
Extracting Records and Posts from Forum Pages
with Limited Supervision

Luciano Barbosa(B) and Guilherme Ferreira

IBM Research – Brazil, Av. Pasteur, 138, Rio de Janeiro, Brazil
{lucianoa,guiferre}@br.ibm.com

Abstract. Internet forums are rich sources of human-generated content.
Many applications, such as opinion mining and question answering, can
greatly benefit from mining and exploring such useful content. An impor-
tant step towards making user content from forums more easily accessible
is to extract it from forum pages. We propose REPEX (REcord and Post
EXtractor), a two-step solution that uses limited supervision to achieve
this goal. Given a forum page, REPEX first extracts data records that
contain human-generated content and then, from these records, extracts
their user content. The record extraction assumes that (1) a record is
composed of an automatic-generated part, which we call record tem-
plate, and a human-generated part; and (2) the structure of record tem-
plates are usually consistent across records. Based on those, the record
extractor initially locates the subtree that contains all records in the
forum page, using an information-theoretic measure, and then identifies
the template of the records in this subtree, modelling this as an outlier
detection problem. Finally, starting from the templates, REPEX deter-
mines the boundaries of the records. For the post extraction, REPEX
applies an information extraction approach that performs this task by
identifying the posts’ string boundaries.

Keywords: Forum · Record extraction · Post extraction · Data mining

1 Introduction

Internet forums contain user-generated content and address many different sub-
jects and topics (e.g. games, movies, travel, computers, health etc.). To take
advantage of such rich content, methods to collect and process forum data have
been previously introduced [1,2,6,8]. In this paper, we focus on the particular
problem of extracting human-generated content from conversational pages of
forums, also known as thread pages.

Thread pages are composed of data records that contain the human-generated
part (the user post), and the automatic-generated (or template) part that con-
tains information such as date/time of the post, the user who posted it and the
title of the posts. Similar to [3,6], we are interested in building a solution that
is not specific for a particular layout template (template-independent). We also
want to perform this task with limited supervision, i.e., without any training
c© Springer International Publishing Switzerland 2015
J. Wang et al. (Eds.): WISE 2015, Part II, LNCS 9419, pp. 233–240, 2015.
DOI: 10.1007/978-3-319-26187-4 19

234 L. Barbosa and G. Ferreira

Fig. 1. Overview of REPEX’s pipeline: given a thread page, Record Subtree Detec-
tion locates the subtree of records; Template Mining identifies the record template
subtrees (in blue); and Record Boundary Identification determines the boundaries of
each record; finally, from the records, Post Extraction extracts the posts (Colour figure
online).

data, to avoid having to label a large amount of data, which is a laborious and
time-consuming task. The main challenge of building such solution is that the
structure of thread pages vary significantly across forum sites. To deal with all
this variability, we propose a REPEX (REcord and Post EXtractor), see Fig. 1.
Given a thread page, our method first extracts data records that contain the
user posts (Record Extraction), and then the posts within these records (Post
Extraction). In the remaining of this paper, we present REPEX in details and
present results showing that REPEX is highly effective, obtaining high values of
precision and recall for both tasks.

2 Record Extraction

As presented in Fig. 1, the first step of REPEX is to extract the records from the
thread pages based on the record templates. The Record Extraction is composed
of 3 sub-tasks: Record Subtree Detection, Template Mining and Record Bound-
ary Identification. Record Subtree Detection locates the subtree in the DOM tree
where all records are located. Within this subtree, Template Mining identifies the
record templates and, based on the templates, Record Boundary Identification
determines the boundaries of the records. In this section, we first describe the
type detectors used to identify the record templates and, subsequently, explain
each one of the components of the record extraction.

