
A Dynamically Extensible Open
Cross-Document Link Service

Ahmed A.O. Tayeh(B) and Beat Signer

Web and Information Systems Engineering Lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

{atayeh,bsigner}@vub.ac.be

Abstract. Since the introduction of the term hypertext in the early
1960s, the goal has been to link, annotate as well as transclude parts of
documents. However, most existing document linking approaches show
some shortcomings in terms of the offered link granularity and cannot
easily be extended to support new document formats. More recently,
we see new document formats such as the Office Open XML (OOXML)
standard which facilitate the linking to parts of certain document for-
mats. We present a dynamically extensible open cross-document link
service enabling the linking and integration of arbitrary documents and
multimedia content. In our link browser, emerging document formats
are supported via visual plug-ins or by integrating third-party applica-
tions via gateways. The presented concepts and architecture for dynamic
extensibility improve the document life cycle in so-called cross-media
information spaces and enable future-proof cross-document linking.

Keywords: Cross-document linking · Dynamic link service extensibility

1 Introduction

Most existing document formats only provide a simple embedded unidirectional
link model for defining associations between documents [16,19]. While many doc-
ument formats support the linking to third-party documents, it is normally not
possible to address and link to parts of these documents. For example, in a PDF
document we can create hyperlinks to an entire Word document via a URI but
we cannot easily link to specific parts within this document. There is no doubt
that the advent of the Extensible Markup Language (XML) in combination with
the link model defined by XLink has been a major step towards advanced linking
on the Web. However, XLink only deals with XML-based documents and does
not support other document formats or models.

We recently witnessed enhancements in various document formats for the
linking of documents. For example, in the current PDF specification [1] links
can be created between pieces of information stored in a PDF document via so-
called GoToE actions. Furthermore, OOXML [2] hyperlinks enable the address-
ing of parts of other OOXML documents. Nevertheless, as argued by Tayeh
c© Springer International Publishing Switzerland 2015
J. Wang et al. (Eds.): WISE 2015, Part I, LNCS 9418, pp. 61–76, 2015.
DOI: 10.1007/978-3-319-26190-4 5

62 A.A.O. Tayeh and B. Signer

and Signer [19], the support of cross-document linking for arbitrary document
formats is a challenging task which requires concrete information about each
document format to be linked. Furthermore, it asks for a revision of a given doc-
ument format specification in order to support a new document type. We aim
for a link service that is flexible enough to support existing as well as emerging
document formats.

The extensibility of a link service is an essential feature and should form an
integral part of any document linking service. However, nowadays we can see
this extensibility feature only implemented for link resolution in web browsers.
When an HTML link points to a third-party document (e.g. a PDF document),
based on the target’s MIME type the web browser calls a specific plug-in to
visualise the document. Nevertheless, the link service extensibility should not be
limited to resolving links to entire documents but also allow users to create links
between snippets of information in arbitrary document formats. Furthermore, a
link service should take into account that users rely on proprietary applications
(e.g. Microsoft Word) to author and visualise specific types of documents and
address the challenge of seamlessly integrating these third-party applications.
Last but not least, a linking service has to be dynamically extensible. Imagine,
that each time we navigate to a new document type on the Web, we would
have to install a new version of the Web browser. This would definitely be a big
burden for any user. We can outline various reasons why a link service should be
dynamically extensible. First of all, it is not feasible to extend or redeploy the
existing service and user interface every time a new document format has to be
supported. Further, each user might only make use of a small subset from the
multitude of existing document formats. Rather than having a monolithic link
service that supports all document formats, users should be able to dynamically
extend the link service on demand in order to support their preferred document
formats. Finally, offering cross-document linking features to proprietary third-
party applications should not ask for changes to the core of these systems since
this might not be accepted by their creators.

In this paper, we present recent extensions and adaptations of our open cross-
document link service in order to deal with dynamic extensibility. We begin
in Sect. 2 by providing a brief overview of our link service and highlight some
of its earlier shortcomings with respect to dynamic extensibility. The essential
requirements for an extensible link service are outlined in Sect. 3. The concepts
and architecture to support dynamic extensibility are discussed in Sect. 4. In
Sect. 5 we compare our link service solution with the existing body of work.
After a critical discussion of the presented solution and an outline of future
research directions, we provide some concluding remarks.

