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Abstract. With the rapid development of information society, the era
of big data is coming. Various recommendation systems are developed to
make recommendations by mining useful knowledge from massive data.
The big data is often multi-source and heterogeneous, which challenges
the recommendation seriously. Collaborative filtering is the widely used
recommendation method, but the data sparseness is its major bottleneck.
Transfer learning can overcome this problem by transferring the learned
knowledge from the auxiliary data to the target data for cross-domain
recommendation. Many traditional transfer learning models for cross-
domain collaborative recommendation assume that multiple domains
share a latent common rating pattern which may lead to the negative
transfer, and only apply to the homogeneous feedbacks. To address such
problems, we propose a new transfer learning model. We do the collective
factorization to rating matrices of the target data and its auxiliary data
to transfer the rating information among heterogeneous feedbacks, and
get the initial latent factors of users and items, based on which we con-
struct the similarity graphs. Further, we predict the missing ratings by
the twin bridge transfer learning of latent factors and similarity graphs.
Experiments show that our proposed model outperforms the state-of-
the-art models for cross-domain recommendation.

Keywords: Cross-domain · Transfer learning · Collaborative filtering ·
Sparseness · Heterogeneous feedbacks

1 Introduction

With the rapid development of computer and network technologies, especially
the mobile internet, people can easily acquire all kinds of information from the
internet. Under the big data environment of web, massive information often
makes people dazzling and unable to get valuable information rapidly and effec-
tively. In order to solve this problem of information overload, personalized rec-
ommendation systems are developed. For example, the famous personalized
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recommendation platforms of Amazon, Movielens, Alibaba and so on. They help
users obtain the required service quickly and accurately and make huge bene-
fits for the relevant manufacturers. Collaborative Filtering (CF) is an excellent
recommendation algorithm which is widely used at present. CF in recommender
systems is designed to predict the missing ratings for a user or an item based on
the collected ratings from like-minded users or similar items [1,2]. CF is simple,
which doesn’t need the configuration information of users and has no special
requirements to the recommendation objects. CF is effective, which can make
multiple recommendations. Although CF has such advantageous properties, the
recommendation performance would be degraded seriously when the observed
data is very sparse.

To address the sparseness problem, many improved CF methods based on
the single domain have been proposed. But these methods are subject to the
data quality of the target domain. They may be invalid when the target data is
extremely sparse. In reality, especially in the current era of big data, we often
have many data in the associated domains of the target domain. Why not try
to make use of them? So we research the cross-domain recommendation which
combines relevant data from different domains with the original target data to
improve the recommendation. Transfer learning [3] can be used for cross-domain
CF recommendation particularly. During the transfer learning, useful knowledge
will be learned from the auxiliary data and transferred to the target data so that
the sparseness problem of the target data can be addressed effectively. However,
traditional transfer learning models for cross-domain CF recommendation have
some issues as follows:

– They are often limited to the transfer of homogeneous user feedbacks. How-
ever, the heterogeneous user feedbacks are common in reality, especially in
the current big data era.

– They usually suppose that different domains share a common latent rating
pattern based on the user-item co-clustering. In fact, however, the associated
domains do not necessarily share such a common latent rating pattern, and
the diversity among associated domains may outweigh the advantages of this
common latent rating pattern [4], which may degrade the recommendation
performance.

– Since the target data is extremely sparse, it is expected that more useful
common knowledge is transferred from the auxiliary data to the target data.
Only using the latent factors extracted from the auxiliary data may result in
that the positive information transferred to the target data is insufficient.

To solve these problems, we propose a new model of cross-domain CF rec-
ommendation based on the twin bridge transfer learning of heterogeneous user
feedbacks. Our contributions are summarized as follows:

– To transfer the rating information of heterogeneous user feedbacks, the initial
data are preprocessed to be homogenous. Then we do the collective factoriza-
tion to rating matrices of the target data and its auxiliary data, and get the
initial latent factors of uses and items respectively, when we consider both the
common and domain-specific latent rating patterns.
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– Based on the initial latent factors, the similarity graphs are constructed. The
model can be formulated as an optimization problem based on the graph
regularized weighted nonnegative matrix tri-factorization [5]. In the process
of optimization, latent factors and similarity graphs are regarded as a implicit
bridge and a explicit bridge for transfer respectively to learn more useful
knowledge.