2.1 Type Detectors

Our first assumption regarding the problem of record extraction is that a record
contains a template-generated part, composed of basic types: the date and time
that the record was posted, its title and the user who posted it. Based on that, we
implemented 3 type detectors to identify them in a thread page: date-time, user
and record title. The date-time detector was built from regular expressions. For
that, we started from date and time examples of regular expressions available on
specialized websites1. Then, we improved the quality of these expressions using
1 http://www.regxlib.com/.

http://www.regular-expressions.info/.

http://www.regxlib.com/.
http://www.regular-expressions.info/

Extracting Records and Posts from Forum Pages with Limited Supervision 235

a validation set, described in Sect. 4. The user detector uses simple heuristics
to detect user information. It checks for URLs with words such as “‘member”’,
“profile” and “user”. The title detector assumes the record title is similar to the
title of the thread page. To measure that, we calculate the Jaccard similarity
between the title of the thread page and a given text. We consider a similarity
of 0.3 as a match. The text used as input to the detectors is segmented based
on the DOM tree structure: all the text within a leaf text node is considered as
a single sentence.

The great advantage of using a set of detectors, instead of a single one as [6]
did, is that individual detectors can complement each other, and consequently
produce better results. For instance, the user detector might work in sites in
which the date-time detector might not. Another advantage is that building
a strong detector is a laborious task. Thus, instead of having a single strong
detector, one can build weak detectors, which need less effort to be implemented.
Our experimental evaluation confirms all these observations.

2.2 Record Subtree Detection

The first step of Record Extraction is Record Subtree Detection. Given the
thread page’s DOM tree T , it identifies the subtree T ′ of T that contains all
the records. To achieve this goal, we assume that the nodes that contain the
template data types (date-time, user and title) are evenly distributed throughout
the child subtrees of T ′. Concretely, the algorithm works as follows. First, given
T , the algorithm performs a complete scan of T , labelling nodes that match
the three basic types. When a type detector matches a node, the types’ counter
in that node is incremented. Next, based on these counts, for each subtree T ′

in T , it measures how balanced the child subtrees CS of T ′ are with respect
to the detected data type nodes. Only T ′s with a balance value higher than a
threshold are considered candidate subtrees for the next steps. The tree balance
is measured using an information-theoretic approach. More formally, consider p
the probability of a child subtree c of T ′ having detected data type nodes. We
calculate p of c by dividing the number of detected nodes in c over the total
number of detected nodes in T ′. If T ′ is balanced, the entropy of T ′ would be
high, since p for all children would have a similar value. To have a value between
0 and 1, we define Balance, which is the normalized entropy of T ′:

Balance(T ′) = −
∑

c∈CS pclog(pc)
log(|CS|) (1)

2.3 Template Mining

The goal of Template Mining is to identify the template part of the records. For
that, we assume that the data types are more concentrated in nodes belonging
to the template part of records than in other parts. Another assumption, similar
to [6], is that the tree structure of the templates of the records is similar to each
other. Based on those observations, we model this task as an outlier detection

236 L. Barbosa and G. Ferreira

problem, in which detected nodes outside the template part of records are con-
sidered outliers. The algorithm works as follows. Initially, given the subtree T ′,
identified in Record Subtree Detection, the algorithm obtains the candidate tem-
plates CT , i.e., the children of T ′ that contains detected nodes. For each child
c of CT , it generates a signature composed of the HTML tags of the detected
nodes of c in the depth-first search order. This signature represents a flat rep-
resentation of the tree structure of c with respect to its detected nodes. Next,
these signatures are provided as input to the Hierarchical Aglomerative Cluster-
ing (HAC) [7]. HAC starts with |CT | clusters (a single cluster corresponds to a
child signature), where |CT | is the number of elements of CT . The two closest
clusters are merged, resulting in |CC| − 1 clusters. Next, the two closest of the
|CC| − 1 clusters are merged, and then the process continues until a stop condi-
tion. The output of this process is a set of clusters. The algorithm considers that
the record templates are in the cluster with the highest number of elements, and
the remaining clusters are discarded. The subtrees belonging to this cluster are
returned, if the cluster has more than 2 elements. We adopted as stop condition
a similarity threshold, defined experimentally. We use as similarity measure the
levenshtein distance [4].

