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Abstract. A location-aware publish/subscribe (pub/sub) system is gain-
ing more and more interest in both industry and academia with the rapid
progress of mobile Internet and the rising popularity of smart-phones.
Nowadays, with the booming of E-commerce, Object-to-Object (OTO)
services are gaining more and more popularity, which results in mil-
lions of products with different structured descriptions and locations.
To meet this requirement, a pub/sub system should handle subscrip-
tions with location-aware boolean expressions to present users’ interests.
In this paper, we propose an efficient location-aware pub/sub index for
boolean expressions, called RP-trees. RP-trees integrates an R-tree index
and a boolean expression index together, can efficiently and simultane-
ously prune boolean expressions and spatial dimensions. Our experimen-
tal results show that RP-trees achieves better performance on both a
synthetic dataset and a real-world dataset.
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1 Introduction

With the rapid progress of mobile Internet and the growing popularity of smart-
phones equipped with GPS, the location-aware pub/sub have recently attracted
significant attention from both industrial and academic communities [2,5–7,16,
17]. The subscribers subscribe their interests as subscriptions while a publisher
publishes messages as events which are delivered to subscribers whose interests
are matched with the messages. Location-aware pub/sub systems can be applied
in many real-world domains, such as Groupon, Twitter and Foursquare. Existing
location-based pub/sub systems [6,11] can support subscriptions with textual
descriptions well. Users on Twitter can register their interests with a textual
descriptions and a spatial constraint (e.g.,“Fresh seafood”,“distance � 3 km”).
For each tweet with textual description and location information (e.g.,“Newly
stocked seafood: crayfish”,“31.129025, 120.468226”), the system has to ensure
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a timely delivery of textual and spatial matching events to the corresponding
subscribers.

However, thanks to the booming of e-commerce and mobile Internet. OTO
services are gaining more and more popularity, which bring millions of products
with many different attributes, values and geo-locations. This leads to a require-
ment for structuring descriptions to capture such information. Existing unstruc-
tured pub/sub works [2,5,6,17] using textual descriptions cannot accurately rep-
resent users interests. Existing structured pub/sub works [4,7,12,13,15] using
boolean expressions cannot efficiently process spatial constraints. To meet this
requirement, we model a new location-aware structured pub/sub problem in
which subscriptions are represented by a combination of boolean expressions
and spatial information. To explain this, we have the following example as a
working scenario.

We can model services or products in an OTO platform like Groupon1 as
events and their users as subscribers. Users register their interested regions,
attributes and values of products as subscriptions. As the Fig. 1 shows, a sub-
scription {(B = 3 ∧ A ∈ (3, 2, 5) ∧ C � 2), R1} is a combination of a boolean
expression and a spatial constraint. A product is represented by a list of attribute-
value pairs with a spatial point {(A = 3 ∧ B = 3 ∧ C = 5), P1}. Users will be
notified when a new inserted product matches their subscriptions.

Fig. 1. An example of subscriptions and events

In the following, we present two real-world applications for which a location-
aware pub/sub with boolean expression system may benefit.

– City-wide online trading OTO platforms, such as 58 city2, have a large amount
of products with multi-attributes and geo-locations. Location information to

1 http://www.groupon.com.
2 http://www.58.com.

http://www.groupon.com
http://www.58.com
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users is important since users on this online platform tend to trade in a nearby
area. A traditional way for users is searching in the system and making a choice
from a great number of products. It is obvious that a location-aware pub/sub
system may improve the service quality for users. After users register their
interests and regions in this system, they can receive a timely notification
when a match occurs.

– Group-buying platforms such as LivingSocial3 and RetailMenot4 have the
location-aware pub/sub gene in nature. Customers in a Group-buying system
can register their interests in the form of boolean expressions and a location
constraint. When new products are continually being inserted, customers can
receive products information timely instead of repeatedly searching the system
to find their interested products.

There are several challenges in location-aware boolean expression pub/sub.
First, it needs to handle millions of boolean expressions with a large amount
of attributes and values. Second, when a spatial constraint is added to sub-
scriptions, its computation cost in both indexing and matching becomes rather
larger. Third, its matching process must be efficient enough to ensure a high event
arrival rate. Thus, more efficient filtering techniques that support location-based
pub/sub with boolean expressions are necessary.

