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Abstract. The Database-as-a-Service (DAS) model allowing users to
outsource data to the clouds has been a promising paradigm. Since users’
data may contain private information and the cloud servers may not
be fully trusted, it is desirable to encrypt the data before outsourcing
and as a result, the functionality and efficiency has to be sacrificed.
In this paper, we propose a privacy-enhancing range query processing
scheme by utilizing polynomials and kNN technique. We prove that our
scheme is secure under the widely adopted honest-but-curious model and
the known background model. Since the secure indexes and trapdoors
are indistinguishable and unlinkable, the data privacy can be protected
even when the cloud server possesses additional information, such as the
attribute domain and the distribution of this domain. In addition, results
of experiments validating our proposed scheme are also provided.
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1 Introduction

With the rapid developments of networking and Internet technologies, Database-
as-a-Service (DAS) [1] has been a promising paradigm, such as Amazon Web
Services [2] providing both relational and NoSQL cloud-based database services.
In the DAS model, organizations could outsource their data to service providers
and retrieve data anytime and anywhere, as long as they have access to the
Internet. In other words, the DAS model provides an approach for corporations
to share the hardware and software resources as well as the expertise of data-
base professionals, thereby cutting the cost of maintaining their own DBMSs.
On the other hand, since data is stored at the third-party server and most orga-
nizations view their data as a valuable asset, at least two privacy issues arise.
First, data needs to be protected from thefts from outsiders who may break
into the providers’ websites and scan disks. For instance, in 2014, hackers broke
into the computers of Community Health Systems which operates 206 hospi-
tals across the United States and stole data on 4.5 million patients [3]. Second,
data also needs to be protected against the service providers, if they cannot
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be fully trusted. For example, an engineer in Google’s Seattle offices broke into
the Gmail and Google Voice accounts of several children in 2010 [4]. To guard
data security and privacy, a straightforward solution is to encrypt data before
outsourcing. When performing search, all encrypted data is returned and cor-
porations could execute the query at the client after decrypting it. Obviously,
this naive approach is impractical for incurring high decryption and network
workloads for organizations.

The system model considered in this paper is comprised of three fundamental
parties: the data owner, the data user and the cloud server, as illustrated in
Fig. 1. The data owner outsources his/her data to the clouds in encrypted form,
together with the secure index applied to enable the searching capability of
the cloud server. To search over the encrypted data, the data user obtains the
secure trapdoor from the data owner through search control mechanisms, e.g.,
broadcast encryption [8] and then submits it to the cloud server. Upon receiving
the trapdoor, the cloud server searches the secure index and returns the matching
encrypted data to the data user. Finally, the access control mechanism [5] is used
to manage decryption capabilities. However, the search control and access control
mechanisms are out of the scope of this paper. For a simple example, the data
user can store his/her own data and query his/her own data on the cloud server.
In this architecture, the data owner and the data user are trusted while the cloud
server hosted by service providers cannot be fully trusted.

Fig. 1. Architecture of the range query processing over encrypted cloud databases

The problem discussed in this paper is range query which is a major type of
database queries. The data in a relational DBMS are represented as tuples (i.e.,
records or rows) and tuples having the same attributes are organized in a table. For
example, the Member data in Table 1 are personal information tuples of a special
interest group and all tuples are identified by attributes ID, NAME, AGE and
ADDRESS where the underlined attribute ID denotes the key of this table. For
the attribute which can be represented as numerical values (e.g., AGE ), consider
a range query specified by an interval (e.g., select ∗ from Member where AGE ∈
[20, 30)), the matching results are the tuples whose attribute value falls into the
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Table 1. Member

ID NAME AGE ADDRESS

1 John 25 Chicago

2 Eric 21 Miami

3 Thomas 27 New York

4 Franklin 33 San Francisco

5 Aaron 18 Boston

Table 2. Enc Member

Enc tuple IS
AGE

SfahFrwierh3JsejjsdfblklR5fsfWer α

uDmsmdfOwe05u5jgNfjkgkroeRledlcf β

mcuj48djhg2EdfslFlsfqjosdjRlslMd γ

Ijfgkf8djkfsldDiseemJKllfnlfsj8k η

osdfnsfklJfsnKdfannlK0nlfjalnn2z π

interval (e.g., ID ∈ {1, 2, 3}). In addition, equal query can be viewed as a special
kind of range query. Since computers can handle only inherently finite and discrete
numbers, the attribute values and the lower and upper bounds of range queries can
be assumed as nonnegative integers without loss of generality [25].