2 Cross-Document Link Service

Most document formats offer an embedded unidirectional link model, implying
that only the owner of a document can add new links to the document. Fur-
thermore, a target document is not aware of any links that have been defined

A Dynamically Extensible Open Cross-Document Link Service 63

pointing to it from one or multiple source documents. Thereby, in most document
formats the offered link models are far away from the “non-sequential writing”
definition of hypertext [14] where at any given time pointers can be added to
documents to direct a reader to a different section, paragraph or another (part of
a) document. In order to overcome the shortcomings of existing document link
models, in some of our earlier work we have presented an open cross-document
link service [19]. The link service offers a plug-in architecture for integrating
different document formats. The link model of our cross-document link service
is based on the Resource Selector Link (RSL) hypermedia metamodel [18]. RSL
is based on the principle idea of linking arbitrary entities, whereby an entity can
either be a resource, a selector or a link. A resource represents the base unit
for a given media type, such as an image, a video or a complete document. A
selector is always related to a specific resource and is used to address parts of
the resource. Finally, a link is a bidirectional association between one or mul-
tiple source entities and one or multiple target entities. In our cross-document
link service, new document formats are supported by implementing data plug-ins
that extend the RSL resource and selector concepts and contain information on
how to address resources (documents) as well as selectors (anchors) attached to
documents in a given document format. For example, in a data plug-in for the
HTML document format, an HTML resource (document) can be represented as
a URI pointing to a web resource and its selector might be represented via an
XPointer-like expression.

The visualisation component of our link service consists of a link browser
to visualise the supported document formats. The user interface further offers
the necessary GUI actions for performing the basic CRUD (create, read, update
and delete) operations on a link. For each document format to be visualised in
the link browser, a visual plug-in has to be implemented. A visual plug-in for a
given document format needs to visualise documents as well as their anchors and
has to provide the necessary functionality to create, update and delete anchors.
Our cross-document link service currently supports the XML, text and PDF
document formats as well as general multimedia content such as images via
the corresponding data and visual plug-ins. It is worth mentioning that our
link service can not only deal with various document formats but also general
multimedia content such as images or movies. A selector of a movie resource
can, for example, be defined as a timespan. The underlying RSL metamodel is
general enough to support resources and selectors of different media types and
has been used before to support links across movies and web pages [17]. The
visual plug-ins for various document formats visualise the documents in a Java
Swing JPanel which can also be used to visualise arbitrary multimedia content.

We further provide a proof of concept implementation integrating a third-
party application in the form of the Google Chrome browser which acts as a
client for our link service. The Google Chrome plug-in has been implemented
by using the Google Chrome API1. The communication between the link service
and the Google Chrome application plug-in has been realised via a special HTML
1 https://developer.chrome.com/extensions.

https://developer.chrome.com/extensions

64 A.A.O. Tayeh and B. Signer

gateway component. The HTML gateway implements the WebSocket commu-
nication protocol and translates any messages between the cross-document link
service and the Google Chrome plug-in. Thereby, users are able to create bidirec-
tional hyperlinks between supported document formats. Figure 1 shows a bidi-
rectional hyperlink between a PDF document and a JPEG image which are
visualised on the left and right hand side of the link browser component as
well as bidirectional link between a PDF document and an HTML document
visualised in the third-party Google Chrome web browser.

Fig. 1. Cross-document link browser with third-party application

The existing cross-document link service showed a number of shortcomings
in terms of extensibility. In order to illustrate these shortcomings, we use the sce-
nario of a user who installed the link service with support for the text, PDF, XML
and HTML formats. Our user is a researcher often reading Word and PDF docu-
ments and would therefore like to add support for cross-document links between
PDF and Word documents. Unfortunately, there is no online repository offering
plug-ins for different document formats and our user cannot find and download
the necessary plug-ins for Word. However, the researcher is lucky because they
found some information on how to implement data and visual plug-ins. More-
over, they have access to the code of the HTML gateway. Our user decided to ask
a developer who is familiar with Microsoft’s Office Developer Tools to implement
the necessary plug-ins for supporting the Word document format. When check-
ing the code of the gateway, the developer realised that they cannot implement
a new plug-in since the coupling between the communication protocol as well
as the message handling in the gateway asks for a good understanding of the
communication among the link service components. Furthermore, some classes
and packages used in the gateway are not available online and are not accessible

A Dynamically Extensible Open Cross-Document Link Service 65

via public modifiers to be used outside of the HTML plug-in. Therefore, they
decided that supporting a visualisation of Word documents and their anchors
within the link browser side by side with PDF documents is enough. Unfortu-
nately, even if the developer can provide an implementation of the necessary
data and visual plug-ins for Word, we still need a way that the link service can
discover these new plug-ins. This scenario highlights that even if a link service
offers a decent plug-in architecture, we still have to address the issue of dynamic
extensibility. Users should be able to extend the link service without the need
for a new release of the link service supporting the new document format. In the
remaining part of this paper we describe the new essential concepts necessary
for realising a dynamically extensible link service.

