory of the intuitionistic
fuzzy sets and the index matrices. The intuitionistic fuzzy sets are defined by
Atanassov [2, 4]. They are an extension of the concept of fuzzy sets defined by
Zadeh [11]. The theory of index matrices is introduced in [3].

The objects can be estimated on the base of several criteria. The number of the
criteria can be reduced by taking into account the correlations of each pair of criteria
presented in the form of intuitionistic fuzzy pairs of values [2]. The intuitionistic
fuzzy pairs of values are the intuitionistic fuzzy evaluations in the interval [0, 1].
The relations can be established between any two group of indicators Cw and Ct.

Let us have a number of Cq group of indicators, q = 1,…, n, and a number of Op

universities, p = 1, …, m. So we use the following sets: a set of group of indicators
Cq = {C1,…, Cn} and a set of universities Op = {O1,…, Om}.

We will evaluate 13 universities (objects) using 6 groups of criteria. We obtain
an index matrix M that contains two sets of indeces, one for rows and another for
columns. For for every p, q (1 ≤ p ≤ m, 1 ≤ q ≤ n), Op in an evaluated object, Cq is
an evaluation criterion, and aOp,Cq is the evaluation of the p-th object against the q-
th criterion, defined as a real number or another object that is comparable according
to relation R with all the rest elements of the index matrix M.

.

a...aaaO

........................

a...a...a...aO

........................

a...a...a...aO

........................

a...a...a...aO

C...C...C...C
M

nmlmkmm

njljkjj

nilikii

nlk

C,OC,OC,OC,Om

C,OC,OC,OC,Oj

C,OC,OC,OC,Oi

C,OC,OC,OC,O

nlk

1

1

1

111111

1=

366 M. Krawczak et al.



The next step is applying the InterCriteria Analysis for calculating evaluations.
From the requirement for comparability above, it follows that for each i, j, k,

l the relation R(aOi,Ck, aOj,Ck) holds. The relation R has dual relation R̄, which is true
in the case when relation R is false, and vice versa.

The pairwise comparisons between every two different criteria are made along all
evaluated objects. During the comparison, it is maintained one counter of the number
of times when the relation R holds, and another counter for the dual relation R ̄.

Let Sμk, l be the number of cases in which the relations R(aOi,Ck, aOj,Ck) and
R(aOi,Cl, aOj,Cl) are simultaneously satisfied. Let also Sνk, l be the number of
cases in which the relations R(aOi,Ck, aOj,Ck) and its dual R̄(aOi,Cl, aOj,Cl) are
simultaneously satisfied. As the total number of pairwise comparisons between
the objects is m m− 1ð Þ

2 , then the following inequality is held:

0≤ Sμk, l + Svk, l ≤
m m− 1ð Þ

2
.

For every k, l, such that 1 ≤ k ≤ l ≤ n, and for m ≥ 2 two numbers are defined:

μCk ,Cl
=2

Sμk, l
m m− 1ð Þ , νCk ,Cl =2

Svk, l
m m− 1ð Þ .

The pair constructed from these two numbers plays the role of the intuitionistic
fuzzy evaluation of the relations that can be established between any two criteria Ck

and Cl. In this way the index matrix M that relates evaluated objects with evaluating
criteria can be transformed to another index matrix M* that gives the relations
among the criteria:

The pair constructed from these two numbers plays the role of the intuitionistic
fuzzy evaluation of the relations that can be established between any two criteria Ck

and Cl. In this way the index matrix M that relates evaluated objects with evaluating
criteria can be transformed to another index matrix M* that gives the relations
among the criteria:
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The last step of the algorithm is to determine the degrees of correlation between
the indicators depending of the chosen threshold for μ and ν from the user. The
correlations between the criteria are called “positive consonance”, “negative con-
sonance” or “dissonance”.

The practical considerations have shown that it is more flexible to work with two
index matrices Mμ and Mν, rather than with the index matrix M* of IF pairs.
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The final step of the algorithm is to determine the degrees of correlation between
the criteria, depending on the user’s choice of µ and ν. We call these correlations
between the criteria as: ‘positive consonance’, ‘negative consonance’ or ‘disso-
nance’. Let α, β ∈ [0; 1] be the threshold values, against which we compare the
values of µCk,Cl and νCk,Cl. We call that criteria Ck and Cl are in:

• (α, β)-positive consonance, if µCk,Cl > α and νCk,Cl < β;
• (α, β)-negative consonance, if µCk,Cl < β and νCk,Cl > α;
• (α, β)-dissonance, otherwise.

Certainly, the larger α and/or the smaller β, the less number of criteria may be
simultaneously connected with the relation of (α, β)-positive consonance. For
practical purposes, the most information is carried when either the positive or the
negative consonance is as large as possible, while the cases of dissonance are less
informative and are skipped.

Here we use the scale that is shown in Fig. 1 [10].

3 Application of the ICDM to the Polish University
Ranking System

The Polish University Ranking System contains information on 83 accredited
universities in Poland, which offer education in a variety of majors [12, 13].

The ranking system contains information and data expressed by more than 33
indicators, which measure different aspects of university activities including pres-
tige, innovation, academic potential, academic effectiveness, teaching and learning
internationalisation. The final assessment is provided in the range from 0 to 100
[13].

The Perspektywy Ranking consists in fact of several rankings: the main and
most important ranking is the overall ranking of academic institutions (universities),
but it also includes: ranking of master level private institutions and ranking of state
vocational schools. Rankings of 39 disciplines (fields ranking) have also been
published.

Perspektywy University Ranking (Poland) is the first national university ranking
in the World to pass the rigorous audit and to receive the “IREG Approved”
awarded by the IREG Observatory on Academic Ranking and Excellence [13].
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Fig. 1 Scale for determination of the type of the correlations between the criteria
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In the current paper the ICDM method is applied over Polish ratings of uni-
versities in the years 2012–2014. In the further text the indicators are named by
numbers. The numbering of the indicators is following:

1 employer reputation
2 academic reputation (teaching)
3 international recognition
4 talented students application
5 patents and licenses
6 EU funding
7 infrastructure for innovation
8 parametric evaluation
9 right to confer PhD with habilitation degree

10 rights to confer PhD degrees
11 staff with highest qualifications
12 accreditations
13 faculty development
14 academic titles awarded
15 external funding for research and development
16 publications
17 citations
18 h-index
19 EU programmes
20 PhD students
21 students—teaching staff
22 e-holdings
23 printed library holdings
24 library facilities
25 support for students’ scientific interests
26 sports achievements
27 programs in foreign languages
28 students studying in foreign language
29 student exchange (outbound)
30 student exchange (inbound)
31 international students
32 foreign teaching staff
33 multicultural composition of students body

In Table 1 the number of pairs of criteria for years 2012, 2013 and 2014th for the
ratings of universities obtained by applying the ICDM method are shown.

In the case of the ICDM method we are interested in indicators that are in
positive consonance. The pairs of indicators in positive consonance and weak
positive consonance in 2012, 2013 and 2014 for the ratings of universities are
shown below.
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3.1 Pair of Criteria in Positive Consonance [0,85; 0,95)

• for 2012 year: 16–17, 16–18, 17–18;
• for 2013 year: -;
• for 2014 year: 18–19;

3.2 Pair of Criteria in Weak Positive Consonance [0,75;
0,85)

• for 2012 year: 1–2, 1–10, 2-10, 2–17, 2–18, 6–10, 6–17, 10–17, 10–18, 14–20,
27–28, 29–30;

• for 2013 year: 1–2, 2–14, 14–20, 16–18, 17–18, 27–28, 29–30;
• for 2014 year: 1–3, 2–3, 2–13, 3–12, 3–13, 3–15, 12–15, 17–18, 15–21, 17–22,

28–29, 32–33.