To protect the data privacy, there are several granularity choices for encryp-
tion, such as encrypting at the level of individual table, attribute, tuple and
cell. Encrypting at the level of individual table or attribute implies that the
entire table should be returned as the result, although it is more efficient to
encrypt and decrypt the data. On the contrary, encrypting at the level of indi-
vidual cell will incur high encryption and decryption workloads, while providing
more efficient query processing. As in previous works, our proposed scheme per-
forms encryption at the tuple level. To provide cloud servers with the ability to
check whether one tuple matches the range query, we also associate with each
encrypted tuple multiple secure indexes built based on the attribute values to be
queried. Hence, each plaintext table can be stored as a table with one attribute
for the encrypted tuple and several additional attributes for the secure indexes.
More specifically, the plaintext tuple t(A1, . . . , An) will be mapped onto a new
tuple tS(Enc(t), IS1 , . . . , ISm) where m � n. The attribute Enc(t) is utilized to
store the encrypted tuple and ISi corresponds to the secure index over some
Aj . In addition, the encryption function Enc() is treated like a black box in
this paper. For instance, as shown in Table 2, the indexed table Enc Member
contains the attribute Enc tuple representing encrypted tuples and ISAGE repre-
senting secure indexes over attribute AGE. Here, the ISAGE attribute values are
denoted as Greek letters.
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The main challenge in this context is how to enable efficient range query
processing over encrypted cloud databases without sacrificing privacy. In real
situations, the service providers may possess background knowledge (e.g. the
attribute domain and the distribution of this domain) which can be obtained
from similar databases or historical data. So it is desirable that the cloud server
can’t learn more than the secure indexes, the secure trapdoors and the encrypted
results even with such information. However, existing works [17–26] disclose
useful statistical properties of data items through indexes or query processing,
so the cloud server could learn additional information than allowed such as the
exact attribute value of each tuple. Besides, to avoid incurring high decryption
workload and network workload, it is better to reduce the interactions between
server and client as well as the unmatching data items contained in results.

Our Contribution. In this paper, we propose a privacy-enhancing range query
processing scheme. Our approach utilizes canonical ranges and polynomials to
build indexes and trapdoors for attribute values and range queries. Then kNN
technique is applied to encrypt the indexes and trapdoors. We provide thorough
security analysis that the proposed scheme is secure under the honest-but-curious
(HBC) model and the known background model. Since the indexes and trapdoors
built in our scheme are indistinguishable and unlinkable, security and privacy
can be protected even when the cloud servers possess the distribution of the
attribute domain. Furthermore, we evaluate the performance of our scheme.

Organization. The rest of the paper is organized as follows. Section 2 presents
the previous works related to our proposed scheme. The threat model and secu-
rity goals are discussed in Sect. 3. In Sect. 4, we describe our privacy-enhancing
range query processing in detail. Section 5 shows the security analysis and Sect. 6
gives our experimental results. We conclude the paper in Sect. 7.

2 Related Work

Previous works related to our scheme mainly fall into two categories: range queries,
where search conditions are represented as intervals, and keyword queries, where
search conditions are denoted as single or multiple keywords. The first keyword
search scheme is proposed by Song et al. [6]. After this work, many novel schemes
have been designed to improve the functionality and efficiency. Instead of scan-
ning every word, [7,8] build secure indexes based on documents and corresponding
search protocols to improve efficiency. Subsequent works [9–12] propose schemes
to support multi-keyword retrieval, i.e., conjunctive or disjunctive keyword search.
Moreover, [13–16] extend the search capability to fuzzy keyword search which can
tolerate errors in the query to some extent. However, above works are limited and
insufficient in executing range queries over encrypted data.