To improve the indexing efficiency, we propose a two-step partitioning R-tree
based index structure (called RP-trees since then). In its first step, we partition
subscriptions according to their sizes (number of predicates in a subscription). In
its second step, we select the most representative attribute of each subscription,
and group subscriptions with the same size and the same selected attribute
together. To index the spatial constraints, we build an R-tree for each group
of subscriptions. Our experiments on large synthetic datasets and real-world
datasets show that our method achieves higher performance.

To summarize, we make the following contributions.

– We propose a new problem, i.e. location-aware pub/sub with boolean expres-
sions.

– We propose a new index structure RP-trees,which can efficiently index
location-aware boolean expressions.

– We conduct experiments on a synthetic dataset and a real-world dataset to
evaluate the efficiency of our proposed index structure RP-trees.

The remaining of this paper is organized as follows. We formalize the prob-
lem in Sect. 2. In Sect. 3, we review related works on the pub/sub system. In
Sect. 4, we propose two preliminary solutions by extending a well-known exist-
ing solution as baselines for comparisons. In Sect. 5, we propose an RP-trees
index and present its corresponding index construction algorithm. In Sect. 6, we
present our subscription matching algorithm. Extensive experiments results are
reported in Sect. 7, and we conclude this paper in Sect. 8.
3 http://www.livingsocial.com.
4 http://www.retailmenot.com.

http://www.livingsocial.com
http://www.retailmenot.com
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2 Problem Formulation

In a location-aware pub/sub system, subscribers register their interests as sub-
scriptions. A subscription includes a boolean expression and a spatial region,
denoted by s= (B, R).

A boolean expression is a combination of predicates in Conjunctive Normal
Form. A predict contains three elements: an attribute denoted by A, an operator
denoted by fop and a value denoted by v. That is, P(A,fop,v) denotes a predi-
cate. We can support six operators (=,�,�, <,>,∈) in this paper. A boolean
expression of a subscription s is modeled as follows:

s.B : P1(x) ∧ P2(x) ∧ P3(x) ∧ ... ∧ Pm(x)

Thus, a subscription s is modeled over a boolean expression and a spatial
constraint as follows:

s : {P1(x) ∧ P2(x) ∧ P3(x) ∧ ... ∧ Pm(x), Region}

An information publisher publishes an event e that contains a collection of
value-pairs denoted as e.V and a geo-position denoted as e.P . e.V is represented
in the form of conjunction of equality predicates and the size of e.V is the number
of value-pairs denoted by m. Thus, an event can be denoted as follows:

e : {(A1 = v1) ∧ (A2 = v2) ∧ (A3 = v3) ∧ ... ∧ Am = vm, Point}

Definition 1. Predicate Match
A value-pair appears in e.V is denoted by Vn,Vn.A donates the attribute of

the value-pair and Vn.V denotes the value. For a predicate Pm appears in a
subscription, we said that there is a predicate match if Pm(Vn.A,fop,Vn.V ) = true.

Definition 2. Boolean Expression Match
A boolean expression s.B is said to match a collection of value-pairs e.V if

each of the predicates in s.B has a match in e.V.

Definition 3. Subscription Match
Given a collection of subscriptions S = {s1, s2...sm}, each subscription has a

boolean expression and a spatial constraint denoted by s.B and s.R respectively.
For each event e in an event stream with a collection of value-pairs and a point
message e.V and e.P , we said that si ∈ S match e if (si.R ∩ e.P ) �= ∅ and si.B
matches e.V .