Via the comparison of the results over the period of research (2012–2014) the
following outcomes are obtained:

• According to the scale for determination of the type of the correlations from
Fig. 1 the indicators are previously in weak dissonance, dissonance or strong
dissonance. The is no strong dependences, i.e. the indicators are well chosen.

• The indicators “publications”, “citations” and “h-index” become more inde-
pendent. The correlation between indicator “publications” and “citations”
changes from positive consonance in 2012 to weak dissonance in 2013 and
2014. The correlation between indicator “publications” and “h-index” changes
from positive consonance in 2012, weak dissonance in 2013 to dissonance in
2014. The correlation between indicator “citations” and “h-index” changes from
positive consonance in 2012 to dissonance in 2013 and 2014.

Table 1 Number of pairs of
criteria

Type of correlations Number of pairs of
criteria for a year
2012 2013 2014

Positive consonance [0,85; 0,95) 3 0 1
Weak positive consonance [0,75; 0,85) 12 7 12
Weak dissonance [0,67; 0,75) 55 69 93
Dissonance [0,57; 0,67) 209 229 185
Strong dissonance [0,43; 0,57) 215 190 145
Dissonance [0,33; 0,43) 34 33 58
Weak dissonance [0,25; 0,33) 0 0 26
Weak negative consonance [0,15; 0,25) 0 0 27
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• For the pair of indicators “h-index” and “EU programmes” the correlations
increase, namely, from dissonance in 2012 and 2013 to positive consonance in
2014.

• For the pairs of indicators “employer reputation”—“academic reputation
(teaching)”, “EU funding” and “student exchange (outbound)”—“student
exchange (inbound)” the correlations decrease from weak positive consonance
to weak dissonance. The correlations between indicator “academic reputation
(teaching)” and indicators “rights to confer PhD degrees”, “citations” and
“h-index”, and between indicator ”rights to confer PhD degrees” and indicators
“employer reputation” and “citations” change from weak positive consonance to
dissonance. A similar trend, i.e., a change from weak positive consonance to
strong dissonance can be observed for the correlation in the pairs of criteria:
“EU funding”—“rights to confer PhD degrees”, “rights to confer PhD
degrees”—“h-index”, “academic titles awarded”—“PhD students” and “pro-
grams in foreign languages”—“students studying in foreign language”.

• For the pairs of indicators “international recognition”—“faculty development”,
“accreditations”—“external funding for research and development”, “external
funding for research and development”—“students—teaching staff”, “foreign
teaching staff—“multicultural composition of students body”, “employer repu-
tation—“international recognition”, “academic reputation (teaching)—“inter-
national recognition”, “international recognition—“accreditations”, “academic
reputation (teaching)—“faculty development”, “international recognition
—“external funding for research and development”, “students studying in for-
eign language—“student exchange (outbound)”, “citations—“e-holdings” the
correlations increase from strong dissonance or dissonance to weak positive
consonance.

Having the above observations in mind we can conclude that ICDM method
makes it possible to observe which indicator is strongly dependent with others and
whether the correlation appears periodically. In order to determine the behavior of
each indicator over time we should observe the results of the application of
InterCriteria Decision Making (ICDM) method for several years. If such a criterion
has a strong correlation, again, in the next step we can try to ignore it. Therefore
InterCriteria Decision Making (ICDM) method is helpful for determining the
behavior of the indicators. When comparing the results of applying InterCriteria
Decision Making (ICDM) approach over the data from Polish university rankings
over the years we can observe the possible differences or changes between them.

4 Conclusions

We used the ICDM method to find some hidden patterns in the data from Per-
spektywy University Ranking. Ratings of Polish Universities are compiled over
three years. We analyzed the data to identify the best correlations between the
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indicators, to discover dependent and independent indicators and the relationships
between them. The comparison can help to describe the behavior of the used
indicators and their assessment. In the next research the authors will analyze the
indicators individually—it will make possible to compare a single indicator with all
the rest ones.

The increase of the coefficient of consonance and the entry in the zone of strong
positive consonance means strong correlation between the respective pair of cri-
teria, which may justify the removal of one of the criteria in the pair on the basis
that its informational values is lesser. Removal of indicators leads to simplification
of the process of evaluation.
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The Algorithms of Automation
of the Process of Creating Acoustic Units
Databases in the Polish Speech Synthesis

Janusz Rafałko

Abstract This paper presents the new approach of creating the database of acoustic
units in concatenative TTS synthesis. Nowadays databases like this are created
manually, which is very time-consuming and takes at least several months of work.
Creation such base in automatic way shortens this time to hours. One of the next
problem in the concatenative synthesis is the problem of reproduction any text
using a voice and a way of speaking of particular man. Presented algorithms allow
to create the allophone units database of particular man after receiving a sample of
his voice and as a result synthesizer speaking with exactly this voice.

1 Introduction

The main goal in speech technology is creation a speech which is almost as real as a
voice of living person. In this point arises the task of full keeping the personal and
acoustic voice properties, phonetic articulation, accent properties and prosodic
individuality of speech. Within this task, this study was made and it shows algo-
rithms which allow to create a database of particular speakers voices (acoustic units
databases) in an automatic way.

One of the methods of speech synthesis based on the text (Text to Speech),
which allows to reproduce the human personal speech characteristics is a con-
catenation method, which uses small and natural acoustic units, from which the
speech is synthesised. These can be allophones, diphones or syllables. That type of
system synthesizes the speech by joining the acoustic units in accordance of
appropriate phonetic rules. The individual features of human voice are not included
in this rules, but only in natural acoustic units and individual, prosodic voice
characteristics, such as intonation. In order to synthesize the voice of particular
man, there must be acoustic units database created.
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2 Acoustic Units Database

Different approaches to the speech synthesis from the text are described in details in
[1, 2]. The basic feature of compilatory approach of speech synthesis is the use of
elementary pieces of natural speech [3]. In this way, the necessity of modelling the
complexed acoustic processes of synthesized speech is excluded. In the synthesizer,
the signal compiled from natural speech segments is a subject of further modifi-
cation which change the prosodic parameters of the signal.

In the [4] study are shown the basic assumptions of concatenative TTS system
for Polish language, based on allophones in the context of multilingual synthesis.
The natural elements from which the speech is synthesized may be allophones,
diphones, multiphones as well as syllables. The sequence of phonetic elements is
given to the signal processing block, which selects the appropriate sound realiza-
tions from the natural speech segments database and joins them into continuous
speech signal. The generated signal is ginen to the acoustic processing block. This
block performs the appropriate modifications of speech signal prosodic parameters
in accordance to the input prosodic markings. In compilatory method of speech
synthesis the type of basic speech units have very influence on the obtaining
individual speech characteristics. This paper refers to the databases of acoustic
units, which include several context groups of particular phoneme, which may be
identified with acoustic allophone, described in the study of Victor Jassem [5]. The
advantages of the choice of allophones as a basic units [6–9] base on the fact, that
first of all, speech units remain the effects of sounds interference, and secondly, the
number of basic units is relatively low holds in the range of 400–2000 in different
systems. The difficulty of this approach is a necessity of precise allophones marking
during the segmentation of natural speech signal. In most cases, determining the
exact limit is not a difficult task [8], because the beginning and the end of particular
allophone is clear. However, there are some cases, in which determining the exact
limit is difficult. This is due to the co-articulation and assimilation phonemes, i.e.
the influence of some phones one to another.