3 Requirements

From our previous experience with the cross-document link service and through
an analysis of the shortcomings of existing link services, we derived the following
fundamental requirements for an extensible cross-document link service.

Flexible and Extensible Link Service Architecture. Most annotation and
link services are not based on explicit link models. They often contain a mixture
of conceptual and technical hard-coded link models. The fact that document
formats have different document models means that anchors and selections can
be defined and addressed in different ways. For example, an anchor in a tree-
document model can be defined via an XPointer-like expression while an anchor
in a linear text-only document model might be defined by its start and end
indices. A link model should be flexible enough to deal with different document
formats whereas the extensibility deals with emerging document formats to be
supported at a later stage. Most annotation and link services have to be rede-
ployed whenever a new media type should be supported. We strongly believe that
the link service user interface should be extensible and support new document
formats without redeploying the entire link service.

Support Multiple Document Formats. This requirement can be divided
into two sub-requirements: the link service should be able to support existing
document formats and should be able to deal with emerging document formats.
A link service should not be restricted to a fixed set of predefined document
formats. However, a link service that adheres to the first requirement of a flexible
and extensible link service architecture does not necessarily have to satisfy this
requirement. For example, the previous version of our link service addressed
the first requirement but the support for a new document format still required
some intervention of the link service provider. An extensible link service should
offer a simple mechanism to allow third-party developers or users to integrate
additional document formats without a redeployment of the core link service.

Easy Integration of Third-Party Applications. Supporting third-party
applications should be taken into account in any successful link service. Oth-
erwise, the link service would have to provide the authoring/editing of third-
party documents and be appealing enough to convince users to abandon their

66 A.A.O. Tayeh and B. Signer

preferred third-party applications. Indeed, this is not practical as users might
want to continue using the applications they are familiar with. Nowadays, most
proprietary third-party document processing applications come along with their
own Software Development Kit (SDK) in order to be extended on demand with
some extra functionality. An extensible link service should benefit from a third-
party application’s extensibility rather than forcing third-party application ven-
dors to rewrite their applications. Plug-ins or add-ins can be implemented for
these third-party applications in order to provide visual handles for creating and
editing anchors in the supported document format.

Flexible Communication Channels. The support for third-party applica-
tions asks for communication across different protocols. The APIs and SDKs
of some third-party applications limit their plug-ins or add-ins to a specific set
of communication protocols. For example, Google’s Chrome Extension API and
extensions for other web browsers only support WebSocket communication with
third-party applications whereas TCP sockets are the default communication
protocol for third-party desktop applications. An extensible link service should
support the multitude of existing communication protocols since otherwise it
might not be possible to integrate certain third-party applications.

Customisable Link Service. The previous requirements imply that the dif-
ferent link service components are extensible via data plug-ins, visual plug-ins
or third-party application plug-ins. It is not practical to push users to install
all plug-ins at once given that they might not use most of the supported doc-
ument formats or third-party applications. Therefore, end users should be able
to customise their link service by installing only the plug-ins for the document
formats that are really needed. Customisability of the link service means that
the link service is extensible on demand. The LATEX environment which has been
used to write this article is a good example for on-demand extensibility via var-
ious packages to support extra functionality. This on-demand extensibility not
only saves storage space but also increases the overall performance. In order to
successfully support on-demand customisation, the availability of the plug-ins
should be ensured via a central online plug-in repository.

Plug-in Versioning. Different document format specifications are often updated
to support new features. Moreover, third-party applications are normally updated
with new features to either support the new document format specification or to
enable new features in the application itself. Therefore, new versions of plug-ins for
some document formats are expected to be published and the link service should
offer some plug-in versioning mechanism.

4 Dynamically Extensible Link Service

The overall architecture of our link service is outlined in Fig. 2. Components
depicted with solid lines have been presented in earlier work [19], while some
of the dashed gateways, plug-in tracking, online repository and communication

A Dynamically Extensible Open Cross-Document Link Service 67

Fig. 2. Cross-document link service architecture

components are playing a central role for the dynamic link service extensibility
described in this paper.