Let us revisit the example we mentioned before in Fig. 1. There are 8 sub-
scriptions and 2 events and their locations. For the event E1 = {(A = 3 ∧ B =
3 ∧ C = 5), P1}, the subscription S1 matches E1. However, the subscription S4

doesn’t match E1 as there is no value-pair in E1 that matches the predicate
G � 4. The subscription S8 is not an answer either, as its region R8 has no
overlap with P1. That is, the answer of the event E1 is S1. Similarly, the answer
of E2 is S7.
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3 Related Works

The pub/sub system with boolean expressions has been studied for many years
while the location-aware pub/sub system is a much more hotter issue in both
academia and industry. However, existing works on pub/sub with boolean expres-
sions [1,4,12,15] do little for location matches. Recently, there is a structured
pub/sub work focuses on location-aware pub/sub with boolean expression over
dynamic event streams [7] which mainly deal with the moving features of sub-
scriptions, it adapt a disk-based method to handle the moving feature of events
which result in less efficiency in event matching compared to our memory-based
method. In contrast, our work is mainly focus on efficiently filter subscriptions
with boolean expression and locations. In addition, location-based pub/sub sys-
tems are mainly for unstructured information [5,6,8–10,14,16,18]. Traditional
pub/sub systems with boolean expressions mainly focus on indexing support to
efficiently identify matching subscriptions. Two newly proposed representative
indexing methods for boolean expressions are BE-tree [12] and Opindex [4]. It
is known that Opindex can achieve better matching performance with much
smaller construction cost under different situations.

Opindex is consisted of a two-level index structure [4]. In its first level, sub-
scriptions are grouped together according to selected pivot attributes (i.e., the
attributes with minimum frequency) from each subscription. In its second level,
subscriptions are divided by the operators (e.g.,�,=,�) of predicates. In each
group, predicates are divided by operators. Signature elements are used to map
the predicates by a hash function. For each group of subscriptions, there are a
corresponding counter arrays to track the matching predicates. The attributes of
value-pairs in events are used as keys to grouped subscriptions that are divided
by pivot attributes. Given an event, if an attribute in the event is indeed a pivot
attribute, then find the corresponding group of predicates and enumerate each
value-pair of the event to search predicate lists that are divided by operators.

Opindex is an efficient index for boolean expressions with a large amount of
attributes. We can add the predicates for location information into subscriptions.
However, the newly added predicates are apparently a burden for Opindex. In
the respect of index efficiency, it is a waste to abandon the pruning ability of
location information. The existing unstructured pub/sub systems, however, can
only support textual descriptions. Thus, it is not accurately enough to represent
items with multi-attributes and values. In contrast, our approach can support
items with a great amount of boolean expressions with spatial information and
achieve a high matching rate.

4 Preliminary Solutions

In this section, we first propose two preliminary solutions by making some exten-
sions for a well-known index Opindex for pub/sub systems to handle the new
problem, i.e., location-aware pub/sub with boolean expressions. Note that these
two preliminary solutions are used as baselines for evaluating our advanced solu-
tion discussed in Sect. 5.
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4.1 Extension with Location Predicates

As we know, there exists a well-known index called Opindex for pub/sub sys-
tems. Opindex does not contain predicates for locations. If we apply Opindex
to location-aware pub/sub systems, we can extend it straightforwardly by just
adding predicates into subscriptions to present spatial constraints. For example,
for a region (lat1 = 51.25144123, long1 = −0.14251263, lat2 = 51.335125445,
long2 = 0.12142324), we can use operators (�,�) to present region constraints
as (lat1 � 51.25144123, long1 � 0.14251263, lat2 � 51.335125445, long2 �
0.12142324). And then we can straightly utilize Opindex to solve the problem of
location-aware pub/sub index with boolean expressions. This extension of Opin-
dex is called Opindex-loc in this paper. Obviously, this method abandons the
ability of pruning spatial constraints which leads to high computation cost.

4.2 Extension Using R-tree

R-tree is a well-known index structure to index spatial information, in which
can use a minimum bounding rectangular (MBR) to denote spatial regions. The
basic idea of this extension is to utilize R-tree as an index for spatial information
and organize boolean expressions in the Opindex structure. First, we build an
R-tree to index the spatial constraints in subscriptions. Then we organize the
subscriptions in the form of the Opindex structure. We append a counter array
for each grouped subscription partitioned by a pivot attribute. We initialize the
counter array with the sizes of boolean expressions in the subscriptions. Then,
for processing event matching, we get the value-pairs of an event to validate the
boolean expressions of the subscriptions, for each matched predicate in a sub-
scription, the corresponding element in its counter array is decremented by one.
And candidate subscriptions are generated when their corresponding counter
elements in counter arrays goes to zero. Then, using the spatial information of
the event as an input, we search the R-tree. For each satisfied region, we get its
identification to validate the candidates to find the final matched subscriptions
to return. Since boolean expressions are first visited to generate candidates, then
we called this extension as BF-Opindex.