3 The Technology of Automatic Segmentation
and Creation the Acoustic Units Databases

If in the speech synthesis the compilation elements contain only the phonetical and
acoustical characteristics, the segmentation task is about to “cutting” the basic
segments from the speech stream and placing them into the database.

The general scheme of acoustic units databases creation technology is shown on
the Fig. 1. The main stages of this algorithms include:
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1. Selection and preparation of text and acoustic corpuses.
2. Manual segmentation of speech signal to the allophones.
3. The automation of creation of acoustic units databases of the particular speaker

voice.

There are about 1800 words in the prepared standard text corpus. The acoustic
corpus that is used in this system is created on the base of professional speaker
records. The standard allophones database also include about 1800 allophones.

To create the new allophone database of particular voice, we can use the same
standard text corpus and on its basis create new record. In this system, the automatic
segmentation of speech signal is based on the DTW algorithm, however, in contrast
to the classical DTW, it is not based on the signal in the time domain but on the
frequency domain. Standard (synthesized) and natural speech signal is divided into
frames, which may overlap and the Fourier transform (FFT) is being calculated in

Standard text 
corpus 

Recording words of the 
text corpus in the studio  

Acoustic 
corpus 

Allophones list

Standard allophones 
database

TTS synthesis

„Manual” segmentation of 
speech signal to the  
allophones 

Text corpus 

Recording the text 
corpus  

Natural speech 
signal

Synthesized, 
marked speech 
signal

Automatic segmentation and 
marking od speech signal 

Automatic creation of acoustic 
units database

Allophones database

Fig. 1 The scheme of acoustic units databases creation technology

The Algorithms of Automation of the Process … 375



each frame. The first step in the DTW method is calculating the local distances
matrix. This matrix are calculated for the spectral features vectors in every frame:

c n,mð Þ= S nð Þ,E mð Þk k= ∑
K

k=1
S n, kð Þ−E m, kð Þj j ð1Þ

where:

S(n)—the synthesized signal spectral features vector in the “n” frame
E(m)—the natural signal spectral features vector in the “m” frame
k—the length of spectral feature vector

The synthesized signal frame is correlated with natural signal frame and on the
base of signal spectrum in the frame, the distance between vectors is calculated. The
next step is calculation of global distances matrix and alignment path. It is shown
on the Fig. 2. This figure shows the speech signals, which uses frames with the
length of 256 samples, the Hamming window and overlapping of 200 samples. The
used metrics is a Manhattan metrics. The blue colour means the small distances
values between signal frames, and the red one means a long distance, that is signals
with different frequencies.

We can also see the natural speech signal allophones borders determined on the
basis of alignment path and limits of allophones from the synthesized signal. This is

Fig. 2 Global distances matrix
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the essence of units marking and cutting automation. We do not mould the signal to
the standard one, but using the alignment path we determine the allophones
boundaries.

4 Quality Control Algorithms

As a result of this system work, we get many of the same units. This is because the
corpus of the speech is surplus, it contains whole words, sentences and texts in
which the particular unit is presented many times. On the other hand, we need only
one piece of each element to our base. In order to create an acoustic database it is
necessary to analyze received units in details, and delete those phonetic units, in
which the acceptable error during reading or automatic segmentation was exceeded
and save only the best of them—operation called “rejection”. If there are more than
one identical allophones, choose the best of—operation called “selection”. And
finally we must perform the control of quality of each element that left and mark
deviations and perform the correction of segments parameters with noticed devia-
tions—“correction”.

The “rejection” operation consists of correlation of synthesized acoustic char-
acteristics and natural speech segments obtained from the segmentation process.
When the differences between them are higher than the threshold quantity, it means,
that such segment will not be able to provide the minimum level of necessary
quality of synthesized speech and should be rejected. This operation is performed
by testing the time and acoustically-phonetical parameters:

• Duration
• Cost of matching

The TT duration of tested unit, obtained in the segmentation process is compared
with the TW duration of the standard unit used in the speech synthesis. Since the
allophone units differs in length, we cannot take the absolute error as a measure, we
only can take the relative error in the respect of the standard allophone length,
according to the formula (2).

δt =
TT − TWj j

TW
> α ð2Þ

If the units duration relative error is greater than ɑ threshold quantity, the ele-
ment is rejected. It was determined during experiments, that if the error exceeds
80 % the allophone is not suitable for primary base. There is about 9 % of this kind
of allophones in the exemplary set.

The second parameter in this operation is the cost of both units, standard and
tested, matching in the DTW algorithm. This cost is the sum of local distances within
the alignment path determined for those units. If we mark on the alignment path the
number of points for particular element by P, then the cost of such matching will be:
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CP = ∑
P

p=1
c xp, yp
� � ð3Þ

This cost, similarly as a unit duration, may differ for particular units. In the tested
units sets, the cost contained within the range of 0.05 to approx 50. Just as before,
the relative coefficient ought to be done. The 4 formula shows this coefficient:

δC =
CP −CPsrj j

CPsr
> β ð4Þ

CP—the allophone unit matching cost
CPsr—the medium matching cost for all instances for particular unit

In this case, for some sets, also was experimentally determined that, the error
greater than 50 % disqualifies the unit for use in the primary base. This is about
3.5 % of total number of units. As a result of the “rejection” operation, all pieces for
which δt > α lub δC > β are excluded from further treatment. As the experiments
shown, the best results of “rejection” operation are obtained when α = 0.8 and
β = 0.5.

For other pieces that left after “rejection” operation, the “selection” operation is
used, as a result of we get the best representative of any unit. The most typical unit
due to the value of prosodic characteristics must be chosen: the F0 frequency of
basic tone, amplitude A and duration T. Since “selection” operation, the unit with
characteristics the most approximate to the medium values of this parameters are
selected. If after the “rejection” operation the number of pieces of particular unit
equals n, then the duration Ti, average amplitude value Ai

AVE and the average value
of basic tone Fi

ave is calculated. For the soundless units, the basic tone frequency
value equals zero. Then, the average values Tave, Aave an F0

ave for all sets of units of
one kind are calculated.

The selection coefficient, normalised in the scale [0…1] is set as:

Di =
1
3

Ti − TAVE
�� ��

max
n

j=1
Tj −TAVE
�� ��

+
Aave
i −AAVE

�� ��

max
n

j=1
Aave
j −AAVE

���
���
+

Fave
0i −FAVE

0

�� ��

max
n

j=1
Fave
0j −FAVE

0

���
���

0

B@

1

CA ð5Þ

As a result of “selection” operation, the allophone piece, which meets this
condition, is selected:

k= arg min
n

i=1
ðDiÞ ð6Þ

The “correction” operation is performed for those segments, which are obtained
in accordance to above mentioned parameters. The segments with inaccurate
defined limits are subject to correction by use of proper proceedings, involving
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removing the inaccurate periods of basic tone and inserting the missing terminal
periods of basic tone. The diagnosis of determining the limits of units is performed
by determining the level of time and acoustic signal characteristics similarities on
the first and the second period of element basic tone, as well as on the penultimate
and the last one. The “correction” is performed only in the case of voiced units.

To determine the level of similarity of terminal and pre-terminal period of
acoustic characteristics, the (formula 7a) is used. The distance between time
characteristics is calculated as a ratio of duration of these periods (formula 7b).

