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Abstract. In the context of Linked Data (LD) sources, the ability to
traverse links and retrieve further information can be exploited to harvest
semantic annotations. Such annotations can, in turn, underpin the infer-
ence of semantic correspondences between sources. This paper shows that
using semantic annotations as additional evidence of equivalence between
schematic representations of LD sources can improve upon the prevalent,
purely syntactic approaches. The paper both describes the construction
of probabilistic models that yield degrees of belief on the equivalence of
the real-world concepts represented by the data and shows how these
models are crucial in underpinning a Bayesian approach to assimilat-
ing both syntactic evidence (in the form of similarity scores derived by
string-based matchers) and semantic evidence (in the form of seman-
tic annotations stemming from LD vocabularies) of equivalence. The
paper presents an empirical evaluation of the techniques described. The
main finding is confirmation that, with respect to equivalence judgements
made by human experts, the use of the contributed techniques incurs sig-
nificantly fewer discrepancies than purely syntactic approaches.

Keywords: Probabilistic matching · Bayesian updating · Linked data

1 Introduction

The Web of Data (WoD) encourages publishers to make their datasets pub-
licly available. This can lead to a great diversity of publication processes, and
inevitably means that resources from the same domain may be described in
different ways, using different terminologies. Such heterogeneous representa-
tions mean that it can be difficult to identify relationships between published
resources, where an understanding of such relationships is useful both for pro-
viding an integrated representation of the available data and for linking. Several
approaches, from schema matching [12] to ontology alignment [15], have been
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proposed for identifying such candidate relationships (e.g., equivalence). Such
techniques typically build on an aggregate of measures of syntactic relationships
(such as edit-distance or n-gram intersection) that can be used to hypothesise
equivalence. This dependency on syntactic relationships means that decisions
tend to suffer from uncertainty. In LD, the fact that resources are described
using shared ontologies presents an opportunity to bring together evidence at
both the syntactic and semantic levels, i.e., not just names but also seman-
tic annotations that characterise entities at the conceptual level. This paper
describes a Bayesian technique for combining syntactic evidence, available in
the form of similarity scores computed by string-based matchers, and semantic
evidence, available in the form of semantic annotations such as subclass of and
equivalent relations that can be formed in, or inferred from, LD ontologies.
Motivating Example. As an example, assume the existence of a LD dataset
that describes instance data about music producers, such as, solo artists and
groups like “The Beatles”. Further, assume that an RDF resource exists for “The
Beatles” stating that it is a member of the class mo:MusicGroup; rdf:type(ns1:
beatles, mo:MusicGroup) in the Music Ontology1. At the same time, some other
music provider models the same instance information about “The Beatles”
(potentially under a different URI) stating that a resource for that entity is a
member of the class foaf:Group; rdf:type(ns2:beatles, foaf:Group) using the FOAF
vocabulary2. Such a scenario is plausible on the WoD since the two resources
have been created by different, independent publishers. A system that is inter-
ested in merging the two LD datasets needs to deal with such heterogeneity in
terminologies by discovering semantic correspondences between the two datasets.

Typically, schema matching techniques utilise knowledge from a formal struc-
ture, such as an ontology description or a database schema, for deriving corre-
spondences of equivalence [2,15]. To make a decision as to the semantic equiva-
lence of the concepts MusicGroup and Group, assume an approach that applies
a set of string-based matchers (such as edit-distance and n-gram) over the local-
names of mo:MusicGroup and foaf:Group. Such algorithms typically use a sim-
ilarity score from the interval [0,1] as a confidence measure for discovered cor-
respondences. Note that, in addition to their syntactic relationship, a seman-
tic relation exists, stating that mo:MusicGroup is subsumed by foaf:Group. We
suggest that such relations can be used as additional knowledge to improve the
decision making of matching techniques beyond the use of syntactic matchers
alone.
Summary of Contributions. This paper describes a probabilistic approach
for combining evidence from syntactic matchers with semantic annotations mod-
elled as degrees of belief on the existence of semantic correspondences of equiva-
lence. The following questions motivated this study. Which semantic annotations
can be usefully be taken as additional evidence for the purposes of postulating
construct equivalence? How can we reason about syntactic and semantic evi-
dence using probabilistic models? How can we incrementally assimilate different
1 http://purl.org/ontology/mo/.
2 http://xmlns.com/foaf/0.1/.

http://purl.org/ontology/mo/
http://xmlns.com/foaf/0.1/
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kinds of evidence? In seeking solutions to these questions, this paper contributes
the following: (a) a methodology that uses kernel density estimation for deriv-
ing likelihoods from similarity scores computed by string-based matchers; (b)
a methodology for deriving likelihoods from semantic relations (e.g., rdfs: sub-
ClassOf, owl:equivalentClass) that are retrieved by dereferencing URIs in LD
ontologies; (c) a methodology for aggregating evidence of conceptual construct
equivalence from both string-based matchers and semantic annotations; and (d)
an empirical evaluation of our approach grounded on the judgements of experts
in response to the same kinds of evidence.