5 Hybrid Index Structure

As we discussed in Sect. 4.1, both the two mentioned method result in poor per-
formance in event matching since the Opindex-loc abandons the pruning ability
of spatial information and the BF-Opindex generates many candidates whose
spatial constraints are not satisfied. To improve the performance in event match-
ing, we present a novel partitioning index structure RP-trees, which organizes
the regions of subscriptions into disjointed R-trees. In the RP-trees index, each
subscription has a representative attribute termed as a pivot attribute denoted
by δA. The subscriptions are partitioned by two steps. First, the subscriptions
are partitioned based on the sizes of subscriptions. And then subscriptions are
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further partitioned by their pivot attributes. Thus, subscriptions with the same
sizes and the same pivot attributes are grouped together using inverted lists.
To index the spatial constraints, we build an R-tree using the spatial regions
of subscriptions in each list. Given an input event, we search the corresponding
R-tree to generate candidates and validate boolean expressions of these candi-
dates. For convenience, we summarize the key notations used in this paper as
shown in Table 1.

Table 1. Notation

s A subscription

e An event

δA The pivot attribute of a subscription s

s.R The spatial region of a subscription s

s.B The boolean expression of a subscription s

e.P The spatial point of an event e

e.V The value-pairs of an event e

k The number of predicates of a subscription s

m The number of attributes in an event

S The entire subscription dataset

E The entire events dataset

L(k) List of subscriptions partitioned by k

L(δA) List of subscriptions partitioned by δA

L(k,δA) List of subscriptions partitioned by k and δA

C The counter array correspond with L(k,δA)

Ci The counter element in C

5.1 Boolean Expression Index

We index the boolean expressions of subscriptions in two partitioning steps.
In the first step, subscriptions are partitioned into disjointed subscription lists
based on the sizes of the subscriptions k as follows:

S = L(k1) ∪ L(k2) ∪ L(k3) ∪ .... ∪ L(km)

If a boolean expression s.B in a subscription s matches the value-pairs e.V in an
event e, then the size of the event m must not less than the size of subscription
k. Obviously, if k is larger than m, then, there must be a predicate of any
subscription s in L(k) which cannot be matched. According to Definition 2, e is
guaranteed not to match with subscriptions in L(k).

In the second step,subscriptions with the same size are further partitioned
according to the selected pivot attributes δA as follows:

L(ki) = L(δA1) ∪ L(δA2) ∪ L(δA3) ∪ .... ∪ L(δAm)
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From the Definition 1, we can conclude that if an event e matches a subscrip-
tion s, then all the attributes in s must appear in e. Obviously, if there is an
attribute in s which is not in e, e will be concluded not match s. Thus, given
an event e, we only consider the subscriptions whose pivot attributes appears
in e. Attributes with less frequency bring more probability to filter subscrip-
tions because attributes with less frequency has less probabilities to appear in
subscriptions. Thus, we chose the least frequency attribute in a subscription as
pivot attribute.

For each subscription s in L(k,δA), we establish a predicate storage struc-
ture based on standard operators (=,�,�) of the subscription. Other operators
(<,>) are treated similarly. And the collection operator ∈ is rewritten using the
standard operator. For example, F ∈ (5, 2, 1) can be rewritten into F = 5∨F =
2 ∨ F = 1. Using a counting-based algorithm, the counter arrays can detect
matched subscriptions for an input event. For each subscription si in L(k,δA),
there is a counter array C to track the number of predicates in si.B that has
not been matched during an event searching process. Each counter array is ini-
tialized as the sizes of its corresponding subscriptions, and the corresponding
counter element in counter array is decremented by one whenever a value-pair
in e.V of a searching event e matches a predicate in si.B. Thus, si.B matches
e.V when the element Ci for Si in the counter array goes to zero.