2.4 Record Boundary

Template Mining selects the template subtrees {t1, ..., tn} in T ′. These subtrees,
however, do not necessarily contain the whole record. There might be cases, for
instance, in which the human-generated content of a record is in a separated
subtree of T ′. In other cases, a record might be composed of multiple subtrees of
T ′. The task is, therefore, to define how we segment the children of T ′ in order
to extract the records. First, the algorithm determines the record size, i.e., how
many consecutive child subtrees of T ′ compose a record. It does so by calculating
the distance (i.e., how many subtrees are) between each pair of consecutive
template subtrees. It considers the distance with the highest frequency as the
record size. Then, it defines in which position to the left of the template subtree
the records start. For that, it goes backward from the first two template subtrees
(t1 and t2) until it finds subtrees of T ′ with different child signatures. We define
a child signature as the string composed of the subtree HTML tag concatenated
with the tags of its children. Finally, the records are extracted from T ′ for each
template subtree ti.

3 Post Extraction

The Post Extraction is the final step of REPEX (see Fig. 1). It extracts the
human-generated content from the data records. Instead of only relying on the
DOM tree structure to perform this task, as we did for record extraction, we
handle this task as an unstructured information extraction problem. For that,
we look at regularities in the text resulting from the records. This illustrates
the main assumption of this algorithm: posts are delimited between common

Extracting Records and Posts from Forum Pages with Limited Supervision 237

types/strings across records. The goal of Post Extraction is then to identify these
delimiters, and then extract all text between them. Concretely, the algorithm
works as follows. First, it segments the record sentences, using their structure
on the DOM tree. All the text in the same leaf node is considered a single
sentence. Next, it runs a post-text detector over the sentences. Similar to the
other detectors presented in this paper, the post-text detector uses simple rules
to perform the detection. For instance, it looks for characters such as “.” or “?”
at the end of the phrase along with personal pronouns as “I” or “you” or “it”.
Here we assume that the text in posts have a good chance of having personal
references. From all the records with detected texts, the algorithm selects the
one that it has a high confidence of having in fact a post text: the record r with
the largest detected text in phrase position p in r. From p, the algorithm goes
backwards until it finds a type/string in r that matches in all others records. The
positions {s1, ..., sn} of these matches in the records represent where the posts
should start. Conversely, the algorithm does the same procedure going forward
from p. The positions {e1, ..., en} of these matches in the records represent where
the posts should end. To perform this match, it verifies whether the strings are
from the same data type (date-time, user and title) or if they share some prefix of
size greater than 1. Finally, it extracts the posts using {s1, ..., sn} and {e1, ..., en}
as delimiters.

4 Experimental Evaluation

4.1 Experimental Setup

Data. For the evaluation, we collected thread pages from 118 forum sites. We
tried to collect a set as diverse as possible. For instance, these websites are
not restricted to any particular topic: they are discussions about games, cancer,
psychology etc. In addition, similar to [5], we also tried to select as many forums
as possible that use different softwares to publish their content. Out of the 118
sites, 72 were used in the validation set and 46 in the test set. For each one of the
websites, we collected at most 5 thread pages, resulting in a set of 282 pages in
the validation set and 200 in the test set. Then, we manually extracted the text
in the records and posts from these pages, resulting in a total of 2,449 records
and the same number of posts. Since there might be small differences between
the way records and posts are extracted, we consider a match when the cosine
similarity between the approach’s record and the gold data’s record is higher
than 0.6 for records and 0.3 for posts.