The remainder of the paper is structured as follows. Section 2 presents an
overview of the developed solution. Section 3 describes the methodology used for
deriving probability distributions over similarity scores from string-based match-
ers, along with a methodology for deriving likelihoods from semantic knowledge
defined in LD ontologies. Bayesian updating, as a technique for the incremental
assimilation of evidence, is introduced in Sect. 4. Section 5 presents an empirical
evaluation of the methodology complemented by a discussion of results. Section 6
reviews related work, and Sect. 7 concludes.

2 Overview of Solution

Given a conceptual description of a source and a target LD dataset, denoted
by S and T , respectively, a semantic correspondence of equivalence is a triple
〈cS , cT , P (cS ≡ cT |E)〉, where cS ∈ S and cT ∈ T are constructs (i.e., Classes)
from the datasets, and P (cS ≡ cT |E) is the conditional probability representing
the degree of belief (from now on referred to as dob) in the equivalence (≡) of
the constructs given the pieces of evidence (e1, ..., en) ∈ E. Section 4 describes
in detail how to compute the conditional probability using Bayes’ theorem. Our
approach distinguishes two types of knowledge: (a) syntactic knowledge, in the
form of strings that are local-names of resources’ URIs; and (b) semantic knowl-
edge, such as structural relations between entities, either internal to a vocabulary
or across different LD vocabularies, e.g., relations such as subclass of and equiv-
alence. Table 1 summarises the types of knowledge construed by our approach as
sources of evidence. The set TE is the set of all semantic annotations we consider
as evidence, where the subsets EE and NE comprise the assertions that can be
construed as direct evidence of equivalence and non-equivalence, respectively.

To collect syntactic evidence (represented by the set LE), given two sources,
our approach extracts local-names from the URIs of every pair of constructs
〈cs, ct〉 and then derives their pair-wise string-based similarity. Two string-based
metrics are used, viz., edit-distance (denoted by ed) and n-gram (denoted by
ng) [15]. Section 3.1 elaborates on how probability distributions can be con-
structed for each matcher. To collect semantic evidence, our approach derefer-
ences URIs to get access to annotations from the vocabularies that define the
resource. For example, the subsumption relation cS � cT is taken as seman-
tic evidence. Section 3.2 elaborates on an approach to constructing probability
distributions for each kind of semantic evidence in RDFS/OWL vocabularies.
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Table 1. Syntactic and semantic evidence utilised by the technique.

Type ID Description Evidence rule

Syntactic evidence (LE) - SLN similar-local-name string similarity(cT , cS)

Semantic evidence (TE) SU same-URI string equality(URIS , URIT )

- SB subsumed-by cS � cT

EE SA same-as owl:sameAs(cS , cT )

EC equivalent-class owl:equivalentClass(cS , cT )

EM exact-match skos:exactMatch(cS , cT )

NE DF different-from owl:differentFrom(cS , cT )

DW disjoint-with owl:disjointWith(cS , cT )

3 Constructing Likelihoods for Evidence

To assimilate different kinds of evidence, some bootstrapping is needed that
will allow the computation of the likelihoods necessary for the calculation of
a dob on construct equivalence, as captured by the posterior P (cS ≡ cT |E)
given both syntactic and semantic evidence. This section describes a principled
methodology for constructing probability distributions from similarity scores
returned by string-based matchers, as well as a procedure for deriving likelihoods
for each type of semantic evidence in Table 1.

3.1 Similarity Scores to Degrees of Belief

We call syntactic evidence the likelihoods derived from similarity scores pro-
duced by string-based matchers. We study the behaviour of each matcher (in
our case ed and ng) to derive these likelihoods as follows:

1. From the datasets made available by the Ontology Alignment Evaluation
Initiative (OAEI)3, we observed the available ground truth on whether a pair
of local-names, denoted by (n, n′), aligns.