ðaÞ LA =1−
∑
N

i=1
sGi − sPi
�� ��

∑
N

i=1
sGi
�� ��+ sPi

�� ��� � ðbÞ LT =1−
min TG,TPð Þ
max TG, TPð Þ ð7Þ

Si
G
—value of the signal at the “i” segment of terminal period

Si
P
—value of the signal at the “i” segment of pre-terminal period

TG, TP
—duration of periods, both the terminal and the pre-terminal

The “correction” deletes the terminal period and doubles the pre-terminal one.
As a result, the number of basic tone periods doesn’t change. The second “cor-
rection” case is a complete rejection of terminal period. However, in the case of
proper marking of the unit limit, such period remains. The analysis of all this cases
for different databases had led to the selection of appropriate values of this coef-
ficients and determination, when the particular allophone should be revised and
how. If:

• LT < 0.2 and LA > 0.6—terminal period doesn’t change
• 0.2 < LT < 0.7 and LA > 0.4—terminal period replaced by the pre-terminal one
• LT > 0.7 or LA < 0.4—terminal period deleted

5 The Experiments

In the case of synthesized speech, the most important assessments include articu-
lation, transparency and effortlessness, the best methods to assess are subjective
ones. In the case of this study, acoustic units databases are created, and they will be
use to synthesize speech, therefore, the studies were about the comparison of the
speech obtained from the automatic databases derived from the system and the test
databases obtained in manual way.

The most commonly used subjective speech testing methods are [10–12]:

• ACR (Absolute Category Rating)—the method of absolute speech quality
assessment.

• DCR (Degradation Category Rating)—the method describing the level of
speech quality degradation.
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• CCR (Comparison Category Rating)—speech quality assessment comparison
method.

• The logatom articulation research method.

The ACR and DCR are described and recommended by the International
Telecommunication Unit (ITU) to assess the quality of speech signal transmission
in the analog and digital telecommunications channels and speech encoding sys-
tems [13]. The logatom method is described in the Polish Standard PN-90/T-05100
[14]. The studies were performed on two databases obtained in automatic way. The
database of professional radio speaker—Speaker, and the voice of this study author
—Janusz. The study involved 73 people.

5.1 ACR Method

In the ACR method the absolute quality of presented voice samples is determined,
without the use of a reference signal. Then the MOS parameter is calculated (Mean
Opinion Score)—the averaged listeners opinion, which characterizes the sound
quality [10, 12]. The participants listen to the recorded speech, and then they
assesses it in the scale from 1 to 5. In this case, two scales recommended by the ITU
were used:

• Listening quality scale
• Auditory effort scale

The assessment of automatically obtained databases were performed in com-
parison with the standard databases obtained manually. This means that, the lis-
teners, who assessed the speaker synthesized voice, assessed the samples created on
the basis of the automatic database, as well as the standard database samples. The
order of the samples was random. Based on the results, the MOS parameters for
particular databases were obtained. The results are shown in the Table 1:

As the table shows, in any case, the assessment was a little below 4, what means,
that the synthesized speech quality was good and allowed to understand the speech
without any difficulties with a light intensity of attention. The standard deviation

Table 1 The results of the ACR method tests

Databases Speaker standard Speaker automatic Janusz standard Janusz automatic

Absolute assessment—speech quality

MOS 3.96 3.85 3.72 3.69
Standard
deviation

0.68 0.58 0.53 0.46

Auditory effort

MOS 3.96 3.9 3.81 3.81
Standard
deviation

0.65 0.59 0.54 0.53
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calculated from the sample keeps the level a little above 0.5 what means, that were
not huge differences between listeners. The standard databases looked better in this
assessment, what should be understandable. The “Janusz” database was assessed a
little lower than, the “Speaker” database. Important is, that the “Janusz” database
was created on the basis of another speaker voice, and yet it practically doesn’t
differ from the standard database.

5.2 DCR Method

The another method is DCR [10, 12]. This method is used for examining so-called
speech degradation degree. The measurement is based on the comparison of the
standard (natural) signal with the examining one, determining its degradation in the
five-point scale (from “imperceptible” to “very clear”). On the basis of obtained
results, the DMOS coefficient (degradation mean opinion score) was determined.
Results are shown in the Table 2. In the case of this coefficient, we can see that, the
“Janusz” database, both standard and automatic, got higher score.

5.3 CCR Method

In this method, similar as in the previous method, two samples are presented, one of
them is the standard—natural one. This time, the order of samples is random. On
the basis of the results, the CMOS coefficient (Comparison Mean Opinion Score) is
calculated—comparative, averaged listeners opinion. The sound samples are ran-
dom, which means that, the examined sound may be assessed better than the
standard one. The sample that is compared may be better or worse quality, which
means that, the assessment can be either positive or negative. The results are shown
in the Table 3.

In the case of this coefficient, the standard speaker voice database was assessed
very high. At this time the automatic “Speaker” database was worse than the

Table 2 The results of the DCR method tests

Databases Speaker standard Speaker automatic Janusz standard Janusz automatic

DMOS 3.73 3.63 3.91 3.87

Standard deviation 0.53 0.56 0.45 0.44

Table 3 The results of the CCR method tests

Databases Speaker standard Speaker automatic Janusz standard Janusz automatic

CMOS −0.47 −0.83 −0.87 −0.75
Standard deviation 0.28 0.65 0.43 0.5
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standard one, but the quality of this database is acceptable. The “Janusz” standard
and automatic databases were assessed in very similar way, close to the speaker’s
voice automatic database. Received grades indicate the acceptable databases
quality, only slightly worse than the natural speech.

5.4 Logatom Articulation Method

The logatom articulation method determines the percent of logatoms correctly
received by the listeners in relation to the total number of logatoms presented
[11–13]. The logatom recognition is the result of hearing all of its component
phonemes and not an association with the known word. The results of averaged
logatom articulation for all study are shown in the Table 4. During analyzing, we
can see that, the logatom sharpness is better for both voices in automatic databases.
In case of the speaker voice, the average difference is approx 5 %, and in case of
“Janusz” databases this difference is about 15 %. In any case and any type of
logatoms, their recognition is better when they are created using automatic
databases.

6 Summary

The performed studies showed, that the quality of databases created automatically
with the use of presented algorithms is comparable with the quality of standard
databases created manually. This means that they can be used in the concatenative
speech synthesisers. The presented system was developed for creation databases
intended for synthesiser which uses allophones as a basic units. However, after
some modifications, it may be adapted to other types of basic units, such as
diphones or syllables.
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InterCriteria Analysis Approach
to Parameter Identification
of a Fermentation Process Model

Tania Pencheva, Maria Angelova, Peter Vassilev and Olympia Roeva

Abstract In this investigation recently developed InterCriteria Analysis (ICA) is

applied aiming at examination of the influence of a genetic algorithm (GA) parame-

ter in the procedure of a parameter identification of a fermentation process model.

Proven as the most sensitive GA parameter, generation gap is in the focus of this

investigation. The apparatuses of index matrices and intuitionistic fuzzy sets, laid

in the ICA core, are implemented to establish the relations between investigated

here generation gap, from one side, and model parameters of fed-batch fermenta-

tion process of Saccharomyces cerevisiae, from the other side. The obtained results

after ICA application are analysed towards convergence time and model accuracy

and some conclusions about observed interactions are derived.