In our link service, the gateway and communication components play an
important role for integrating third-party applications. For each document for-
mat to be integrated via a third-party application, a gateway handling the mes-
sages with the third-party application plug-in has to be provided. The third-
party application plug-in can use any communication protocol supported by the
link service. The plug-in tracking component consists of a plug-in tracker and
an update manager. These two components are responsible for keeping track
of the installed plug-ins as well as for installing new plug-ins on demand by
communicating with the online plug-in repository.

The OSGi framework [10] plays an important role in achieving our link ser-
vice’s dynamic extensibility. The OSGi specification defines a dynamic modular
system for the Java programming language but the deployment of an OSGi-
based application does not differ from regular Java applications. More details
about the motivation for using the OSGi framework in our link service can be
found in [19]. Conceptually, the OSGi framework consists of three layers, includ-
ing the module layer, the life cycle layer and a service layer. The module layer
is responsible for packaging and sharing the application code. Each module of
an application is called a bundle and corresponds to a Java JAR file with some
extra metadata in the form of a manifest file. The life cycle layer controls spe-
cific modules at execution time. The interaction and communication between
installed modules is managed by the service layer. Each component depicted by
a rectangle in the link service is a bundle. All data, visual and gateway plug-ins
are bundles with different metadata. The life cycle layer is extensively used by
the plug-in tracker for dynamic extensibility.

68 A.A.O. Tayeh and B. Signer

In order to get a better understanding of the roles played by the different
components, we come back to the scenario presented earlier, but this time we
assume that the user installed the extensible version of the link service. When
the user wants to add support for the Word document format, they can either
open the online repository web page to search for Word document plug-ins or
search via the link service’s update manager interface. The user learns that there
are two options for the Word document format. The first extension visualises
documents and their anchors in the link browser. This means that the extension
consists of a data plug-in and a visual plug-in. A second extension supports the
visualisation directly within Microsoft Word. This extension consists of a data
plug-in, a gateway as well as the necessary Microsoft Word application add-in.
In both cases, the user must install the data plug-in which has some metadata
stored in its manifest file in order to be correctly identified and used by the link
service components. The update manager reads the metadata, the plug-in is
downloaded via a secure shell protocol and installed by the plug-in tracker. The
plug-in tracker does the necessary work to inject the plug-in into the running
link service. If the user wishes to visualise their documents within the generic
link browser, the visual plug-in for the Word document type has to be installed.

In the case that the user wants to visualise their documents in Microsoft
Word, they have to install the gateway plug-in in the link service and follow the
instructions provided for the Microsoft Word add-in in order to extend Microsoft
Word. The gateway plug-in is installed based on the same mechanism used for
data and visual plug-ins. After installing the plug-ins, the user should be able
to create hyperlinks in Word documents and link them to any of the already
supported document formats. Let us assume that after three months the devel-
oper of the third-party Word plug-in has fixed some bugs and implemented some
new nice visualisation as well as other features. They upload a new version of
the plug-in to the online repository. The update manager will inform the user
that a new version of a Word plug-in is available and wait for a confirmation to
install the new version. In the following subsections we elaborate on the different
components necessary for the dynamic extensibility described in the scenario.

4.1 Gateways

The gateway component is introduced in the link service in order to overcome
the limitation of third-party application integration introduced earlier by the
link service. The gateway component is the most essential component to inte-
grate existing third-party applications and it is flexible enough to integrate any
new third-party application. A third-party application extension (plug-in) acts
as a client to the link service and can be implemented in any programming
language supported by the third-party application SDK. The component con-
tains an interface that provides the abstract methods needed to translate any
message exchanged with a third-party application plug-in. Message translation
simply involves the marshalling and unmarshalling of Java objects. JSON mes-

A Dynamically Extensible Open Cross-Document Link Service 69

sages sent by an external third-party plug-in are unmarshalled into Java objects
by the corresponding gateway and Java objects are marshalled to JSON objects
by the gateway to be sent to its corresponding external third-party application
plug-in. Two things are worth mentioning here. First, the gateway component
can easily be extended for a specific document format, since third-party devel-
opers are not required to understand the different communication channels and
processes among the link service components. Second, the link service does not
provide a general JSON representation for messages that should be exchanged
with external third-party application plug-ins, but it rather asks developers to
form these objects. For multiple reasons, we provide developers the freedom to
marshal and unmarshal the objects and send as much information as they want
from the link service to third-party applications. First of all, the objects to be
marshalled or unmarshalled represent information about documents and anchors
in a specific document format. This information is introduced by the data plug-
in of a given document format and we cannot anticipate what information the
object contains. The link service treats all objects as entities which is the general
representation of RSL resources and selectors. Nevertheless, third-party develop-
ers are aware that entity objects received by the gateway from other link service
components must be instances of the specific document format and contain some
additional information. It further enables developers to send arbitrary informa-
tion to external third-party application plug-ins for rich link visualisation.

