
Similarity Search over Personal Process
Description Graph

Jing Ouyang Hsu(B), Hye-young Paik,
and Liming Zhan

The University of New South Wales, Sydney, NSW, Australia
{jxux494,hpaik,zhanl}@cse.unsw.edu.au

Abstract. People are involved in various processes in their daily lives,
such as cooking a dish, applying for a job or opening a bank account.
With the advent of easy-to-use Web-based sharing platforms, many of
these processes are shared as step-by-step instructions (e.g., “how-to
guides” in eHow and wikiHow) on-line in natural language form. We refer
to them as personal process descriptions. In our early work, we proposed a
graph-based model named Personal Process Description Graph (PPDG)
to concretely represent and query the personal process descriptions. How-
ever, in practice, it is difficult to find identical personal processes or frag-
ments for a given query due to the free-text nature of personal process
descriptions. Therefore, in this paper, we propose an idea of similarity
search over the “how-to guides” based on PPDG. We introduce the con-
cept of “similar personal processes” which defines the similarity between
two PPDGs by utilizing the features of both PPDG nodes and struc-
ture. Efficient and effective algorithms to process similarity search over
PPDGs are developed with novel pruning techniques following a filtering-
refinement framework. We present a comprehensive experimental study
over both real and synthetic datasets to demonstrate the efficiency and
scalability of our techniques.

Keywords: How-to guides · Personal process description graphs · Sim-
ilarity search

1 Introduction

People are engaged in all kinds of processes all the time, such as cooking a dish,
applying for a bank account or filing a tax return. Although the expertise in
the area of workflow management and business process management (BPM) [4]
has produced solutions for modelling, automating and managing much of the
business and organizational workflows, still significant portion of the processes
that people experience daily exist outside the realm of these technologies.

However, with the advent of easy-to-use Web-based sharing platforms, peo-
ple often share their experience/knowledge about a process on the Web, in the
form of how-to guides or step-by-step instructions. Although these are primarily

c© Springer International Publishing Switzerland 2015
J. Wang et al. (Eds.): WISE 2015, Part I, LNCS 9418, pp. 522–538, 2015.
DOI: 10.1007/978-3-319-26190-4 35

Similarity Search over Personal Process Description Graph 523

describing a process, without the modelling expertise, they are normally writ-
ten in natural language as a sequence of sentences forming the process steps. In
order to distinguish these texts from the conventional business workflow models,
we refer to them as personal process descriptions. A plethora of examples on
personal process descriptions can be found in cooking recipes, how-to guides or
Q&A forums.

The texts in natural language format are not precise enough to be useful in
utilizing the process information presented in them. For example, the state-of-
the-art for search technologies over the existing personal process descriptions are
still a keyword/phrase-based search and users would have to manually investigate
the results. A process-aware technique should be able to (i) produce the overall
activity structure, (ii) show the dependencies between data and actions, and (iii)
compare and contrast different paths to accomplish the goal.

In our previous work [13], we proposed a simple structured query language
designed to perform exact-match search over the personal process descriptions.
The language is supported by a graph-based, light-weight process model called
PPDG (Personal Process Description Graph) which concretely represents the
personal process description texts.

In this paper, we extend our query technique to return similar process
descriptions to a query input. This technique is particularly important because
the PPDGs are obtained from texts, and being able to cope with semantic sim-
ilarity in words as well as the similarity in the structure of the activities in a
process can return more relevant results. Our contributions are summarized as
follows:

– We formally define the similarity over PPDG. PPDG is a graph-based process
description language that presents both control-flow and data-flow in a per-
sonal process description.

– We propose effective and efficient algorithms to perform similarity search over
PPDGs. The similarity algorithms deal with personal processes from different
perspectives in that, unlike existing approaches, both control-flow and data-
flow are considered.

– We further improve the performance of the algorithms by utilizing three novel
pruning techniques.

The paper is organized as follows: Sects. 2 and 3 define the preliminary con-
cepts and the problems. Section 4 describes the efficient algorithms to process
the PPDG similarity search. Then we present the experiment results in Sect. 5.
The related work is discussed in Sect. 6 followed by a conclusion in Sect. 7.

2 Preliminaries

In this section, we briefly introduce the personal process description graph
(PPDG) and querying PPDGs. The full descriptions of these concepts are pre-
sented in [13].

524 J.O. Hsu et al.

2.1 Personal Process Description Graph

A PPDG represents a personal process description as a labeled directed graph.
It describes the whole process of performing a personal process placing equal
emphasis on both actions and input/output data relating to each action. Figure 1
depicts a PPDG of a PhD admission process experienced by an international
applicant. Actions can be a one-off action, repeated action, or duration action.
Data elements are represented by hexagonal nodes. A data element can be either
basic or composite (i.e., composition of basic data). In order to make the visu-
alization of the graph simple, all types of actions are represented by using the
same notation. The details are stored in the schema associated with each PPDG.
The same principle applies to the data.