The boolean expression index structure for the running example subscriptions
in Fig. 1 is shown in Fig. 2. In the first step subscriptions are partitioned by
their sizes into three lists L2, L3 and L4. Next, a pivot attribute is selected
according to the appearance frequency in the datasets. Thus, A, D, E and G are
selected as the pivot attributes respectively. Given an event E1 = {(A = 3∧B =
3∧C = 5), P1}, according to Definition 2, subscriptions in L(4), L(3,G), L(2,D) are
guaranteed not to match with E1. Figure 2 also shows the counter arrays and
predicates storages structure of S2, S5, S7.

Fig. 2. Boolean expression index structure
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5.2 Combine Boolean Expressions and Spatial Index

In the rest of this section, we present the structure of RP-trees. The RP-trees
contains three components that are shown in Fig. 3. The first component is a
collection of the inverted lists of boolean expressions derived from the two-step
partitioning method that have been described above. The second component is
a set of corresponding R-trees for each partitioned subscription list L(k,δA). The
corresponding R-trees are used to filter the spatial information, and generate
candidate subscriptions whose spatial constraints are satisfied by events. The
third component is a collection of counter arrays, corresponding to the boolean
expression lists L(k,δA).

Fig. 3. RP-trees index structure

Algorithm 1 shows an algorithm to insert a new subscription si into the RP-
trees index. We transfer the collection operator ∈ into the standard operators as
described in Sect. 5.1. Next, we determine the size ki and the pivot attribute δAi

of si, append a counter element Ci for si in counter array C and initial Ci with
the size of si.B. Then the spatial information si.R is inserted into the newly
built R-tree or an existing R-tree corresponding with L(k,δA).

To explain how a RP-trees index is built, we revisit our running example
here. The RP-trees index for the subscriptions in Fig. 1 is shown in Fig. 3. The
boolean expressions of the subscriptions are first partitioned and are inserted into
lists L2, L3 and L4. And then, each boolean expression of a subscription list is
further partitioned into several lists L(2,D), L(3,A), L(3,E), L(3,G), L(4,G) according
to their pivot attributes (i.e., A, E, D and G). For each boolean expression list
above, we append an R-tree to index their spatial regions and there are five
counter arrays for the eight subscriptions in Fig. 1.
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Algorithm 1. Subscription Insert(s)
1: Determine the size k of s
2: Get the pivot attribute δA from s
3: Get predicates p,and the region R from s
4: if L(k) not exists then
5: Define L(k), L(k,δA), R − tree(k,δA), C, Ci
6: else
7: if L(k,δA) not exists then
8: Define L(δA), R − tree(k,δA), C, Ci
9: else

10: for each(R, p) ∈ s do
11: Insert(R) into R − tree(k,δA)

12: Insert (P ) into L(k,δA)

13: Initial Ci with k

6 Query Processing

Algorithm 2 provides the process of how RP-trees return matching subscriptions
for an input event e. Before the process of searching the RP-trees index, we
initialize the set of matching subscriptions R to be empty, and set each value in
corresponding counter array to its respective subscription size. First, we calculate
the size of e. For each boolean expression list L(kj), we scan L(kj) if the size of
e is not less than kj . For each boolean expression list L(kj ,δA)i

, we enumerate
the attributes Aj from the input event e. If Aj is a pivot attribute, we use a
spatial point e.P as a query on the corresponding R-tree to filter out candidate
subscriptions. Then, the boolean expressions of the candidate subscriptions are
refined by the value-pairs in e. When a predicate stored in sj .B is matched by
a value-pair, the corresponding value in counter array is decremented by one. If
the counting value goes to zero, we have a matching subscription for e, which is
added to the result set R.