Listing 1.1. Gateway interface

ab s t r a c t long getResourceId (JSONObject msg) ;
ab s t r a c t JSONObject openDocument (Resource res ,

HashSet <Anchor> anchors , Anchor en t i t yH i gh l i gh t) ;
ab s t r a c t long getTargetEntityID (JSONObject msg) ;

In a gateway plug-in, the developer has to provide a class implementing the
gateway interface. Some of the methods of the gateway interface are shown in
Listing 1.1. The getResourceId() method is called by the link service in order
to return the ID of the resource (document) included in the JSON message. The
second method is used to serialise a Java object to a JSON message which can
be sent to the external third-party application plug-in to open a document. The
method receives the resource (document), the set of anchors contained within the
document and optionally a specific anchor to be highlighted in the case that the
document has to be visualised as a result of a link that has been followed. It is
worth mentioning that the anchor object in the link service contains information
about a link source which is either a selector or a complete document. It further
contains information about the targets which can either be other documents or
selectors of documents. The anchor object contains enough information about
each target such as its MIME type, its ID as well as the contained document
in the case of a selector, enabling the development of rich visual plug-ins. For
example, multi-target links can be represented via a pop-up menu in order to
give the user the flexibility to navigate to any target document.

70 A.A.O. Tayeh and B. Signer

4.2 Plug-in Metadata and Repository

The different types of plug-ins (e.g. data, visual and gateway plug-ins) require
a mechanism to differentiate between them in order to correctly use them in
the link service and to correctly inject them when extending the link service. We
have exploited the OSGi manifest file to correctly identify each document format
plug-in. Aside from the specific OSGi metadata required by any OSGi bundle,
different document format plug-ins must contain specific metadata to be a valid
extension for the link service and to be correctly identified by the link service.
Based on the type of the plug-in (i.e. data, visual or gateway), different meta-
data keys and values should be included in the plug-in. The Extension-Name,
Extension-Mime and Extension-Type metadata is required for all types of plug-
ins. This metadata provides information about the MIME type (e.g. text/html
or application/pdf) supported by the plug-in, its name and its type. A plug-
in developer should maintain the consistency of the MIME type provided in a
document format plug-in. In other words, a data plug-in and a visual plug-in for
a given document format must have the same MIME type. The same holds for
data and gateway plug-ins in the case of a third-party application integration.

The link service’s user interface contains an abstract class defining the neces-
sary functions to visualise a document as well as to perform the CRUD operations
for links in a given document format. A visual plug-in must extend the abstract
class of the user interface component. Furthermore, each gateway has to imple-
ment the gateway interface. The link service can communicate with a visual
plug-in to visualise documents or for CRUD operations on a link by instantiat-
ing the class that extends the abstract user interface class. Furthermore, the link
service can communicate with a gateway plug-in in order to marshal or unmar-
shal objects by instantiating the class that implements the gateway interface. In
order to instantiate these classes, the classpath is stored in the Extension-Class
metadata included in the corresponding visual or gateway plug-in. Finally, the
online repository provides simple interfaces to search for plug-ins and for upload-
ing new plug-ins.

4.3 Plug-In Tracking

The plug-in tracking consists of the plug-in tracker and the update manager. The
update manager is responsible for keeping track of the available document format
plug-ins in the online repository by reading the metadata for every plug-in. Users
can interact with the update manager by using its GUI in order to search for
plug-ins of different document formats. Moreover, the update manager notifies
the plug-in tracker about the availability of any document format. Last but not
least, the update manager is in charge of downloading the different plug-ins.

