
Matteo Baldoni
Luciano Baresi
Mehdi Dastani (Eds.)

 123

LN
AI

 9
31

8

Third International Workshop, EMAS 2015
Istanbul, Turkey, May 5, 2015
Revised, Selected, and Invited Papers

Engineering
Multi-Agent Systems

Lecture Notes in Artificial Intelligence 9318

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Matteo Baldoni • Luciano Baresi
Mehdi Dastani (Eds.)

Engineering
Multi-Agent Systems
Third International Workshop, EMAS 2015
Istanbul, Turkey, May 5, 2015
Revised, Selected, and Invited Papers

123

Editors
Matteo Baldoni
Dipartimento di Informatica
Università degli Studi di Torino
Torino
Italy

Luciano Baresi
DEIB - Politecnico di Milano
Milano
Italy

Mehdi Dastani
Department of Information and Computing

Sciences
Utrecht University
Utrecht
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-26183-6 ISBN 978-3-319-26184-3 (eBook)
DOI 10.1007/978-3-319-26184-3

Library of Congress Control Number: 2015954626

LNCS Sublibrary: SL7 – Artificial Intelligence

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The engineering of multi-agent systems (MAS) is a multi-faceted, complex task. These
systems consist of multiple, autonomous, and heterogeneous agents, and their global
behavior emerges from the cooperation and interactions among the agents. MAS have
been widely studied and implemented in academia, but their full adoption in industry is
still hampered by the unavailability of comprehensive solutions for conceiving, engi-
neering, and implementing these systems.

Being at the border between software engineering and artificial intelligence, they
can benefit from both disciplines, but at the same time they lack proper mainstream
solutions. For example, even if the artificial intelligence side has been proposing
conceptual models for years, there is still a lack of proper abstractions unanimously
recognized as effective design solutions for the conceptions of agents and of their
interactions. Similarly, there is still a significant gap between the availability of
“standard” software engineering implementation and validation solutions and their
adoption in the conception of MAS. More recently, the emergence of self-adaptive
software systems, and in general the idea of software systems that can change their
behavior at runtime, has imposed MAS as one conceptual solution for their realization,
but it has also emphasized the need for proper and sound engineering solutions.
Conversely, design artifacts (e.g., agent or MAS models) can be also used to support
and assist the testing and debugging of conventional software, while the use of
agent-oriented programming languages results in programs that are more readily ver-
ifiable. Their many pieces belong to the same puzzle, but significant work is still
needed to put them together.

As said, many solutions have already been proposed. They address the use of
common software engineering solutions for the conception of MAS, the use of MAS
for ameliorating common software engineering tasks, and also the proper blending
of the two disciplines to conceive MAS-centric development processes. Academia has
been working on ideas and solutions; industry should have exploited them to improve
the state of the art. The cross-fertilization is needed to make the two sides of the same
coin cooperate, and a single, common venue can help to exchange ideas, compare
solutions, and learn from one another.

The International Workshop on Engineering Multi-Agent Systems (EMAS) aims to
be this comprehensive venue, where software engineering and artificial intelligence
researchers can meet together and discuss the different viewpoints and findings, and
where they can also try to present them to industry. EMAS was created in 2013 as a
merger of three separate workshops (with overlapping communities) that focused on
the software engineering aspects (AOSE), the programming aspects (ProMAS), and the
application of declarative techniques to design, program, and verify (DALT) MAS. The
workshop is traditionally co-located with AAMAS (International Conference on
Autonomous Agents and Multi-agent Systems) and thus this year it was held in
Istanbul (Turkey).

This year the workshop was a single-day event. We received 19 submissions, and
after a double review process, 10 papers were selected for inclusion in this volume. All
the contributions were revised by taking into account the comments and discussions at
the workshop. Moreover, the volume includes two papers by the invited speakers,
Brian Logan, from the University of Nottingham, and Mirko Viroli, from Università di
Bologna, whose presentations raised a lot of interest and compelling discussions.

We would like to thank all the members of the Program Committee for their
excellent work. Moreover, we would like to thank all the members of the Steering
Committee of EMAS for their valuable suggestions and support.

August 2015 Matteo Baldoni
Luciano Baresi
Mehdi Dastani

VI Preface

Organization

Workshop Organizers

Matteo Baldoni University of Turin, Italy
Luciano Baresi Politecnico di Milano, Italy
Mehdi Dastani Utrecht University, The Netherlands

Program Committee

Natasha Alechina University of Nottingham, UK
Matteo Baldoni University of Turin, Italy
Luciano Baresi Politecnico di Milano, Italy
Cristina Baroglio University of Turin, Italy
Jeremy Baxter QinetiQ, UK
Olivier Boissier ENS Mines Saint-Etienne, France
Lars Braubach University of Hamburg, Germany
Rem Collier University College Dublin, Ireland
Massimo Cossentino National Research Council, Italy
Fabiano Dalpiaz Utrecht University, The Netherlands
Mehdi Dastani Utrecht University, The Netherlands
Louise Dennis University of Liverpool, UK
Jüergen Dix Clausthal University of Technology, Germany
Amal El Fallah

Seghrouchni
LIP6 - University of Pierre and Marie Curie, France

Aditya Ghose University of Wollongong, Australia
Paolo Giorgini University of Trento, Italy
Adriana Giret Technical University of Valencia, Spain
Jorge Gomez-Sanz Universidad Complutense de Madrid, Spain
Christian Guttmann Institute of Value Based Reimbursement System, Sweden
James Harland RMIT University, Australia
Vincent Hilaire UTBM/IRYES-SET, France
Koen Hindriks Delft University of Technology, The Netherlands
Benjamin Hirsch EBTIC/Khalifa University, UAE
Tom Holvoet K.U. Leuven, Belgium
Jomi Fred Hubner Federal University of Santa Catarina, Brazil
Joao Leite Universidade Nova de Lisboa, Portugal
Yves Lespérance York University, Canada
Brian Logan University of Nottingham, UK
Viviana Mascardi University of Genoa, Italy
Philippe Mathieu University of Lille 1, France
John-Jules Meyer Utrecht University, The Netherlands

Frederic Migeon IRIT, France
Ambra Molesini Alma Mater Studiourum - Universtà di Bologna, Italy
Pavlos Moraitis Paris Descartes University, France
Haralambos Mouratidis University of Brighton, UK
Jörg P. Müller TU Clausthal, Germany
Andrea Omicini Alma Mater Studiorum - Università di Bologna, Italy
Juan Pavón Universidad Complutense de Madrid, Spain
Alexander Pokahr University of Hamburg, Germany
Enrico Pontelli New Mexico State University, USA
Alessandro Ricci Alma Mater Studiorum - Università di Bologna, Italy
Ralph Ronnquist Real Thing Entertainment Pty Ltd, Australia
Sebastian Sardina RMIT University, Australia
Valeria Seidita University of Palermo, Italy
Guillermo R. Simari Universidad Nacional del Sur in Bahia Blanca, Argentina
John Thangarajah RMIT University, Australia
Paolo Torroni Alma Mater Studiorum - Università di Bologna, Italy
M. Birna van Riemsdijk TU Delft, The Netherlands
Wamberto Vasconcelos University of Aberdeen, UK
Jørgen Villadsen Technical University of Denmark
Gerhard Weiss University of Maastricht, The Netherlands
Danny Weyns Linnaeus University, Sweden
Michael Winikoff University of Otago, New Zealand
Wayne Wobcke University of New South Wales, Australia
Neil Yorke-Smith American University of Beirut, Lebanon

Steering Committee

Matteo Baldoni University of Turin, Italy
Rafael Bordini PUCRS, Brazil
Mehdi Dastani Utrecht University, The Netherlands
Jürgen Dix TU Clausthal, Germany
Amal El Fallah

Seghrouchni
University Paris 6, France

Paolo Giorgini University of Trento, Italy
Jörg P. Müller TU Clausthal, Germany
M. Birna van Riemsdijk Delft University of Technology, The Netherlands
Tran Cao Son New Mexico State University, USA
Gerhard Weiss Maastricht University, The Netherlands
Danny Weyns Linnaeus University, Sweden
Michael Winikoff University of Otago, New Zealand

Additional Reviewers

Abushark, Yoosef
Sabatucci, Luca

VIII Organization

Contents

Invited Papers

A Future for Agent Programming . 3
Brian Logan

Towards Agent Aggregates: Perspectives and Challenges 18
Mirko Viroli and Alessandro Ricci

Contributed Papers

Designing a Knowledge Representation Interface for Cognitive Agents 33
Timea Bagosi, Joachim de Greeff, Koen V. Hindriks,
and Mark A. Neerincx

A Probabilistic BPMN Normal Form to Model and Advise Human
Activities . 51

Hector G. Ceballos, Victor Flores-Solorio, and Juan Pablo Garcia

ACE: A Flexible Environment for Complex Event Processing in Logical
Agents . 70

Stefania Costantini

A Testbed for Agent Oriented Smart Grid Implementation 92
Jorge J. Gomez-Sanz, Nuria Cuartero-Soler,
and Sandra Garcia-Rodriguez

Quantitative Analysis of Multiagent Systems Through Statistical Model
Checking . 109

Benjamin Herd, Simon Miles, Peter McBurney, and Michael Luck

Semantic Mutation Testing for Multi-agent Systems 131
Zhan Huang and Rob Alexander

A Formal Description of a Mapping from Business Processes to Agents 153
Tobias Küster, Marco Lützenberger, and Sahin Albayrak

Validating Requirements Using Gaia Roles Models 171
Nektarios Mitakidis, Pavlos Delias, and Nikolaos Spanoudakis

Programming Mirror Worlds: An Agent-Oriented Programming Perspective . . . 191
Alessandro Ricci, Angelo Croatti, Pietro Brunetti, and Mirko Viroli

http://dx.doi.org/10.1007/978-3-319-26184-3_1
http://dx.doi.org/10.1007/978-3-319-26184-3_2
http://dx.doi.org/10.1007/978-3-319-26184-3_3
http://dx.doi.org/10.1007/978-3-319-26184-3_4
http://dx.doi.org/10.1007/978-3-319-26184-3_4
http://dx.doi.org/10.1007/978-3-319-26184-3_5
http://dx.doi.org/10.1007/978-3-319-26184-3_5
http://dx.doi.org/10.1007/978-3-319-26184-3_6
http://dx.doi.org/10.1007/978-3-319-26184-3_7
http://dx.doi.org/10.1007/978-3-319-26184-3_7
http://dx.doi.org/10.1007/978-3-319-26184-3_8
http://dx.doi.org/10.1007/978-3-319-26184-3_9
http://dx.doi.org/10.1007/978-3-319-26184-3_10
http://dx.doi.org/10.1007/978-3-319-26184-3_11

Evaluating Different Concurrency Configurations for Executing
Multi-Agent Systems . 212

Maicon R. Zatelli, Alessandro Ricci, and Jomi F. Hübner

Author Index . 231

X Contents

http://dx.doi.org/10.1007/978-3-319-26184-3_12
http://dx.doi.org/10.1007/978-3-319-26184-3_12

Invited Papers

A Future for Agent Programming

Brian Logan(B)

School of Computer Science, University of Nottingham, Nottingham, UK
bsl@cs.nott.ac.uk

Abstract. There has been considerable progress in both the theory and
practice of agent programming since Georgeff & Rao’s seminal work on
the Belief-Desire-Intention paradigm. However, despite increasing inter-
est in the development of autonomous systems, applications of agent pro-
gramming are confined to a small number of niche areas, and adoption
of agent programming languages in mainstream software development
remains limited. This state of affairs is widely acknowledged within the
community, and a number of remedies have been proposed. In this paper,
I will offer one more. Starting from the class of problems agent program-
ming sets out to solve, I will argue that a combination of Moore’s Law
and advances elsewhere in AI, mean that key assumptions underlying
the design of many BDI-based agent programming languages no longer
hold. As a result, we are now in a position where we can rethink the
foundations of BDI programming languages, and address some of the
key challenges in agent development that have been largely ignored for
the last twenty years. By doing so, I believe we can create theories and
languages that are much more powerful and easy to use, and significantly
broaden the impact of the work we do.