Keywords InterCriteria analysis ⋅Genetic algorithms ⋅Generation gap ⋅ Parameter

identification ⋅ S. cerevisiae

1 Introduction

InterCriteria Analysis (ICA), given in details in [2] is a contemporary approach for

multicriteria decision making. ICA implements the apparatuses of index matrices

(IM) and intuitionistic fuzzy sets (IFS) in order to compare some criteria or esti-

mated by them objects. In [16] ICA has been applied for the first time in the field
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of parameter identification of fermentation processes (FP) models. The ICA imple-

mentation allowed to authors to establish relations and dependencies between two of

the main genetic algorithms (GA) parameters—numbers of individuals and number

of generations, on the one hand, and convergence time, model accuracy and model

parameters on the other hand. The reported results confirmed some existing depen-

dencies that result from the physical meaning of the model parameters and from the

stochastic nature of GA. The current investigation is a successive attempt ICA to be

applied in the establishment of correlations between GA parameters and FP model

parameters.

Fermentation processes (FP) are objects of increase research interest because of

their widespread used in different branches of industry. Due to the fact that FP models

have a complex structures based on systems of non-linear differential equations with

several specific growth rates [8] their modeling and optimization are a real challenge

for the investigators. Thus the choice of appropriate model parameter identification

procedure is the most important problem for their adequate modeling. Among oth-

ers biologically inspired optimization techniques, GA [9, 13] has been proved as a

global search methods for solving many engineering and optimization problems [17]

and especially for parameter identification of fermentation processes [1, 15, 18]. GA

workability are quided mainly by different operators, functions, parameters, and set-

tings that can be implemented specifically in different problems. Current research

is focused on the investigation of the influence of proven as the most sensitive GA

operator [1], namely generation gap (ggap). Simple GA (SGA) is applied for the

purposes of model parameter identification of S. cerevisiae fed-batch fermentation

process. This representative of yeast has numerous applications in food and pharma-

ceutical industry. Also it is widely used model organism in genetic engineering and

cell biology due to their well known metabolic pathways [12].

ICA could be appropriate approach for establishing the correlations between

model and optimization algorithm parameters, when given parameters are consid-

ered as criteria. This may lead to additional exploring of the model or the relation

between model and optimization algorithm, which will be valuable especially in the

case of modelling of living systems, such as FP. (Due to that reason in this investi-

gation ICA is applied to identify the influences and relations between model para-

meters, on the one hand, and generation gap on the other hand based on results of

parameters identification procedures of yeast.)

In this paper aiming to derived additional knowledge for existing correlations

that will be useful in identification procedures when modelling FP, presented in [16]

investigations are expanded and further developed. Since the focus of the research is

on the relations between FP model parameters, here ICA is applied based on results

of parameters identification procedures applying SGA with different values of ggap.

(Current investigation is carried out based on the parameter identification S. cere-
visiae fed-batch fermentation processes.)

The paper is organized as follows: the problem formulation is given in Sect. 2,

while Sect. 3 presents the background of ICA. Numerical results and discussion are

presented in Sect. 4 and conclusion remarks are given in Sect. 5.
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2 Problem Formulation

2.1 Mathematical Model of S. cerevisiae Fed-Batch
Fermentation Process

The mathematical model of S. cerevisiae fed-batch process is presented by the fol-

lowing non-linear differential equations system [15]:

dX
dt

= (𝜇2S
S

S + kS
+ 𝜇2E

E
E + kE

)X −
Fin
V

X (1)

dS
dt

= −
𝜇2S
YS∕X

S
S + kS

X +
Fin
V

(Sin − S) (2)

dE
dt

= −
𝜇2E
YE∕X

E
E + kE

X +
Fin
V

(Sin − S) (3)

dV
dt

= Fin (4)

where X is the biomass concentration, [g/l]; S—substrate concentration, [g/l]; E—

ethanol concentration, [g/l]; Fin—feeding rate, [l/h]; V—bioreactor volume, [l];

Sin—substrate concentration in the feeding solution, [g/l]; 𝜇2S, 𝜇2E—the maximum

values of the specific growth rates, [1/h]; kS, kE—saturation constants, [g/l]; YS∕X ,

YE∕X—yield coefficients, [-].

For the considered here model (Eqs. (1–4)), the following parameter vector should

be identified: p1 = [𝜇2S 𝜇2E kS kE YS∕X YE∕X].
Model parameters identification of a S. cerevisiae fed-batch fermentation process

is performed based on experimental data for biomass, glucose and ethanol concen-

trations. The detailed description of the process conditions and experimental data

can be found in [15].

2.2 Optimization Criterion

The objective function is considered as a mean square deviation between the exper-

imental data trajectories and model predicted ones, defined as:

J =
m∑

i=1

(
Xexp(i) − X

mod
(i)
)2 +

n∑

i=1

(
Sexp(i) − S

mod
(i)
)2

→ min (5)

wherem and n are the experimental data dimensions;Xexp and Sexp—available exper-

imental data for biomass and substrate; X
mod

and S
mod

—model predictions for bio-

mass and substrate with a given model parameter vector.
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2.3 Generation Gap

Simple genetic algorithm initially presented in Goldberg [13] searches a global opti-

mal solution using three main genetic operators in a sequence selection, crossover

and mutation. SGA starts with a creation of a randomly generated initial population.

Each solution is then evaluated and assigned a fitness value. According to the fitness

function, the most suitable solutions are selected. After that, crossover proceeds to

form a new offspring. Mutation is then applied with determinate probability aiming

to prevent falling of all solutions into a local optimum. The execution of the GA has

been repeated until the termination criterion (i.e. reached number of populations, or

found solution with a specified tolerance, etc.) is satisfied.

Parameter generation gap (ggap) defines the percentage of the population that is

replaced in each generation of the GA. A ggap of 0 means none of the population

is replaced; conversely, a generation gap of 100 means that the entire population is

replaced in each generation.

De Jong [11] introduces ggap as a GA parameter for the first time in 1975. He

evaluated empirically the performance of GAs with overlapping populations and

found that when the value of ggap is low the algorithm had loss of alleles. As a

result searching performance of GA becomes poor [10]. Very big ggap value does

not lead to improve GA performance too, especially regarding how fast the solution

will be found [14].

In the previous investigation [1] is shown that ggap is the most sensitive GA para-

meter towards the convergence time when GA is applied in the field of parameter

identification of fermentation process models. With appropriate tuned ggap almost

40 % of the algorithms calculation time can be saved, while keeping the model accu-

racy.

For the considered here parameter identification of S. cerevisiae fed-batch

fermentation process, the GA operators and parameters are tuned as proposed

in [1], namely: crossover operators are double point; mutation operators—bit inver-

sion; selection operators—roulette wheel selection; number of generations—maxgen
= 100; crossover rate—xovr = 0.95; mutation rate—mutr = 0.05, number of

individuals—nind = 20. Here the following values of ggap are used ggap = 0.5 ∶
0.01 ∶ 1.

3 InterCriteria Analysis

Here the idea proposed in [2] is expanded. Following [2, 4] an Intuitionistic Fuzzy

Pair (IFP) [3] as an estimation of the degrees of “agreement” and “disagreement”

between two criteria applied to different objects is obtained. Recall that an IFP is an

ordered pair of real non-negative numbers ⟨a, b⟩ such that: a + b ≤ 1.
Consider an Index Matrix (IM) [5, 6] whose index sets consist of the criteria (for

rows) and objects (for columns). The elements of this IM are further assumed to
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be real numbers. An IM with index sets consisting of the criteria (for rows and for

columns) with elements IFPs corresponding to the “agreement” and “disagreement”

between the respective criteria is then constructed.

Let O denotes the set of all objects O1,O2,… ,On being evaluated, and C(O) be

the set of values assigned by a given criteria C to the objects, i.e.

O
def
= {O1,O2,… ,On}; C(O)

def
= {C(O1),C(O2),… ,C(On)}

Then, let:

C∗(O)
def
= {⟨x, y⟩| x ≠ y & ⟨x, y⟩ ∈ C(O) × C(O)}

In order to find the “agreement” of two criteria the vector of all internal comparisons

of each criteria, which fulfill exactly one of three relations R, R and ̃R, is constructed.