There are several works designed to enable privacy preserving and yet efficient
range query processing. The bucketization technique proposed in [17] partitions
the attribute domain into multiple buckets (in an equi-depth or equi-width man-
ner) and each bucket is identified by a unique tag which can be realized by a
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collision-free hash function. The bucket tag is maintained on the cloud servers
as an index together with the encrypted tuples in this bucket. The trapdoor of
a range query consists of the tags of buckets that overlap with the search con-
dition and then all the encrypted tuples indexed by these tags will be returned.
As mentioned in [18], the security limitation of data partitioning approaches is
that the cloud servers can statistically estimate the attribute values of tuples
and the lower and upper bounds of queries through domain knowledge and his-
torical results. In addition, since false positives are incurred, i.e., the results
may contain tuples that don’t satisfy the query, users have to decrypt all the
encrypted results and filter the unmatching items. Hence, the bucket size is
positively related to security and negatively related to efficiency. In particular,
increasing the bucket size can help to improve the data security, but will incur
more unmatching results. There are several works focusing on how to trade off
the security and efficiency. In [18], Hore et al. claim an optimal bucketization
algorithm to maximize the efficiency as well as two measures of privacy, and
propose a re-bucketization technique that yields bounded overhead while maxi-
mizing the defined notions of privacy. Subsequently, Wang et al. [19] introduce
new security and efficiency metrics based on probability distribution variance
and overlap ratio respectively, and design a 2-phase local overlap bucket (LOB)
algorithm.

In [20], Agrawal et al. describe the first order preserving encryption app-
roach for range queries over encrypted data, followed by [21] which proposes a
provable secure scheme to achieve the same functionality. The schemes based
on order preserving encryption are deterministic, since ciphertext must keep the
same numerical ordering as plaintext. Hence, the cloud servers can obtain the
relationship between the attribute values of two tuples directly from their corre-
sponding indexes. In addition, these approaches assume that the distribution of
attribute domain remains fixed and the encryption function is conscious of this
distribution. The advantage of order preserving encryption schemes is that all
results returned are matching tuples, so there is no additional workload incurred
to the client.

In [22], damiani et al. design to build encrypted B+-tree by encrypting the
plaintext B+-tree at node level. As the encrypted tree is not visible, interactions
between server and client are required from the root to the leaf, and the num-
ber of interactions is equal to the depth of the tree. Obviously, it will increase
decryption and network workloads for data users. In [23], Lu constructs the
first provably secure logarithmic search mechanism. Pang et al. [24] show that
the privacy of Damiani’s encrypted B+-tree can be defeated by monitoring the
I/O activities on the server or tracking the sequence of nodes retrieved during
range query processing. So they propose a privacy-enhancing PB+-tree index
which groups the nodes in each index level randomly into buckets, but this app-
roach incurs higher I/O cost and computation overheads on the server. Since the
ciphertexts are sorted in B+-tree, the cloud server who possesses the distribution
of domain can guess the attribute value of each tuple with high probability.
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Besides the schemesbasedonbucketization technique, order preserving encryp-
tion and B+-tree, there are also several works relying on other mechanisms. Li
and Omiecinski [25] adapt a prefix-preserving encryption scheme to create index
and this scheme is subject to certain attacks. In [26], Li et al. propose the first
range query processing scheme that achieves index indistinguishability by utilizing
PBtree (where “P” stands for privacy and “B” stands for Bloom filter) which has
the property of node indistinguishability and structure indistinguishability. How-
ever, since the cloud sever can learn the tuples belonging to each prefix during the
query processing, if the distribution of attribute domain is obtained, each plaintext
value and the prefixes in trapdoors will be disclosed. In addition, the results in [26]
may contain unmatching data items because this scheme utilizes Bloom filter to
store each node’s prefix family.

3 Problem Formulation

3.1 Threat Model

In this paper, we only consider attacks from the server providers while the data
owner and the data user are trusted. We assume that the server is honest-but-
curious (HBC) [27]. That means the cloud server will honestly and correctly
follow the protocols, but may attempt to infer and analyze more information
than allowed. Furthermore, we also consider the known background model, i.e.,
the cloud server possesses additional information about the data. For example,
the attribute domain and its statistical information such as the distribution of
this domain which may be obtained from similar databases or historical data.

3.2 Design Goals

Our design bears the following security and performance goals.

Security Goals

Index Confidentiality. The cloud server can’t learn the exact attribute value
of each tuple from its corresponding secure index. In addition, the secure index
generation should be randomized instead of deterministic, i.e., the secure indexes
are indistinguishable. For example, when given two secure indexes, the cloud
server can’t obtain the relationship between their corresponding attribute values.

Trapdoor Confidentiality. The cloud server can’t learn the upper and lower
bounds as well as the size of range query from its corresponding secure trap-
door. In addition, the secure trapdoor generation should be randomized instead
of deterministic, i.e., the secure indexes are unlinkable. For instance, the cloud
server can’t deduce the relationship of any given trapdoors.