1 Introduction

There is increasing interest in the application of autonomous intelligent systems
technology in areas such as driverless cars, UAVs, manufacturing, healthcare,
personal assistants, etc. Robotics and autonomous systems have been identi-
fied as one of the Eight Great Technologies [29] with the potential to revo-
lutionise our economy and society. For example, the UK Knowledge Transfer
Network for Aerospace, Aviation & Defence report Robotics and Autonomous
Systems: Challenges and Opportunities for the UK states: “the economic, cul-
tural, environmental and social impacts and benefits [of autonomous systems]
will be unprecedented” [17]. There is also an increasing focus on autonomous
systems in artificial intelligence research, with, for example, special tracks on
Cognitive Systems and Integrated Systems/Integrated AI Capabilities at AAAI
2015 & 2016. Given the level of interest in both academia and industry, one
might expect the agent programming community, which specialises in theories,

This paper is a revised and extended version of an invited talk given at EMAS 2015.
I am grateful to the workshop organisers for the invitation, and the opportunity to
contribute to the post-proceedings.

c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-26184-3 1

4 B. Logan

architectures, languages and tools for the development of autonomous systems
to be thriving, and the languages and tools they have developed to support the
development of autonomous agents to be in widespread use in AI research and
perhaps in industry.

However the impact of agent programming in both mainstream AI and in
applications is minimal. Surveys suggest that the adoption of Agent-Oriented
Programming Languages (AOPL) and Agent-Oriented Software Engineering
(AOSE) in both research and industry is limited [7,15,31]. More worrying, the
most distinctive outputs of the agent programming community, the Belief-Desire-
Intention (BDI)-based approaches which specifically target the development of
intelligent or cognitive agents, and which would appear to be best suited to the
development of autonomous systems, are least used. A study by Winikoff [31] of
applications appearing in the AAMAS Industry/Innovative Applications tracks
in 2010 and 2012, reveals that the systems described do not require intelligent
goal-based (BDI) agents, and the focus of many applications is at the multi-
agent system (MAS) coordination level (e.g., game theory, MDPs). The most
recent survey by Müller & Fischer in 2014 [15] reports 46 ‘mature’ applications
(out of 152 surveyed applications). They found that:

– 82 % of mature applications focus on the MAS level, while only 9 % focus on
‘intelligent agents’

– the majority of mature applications are concentrated in a few industrial sec-
tors: logistics & manufacturing, telecoms, aerospace and e-commerce

– only 10 % of mature applications clearly used a BDI-based platform; of those
that did, all used the JACK [30] platform

Müller and Fisher list a number of caveats concerning their study data. In par-
ticular, “the large number of applications in the multi-agent systems category
certainly reflects the focus towards multi-agent topics in the call for participation
rather than a lack of intelligent agent[s]”. In addition, they note that some appli-
cations used more than one platform, and for some applications the information
was not available, so the number of applications using a BDI platform may be
higher than 10 %. However even allowing for these factors, it seems hard to argue
that BDI agents are having a significant impact in application development.

In this paper I explore the reasons for the apparent lack of interest in agent
programming in the broader AI research community and developers of agent-
based systems, and make some proposals about what we can (and should) do
about it. By ‘agent programming’ I mean the whole spectrum of agent pro-
gramming techniques developed to support the implementation of autonomous
agents, from more ‘object oriented’ approaches such as JADE [2] to BDI-based
approaches such as Jason [4]. I focus on models, languages and platforms for pro-
gramming individual agents, as these are most relevant to the implementation
of autonomous systems.1 I will use the term ‘agent programming community’
1 Programming frameworks for the development of MAS are an important output of

the agent programming community, but are not essential for the implementation of
individual autonomous systems.

A Future for Agent Programming 5

to refer to the developers of these languages and tools (exemplified by EMAS
and its predecessor workshops) rather than their intended users. Except where
the distinction is relevant, in the interests of brevity, I often do not distinguish
between agent programming languages and the theories on which a language is
based or the platform implementing the language specification, and use ‘agent
programming language’ (APL) as a general term to denote the outputs of the
agent programming community. My analysis of why agent programming is fail-
ing to have an impact applies to all forms of agent programming; however my
proposals about what to do about it focus primarily on BDI-based approaches.
The tenor of the paper is deliberately polemical, and some steps in the argu-
ment may be seen as contentious. However I believe the changes in the context of
agent programming in artificial intelligence and computer science I point to, and
the opportunities they present, are unassailable. So even if my analysis of the
problem is flawed, the opportunities we have to do interesting work are very real.

2 Background

I am not the first to consider the low take-up of agent programming in main-
stream software development, or how agent programming languages could or
should develop to maximise their adoption. This paper follows in a tradition
of talks and panel sessions at agent programming workshops, including the
Dagstuhl Seminar on Engineering Multi-Agent Systems [8] and the EMAS 2013
& 2014 workshops. In this section I briefly review some of this work.

In [31] Winikoff identifies a number of challenges for engineering multi-agent
systems and proposes directions for future work in engineering MAS. He focusses
on the relevance of the AAMAS community to industry, and the relevance of the
‘agent engineering’ sub-community to the rest of AAMAS, and in particular the
extent to which the methodologies, languages and tools developed by this sub-
community are used both in the wider AAMAS community, and in industry.
I focus here on the latter question, as being more closely related to the topic
of the current paper.2 Drawing on data from [7] and the analysis of papers
appearing in the AAMAS Industry/Innovative Applications tracks in 2010 and
2012 mentioned briefly above, he argues that AOPL and AOSE usage is quite
limited, and that the applications described focus on coordination aspects and
do not require goal-based agents. Based on these observations he recommends
that the agent programming community should:

– stop designing AOPLs and AOSE methodologies . . . and instead . . .
– move to the “macro” level: develop techniques for designing and implementing

interaction, integrate micro (single cognitive agent) and macro (MAS) design
and implementation

2 The engagement of industry with the AAMAS conference as a whole also does not
seem a particularly relevant metric when considering future directions for engineering
multi-agent systems. AAMAS is a large conference, and there are typically only a
relatively small number of papers on agent programming; even if these papers were
very relevant to industry, industrial engagement with the conference as a whole could
still be low.

6 B. Logan

However this recommendation appears to ignore the possibility that the rea-
son current applications focus on coordination of MAS rather than goal-based
agents, is that the support provided by current agent programming languages
for developing goal-based agents is inadequate. As such, it risks becoming a
self-fulfilling prophecy. I will return to this point in the next section. Winikoff
also identifies the lack of techniques for the assurance of MAS as a barrier to
adoption of agent technology. This is a valid concern, but falls outside the scope
of the current paper, which is more narrowly focussed on the design of agent
programming languages.

In [13] Hindriks reviews the history of engineering multi-agent systems,
including agent programming, and presents a vision of how cognitive agent tech-
nology can form a basis for the development of next-generation autonomous
decision-making systems. Like Winikoff, he makes a number recommendations
and identifies a number of directions for future research, including:

– pay more attention to the kind of support (specifically tools) required for
engineering MAS applications

– focus more on issues related to ease of use, scalability and performance, and
testing

– facilitate the integration of sophisticated AI techniques into agents
– show that agent-orientation can solve key concurrency and distributed com-

puting issues
– put more effort into integrating agent-based methodologies and programming

languages

He concludes that to stimulate the adoption of cognitive agent technology and
MAS, the agent programming community must provide “methods and tools that
jointly support the agent-oriented mindset”. However Hindriks’s analysis does
not directly address the causes of the low take-up of agent programming in
mainstream software development. Rather his proposals can be read as possible
or desirable extensions to current APLs rather than features necessary for wider
adoption.3

Many of the features identified by Winikoff and Hindriks are clearly impor-
tant for the wider adoption of agent programming languages. However I believe
their analyses fundamentally mistake the nature of the problem we face. The
key problem lies elsewhere, and has not previously been articulated. I turn to
this in the next section.

3 Why Are We Failing to Have an Impact?

I begin by elucidating the problem we are trying to solve. There are many dif-
ferent views of the aims and objectives of ‘agent programming’ considered as

3 The alternative interpretation, that they are all necessary for the wider adoption
of APLs, implies that agent programming as a field must progress on a very broad
front, and is even more daunting than my analysis below.

A Future for Agent Programming 7

a field. As a first approximation, these differing perspectives can be broadly
characterised as being either ‘AI-oriented’ or ‘software engineering-oriented’. The
AI-oriented view focuses on connections with the broader field of artificial intel-
ligence, and sees agents as ‘an overarching framework for bringing together the
component AI sub-disciplines that are necessary to design and build intelligent
entities’ [14]. The software engineering-oriented view on the other hand, focuses
on synergies between software engineering and agent research.4 Each tradition
is associated with its own set of research questions and workshops. For example
the AI-oriented view is represented by workshops such as Agent Architectures
Theories and Languages (ATAL), while the software engineering-oriented view is
represented by workshops such as Agent-Oriented Software Engineering (AOSE).

In what follows, I focus on the AI-oriented view. There are several reasons
for this choice. The AI-oriented view represents the original motivation for agent
programming as a subfield, and I would argue that the most significant contri-
butions of agent programming to the broader AAMAS community have emerged
from this tradition, e.g., the 2007 IFAAMAS Influential Paper Award for Rao
& Georgeff’s work on rational agents [18]. In addition, the agent programming
languages and tools developed in this tradition are arguably the most mature
software products of the agent programming community, representing approxi-
mately thirty years of cumulative development. Lastly, the combination of these
two factors (a clear need in the AI community, and the distinctive set of ideas
represented by the BDI paradigm) offers the best hope for agent programming
to have an impact outside our community.

Perhaps the best characterisation of the AI-oriented view is given in the call
for papers for the first ATAL workshop, held in 1994, which states:

Artificial Intelligence is concerned with building, modeling and under-
standing systems that exhibit some aspect of intelligent behaviour. Yet
it is only comparatively recently — since about the mid 1980s — that
issues surrounding the synthesis of intelligent autonomous agents have
entered the mainstream of AI. . . . The aim of this workshop . . . is to
provide an arena in which researchers working in all areas related to the
theoretical and practical aspects of both hardware and software agent
synthesis can further extend their understanding and expertise by meet-
ing and exchanging ideas, techniques and results with researchers work-
ing in related areas.

— ATAL 1994 CfP

In this view, agents are a way of realising the broader aims of artificial intelli-
gence. Agents are autonomous systems which combine multiple capabilities, e.g.,
sensing, problem-solving and action, in a single system. Agent programming is

4 There are, of course, overlaps between the two views. In particular, there is a strand
of work in what I am characterising as the AI-oriented view, that focuses on the
engineering of intelligent autonomous systems. However the focus of work in the
software engineering-oriented tradition is much less on AI and more on distributed
systems.

8 B. Logan

seen as a means of realising and integrating these capabilities to achieve flexible
intelligent behaviour in dynamic and unpredictable environments.

Given this characterisation of the goals of agent programming, the reason the
agent programming research conducted by the agent programming community
has failed to have an impact follows fairly immediately:

we can’t solve a large enough class of AI problems well enough to be
interesting to the wider AAMAS community or application developers

In the remainder of this section, I will attempt to justify this claim.

3.1 The BDI Model

The Belief-Desire-Intention (BDI) model and its underlying theoretical under-
pinnings are arguably the main contribution of the agent programming commu-
nity to the broader field of AI. The BDI approach can be seen as an attempt
to characterise how flexible intelligent behaviour can be realised in dynamic
environments, by specifying how an agent can balance reactive and proactive
behaviour.

In BDI-based agent programming languages, the behaviour of an agent is
specified in terms of beliefs, goals, and plans. Beliefs represent the agent’s infor-
mation about the environment (and itself). Goals represent desired states of the
environment the agent is trying to bring about. Plans are the means by which
the agent can modify the environment in order to achieve its goals. Plans are
composed of steps which are either basic actions that directly change the agent’s
environment or subgoals which are in turn achieved by other plans. Plans are
pre-defined by the agent developer, and, together with the agent’s initial beliefs
and goals, form the program of the agent. For each event (belief change or top-
level goal), the agent selects a plan which forms the root of an intention and
commences executing the steps in the plan. If the next step in an intention
is a subgoal, a (sub)plan is selected to achieve the subgoal and added to the
intention.

In most BDI-based agent programming languages, plan selection follows four
steps. First the set of relevant plans is determined. A plan is relevant if its trig-
gering condition matches a goal to be achieved or a change in the agent’s beliefs
the agent should respond to. Second, the set of applicable plans are determined.
A plan is applicable if its belief context evaluates to true, given the agent’s cur-
rent beliefs. Third, the agent commits to (intends) one or more of its relevant,
applicable plans. Finally, from this updated set of intentions, the agent then
selects one or more intentions, and executes one (or more) steps of the plan
for that intention. This process of repeatedly choosing and executing plans is
referred to the agent’s deliberation cycle. Deferring the selection of plans until
the corresponding goal must be achieved allows BDI agents to respond flexibly
to changes in the environment, by adapting the means used to achieve a goal to
the current circumstances.