Let us revisit our running example here. Consider the process of the event
E1 = {(A = 3∧B = 3∧C = 5), P1} using the RP-trees index in Fig. 3. The size
of the event is 3, so the subscription list L(4) is pruned. For the list L(2), there
is no pivot attribute in E1, thus, L(2) is pruned. For the list L(3), only attribute
A is contained in E1. Therefore, only the R − tree(3,A) should be searched for
the regions overlapped with P1. And the region R1 does overlap with P1, then,
candidate boolean expression S1.B is scanned, and the value-pairs of E1 satisfies
S1.B. Thus, S1 is added to the result set R.

7 Experiments

In this section, we report our experimental results of evaluating the performances
of our proposed RP-trees index. We compare it with two preliminary methods,
which are described in Sect. 4. The implementation of Opindex is implemented
according to the algorithms proposed by its authors. All the indexes are memory
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Algorithm 2. Matching Algorithm
Require: an event e.
Ensure: result set of subscriptions R.
1: Initialize :R ← {}
2: Get the size m of e
3: Get the distinct value-pairs Aj = Vj and the point location e.P from e.
4: for each L(ki) in the RP-trees index do
5: if m � ki then
6: for each L(δAi)

in L(ki) do
7: if Aj = δAi then
8: Search e.P in RP − tree(ki,δAi)

9: if e.P overlap s.R ∈ RP − tree(ki,δAi)
then

10: for each predicate p in s.B ∈ L(ki,δAi)
do

11: if Aj = Vj satisfies p then
12: Ci ← Ci − 1
13: if Ci = 0 then
14: Add the subscription s to the result set R.
15: return R

resident and implemented in Java. We conduct the experiments on a server with
256 G memory, 64 KB L1 cache and 512 KB L2 cache, running centos 5.6.

7.1 Data Generator

To generate the synthetic dataset, we implement a data generator, which can
generator attributes, operators and values, uniformly distributed or follows Zipf
distribution. Three main operators (=,�,�) are supported. we generate 5 k to
20 k distinct attributes, following Zipf distribution from 0.2 to 1.0. We vary the
number of subscriptions from 1 M to 10 M to test the scalability. The max size
of each generated subscription k varies from 4 to 20 while the size of events m
varies from 5 to 20. Default parameters for testing the scalability on a real-world
dataset (58 city) are set as follows: The size of each subscription is from 2 to
10, the size of events is from 4 to 12, the number of distinct attributes is set
to 5,000, and a zipf law is used in the distribution of attributes with an alpha
value 0.8. For the spatial information, we generate 1 M longitudes and latitudes
to compose the point locations for an event and a region for a subscription.

Besides the synthetic datasets, we also design a data generator from real-
world datasets. The dataset is extracted from 58 city. It is a series products
information with its name, price, address and other attributes of the products.
Based on the address, we extract the coordinates in the form of longitude and
latitude from Baidu API5. And then we generate MBRs by selecting a location of
a product as the center and extending a random width and height with a upper
bound. Similarly, we generate the value of attributes by select the value of the
attribute in a product information as mid-value and extending a random value
to add to or subtract from the mid-value as a value of predicate in a subscription.
5 http://developer.baidu.com.

http://developer.baidu.com
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In summary, we totally generates 10 M synthetic subscriptions corresponding
with 0.1 M events for matching tests. For the real-world dataset, we generate 5 M
subscriptions and 0.1 M events from 58 city. Table 2 summarizes the parameters
and their settings of the two datasets.

Table 2. Parameters and settings

Parameters Synthetic dataset 58 city

Number of subscription 2 M, 4 M, 6 M, 8 M, 10 M 1 M, 2 M, 3 M, 4 M, 5 M

Max subscription size 4∼20 2∼10

Max event size 5 25 4 12

Zipf 0.2, 0.4, 0.6, 0.8, 1.0 Uniformly distributed

Number of distinct attribute 5 k, 10 k, 15 k, 20 k, 25 K 10 K

Node capacity of R-tree 40 40

7.2 Experimental Results

In this section, we will evaluate three indexes on synthetic datasets and real-
world datasets. For synthetic datasets we evaluate the performance of three
indexes from different perspectives, the memory consumption, a varied number
of subscriptions and distinct attributes, varied max size of subscriptions, varied
max size of events, varied Zif distributions

Memory consumption: Since all the three indexes are memory-resident, we
first evaluate the memory consumption for the three indexes by varying the
number of subscriptions. The experimental results are shown in Fig. 4(a). We can
see that our RP-trees consumes less memory, comparing with Opindex-loc and
BF-Opindex. This is because RP-trees need not to generate signature elements
while the other two methods needs signature elements to track the predicates
for each subscription.