Record Extraction Approaches. For comparison, we implemented another
proposed solution to extract records from thread pages: MiBAT [6]. MiBAT uses
a date-time detector to identify the template part of the records, which they call
anchor trees. Then it aligns anchor trees using a tree matching algorithm [9]. The
matched anchor trees compose the templates of the records. For this matching,
the authors proposed two similarity measures. We used Pivot and Siblings (PS)
similarity, since it showed the best results in their experiments. A similarity

238 L. Barbosa and G. Ferreira

higher than a given threshold is considered a match. We used the validation set
to tune this parameter. For further details, we refer the reader to [6]. We also
used the validation set to tune two parameters of our approach: the minimum
entropy of a parent node being considered relevant, and the similarity threshold
in the HAC algorithm’s stop condition.

Post Extraction Approaches. In addition to the post extraction approach
proposed in this paper, which will we call String-based Extraction for the remain-
ing of this section, we implemented two other strategies:

– Text Detection: this approach scans the records, and only considers as posts
the text detected within the records by the Text Detector.

– Tree-based extraction: this algorithm works as follows. Given the subtree that
contains all the records T ′, first it uses the Text Detector to identify text nodes
in T ′. For the child subtrees CS of T ′ that contain text nodes, it identifies the
largest common subtree LCS of all CS. Since we assume the post part of the
record subtree might not have much regularity, for each record, the algorithm
considers the post part the tree structure of the record that does not belong
to the LCS. This method has not been proposed previously in the literature.
We implemented it to have a reasonable baseline for post extraction.

4.2 Record Extraction Results

For each approach, we measured precision, recall and F-Measure over the records
in the test set. We also calculated the proportion of pages that had at least 1
record extracted by each approach. Table 1 presents the results. Our approach
obtained high values of recall (0.94), precision (0.92), F-measure (0.93), and also

Table 1. Recall, precision, F-Measure and proportion of pages with at least 1 record
extracted by each approach.

Rec Prec F-Measure Prop. of Pages

RecExt 0.94 0.92 0.93 0.97

MiBAT 0.51 0.94 0.66 0.53

Table 2. Results of our approach using different combinations of type detectors.

Rec Prec F-Measure

User,Date-Time 0.86 0.92 0.89

Date-Time,Title 0.82 0.93 0.87

User,Title 0.76 0.96 0.85

User 0.67 0.96 0.79

Date-Time 0.68 0.93 0.79

Title 0.32 0.99 0.48

Extracting Records and Posts from Forum Pages with Limited Supervision 239

extracted records from the vast majority of the pages (0.94). The numbers also
show that our approach outperforms the baseline in all measures.

We investigated possible causes for this difference in performance. For that,
we calculated the performance of MiBAT over only the 53 % of the test set that
it was able to extract records. As expected, its results are much better: recall
= 0.92, precision = 0.97 and F-Measure = 0.95. For comparison, we also ran
our approach over the same 53 % set. It obtained recall = 0.96, precision = 0.95
and F-Measure = 0.96. Our approach obtained higher recall (0.96 vs 0.92) but
lower precision (0.95 vs 0.97). Overall, our approach obtained a slightly better
F-Measure (0.96 vs 0.95).

We also evaluated the contribution of each detector for the final result. Table 2
presents the recall, precision and F-Measure for all the possible combinations of
detectors. The combination of user and date-time detectors obtained the best
results as well as these two detectors considered individually. Although the title
detector individually obtained a poor result in terms of recall, combining it with
the other detectors, it boosted the overall performance of our approach. These
numbers clearly show that a combination of “weak” detectors that complement
each other, i.e., covering different sets of pages, leads to an effective extractor.

Since MiBAT only uses a single date-time detector, we can compare its per-
formance in Table 1 with our approach using only this detector (Table 2) over
the entire test set. Our approach obtained a much higher recall than MiBAT
(0.68 vs 0.51) and a slightly smaller precision (0.93 vs 0.94), as a result a higher
F-Measure (0.79 vs 0.66). The main reason for this advantage in coverage is
that the proportion of pages that our approach with only a date-time detector
detected at least one record was much higher than MiBAT’s: 0.68 vs 0.51. From
this, we can conclude that MiBAT was not able to extract records even in pages
that the date-time detector worked.