– An efficient gradient descent method is executed to optimize the objective
function with convergence guarantee. Extensive experiments on several real-
world data sets suggest that our proposed model outperforms the state-of-
the-art models for the cross-domain recommendation.

2 Related Work

CF is widely used due to its simpleness and high-efficiency. However, since CF
method fully depends on the observed rating data, the sparseness issue has
become its major bottleneck [6]. In real life, we may easily find some related CF
domains with the similar recommendation as the target domain. A question was
then asked in [7]: Can we establish a bridge between related CF domains and
transfer useful knowledge from one another to improve the performance?, which
is an emerging research topic about cross-domain CF [8].

Transfer learning is used for cross-domain CF recommendation in particu-
lar. Liu bin [9] gives a brief survey of the pilot studies on cross-domain CF in
CF domains and knowledge transfer styles. Chungyi Li et al. [10] try to match
users and items across domains for transfer learning to improve the recommenda-
tion quality. Weiqing Wang et al. [11] research cross-domain CF by tag transfer
learning. Zhongqi Lu et al. [12] explore selective transfer learning for cross-
domain recommendation. Pan et al. [13–15] propose the models to transform
knowledge from domains which have heterogeneous forms of user feedbacks.

The majority of the existing transfer learning models for cross-domain recom-
mendation assumes that the target domain and its auxiliary domains are related
but doesnt suggest ways to compute the relatedness across multiple domains.
The usual way of the existing models is to exploit the common latent structure
shared among multiple domains as the information bridge to transfer the useful
knowledge. For example, Shi, Y. et al. [16] propose a generalized cross domain
CF model by tag transfer learning. They use user-generated tags as the com-
mon features to connect multiple domains together and perform transfer learning
across different domains for knowledge transfer. Traditional cross-domain recom-
mendation models assume that all the domains share the common latent rating
pattern, which is inconsistent with the reality and may cause the recommenda-
tion performance of a hard decline. Gao et al. [4] propose a cluster-level latent
factor model, which can not only learn the common rating pattern shared across
domains with the flexibility in controlling the optimal level of sharing, but also
learn the domain-specific rating patterns of users in each domain that involve the
discriminative information propitious to performance improvement. This model
is referred to as GAO model by us.
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Liu bin et al. propose Codebook Based Transfer (CBT) model [7] and Rat-
ing Matrix Generative model [17] to transfer the cluster-level codebook to the
target data, which are novel and influential. However, because the dimension
of codebook is limited, the codebook cannot transfer enough useful knowledge
when the observed data are quite sparse. To overcome this problem, Transfer by
Collective Factorization (TCF) [15,18], Coordinate System Transfer (CST) [19],
and Transfer by Integrative Factorization (TIF) [12] extract both latent tastes of
users and latent features of items in forms of latent factor matrices, and transfer
the useful knowledge they contain from the auxiliary data to the sparse target
data. However, these models do not take full account of the negative trans-
fer. In addition, they only employ a single information bridge to transfer the
knowledge. In Graph Regularized Weighted Nonnegative Matrix Factorization
(GMF) [5] model, the neighborhood information is integrated into the factor-
ization. The associated information among users or items can be utilized with
the help of the similarity of user tastes or item features. But it requires dense
ratings to calculate the neighborhood structure. When the data are very sparse,
the neighborhood structure may be rather inaccurate so that the recommenda-
tion can’t be performed effectively. Different from these methods, Shi et al. [20]
explore the twin bridge of latent factors and their similarity graphs for the pur-
pose of transferring more useful knowledge to the target data, which is referred
to as SHI model by us. SHI model can enhance efficient transfer by transferring
more knowledge, while alleviate negative transfer by regularizing the learning
model with latent factors and similarity graphs, which can naturally filter out
the negative information contained in the latent factors.

