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Abstract. The development of positioning technologies and pervasive-
ness of mobile devices make an upsurge of interest in location based
services (LBS). The k nearest neighbor(kNN) query in road networks
is an important query type in LBS and has many real life applications,
such as map service. However, such query requires the client to disclose
sensitive location information to the LBS. The only existing method
for privacy-preserving kNN query adopts the cloaking-region paradigm,
which blurs the location into a spatial region. However, the LBS can still
deduce some information (albeit not exact) about the location. In this
paper, we aim at strong privacy wherein the LBS learns nothing about
the query location. To this end, we employ private information retrivial
(PIR) technique, which accesses data pages anonymously from a data-
base. Based on PIR, we propose a secure query processing framework
together with flexible query plan for arbitrary kNN query. To the best
of our knowledge, this is the first research that preserves strong location
privacy for network kNN query. Extensive experiments under real world
and synthetic datasets demonstrate the practicality of our approach.

Keywords: Location privacy · Private information retrieval · kNN
query · Spatial networks

1 Introduction

With the popularity of mobile devices and development of the positioning tech-
nologies, location based service(LBS) is becoming more and more popular. To
provide users with location based service, LBS system (e.g., Map Quest and
Google Maps for mobile users) has been widely deployed by mobile users. The
nearest neighbor queries in LBS occupy an extremely important position. For
example, client traveling on the road may want to get the nearest gas station, or
tourist may hope to learn the nearest restaurant from his current location. LBS
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gives us more convenience, however, also causes sensitive privacy problems. Once
the client requests a query, he must submit his location to LBS, which leads to
the leakage of location privacy, even personal information such as health status,
economic conditions, shopping habits, etc. [25].

Therefore, there exist lots of approaches for privacy-aware kNN query [1–4].
However, these works only consider Eculidean distance rather than road network
distance. The only existing work of privacy-aware kNN query under road network
follows the location obfuscation approach [5] which blurs client’s exact location
into a cloaked region and computes network k nearest neighbors by network
voronoi diagram [22]. However, the method reveals certain location information
of client to the LBS.

To guarantee strong location privacy, a promising cryptography tool is private
information retrieval (PIR) [11]. PIR allows a data item (e.g., a disk page) to
be retrieved from a server without leaving any clue of the item being retrieved.
PIR was considered to be resource-intensive, but thanks to the recent progress in
cryptography, practical software or hardware PIR solutions have been proposed
[14]. Since then it has been successfully applied to spatial queries, such as kNN,
BRNN and shortest path search [7,9,13].

In this paper, our goal is to investigate privacy-preserving kNN query on
road network without the LBS inferring any information about the query. To
this end, we adopt practical PIR techniques that retrieve a single data page as
the building block. The challenges of a PIR-based kNN solution lie in the follow-
ing aspects: (1) although PIR guarantees secure access of a single page from the
server, the variation of the number of page accesses from different queries may
reveal information about the query point. Further, when user desires to propose
queries with varied k, our processing must be safe for arbitrary k, which makes
the problem more challenging. (2) as the database contains voluminous points,
directly applying PIR for the kNN query on road network is inefficient, thus call-
ing for an integration with spatial index. To address these challenges, we propose
a PIR-based kNN query processing framework that guarantees strong privacy.
Concretely, we design index structure and deduce query plans for arbitrary k,
which means adversary cannot deduce any information from arbitrary query. To
summarize, we have three main contributions as follows:

(1) To the best knowledge, this is the first research evaluating k nearest neighbor
query on road network with no information leakage.

(2) We deduce the fixed query plans for arbitrary fixed k and thus guarantees
the strong privacy for arbitrary k nearest neighbor query on road network.

(3) We conduct extensive experiments under real-world and synthetic datasets,
which shows our proposed approach is practical.

The rest of the paper is arranged as follows. Related works are surveyed in
Sect. 2. In Sect. 3, we define our security model and prove its security. We then
present our solutions for the PIR-based kNN query processing in Sect. 4. The
solutions are evaluated by experiments in Sect. 5. Section 6 concludes this paper.
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2 Related Work

In this section, we review related works in the following two areas: (1) priavcy-
aware k nearest neighbor query on road network and (2) the application of PIR
based approaches on spatial query.