Fig. 1. How to apply for PhD admission at UNSW by an international applicant

The data elements and actions are connected to form ‘action flow’ and ‘data
flow’. Action flows, represented by solid lines, describe temporal sequence of the
actions. For example, in Fig. 1, ‘V1: check eligibility ’ takes place before ‘V2: find a
potential supervisor ’. Data flows, represented by dotted lines, keep track of data
sources and denote the relationships between the data and actions. For example,
‘V4: write a research proposal’ takes two data inputs ‘D4: rough idea’ and ‘D5:
a sample of proposal ’ and produces one data output ‘D6: completed proposal ’.

A PPDG also stores constraints/conditions relating to an action, data or the
flows. For example, a condition may specify a location or the time an action
takes place. We define PPDG more formally as follows.

Definition 1. A personal process description graph PPDG is a tuple
PPDG := (A,D,EA, ED, C, φ, λ) where:

– A is a finite set of nodes a0, a1, a2,... depicting the starting action (a0) and
actions (a1, a2, ...).

Similarity Search over Personal Process Description Graph 525

– D is a finite set of nodes d0, d1, d2,... depicting the data input/output of an
action.

– EA is a finite set of directed action-flow edges ea1, ea2,..., where eai = (aj , ak)
leading from aj to ak (aj �= ak) is an action-flow dependency. It reads aj takes
place before ak. Each node can only be the source/target of at most one action-
flow edge: ea = (ai, aj) ∈ EA : ea′ = (ak, al) ∈ EA \ ea : ai �= ak and aj �=
al.

– ED is a finite set of directed data-flow edges ed1, ed2,..., where edi = (aj , dk)
leading from aj to dk is a data-flow dependency. It reads aj produces dk.
edl = (dm, an) leading from dm to an is a data-flow dependency. It reads an

takes dm.
– C is a finite set of conditions c1, c2,... with ci = (< name, descr >, xj) being

associated to xj ∈ {A,D,EA, ED} and having name and description of the
condition.

– φ: a function that maps Action Label to action nodes.
– λ: a function that maps Data Label to data nodes.

In this work, we have not yet considered constraints in PPDG. For simplicity,
we remove C (conditions) from PPDG here on.

Definition 2 (PPDG Query Graph). A PPDG query graph is a tuple
PPDG-Q = (QA,QD,QEA, QED, Qφ, Qλ, QP,Δ) where:

– QA is a finite set of action nodes in a query.
– QD is a finite set of data nodes in a query.
– QEA ⊆ QA × QA is the action flow relation between action nodes in a query.
– QED ⊆ QA × QD is the data flow relation between action nodes and data

nodes in a query.
– Qφ: a function that maps Action Label to action nodes.
– Qλ: a function that maps Data Label to data nodes.
– QP is the path relation between action nodes which includes data nodes and

data edges corresponding to each action node in query.
– Δ: QP → {true,false}

Figure 2 shows an example of PPDG query input and output. A PPDG query
graph consisting of “collect dress” action, immediately followed by “take photos”
action with input data “dress”, followed by a path query edge leading to “attend
ceremony” action. The symbol “‖” is used to represent a path query between
action nodes. In the above example, the path will match any action as well as
connected data nodes from “take photos” to “attend ceremony”. The subgraph
inside dotted box in Fig. 2 is the result of the query.

However, in practice, it is difficult to find out the identical personal processes
by a given query graph due to natural property of personal process. The similar-
ity search technique proposed in this paper will see the query results expanded
to include subgraphs that are similar to the query graph.

526 J.O. Hsu et al.

Fig. 2. An example of PPDG query input and output (an exact match)

2.2 Constructing PPDG and PPDG Repository

The PPDGs are constructed via PPDG Builder, a prototype system is imple-
mented as part of a companion project which aims to establish a Web-based
repository of PPDGs. The system relies on the Stanford’s NLP parser and POS
(Part-Of-Speech) tagger1 to extract potential pairs of action and data (e.g.,
{book, academic dress}, {pay, cash}). We then build a smart error correction
and management layer by using the well-known knowledge acquisition technique,
RDR (Ripple Down Rules). The rules are incrementally built and managed to
correct the extraction errors from the NLP parser and tagger outputs. Based
on this, we are currently developing a graphical tool, PPDG Editor. The editor
provides the graphical notations for the syntax elements in PPDG. For each per-
sonal process description, the users will see suggested action/data listing from
the PPDG Builder. Although we do not assume that the PPDG construction
process can be totally automated, our aim is to automate the mapping of the
suggested action/data to PPDG nodes and labels as much as possible over time.

3 Problem Definition

The query techniques proposed in our earlier work implemented an exact match
between a query graph and PPDGs. In this paper, we investigate the problem of
similarity search over PPDGs. This is an important extension to PPDG queries
because the construction process of PPDGs from the text-based sources gener-
ates nodes and labels that are semantically ‘similar’, but appear different. In
similarity search, for a given PPDG query Q, our system returns similar PPDGs
ranked by similarity scores from the PPDG repository. Without loss of general-
ity, we assume the size of Q is not larger than that of any PPDG P ∈ P. We
define the similarity between Q and P , denoted as Sim(Q,P), in this section.