3 Problem Definition

Suppose that multiple domain-related rating matrices are given. Let η be the
domain index, Rη ∈ RMη×Nη (η ∈ [1, t], t ∈ N+) is the rating matrix of the η-th
domain, where Mη and Nη represent the numbers of users and items, respectively.
A binary weighting matrix Zη with the same size as Rη is used to mark the
missing ratings, where [Zη]ij = 1 if [Rη]ij is observed and [Zη]ij = 0 otherwise.
The rating matrix in which missing ratings are to be predicted is deemed as the
target data, and other rating matrices related to the target data are deemed as
the auxiliary data. The goal is to predict missing ratings in the target data by
transferring useful knowledge from the auxiliary data.

Without loss of generality, we prepare to solve a concrete problem which is
the same as SHI model. Suppose that R ∈ RM×N is the rating matrix of the
target data, Z ∈ {0, 1} is the indicator matrix, Zij = 1 if user i has rated item
j and Zij = 0 otherwise. R1 and R2 are rating matrices of two auxiliary data
sets respectively. R1 shares the common set of users with R, while R2 shares
the common set of items with R. We try to predict the missing ratings of R
by transfer learning from R1 and R2. Of course, when neither the users nor the
items in the ratings matrices across multiple domains such as R, R1 and R2 are
overlapping, our proposed model will be still effective.
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4 Related Models

4.1 GAO Model [4]

In GAO model, the cluster level structures hidden across domains are extracted
to learn the rating pattern of user groups on the item clusters for knowledge
transfer, and to clearly demonstrate the co-clusters of users and items. The co-
clustering of the data matrix in domain η can be performed by the orthogonal
non-negative matrix tri-factorization, and the integrated objective function is

min
Uη,S0,Sη,Vη≥0

f =
∑

η

||[Rη − Uη[S0, Sη]V T
η ] � Zη||2 (1)

where � is the entry-wise product, Uη/Vη denotes the user/item latent factor
matrix, S0 denotes the share rating pattern matrix, Sη denotes the specific rating
pattern matrix of domain η. In order to make the factorization more accurate,
some prior knowledge can be imposed on the latent factors during the optimiza-
tion, such as the L1 norm constraint: Uη1 = 1 and Vη1 = 1.

4.2 SHI Model [20]

Shi et al. extract latent factors U0 and V0 from R1 and R2 by GMF [5] and
construct similarity graphs WU and WV based on U0 and U0, respectively. WU

and WV are defined as follows:

If u0
i∗ ∈ Np(u0

j∗) or u0
j∗ ∈ Np(u0

i∗), (WU )ij = 1; Otherwise (WU )ij = 0
If v0

i∗ ∈ Np(v0
j∗) or v0

j∗ ∈ Np( v0
i∗), (WV )ij = 1; Otherwise (WV )ij = 0

Where u0
i∗ is the i th row of U0 denoting the latent taste of user i, v0i∗ is the

i th row of V0 denoting the latent feature of item i, Np(u0
j∗) and Np(v0

j∗) are
the sets of p-nearest neighbors of u0

i∗ and v0
i∗ respectively. Latent factors and

similarity graphs are integrated into a unified optimization framework for twin
bridge transfer learning:

min
U,V,B>=0

O = ||Z � (R − UBV T )||2F + λU ||U − U0||2F +

λV ||V − V0||2F + γUGU + γV GV

(2)

where GU = tr(UT LUU), GV = tr(V T LV V ) (tr refers to the trace of matrix),
LU and LV are the graph Laplacian matrices for the similarity graphs WU and
WV respectively. λU and λV are regularization parameters indicating the confi-
dence on the latent factors. γU and γV are regularization parameters indicating
the confidence on the similarity graphs, U/V denotes the user/item latent fac-
tor matrix, B denotes the latent pattern matrix of ratings. LU = DU − WU ,
LV = DV − WV , Du = diag(

∑
j

(WU )ij , Dv = diag(
∑
j

(WV )ij .