Query Processing Confidentiality. During the query processing, the cloud server
can’t obtain more than what can be derived from the results, even with back-
ground knowledge such as the attribute domain and the distribution of this
domain.
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Usability and Efficiency. For range query processing over clouds, since client
devices mostly have limited storage and computing resources compared with
cloud servers, it is better to process as much of the work as possible at the
server, without having to decrypt the data. Besides, to avoid high decryption
and network workloads, it is desirable to minimize the number of unmatching
data items to be returned and interactions between client and server.

4 Privacy-Enhancing Range Query Processing

4.1 Main Idea

To design a privacy-enhancing and well-functioning method for range query, we
focus on three important and closely inter-related aspects: (1) data structure
utilized to build indexes for tuples and trapdoors for search conditions; (2) effec-
tive and efficient search algorithm that can check whether one tuple matches the
given search condition; (3) privacy mechanisms that can be integrated with the
above two aspects so that the privacy of indexes, trapdoors and query processing
can be protected simultaneously. In this subsection, we describe the key ideas
to realize data structure and search algorithm without privacy mechanisms. The
more detailed scheme will be discussed in the next subsection.

In this paper, we assume the attribute to be queried is A whose value domain
is Z2n . Our proposed scheme first converts the attribute value t.A of tuple t and
the range query Q = [a, b) into canonical range representation which is also
applied in [29]. Then use polynomials to construct index I for value t.A and
trapdoor T for search condition Q. The detailed steps are explained as follows.

Canonical Range Representation of Value/Query. Consider the range
query with Z2n , a canonical range with level i ∈ Zn is [x2i, (x + 1)2i) for some
integer x ∈ Z2n−i . There are 2n−i canonical ranges in level i and the total number

of different canonical ranges is
n−1∑

i=0

2n−i = 2n+1 − 2. Hence, we can identify each

canonical range as a unique integer cr ∈ N2n+1−2, which can be realized by a
collision-free hash function h : (i, x) → N2n+1−2. The corresponding level of cr
is denoted as level(cr).

In particular, given the attribute value t.A ∈ Z2n , for each level i ∈ Zn, com-
pute xi such that t.A ∈ [xi2i, (xi + 1)2i). The total number of canonical ranges
containing t.A is n and there is only one canonical range for each level. Hence the
attribute value t.A can be represented as CRA = {cra0, cra1, . . . cran−1} where
crai ∈ N2n+1−2. Given the range query Q = [a, b), for each level i ∈ Zn, find,
if any, the minimum yi such that [yi2i, (yi + 1)2i) ∈ [a, b) and the maximum
zi such that [zi2i, (zi + 1)2i) ∈ [a, b). If every element of one canonical range
belongs to another canonical range, then the small range should be deleted from
the range set. The total number of canonical ranges inside the given query is not
fixed since it depends on the interval’s upper and lower bounds. Hence the search
condition Q can be represented as CRQ = {crq0, crq1, . . .} where crqi ∈ N2n+1−2.
To check whether t is a matching tuple, i.e., t.A ∈ Q, we only need to compute
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CRA ∧ CRQ. More specifically, If CRA ∧ CRQ �= ∅, then t.A ∈ Q and t is a
matching tuple; otherwise, t.A /∈ Q and t is an unmatching tuple.

For example, assume n = 4 and h : (i, x) → N25−2. Given the attribute value
t.A = 9, the canonical ranges containing t.A are {[9, 10), [8, 10), [8, 12), [8, 16)}
and CRA = {h(0, 9), h(1, 4), h(2, 2), h(3, 1)}. Given the range query Q = [6, 11),
the total canonical ranges inside the interval are {[6, 7), [10, 11), [6, 8), [8, 10)} and
CRQ = {h(0, 10), h(1, 3), h(1, 4)} after deleting h(0, 6). Since CRA ∧ CRQ =
{h(1, 4)}, we can obtain that t.A ∈ Q and t is a matching tuple.