2. We assume the existence of a continuous random variable, X, in the bounded
domain [0,1], for the similarity scores returned by each matcher μ, where
μ ∈ ed, ng. Our objective is to model the behaviour of each matcher in terms
of a probability density function (PDF) f(x) over the similarity scores it
returns (we refer to them as observations).

3. To empirically approximate f(x) for each matcher we proceed as follows:
(a) We ran each matcher μ independently over the set of all local-name pairs

(n, n′) obtained from (1).
(b) For each pair of local-names, we observed the independent similarity

scores returned by the matcher when (n, n′) agrees with the ground truth.
These are the set of observations (x1, ..., xi) from which we estimate f(x)
for the equivalent case.

3 http://oaei.ontologymatching.org.

http://oaei.ontologymatching.org
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4. The observations x1, ..., xi obtained are used as inputs to the non-parametric
technique known as kernel density estimation (KDE) (using a Gaussian ker-
nel4) [3] whose output is an approximation f̂(x) for both ed and ng for both
the equivalent and non-equivalent cases.

We interpret the outcome of applying such a PDF to syntactic evidence as the
likelihood of that evidence. More formally, and as an example, PDF≡

ed
(ed(n, n′))

= P (ed(n, n′)|cS ≡ cT ), i.e., given a pair of local-names (n, n′) the PDF for the ed
matcher in the equivalent case PDF≡

ed
yields the likelihood that the similarity

score ed(n, n′) expresses the equivalence of the pair of concepts (cS , cT ) that
(n, n′), resp., denote. Correspondingly, for the non-equivalent case, and for ng in
both the equivalent and non-equivalent cases (Fig. 1).

The probability distributions derived by this process are shown in Fig. 2(a)
and (b) for ed and in Fig. 2(c) and (d) for ng. The procedure described can be
used to study the behaviour of any matcher that returns similarity scores in the
interval [0, 1]. Note that the PDFs obtained by the method above are derive-
once, apply-many constructs. Assuming that the sample set used for training
remains representative, and given that the behaviour of matchers ed and ng is
fixed and deterministic, the PDFs need not be recomputed.

3.2 Semantic Evidence to Degrees of Belief

We call semantic evidence the likelihoods derived from semantic annotations
obtained from the WoD. We first retrieved the semantic annotations summarised
in Table 1. The set TE is the set of all such evidence, TE = {SU, SB, SA,
EC, EM, DF, DW}. We formed the subsets EE ⊂ TE = {SA, EC, EM} and
NE ⊂ TE = {DF, DW} comprising assertions that can be construed as direct
evidence of equivalence and non-equivalence, respectively.

To derive probability distributions for semantic evidence, we proceeded as
follows:

1. We assume the existence of a Boolean random variable, for each type of
semantic evidence in Table 1, with domain {true, false}.

2. Using the vocabularies available in the Linked Open Vocabularies (LOV)5

collection.
(a) We collected and counted pairs of classes and properties that share direct

or indirect assertions of equivalence or non-equivalence for all the asser-
tions in TE and NE using SPARQL queries. For example:

4 Gaussian kernel was used due to its mathematical convenience. Note that any kernel
other than Gaussian can be applied, however, the shape of the distribution may
differ depending on the kernel characteristics.

5 http://lov.okfn.org/dataset/lov/.

http://lov.okfn.org/dataset/lov/.
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SELECT DISTINCT ?elem1 ? elem2
WHERE {

{? elem1 a rd f s : Class .} UNION {? elem1 a owl : Class .}
? elem1 ?p ? elem2 .
FILTER (?p = owl : equ iva l en tC la s s && ! i sBlank (? elem2 ) )}

(b) From the set of pairs derived by the assertions in TE and NE, we
counted assertions that can be construed as evidence of equivalence or
non-equivalence for each pair, grouping such counts by kind of assertion
(e.g., subsumed-by (SB), etc.)

3. We used the sets of counts obtained in the previous step to build contingency
tables (e.g., see Table 2) from which we can directly derive the probabil-
ity mass functions (PMFs) for each kind of semantic evidence for both the
equivalence and non-equivalent cases.
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(a) Edit-distance matcher behaviour
(equivalent case).
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(b) Edit-distance matcher behaviour
(non-equivalent case).
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(c) N-gram matcher behaviour
(equivalent case).
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(d) N-gram matcher behaviour
(non-equivalent case).

Fig. 1. Illustration of probability distributions for each matcher over [0, 1].