182 J. Wang et al.

5 HFT Model

Inspired from the related models above, we propose a novel model of cross-
domain CF recommendation based on twin bridge transfer learning of hetero-
geneous user feedbacks named HFT. At first the data is preprocessed for our
proposed HFT model.

In a user-item rating matrix, the observed ratings such as the 5-star ratings
are often extremely sparse, so over-fitting may easily happen when we predict
the missing ratings. However, we observe that some auxiliary data in the form
of like/dislike may be more easily obtained. For example, we can easily collect
the favored/disfavored data in Moviepilot, the love/ban data in Last.fm and the
Want to see/Not Interested data in Flixster, which are implicit feedbacks and
heterogeneous to the numerical ratings [15]. Moreover, the implicit feedbacks
can be collected from the user behaviors and formalized to be binary ratings.
For example, if the user browses, forwards or collects some information, we set
the rating as 1, and 0 otherwise. It is more frequently for users to express such
implicit tastes than to mark numerical ratings. We can make use of implicit feed-
backs to alleviate the sparseness problem in explicit feedbacks. For the explicit
feedbacks, such as the numerical rating matrix R = (Rui), Rui ∈ {1, 2, 3, 4, 5},
let R

′
= (R

′
ui), R

′
ui = Rui−1

4 . R
′
is the preprocessed rating matrix of R. Rui can

be restored by Rui = 4R
′
ui +1 at the end of prediction. To alleviate the data het-

erogeneity between different kinds of feedbacks, such as {0, 1} and {1,2,3,4,5}−1
4 ,

let σ(x) = 1
1+e−(x−0.5) , x ∈ {0, 1} is the implicit feedback, σ(x) is a logistic link

function to revise the implicit feedbacks. So the heterogeneous rating data are
normalized to be homogeneous for the collective factorization. Then HFT model
is mainly divided into the following three steps.

5.1 Extraction of Latent Factors

To extract latent factors, we do the flowing two collective factorizations respec-
tively. Each factorization is learning from the GAO model.

min
U0,S0,S1,S,V,V1≥0

f1 = ||[R − U0[S0, S]V T ] � Z||2+

||[R1 − U0[S0, S1]V1
T ] � Z1||2

(3)

min
U2,U,S

′
0,S2,S′ ,V0≥0

f2 = ||[R − U [S
′
0, S

′
]V0

T ] � Z||2+

||[R2 − U2[S
′
0, S2]V0

T ] � Z2||2
(4)

We solve Eqs. (3) and (4) by the gradient descent method, and get the latent
factors U0 and V0, respectively.
Solving Equation (3)

Let V = [V T
00, V

T
01] ∈ RN×L, V1 = [V T

10, V
T
11] ∈ RN×L1 , where V T

00 = V (:, 1 :
D), V T

01 = V (:, (D + 1) : L), V T
10 = V1(:, 1 : D), V T

11 = V1(:, (D + 1) : L1), D is
the dimension of shared common rating pattern. Here L − D is the dimension
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of domain-specific rating pattern of R, L1 − D is the dimension of domain-
specific rating pattern of R1, S0 ∈ RK×D, S ∈ RK×(L−D), S1 ∈ RK×(L1−D),
U0 ∈ RM×K , Z ∈ RM×N . UT

0 U0 = I, V T
1 V1 = I, V T V = I.

Taking the learning of latent factor S as an example, we will show how to
optimize S by deriving its updating rule while fixing other latent factors. For
this purpose we can rewrite the objective function in Eq. (3) as follows:

min
S

f1(S) = ||R − U0S0V00 − U0SV01] � Z||2+
||[R1 − U0S0V10 − U0S1V11] � Z1||2

(5)

The derivative of f1(S) with respect to S is

∂f1(S)

∂S
= 2(U0

T ([U0S0V00] � Z)V T
01 − U0

T (R � Z)V T
01) + 2U0

T ([U0S1V01] � Z)V T
01.