To get the similarity score Sim(Q,P), we separately consider the nodes (both
action and data), and the directed edges linking the nodes2. Hence, we compute
1 http://nlp.stanford.edu/software/, Stanford NLP Group.
2 Throughout the paper, we sometimes refer to the directed edges to/from nodes as

simply graph structure.

http://nlp.stanford.edu/software/

Similarity Search over Personal Process Description Graph 527

two separate similarity scores: one based on the labels of the nodes, the other
on the edges from/to the nodes. We then combine the two to obtain Sim(P,Q).

We note that, different from a PPDG, a PPDG query Q may include a path
between two action nodes. If a path exists in Q, that is Δ = true, we consider the
path as a special action edge and Q as a special PPDG. Q with path is special
case and we will discuss it in Sect. 4. For the sake of simplicity, from here on,
let us treat Q as a PPDG. Now we formally define the similarity between two
PPDGs P and P ′ as follows.

Graph Nodes Similarity. First, we consider the similarity between the nodes
in P and P ′. Since the label of each node n in a PPDG is composed by a set W
of words, we can calculate the label similarity between two nodes by comparing
the corresponding words sets.

Definition 3 (Label Similarity). Given two nodes n1, n2, let ω be the function
to separate the label of a node into a set of words3, we get W1 = ω(n1) and
W2 = ω(n2). Let M be a function that returns the number of exact matching
words, S be a function that returns the number of synonymous words, we define
the label similarity between the two nodes as follows:

lSim(n1, n2) =
2(M(W1,W2) + S(W1,W2))

|W1| + |W2| (1)

Example 1. Considering the two nodes n1, n2, their labels are “seek a potential
supervisor” and “search for a supervisor”, we get the two word sets W1={seek,
potential, supervisor} and W2={search, supervisor}. Suppose we know “seek”
and “search” are synonymous, then according to Eq. 1, the lSim(n1, n2) =
2(1+1)
3+2 = 0.8.

According to Definition 3, we can obtain all label similarity scores between
the nodes of P and nodes of P ′. For a node nP ∈ P , we choose the best matching
node n′

P ∈ P ′, where the label similarity lSim(nP , n′
P) is the highest among all

similarity scores between nP and all nodes in P ′. Then we are able to define the
graph nodes similarity nSim(P, P ′) as follows.

Definition 4 (Graph Nodes Similarity). Given two PPDGs P = (A,D,
EA, ED, φ, λ) and P ′ = (A′,D′, E′

A, E′
D, φ′, λ′) with |A| ≤ |A′|, let ai, dj, a′

k,
and d′

l represent the nodes of A, D, A′, and D′, respectively. Then the graph
nodes similarity between P and P ′ is:

nSim(P, P ′) =
u ·

|A|∑

i=1

|A′|
max
k=1

(lSim(ai, a
′
k)) + v ·

|D|∑

j=1

|D′|
max
l=1

(lSim(dj , d
′
l))

u · |A| + v · |D| (2)

where u and v are weights for action nodes and data nodes, and u, v ∈ [0, 1].

3 Note that the common auxiliary words, such as “a”, “for” and “of”, are not included.

528 J.O. Hsu et al.

The weight u and v are defined by users to indicate which type of node is more
important for them (i.e., action or data).

Graph Structure Similarity. From the processing of graph nodes similarity,
we obtain the similar nodes mapping of P and P ′. Then we consider the similarity
of the directed edges between the similar nodes of P and P ′. Particularly, we
compute the similarity of the edges from/to the action nodes separately from
that of the data nodes. Hence, the similarity score is computed as follows:

Definition 5 (Graph Structure Similarity). Given two PPDGs P = (A,D,
EA, ED, φ, λ) and P ′ = (A′,D′, E′

A, E′
D, φ′, λ′) with |A| ≤ |A′|, the similar nodes

mapping of P and P ′ : A ↔ A′ and D ↔ D′, we get the edges matching
MEA

: EA ↔ E′
A and MED

: ED ↔ E′
D. Then the structure similarity between

P and P ′ is:

sSim(P, P ′) =
u · |MEA

| + v · |MED
|

u · |EA| + v · |ED| (3)

where u and v are weights of the two types of matchings.

Graph Similarity. Based on the two types of similarities between P and P ′, we
utilize the Harmonic Mean to compute the graph similarity between P and P ′.

Definition 6 (Graph Similarity). Given two PPDGs P and P ′, we obtain
their nodes similarity nSim(P, P ′) and structure similarity sSim(P, P ′). Then
the graph similarity between P and P ′ is computed by the Harmonic Mean as:

Sim(P, P ′) =
2 · nSim(P, P ′) · sSim(P, P ′)
nSim(P, P ′) + sSim(P, P ′)

(4)

Problem Statement. Given a query graph Q, a set P of PPDGs, and a thresh-
old η, a PPDG similarity search returns all PPDGs from the set P, such that the
similarity between Q and P ∈ P is no less than η, i.e. Sim(Q,P) ≥ η, P ∈ P.