The PMFs obtained through the steps above are also derive-once, apply-many
constructs, but since the vocabulary collection from which we draw our sample
is dynamic, we might wish to view them as derive-seldom, apply-often.
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Table 2. Example of a contingency table. The likelihood P (EC(n, n′)|cS ≡ cT ) is
estimated by the fraction 305/396.

Contingency table Semantic evidence

EC ¬EC Total

cS ≡ cT 305 91 396

cS �≡ cT 0 2552 2552

Total 305 2643 2948

We interpret the outcome of applying such a PMF to semantic evi-
dence as the likelihood of that evidence. More formally, and as an example,
PMF ≡

EC
(EC(u, u′)) = P (EC(u, u′)|cS ≡ cT ), i.e., given the existence of an asser-

tion that a pair of URIs (u, u′) have an equivalence relation, the probability
mass function for this kind of assertion in the equivalent case PMF ≡

EC
yields

the likelihood that the assertion EC(u, u′) expresses the equivalence on the pair
of constructs (cS , cT ) that (u, u′), resp., denote. Correspondingly, for the non-
equivalence case and for all other kinds of semantic evidence (e.g., SB, etc.) in
both the equivalent and non-equivalent cases.

4 Assimilating Evidence Using Bayesian Updating

The purpose of deriving likelihood models as described in Sect. 3 is to enable
the evidence to be combined in a systematic way using Bayesian updating. The
procedure for doing so is now described, where the benefits of the procedure are
discussed in Sect. 5.

We denote with S and T , resp., the structural summaries (an ontology or a
structural summary derived by an approach like [4]) that describe the structure
of a source and a target LD source over which we wish to discover semantic
correspondences. Given a pair of constructs cS ∈ S and cT ∈ T our objective is
to derive a dob on the postulated equivalence of a pair of constructs (denoted
by H), given pieces of evidence e1, ..., en ∈ E. To reason over our hypothesis,
we model it as a conditional probability P (H|E) and apply Bayes’ theorem to
make judgements on the equivalence of two constructs. In its simplest form,
Bayes’ theorem states that6,

P (H|E) =
P (E|H) P (H)

P (E)
. (1)

Our hypothesis can take one of two states: P (H) = {P (cS ≡ cT ), P (cS �≡
cT )}, i.e., it is a Boolean hypothesis. The prior probability, e.g., P (H) = P (cS ≡
6 Informally, the theorem states that the hypothesis given the evidence (so called

posterior) is equal to the ratio between the product of the dob in the evidence given
the hypothesis (what we called likelihood in Sect. 3) and the dob in the hypothesis
(so called prior) divided by the dob in the evidence.
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cT ), is the dob in the absence of any other piece of evidence (we assume a uni-
form distribution). Thus, for the two possible outcomes our hypothesis can take,
N = 2, the prior probability that one of the outcomes is observed is given by
1/N . The probability of the evidence, P (E), can be expressed using the law
of total probability [9], i.e., P (E) = P (E|cS ≡ cT ) P (cS ≡ cT ) + P (E|cS �≡
cT ) P (cS �≡ cT ). To use Bayes’ theorem for deriving a dob on the hypothe-
sis given the available evidence, it is essential to estimate the likelihoods for
each evidence: (i.e., P (E|cS ≡ cT ), and, P (E|cS �≡ cT )). For semantic evi-
dence, the likelihoods are estimated from the contingency tables constructed in
Sect. 3.2. For continuous values, like similarity scores, the constructed PDFs for
each matcher from Sect. 3.1 are used to estimate the conditional probabilities
for the likelihoods. To determine these likelihoods, we integrate the PDF over a

finite region [a, b], namely P (a ≤ X ≤ b) =
b∫

a

f(x) dx, where the density f(x) is

computed using KDE with a Gaussian kernel.
The idea behindBayesian updating [16], is that once the posterior e.g., P (cS ≡

cT |E) is computed for some evidence, e1 ∈ E, a new piece of evidence e2 ∈ E,
leads us to compute the impact of e2 by taking the previously computed posterior
as the new prior. Given the ability to compute likelihoods for both syntactic and
semantic evidence, we can use Bayesian updating to compute a dob on the equiv-
alence of (pairs of constructs in) two structural summaries S and T . To demon-
strate this with a concrete example, let P (e1,...,e

′
n) denote the dob that results from

having assimilated the evidence sequence (e1, ..., en). The initial prior is therefore
denoted by P (), and if (e1, ..., en) is the complete evidence sequence available, then
P (e1,...,e