Polynomial Representation of Index/Trapdoor. In this paper, we convert
the canonical range set CRA of attribute value t.A and CRQ of range query
Q = [a, b) into polynomials. Before converting, we first put the n levels into M
buckets randomly where M is an factor of n and each bucket has m = n/M
levels. Levels in the ith bucket can be denoted as Bi = {li,0, li,1, . . . , li,m−1}.
Second, we construct a m+1-degree polynomial, whose m+1 roots are denoted
as R = {a0, . . . am}:

PR(x) = (x − a0)(x − a1) · · · (x − am) =
m+1∑

i=0

αix
i (1)

Then produce a m-variable polynomial based on PR(x):

FR(x0, x1, . . . , xm−1) = PR(x0)PR(x1) · · ·PR(xm−1) (2)

Combine the terms of FR(x0, x1, . . . , xm−1) only if they have the exact same coef-
ficient. Then we utilize the coefficients UR to build indexes and the variable parts
VX to generate trapdoors, where R = {a0, . . . , am} and X = {x0, . . . , xm−1}. For
instance, assume m = 2 and construct a 2-variable polynomial F(a0,a1,a2)(x1, x2)
based on the 3-degree polynomial P(a0,a1,a2)(x). The coefficients and variables
of each term in F(a0,a1,a2)(x1, x2) are shown in Table 3.

The detailed protocols to construct indexes and trapdoors are described as
follows:

Index. For each bucket i ∈ ZM , we build a sub-index Ii for attribute value
t.A. First generate a random integer ri /∈ Z2n+1−1. The canonical ranges con-
taining t.A that fall into the ith bucket together with ri are denoted as CRAi =
{crai,0, . . . , crai,m−1, ri}, where level(crai,j) ∈ Bi and Bi = {li,0, li,1, . . . , li,m−1}
stands for the levels in the ith bucket. Then use the coefficients UCRAi

to rep-
resent the sub-index Ii, where the root set {a0, . . . , am} is replaced by CRAi =
{crai,0, . . . , crai,m−1, ri}.

Trapdoor. For each bucket i ∈ ZM , we build two sub-trapdoors Ti,0 and Ti,1 for
the range query Q = [a, b). The canonical ranges inside Q that fall into the ith

bucket are CRQi = {crqi,j} where level(crqi,j) ∈ Bi. Then add zeros to CRQi

such that |CRQi| = 2m and split the set into two sets CRQi,0 and CRQi,1, where
|CRQi,0| = |CRQi,1| = m. Then we use the variable parts VCRQi,0

and VCRQi,1

to construct two sub-trapdoors Ti,0 and Ti,1 respectively, where {x0, . . . , xm−1}
is replaced by {crqi,0,0, . . . , crqi,0,m−1} and {crqi,1,0, . . . , crqi,1,m−1}.
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Table 3. The coefficients and variables of F(a0,a1,a2)(x1, x2)

Coefficients Variables

a0a1 + a0a2 + a1a2 x3
0x1 + x0x

3
1

(a0a1 + a0a2 + a1a2)
2 x0x1

−(a0a1a2) x3
0 + x3

1

(a0a1a2)
2 1

−(a0a1 + a0a2 + a1a2)(a0a1a2) x0 + x1

(a0 + a1 + a2)
2 x2

0x
2
1

−(a0 + a1 + a2) x3
0x

2
1 + x2

0x
3
1

1 x3
0x

3
1

−(a0 + a1 + a2)(a0a1 + a0a2 + a1a2) x2
0x1 + x0x

2
1

a0a1a2(a0 + a1 + a2) x2
0 + x2

1

If there exists one canonical range cr satisfying cr ∈ CRAi ∧CRQi,k, and we
assume cr = crai,0 = crqi,k,0. Since cr is a root of PCRAi

(x), i.e.,

PCRAi
(cr) = 0 (3)

then

IiTj,k = FCRAi(cr, crqi,k,1, . . . , crqi,k,m−1)
= PCRAi

(cr)PCRAi
(crqi,k,1) · · ·PCRAi

(crqi,k,m−1) (4)
= 0

The whole index I can be denoted as {I0, . . . , IM−1} while the whole trap-
door can be represented as {T0,0, T0,1, . . . , TM−1,0, TM−1,1}.

4.2 Scheme Construction

In this subsection, we introduce the detailed process of our proposed scheme
and pay more attention to the privacy mechanisms. In particular, we adopt the
secure k-nearest neighbor (kNN) scheme proposed by Wong et al. [28] to encrypt
the index I and trapdoor T . The steps are explained as follows:

Setup. In this initialization phase, for each bucket i ∈ ZM , the data owner
takes a security parameter λi and outputs the secret key SKi, which includes:
(1) a d-bit randomly generated vector Si, (2) two invertible random matrices
Mi,1,Mi,2 ∈ Rd×d, where d is the length of Ii and Ti. Hence, SKi can be
denoted as a 3-tuple {Si,Mi,1,Mi,2}.