A Future for Agent Programming 9

3.2 Limitations of Current BDI-Based Languages

The BDI approach has been very successful, to the extent that it arguably the
dominant paradigm in agent programming [11]. A wide variety of agent languages
and agent platforms have been developed which at least partially implement the
BDI model, e.g., [4–6,12,30]. A number of these languages and platforms are
now reasonably mature in terms of their feature set (if not always in terms of
their software engineering). They encompass each of the components of the BDI
model in at least rudimentary form, and often have a solid theoretical foundation
in the form of a precise operational semantics specifying what beliefs, desires and
intentions mean, and how they should be implemented. It is therefore appropriate
to consider what the scientific contribution of this work consists of.

The features common to state of the art BDI languages, and which currently
define this style of programming, are essentially limited to:

– selecting canned plans at run time based on the current context; and
– some support for handling plan failure (e.g., trying a different plan)

While these features are useful, and are key to implementing agents based on
the BDI paradigm, everything else is left to the programmer.

What’s left to the programmer is all the hard(er) parts of implementing an
autonomous agent. More specifically, some of the things the current generation
of agent programming languages can’t do (in a generic way) includes:

– how to handle costs, preferences, time, resources, durative actions, etc.
– which plan to adopt if several are applicable
– which intention to execute next
– how to handle interactions between intentions
– how to estimate progress of an intention
– how to handle lack of progress or plan failure
– when to drop a goal or try a different approach
– and many others . . .

While not all of these capabilities will be required in every agent application, a
reasonable argument can be made that many are necessary in most, if not all,
cases (e.g., which plan to adopt, which intention to execute next, how to handle
plan failure), and each feature is required for a significant class of applications.

There has been some preliminary work on how to implement many of these
capabilities, see, for example, [3,16,21–28,32]. However, to date, this work has
not been incorporated into the core feature set of popular BDI platforms. One
possible explanation for the current state of the art, rests on the observation
that, for any particular application, the detailed answers to these questions will
differ. The argument that such issues should or must be left to the programmer
is reminiscent of the ‘New Jersey approach’ [9]: do the basic cases well, and
leave the programmer to do the hard bits. While this approach may explain the
relative popularity of C vs Lisp (the focus of Gabriel’s paper), the assumption
that the current ‘BDI feature set’ is a good tradeoff in terms of the kinds of

10 B. Logan

behaviours that can be easily programmed while at the same time being easy
for programmers to learn doesn’t seem to hold.5

It is of course true that for specific applications, the detailed answers to
these questions (or even whether a feature is needed at all) will vary. However
do we as a community really want to claim that there are no general theories
or approaches to these questions? If so, developing agents capable of flexible
intelligent behaviour in dynamic and unpredictable environments is going to be
very hard (and hence very expensive), and the amount that agent programming
can contribute will be limited.

In summary, the support currently offered by state of the art APLs is use-
ful, particularly for some problems. However it is not useful enough for most
developers to switch platforms, even if we polish our methodologies and tools. I
believe we need to answer these questions, and I explain why in the next section.

4 The Broader Context

The analysis presented in the previous section actually underestimates the scale
of the problem facing the agent programming community. In this section, I will
argue that there is good reason to suppose that the already limited impact of
agent programming on the wider AAMAS community and AI generally is likely
to decline in the foreseeable future due to changes in the broader AI and CS
context. Key assumptions on which the BDI agent programming model are based
are not as true as they once were, allowing other AI subfields to colonise the APL
space. In addition, some mainstream computing paradigms are starting to look
like simple forms of agent programming, potentially limiting the impact of APL
technologies on mainstream development. I discuss each of these developments
below.

4.1 Reactive Planning

The BDI approach to agent programming is based on early work on reactive
planning, e.g., [10]. The underlying rationale for reactive planning rests on a
number of key assumptions, including:

– the environment is dynamic, so it’s not worth planning too far ahead as the
environment will change;

– the choice of plans should be deferred for as long as possible — plans should
be selected based on the context in which the plan will be executed.

In their 1987 paper Georgeff & Lansky emphasise the difference between reactive
planning and traditional (first principles) planning: “[traditional] planning tech-
niques [are] not suited to domains where replanning is frequently necessary” [10].

5 The argument that an APL should include only basic plan selection features seems
spurious for another reason—most widely used programming languages provide sup-
port for many more features than will be used in any particular application.

A Future for Agent Programming 11

A key implicit assumption underlying this claim is the time required by a
traditional planner to find a plan for a given goal. While generative planning
remains an NP-hard problem, advances in classical planning and increases in
processing power have increased the size of problems that can be solved by
a traditional planner in a given amount of time. Since Georgeff & Lansky’s
paper, available computational power has increased by a factor of approximately
105, and by a factor of 104 since Rao’s classic paper on AgentSpeak(L) [19]
which influenced the design of many current state of the art agent programming
languages (see Fig. 1).6

curve shows transistor
count doubling every
two years

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004
8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium
AMD K5

Pentium II
Pentium III

AMD K6
AMD K6-III
AMD K7

Pentium 4
Barton Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10
Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)
Six-Core Opteron 2400

8-Core Xeon Nehalem-EX
Quad-Core Itanium Tukwila
Quad-core z196
8-core POWER7

10-Core Xeon Westmere-EX

16-Core SPARC T3

Six-Core Core i7
Six-Core Xeon 7400

Dual-Core Itanium 2
AMD K10

Tr
an

si
st

or
 c

ou
nt

AgentSpeak(L)PRS

Fig. 1. Microprocessor transitor counts 1971–2011

It is perhaps now time to reconsider whether traditional planning techniques
are unsuited to domains where replanning is frequently necessary. Many planning
problems can now be solved in less than a second, and some generative planners
are approaching the 100ms threshold necessary for agent planning in real time
domains. Figure 2 shows the number of solved problem instances with time for
all domains of the ICAPS International Planning Competition7 and a range of
6 Creative Commons ‘Transistor Count and Moore’s Law’ by Wgsimon used under

CC-BY-SA-3.0. Transistor counts circa 1987 and 1996 highlighted.
7 www.icaps-conference.org.

www.icaps-conference.org

12 B. Logan

Fig. 2. Number of IPC problem instances solved by different planners with time

generative planners.8 As can be seen, the best planners (from the point of view
of a real time agent) are capable of solving over half the problem instances in
< 100 ms. (Note that these results are from 2012.)

While there is some dispute about the extent to which Moore’s law continues
to hold, it seems safe to assume that available computational power will continue
to increase, at least in terms of transistor count, for the foreseeable future. It also
seems safe to assume that advances in classical planning will continue. Coupled
with an increased interest in the planning community in ‘real time’ planning,9

it seems likely that the range of problems amenable to first principles planning
will increase in the future. This does not mean the end of reactive planning, but
hybrid approaches will become increasingly feasible.

4.2 Reactive Programming

At the same time, work on event-driven and reactive programming10 (e.g., in
robotics) offers similar (or better) functionality to belief triggered plans in agent
programming. Such approaches offer:
8 The figure is from http://users.ics.aalto.fi/rintanen/jussi/satplan.html and is repro-

duced here with the permission of the author. See also [20].
9 The 2014 edition of the International Planning Competition included a Sequential
Agile track for the first time. The objective of the Agile track is to ‘minimize the
CPU time needed for finding a plan’.

10 See, for example http://rx.codeplex.com.

http://users.ics.aalto.fi/rintanen/jussi/satplan.html
http://rx.codeplex.com

A Future for Agent Programming 13

– a well defined model of streams (immutability, sampling, pull-based compu-
tation)

– very fast (microsecond) evaluation of simple SQL-like queries (e.g., LINQ,11

cqengine12) that scale to very large ‘belief bases’ for evaluation of context
conditions

Taken together, these technologies can provide a simple form of event-driven
reactive agent behaviour (e.g., if subgoals are seen as a stream of events). These
paradigms are now a part of ‘mainstream’ Computer Science. For example,
‘Event Driven and Reactive Programming’ is included in the 2013 ACM model
curriculum for Computer Science [1].

The developments discussed above do not constitute a comprehensive list of
the changes impacting or likely to impact the EMAS community. It is possible
to point to similar advances in other subfields of both AI (such as reasoning
and scheduling) and CS relevant to agent programming. Together their effect is
to erode the niche currently occupied by the current generation of agent pro-
gramming languages. It follows that agent programming as a discipline will only
remain relevant if it is possible to increase the size of the niche it occupies. To
do so, agent programming languages must become capable of addressing a wider
range of problems in a generic way. The good news is that the same develop-
ments which pose a threat to the future of agent programming can enable this
transition, as I explain in the next section.

5 The Future

The advances in both hardware and related AI sub-disciplines highlighted in
the previous section mean we are now in a position where we can rethink the
foundations of agent programming languages. By engaging with cutting edge
AI research, we can address some of the key challenges in agent development
that have been largely ignored for the last twenty years. Note that this is not
just ‘more of the same’—the rest of AI has moved on significantly since the
early work on the BDI model, creating significant new opportunities that agent
programming can exploit.

5.1 Some Ideas

Below, I brielfy sketch one possible path such developments could take. The
ideas are shaped by my own interests and are not intended to be exhaustive
or prescriptive—there are many other ways things could go (for some alterna-
tive suggestions, see [13]). However I believe that all feasible futures for agent
programming entail a fundamental shift in emphasis: agent programming must
become more about describing the problem rather than ‘hacking code’, with the
agent programming language/platform doing (more of) the hard bits currently
left to the agent developer.
11 http://msdn.microsoft.com.
12 http://code.google.com/p/cqengine.

http://msdn.microsoft.com
http://code.google.com/p/cqengine

14 B. Logan

beliefs: how and when beliefs are updated (active sensing, lazy update); han-
dling uncertain and inconsistent beliefs (implications for plan selection)

goals: goals with priorities and deadlines; maintenance and other repeating
goals; when to adopt, suspend and drop goals (cf. work on goal life cycles);
how to tell if a goal is achieved (e.g., if beliefs are uncertain)

plans: plans with durative and nondeterministic actions; plans with partially
ordered steps; when (and how) to synthesise new plans

intentions: how to estimate the time required to execute an intention; which
intentions to progress next; how to schedule intentions to avoid interference;
how to handle plan failure

MAS level: how to decide when to join an open system/coalition/team; delib-
eration about roles, norms etc; strategic reasoning about other agents

A key feature common to all these possible research directions, is that they
involve the APL rather than the agent developer solving a problem.

5.2 What Counts as Progress

Identifying possible research directions is, on its own, insufficient. To count as
progress, future research in agent programming must meet a number of crite-
ria that characterise the unique contribution of agent programming (and agent
architectures) as a field, distinct from other subfields of multi-agent systems, and
artificial intelligence and computer science more generally. I therefore conclude
this section with a set of ‘progress metrics’ which are rooted in the analysis
presented in Sect. 3:

– extensions need to be integrated, e.g., uncertain and inconsistent beliefs have
implications for plan selection and determining when a goal is achieved, plans
with nondeterministic actions may determine when sensing is required, etc.

– ideally, the agent language/platform needs to be modular, so that an agent
developer only needs to master the features necessary for their application

– evaluation of agent programs (and indirectly of APLs) requires richer bench-
mark problems (or less toy versions of current problems)

– the key evaluation criterion should be whether a developer has to explicitly
program something rather than how long it takes them to program it or how
many errors they make

The last point is critical. Clearly, the developer will have to write code specific to
their particular application. The aim is to raise the level of abstraction offered
by the agent programming language, and by doing so address the challenge
of integrating the AI sub-disciplines necessary to design and build intelligent
entities.13

This list of performance metrics is preliminary and can (and should) be
improved. However broad consensus around some set of metrics is essential for
13 A similar point is made by Hindriks [13] when he advocates easy access to powerful

AI techniques. However Hindriks sees this as a desirable rather than a necessary
feature.

A Future for Agent Programming 15

EMAS to be coherent as a community, and I would argue that a list something
like the above is necessary for our research to have impact in the wider field of
multi-agent systems.

6 Conclusion

Agent programming isn’t (and can’t be for a long while) primarily about software
engineering. Software engineering is important, but only as a means to an end.
The AAMAS community, including EMAS, is primarily a scientific community.
It’s products are new knowledge about how to achieve flexible intelligent behav-
iour in dynamic and unpredictable environments, rather than software artefacts
or tools. To make progress, we need to focus on solving more interesting AI
problems in an integrated, general and tractable way. By doing so, I believe we
can create theories and languages that are much more powerful and easy to use,
and secure a future for agent programming as a discipline.