The plug-in tracker is responsible for installing, keeping track of and man-
aging the different plug-ins in the link service. The plug-in tracker’s extender
pattern listens for any OSGi bundles (plug-ins) being started or stopped in the
link service. When a plug-in is installed, the tracker checks whether it is an

A Dynamically Extensible Open Cross-Document Link Service 71

extension based on the predefined extension metadata and performs the neces-
sary operations to integrate it in the link service. In the case of a data plug-in,
the tracker adds the MIME type to the list of supported document formats. If
a visual plug-in is installed, the plug-in tracker checks whether the data plug-in
for the same document format (MIME) has already been installed. In the case
that the data plug-in is missing or the user does not confirm the installation
of the data plug-in, the visual plug-in will not be installed. If the data plug-in
is already installed or installed after a user’s confirmation, the plug-in tracker
notifies the user interface component that a new visual plug-in exists which in
turn injects the new plug-in into the link browser user interface. As a result, the
user can see that the new document format has successfully been integrated in
the link service and can start using it. For gateway plug-ins, the plug-in tracker
will maintain the availability of its data plug-in with the same mechanism used
when installing a visual plug-in and add it to the list of supported gateways.

4.4 Communication Protocols

In order to support as many third-party applications as possible, our link service
communication component supports three different communication protocols.
TCP sockets and WebSockets are used for full duplex communication channels
and a REST API can be used as a fall-back solution for third-party applica-
tion SDKs not offering full duplex communication. JSON messages coming from
third-party applications through different communication protocols are centrally
managed via the message pool component. The message pool also keeps track of
all active third-party application plug-ins and their sessions in order to forward
the JSON messages produced by different gateways.

Note that each JSON message exchanged with a third-party application plug-
in contains a command key with one value for the predefined request values. For
example, the create value is used in some messages sent by the external plug-ins
and informs the message pool that the user wants to create a link in a document
visualised in its third-party application. The showTarget value is contained in
some messages sent by the external plug-ins and tells the message pool that the
user clicked on a link in a document visualised in the third-party application. In
this case, the JSON message should contain information about the specific link
target. The message pool then asks the corresponding gateway to return the ID of
the intended target by passing the JSON message to the getTargetEntityId()
gateway method shown earlier in Listing 1.1. When the link service requires
an external third-party application plug-in to open a document with its selec-
tors, it sends the request to the message pool. The message pool then asks the
corresponding gateway to marshal the object to a JSON message containing
the command key with the openDocument value and the third-party application
plug-in will know how to process the message.

Messages coming from third-party application plug-ins are forwarded to the
user interface component via the message pool after they have been unmarshalled
to Java objects by the corresponding gateway. The message pool can identify the
correct gateway by using the MIME type defined by the communication session

72 A.A.O. Tayeh and B. Signer

in the handshake process. Moreover, when a message has to be sent from the link
service to the external third-party application plug-in, the message pool requests
the gateway to marshal the message to a JSON message before forwarding it to
the correct communication protocol with the active session.

5 Related Work

Based on the six requirements introduced earlier in Sect. 3, we present a compar-
ison of some existing link services and annotation tools in Table 1. Each require-
ment is mapped to one dimension (column) in the comparison table, expect for
the second requirement which is mapped to the two ‘Cross-Document Linking’
and ‘Emerging Document Formats’ dimensions. The former evaluates whether a
link service supports cross-document linking between multiple existing document
formats, while the latter evaluates whether a link service is extensible and might
support emerging document formats. Further, the last row in the table presents
our dynamic link service. We use the � symbol to illustrate that a feature is
supported whereas the (�) symbol means that there is only limited support for
a given feature or the feature is supported but with some major drawbacks.

Table 1. Comparison of existing link services and annotation tools

Open hypermedia systems such as Intermedia [9], Sun’s link service [15] and
Microcosm [11] addressed the limitations of embedded links by managing links
separately from the linked documents in so-called linkbases. Intermedia sup-
ports the linking across five different document formats but shows a number
of shortcomings. Even though Intermedia is based on a layered architecture,
it is not evident how it can be extended to support additional document for-
mats. Moreover, Intermedia was intended to be used as a complete authoring
tool and not purely as a link service. This implies that any document format
that would like to profit from Intermedia’s linking features has to be visualised

A Dynamically Extensible Open Cross-Document Link Service 73

and authored with Intermedia’s viewers. Furthermore, features such as the inte-
gration of third-party applications, customisation and versioning have not been
considered in Intermedia.

Sun’s link service—a pure link service providing a protocol to communicate
with external applications—shows two major shortcomings. First, the link ser-
vice forms a monolithic component with a core link model that is not extensible.
In other words, more advanced forms of links cannot be supported without a
redeployment of the link service. Second, the protocol comes in the form of a
program library that has to be included in any external application in order to
communicate with the link service. This implies that third-party applications
have to be rewritten to benefit from the features offered by the link service.