4 Similarity Search

In this section, we present the efficient algorithms to process the PPDG similarity
search. Given a PPDG query Q and a set P of PPDGs, the straightforward
approach to find the similarity graphs to Q is to compute the graph similarity
between Q and each P ∈ P. Firstly, we join the node set of Q and P to get a set
of node pairs - each pair {nQ, nP } contains one node from Q and the other from
P , and calculate the label similarity between the nodes in each pair by Eq. 1.
Then for each nQ, we find the most similar node pair with highest label similarity
among all pairs containing nQ. Next, after obtaining all the most similar node
pairs between Q and P , we compute the nodes similarity nSim(Q,P) by Eq. 2.
Thirdly, based on the most similar node pairs, we find the matched edges of
Q and P and compute the structure similarity sSim(Q,P) by Eq. 3. Finally,
we get the graph similarity Sim(Q,P) by Eq. 4. The naive approach is costly
because we need to iterate all the nodes and edges of one PPDG. Therefore,

Similarity Search over Personal Process Description Graph 529

we propose efficient and effective techniques to process similarity search over
PPDGs following a filtering-refinement framework. We first perform the nodes
similarity to get a set C of candidate PPDGs, and then refine C by structure
similarity to get the search results. Section 4.1 presents the filtering technique
with efficient and effective pruning rules to get the candidate set. Section 4.2
refines the candidates by computing graph structure similarity.

4.1 Filtering by Graph Nodes

For the query Q and a PPDG P , the computing of graph nodes similarity
nSim(Q,P) is based on the label similarities between their nodes. In this sub-
section, we first propose the technique to compute label similarities between the
nodes of Q and P . Then the graph nodes similarity nSim(Q,P) is obtained
according to the label similarities.

To compute the label similarities between the nodes of Q and P , we first
decompose the label of each node into a set of words, and store the words set in
corresponding node, i.e. nQ. W for one node nQ ∈ Q and nP . W for one node
nP ∈ P . Then we create a set of nodes pairs, each consisting of two nodes - one
from Q and the other from P , denoted as {nQ, nP }. In each pair, nQ and nP are
the same type of nodes. Recall that there are two types of node - action node
and data node - existing in PPDG. For each pair, we can compute the label
similarity score between the two nodes.

To identify whether two words are synonymous, we use the electronic lexical
database - WordNet [5] to match words. We also build a local dictionary to
store the synonymous words to save the processing time of our algorithm. In
this paper, we assume the dictionary is already built locally and it contains all
the synonymous words in all graphs.

Theorem 1. Given two nodes n1 and n2, let W1 and W2 to be their words sets
respectively, then the similarity between the two nodes is:

lSim(n1, n2) ≤ 2 · min(|W1|, |W2|)
|W1| + |W2| (5)

which is the upper bound of lSim(n1, n2), denoted as lSim(n1, n2)up.

Proof. According to Definition 3, if all words are matched, the similarity score
is 2·min(|W1|,|W2|)

|W1|+|W2| .
�

Theorem 1 gives an upper bound of the label similarity between two nodes, and
we can use the bound to prune some node pairs without calculating their label
similarities.

Pruning rule 1. For a node nQ ∈ Q, we want to find a matching node
nP ∈ P with the highest label similarity score. Once we get the label similarity
lSim(nQ, nPi) for one node pair {nQ, nPi}, then any node pair {nQ, nPj} with
lSim(nQ, nPj)up < lSim(nQ, nPi) can be pruned safely. Therefore, we perform

530 J.O. Hsu et al.

the nodes similarity between Q and P as following steps. (1) we first extract
words from the label of each node in Q and P . (2) For each node nQ ∈ Q, we
join it with all nodes in P that are of the same type as nQ, to create a set
of node pairs. Recall that there are two types of node - action node and data
node - in one PPDG. (3) All pairs are sorted by the upper bound of their label
similarities in descending order, and stored in a max heap H. (4) We compute
the label similarity of node pairs from the top of H one bye one, and the pair
with highest label similarity score is kept in a tuple R. If the upper bound of the
label similarity of the pair in the top of H is smaller than the label similarity
in R, the remaining pairs in H can be pruned safely and R is the most similar
node pair from P to nQ. (5) After all most similar node pairs are obtained, the
nodes similarity between Q and P can be calculated by Definition 4.

Theorem 2. Given a PPDG query Q, a PPDG P , and a threshold η, to ensure
Sim(Q,P) ≥ η, the nodes similarity nSim(Q,P) is:

nSim(Q,P) ≥ η

2 − η
(6)

which is the threshold of the nodes similarity, denoted as τ .

Proof. According to Definition 6, we assume the structure similarity between Q
and P is equal to 1, i.e. sSim(Q,P) = 1, then we have nSim(Q,P) ≥ η

2−η .
�

Pruning rule 2. When the nodes similarity between Q and P is calculated,
we can compare it with threshold τ , obtained by Theorem2. It is clear that if
nSim(Q,P) < τ , the graph P can be pruned safely. Note that the computing of
nodes similarity is based on the label similarities of all most similar node pairs.
Therefore, after getting the label similarity of each most similar node pair, we
can compute the upper bound nSim(Q,P)up of the nodes similarity between
Q and P by assuming the label similarities of remaining unprocessed nodes are
equal to 1. If nSim(Q,P)up < τ , P can be pruned without further processing.
Finally, all un-pruned graphs are stored in a candidate set C for the refinement
step.