We use the Karush-Kuhn-Tucker complementary condition for the nonneg-
ativity of S and let ∂f1(S)

∂S = 0, then can get the following updating rule for
learning S:

S ← S

√
UT
0 (R � Z)V T

01

UT
0 ([U0S0V00] � Z)V T

01 + UT
0 ([U0SV01] � Z)V T

01

(6)

Similarly, we can get the updating rules for learning other latent factors as
follows:

S1 ← S1

√
UT
0 (R1 � Z1)V T

11

UT
0 ([U0S0V10] � Z1)V T

11 + UT
0 ([U0S1V11] � Z1)V T

11

(7)

U0 ← U0

√
(R � Z)V [S0, S]T

([U0[S0, S]V T � Z) � V [S0, S]T
(8)

V ← V

√
[S0, S]T U0

T (R � Z)

[S0, S]T U0
T ([U0[S0, S]V T ] � Z)

(9)

V1 ← V1

√
[S0, S1]

T
U0

T (R1 � Z1)

[S0, S1]
T
U0

T ([U0[S0, S1]V1
T ] � Z1)

(10)

S0 ← S0

√
UT
0 (R � Z)V T

00 + UT
0 (R1 � Z1)V T

10

P + Q
(11)

where

P = UT
0 ([U0S0V00] � Z)V T

00 + UT
0 ([U0SV01] � Z)V T

00

Q = UT
0 ([U0S0V10] � Z1)V T

10 + UT
0 ([U0S1V11] � Z1)V T

10

Based on the above updating rules for learning different latent factors, it can
be proved that the objective function in Eq. (3) will decrease monotonically and
the learning algorithm demonstrated above is convergent [4]. At last, we can
extract latent factor U0 by enough iterations. In the same way, we can extract
latent factor V0 by solving Eq. (4).
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5.2 Similarity Graph Construction

When the observed user-item rating data is very sparse, two users may rate the
common item with a fairly low probability though they have the same taste, so
the neighborhood information of users or items can not be effectively utilized.
To overcome this problem, the similarity graphs from dense auxiliary data are
constructed since the auxiliary data is closely related to the target data. Because
U0 and V0 are denser than R1 and R2, they can better represent the neighbor-
hood information. We construct the user-side similarity graph WU and item-side
similarity graph WV based on the extracted U0 and V0, respectively [20]. In SHI
model, the distance is simply defined by the concept of p-nearest neighbors with
binary values of 0 and 1, so WU and WV may be inaccurate to be the weight
matrices for the similarity graphs. Here we adopt the PCC (Pearson Correlation
Coefficient) to measure the similarity:

(WU )ij = ρ(u0
i∗,u

0
j∗) =

∑
(u0

i∗ − u0
i∗)(u0

j∗ − u0
j∗)

√∑
(u0

i∗ − u0
i∗)

2
√∑

(u0
j∗ − u0

j∗)
2

(WV )ij = ρ(v0
i∗,v

0
j∗) =

∑
(v0

i∗ − v0
i∗)(v0

j∗ − v0
j∗)

√∑
(v0

i∗ − v0
i∗)

2
√∑

(v0
j∗ − v0

j∗)
2

where u0
i∗ is the i th row of U0 denoting the latent taste of user i, v0i∗ is the i th

row of V0 denoting the latent feature of item i, u0
i∗/v0

i∗ is the mean of u0
i∗/v0

i∗ .

5.3 Predicting of Missing Ratings

We predict missing ratings by the graph regularized weighted nonnegative matrix
tri-factorization. The optimization function is

min
U,V,B>=0

O = ||Z � (R − UBV T )||2F + γUGU + γV GV (12)

where GU = tr(UT LUU), GV = tr(V T LV V ), LU and LV are the graph Lapla-
cian matrices for the similarity graphs WU and WV respectively. γU and γV are
regularization parameters indicating our confidence on the similarity graphs.

We solve the optimization problem in Eq. (12) by the gradient descent
method [20]. The derivative of O with respect to U is

∂O

∂U
= −2Z � RV BT + 2Z � (UBV T )V BT + 2γULUU.