′
n) is the final posterior. We proceed as follows:

i. We set the initial prior according to the principle of indifference between the
hypothesis that P (cS ≡ cT ) and its negation, so P () = 0.5.

ii. We collect the local-name pairs from the structural summaries S and T .
iii. We run ed on the local-name pairs and, using the probability distributions

derived using the methodology described above (Sect. 3.1), compute the likeli-
hoods for each pair and use Bayes’ rule to calculate the initial posterior P (ed).

iv. We run ng on the local-name pairs and, using the probability distributions
derived using the methodology described above (Sect. 3.1), compute the like-
lihoods for each pair and use Bayes’ rule to calculate the next posterior
P (ed,ng). Note that this is the dob given the syntactic evidence alone, which
we denote more generally by P (syn).

v. To get access to semantic annotations that span a variety of LD ontolo-
gies, we dereference every URI in S and T to collect the available semantic
annotations e.g., SB(cS ⊆ cT ).

vi. Using the methodology described above (Sect. 3.2), we compute, one at a
time, the likelihoods for the available semantic evidence, each time using
Bayes’ rule to calculate the next posterior (e.g., P (ed,ng,SB,...)), so that once
all the available semantic evidence is assimilated, the final posterior, which
we denote more generally by P (syn,sem), is the dob on cS ≡ cT , where,
cS ∈ S ∧ cT ∈ T .
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Before carrying out the empirical evaluation of this approach using syntactic
and semantic evidence described in Sect. 5, we studied analytically, using Bayes’s
theorem, the effect of each piece of evidence independently. Given a series of ini-
tial prior probabilities in the range of [0, 1] and the evidence likelihoods (see
Sect. 3) we computed the posterior probabilities given each piece of evidence.
Figure 2(a) and (b) show how the posteriors P (cs ≡ ct|ed(cs, ct) = s), and,
P (cs ≡ ct|ng(cs, ct) = s), resp., are updated when the available evidence is sim-
ilarity scores computed by the string-based matchers ed and ng. As an example,
consider Fig. 2(a), and assume that we are given a prior probability of x = 0.5
and a similarity score that is y < 0.5, ed will cause the updated posterior prob-
ability to fall relatively more. In this case, if the similarity score is y = 0.2, the
posterior probability drops to z = 0.2. In the case of ng, using identical values
as previously, the posterior probability drops to z = 0.36, which means that ng
causes a small decrease in the posterior. In a similar fashion, the independent
behaviours of different kinds of semantic evidence have been studied. For exam-
ple, Fig. 2(c) shows how the posterior is updated when there is direct evidence
that a pair of classes stand in a subsumption relationship (i.e., SB). A subsump-
tion relation may indicate that the constructs are more likely to be related than
to be disjoint and a low prior is therefore increased. Similarly, Fig. 2(d) shows
how the posterior is affected when a pair of constructs stand in an equivalence
relation (i.e., EC). This is considered enough evidence to significantly increase a
low prior to close to 1; meaning that constructs are more probably equivalent
than if that evidence had not been available.

Having observed how different posterior probabilities are updated in the pres-
ence of individual pieces of evidence, in Sect. 5 we empirically assess whether the
incorporation of semantic evidence from LD ontologies can improve on construct
equivalence judgements obtained through syntactic matching alone.

5 Experimental Evaluation

The evaluation of our approach was based on the idea of emulating the construct
equivalence judgements produced by human experts in the presence of different
kinds of syntactic and semantic evidence7. The judgements derived from experts
are then compared with the judgements derived by the Bayesian updating app-
roach discussed in Sects. 3 and 4. This section describes an experimental scenario
that has a twofold purpose: (a) to compare how well the Bayesian assimilation of
syntactic evidence alone performs against the aggregation of syntactic evidence
followed by a predefined function, specifically average (AVG) which is commonly
used in existing matching systems [2,15], and (b) to observe empirically whether
the incorporation of semantic evidence can improve on construct equivalence
judgements obtained through syntactic matching alone.
7 The survey was distributed and completed by 15 human participants all experts in

solving data integration tasks, such as schema matching and mapping.
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(a) Edit-distance matcher.
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(b) N-gram matcher.
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(c) Evidence for subsumption.
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(d) Evidence of equivalence.

Fig. 2. Effect on the posterior probabilities using particular evidence on different prior
probabilities.