Algorithm 1 illustrates the details of the filtering step. To enable computing
the nodes similarity in an iterative fashion, we use a tuple T to process the
query. T is employed to maintain a node pair with the upper bound of its label
similarity. Particularly, T.pair stores a node pair, one node from the query Q and
the other from a PPDG P , and T.lsimUp stores the upper bound of the label
similarity of the pair. We first initiate τ by Theorem 2 in Line 1 and store all the
nodes of Q in a set NQ in Line 2. Each node nQ has a word set attribute nQ.
W to store its words extracted from its label. Next, we iterate the graphs P ∈ P
one by one to compute the nodes similarity nSim(Q,P) from Line 3 to Line 31.
To begin with, a pair set pairSet is initiated to store all the most similar node
pairs between Q and P . For each P , we first assume all action nodes and data
nodes in Q exactly match the nodes in P , and let MA, MD equal to the number
of action nodes and data nodes in Q, respectively, in Lines 4. Then we also get

Similarity Search over Personal Process Description Graph 531

Algorithm 1. Filtering by Nodes Similarity (Q,P, η, u, v)
Input : Query Q, A set P of PPDGs, Threshold η, Weight u, v
Output: Candidate set C

1 C := NULL, τ := η/(2 − η);
2 NQ ← All nodes in Q, nQ.W stores words extracted from the label of nQ;
3 for each P ∈ P do
4 pairSet := NULL, MA := |Q.A|, MD := |Q.D|, pruned := false;
5 NP ← All nodes in P , nP .W stores words extracted from the label of nP ;
6 for each nQ ∈ NQ do
7 H := NULL;
8 for each nP ∈ NP and nQ, nP are the same type of nodes do
9 T.pair := {nQ, nP };

10 T.lsimUp := lSim(nQ, nP)up;
11 H.push(T);

12 R.lsim := 0;
13 while H �= NULL do
14 T := H.pop();
15 if T.lsimUp < R.lsim then // Pruning rule 1

16 break;

17 else if lSim(T.pair) > R.lsim then
18 R.pair := T.pair;
19 R.lsim := lSim(R.pair);

20 if the nodes in R are action nodes then
21 MA := MA − 1 + R.lsim;

22 else
23 MD := MD − 1 + R.lsim;

24 nSimUp := (u ∗ MA + v ∗ MD)/(u ∗ |A| + v ∗ |D|);
25 if nSimUp < τ then // Pruning rule 2

26 pruned := true;
27 break;

28 pairSet ← R;

29 if !pruned then
30 P.pairSet := pairSet; P.nsim := nSim(Q, P);
31 C ← P ;

32 return C;

all the nodes of P with their words and store them in a set NP in Line 5. From
Line 6 to Line 11, we join each node nQ ∈ NQ with all nodes in NP to get node
pairs and compute the upper bound of their label similarities, which are stored in
T.pair and T.lsimUp, respectively. We use a max heap H to store T . The pairs
are sorted in H by T.lsimUp in descending order. Line 12 initializes a tuple R to
store the node pair which has the highest label similarity score after all pairs in
H are iterated. From Line 13 to Line 19, we compute the label similarity of the

532 J.O. Hsu et al.

pairs from the top of H and store the pair with the highest label similarity score
in R. According to the Theorem 1, if the upper bound of the label similarity
T.lsimUp of a pair T.pair is smaller than R.lsim, the iteration is stopped in
Line 13, and R contains the most similar node pair with its label similarity.
After we get one most similar node pair R.pair, MA or MD is updated based on
its label similarity R.lsim and the upper bound nSimUp of the nodes similarity
is computed in Lines 20–24. If nSimUp is smaller than τ , P can be pruned (Line
25). All most similar node pairs are stored in the set pairSet (Line 28). If P is
not pruned, after getting all the most similar node pairs between Q and P , the
nodes similarity nSim is computed by Eq. 2 and P is put into the candidate set
C in Lines 29–31.

4.2 Refinement by Graph Structure

After processing Q with all PPDGs by Algorithm1, we obtain a candidate set
C of PPDGs. In this subsection, we utilize the graph structure to refine the
candidates.

In the filtering step, we obtain the most similar node pairs stored in P.pairSet
for each candidate P ∈ C. Considering two pairs {nQ, nP } and {n′

Q, n′
P } in

P.pairSet, there is an edge eQ between nQ and n′
Q. If there is also an edge

eP between nP and n′
P , and eQ and eP are the same type of edges with the

same direction, we can determine eQ and eP are matched. The straightforward
approach is to check whether any two pairs in P.pairSet have matched edges.
However, the processing cost is very high, because we need check every two pairs.
Even if there is no edge between nQ and n′

Q, we still need to check whether the
edge exists on Q or not.