References

1. Computer science curricula 2013: Curriculum guidelines for undergraduate degree
programs in computer science. ACM/IEEE, December 2013

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley, Chichester (2007)

3. Bordini, R., Bazzan, A.L.C., de O. Jannone, R., Basso, D.M., Vicari, R.M., Lesser,
V.R.: AgentSpeak(XL): efficient intention selection in BDI agents via decision-
theoretic task scheduling. In: Proceedings of the First International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’02), pp. 1294–1302. ACM
Press, New York, NY, USA (2002)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. Wiley Series in Agent Technology. Wiley, New York
(2007)

5. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A BDI-agent system combining
middleware and reasoning. In: Unland, R., Calisti, M., Klusch, M. (eds.) Software
Agent-Based Applications, Platforms and Development Kits. Whitestein Series in
Software Agent Technologies, pp. 143–168. Birkhuser, Basel (2005)

6. Dastani, M.: 2APL: a practical agent programming language. Auton. Agent. Multi-
Agent Syst. 16(3), 214–248 (2008)

7. Dignum, V., Dignum, F.: Designing agent systems: state of the practice. Int. J.
Agent-Oriented Softw. Eng. 4(3), 224–243 (2010)

8. Dix, J., Hindriks, K.V., Logan, B., Wobcke, W.: Engineering multi-agent systems
(Dagstuhl seminar 12342). Dagstuhl Rep. 2(8), 74–98 (2012)

9. Gabriel, R.P.: Lisp: good news, bad news, how to win big. In: European Conference
on the Practical Applications of Lisp (1990) (Reprinted in the April 1991 issue of
AI Expert magazine)

10. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings
of the Sixth National Conference on Artificial Intelligence, AAAI-87, pp. 677–682
(1987)

16 B. Logan

11. Georgeff, M., Pell, B., Pollack, M.E., Tambe, M., Wooldridge, M.J.: The Belief-
Desire-Intention model of agency. In: Papadimitriou, C., Singh, M.P., Müller, J.P.
(eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 1–10. Springer, Heidelberg (1999)

12. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah, A.,
Seghrouchni, J.D., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming:
Languages. Tools and Applications, pp. 119–157. Springer, US (2009)

13. Hindriks, K.V.: The shaping of the agent-oriented mindset. In: Dalpiaz, F., Dix,
J., van Riemsdijk, M.B. (eds.) EMAS 2014. LNCS, vol. 8758, pp. 1–14. Springer,
Heidelberg (2014)

14. Jennings, N.R.: Agent-oriented software engineering. In: Imam, I., Kodratoff, Y.,
El-Dessouki, A., Ali, M. (eds.) IEA/AIE 1999. LNCS (LNAI), vol. 1611, pp. 4–10.
Springer, Heidelberg (1999)

15. Müller, J.P., Fischer, K.: Application impact of multi-agent systems and technolo-
gies: a survey. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software Engi-
neering, pp. 27–53. Springer, Heidelberg (2014)

16. Padgham, L., Singh, D.: Situational preferences for BDI plans. In: Gini, M.L.,
Shehory, O., Ito, T., Jonker, C.M. (eds.) International Conference on Autonomous
Agents and Multi-Agent Systems, AAMAS ’13, pp. 1013–1020. IFAAMAS (2013)

17. Patchett, C.: Robotics and Autonomous Systems: Challenges and Opportunities
for the UK (2014)

18. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Proceedings of the Second International Conference on Principles of Knowledge
Representation and Reasoning (KR’91), pp. 473–484 (1991)

19. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

20. Rintanen, J.: Planning as satisfiability: heuristics. Artif. Intell. 193, 45–86 (2012)
21. Sardiña, S., de Silva, L., Padgham, L.: Hierarchical planning in BDI agent program-

ming languages: a formal approach. In: Nakashima, H., Wellman, M.P., Weiss, E.,
Stone, P. (eds.) 5th International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 1001–1008. ACM, Hakodate (2006)

22. Sardiña, S., Padgham, L.: Goals in the context of BDI plan failure and planning. In:
Durfee, E.H., Yokoo, M., Huhns, M.N., Shehory, O. (eds.) Proceedings of the Sixth
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2007), pp. 1–8. ACM (2007)

23. Singh, D., Hindriks, K.V.: Learning to improve agent behaviours in GOAL. In:
Dastani, M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837, pp.
158–173. Springer, Heidelberg (2013)

24. Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: Suspending and resum-
ing tasks in BDI agents. In: Proceedings of the Seventh International Conference on
Autonomous Agents and Multi Agent Systems (AAMAS’08), pp. 405–412, Estoril,
Portugal, May 2008

25. Thangarajah, J., Harland, J., Morley, D.N., Yorke-Smith, N.: Quantifying the com-
pleteness of goals in BDI agent systems. In: Schaub, T., Friedrich, G., O’Sullivan,
B. (eds.) ECAI 2014–21st European Conference on Artificial Intelligence, 18–22
August 2014, Prague, Czech Republic - Including Prestigious Applications of Intel-
ligent Systems (PAIS 2014), pp. 879–884. IOS Press (2014)

26. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting & avoiding interference
between goals in intelligent agents. In: Gottlob, G., Walsh, T. (eds.) Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-
03), pp. 721–726. Morgan Kaufmann, August 2003

A Future for Agent Programming 17

27. Vikhorev, K., Alechina, N., Logan, B.: Agent programming with priorities and
deadlines. In: Turner, K., Yolum, P., Sonenberg, L., Stone, P. (eds.) Proceedings
of the Tenth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2011), pp. 397–404, Taipei, Taiwan, May 2011

28. Walczak, A., Braubach, L., Pokahr, A., Lamersdorf, W.: Augmenting BDI agents
with deliberative planning techniques. In: Bordini, R.H., Dastani, M., Dix, J.,
Fallah Seghrouchni, A. (eds.) PROMAS 2006. LNCS (LNAI), vol. 4411, pp. 113–
127. Springer, Heidelberg (2007)

29. Willetts, D.: Eight Great Technologies. Policy Exchange (2013)
30. Winikoff, M.: JACKTM Intelligent agents: an industrial strength platform. In:

Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent
Programming. Multiagent Systems, Artificial Societies, and Simulated Organiza-
tions, pp. 175–193. Springer, Heidelberg (2005)

31. Winikoff, M.: Challenges and directions for engineering multi-agent systems.
CoRR, abs/1209.1428 (2012)

32. Yao, Y., Logan, B., Thangarajah, J.: SP-MCTS-based intention scheduling for BDI
agents. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the 21st
European Conference on Artificial Intelligence (ECAI-2014), pp. 1133–1134. IOS
Press, Prague, Czech Republic (2014)

Towards Agent Aggregates: Perspectives
and Challenges

Mirko Viroli(B) and Alessandro Ricci

Alma Mater Studiorum – Università di Bologna, Bologna, Italy
{mirko.viroli,a.ricci}@unibo.it

Abstract. Recent works in the context of self-organisation foster the
idea of engineering large-scale situated systems by taking an aggregate
stance: system design and development are better conducted by abstract-
ing away from individuals’ details, rather directly engineering (design-
ing, programming, verifying) the overall system behaviour, as if it were
executed on top of a single, continuous-like machine. As a consequence,
concerns like interaction protocols, self-organisation, adaptation, and
large-scaleness, get automatically hidden “under the hood” of the plat-
form supporting aggregate computing, with notable advantages in raising
the abstraction level and scaling with behaviour complexity. This paper
provides an initial exploration of potentials and challenges of using aggre-
gate computing techniques in the context of multi-agent systems, con-
sidering impact on large-scale reactive MASs, environment engineering
and its cognitive exploitation, and on collective team-work by the notion
of aggregate plan.

1 Introduction

Self-organisation mechanisms support adaptivity and resilience in complex nat-
ural systems at all levels, from molecules and cells to animals, species, and entire
ecosystems [25]. A long-standing aim in computer science is to find effective engi-
neering methods for exploiting such mechanisms to bring similar adaptivity and
resilience to a wide variety of complex, large-scale computing applications—
in smart mobility, crowd engineering, swarm robotics, etc. Practical adoption,
however, poses serious challenges, since self-organisation mechanisms often trade
efficiency for resilience, and are often difficult to predictably compose to meet
more complex specifications.

On the one hand, in the context of multi-agent systems (MASs), self-
organisation is achieved relying on a weak notion of agency: following a
biology inspiration, agents execute simple and pre-defined behaviour, out of
which self-organisation is achieved by emergence [12]—ant foraging being a clas-
sical example. This approach however hardly applies to open and dynamic con-
texts in which what is the actual behaviour to be carried on by a group of agents
is to be decided (or even synthesised) at run-time: offline fine-tuning of system
parameters often hampers applicability to real-life, non trivial applications.

c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 18–30, 2015.
DOI: 10.1007/978-3-319-26184-3 2

Towards Agent Aggregates: Perspectives and Challenges 19

On the other hand, a promising set of results towards addressing solid engi-
neering of open self-organising systems are being achieved under the umbrella
of aggregate programming [3]. Its main idea is to shift the focus of system pro-
gramming from the individual’s viewpoint to the aggregate viewpoint: one no
longer programs the single entity’s computational and interactive behaviour, but
rather programs the collection. This is achieved by abstracting away from the
discrete nature of computational networks, by assuming that the overall exe-
cuting “machine” is a sort of (space-time) computational continuum able to
manipulate distributed data structures: actual self-organisation mechanisms sit
below, and are they key for automatically turning aggregate specifications into
individual behaviour. Aggregate programming is grounded in the computational
field calculus [9], its incarnation in the Protelis programming language [19], on
studies focussing on formal assessment of resiliency properties [23], and building
blocks and libraries built on top to support applications in the context of large
scale situated systems [2].

This paper aims at analysing the potentials and challenges that can arise
when combining techniques of aggregate programming in the context of MASs.
In Sect. 2 we start recapping the main elements of aggregate computing. Section 3
depicts a methodology for engineering large-scale reactive MASs on top of
aggregate computing, based on the construction of layers of resilient composable
functions, raising the abstraction level to address system complexity. Section 4
discusses impact on environment engineering: aggregate computing is about
manipulation of computational fields [9,14], which can be seen as distributed
“traces” or “stigma” that agents leave in the spatial environment as a coordi-
nation tool, up to be exploited to externalise true fields of beliefs, goals, and
intentions. Section 5 presents early ideas on applying aggregate computing to
ground a notion of “aggregate plan”, a collective plan shared and cooperatively
executed by a dynamic team of agents, developed so as to abstract from partic-
ipants’ number and details. Section 6 concludes providing final remarks.

2 Aggregate Programming

Most paradigms of distributed systems development, there including the
multi-agent system approach, are based on the idea of programming each single
individual of the system, in terms of its computational behaviour (goals, plans,
algorithm, interaction protocol), typically considering a finite number of “roles”,
i.e., individual classes. This approach is argued to be problematic: it makes it
complicated to reason in terms of the effect of composing behaviours, and it forces
the programmer to mix different concerns of resiliency and coordination—using
middlewares that externalise coordination/social abstractions and interaction
mechanisms only partially alleviates the problem [5,24].

These limits are widely recognised, and motivated work toward aggregate pro-
gramming across a variety of different domains, as surveyed in [1]. Historically
such works addressed different facets of the problem: making device interaction
implicit (e.g., TOTA [14]), providing means to compose geometric and topo-
logical constructions (e.g., Origami Shape Language [16]), providing means for

20 M. Viroli and A. Ricci

summarising from space-time regions of the environment and streaming these
summaries to other regions (e.g., TinyDB [13]), automatically splitting computa-
tional behaviour for cloud-style execution (e.g., MapReduce [10]), and providing
generalisable constructs for space-time computing (e.g., Proto [15]).

Aggregate computing, based on the field calculus computational model [9]
and its embodiment in Protelis programming language [19], lies on top of the
above approaches and attempts a generalisation starting from the works on
space-time computing, which are explicitly designed for distributed operation
in a physical environment filled with embedded devices, but can be extended to
work on arbitrary physical/logical environments.

2.1 Computing at the Aggregate Level

The whole approach of aggregate computing starts from the observation that the
complexity of large-scale situated systems must be properly hidden “under-the-
hood” of the programming model, so that composability of collective behaviour
can be more easily supported and better address the construction of complex
systems. Aggregate programming is then based on the following three principles:

1. The “machine” being programmed is a region of the computational envi-
ronment whose specific details are abstracted away (perhaps even to a pure
spatio-temporal continuum);

2. The program is specified as a manipulation of data structures with spatial
and temporal extent across that region;

3. These manipulations are actually carried out in a robust and self-organising
manner by the aggregate of cooperating devices situated in that region, using
local interactions.