In other words, it is required that for a fixed criterion C and any ordered pair ⟨x, y⟩ ∈
C∗(O) it is true:

⟨x, y⟩ ∈ R ⇔ ⟨y, x⟩ ∈ R (6)

⟨x, y⟩ ∈ ̃R ⇔ ⟨x, y⟩ ∉ (R ∪ R) (7)

R ∪ R ∪ ̃R = C∗(O) (8)

From the above it is seen that only a subset ofC(O) × C(O) needs to be considered

for the effective calculation of the vector of internal comparisons (further denoted by

V(C)) since from Eqs. (6–8) it follows that if the relation between x and y is known,

then so is the relation between y and x. Thus of interest are only the lexicographically

ordered pairs ⟨x, y⟩. Denote for brevity:

Ci,j = ⟨C(Oi),C(Oj)⟩

Then for a fixed criterion C, the vector with
n(n−1)

2 elements is obtained:

V(C) = {C1,2,C1,3,… ,C1,n,C2,3,C2,4,… ,C2,n,C3,4,… ,C3,n,… ,Cn−1,n}

Let V(C) be replaced by ̂V(C), where for the kth component (1 ≤ k ≤ n(n−1)
2 ):

̂Vk(C) =
⎧
⎪
⎨
⎪⎩

1, iff Vk(C) ∈ R
−1, iff Vk(C) ∈ R
0, otherwise

When comparing two criteria the degree of “agreement” is determined as the num-

ber of matching components of the respective vectors (divided by the length of the

vector for normalization purposes). This can be done in several ways, e.g. by count-
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ing the matches or by taking the complement of the Hamming distance. The degree

of “disagreement” is the number of components of opposing signs in the two vectors

(again normalized by the length). An example pseudocode for two criteria C and C′

is presented below.

Algorithm 1 Calculating “agreement” and “disagreement” between two criteria

Require: Vectors ̂V(C) and ̂V(C′)

1: function DEGREES OF AGREEMENT AND DISAGREEMENT( ̂V(C), ̂V(C′))
2: V ← ̂V(C) − ̂V(C′)
3: 𝜇 ← 0
4: 𝜈 ← 0
5: for i ← 1 to

n(n−1)
2

do
6: if Vi = 0 then
7: 𝜇 ← 𝜇 + 1
8: else if abs(Vi) = 2 then ⊳ abs(Vi): the absolute value of Vi
9: 𝜈 ← 𝜈 + 1

10: end if
11: end for
12: 𝜇 ← 2

n(n−1)
𝜇

13: 𝜈 ← 2
n(n−1)

𝜈

14: return 𝜇, 𝜈

15: end function

If the respective degrees of “agreement” and “disagreement” are denoted by 𝜇C,C′

and 𝜈C,C′ , it is obvious (from the way of computation) that 𝜇C,C′ = 𝜇C′
,C and 𝜈C,C′ =

𝜈C′
,C. Also it is true that ⟨𝜇C,C′ , 𝜈C,C′⟩ is an IFP.

4 Numerical Results and Discussion

In order to obtain reliable results for computational time, optimization criterion and

model parameters estimations, thirty independent runs of SGA have been performed

for each value of ggap. Obtained results have been averaged and IM A(ggap) (Eq. 9)

is constructed. Full IM is available at http://intercriteria.net/studies/gengap/s-cerev/

A(ggap) =

C1 C2 C3 C4 C5 C6 C7 C8 C9
O1 0.02214 167.14 0.5 0.9550 0.1283 0.1264 0.7993 0.4047 1.6917
... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ...

O29 0.02207 252.63 0.78 0.9889 0.1493 0.1427 0.7995 0.3974 2.0102
... ... ... ... ... ... ... ... ... ...

O51 0.02364 355.54 1 0.9614 0.1084 0.1162 0.7182 0.4007 1.4754

(9)

http://intercriteria.net/studies/gengap/s-cerev/
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IM A(ggap) presents averaged values for the objective function value J (C1), com-

putational time T (C2), as well as the averaged estimates of model parameters, as

follows: 𝜇2S(C4), 𝜇2E(C5), kS(C6), kE(C7), YS∕X(C8), and YE∕X(C9). The parameter

ggap takes 51 different values from 0.5 to 1, with step 0.01. All mentioned criteria

are listed in Table 1 for all considered here ggap values.

ICA algorithm calculate the IFP ⟨𝜇, 𝜈⟩ for every two pairs of considered crite-

ria using obtained IM A(ggap). To evaluate the variation in ⟨𝜇, 𝜈⟩-values 6 different

groups are selected.

The first group G1 has 6 objects, namely for the following values of ggap ∶ G1 =
{0.5, 0.6, 0.7, 0.8, 0.9, 1}, i.e. in the input IM only the objects O1,O11,O21, O31,
O41 andO51 are included for the corresponding six criteria. The second group consist

of 11 objects, which are constructed by adding the some new values of ggap to the

first group, namely G2 = {G1 ∪ {x + 0.05|x ∈ G1 ⧵ {1}}}. In the same manner the

other groups may be represented as Gi = {Gi−1 ∪ G′
i , i = 3, 4, 5, 6}, where

G′
i = {x + 2i − 4

100
|x ∈ G1 ⧵ {1}} ∪ {x+2i − 4 + (−1)max(0,2i−9) ∗ 5

100
|x ∈ G1⧵ {1}}.

Obtained results after the ICA application are presented in Table 1. Figure 1a, b

present distribution of the obtained here altogether 36 criteria pairs towards the num-

ber of considered objects. The results are discussed according proposed in [7] scale

(see Table 2).

As it could be seen from Table 1 and especially from the plotted results in Fig. 1a–

d, there are six pairs of criteria with positive consonance, namely J ↔ YS∕X (C1 ↔
C8) (Fig. 1a), T ↔ ggap (Fig. 1b) (C2 ↔ C3), and pairs 𝜇2E ↔ YE∕X (C5 ↔ C9),

𝜇2E ↔ kS (C5 ↔ C6), kS ↔ YE∕X (C6 ↔ C9), 𝜇2S ↔ kS (C4 ↔ C6) (Fig. 1d). All

these six pairs start and finish in the corresponding ranges: pairs J ↔ YS∕X , 𝜇2E ↔
kS, kS ↔ YE∕X , and 𝜇2S ↔ kS are in weak positive consonance; the pair T ↔ ggap is

in the strong positive consonance; while the pair 𝜇2E ↔ YE∕X is on the edge between

positive consonance and strong positive consonance. It should be noted, that the pair

T ↔ ggap is with the highest recorded in this investigation degree of “agreement”

𝜇 = 1. This is to prove the expected result that the convergence time is on a high

dependence with ggap values.