We can use the graph structure to reduce the processing time. When we pick
a pair {nQ, nP } from P.pairSet, we get all the connected nodes of nQ from graph
Q. Next, for each of connected node n′

Q, we get pair {n′
Q, n′

P } from P.pairSet.
If there is an edge eP between nP and n′

P , and eQ and eP are the same type of
edge with the same direction, we say the two edges are matched. Particularly,
after one pair is iterated, the pair is removed to avoid the reverse checking from
{n′

Q, n′
P }.

Theorem 3. Given a PPDG query Q, a PPDG P , and a threshold η, we get
the nodes similarity nSim(Q,P). To let graph similarity Sim(Q,P) ≥ η, the
structure similarity is:

sSim(Q,P) ≥ nSim(Q,P) · η

2 · nSim(Q,P) − η
(7)

which is the threshold of the structure similarity, denoted as ε.

Proof. According to Definition 6, it is clear that the inequality holds.
�

Similarity Search over Personal Process Description Graph 533

Algorithm 2. Refinement by Structure Similarity (Q, C, η, u, v)
Input : Query Q, Candidate set C, Threshold η, Weight u, v
Output: search result R

1 R := NULL;
2 for each P ∈ C do
3 pruned:=false;
4 ε = (P.nsim ∗ η)/(2 ∗ P.nsim − η);
5 MEA:=|Q.EA|, MED:=|Q.ED|;
6 unvisited := P.pairSet;
7 for each most similar node pair {nQ, nP } ∈ P.pairSet do
8 unvisited.remove({nQ, nP });
9 neighbors ←the connected nodes of nQ with edge types;

10 for each n′
Q ∈ neighbors do

11 Find {n′
Q, n′

P } in unvisited;
12 if there is no same type of edge between nP and n′

P then
13 if n′

Q.E is an action edge then
14 MEA := MEA − 1;

15 else
16 MED := MED − 1;

17 sSimUp := (u ∗ MEA + v ∗ MED)/(u ∗ |Q.EA| + v ∗ |Q.ED|);
18 if sSimUp < ε then // Pruning rule 3

19 pruned:=true;
20 break;

21 if !pruned then
22 P.sim ← the graph similarity;
23 R ← P ;

24 return R;

Pruning rule 3. From the filtering step, we gain the graph nodes similarity
nSim(Q,P) for each candidate P ∈ C. Then we compute the threshold ε of
the graph structure similarity according to Theorem3. Like pruning rule 2, we
assume the edges of Q and P are all matched in the beginning, and obtain the
upper bound of the structure similarity sSim(Q,P)up. When we process the
graph structure similarity search, if one edge of Q cannot match any edge of
P , sSim(Q,P)up decreases due to the unmatched edges. If sSim(Q,P)up is less
than ε, P can be pruned safely without further processing.

Algorithm 2 illustrates the details of the refinement step. We iterate all
PPDGs in the candidate set C. For each PPDG P , we first compute the threshold
ε of its structure similarity based on its nodes similarity P.nsim and graph simi-
larity threshold η in Line 4. Then, we assume all edges are matched and set MEA

and MED as the number of action edges and data edges of query Q, respectively,
in Line 5. Line 6 initializes a pairs set unvisited to be filled with P.pairSet. Once
a pair is visited, it is removed from unvisited to avoid reverse checking. From
Line 7 to Line 20, we iterate all most similar node pairs to match the edges
between Q and P . Line 9 finds all neighbors of the node nQ ∈ {nQ, nP } with

534 J.O. Hsu et al.

their edges, and store them into neighbors. For each neighbor n′
Q ∈ neighbors,

we search unvisited to get the corresponding pair {n′
Q, n′

P } (Line 11), and then
check the PPDG P to identify if there is a same type of edge between nP and n′

P

and update MEA and MED based on the result (Line 12–16). Next, we compute
the upper bound of the graph structure similarity from the updated MEA and
MED and prune P if the upper bound is smaller than ε (Lines 17–20). Finally, if
P is un-pruned, we compute its similarity score and put it in result set R (Line
22 and 23).

When the query Q has path edges, we consider it as a special PPDG. To
process it, we make a little adaption on Algorithm 2 to refine the candidates. If
there is a path from nQ to n′

Q in Q, we obtain the pairs {nQ, nP } and {n′
Q, n′

P }.
Then we traverse the PPDG P from nP to check whether n′

P can be reached,
and the result of path searching is passed to the judging condition in Line 12 of
Algorithm 2 to check whether the two paths are matched.

5 Experiments

Now we present the results of a comprehensive performance study to evaluate
the efficiency and scalability of our proposed techniques. Following algorithms
are evaluated.

– NAIVE: Techniques in Sect. 4 but without any pruning rule.
– P1: Techniques in Sect. 4 but using Pruning Rule 1 only.
– P12: Techniques in Sect. 4 but using Pruning Rule 1 and 2 only.
– SIM: Techniques presented in Sect. 4 to process similarity search with all

pruning techniques.

Datasets. We have evaluated our similarity search techniques on both synthetic
and real datasets.