2.1 Privacy-Preservation for kNN on Road Network

There are several existing network nearest neighbor query processing methods
in the literature, such as the network expansion based methods [19,20], solution
based methods [22–24] and hierarchical road networks based methods [21]. The
classic method without privacy is the network voronoi nearest neighbor based
solution which is proposed by Kolahdouzan [22]. It utilizes network voronoi dia-
gram to partition the network into cells to reduce computation cost and com-
munication cost. The only existing work of private network NN query based on
spatial network follows the location obfuscation approach [5] which blurs client’s
exact location into a cloaked region and computes network k nearest neighbors
by network voronoi diagram. However, the method reveals certain location infor-
mation of client to the LBS.

So far, PIR technology is the only tool to guarantee strong privacy which
means server cannot deduce any information about the query. There has been
no works on applying PIR-based method to network nearest neighbor query to
provide strong privacy guarantee. As the hardware PIR based method requires
different queries execute the same query plan which implies that every query
incur the same processing cost, the existing methods above cannot apply directly
to our PIR-based private network nearest neighbor query.

2.2 Application of PIR

PIR is a type of technology that can request a data item on a database and
does not let the database know which item is requested [11]. To make oblivious
data item access in malicious server, various Private Information Retrieval (PIR)
technology have been widely adopted since its first proposal [6]. Then, there are
three streams of relevant research: (1) information based PIR theoretic [10,11];
(2) computational PIR [6,12] and (3) secure hardware based PIR [14]. In this
paper, we adopt the secure hardware as its implementation. The secure hardware
relies on a temper-resistant CPU which is positioned at the server and is trusted
by the clients. It is considered as an interface that supports oblivious data page
access. The overhead of one PIR access involves two parts: (1) the online cost
which represents the overhead of retrieving, re-encrypting and storing the data
page (2) the offline cost which is taken to reorganize data pages in the data
structure. All the online and offline cost grow sub-linearly to the space size. This
fact explains why we mainly focus on reducing the number of PIR accesses rather
than saving the storage space in later design.

For spatial NN query, to prevent location information leakage, [8] presents
a novel LBS privacy preserving approach based on computational PIR for
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NN query. Later, based on some computing impractical problem(e.g.,Quadratic
Residuosity Assumption, QRA), nontrivial implementation for PIR is proposed.
Then some works utilize Oblivious Transfer [15] or Paillier encryption scheme [16]
integrating with computational PIR technology to protect location privacy of the
spatial NN query [17,18]. The only existing spatial query with hardware based
PIR methods is PIR-based kNN query [7] and PIR-based BRNN query [13]. To
guarantee equal number of PIR access for query proposed by any location, all
these methods figure out a maximal number of PIR access after pre-computation
over the dataset.

3 Problem Definition

In this section we review the preliminaries of network nearest neighbor query,
and then describe our system model and security model.

3.1 System Model

The kNN query on road network has received much attention in research commu-
nity since its seminal work [26]. A road network is modeled as a graph G(V,E),
where a vertex v ∈ V denotes a road junction or point of interest(POI) and
an edge e ∈ E denotes the path between two vertices; and the weight of the
edge denotes the network distance of the two points. A k nearest neighbor query
issued at q on road network returns k POIs that are the closest to q in terms of
network distance. Without considering the privacy protection, the client poses
network kNN query to LBS, and LBS reports the results back to the client based
on G.