We use the Karush-Kuhn-Tucker (KKT) complementary condition for the
nonnegativity of U and let ∂O

∂U = 0, then get

[−Z � RV BT + Z � (UBV T )V BT + γULUU ] � U = 0
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Because LU may take any signs, we decompose it as LU = L+
U − L−

U , where
L+

U = 1
2 (|LU |+LU ), L−

U = 1
2 (|LU |−LU ). L+

U and L−
U are positive-valued matrices.

We get the following updating rule for learning U :

U ← U �
√

Z � RV BT + γUL−
UU

Z � (UBV T )V BT + γUL+
UU

(13)

Similarly, we can obtain the updating rules for learning V and B as follows:

V ← V �
√√√√ (Z � R)T

UB + γV L−
V U

(Z � (UBV T ))T
UB + γV L+

V V
(14)

B ← B �
√

UT (Z � R)V
UT (Z � (UBV T ))V

(15)

According to [5], the objective function in Eq. (12) will monotonically
decrease until convergence when updating U , V and B sequentially and iter-
atively by Eqs. (13–15). R can be calculated by UBV T , so the missing ratings
can be predicted.

6 Experiments

6.1 Data Sets

MovieLens10M1. It contains 10000054 ratings and 95580 tags applied to 10681
movies by 71567 users of the online movie recommender service MovieLens. The
preference of the user for a movie is rated on a 5-star scale, with half-star incre-
ments. If the movie is not rated by any user, the rating is marked as 0.
Epinions2. It contains 2,372,198 ratings given by 44,157 users to 50,682 prod-
ucts. Users can mark products with integer ratings ranging from 1 to 5.
Book-Crossing3. It contains 278,858 users providing 1,149,780 ratings
expressed on a scale from 0 to 10 about 271,379 books.

6.2 Compared Models

� GMF (Graph Regularized Weighted Nonnegative Matrix Factorization) [5]:
A good single-domain model which constructs two graphs on user side and
item side to exploit the internal and external information. In this model, the
missing ratings are predicted by the graph regularized weighted nonnegative
matrix tri-factorization.

� SHI [20].
� CBT (Codebook Based Transfer) [7]: a classical model for cross-domain CF

recommendation which can only make use of the common rating pattern via
the codebook information among different domains.

� HPT:our proposed new model.
1 www.grouplens.org/node/73/.
2 www.epinions.com.
3 http://www2.informatik.uni-freiburg.de/∼cziegler/BX/.

www.grouplens.org/node/73/
www.epinions.com
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
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6.3 Evaluation Metrics

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are the two
widely used evaluation metrics for evaluating CF algorithms. We adopt MAE
to measure the prediction accuracy of multiple recommendation models. It is
defined as follows:

MAE =

∑
i,j

|Rij − Rp
ij |

|TE |
where Rij is the rating that user i gives to item j in test set, while Rp

ij is the
predicted value of Rij , |TE | is the number of ratings in test set. The smaller the
value of MAE is, the better the recommendation model performs.

6.4 Experimental Results

To simulate the heterogeneous feedbacks, we reference to Weike Pan’s method [14].
When the observed ratings range from 1 to 5, we set the ratings to 1 if they are
4 or 5 and set the ratings to 0 otherwise. When the observed ratings range from
1 to 10, we set the ratings to 1 if the ratings are 7, 8, 9 or 10 and set the ratings
to 0 otherwise.

The data sets used in our experiments are constructed by the same strategy
as [19]. Take the Book-Crossing data set as an example, we first randomly sample
a 2N × 2N(N ∈ N+) dense rating matrix X, then take the submatrix R =
X1∼N,1∼N as the target rating matrix, the submatrix R1 = X1∼N,(N+1)∼2N as
the user-side auxiliary data matrix and the submatrix R2 = X(N+1)∼2N,1∼N as
the item-side auxiliary data matrix. In this way, R and R1 share common users,
while R and R2 share common items. And we apply the same construction
strategy to Epinions data set and MovieLens10M data set.