The synthetic datasets were generated by randomization techniques. We cre-
ate a word set containing 100 words: 50 different words and 25 pairs of synony-
mous words. A dictionary is built to store the mapping of synonymous words.
Then we randomly choose n action nodes and [0, 2n] data nodes to assemble p
process graph. For each node, w words are randomly selected to make the label.
After a graph is built, we make several small changes, such as changing the
labels of nodes and adding/deleting nodes, to obtain 99 similar process graph.
The number p varies from 2K to 50K (default value = 10K). The number n of
action nodes in each process is randomly chosen in a range varying from [5, 10]
to [35, 40] (default value = [15, 20]). The number of data nodes is randomly cho-
sen in [0, 2n]. For each node, there are up to w words randomly to be selected.
The w varies from 10 to 25 (default value = 15). By the default setting, the
total number of nodes is up to 600K in our experiment. The threshold η varies
from 0.2 to 0.8 (default value = 0.6). We choose 100 process graphs and get their
subgraphs to make 100 query graphs, which are used in the experiment. The size
s of query, i.e. number of action nodes in query, varies from 3 to 9 (default value
= 5). The average processing time of the 100 queries on each dataset represents

Similarity Search over Personal Process Description Graph 535

the performance of our query processing mechanism. The weight u and v are set
to 1 in all experiments.

The real dataset consists of 42 PPDGs about PhD programs collected from
the Web, manually created by the authors. The dataset includes personal process
descriptions on processes such as research degree admission, scholarship applica-
tions, and attending graduation ceremony. In this dataset, the queries are chosen
manually.

All algorithms are implemented in C++ and compiled by Cygwin GCC 4.3.4.
The experiments are conducted on a PC with Intel i7 2.80 GHz CPU and 8 G
memory on Windows 7 Professional SP1. All algorithms are run in main memory.

Performance Evaluation

We evaluate the performance of the four algorithms (NAIVE, P1, P12, SIM) in
the experiment.

Real vs Synthetic. In the first experiment, we evaluate the performance of
NAIVE, P1, P2 and SIM over the real and synthetic data. Due to the limited
quantity of real process graphs, we magnify the result on the real data by 200
times in Fig. 3. It is shown that our techniques give the similar pruning power on
both datasets, and each pruning rule is very effective and reduces the processing
time. Particularly, pruning rule 2 has the best performance among the three
pruning rules.

Impact of Threshold η. We evaluate the processing time of our algorithms as
a function of the threshold η which varies from 0.2 to 0.8. Figure 4 shows the
cost of P12 and SIM are reduced significantly when η increases, because the two
techniques utilize η to perform the pruning. Comparing with P12, the processing
time of SIM does not improve a lot when η is 0.8. The reason is that pruning rule
2 prunes a mass of graphs and leaves a few candidate graphs for the refinement
step.

 0

 1

 2

 3

 4

 5

real synthetic

P
ro

ce
ss

in
g

T
im

e
(s

) Naive
P1

P12
SIM

Fig. 3. Real vs Synthetic

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

0.2 0.4 0.6 0.8

P
ro

ce
ss

in
g

T
im

e
(s

) NAIVE
P1

P12
SIM

Fig. 4. Varying η

 0
 2
 4
 6
 8

 10
 12
 14
 16

5K 10K 20K 50K

P
ro

ce
ss

in
g

T
im

e
(s

) NAIVE
P1

P12
SIM

Fig. 5. Varying p

Evaluating Impacts by Different Setting. We study the scalability of our
algorithms with regards to the different number of process graphs (p), number
of words (w) in one graph node, number of action nodes (n), and the query size
(s) in Figs. 5, 6, 7 and 8. The processing time increases with the increase of the

536 J.O. Hsu et al.

 0

 1

 2

 3

 4

 5

 6

 7

10 15 20 25

P
ro

ce
ss

in
g

T
im

e
(s

) NAIVE
P1

P12
SIM

Fig. 6. Varying w

 0
 1
 2
 3
 4
 5
 6
 7
 8

[5,10] [15,20] [25,30] [35,40]

P
ro

ce
ss

in
g

T
im

e
(s

) NAIVE
P1

P12
SIM

Fig. 7. Varying n

 0

 1

 2

 3

 4

 5

 6

3 5 7 9

P
ro

ce
ss

in
g

T
im

e
(s

) NAIVE
P1

P12
SIM

Fig. 8. Varying s

four parameters. However, the results also demonstrate that each pruning rule is
effective and reduces the processing time in all settings. Clearly, the dataset size
increases with the number of process graphs and action nodes thus the filtering
and refinement processing becomes more expensive. Longer word size makes it
difficult to process the label similarity match, which increases the processing
time. When the query size grows, the processing cost increases because more
nodes and edges are involved in the similarity search.

6 Related Work

One of the closely related work to ours is Cooking Graphs [11]. A cooking graph
describes a cooking process with cooking actions and relevant ingredients infor-
mation. However, cooking graphs are specialized to represent one domain and the
action/data concepts are not as generic as PPDG. Also, the focus of the work
is with implementing a graph mining technique to recognize cooking process
patterns (by considering graph structures) and recommend a suitable cooking
recipes for a user. Through PPDG and PPDG querying techniques, we aim to
provide a platform to support various analysis tasks, not limited to recommen-
dation. Besides, PPDG considers similarity matching in labels as well as the
graph structures.