To guarantee strong privacy, a naive solution is transferring the whole dataset
to the client when a query is processing so that the server cannot get extra infor-
mation about the query except just a query occurring. However, this way is not
practical due to heavy communication cost. Thanks to the private information
retrieval(PIR) technology, we can design index structure and query plan to com-
bine with it to reduce both the communication and computation cost. In this
paper, we adopt the secure co-processor(SCOP ) [9] which is installed at LBS
to execute PIR functionality. It offers a PIR interface that can allow clients to
retrieve data pages from the database of LBS. The interface can be trusted by
the clients as it support complete tamper detection. Figure 1 shows our system
model. There exists two parts, the client and the LBS which deploy SCOP . Both
plaintext of road network G and the encrypted PIR-based index are hosted by
LBS. And the indexing information is encrypted by SCOP after being organized
in equal-sized data pages. When clients issues a query, he need to follow the query
plan to retrieve multi-rounds data pages from the encrypted PIR-based index
by SCOP .
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G PIR-based Index

Fig. 1. System Model

3.2 Security Model

Without loss of generality, we assume that LBS is the adversary as it may know
the client’s identity (e.g.,via user log-in) or may infer it. Also, we assume the
adversary is curious, but not malicious, that is, it executes page access routines
correctly with no falsified data and wishes to gain extra information about the
client’s query. The adversary is also aware of the processing protocol in use and
its computational power is polynomially bounded.

Our objective is to create PIR protocol for processing network nearest neigh-
bor queries at the LBS without the latter deducing any information about the
queries. We assert that every network nearest neighbor query follows the same
query plan which is necessary to achieve our privacy goal. Specifically, the query
plan needs to ensure each query (i) executes in the same number of rounds, (ii)
in each round it accesses the same index in the same order, and (iii) from each
index accessed in a specific round, it retrieves the same number of pages. In
our paper, we name PIR-based index as database. And commonly, we need to
design more than one database to improve the query performance. For example,
if the protocol confirms that 3 pages are fetched from database DB1 and 10 from
DB2(in this order), each query must fetch 3 pages from DB1 and 10 pages form
DB2. If some query may need fewer than the determined number of pages, the
protocol will pad its requests with dummy page accesses in order to conform to
the query plan. The following theorem proves that our methodology achieves the
security objective.

Theorem 1. The network nearest neighbor query processing methodology that
combines PIR technology with common query plan can achieve strong privacy.
Equivalently, it leaks no information to the adversary about query location.

Proof. In our methodology, each data page requested from database via PIR
protocol. Therefore, the adversary is oblivious of which page of the database is
being read. What is only visible to the LBS is the number of data pages being
accessed in the database. Since all queries follow the same query plan, the number
of pages retrievals in the database is identical for all queries. Consequently,
adversary cannot tell any two of them apart.
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4 PIR-based kNN Processing Framework

In this section, we describe PIR-based kNN Processing Framework to provide
strong privacy. Recall our security model, any query processing must follow the
same query plan. And, a group of moderate indices stored at LBS are needed
to accelerate the query process. In our paper, we split the whole dataset into
i databases DB1, DB2, ..., DBi which can help reduce the update cost and
the communication cost. So the query plan [cnt1, cnt2, ..., cnti] represents the
maximal number of PIR based page accesses for each database.

4.1 Preliminaries

The Network Voronoi Diagram (NVD) has shown to be successful to solve spatial
queries such as kNN on road networks. As Fig. 2 illustrates, v1–v10 are vertices
of the road networks, wherein v1–v4 are POIs. Each cell of the Voronoi Diagram
is centered by one POI and contains the locations that are closest to this POI
than any other POIs. In road networks, neighboring voronoi cells are separated
by border points, such as b1 to b6. For example, voronoi cells centerd at v1 and
v3 are separated by border points b1, b3, and b5. For each voronoi cell, its border
points construct a region. The distance between the voronoi cell center and any
query point of the cell can be computed by given all edges in such region.

Fig. 2. Example for voronoi diagram in road network

Given properties of the NVD that are described in [22], we can easily compute
the kNN query in road network:

(1) The 1NN of query point q is the center of the voronoi cell that q locates in.
For example, we assume the query q located at v8, and v8 is in the voronoi
cell of v3, then q’s nearest neighbor object is v3.