5.1 Experimental Setup

To evaluate the application of Bayes’s theorem for assimilating different kinds
of evidence, the experimental evaluation was grounded on the rational deci-
sions made by human experts on data integration and ontology alignment when
judging whether a pair of constructs is postulated to be equivalent given both
syntactic and semantic evidence as construed in this paper. For the purposes
of the experiment, a set of pairs of constructs from different LD ontologies was
collected, making sure that different combinations of syntactic and semantic
evidence (as in Table 1) were present or absent. To obtain testimonies from the
human experts, a survey was designed based on the collected set of pairs of con-
structs, asking the experts to make judgements on the equivalence of such pairs.
Testimonies have been recorded on a discretisation scale [5], as follows: {Definitely
equivalent} mapped to a dob of 1.0; {Tending towards being equivalent} mapped to
a dob of 0.75; {Do not know} mapped to a dob of 0.5; {Tending towards being not-
equivalent} mapped to a dob of 0.25; and {Definitely not-equivalent} mapped to a
dob of 0. By observing different pairs of constructs from real ontologies, approx-
imately 40 common combinations of syntactic and semantic evidence have been
identified. For each combination, a question was designed to obtain individual
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testimonies from each responder. Individual testimonies from each question were
aggregated using a weighted average, based on the confidence assigned to each
item [5]. The aggregated degrees of belief obtained from the survey are treated
as an approximation of the experts’ confidence on construct equivalence given
certain pieces of syntactic and semantic evidence and act as a gold standard.
Datasets. For the purposes of the experiment, the Bayesian technique was evalu-
ated over the class hierarchies of ontologies made available by the OAEI - Confer-
ence track, which have been designed independently by different processes but all
belonging to the domain of conference organisation. Note also that these ontologies
share no semantic relations between them. Since our technique assumes such rela-
tions for use as semantic evidence, we made some of these cross-ontology semantic
relations explicit using BLOOMS8; a system for discovering rdfs:subClassOf and
owl:equivalentClass relations between LD ontologies [7]. We note that the contri-
butions reported in this paper are independent of BLOOMS, in that they can be
used regardless of the sources of semantic annotations. We found that the LOD
cloud at the conceptual level still lacks the abundance of cross-ontology links that,
most agree, will one day characterise the SW. We have therefore used BLOOMS to
induce some more cross-ontology links in a principled manner. The results reported
in this paper consider a single pair of ontologies from the conference track, viz.,
ekaw (denoted by S) and conference (denoted by T ).
Expectation Matrix. Given a pair of classes from the class hierarchies of
the input ontologies and given the available kinds of evidence, both syntactic
and semantic, a dob was assigned for each pair on the basis of the experts’
testimonies. More formally, we constructed a n × m structure referred to from
now on as the expectation matrix and denoted as Mexp, where n = |S| and
m = |T |. The element ejk in the jth row and the kth column of Mexp denotes
the dob derived from the expert survey between the jth construct in S and the
kth construct in T according to the pieces of evidence present or absent.
Evaluation Metric. Let p1, p2, ..., pn be the degrees of belief derived for each
pair of classes from the ontologies by either the average aggregated scheme or the
Bayesian assimilation, and a1, a2, ..., an be the corresponding degrees of belief in
the expectation matrix just described. We compute the mean-absolute error,
MAE = (|p1 − a1| + ... + |pi − ai|) ÷ n where |p1 − a1| is an individual error of
a pair and n is the total number of such errors.

5.2 Evaluation Methodology

Traditional matching approaches (e.g., COMA [1]) exploit different pieces of evi-
dence, mostly from string-based matchers, to assess the similarity between con-
structs in ontologies or in database schemas. Such approaches combine similarity
scores computed independently, typically using averages. For this evaluation the
antagonist to our Bayesian approach is considered a process that independently
runs matchers ng and ed on the local-names of classes from ontologies S and T ,
8 BLOOMS was configured with a high threshold, viz., > 0.8..
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and produces an average of the similarity scores. The aggregated result of this
computation is a matrix Mavg. The next step is to measure how close the derived
predictions are to the degrees of belief obtained by the experts’ testimonies. In
doing so, we used MAE as the performance measure since it does not exaggerate
the effect of outliers [6]. The result from computing the error between Mavg and
the expectation matrix Mexp is denoted by δavg.

Similarly, the Bayesian assimilation technique (as described in Sect. 4) was
used (instead of an average) to assimilate the evidence computed by the string-
based matchers on pairs of local-names. The result of this computation is a matrix
Msyn, where n = |S| and m = |T |. The element ejk in the jth row and the kth
column of Msyn denotes the posterior probability P (syn) between the jth class in S
and the kth class in T according to the syntactic evidence derived from the string-
based matchers ed and ng. The next step is to measure how close the predictions
from Msyn are to the expectation matrix Mexp. The result is denoted by δsyn.