BuildIndex. For each sub-index Ii, the data owner encrypts the vector using
the secret key SKi. First, split Ii into two random vectors as {I ′

i, I ′′
i } following

the rule: for each element Ii[j], 0 � j � d − 1, if the jth bit of Si is 1, set
I ′
i[j] = I ′′

i [j] = Ii[j]; if the jth bit of Si is 0, I ′
i[j] and I ′′

i [j] are set to two
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random numbers so that their sum is equal to Ii[j]. Finally, the encrypted sub-
index vector IS

i is built as {MT
i,1I ′

i,M
T
i,2I ′′

i }. The entire secure index IS for
attribute value t.A is {IS

0 , . . . , IS
M−1} and then the data user sends it to the

cloud server.

BuildTrapdoor. For each sub-trapdoor Ti,k, k ∈ {0, 1}, the data owner encrypts
the vector using the secret key SKi. First, split Ti,k into two random vectors as
{T ′

i,k, T ′′
i,k} following the rule: for each element Ti,k[j],� j � d − 1, if the jth bit

of Si is 0, set T ′
i,k[j] = T ′′

i,k[j] = Ti,k[j]; if the jth bit of Si is 1, T ′
i,k[j] and T ′′

i,k[j]
are set to two random numbers so that their sum is equal to Ti,k[j]. Finally, the
encrypted sub-trapdoor vector T S

i,k is built as {M−1
i,1 T ′

i,k,M
−1
i,2 T ′′

i,k}. The entire
secure trapdoor T S for the search condition is {T S

0,0, T S
0,1, . . . , T S

M−1,0, T S
M−1,1}

and then the data user sends it to the cloud server.

RangeQuery. With the secure trapdoor T S , the cloud server computes the
inner product of IS

i and T S
i,k for each sub-trapdoor and check whether the result

is zero.

IS
i T S

i,k = {MT
i,1I ′

i,M
T
i,2I ′′

i } · {M−1
i,1 T ′

i,k,M
−1
i,2 T ′′

i,k}
= I ′

i · T ′
i,k + I ′′

i · T ′′
i,k (5)

= Ii · Ti,k

If there is some T S
i,k that satisfies IS

i · T S
i,k = 0, then tuple t is a matching

tuple and should be returned to the data user; otherwise, t is an unmatching
tuple. Then check the next tuple.

Discussion. In above protocols, the number of sub-trapdoors of T S is 2M , so we
have to compute 2M inner products for each tuple. To improve the performance,
if the number of canonical ranges in the jth bucket is less than m, we can add
zeros to the set so that |CRQi| = m. Then we only need to construct one sub-
trapdoor according to bucket j and hence reduce the computation workload.

5 Security Analysis

In this section, we discuss the security issues of our proposed scheme under the
HBC model and the known background model.

Index Confidentiality. When constructing the secure index IS for attribute
value t.A, we insert random integer ri to each canonical range set CRAi used to
generate the sub-index Ii. In addition, each sub-index is also encrypted by using
the secret key SKi. Thus, as long as SKi is kept private by the data owner,
the secure index IS is a totally obfuscated vector and even two tuples have
the same attribute value, their corresponding secure indexes are different. As a
result, the cloud server can only use the secure index to check whether one tuple
is matching without directly learning any additional information, such as the
exact value and the relationship between two tuples. Then the confidentiality of
index can be protected.
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Trapdoor Confidentiality. When generating the secure trapdoor T S for range
query Q = [a, b), each sub-trapdoor Ti,k is encrypted by the secret key SKi and
then the secure trapdoor is indistinguishable from a random vector. Thus, as
long as SKi is kept private, the cloud server can’t obtain the lower and upper
bounds as well as the size of the query. In addition, the relationship between two
secure trapdoors can’t be determined. Then the confidentiality of trapdoor can
be protected.