(2) The kth NN lies in the neighbor of previously found voronoi cells of the (k-1)
NN results. That means, if q’s nearest neighbor object is v3, then q’s second
nearest neighbor object must be the center of neighboring voronoi cells v1, v2
and v4. We further develop efficient method to determine which voronoi cells
to fetch without actually obtaining their network information.
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4.2 Three Databases

To enhance PIR performance, we first construct a spatial index to partition the
whole road networks so that the candidate voronoi cells of q can be located
efficiently. To achieve high space utilization, we use the widely adopted KD-tree
to partition the whole map. The KD-tree leaf node splits when the voronoi cell
overlapping with it occupies more space than a data page. Note that if only one
voronoi cell takes more than one page, the leaf node will not split and this corner
case is handled by augmenting the leaf node with linked overflow data pages.
As Fig. 3(a) illustrates, the four dotted rectangle N1, N2, N3 and N4 represent
the leaf nodes of KD-tree. Each node contains 3 to 5 edges. Correspondingly,
in Fig. 3(b), DB1 occupies 4 data pages referring to the four leaf nodes in KD
Tree. Each page records the ID of the voronoi cell residing in the leaf node. We
assume the client issues a query at q(the black star). According to the location
of q, client can access the leaf node N3’s record A3, and then client can get the
candidate voronoi cell q located in: V1, V3 and V4. Once we obtain the distance
between the query point q with these candidate voronoi cell centers, we can know
q’s 1NN. As such, we design the second structure DB2.

(a) KD-tree Index (b) DB1

Fig. 3. Example for spatial network partitioning

As illustrated in Fig. 4(a), DB2 stores the network information of each net-
work voronoi cell including the vertices, edges and border points. In the example
above, the client can access the records B1, B3 and B4 from DB2. With these
network information of V1, V3 and V4, the client can compute which voronoi cell q
located in by employing distance computation algorithms under road networks,
such as Dijkstra algorithm [19].

According to the property (2) of NVD, the next nearest neighbor of q resides
in a number of candidate voronoi cells. Note that we have obtained their border
points because they are neighboring to our obtained voronoi cells. Since we have
obtained the distance between q to all border points, if we know the distance
between each border point to the voronoi cell center on the other side of the
edge (voronoi cell on this side of the edge has been obtained), we can determine
which voronoi cell center is the next nearest neighbor without fetching all their
network information.
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As Fig. 4(b) illustrates, we assume each border point b belongs to mb voronoi
cells, so DB3 stores mb distance lists for each border point b. Each distance list
contains two parts: one is the distance between the border point bi and the center
of voronoi cell Vj it belongs to; The other is the distance between each border
point bi ∈ Bj− falling on the same voronoi cell (Bj− represents all the border
points fall on the same voronoi cell Vj). Therefore DB3 can help to compute the
minimum distance between q and candidate voronoi cell centers. In the example
above, the 2NN of q is the voronoi cell center v4 adjacent to the q’s 1NN via
border point b6 with minimal overall distance dist(q, b6) + dist(b6, v4).

Fig. 4. Example for DB2 and DB3

4.3 Query Plan

To achieve the security goal, we determine the query plan [cnt1, cnt2, cnt3]
which represents the maximal number of PIR based data page accesses for each
database. For ease of description, we use ni to represent the maximum number
of data pages for a single record in DBi. Take Figs. 3 and 4 as an example,
n1 = n3 = 1, n2 = 3. According to the rational of PIR, each query must follow
query plan to retrieval data pages from DB1,DB2 and DB3 respectively. The
implementation of the algorithm is as follows:

(1) For each query q, we use DB1 and DB2 to compute which network voronoi
cell q locates in, and the center of this network voronoi cell is the 1NN of q.
Then cnt1 = n1. For cnt2, we assume that the maximal number of voronoi
cells in each record in DB1 is c2, so cnt2 = n2 × c2.