To assess whether semantic evidence can improve on construct equivalence
judgements that use averaging alone to aggregate syntactic evidence, we first
used BLOOMS [7] to make explicit the cross-ontology semantic relations and
used this as semantic evidence. In the light of this new evidence, the Bayesian
assimilation technique updates the posterior probabilities P (syn) for each pair of
classes in Msyn accordingly. The result of this process is a new matrix Msyn,sem

with the same dimensions as Msyn, where, the posterior probabilities for the
elements ejk reflect both syntactic and semantic evidence, P (syn,sem). Again we
denote by δsyn,sem the error calculated between Msyn,sem and the expectation
matrix Mexp. Finally, to complete the evaluation, the individual absolute errors
used for the calculation of δavg, δsyn, and δsyn,sem have been examined. The
results of the evaluation are now discussed.

5.3 Results and Discussion

Exp. 1: AVG scheme vs. Bayesian Syntactic. The MAE error computed for the
average aggregation scheme against the expectation matrix was δavg = 0.1079
whereas the error as a result of assimilating syntactic evidence using the Bayesian
technique was δsyn = 0.0698. The difference of 0.0381 between the two errors
can be expressed in percentage terms as 35.32%. To further understand the
difference in errors, we measured the individual absolute errors that fall into each
of four regions of interest as these are shown in Fig. 3(a). They correspond to
the following minimum bounding rectangles, resp., Region 1 lies below the y = x
error line where AVG error >> Bayesian error and is the rectangle defined by
y = 0.2; Region 2 lies above the y = x error line where AVG error << Bayesian
error and is the rectangle defined by x = 0.2; Region 3 lies below the y = x error
line where AVG error > Bayesian error and is the rectangle defined by y > 0.2;
and Region 4 lies above the y = x error line where AVG error < Bayesian error
and is the rectangle defined by x > 0.2. We note that the larger the cardinality
of Region 1, the more significant is the impact of using semantic annotations as
we propose.
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Table 3. AVG scheme vs. Bayesian
syntactic.

No. Region Count Perc. (%)

1 Ravg>>Bsyn 3833 87.49

2 Ravg<<Bsyn 215 4.90

3 Ravg>Bsyn 31 0.70

4 Ravg<Bsyn 302 6.89

Table 4. AVG scheme vs. Bayesian
syntactic & semantic.

No. Region Count Perc. (%)

1 Ravg>>Bsyn,sem 125 71.43

2 Ravg<<Bsyn,sem 43 24.57

3 Ravg>Bsyn,sem 2 1.14

4 Ravg<Bsyn,sem 5 2.85

Table 5. Bayesian syntactic vs. Bayesian syntactic & semantic.

No. Region Count Perc. (%)

1 RBsyn>>Bsyn,sem 124 89.21

2 RBsyn<<Bsyn,sem 9 6.48

3 RBsyn>Bsyn,sem 5 3.60

4 RBsyn<Bsyn,sem 1 0.72

For the traditional aggregation scheme that produced Mavg we counted 3833
matches with individual errors greater than the analogous individual errors
derived by the Bayesian technique that produced Msyn. The use of Bayesian
aggregation significantly outperformed (i.e., has smaller individual errors than)
the use of AVG aggregation scheme for 87.49% of the total. Table 3 summarises
the results for each region showing how many individual errors are located in
each of the regions of interest in both absolute terms and relative to the total.

Exp. 2: AVG scheme vs. Bayesian Syn. & Sem. To evaluate our hypoth-
esis whether semantic annotations can improve outcomes we compared the
aggregated errors denoted by δavg and δsyn,sem. The mean absolute error
δsyn,sem = 0.1259 is lower than δavg = 0.1942 with a difference of 0.0683 or
35.15%. Figure 3(b) plots the individual errors for pairs of classes that have
some semantic relation between them. We are interested on cases where the
individual errors for the Bayesian technique are smaller than the AVG scheme.
In particular, the points that lie mostly between 0.1 and 0.3 on the x-axis and
below the y = x error line. For 71.43% of the total matches that have some
semantic evidence the Bayesian technique produces results closer to the testi-
monies, with individual errors that mostly lie in that region. Table 4 summarises
the results for each region showing how many individual errors are located in
each of the regions of interest in both absolute terms and relative to the total.