There are several work we can refer to in the area of BPM with regards to
querying processes. In these work, queries are processed over BPMN (Business
Process Modelling Notation) or equivalent notations. The main purpose of the
languages is to extract actions (i.e., control flows). For example, The Business
Process Query Language (BPQL) in [2] works on an abstract representation of
BPEL4 files. The BPMN-Q is a visual language to query repositories of BPMN
models [1,8]. It processes the queries by converting both the query and BPMN to
graphs. PPDG describes personal processes directly as graph (although mapping
from/to BPMN is possible) and uses a query paradigm which takes both actions
and data nodes into consideration with their labels and directed edges.

Recently, BPMN label matching techniques for querying similar process mod-
els is presented in [7]. However, the authors only consider action node labels.
Also, they do not consider the directed edges (i.e., graph structure) present in
the process models and simply refer to a process model as a set of activities.
4 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Similarity Search over Personal Process Description Graph 537

In [3], the authors deal with the problem of retrieving process models in
the repository that most closely resemble a given process model. This paper
proposes three similarity metrics: (i) label matching similarity - it measures
similarity based on words in the labels of business process model elements, (ii)
structural similarity - it measures similarity based on graph edit distance of busi-
ness process model, (iii) behavior similarity - it measures similarity based on the
intended behavior (operation semantic) of process models. At present, authors
have focused on developing the metrics rather than efficient implementation of
algorithms.

Besides the BPM area, more general applications of graph similarity search
have received considerable attention, such as Closure-Tree [6], K-AT [10], and
SEGOS [12]. Specially, subgraph similarity search is to retrieve the data graphs
that approximately contain the query. Grafil [14] proposes the problem, where
similarity is defined as the number of missing edges regarding maximum common
subgraph. GrafD-index [9] deals with similarity based on maximum connected
common subgraph. [15] studies the problem of graph similarity search with edit
distance constraints. However, they only consider the similarity of graph struc-
ture. Therefore, techniques proposed in [9,14,15] cannot be directly applied to
PPDGs.

7 Conclusion

In this paper, we have investigated similarity search over Personal Process
Description Graph (PPDG). We formally define the similarity between two
PPDGs as a harmonic mean of two similarity scores: graph nodes similarity and
graph structure similarity. By utilizing the features of PPDG nodes and struc-
ture, we develop effective and efficient algorithms with novel pruning techniques
following the filtering and refinement paradigm. A comprehensive experimen-
tal study over both real and synthetic datasets demonstrates the efficiency and
scalability of our techniques.

References

1. Awad, A., Sakr, S., Kunze, M., Weske, M.: Design by selection: a reuse-based
approach for business process modeling. In: ER, pp. 332–345 (2011)

2. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In:
PVLDB, pp. 343–354 (2006)

3. Dijkman, R., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of
business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

4. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer-Verlag, Berlin Heidelberg (2013)

5. Fellbaum, C.: WordNet: An Electronic Lexical Database. Language, Speech, and
Communication. MIT Press, Cambridge (1998)

6. He, H., Singh, A.K.: Closure-tree: an index structure for graph queries. In: ICDE,
p. 38 (2006)

538 J.O. Hsu et al.

7. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall
of process model matching by improved activity label matching. In: Daniel, F.,
Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer,
Heidelberg (2013)

8. Sakr, S., Awad, A.: A framework for querying graph-based business process models.
In: WWW, pp. 1297–1300 (2010)

9. Shang, H., Lin, X., Zhang, Y., Yu, J.X., Wang, W.: Connected substructure simi-
larity search. In: SIGMOD, pp. 903–914 (2010)

10. Wang, G., Wang, B., Yang, X., Yu, G.: Efficiently indexing large sparse graphs for
similarity search. IEEE Trans. Knowl. Data Eng. 24(3), 440–451 (2012)

11. Wang, L.: CookRecipe: towards a versatile and fully-fledged recipe analysis and
learning system. Ph.D thesis, City University of Hong Kong (2008)

12. Wang, X., Ding, X., Tung, A.K.H., Ying, S., Jin, H.: An efficient graph indexing
method. In: ICDE, pp. 210–221 (2012)

13. Xu, J., Paik, H., Ngu, A.H.H., Zhan, L.: Personal process description graph for
describing and querying personal processes. In: ADC (2015)

14. Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In:
SIGMOD, pp. 766–777 (2005)

15. Zhao, X., Xiao, C., Lin, X., Wang, W., Ishikawa, Y.: Efficient processing of graph
similarity queries with edit distance constraints. VLDB J. 22(6), 727–752 (2013)

	Similarity Search over Personal Process Description Graph
	1 Introduction
	2 Preliminaries
	2.1 Personal Process Description Graph
	2.2 Constructing PPDG and PPDG Repository

	3 Problem Definition
	4 Similarity Search
	4.1 Filtering by Graph Nodes
	4.2 Refinement by Graph Structure

	5 Experiments
	6 Related Work
	7 Conclusion
	References