(2) according to the DB3, the client computes q’s next nearest neighbor as
its 2NN which takes the minimal distance between q and 1NN ’s neighbor
centers. Recursively, we can repeat the step (2) to compute the 3 − k NN as
the query result. In this process, the client needs to maintain the distance
of q to every border point of the voronoi cells obtained before.
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For cnt3, we assume that each record in DB2 refers to maximal c3 border
points. Then, each query result needs cnt3 = n3 × c3 data page accesses. To get
the complete result set, there needs k − 1 iterations.

Overall, the deduced retrieval plan for kNN query on road network requires
n1 PIR based data page accesses for DB1, n2 × c2 page accesses for DB2 to
obtain the 1NN and (k-1) rounds to obtain the rest nearest neighbors. And each
round takes n3 × c3 page accesses to obtain all distance related to these border
points and the new voronoi centers for the next round. In this way the trivial
query plan requires n1 + n2 × c2 + (k − 1) × n3 × c3 PIR accesses for arbitrary
kNN query on road network.

4.4 Algorithm

In this following, we present our PIR-kNN algorithm. According to the three
databases and query plan, we design our algorithm as follows:

Algorithm 1. PIR-kNN algorithm
Input: Query point q, query parameter k
Output: network k nearest neighboring object points, R
1: R = ∅
2: C = ∅
3: Fetch entries corresponding to voronoi cells from DB1, denoted by EDB1 , by locat-

ing the leaf node in KD Tree that contains q via cnt1 PIR page accesses
4: Fetch detailed contents of such voronoi cells EDB1 , denoted by EDB2 from DB2

by cnt2 PIR page accesses
5: for each record e ∈ EDB2 do
6: distancee = dist(e, q)
7: C.push(e, distancee)
8: end for
9: cc = {C.top()}

10: if k == 1 then
11: R = cc
12: return R
13: end if
14: for i = 2 to k do
15: for each border point b of cc do
16: Fetch all pre-computed distance of border b via cnt3 PIR page accesses
17: for each b’s relevant voronoi center vc do
18: distancee = mindist(q, vc)
19: C.push(vc, distancee)
20: end for
21: cc = C.top()
22: R = R ∪ {cc}
23: end for
24: end for
25: return R
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As Algorithm 1 illustrates, the first step is to get the 1NN of q (Line 3–
13). There needs n1 PIR data page accesses for DB1 and n2 × c2 page accesses
for DB2. Then, we fetch all the border points and their associated distance to
neighboring voronoi cells from DB3 via (k − 1) × n3 × c3 PIR accesses (Line
14–22). Note that in this step, we only need to obtain the detailed distance
information of the new border points obtained in the last iteration. Obtaining
all the distance, we can determine the next nearest neighbor (Line 18–19). Until
we obtain k nearest neighbor, the algorithm terminates (Line 25).

5 Experimental Evaluation

In this section, we conduct experiments under real world and synthetic datasets
to demonstrate the effectiveness of our PIR-based kNN approach. We also com-
pare the performance with a weaker location privacy preservation approach —
the cloaking region-based kNN method on road networks(CR-kNN) [5] and show
our algorithm is of great practical value.

5.1 Experiment Settings

Datasets. We conduct our experiments on two public real-world networks,
namely California map (CA) and New York map (NY). Both datasets are col-
lected from Open Street Map1. Both datasets have relatively uniform distrib-
ution, while the junctions and roads are more denser in NY than in CA. We
summarise the statistics of our datasets in Table 1.

Table 1. Statistics of our datasets.

Dataset # Edges # Junctions # Point of Interests

CA 47, 185 20, 997 84, 328

NY 56, 263 14, 890 60, 327

As for the synthetic dataset, we scatter 106 point of interests on aforemen-
tioned CA map to simulate different data distribution. To emulate a skewed
distribution, a portion f ∈ (0, 1] of these points are distributed on edges in a
skewed way, while the rest 1 − f portion of points are uniformly generated on
edges.