Matching time on different number of subscriptions: From Fig. 4(b), we
can see that the our RP-trees index achieves the best event matching time. This
is because partitioning subscriptions using pivot attributes is not as efficient as
using the hybrid partitioning of the sizes and the pivot attributes.Furthermore,
R-tree with a small amount of regions partitioned by the sizes and the pivot
attributes can efficiently generate candidate subscriptions. Compared with
Opindex-loc, it avoids a large amount of unnecessary boolean expressions whose
spatial constrains are not satisfied to calculate. In summary, our RP-trees can
get the least amount of candidates for both spatial information and boolean
expressions.

Matching time on different size of subscriptions: The average event match-
ing time on different size of subscriptions for the three indexes are reported in
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Fig. 4. Evaluation for the three indexes on synthetic dataset

the Fig. 4(c). As we can see from the Fig. 4(c), RP-trees index scales better com-
pared to Opindex-loc and BF-Opindex. The reason is, with the increasing k, the
pruning ability for the first partitioning step of RP-trees become more and more
powerful since events only visit the subscriptions whose size are not large than
that of events.

Matching time on different number of distinct attributes: The number
of distinct attributes is an important parameter for the three indexes, because
all of the indexes are used pivot attributes to partition subscriptions. An obvious
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observation from the Fig. 4(d) is that when the number of attributes increases,
the matching times of the three indexes decrease because all of the three indexes
can generate more narrowed partitions with the increment of the number of
attributes. And the matching time of our RP-trees decreases apparently with
the increasing number of attributes.

Matching Time under Different sizes of Events: The experimental results
are shown in Fig. 4(e). An obvious observation is that our RP-trees scale simi-
larly to Opindex-loc and BF-Opindex. Both RP-trees and the other two indexes
are sensitive to the size m of the event. With the size m increases, The collection
of candidate subscriptions grows at the same time. There are two reasons for
this. First, the pruning ability for the first step partitioning of RP-trees directly
decreases since the chance for a larger than m becomes smaller with the increas-
ing of m. Second, events will access more candidate subscriptions partitioned
by the second step of partitioning, since there are more attributes in an event
with the increasing of m, which increases the probability to access subscriptions
partitioned by pivot attributes.

Matching Time under Different Alpha Values of Zipf: We also evaluate
the matching time by changing the alpha value from 0.2 to 1.0 in Zipf distrib-
ution. The experimental results are shown in Fig. 4(f). An obvious observation
is that the matching times for the three indexes all grow with the increasing
alpha value of Zipf. Our RP-trees index scales better than both Opindex-loc
and BF-Opindex, because of the powerful partitioning ability of RP-trees.

For the real-world dataset from 58 city, we varied the number of the sub-
scription to evaluate the scalability and the memory consumption. We can see
from the Fig. 5, our RP-tree achieves the minimum event matching and memory
consumption, and with the increases of subscriptions, the event matching time
increased nonlinearly. This is because with number of subscriptions increased,
RP-trees still pruned large amount of unnecessary subscriptions.
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Fig. 5. Evaluation for the three indexes on 58 dataset
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8 Conclusion

In this paper, we tackled the problem of location-based matching in pub/sub for
boolean expression which is significant for location-based pub/sub system with
a large amount attributes and values. Facing the challenge of efficiently deliv-
ering events to the corresponding subscribers, we propose a novel index struc-
ture called RP-trees, which using a two-step partitioning method to organize
the boolean expression and the state-of-art R-tree to index spatial information.
Extensive experiments conducted in both synthetic and real datasets demon-
strate the effectiveness of our algorithms. In the future, we plan to support
top-k pub/sub matching.
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