The target ratings matrix R is randomly split into a training set and a test set,
with the proportion of 60 % and 40 % respectively. Let l be the sparseness level
of the data set. To evaluate the performance of each model in different sparse
data, we sample the target training set randomly with various sparseness levels
ranging from 0.01 % to 1 %. The utilized auxiliary data is always much denser
than the target data. Different dimensions of latent factors such as {10, 20, 50,
100, 150, 200, 300, 500, 800} and different values of regularization parameters
such as {0.01, 0.1, 0.5, 1, 5, 10, 50, 80} of each model are tried, the best of which
are selected for comparisons. Given that the major algorithms in the models are
iterative, we run each model 5 repeated times and report the average results of
MAE. In different data sets with various sparseness levels l, varies of the values
of MAE in different models with respect to N are as follows:
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Fig. 1. MovieLens
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Fig. 2. Epinions
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Fig. 3. Book-Crossing

In each one of Figs. 1, 2 and 3, the data sparseness level l in the left subgraph
is smaller than that in the right subgraph, which means the sampled data in the
left subgraph are sparser than that in the right subgraph. The above experi-
mental results show that the values of MAE in our proposed HFT model are
almost always smaller than those in other models in all cases, which is more
significant when the data is sparser in each data set. So it is demonstrated that
HFT model is more effective than others, especially when the data is sparser.
Also it performs well in the case of heterogeneous user feedbacks.
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Let T be the dimension of the share latent rating pattern between MovieLens
and Book-Crossing. MovieLens is the target data with the sparse level of 0.5 %,
and Book-Crossing is the auxiliary data with the sparse level of 8 %. Varies of
the values of MAE in different models with respect to T are as follows:
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Fig. 4. MovieLens and Book-Crossing

From Fig. 4, we can see that the values of MAE in HFT model are almost
always smaller than those in other methods, in which the values of MAE are
fixed with respect to T. Specially we can get the optimal value of T by adjusting
it freely, thereby significantly improve the accuracy of prediction. The results
show that the HFT model we proposed is effective and flexible.

6.5 Theoretical Analysis

HFT model considers both the common latent rating pattern and domain-specific
latent rating pattern so that it can get more accurate initial latent factors, based
on which the similarity graphs are constructed more accurately too. Given this,
latent factors can be used as an implicit bridge together with the similarity
graphs to perform the twin bridge transfer learning. Since the latent factors are
adopted as an implicit bridge for knowledge transfer, the transfer in HFT model
is simpler than the explicit twin-bridge transfer in SHI model. Moreover, we
adopt the PCC to measure the weight matrices for the similarity graphs, which
is time-saving and more accurate than the way based on the p-nearest neighbors
in SHI model. So HFT model owns a lower time complexity but higher recom-
mendation accuracy than SHI model. By the twin bridge transfer learning, HFT
model can transfer more useful knowledge, while alleviate negative transfer by
regularizing the learning model with the similarity graphs, which can effectively
filter out the negative information contained in the latent factors. So it is easy
to understand that HFT model has higher recommendation accuracy than GMF
model and CBT model, which not only are based on the single bridge transfer
learning, but also don’t consider the domain-specific latent rating patterns. In
addition, HFT model applies to the transfer of heterogeneous user feedbacks
across multiple domains by data normalization and the collective factorization,
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which makes the advantages of it more significant in the multi-source and het-
erogeneous environment of big data.

7 Conclusions and Future Work

We propose a novel HFT model of transfer learning for cross-domain CF recom-
mendation, which not only performs well in the case of heterogeneous feedbacks,
but also improves the recommendation by transferring more useful knowledge
considering both the common latent rating pattern and domain-specific latent
rating pattern and learning knowledge from the twin bridge of latent factors and
similarity graphs. In addition, in HFT model the latent factors of users and items
can be extracted by the collective factorization, so HFT model can be flexible
to data quality across multiple domains. Extensive experiments show that our
proposed HFT model is more efficient in sparse data and more flexible across
domains than other three excellent models.

In the future, we try to exploit more auxiliary information for transfer. Social
information, topic information and context information can be used for regular-
ization fitting in the process of optimization. Moreover, given that recommen-
dation tasks are often diverse, we intent to research multi-view and multi-task
cross-domain transfer learning [21,22] for the cross-domain recommendation.
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