Microcosm supports linking for Microsoft applications and further offers some
nice features including generic links or the dynamic linking of documents. Nev-
ertheless, it is not evident how Microcosm could be extended in order to support
some of the other important features. It is worth mentioning that a number of
open hypermedia systems have been used to enrich the Web with external links
by considering the Web as a client for these open hypermedia solutions [4,6].

The XLink standard supports so-called extended links which can be stored
in linkbases and be used to realise bi- and multi-directional links. A link service
making use of the XLink model and XPointer expressions can only support the
linking across four types (MIME) of XML documents [8]. Nevertheless, most web
link services and applications that make use of XLink, such as XLinkProxy [7],
solely support HTML documents. On the other hand, RSL is flexible and pro-
vides a number of features that XLink lacks such as user rights management,
context resolvers and overlapping links. Note that recent Semantic Web tech-
nologies and XML promote the concept of linked data [12] on the Web.

A number of systems such as the W3C’s Amaya2 web browser implement
the Annotea standard [13]. MADCOW [5] is another web annotation plug-in for
Microsoft Internet Explorer that uses a client-server architecture allowing users
to store their annotations on dedicated remote servers. MADCOW goes beyond
the functionality provided by Annotea-based tools and offers the possibility to
annotate richer media types such as images and videos. Nevertheless, most of
these tools and standards adopt the simple annotation concepts (e.g. notes or
comments) and do not support the creation of hyperlinks between existing con-
tent. Even if the linking of existing content is supported and the extensibility is
addressed, these solutions are limited to the features offered by XLink.

More recently, various digital libraries management systems (DLMSs) have
incorporated interactive annotation features that facilitate discussions among
researchers. Whereas in most of the DLMSs the annotation features are offered
by built-in components, the Flexible Annotation Service Tool (FAST) [3] has
been developed to be a stand-alone annotation tool in order to offer its services
to multiple DLMSs. Even though FAST offers simple annotation features rather
than cross-document linking and also lacks some of the other features, it is based
on an interesting extensible architecture. FAST consists of two main components,
2 http://www.w3.org/Amaya/.

http://www.w3.org/Amaya/

74 A.A.O. Tayeh and B. Signer

the core annotation service and a number of gateways (interfaces). Each gateway
is connected to a different DLMS and ensures that the DLMS gets access to the
core annotation service offered by FAST. Hence, any DLMS can benefit from
FAST’s features by developing a new FAST gateway. The flexible integration of
different DLMSs with FAST can be considered as third-party integration.

6 Discussion and Future Work

To the best of our knowledge, the presented link service is the first dynamically
extensible and customisable link service. The extensible open cross-document
link service is a future-proof linking solution for arbitrary document formats
and multimedia content types. Its dynamic extensibility further allows third-
party developers and end users to support any document format and multimedia
content type without the intervention of the link service provider. To address
the preferences of the end users, the integration of different document formats
and multimedia content types can either happen within the link browser or in
their preferred third-party applications. The presented dynamically extensible
link service further deals with updates for specific document formats or third-
party applications by providing a mechanism for maintaining different versions
of the same document format plug-in. Furthermore, the link service represents
an ideal platform for investigating innovative forms of cross-media linking.

The manageability and maintainability of links has always been an issue in
hypermedia systems. This includes broken links, the consistency of links when
the linked documents evolve or the management of link metadata in collaborative
environments such as Google Docs. The RSL links used by our link service are
bidirectional and therefore the link service is able to solve the issue of broken
links by removing any link target from a document when the link source has
been deleted from the source document. The management of links in evolving
documents is still a hot topic. Even though we are planning to apply more than
one mechanism for addressing this problem, we have currently adopted a simple
document archiving solution of linked documents which also helps to address the
broken link problem in the case of missing documents.

We are currently working on the integration of third-party applications such
as Microsoft Word, PowerPoint or Acrobat Reader. Moreover, we are investi-
gating a model for cross-media document formats where content can easily be
transcluded from various document formats and multimedia types. In the near
future, we plan to evaluate the usability of the presented link service in a user
study. Last but not least, we are working on an enhanced desktop environment
that exploits the links defined via the link service in combination with some data
mining algorithms to enhance the search and retrieval of desktop documents.