On the other pole are the recorded results with degree of “agreement” 𝜇, falling

in the range of negative consonance. The most of pairs with such behaviour are

towards the objective function value J. Looking at Fig. 1a, there are three such

pairs—J ↔ 𝜇2E (C1 ↔ C5), J ↔ kS (C1 ↔ C6) and J ↔ YE∕X (C1 ↔ C9). The pairs

𝜇2E ↔ YS∕X (C5 ↔ C8), YS∕X ↔ YE∕X (C8 ↔ C9) and in the most of the time—

kS ↔ YS∕X (C6 ↔ C8) fall in the scale of weak negative consonance, going at the

end in the scale of weak dissonance. It should be noted that the first two pairs start

from weak dissonance at small number of objects, finishing with weak negative con-

sonance at bigger number of objects, and vice versa for the third pair. Looking deeply

insight, it can be concluded that the model parameters 𝜇2E, kS and YE∕X are the para-

meters, causing the negative dissonance with J (Fig. 1a), and with YS∕X (Fig. 1d).
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Table 1 Results from the ICA in case of E. coli fed-batch cultivation process

Criteria

correlation

Number of objects

6 11 21 31 41 51

⟨𝜇, 𝜈⟩ ⟨𝜇, 𝜈⟩ ⟨𝜇, 𝜈⟩ ⟨𝜇, 𝜈⟩ ⟨𝜇, 𝜈⟩ ⟨𝜇, 𝜈⟩
C1 ↔ C2 ⟨0.58, 0.42⟩ ⟨0.55, 0.45⟩ ⟨0.58, 0.42⟩ ⟨0.59, 0.41⟩ ⟨0.71, 0.29⟩ ⟨0.87, 0.13⟩
C1 ↔ C3 ⟨0.59, 0.41⟩ ⟨0.56, 0.44⟩ ⟨0.60, 0.40⟩ ⟨0.59, 0.41⟩ ⟨0.71, 0.29⟩ ⟨0.87, 0.13⟩
C1 ↔ C4 ⟨0.36, 0.64⟩ ⟨0.34, 0.66⟩ ⟨0.32, 0.68⟩ ⟨0.29, 0.71⟩ ⟨0.25, 0.75⟩ ⟨0.27, 0.73⟩
C1 ↔ C5 ⟨0.09, 0.91⟩ ⟨0.10, 0.90⟩ ⟨0.10, 0.90⟩ ⟨0.13, 0.87⟩ ⟨0.15, 0.85⟩ ⟨0.07, 0.93⟩
C1 ↔ C6 ⟨0.21, 0.79⟩ ⟨0.20, 0.80⟩ ⟨0.19, 0.81⟩ ⟨0.15, 0.85⟩ ⟨0.16, 0.84⟩ ⟨0.20, 0.80⟩
C1 ↔ C7 ⟨0.33, 0.67⟩ ⟨0.33, 0.67⟩ ⟨0.37, 0.63⟩ ⟨0.31, 0.69⟩ ⟨0.31, 0.69⟩ ⟨0.47, 0.53⟩
C1 ↔ C8 ⟨0.83, 0.17⟩ ⟨0.83, 0.17⟩ ⟨0.81, 0.19⟩ ⟨0.77, 0.23⟩ ⟨0.78, 0.22⟩ ⟨0.80, 0.20⟩
C1 ↔ C9 ⟨0.10, 0.90⟩ ⟨0.11, 0.89⟩ ⟨0.11, 0.89⟩ ⟨0.12, 0.88⟩ ⟨0.15, 0.85⟩ ⟨0.13, 0.87⟩
C2 ↔ C3 ⟨0.96, 0.04⟩ ⟨0.95, 0.05⟩ ⟨0.95, 0.05⟩ ⟨0.98, 0.02⟩ ⟨1.00, 0.00⟩ ⟨1.00, 0.00⟩
C2 ↔ C4 ⟨0.47, 0.53⟩ ⟨0.46, 0.54⟩ ⟨0.41, 0.59⟩ ⟨0.42, 0.58⟩ ⟨0.40, 0.60⟩ ⟨0.40, 0.60⟩
C2 ↔ C5 ⟨0.45, 0.55⟩ ⟨0.49, 0.51⟩ ⟨0.47, 0.53⟩ ⟨0.50, 0.50⟩ ⟨0.40, 0.60⟩ ⟨0.20, 0.80⟩
C2 ↔ C6 ⟨0.45, 0.55⟩ ⟨0.46, 0.54⟩ ⟨0.40, 0.60⟩ ⟨0.42, 0.58⟩ ⟨0.35, 0.65⟩ ⟨0.33, 0.67⟩
C2 ↔ C7 ⟨0.42, 0.58⟩ ⟨0.40, 0.60⟩ ⟨0.40, 0.60⟩ ⟨0.36, 0.64⟩ ⟨0.35, 0.65⟩ ⟨0.33, 0.67⟩
C2 ↔ C8 ⟨0.50, 0.50⟩ ⟨0.45, 0.55⟩ ⟨0.49, 0.51⟩ ⟨0.46, 0.54⟩ ⟨0.53, 0.47⟩ ⟨0.67, 0.33⟩
C2 ↔ C9 ⟨0.45, 0.55⟩ ⟨0.49, 0.51⟩ ⟨0.46, 0.54⟩ ⟨0.50, 0.50⟩ ⟨0.40, 0.60⟩ ⟨0.27, 0.73⟩
C3 ↔ C4 ⟨0.45, 0.55⟩ ⟨0.44, 0.56⟩ ⟨0.38, 0.62⟩ ⟨0.42, 0.58⟩ ⟨0.40, 0.60⟩ ⟨0.40, 0.60⟩
C3 ↔ C5 ⟨0.44, 0.56⟩ ⟨0.48, 0.52⟩ ⟨0.45, 0.55⟩ ⟨0.50, 0.50⟩ ⟨0.40, 0.60⟩ ⟨0.20, 0.80⟩
C3 ↔ C6 ⟨0.44, 0.56⟩ ⟨0.45, 0.55⟩ ⟨0.39, 0.61⟩ ⟨0.43, 0.57⟩ ⟨0.35, 0.65⟩ ⟨0.33, 0.67⟩
C3 ↔ C7 ⟨0.41, 0.59⟩ ⟨0.40, 0.60⟩ ⟨0.39, 0.61⟩ ⟨0.36, 0.64⟩ ⟨0.35, 0.65⟩ ⟨0.33, 0.67⟩
C3 ↔ C8 ⟨0.50, 0.50⟩ ⟨0.46, 0.54⟩ ⟨0.50, 0.50⟩ ⟨0.47, 0.53⟩ ⟨0.53, 0.47⟩ ⟨0.67, 0.33⟩
C3 ↔ C9 ⟨0.45, 0.55⟩ ⟨0.48, 0.52⟩ ⟨0.45, 0.55⟩ ⟨0.50, 0.50⟩ ⟨0.40, 0.60⟩ ⟨0.27, 0.73⟩
C4 ↔ C5 ⟨0.61, 0.39⟩ ⟨0.65, 0.35⟩ ⟨0.65, 0.35⟩ ⟨0.65, 0.35⟩ ⟨0.64, 0.36⟩ ⟨0.67, 0.33⟩
C4 ↔ C6 ⟨0.79, 0.21⟩ ⟨0.80, 0.20⟩ ⟨0.78, 0.22⟩ ⟨0.77, 0.23⟩ ⟨0.80, 0.20⟩ ⟨0.80, 0.20⟩
C4 ↔ C7 ⟨0.59, 0.41⟩ ⟨0.58, 0.42⟩ ⟨0.60, 0.40⟩ ⟨0.60, 0.40⟩ ⟨0.58, 0.42⟩ ⟨0.40, 0.60⟩
C4 ↔ C8 ⟨0.39, 0.61⟩ ⟨0.36, 0.64⟩ ⟨0.35, 0.65⟩ ⟨0.32, 0.68⟩ ⟨0.11, 0.89⟩ ⟨0.07, 0.93⟩
C4 ↔ C9 ⟨0.63, 0.37⟩ ⟨0.65, 0.35⟩ ⟨0.65, 0.35⟩ ⟨0.65, 0.35⟩ ⟨0.64, 0.36⟩ ⟨0.60, 0.40⟩
C5 ↔ C6 ⟨0.77, 0.23⟩ ⟨0.79, 0.21⟩ ⟨0.80, 0.20⟩ ⟨0.83, 0.17⟩ ⟨0.76, 0.24⟩ ⟨0.73, 0.27⟩
C5 ↔ C7 ⟨0.60, 0.40⟩ ⟨0.61, 0.39⟩ ⟨0.56, 0.44⟩ ⟨0.58, 0.42⟩ ⟨0.58, 0.42⟩ ⟨0.47, 0.53⟩
C5 ↔ C8 ⟨0.18, 0.82⟩ ⟨0.19, 0.81⟩ ⟨0.20, 0.80⟩ ⟨0.22, 0.78⟩ ⟨0.33, 0.67⟩ ⟨0.27, 0.73⟩
C5 ↔ C9 ⟨0.95, 0.05⟩ ⟨0.96, 0.04⟩ ⟨0.95, 0.05⟩ ⟨0.95, 0.05⟩ ⟨0.96, 0.04⟩ ⟨0.93, 0.07⟩
C6 ↔ C7 ⟨0.63, 0.37⟩ ⟨0.62, 0.38⟩ ⟨0.60, 0.40⟩ ⟨0.59, 0.41⟩ ⟨0.56, 0.44⟩ ⟨0.33, 0.67⟩
C6 ↔ C8 ⟨0.26, 0.74⟩ ⟨0.24, 0.76⟩ ⟨0.23, 0.77⟩ ⟨0.22, 0.78⟩ ⟨0.20, 0.80⟩ ⟨0.13, 0.87⟩
C6 ↔ C9 ⟨0.78, 0.22⟩ ⟨0.78, 0.22⟩ ⟨0.79, 0.21⟩ ⟨0.82, 0.18⟩ ⟨0.76, 0.24⟩ ⟨0.80, 0.20⟩
C7 ↔ C8 ⟨0.44, 0.56⟩ ⟨0.44, 0.56⟩ ⟨0.49, 0.51⟩ ⟨0.48, 0.52⟩ ⟨0.45, 0.55⟩ ⟨0.67, 0.33⟩
C7 ↔ C9 ⟨0.61, 0.39⟩ ⟨0.60, 0.40⟩ ⟨0.56, 0.44⟩ ⟨0.60, 0.40⟩ ⟨0.58, 0.42⟩ ⟨0.40, 0.60⟩
C8 ↔ C9 ⟨0.20, 0.80⟩ ⟨0.20, 0.80⟩ ⟨0.21, 0.79⟩ ⟨0.24, 0.76⟩ ⟨0.33, 0.67⟩ ⟨0.33, 0.67⟩
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Fig. 1 Results from the ICA application towards the number of considered objects
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Fig. 1 (continued)