As an example, consider the problem of designing crowd safety services
based on peer-to-peer interactions between crowd members’ smart-phones. In
this example, smart-phones could interact to collectively estimate the density
and distribution of crowding, seen as a distributed data structure mapping each
point of space to a real-value indicating the crowd estimation, namely, a compu-
tational field (or simply field) of reals [9,14]. This can be in turn used as input
for several other services: warning systems for people nearby dense regions (pro-
ducing a field of booleans holding true where warning has to be set), dispersal
systems to avoid present or future congestion (producing a field of directions
suggested to people via their smartphones), steering services to reach points-of-
interest (POI) avoiding crowded areas (producing a field of pairs of direction
and POI name). Building such services in a fully-distributed and resilient way
is very difficult, as it comes to achieve self-* behaviour by careful design of each
device’s interaction with its neighbours. With aggregate programming, on the
other hand, one instead naturally reasons in terms of an incremental construction
of computational fields, with the programming platform taking care of turning
aggregate programs into programs for the single device.

Towards Agent Aggregates: Perspectives and Challenges 21

2.2 Constructs

The field calculus [9] captures the key ingredients of aggregate neighbour-based
computation into a tiny language suitable for grounding programming and rea-
soning about correctness – recent works addressed type soundness [9] and self-
stabilisation [23] – and is then incarnated into a Java-oriented language called
Protelis [19], which we here use for explanation purposes. The unifying abstrac-
tion is that of computational field, and every computation (atomic or composite)
is about functionally creating fields out of fields. Hence, a program is made of
an expression e to be evaluate in space-time (ideally, in a continuum space-
time, practically, in asynchronous rounds in each device of the network) and
thus producing a field “evolution”. Four mechanisms are defined to hierarchi-
cally compose expressions out of values and variables, each providing a possible
syntactic structure for e:

– Application: λ(e1, . . . , en) applies “functional value” λ to arguments e1, . . . ,
en (using call-by-value semantics). λ can either be a “built-in” primitive (any
non-aggregate operation to be executed locally, like mathematical, logical,
or algorithmic functions, or calls to sensors and actuators), a user-defined
function (that encapsulates reusable behaviour), or an anonymous function
value (x1, . . . , xn)− >e (possibly passed also as argument, and ultimately,
spread to neighbours to achieve open models of code deployment [9])—in the
latter case Protelis ad-hoc syntax is λ.apply(e1, . . . , en).

– Dynamics: rep(x<-v){e} defines a local state variable x initialised with
value v and updated at each computation round with the result of evaluating
the update expression e.

– Interaction: nbr(e) gathers by observation a map at each neighbour to its
latest resulting value of evaluating e. A special set of built-in “hood” functions
can then be used to summarise such maps back to ordinary expressions, e.g.,
minHood(m) finds the minimum value in the map m.

– Restriction: if(e){e1} else {e2} implements branching by partitioning the
network into two regions: where e evaluates to true e1 is evaluated, elsewhere
e2 is evaluated. Notably, because if is implemented by partition, the expres-
sions in the two branches are encapsulated and no action taken by them can
have effects outside of the partition.

A simple example using the various constructs (colouring field calculus key-
words magenta, built-in functions green, user-defined functions red, and variables
green) is:

def distance-avoiding-obstacle (source, obstacle){
if(obstacle) {infinity} else {

rep(d<-infinity) {
mux(source, 0, minHood+(nbrRange + nbr(d)))

} } }

22 M. Viroli and A. Ricci

This code creates a field of estimated distances to devices where source is
true, using a metric that computes such distances by circumventing devices
where obstacle is true. In the region outside the obstacle (by if), a distance
estimate d (established by rep) is computed using built-in selector mux to set
sources to 0 and other devices by the triangle inequality, taking the minimum
value obtained by adding the distance to each neighbour to its estimate of d (by
nbr).

3 Impact on Building Large-Scale Self-Organising MASs

Aggregate computing makes weak assumptions on the underlying computing
platforms, that well match those of large-scale reactive MASs: asynchronous
agent computation, broadcast of messages to neighbours, perception/action on
the local part of the physical environment. This paves the way for using aggregate
computing techniques for developing large-scale self-organising MASs.

3.1 Raising the Abstraction Level

While the constructs of aggregate computing form an universal set, they are
also too low level to be readily used for building complex distributed services
like self-organising MASs. To raise the level of abstraction it is fruitful to iden-
tify a collection of general combinators (or “building blocks”), which encapsulate
reusable coordination mechanisms, and allow one to bypass the trickier aspects
of field calculus. Such combinators set is formed by careful selection of coor-
dination mechanisms needed for complex situated MASs, and hence should be
(i) self-stabilising, meaning that they reactively adjust to changes in environ-
ment, (ii) scalable to large MASs, and (iii) preserve these resilience properties
when composed together into more complex coordination services.

Some operators have been identified already, in [2]. Two of them seem par-
ticularly relevant for the context of MASs: new operators G and C, to be used
along with constructs if and built-ins. The two building blocks are defined as:

– G(source, init, metric, accumulate) is a “spreading” operation generalising
distance measurement, broadcast, and projection. It may be thought of as
executing two tasks: it computes a field of shortest-path distances from a
source region (indicated as a Boolean field) according to the supplied func-
tion metric, then propagates values along the gradient of the distance field
away from source, beginning with value initial and accumulating along the
gradient with accumulate.

– C(potential, accumulate, local, null) is complementary to G, accumulat-
ing information to the source down the gradient of a supplied potential
field. Beginning with an idempotent null, at each device, the local value is
combined with “uphill” values using a commutative and associative function
accumulate, to produce a cumulative value at each device in the source.

Towards Agent Aggregates: Perspectives and Challenges 23

Although there are only a few operators, they are so general as to cover, indi-
vidually or in combination, a large number of the common coordination patterns
used in design of resilient systems. With appropriate implementation in field
calculus, this system of operators can thereby provide an expressive program-
ming environment that provides strong guarantees of resilience and scalability,
as established in [2].

3.2 Towards Libraries of Collective Distributed Sensing and Action

Key operations of large-scale self-organising MASs involve the need of perceiving
events distributed in a whole space region, elaborate them, and properly per-
form an actuation again into a whole space region. Operators G and C provide
a good “lingua franca” for expressing behaviours on top of primitive aggrega-
tion/collection operations.

For example, operator G (along with built-ins) can generate a number of inter-
esting functions related to distributed action and information diffusion. One such
common computation in spatially embedded systems is estimating the distance
from one or more designated “source” devices to others nearby, which can be
implemented by a simple application of G, beginning with zero and using esti-
mated device-to-device distance as a metric:

def distanceTo(source) {
G(source, 0, () -> {nbrRange}, (v) -> {v + nbrRange})

}

Likewise, another common coordination action, broadcasting a value across the
network from a source, can be implemented by another application of G:

def broadcast(source, value) {
G(source, value, () -> {nbrRange}, (v) -> {v})

}

Other G-based operations include construction of a Voronoi partition and a “path
forecast” that marks paths that cross an obstacle or region of interest.

Similarly, operator C enables functions related to information perception,
such as accumulating the sum of all the values of a variable in a region

def summarize(sink, accumulate, local, null) {
C(distanceTo(sink), accumulate, local, null)

}

or computing the variable’s average or maximum value in that region.
Just as when building any other software library, these API functions can

be combined together to create higher level libraries. For example, an average
function shared throughout a region can be implemented by applying broadcast
to the output of summarize, as follows:

24 M. Viroli and A. Ricci

def average(sink,value){
broadcast(sink, summarize(sink,+,value,0) / summarize(sink,+,1,0))

}

3.3 Challenges

The main research challenges we identify to foster exploitation of aggregate
computing for building large-scale reactive MASs include:

– Extracting from various application contexts general building blocks and APIs
to help development of real-life complex systems;

– Designing a platform support for MASs based on aggregate computing, where
purely local interactions and cloud-based communications can be dynamically
combined;

– Integrating field calculus constructs into agent languages (such as Jason), to
streamline combination with existing agent development methodology.

4 Impact on Building MAS Environment

Turning our attention to a stronger notion of agency, how can aggregate pro-
gramming affect the agent-oriented abstractions rooting MAS engineering? An
effective way to do this is by means of the notion of environment as a first-class
design and programming abstraction [21,24].

4.1 Coordination Artifacts Enacting Computational Fields

The infrastructural substrate that reifies computational fields, which we can
call the computational fields fabric, can be modelled as the application envi-
ronment where agents are logically situated, encapsulating the functionalities
that agents can exploit to perform their individual and global tasks. In par-
ticular, the computational fields fabric can be characterised as a distributed
coordination artifact [18], since it can be exploited by agents for coordination
and self-organisation purposes. Field calculus and Protelis are the basic tools on
top of which we can program such a distributed coordination medium (like in
the case of programmable coordination media [11]), making it possible to define
the coordination and self-organisation functionalities in a declarative and macro
way on the one hand, and execute it in a fully decentralised way on the other
hand.

As an example, it can be programmed so as to create a gradient field (with
G operator), so that agents willing to advertise an event can inject informa-
tion in the environment locally, which gets then distributed around, and can
be exploited by other agents perceiving the environment, either to just observe
information or to move towards its source.

This view generally allows for conceiving in a clean way systems where the
environment encapsulates functionalities useful for self-organisation and collec-
tive adaptation, still retaining agent full autonomy.

Towards Agent Aggregates: Perspectives and Challenges 25

4.2 Cognitive Fields

The integration of aggregate programming and agents lead to consider quite
naturally the opportunity of exploiting aggregate coordination functionalities
by cognitive agents too, i.e., thinking about computational fields designed in
terms of cognitive agents’ mental attitudes, such as beliefs and goals. In other
words, with cognitive agents, a computational field would represent a kind of dis-
tributed, decentralised, and externalised mental state, which evolves according
to the agent actions and the rules of field evolution specified in the environ-
ment program. In that perspective, we envision some strong connection with
our previous works exploring the notion of cognitive stigmergy [20] and with
contributions in the cognitive science literature discussing the idea of the envi-
ronment as extended mind [8]. It is possible to consider three different levels of
cognitive fields:
– Belief fields – Belief fields are the simplest case, in which a computational field

is like a classic partially observable environment whose percepts are modelled
as beliefs by the agent situated in it. The aggregate program in this case spec-
ifies how some belief should be distributed among the agents depending on
their position inside the field. More generally, the aggregate program defines
the rule by which the overall distributed “belief” state can evolve and be
influenced by each agent and by the environment. As an example, distrib-
uted aggregation and then diffusion of information perceived by temperature
sensors can be used to automatically create a constant field of the average
temperature value across a region of space, which can be interpreted and used
as a belief field by the MAS.

– Goal fields – In a goal field, the values manipulated by the field are the goals
that are meant to be adopted by the agents that are located in some position of
the environment. Thus, the aggregate program in this case specifies a division
of labor, or how tasks are meant to be allocated to agents. For instance,
operator G can be used to create a Voronoi partition, dividing the overall
space into a set of regions based on proximity to a set of n source agents.
Each such agent ni can be considered as initiator of a distributed goal gi,
diffused to all agents in the region created by ni. The resulting partition field
is hence seen as a goal field, allocating n goals to the MAS.

– Intention fields – In an intention field, the values manipulated by the field are
the intentions that the agent located in some position of the field has, namely,
actions to execute to behave collectively. Thus, the aggregate program in
this case specifies a spatial-dependent concept of task. For instance, to steer
people towards a POI in a complex pervasive environment, one could establish
a gradient field from the POI, on top of which a field of directions towards the
source can be created. This can be understood as a field of intentions, feeding
e.g. pervasive displays that will use a direction to show a direction sign.

4.3 Tooling

From a technological point of view, enacting computational fields by environment
artifacts makes it possible to exploit existing environment-based technologies to

26 M. Viroli and A. Ricci

integrate aggregate programming with existing MAS programming tools. Main
examples are EIS [4] and CArtAgO [21].

In the latter case in particular, we can design a set of artifacts [17,21] that
make it possible for an agent to perceive and act upon a computational field, as
well as to manage the set of computational fields, creating new ones or disposing
existing ones. More in detail, in order to work within a computational field,
an agent can be equipped with an artifact conceptually representing a piece of
field, making it observable (by means of observable properties) both the value
of the field in the agent position as well as the values of the neighbourhood. By
exploiting CArtAgO with cognitive agent programming languages – such as in
the case of JaCaMo [6] based on the Jason agent programming language [7] –
this modelling makes it possible to directly implement belief fields, since artifact
observable properties are mapped into beliefs of agents observing the artifact.
Goal and intention fields can be implemented by using observable properties to
represent goals and intentions managed by the field. In this case, using Jason for
instance, agents can be equipped with suitable plans to react to changes to the
beliefs mapping these observable properties so as to e.g. adopting new goals or
adding new plans to the plan library, according to the need.