All algorithms are implemented in C# and run on a machine with an Intel
Core2 Quad CPU 2.53 Ghz and 4 GByte of RAM. As with previous hardware-
based PIR methods, we assume the IBM 4764 PCI-X Cryptographc Coprocessor
as the SCOP and strictly simulate its performance. The client communicates with
the LBS using a link with round trip time of 700ms and bandwidth 384 Kbit/s,
which emulates a moving client connected via a 3G network.
1 www.openstreetmap.org.

www.openstreetmap.org
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5.2 Performance Comparison

In this section, we compare the performance of our PIR-kNN method with the
CR-kNN method under both real world datasets. The latter method fetches
all POIs that overlap with the client-issued cloaking region and the candidate
voronoi cells, and then returns all these POIs to the client. Note that the per-
formance of CR-kNN is plotted only for reference, as it still discloses a cloaking
region to the LBS.

Figure 5 illustrates that when k = 1, PIR-kNN approach takes more time to
return the nearest point of interests from the road network than cloaking region
based approach. This is because PIR-kNN first requires to locate the voronoi cell
in road network, and when multiple voronoi cell overlaps in a rectangle in the
map, all map contents in these cells must be fetched. Thus, this routine consumes
much running time. Interestingly, when k > 1, PIR-kNN approach gradually
outperforms CR-kNN approach and the performance gap enlarges when k gets
larger. This is because after the voronoi cell in the road network is located for the
query point, each increment of k only incurs one extra fetch for pre-computed
distance information via PIR interface. While, for CR-kNN, as k increases, POIs
locating in larger map area must be fetched.

We can also see that in NY dataset, where the junctions and roads are denser,
it takes more time to return the query result. This is because each POI has more
neighbor POIs. Note that the CR-kNN approach also takes more time in NY
dataset. This is because the cloaking region with the same size now contains
more point of interests.

Fig. 5. Performance comparison under real world datasets.

We validate this argument by the more detailed measurement in Fig. 6. In
Fig. 6, we can clearly see that the network overhead for our PIR-kNN approach
is much less than that of CR-kNN approach. This demonstrates that there are
significant unnecessary POIs are transferred from LBS to the client. In contrast,
our PIR-kNN approach seldom conveys unnecessary data and the major over-
head comes from the online and offline processing routine in SCOP to implement
oblivious fetch.
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Fig. 6. Execution time proportion over network communication on the CA dataset.

5.3 Detailed Analysis of Our Method

In the following, we give a detailed analysis of our method. In specific, the
performance of our PIR-kNN approach under different data distribution and its
scalability are evaluated.

Effect of Data Distribution. First, we compare the performance under CA
and NY datasets. It should not be surprising that in Fig. 7(a), when k is less than
8, the execution time for our PIR-kNN approach is significantly shorter under
CA dataset than under NY dataset. As we have mentioned, this is because the
initial locating for the query point tends to fetch more neighboring voronoi cells
in NY dataset. So when k is larger, the latter needs to fetch more extra distance
information than the former to determine the kNN query processing.

Under synthetic dataset, we can see from Fig. 7(b) that when f increases,
the maximal number of PIR accesses for one voronoi cell increases, the overall
execution time increases as well. This is intuitive because our query plan should
cover the worse case in terms of the PIR accesses.

Fig. 7. Effect of data distribution.
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Fig. 8. Effect of scalability.

Evaluation of Scalability. Finally, we evaluate the scalability of our approach.
Regardless of whether real world data or synthetic dataset, we can see from Fig. 8
that the execution time increases linearly to the query parameter k. Further, we
can see that the increasing rate of the execution time gets slower as k gets larger
than 10. This is because the voronoi cells that contain much more POIs or edges
than normal voronoi cells have been considered by a smaller threshold k and
when k goes beyond this threshold, the number of PIR accesses required for
increased k is much less.

6 Conclusion

In this paper we introduce the novel problem of PIR-based kNN query on road
networks with strong privacy guarantee, where an adversary cannot distinguish
a kNN query from any other query in the network space. This is the first work
that applies PIR to network kNN query. Further, we design the data structure to
fetch only necessary data and deduce a query plan for arbitrary query parameter
k. Finally, we evaluate our method on real world dataset and synthetic dataset.
Extensive experiments demonstrate the practicality of our method.
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