Looking further in Fig. 1a–d, the biggest part of the pairs are with the degree of

“agreement” 𝜇, falling in the range of dissonance—altogether 25 pairs of criteria.

Those presented in Fig. 1a, b have a reasonable explanation due to the stochastic

nature of GA. Because of that, it is quite difficult for some very strong relations

between the optimization criterion J and the convergence time T on the one hand, and

model parameters on the other hand, to be established. If the randomly chosen initial

conditions are sufficiently good, the relation between J and T might be of higher

agreement—already mentioned pair T ↔ YS∕X (Fig. 1a). Or, conversely, GA starting
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Table 2 Consonance and

dissonance scale [7]
Interval of 𝜇C,C′ Meaning

[0–0.5] Strong negative consonance (SNC)

(0.5–0.15] Negative consonance (NC)

(0.15–0.25] Weak negative consonance (WNC)

(0.25–0.33] Weak dissonance (WD)

(0.33–0.43] Dissonance (D)

(0.43–0.57] Strong dissonance (SD)

(0.57–0.67] Dissonance (D)

(0.67–0.75] Weak dissonance (WD)

(0.75–0.85] Weak positive consonance (WPC)

(0.85–0.95] Positive consonance (PC)

(0.95–1.00] Strong positive consonance (SPC)

from more “distanced” initial conditions may need more time to find a satisfactory

solution, thus leading to a lower degree of “agreement” between J and T , that happen

in the most of the criteria pairs considered here.

The following things are worth to be noted: criteria pairs of T ↔ 𝜇2E (Fig. 1b) and

ggap ↔ 𝜇2E (Fig. 1c) start with a weak negative consonance at the small number of

objects, while finish in the range of strong dissonance at the bigger number of objects.

The pairs 𝜇2S ↔ YS∕X and kS ↔ YS∕X (mentioned also above) start in the range of

negative consonance and finish respectively in the range of dissonance and weak

dissonance at the bigger number of objects. There are many other pairs, showing such

“improvement” in the degree of “agreement”—start with lower𝜇 at the small number

of objects and finish with higher 𝜇 at the bigger number of objects. Meanwhile,

there are some pairs showing quite opposite behaviour—starting with bigger 𝜇 at the

small number of objects and finishing with lower 𝜇 at the bigger number of objects.

The most “representatives” among them are the pairs between T ↔ J and J ↔ ggap
(Fig. 1a), crossing “the border” between positive consonance and dissonance. The

similar is the pair behaiour T ↔ YS∕X (Fig. 1b) and ggap ↔ YS∕X (Fig. 1c) and kE ↔
YS∕X (Fig. 1d).

When consider the influence of the generation gap ggap and model parameters,

in most of the cases it is observed mentioned above “improvement” in the degree of

“agreement”. All they start with lower 𝜇 at the small number of objects and finish

with higher 𝜇 at the bigger number of objects, except one obvious “deviation”—the

pair ggap ↔ YS∕X . It should be noticed that all of connections between ggap and

model parameters show degree of “agreement” in the range of dissonance (except

the pair ggap ↔ 𝜇2E at small number of objects), that lead to the suggestion that

there are no significant correlations between them.
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The last presented group of examined correlations is between model parameters

themselves (Fig. 1d). The most interesting results have been mentioned yet. This

figure is with the mostly dispersed degree of “agreement” 𝜇. Although, the biggest

part of the criteria pairs fall in the range of dissonance, meaning that there are no

significant dependencies to be outlined. This fact has logically explanation—more

difficult process model structure trouble the establishment of some very strong rela-

tions between the parameters themselves. Although this fact, there are four pairs with

proven positive consonance and three with negative consonance (all they analysed

above). Thus, new knowledge almost impossible without ICA application has been

achieved during the investigation.

5 Conclusion

In this paper the idea of recently proposed InterCriteria Analysis is applied for estab-

lishing the relations and dependencies between GAs parameter generation gap on the

one hand, and convergence time, model accuracy and model parameters on the other

hand. Simple GA with different values of ggap is used for parameter identification

of fed-batch fermentation process of S. cerevisiae.

The obtained results from ICA implementation might be summarised as follows:

there are (1) six pairs of criteria are in positive consonance; (2) five pairs of crite-

ria are in negative consonance; (3) twenty five pairs of criteria are in dissonance. It

should be noted, that the pair J ↔ ggap is with the highest recorded in this inves-

tigation 𝜇 value. This is to prove the expected result that the value of optimization

criterion is on a high dependence with proven as the most sensitive GA parameter

ggap.

The obtained results from ICA show some existing relations and dependencies

that result from the physical meaning of the model parameters on the one hand,

and from stochastic nature of the considered metaheuristic on the other hand. More-

over, derived additional knowledge for existing correlations will be useful in further

identification procedures of fermentation process models and, in general, for more

accurately SGA application.
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