In this framework, Protelis could be used as high-level language to program
the single artifact, to be properly compiled to feed CArtAgO.

4.4 Challenges

Among the many research challenges spawning from the idea of aggregate com-
puting as an environment process, we identify:

– Develop suitable models and infrastructures to support flexible computational
fields by environment abstractions;

– Extend the notion of cognitive stigmergy to deal with spatially distributed
computational fields;

– Study the consequence of aggregate agent reasoning, in theory, models and
implementations of intelligent systems.

5 Impact on Aggregate Plans

Another fruitful idea for the integration between aggregate computing and MASs
is that of considering an aggregate program as “an aggregate plan”, which an
agent can either create or receive from peers, and can deliberate to execute or
not in different moments of time.

5.1 Life-Cycle of Aggregate Plans

In our model, aggregate plans are expressed by anonymous functions of the kind
()->e, where e is a field expression possibly calling API functions available
as part of each agent’s library. One such plan can be created in two different

Towards Agent Aggregates: Perspectives and Challenges 27

ways, by suitable functions (whose detail we abstract away): first, it can be a
sensor sns-injected-function to model the plan being generated by the exter-
nal world (i.e. a system programmer) and dynamically deployed; second, it can
model a local planner plan-creation that synthesises a suitable plan for the
situation at hand. When the plan is created, it should then be shared with other
agents, typically by a broadcasting pattern—the full power of field calculus can
be used to rely on sophisticated techniques for constraining the target area of
broadcasting.

Agents are to be programmed with just a minimal virtual-machine-like
code [9] that makes it participate to this broadcast pattern, so as to receive all
plans produced remotely in the form of a field of pairs of a description of the plan
and its implementation by the anonymous function. Among the plans currently
available, by the restriction operator if the agent can autonomously decide which
one to actually execute, using as condition the result of a built-in deliberation
function that has access to the plan’s description.

Note that if/when an aggregate plan is in execution, it will make the agent
cooperatively work with all the other agents that are equally executing the same
aggregate plan. This “dynamic team” will then coherently bring about the social
goal that this plan is meant to achieve, typically expressed in terms of a final
distributed data structure, used as input for other processes or to feed actuators
(i.e., to make agents/devices move). The inner mechanisms of aggregate com-
puting smoothly support entering/quitting the team, making overall behaviour
spontaneously self-organise to such dynamism.

5.2 Mapping Constructs, and Libraries

As a plan is in execution, the operations of aggregate programming that it
includes can be naturally understood as “instructions” for the single agent, as
follows:

– Function application amounts to any pure computation an agent has to exe-
cute, there including algorithmic, deliberation, scheduling and planning activ-
ities, as well as local action and perception.

– Repetition construct is instead used to make some local result of execution of
the aggregate plan persist over time, e.g. modelling belief update.

– Neighbour field construction is the mechanism by which information about
neighbour agents executing the same plan can be observed, supporting the
cooperation needed to make the plan be considered as an aggregate one.

– Restriction can be used inside a plan to temporarily structure the plan in
sub-plans, allowing each agent to decide which of them should be executed,
i.e., which sub-team has to be dynamically joined.

As explained in Sect. 3, one of the assets of aggregate programming is its
ability of defining libraries of reusable components of collective behaviour, with
formally provable resilience properties. Seen in the context of agent program-
ming, such libraries can be used as libraries of reusable aggregate plans, built
on top of building blocks:

28 M. Viroli and A. Ricci

– Building block G is at the basis of libraries of “distributed action”, namely,
cooperative behaviour aimed at acting over the environment or sets of agents
in a distributed way.

– Building block C conversely supports libraries of “distributed perception”,
namely, cooperative behaviour aimed at perceiving the environment or infor-
mation about a set of agents in a distributed way.

– The combination of building blocks G and C, and others [2], allows one to
define more complex elements of collective adaptive behaviour, generally used
to intercept distributed events and situations, compute/plan response actions,
and actuate them collectively.

5.3 Challenges

The notion of aggregate plan suggests several research directions, with the goal
of addressing the following challenges:

– study planning techniques for the dynamic creation of aggregate plans;
– experiment the pragmatics of aggregate plans, to explore their abilities of

supporting smooth, self-adaptive entering and quitting from the team playing
an aggregate plan;

– devise new linguistic constructs for the field calculus to empower its applica-
bility of model for aggregate plans.

6 Conclusions

Aggregate computing is a new metaphor for building distributed systems, with
notable impact to the engineering of “complexity”, thanks to its ability to:
(i) reason in term of field calculus programs to formally derive its behavioural
properties [23]; (ii) create reusable combinators of wide applicability, to raise the
abstraction layer of system development [2]; (iii) promote a methodology for sub-
stitutability of components to improve performance [22]; and (iv) address the
problem of platform support in a rather abstract away so as to smoothly support
different computation/communication models. All this features are seemingly
key for MASs as well.

On the other hand, aggregate programming has also the potential of deeply
affecting some aspects of agent theory, fostering a more deep understanding of
how “computational fields” can be perceived and exploited by cognitive agents.
This can shed light to new methodologies for building intelligent distributed
systems, where availability of a huge number of agents can turn from a seri-
ous coordination problem to an opportunity for building effective, efficient and
resilient systems.

Ultimately, aggregate computing and MASs have the potential of combining
into a new powerful notion of “agent aggregate”, which this paper only started
exploring in its many facets, and which will be matter of our future research
investigations.

Towards Agent Aggregates: Perspectives and Challenges 29

References

1. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, pp. 436–501. IGI Global,
Hershey (2013). http://arxiv.org/abs/1202.5509

2. Beal, J., Viroli, M.: Building blocks for aggregate programming of self-organising
applications. In: Workshop on Foundations of Complex Adaptive Systems
(FOCAS) (2014)

3. Beal, J., Viroli, M.: Space–time programming. Philos. Trans. R. Soc. Lond A:
Math. Phys. Eng. Sci. 373, 2015 (2046)

4. Behrens, T., Hindriks, K., Dix, J.: Towards an environment interface standard for
agent platforms. Ann. Math. Artif. Intell. 61(4), 261–295 (2011)

5. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with jacamo. Sci. Comput. Program. 78(6), 747–761 (2013)

6. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with jacamo. Sci. Comput. Programm. 78(6), 747–761 (2013)

7. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley Series in Agent Technology. Wiley, Hoboken
(2007)

8. Clark, A., Chalmers, D.: The extended mind. Analysis 58(1), 7–19 (1998)
9. Damiani, F., Viroli, M., Pianini, D., Beal, J.: Code mobility meets self-organisation:

a higher-order calculus of computational fields. In: Graf, S., Viswanathan, M. (eds.)
Formal Techniques for Distributed Objects, Components, and Systems. LNCS, vol.
9039, pp. 113–128. Springer, Heidelberg (2015)

10. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

11. Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In: Garlan,
D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 274–288.
Springer, Heidelberg (1997)

12. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput. 12(1), 43–67 (2013)

13. Madden, S.R., Szewczyk, R., Franklin, M.J., Culler, D.: Supporting aggregate
queries over ad-hoc wireless sensor networks. In: Workshop on Mobile Comput-
ing and Systems Applications (2002)

14. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the tota approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56 (2009)

15. MIT Proto. Software available at http://proto.bbn.com/. Accessed 1 January 2012
16. Nagpal, R.: Programmable self-assembly: constructing global shape using

biologically-inspired local interactions and origami mathematics. Ph.D. thesis, MIT
(2001)

17. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Auton. Agent. Multi-Agent Syst. 17(3), 432–456 (2008)

18. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: environment-based coordination for intelligent agents. In: Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M. (eds.) Proceedings of AAMAS 2004, vol. 1,
pp. 286–293. ACM, 19–23 July 2004

19. Pianini, D., Beal, J., Viroli, M.: Practical aggregate programming with protelis.
In: ACM Symposium on Applied Computing (SAC 2015) (2015) (To appear)

http://arxiv.org/abs/1202.5509
http://proto.bbn.com/

30 M. Viroli and A. Ricci

20. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy:
towards a framework based on agents and artifacts. In: Weyns, D., Van Dyke
Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–
140. Springer, Heidelberg (2007)

21. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Auton. Agents Multi-Agent Syst. 23(2), 158–192
(2011)

22. Viroli, M., Beal, J., Damiani, F., Pianini, D.: Efficient engineering of complex self-
organising systems by self-stabilising fields. In: IEEE Conference on Self-Adaptive
and Self-Organising Systems (SASO 2015) (2015)

23. Viroli, M., Damiani, F.: A calculus of self-stabilising computational fields. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 163–
178. Springer, Heidelberg (2014)

24. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Auton. Agents Multi-Agent Syst. 14(1), 5–30 (2007)

25. Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervasive
service ecosystems. Int. J. Pervasive Comput. Commun. 7(3), 186–204 (2011)

Contributed Papers

Designing a Knowledge Representation Interface
for Cognitive Agents

Timea Bagosi(B), Joachim de Greeff, Koen V. Hindriks,
and Mark A. Neerincx

Delft University of Technology, Delft, The Netherlands
{T.Bagosi,J.deGreeff,K.V.Hindriks,M.A.Neerincx}@tudelft.nl

Abstract. The design of cognitive agents involves a knowledge repre-
sentation (KR) to formally represent and manipulate information rel-
evant for that agent. In practice, agent programming frameworks are
dedicated to a specific KR, limiting the use of other possible ones. In
this paper we address the issue of creating a flexible choice for agent
programmers regarding the technology they want to use. We propose a
generic interface, that provides an easy choice of KR for cognitive agents.
Our proposal is governed by a number of design principles, an analysis
of functional requirements that cognitive agents pose towards a KR, and
the identification of various features provided by KR technologies that
the interface should capture. We provide two use-cases of the interface
by describing its implementation for Prolog and OWL with rules.

Keywords: Knowledge representation technology · Agent programming
framework · Generic interface design

1 Introduction

In cognitive agents, knowledge representation (KR) is used to store, retrieve and
update information. In principle, knowledge can be represented in many different
ways, but in practice programmers tend to be limited to a specific KR approach
that a particular agent programming framework offers. We consider an agent
programming framework to be a set of tools for developing or creating cognitive
agents. Cognitive agents are entities or pieces of software that percieve and act
in an environment, as it is explained more in detail in Sect. 3.2. In many agent
frameworks (e.g. Jason [5], 2APL [7] and GOAL [15]), Prolog (or a variant)
has become the de-facto standard. There are several reasons why a programmer
might prefer to use a different KR from Prolog. A negotiating agent, for example,
might need some legislative information, that would need to be encoded when
using Prolog. On the other hand, when using OWL, it is possible for the agent
to access large amounts of readily available information on the semantic web.
However, most agent programming frameworks are committed to a specific KR,
and switching to another is not supported.

c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 33–50, 2015.
DOI: 10.1007/978-3-319-26184-3 3

34 T. Bagosi et al.

1.1 Motivation

A generic interface for connecting different KRs to cognitive agents is useful for
several reasons. Our main motivations are described next.

Knowledge representation languages differ in the expressivity that they offer.
It is well-known, for example, that negation in logic programming has a semantics
based on the Closed World Assumption whereas the family of web ontology
languages support the Open World Assumption. Depending on the task, domain,
or scenario, one language might be more appropriate than another.

An agent programmer, may have a personal preference based on, e.g., ease of
use, familiarity, or other factors. An ontology enginner could model a domain of
interest easily, but might find other languages difficult.

The Dagstuhl report on “Engineering Multi-Agent Systems” [10] advocates a
component-based agent design, as this would provide flexibility, reduce overhead,
bridge the gap to other architectures and could facilitate more widespread adop-
tion of agent frameworks in real-world applications. A separation of the agent
framework and the KR it uses – that is agnostic with respect to the underlying
agent programming language – subscribes to this component-based approach,
that our interface aims to support.

When using agent programming as part of real-world applications, one
commonly has to access existing infrastructure, which typically may include
industry-standard approaches for data storage (e.g. Oracle database). Rather
than implementing some kind of bridge between these legacy databases and the
knowledge representation language used in the agent framework on an ad-hoc
basis, a much better approach would be the use of a generic interface, so that
the agent framework can use the available technology directly. The semantic
web offers a wide range of information in RDF standard format, that could be
accessed by OWL-knowledgeable agents.

An agent may need to combine knowledge from multiple sources, that are
either distributed or not. A generic interface supporting a variety of KR lan-
guages, allowing the use of several KR sources from several locations is useful in
this context. A particular case is when dealing with large multi-agent systems
that may include different manifestations of the agents, such as embodied in
robots, software agents and modeling users, where they might be of different
technologies.