4.3 Post Extraction Results

The results of the post extraction approaches are presented in Table 3. The
String-based approach obtained the highest values of recall (0.86), precision
(0.93) and F-Measure (0.89), followed by the Tree-based approach. The num-
bers show that our approach of post extraction is in fact effective for this task.
The lowest result was obtained by the approach that only uses the text detec-
tor to extract the posts. The main reason for this poor performance is that a
reasonable portion of the text in posts are not detected by the Text Detector

Table 3. Results of post extraction.

Rec Prec F-Measure

String-based Extraction 0.86 0.93 0.89

Tree-based Extraction 0.82 0.92 0.87

Text Detection 0.57 0.56 0.56

240 L. Barbosa and G. Ferreira

(low recall), and also much of the text detected by the Text Detector does not
belong to the posts (low precision). We can conclude from this that using the
text detection itself is not enough for this task, but it is very useful when used
with our proposed strategy. Regarding the recall of all approaches, an important
observation is that the post extraction is performed after the record extraction.
As a result, the upper bound of recall is the one obtained by our record extrac-
tion technique: 0.94. The precision of the record extraction also has influence
over the precision results for post extraction.

5 Conclusions

In this paper, we present REPEX, a solution for extracting data records and user
posts from forum pages. To locate the data record subtree, it uses an information-
theoretic approach. Next, within this subtree, it identifies the template part of
the records using a clustering algorithm. Finally, it determines the boundaries
of the records expanding from the templates. The extracted records are then
passed to the post extraction, that uses an unstructured information extraction
strategy to define the boundaries of posts, and extract them.

References

1. Cong, G., Wang, L., Lin, C.-Y., Song, Y.-I., Sun, Y.: Finding question-answer pairs
from online forums. In: Proceedings of the 31st annual international ACM SIGIR
conference on Research and Development in Information Retrieval, pp. 467–474.
ACM (2008)

2. Jiang, J., Song, X., Yu, N., Lin, C.-Y.: Focus: learning to crawl web forums. IEEE
Trans. Knowl. Data Eng. 25(6), 1293–1306 (2013)

3. Liu, B., Grossman, R., Zhai, Y.: Mining data records in web pages. In: Proceedings
of the ninth ACM SIGKDD international conference on Knowledge Discovery and
Data Mining, pp. 601–606. ACM (2003)

4. Navarro, G., Baeza-Yates, R., Sutinen, E., Tarhio, J.: Indexing methods for approx-
imate string matching. IEEE Data Eng. Bull. 24(4), 19–27 (2001)

5. Seo, J., Croft, W.B., Smith, D.A.: Online community search using thread struc-
ture. In: Proceedings of the 18th ACM Conference on Information and Knowledge
Management, pp. 1907–1910. ACM (2009)

6. Song, X., Liu, J., Cao, Y., Lin, C.-Y., Hon, H.-W.: Automatic extraction of web
data records containing user-generated content. In: Proceedings of the 19th ACM
international conference on Information and Knowledge Management, pp. 39–48.
ACM (2010)

7. Tan, P.-N., Steinbach, M., Kumar, V., et al.: Introduction to data mining, vol. 1.
Pearson Addison Wesley, Boston (2006)

8. Wang, H., Wang, C., Zhai, C., Han, J.: Learning online discussion structures by
conditional random fields. In: Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pp. 435–444.
ACM (2011)

9. Yang, W.: Identifying syntactic differences between two programs. Soft. Pract. Expe-
rience 21(7), 739–755 (1991)

	Extracting Records and Posts from Forum Pages with Limited Supervision
	1 Introduction
	2 Record Extraction
	2.1 Type Detectors
	2.2 Record Subtree Detection
	2.3 Template Mining
	2.4 Record Boundary

	3 Post Extraction
	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Record Extraction Results
	4.3 Post Extraction Results

	5 Conclusions
	References