Exp. 3: Bayesian Syn. vs. Bayesian Syn. & Sem. Similarly to Exp.2, we com-
pared the aggregated errors denoted by δsyn and δsyn,sem considering only indi-
vidual errors that have some semantic evidence. Again in this case δsyn,sem =
0.1259 is closer to the expectation matrix than δsyn = 0.2768 with a difference
of 0.1509 or 54.5%. The results of this experiment are summarised in Table 5.
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The points of interest in this experiment are the ones where the individual errors
for Bsyn,sem, that considers both syntactic and semantic evidence, are smaller
than Bsyn. For 89.21% of the total matches discovered, that have some semantic
evidence, Bsyn,sem outperforms the configuration of the Bayesian scheme that
utilises syntactic evidence alone, i.e., Bsyn.
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Fig. 3. (a) Shows the regions of interest, (b) Individual errors Bayesian against AVG
scheme.

Overall, the experimental evaluation showed that the Bayesian assimilation
of syntactic and semantic evidence delivers, in most cases better judgements
of construct equivalence than the use of syntactic matchers alone i.e., than the
state-of-the-art in matching. The aim of the experiment was to evaluate the
Bayesian approach on how well it performed on aggregating different pieces of
syntactic and semantic evidence against AVG a common aggregation strategy
used in traditional matching approaches. Alignments provided by the OAEI
group are tailored towards evaluating approaches that make classification deci-
sions for discovering ontology alignments and are not suitable for judging indi-
vidual aggregated confidence degrees of belief derived by the approaches. To the
best of our knowledge there are no established benchmarks for doing so. There-
fore, we consulted human experts for the construction of the baseline used for
the evaluation.

6 Related Work

A variety of strategies have been proposed in the literature for solving the prob-
lem of combining different pieces of evidence about matches, some examples
are: average, weighted average, min, max and sigmoid functions [10]. However,
it falls on users to tune or select the appropriate aggregation method manu-
ally according to the problem in hand. In contrast, the Bayesian assimilation of
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evidence technique can be used as an alternative aggregation strategy for assim-
ilating any piece of evidence, complementing typical aggregation strategies used
by state-of-the-art schema and ontology matching systems [2,12,15]. When the
appropriate probability distributions are made available, the approach presented
in this paper can be used as a generic aggregation strategy that is not tied to
any specific domain. Sabou et al. [13] presented an ontology matching paradigm
that makes use of additional external background knowledge that is made avail-
able from ontologies from the Semantic Web. The proposal in our paper makes
use of additional semantic annotations from LD ontologies as evidence with the
aim of improving the decision making of different matchers that mostly work
on syntax. In another note, approaches for discovering semantic relations from
ontologies e.g., [14] can be used to provide input to our Bayesian approaches to
further improve the accuracy, thus improving the decision making of matching
approaches. The uncertainty in the decisions made by different matchers has
also been observed in [8], where a similarity matrix that describes the outcome
of some matcher is modelled as two probability distributions. An alternative sta-
tistical analysis is used to model the similarity scores distribution returned by
each matcher that uses the parametric beta-distribution to estimate the under-
lying probability. The proposal in our paper, however, makes no assumptions
about the shape or parameters of the underlying distribution, and uses a non-
parametric statistical analysis technique, based on kernel density estimation, to
approximate the probability distributions for each matcher using the sampled
data.

7 Conclusions

The WoD can be seen as vibrant but challenging: vibrant because there are
numerous publishers making valuable data sets aware for public use; challenging
because of inconsistent practises and terminologies in a setting that is something
of a free-for-all. In this context, it is perhaps easier to be a publisher than
a consumer. As a result, there is a need for tools and techniques to support
effective analysis, linking and integration in the web of data [11]. The challenging
environment means: (i) that there are many different sources of evidence on
which to build; (ii) that there is a need to make the most of the available evidence;
and (iii) that it is not necessarily easy to do (ii). This paper has described a
well-founded approach to combining multiple sources of evidence of relevance
to matching, namely syntactic matchers and semantic annotations. The findings
from the empirical evaluation suggested that the Bayesian aggregation scheme
has let to improved decision making of close to 90% of the total matches when
assimilating just syntactic evidence, and the confidence of close to 70% of the
matches that had some semantic evidence has been improved in the light of
available semantic evidence. Overall, the suggested approach can be used as a
generic methodology for assimilating different kinds of evidence as they become
available, or as a method that complements existing aggregation strategies for
matching systems.
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