A wide range of agent frameworks could benefit from providing a flexible
choice of various logic-based KR formalisms. Reusability prevents the need for
reinventing the wheel, as the effort to support this interface for a particular agent
framework or a particular KR is a one time investment.

1.2 Scope and Methodology

In this paper we propose a design for a Knowledge Representation Interface
(KRI) that facilitates an easy choice of KR for cognitive agents. Currently, this
interface presupposes the adoption of the chosen KR by all agents in an agent
programming framework. In principle, it is conceivable that a single agent would

Designing a Knowledge Representation Interface 35

use multiple KRs, or multiple interacting agents would each utilize different KRs.
The combination of multiple KRs into a single agent framework poses a number
of issues that are investigated by [8]. This work is orthogonal to our work, as
our aim is to facilitate the easy integration of an arbitrary single KR technology
into a cognitive agent. Investigating issues relating to multiple interacting agents
that each may use a different KR technology is therefore outside the scope of
this work.

Our proposed interface design is applicable to a range of agent frameworks
that facilitate agents with mental states, and all classes of KR that comply to the
definition of [8], as described in detail in Sect. 3. By supporting the interface, an
agent framework facilitates the choice of a technology that provides the required
expressivity or other feature, and the choice of a preferred knowledge technology
by its user.

Creating a generic KRI poses a number of challenges. For instance, it is
important to identify the right abstraction level for the KRI specification. Strik-
ing the right balance between a high level description (to be as inclusive as
possible) and a low level description that may be close to a particular KR lan-
guage (to be able to specify the details) is essential for the interface design.
Careful consideration is needed when identifying where an agent needs some
form of KR, such as to represent the contents of its plans, skills, goals, etc.

We use the following methodology to derive the interface. First, we explore
related literature, describing the various approaches of how each agent framework
incorporates a specific KR. Usually the choice of representing knowledge through
a certain language is implicitly integrated within a given framework, rather than
being explicitly considered, let alone providing users with any sort of choice.
To the best of our knowledge, no work has yet been done on the design and
development of a generic interface that facilitates the use of a range of KRs.

Having identified the need for such a KRI (based on the motivations described
above), and given the apparent lack of such a construct in related work, we then
present the design of the KRI, governed by the following three aspects: (1) a
number of design principles serving as guidelines, (2) the concept of cognitive
agents and the functionality requirements they pose towards a KR, and (3)
the identification of features provided by various KR technologies that the KRI
should be able to provide.

After having presented the KRI, we describe its application with two imple-
mentation: in the first implementation the KRI is instantiated with SWI Prolog
(representing a logic programming KR language), and in the second it is instan-
tiated with the ontological web language OWL with SWRL rules (a description
logics language), with Pellet [31] as the reasoning engine. After that we assess the
KRI usability for these two cases, and based on this draw conclusions regarding
the interface’s effectiveness and limitations.

The remainder of this paper is organized as follows. Section 2 discusses related
work on the usage of knowledge representation technologies into agent frame-
works with a focus on the agent programming literature. In Sect. 3 we introduce
a number of design principles and present a structural analysis of agents and
features of KR technologies that guide the design of the proposed interface.

36 T. Bagosi et al.

Section 4 presents the design of the KR interface itself and motivates the choices
that we have made. In Sect. 5 we discuss two instantiations of the interface (Pro-
log and OWL). Section 5.3 briefly discusses a preliminary analysis of the interface
that was implemented for Prolog, and OWL with rules. Finally, we conclude the
paper with future work in Sect. 6.

2 Related Work

In this section we discuss related work with respect to the choice and possible use
of KR languages in agent frameworks. It is useful to note here that some agent
frameworks such as JACK [33] and Jadex [28] have taken a more pragmatic
road, and use object oriented technology in combination with, e.g., XML, to
implement the beliefs and goals of an agent, rather than using a knowledge
technology in the sense that we use it here (cf. Davis [9]). The focus of our paper
is more on generic logic-based agent frameworks that use an existing technology
for representing an agent’s environment.

Most work on logic-based agent programming frameworks has built on top
of logic programming or some kind of variant thereof, e.g. 2APL [7], GOAL [15],
Jason [5]. Alternatively, several works have described approaches towards the
integration of semantic web technologies (such as OWL) into agent-based frame-
works. For example, for Jason there exist the JASDL extension [19], which allows
for integration with OWL, and as such lets agents incorporate OWL knowledge
into their belief base. The Java-based agent framework, JIAC [16], also uses OWL
for representing agent knowledge. While comparable in the sense that these sys-
tems allows for the use of OWL in the agent framework, the KR interface that
we propose here is aimed to provide a practical solution to the more general
problem, and to allow a range of KRs to be used in an agent framework.

The work in [22] defines a version of the BDI agent-oriented programming lan-
guage AgentSpeak based on description logic, rather than one based on predicate
logic (e.g. Prolog). The work reported in [12] proposes the use of a semantic web
language as a unifying framework for representing and reasoning about agents,
their environment, and the organizations they take part in. The work is pre-
sented as a first step towards the use of ontologies in the multi-agent framework
JaCaMo, but does not discuss the particulars to achieve this.

Probabilistic approaches have also been considered as KRs in conjunction
with multi-agent systems. E.g. [32] propose an extension of the 3APL language
based on a probabilistic logic programming framework, while [30] discuss the use
of Bayesian networks for representing knowledge in agent programs.

Access to external data sources by agents in the IMPACT agent frame-
work [11] is achieved through an abstraction layer, dubbed body of software
code, that specifies a set of all data-types and functions the underlying data
source provides.

DyKnow [13] is a stream-based approach to knowledge processing middle-
ware, supporting knowledge sharing and processing within a single platform. It
focuses more on the dynamics of knowledge, and such is orthogonal to our work.

Designing a Knowledge Representation Interface 37

The work described in [8] investigated the issue of integrating multiple KR
technologies into a single agent. The paper proposes techniques for combining
knowledge represented in different knowledge representation languages. This is
orthogonal to our work as our aim is to facilitate the easy use of an arbitrary
single KR within a cognitive agent framework.

The usefulness of facilitating the use of a particular KR in other frameworks
has been recognized in the literature, and has driven several efforts in defining
an Application Programming Interface (API) for several technologies. [3,17] for
instance, have proposed an API for description logics and OWL respectively,
and [6] proposes an API for a Fuzzy Logic inference engine. These APIs are
facilitating all aspects of a specific KR. In contrast, in this paper we aim at
a generic KRI to connect arbitrary agent frameworks with arbitrary KRs that
comply to our minimal assumptions.

Although most work has focused on the integration of logic programming
and semantic web technologies and Bayesian networks, we are not aware of any
work that has investigated the use of these technologies in agent frameworks in
a generic manner.

3 Dimensions of the KRI Design

Our aim is to design a standardized, extensible and easy to use interface that
allows for a flexible choice of KR languages in agent frameworks. To this end,
we first present our design approach. In Sect. 4 we propose an interface speci-
fication as a Java-based API. Three design dimensions are taken into account to
cover all aspects that can have influence on the design of such an interface. The
first dimension concerns the design principles, which we discuss in Sect. 3.1. The
second dimension concerns the concept of a cognitive agent and related assump-
tions that we make about agent frameworks. In Sect. 3.2 we present a structural
and generic analysis of the features and components that are typically required
by agent frameworks. The third dimension concerns the features that are made
available by existing KR technologies that can be supported by the proposed
interface. In Sect. 3.3 we analyze and identify these features. Taken together,
these three dimensions define the design space of the proposed interface.

3.1 Design Principles

For creating a generic KR interface for agent frameworks, reuse is a key concern.
We want the interface to serve all agent frameworks that could benefit from an
easy choice of KRs. To this end, we present and briefly discuss various reuse
design principles that we have taken into account in the design of the interface.

One of the most important reuse principles in the design of a well-defined
interface concerns abstraction. Abstraction plays a central role in software
reuse, and is essential for the reuse of software artifacts [20]. By means of abstrac-
tion, important aspects are put in focus while unimportant details are ignored
[1,20]. Each KR technology introduces a specific language, and a key issue for

38 T. Bagosi et al.

our interface specification is how to abstract from differences in the grammar
between KR languages. We want to be largely agnostic about the particular
type of agent framework that a knowledge representation is used in. We will
only assume, for example, that an agent decides what to do next based on a
state representation expressed in some KR language, and will make no stronger
assumptions about the particular structure of the mental state of an agent (see
for a more detailed discussion Sect. 3.2). Similarly, we want to be largely agnostic
about the particular type of KR languages. We assume, for example, that a KR
language provides variables, but will not assume that such a language provides
rules (which would exclude, e.g., SWRL and PDDL without axioms; see for a
more detailed discussion Sect. 3.3). The interface that we propose here provides
an abstraction in the sense that it is a high-level, succinct, natural, and useful
specification that facilitates easy use of KRs in agent frameworks.

Two closely related design principles that are very important when design-
ing for reuse are the principles of generality and genericity [1]. Generality
is achieved by the abstraction of commonalities and ignoring the (detailed) dif-
ferences that relate to how, when, or where things are done by a technology.
Generality is important when looking at different KR technologies, as our aim is
to be as general as possible and support any KR class that fits our assumptions.
An obvious example is to abstract from the particulars of how a reasoning engine
made available by a technology answers a query; an interface should only assume
that some engine is made available. Genericity refers to the abstraction of spe-
cific parameters of a technology and the introduction of generic parameters that
represent generic types. The use of generic parameters is an aid to reusability,
because it allows to define generic functionality instead of functionality that is
tight to technology specific features.

The principle of modularity refers to considerations of size and number
of a reusable software components. The general principle dictates to split large
software components into smaller subcomponents; the basic idea being that ade-
quate modular design increases reusability. In order to obtain a loosely coupled
system, we design a modular interface whose components are determined by the
functional requirements it has to fulfill.

3.2 Cognitive Agent Frameworks: Functional Requirements

In this section we examine which features are required for using a KR within
an agent programming framework. Importantly, an interface only provides an
effective specification if it includes all of the information that is needed to realize
its purpose. In other words, the KRI needs to provide support for all of the
functions that an agent is supposed to be able to implement. To identify these
functional requirements, we discuss and make explicit the notion of a cognitive
agent that has been used for the interface specification.

Because we do not want to commit to any particular agent concept, we start
from the very abstract concept of an agent as an entity that perceives and acts
in its environment of [29]. Starting from this notion of agent, we assume that
an agent maintains a state in order to represent its environment by means of

Designing a Knowledge Representation Interface 39

Fig. 1. A cognitive agent architecture, consisting of a mental state and decision mak-
ing module. Optional components are automated planning (PL), machine learning
(ML) model checking (MC), and other modules. Mental states are realized with a KR,
accessed through an interface.

a knowledge representation language. As is usual in most agent literature on
cognitive agents, we call this agent state a mental state, even though we do not
make any additional assumptions on the structure of this state. Mental states
in agent frameworks differ significantly, and we do not want to commit to any
particular framework. A state of a Jason agent, for example, consists of events,
beliefs, and plans [4], whereas a state of a Goal agent consists of knowledge,
beliefs, and declarative goals [15].

A cognitive agent (cf. Fig. 1) maintains a mental state in order to be able to
evaluate whether certain conditions hold, by querying its state. Querying is one of
the most important uses of a KR technology, as it provides an essential capability
required for effective decision making of an agent, which we identify here as the
main functional component of an agent. Another reason for an agent to maintain
a mental state is to maintain an accurate and up to date representation of the
state of its environment by updating its state with information received through
percepts or other events. The basic notion of agent of [29] already implies that
an agent is connected to an environment. Such an agent needs to be able to
align percepts it receives from an environment with its mental state. An agent
also needs to be able to evaluate when it can perform an action, and represent
what the effects of an action are. In other words, an agent needs some kind
of action specification to be able to interact with its environment. Finally, we
also assume that an agent can be part of a multi-agent system, and is able to
exchange messages with other agents. Figure 1, which represents the basic agent
architecture that is used in the design of the interface, illustrates this.

Summarizing, we identify the following list of minimum capabilities that are
required for creating a functional cognitive agent in a multi-agent framework:

1. represent the contents of a mental state
2. store the contents of a mental state
3. query the contents of a mental state in order to evaluate conditions by means

of some form of reasoning

40 T. Bagosi et al.

4. update the contents of a mental state to reflect changes in an environment
5. process percepts received from an environment
6. process actions by evaluating preconditions and reflecting postconditions
7. process messages exchanged between agents

Next, we discuss the functional requirements that these items introduce
towards the KR language and technology, and its consequences regarding the
design of a generic interface.