Query Processing Confidentiality. During the query processing, the cloud
server only obtains whether a tuple matches the query and which secure sub-
trapdoor is matched. Since there are m levels in a bucket, even two tuples both
match the same sub-trapdoor, the cloud server can’t determine whether they
belong to the same canonical ranges. Thus the relationship between two tuples
won’t be disclosed during the processing. In addition, the more levels in one
bucket, the more secure the scheme is. If there is only one level in one bucket,
the cloud server can obtain that the matching tuples corresponding to the same
sub-trapdoor are close, so m should satisfy m � 2.

Privacy Against Statistics Analysis. In addition to the privacy of index,
trapdoor and query processing, we also consider several certain statistics analy-
ses. Since the adversary model in this paper is honest-but-curious, the cloud
server can store the search history of each tuple t such as historyt = {Tagtime,
Tagsubtd}, where Tagtime represents the time when the range query is required
and Tagsubtd denotes which sub-trapdoor is matched. As the history becomes
longer, the cloud server may learn that t.A = t′.A with high probability, if
historyt and historyt′ are the same. In addition, if the number of matching
tuples corresponding to the secure sub-trapdoor T S

i is small, the cloud server
may infer that there may be only one small canonical range used to build T S

i

and the attribute values of these tuples are close.
To prevent these certain attacks, we can add dummy integers to the canonical

range set used to build trapdoor, since we have inserted random numbers to the
canonical ranges applied to construct index. In particular, if the canonical range
set CRQi,k used to build the sub-trapdoor satisfies

∑m−1
j=0 |crqi,k,j | < 2m where

|crqi,k,j | represents the size of crqi,k,j , then we use dummy integers r to replace
one zero element in the set CRQi,k. As a result, the tuple t whose sub-index
Ii has been added r will be returned no matter whether its attribute value
t.A satisfies t.A ∈ Q. Because of the random numbers added to indexes, the
similarity between two histories of tuples t and t′ has been broken even they
correspond to the same attribute value. The limitation of this method is that
the data user has to decrypt all the tuples received from the server and filter the
unmatching results. The number of unmatching data items in results depends
on the total number of random integers that can be chosen.
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6 Performance Evaluation

We implement our proposed scheme in JAVA on desktop PC running Windows 7
Professional with 3.4GHz Intel(R) Core(TM) i7-3770 processor and 4 GB RAM
inside. Each data point is averaged over 10 runs.

6.1 Evaluation of Index Construction

In this paper, the secure index generated for tuple t is IS = {IS
0 , . . . , IS

M−1},
where M = n/m and n is the number of total levels while m is the number of
levels in one bucket. The length of each sub-index |IS

i | depends on m directly.
Thus main impacts that influence the time for generating indexes include m and
n. As shown in Fig. 2(a), given n = 12, we set m = 3 and m = 4 respectively.
The time required for m = 4 is higher because |IS

i | = 126 ∗ 2 when m = 4 while
|IS

i | = 35 ∗ 2 when m = 3. Figure 2(b) illustrates that the time is also evidently
affected by the number of levels n. Given that each bucket has m = 3 levels, the
time for constructing indexes increases as n becomes larger, since the number
of sub-trapdoors increases. When the number of data items is fixed, the ratio of
time required for n1 = 15 to n2 = 12 approximately equals to n1/n2. In addition,
to ensure the index indistinguishability, our scheme constructs the secure index
for each tuple and thus the total time is linearly affected by the total number of
data items.

Fig. 2. Time for building indexes.

6.2 Evaluation of Query Processing

The time for query processing depends on the number of sub-trapdoors and
the length of each sub-trapdoor. Figure 3(a) shows that if we put more levels
in one bucket, the total time will increase since the length of each sub-trapdoor
becomes longer. As illustrated in Fig. 3(b), as the number of sub-trapdoors in
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Fig. 3. Time for query processing.

a secure index grows, the total time will increase too. In addition, the time for
query processing is also linearly related to the number of data items as shown
in Fig. 3(a).

7 Conclusion

In this paper, we propose a privacy-enhancing scheme to realize range query
processing over encrypted cloud databases. We first utilize the canonical ranges
and polynomials to represent indexes and trapdoors, and then use kNN technique
to encrypt them. Our scheme is secure under the widely adopted honest-but-
curious model and the known background model. During the query processing,
the data privacy can be protected even when the cloud server possesses the
distribution of the attribute domain, since the indexes are indistinguishable and
the trapdoors are unlinkable. In addition, by evaluating the performance of our
scheme, we show that our system is also efficient.
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