7 Conclusion

We have presented a dynamically extensible link service enabling the linking
across arbitrary document formats and media types. In contrast to existing link

A Dynamically Extensible Open Cross-Document Link Service 75

services and link models, our solution supports the integration of new document
formats without having to apply any changes to the core of the link service or
graphical link browsers and without a redeployment of the link service. Based
on the concepts of data plug-ins, visual plug-ins, gateways as well as third-party
application add-ins, emerging document formats can either be supported within
our link browser or via any third-party application that has been extended to
communicate with a document format-specific gateway. The presented dynami-
cally extensible cross-document link service acts as a research platform for inves-
tigating document and link management as well as maintainability in so-called
cross-media information spaces. Our solution might further inspire other link
service providers to reconsider the dynamic extensibility of their approaches.

References

1. Adobe Portable Document Format Reference, 6th edn. Version 1.7, Adobe Systems
Incorporated, November 2006

2. Standard ECMA-376: Office Open XML File Formats, 3rd edn. ECMA Interna-
tional, June 2011

3. Agosti, M., Ferro, N.: A system architecture as a support to a flexible annotation
service. In: Türker, C., Agosti, M., Schek, H.-J. (eds.) Peer-to-Peer, Grid, and
Service-Orientation in Digital Library Architectures. LNCS, vol. 3664, pp. 147–
166. Springer, Heidelberg (2005)

4. Anderson, K.M., Taylor, R.N., Whitehead Jr, E.J.: Chimera: hypermedia for het-
erogeneous software development environments. ACM Trans. Inf. Syst. 18, 211–245
(2000)

5. Bottoni, P., Civica, R., Levialdi, S., Orso, L., Panizzi, E., Trinchese, R.: MADCOW:
a multimedia digital annotation system. In: Proceedings of AVI 2004, Gallipoli,
Italy, May 2004

6. Bouvin, N.O.: Unifying strategies for web augmentation. In: Proceedings of Hyper-
text 1999, Darmstadt, Germany, February 1999

7. Ciancarini, P., Folli, F., Rossi, D., Vitali, F.: XLinkProxy: external linkbases with
xlink. In: Proceedings of DocEng 2002, McLean, USA, November 2002

8. DeRose, S., Maler, E., Daniel, Jr., R.: XML Pointer Language (XPointer) Version
1.0, January 2001

9. Haan, B.J., Kahn, P., Riley, V.A., Coombs, J.H., Meyrowitz, N.K.: IRIS hyperme-
dia services. Commun. ACM 35(1), 36–51 (1992)

10. Hall, R., Pauls, K., McCulloch, S., Savage, D.: OSGi in Action: Creating Modular
Applications in Java. Manning Publications, Greenwich (2011)

11. Hall, W., Davis, H., Hutchings, G.: Rethinking Hypermedia: The Microcosm App-
roach. Kluwer Academic Publishers, Boston (1996)

12. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Morgan and Claypool Publishers, San Rafael (2011)

13. Koivunen, M.-R.: Semantic authoring by tagging with annotea social bookmarks
and topics. In: Proceedings of SAAW 2006, Athens, Greece, November 2006

14. Nelson, T.H.: Literary Machines. Mindful Press, Sausalito (1982)
15. Pearl, A.: Sun’s link service: a protocol for open linking. In: Proceedings of Hyper-

text 1989, Pittsburgh, USA, November 1989

76 A.A.O. Tayeh and B. Signer

16. Signer, B.: What is wrong with digital documents? a conceptual model for struc-
tural cross content composition and resuse. In: Proceedings of ER 2010, Vancouver,
Canada, November 2010

17. Signer, B., Norrie, M. C.: A framework for cross-media information mangement.
In: Proceedings of EuroIMSA 2005, Grindelwald, Switzerland, February 2005

18. Signer, B., Norrie, M.: As we may link: a general metamodel for hypermedia sys-
tems. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007.
LNCS, vol. 4801, pp. 359–374. Springer, Heidelberg (2007)

19. Tayeh, A.A.O., Signer, B.: Open cross-document linking and browsing based on
a visual plug-in architecture. In: Benatallah, B., Bestavros, A., Manolopoulos, Y.,
Vakali, A., Zhang, Y. (eds.) WISE 2014, Part II. LNCS, vol. 8787, pp. 231–245.
Springer, Heidelberg (2014)

	A Dynamically Extensible Open Cross-Document Link Service
	1 Introduction
	2 Cross-Document Link Service
	3 Requirements
	4 Dynamically Extensible Link Service
	4.1 Gateways
	4.2 Plug-in Metadata and Repository
	4.3 Plug-In Tracking
	4.4 Communication Protocols

	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	References