Item 1 above does not introduce any requirements as representing is the
main purpose of a knowledge representation language. We do not assume, for
example, that an agent’s state must be consistent in a specific sense. Item 2
requires that a KR provides support for the (temporary) storage of the contents
of an agent’s state. This item does not require such a store to be persistent.
Item 3 requires support from a KR technology to evaluate queries on the men-
tal state of an agent. Without any additional assumptions on the structure of
a mental state, this item does not introduce new requirements, as querying is a
common feature provided by the KR. Item 4 requires support from a KR tech-
nology to update, i.e., to add and remove, contents of a mental state. This is a
basic requirement, that only requires that a KR makes available the capabilities
of adding and removing content from a store. Item 5 requires support in princi-
ple for representing any information that an agent receives from its environment,
and updating the representation of the environment that the agent maintains,
these functionalities being already mentioned in Item 1 and 4. Item 6 requires
that the knowledge representation language can also be used to represent the
actions that the agent can perform. We assume an action can be expressed as
a list of preconditions and postconditions. It is essential to be able to evalu-
ate whether an action can be performed, processing preconditions being fulfilled
by the querying functionality of Item 3. The ability to process the effects of
an action, i.e. its postconditions, is fulfilled by item 4 that requires support for
updating a mental state. Item 7 requires support for representing and processing
the content of a message that agents exchange. We assume here that communi-
cation between agents does not introduce any additional requirements besides
those already introduced by previous items 1–4.

Apart from very generic features and components of cognitive agents such
as mental state, we also take into account that agent frameworks might support
additional optional components that are only available in some frameworks, but
not all. The components drawn with dotted lines in Fig. 1 represent these com-
ponents. For example, an agent framework might support automated planning
(PL), model checking (MC), and even learning mechanisms, such as, for exam-
ple, reinforcement learning (RL). These components do not exhaust the possible
optional components as indicated by the three dots. It is likely that such optional
components introduce additional demands on the interface, since they provide
support to an agent framework through the interface.

3.3 Features of Knowledge Representation Technologies

Figure 1 includes an abstract definition of a knowledge representation technology
as a tuple 〈L, |=,⊕〉, where L is a language, |= is an inference relation, and ⊕ is

Designing a Knowledge Representation Interface 41

an update operator (definition taken from [8] and based on [9]). The inference
relation evaluates a subset Lq ⊆ L of expressions of the language called queries
on a store or set of language elements. We consider our interface to be applicable
to the classes of KR that comply to this definition.

This notion of a KR technology covers most, but not all existing technologies,
including, for example, logic programming (Prolog), database languages (e.g.,
SQL, Datalog), semantic web languages (e.g., OWL, SWRL), description logic
programming (DLP), planning domain definition language (PDDL), and fuzzy
logic. Answer set programming (ASP) provides a computational model that we
do not support, even though the pure reasoning support of ASP could be inte-
grated using the proposed interface. Using this abstract definition as a starting
point, we identify more concrete features and functions that are supported by
KR technologies that can be included in an interface specification.

Having described KR technologies in a general sense above, we now define
those modules that have an impact on the design of a generic KR interface,
either on its structure or its provided functionality.

Language. Although expressivity is a very important aspect of any knowledge
representation language, we do not consider it here, as it does not appear to
be useful to control expressivity by means of a KR interface. It is essential
for a KR to provide a parser, necessary to be able to operate with the textual
representation of the language, and perform syntax checking. Syntax highlighting
is an extra feature that the parser can provide.

Support for data types may widely differ between KRs, but it is important
for the engineering of practical agent frameworks. Typically, basic data types
such as (big) integers, floats, booleans, strings, and lists are distinguished from
more complex data structures such as stacks in programming languages.

Storage. The main purpose of a storage is to store knowledge. As a basic feature
of any KRT is a knowledge base, creating a store is an important requirement
towards a generic abstraction. In addition, modifying a store poses the require-
ment to be able to insert into and delete from a knowledge store.

Even though we did not identify a functional requirement for stores to be
persistent in Sect. 3.2, still, a knowledge technology may provide support for per-
sistence, and a KR interface may make this capability available to an agent. An
example for such a knowledge technology is persistent triple stores for ontologies.
This feature should be included in order to create a knowledge base that needs
to be preserved for a later use.

Integrating knowledge from other sources can be realized in many forms, such
as accessing existing (legacy) databases, or accessing information on the web.
One example is the linked open data repositories of the Semantic Web. This
feature, however favorable, cannot be considered as a general requirement.

Reasoning. Querying is the basic operation to retrieve information from a
knowledge base. We can assume the basic form of querying is to retrieve ground
data that matches a query pattern with free variables. Without querying there
can be no interaction with a knowledge base, hence it is a main requirements
towards a KR interface.

42 T. Bagosi et al.

Parallel querying is to be able to ask multiple queries simultaneously. This
feature is available for some technologies only (like triplestores), but not for
others (such as Prolog), where one needs to first exhaust all solutions of a query
at a time, hence it is considered an extra feature, and not a basic requirement.

We assume that a substitution based parameter instantiation mechanism is
supported, as is usual for logic-based languages for all practical purposes. Note
that this does not mean that we make any strong assumptions about the domains
of computation. Query results are in the form of bindings between variables and
some arbitrary terms. A substitution to represent a variable to term binding
therefore is the basic form of expressing a query result.

Other. Error handling provides support for errors that might occur during pars-
ing, knowledge base creation, modification, or other language-related operations.
Some form of error handling is indispensable from an interface.

A knowledge technology that supports modularization facilitates the struc-
turing of knowledge into different modules. This feature may greatly enhance
the simultaneous development of knowledge by a team of developers. A modular
architecture might greatly influence our design of interface, as mappings between
the modules of the knowledge and the interface might be identified.

Three forms of logical validation can be supported by a KR: consistency,
satisfiability and validity checking. As these validation forms are either provided
by the technology or not, we cannot generalize it into a feature requirement.

Summarizing the above, we identified the following list of basic features and
extra features:

Basic Features

1. Parsing
2. Data types (including checking)
3. Creating a store
4. Modifying a store
5. Querying
6. Parameter instantiation
7. Error handling

Extra Features

1. Persistent storage
2. Integrate other knowledge sources
3. Parallel querying
4. Modularization
5. Logical validation

4 The KR Interface

Next, we describe the KR Interface (KRI) designed, a Java-based API to address
the issues of creating a generic, a specific KR-independent abstraction. The link
to our repository, where the interface is located, can be found at [14]. Through-
out the description of the interface we show how each design choice was based on
the generic features of KRTs, described in Sect. 3.3, and how it fulfills the func-
tionality requirements that an agent programming framework poses in Sect. 3.2.

Based on the principle of modularization, we want to ensure a separation of
concerns related to language, storage, reasoning, and others. We propose a struc-
tured interface design, such that it facilitates these sub-interfaces, as described
next in detail.

Designing a Knowledge Representation Interface 43

Language. The language module of the interface contains the abstract gram-
matical constructs of a KRT. This fulfills the requirement of being able to express
all items on the list of Sect. 3.2, since the language concepts need to be able to
represent the contents of an agent’s mental state, queries and updates, percepts
of the environment, and agent messages.

Our generic language proposal, shown as a conceptual hierarchy in Fig. 2,
abstracts any language construct into the higher level Expression concept,
corresponding to a well-formed sentence or formula in the knowledge repre-
sentation language. An expression can be of type: Term, Update, Query and
DatabaseFormula. A Term can be simple: Var, and Constant or complex: a
Function.

From a KR language’s point of view, differentiation between the concepts
of querying and updating is dictated by the syntax, and hence can differ per
language. From an agent programming’s perspective such a distinction is neces-
sary to require that performing a query never results in an update. It would be
difficult to understand the behavior of a system that can change the state as a
side-effect of performing a query.

Fig. 2. Language concepts architecture

The Term concept represents a language construct of a formula or sen-
tence (ground formula, i.e. without free variables). It can be simple or complex.
A variable is a simple term expressed with the concept Var. The interface does
not enforce variables to be present, however, most languages that support para-
meter instantiation and querying, need to represent variables. Another simple
term is a Constant, which is a basic unstructured name that refers to some
object or entity, e.g. a number. A Function is the representation of a complex
term, with a functor and arguments. No restriction on the type or the number
of arguments is imposed.

A Substitution is a mapping of distinct variables to terms. A substitution
binds the term to the variable if it maps the variable to the term. A substitution
may be empty. Its functionality includes the usual map operations. It fulfills Item
6 of the language features’ list, namely, to have some form of substitution-based
parameter mechanism, as we have assumed a set of substitutions to be also the
result of a query.

An Expression is any grammatically correct string of symbols of a KR lan-
guage, fulfilling the responsibility of Item 1 of Sect. 3, to be able to represent the
contents of an agent’s mental state. Every expression has a different signature,

44 T. Bagosi et al.

a definition of the form operatorname/arity, where the operator name is the
functor, and the arity is the number of arguments associated with the operator.
In case we need to unify two expressions, the most general unifier method returns
a substitution that makes two expressions equal. To apply a substitution to an
expression means to substitute variables in the expression that are bound by the
substitution with the term bound to the variable, or, only rename it in case the
substitution binds a variable to another one.

It is important for an agent to be able to understandwhich expressions it canuse
to query, put in a database, and to update a database with. A DatabaseFormula
stands for an expression that can be inserted into a storage facility. Usually, this is
a formula with all ground terms, and no operator that needs more processing, e.g.:
conditionals. The Query concept is used to query the database, and hence it should
contain at least one free variable. An Update is semantically equivalent with the
combination of a delete and an insert operation. To reflect this, it offers two
methods to retrieve the list of database formulas to be added and to be deleted
from the knowledge base. For example, in Prolog these classes are different,
but may overlap: database formulas are facts (positive literals), a query is an
arbitrary conjunction of literals, and an update is a conjunction of basic literals,
where basic means the predicate used in the literal is not defined by a rule.

Based on the assumption that every KR should provide its own parsing
mechanism identified in Item 1 of the identified KR features’ list, the interface
should provide a parser for parsing the source (files) represented in the KR
language. In case a parser initialization error occurs, proper error handling should
be defined and provided.

The Parser class fulfills the functionality of a KR to provide its own parser,
Item 1 of Sect. 3.3. We abstract a parser to receive an input source file, and return
language constructs of our KR interface; database formulas, queries, updates,
terms, etc. In case an error occurs during parsing, a method to get the errors
returns the source object, which can be inspected for error handling purposes.

Basic data types, such as numbers (integers, floats), strings, booleans, are
provided together with the functionality of returning the data type of a constant,
and data type checking, thus fulfilling the requirement mentioned as Item 2 of
Sect. 3.3.

Storage. To create a storage, the main class of the interface provides the
way to create a database in the specific KR it hides away. Using the
getDatabase(Collection<DatabaseFormula> content) method, it creates a
new Database with the provided content, that is a list of database formulas to
be inserted in the database before it being returned. Thus it fulfills the require-
ment of creating a store by Item 3 of Sect. 3.3.

The Database class fulfills the second item of the functional requirements
listed in Sect. 3.2. It holds the content represented in the KR language, viewed
as a set of DatabaseFormula-s. It provides the functionality to store new infor-
mation in the database by inserting a formula in it, deleting a formula from
it, fulfilling the update operation, listed as Item 4 of Sect. 3.2, and Item 4 of
Sect. 3.3. Upon insertion of a formula or an update, the database should entail

Designing a Knowledge Representation Interface 45

the information added. The converse applies to deleting a formula, after removal
of the formula, in principle, the database should no longer entail the information
removed from the database. Any occurring error during insertion, deletion, or
destruction of the database is signaled by throwing a database exception.

Reasoning. In order for an agent to inspect its knowledge base, querying
functionality has to be provided by the KR, as we mentioned in our assump-
tions sections, Item 3, and our KR features section, Item 5. The query(Query
query) method fulfills that functionality, and returns as a result a set of
Substitutions. In case of an error, a query failed exception is thrown.

Other. The KRException and its more specific classes capture the several dif-
ferent types of exceptions, and take the responsibility of error reporting, Item 7
of KR features support list. Separate error types are differentiated for parsing,
database operations, failed query errors. In case of parsing, error handling is
capable to refer to the source (file) where the error occurred.

5 KR Interface Implementations

In this section we describe the two use cases we studied in depth, and imple-
mented the interface with: Prolog and OWL with SWRL rules. Implementing the
KR interface with a new language puts our design choices to the test. We want
to investigate how much the interface fits other, different logic-based languages,
and provide a first proof of concept for our proposal.

5.1 Prolog Implementation

Prolog was the default logic used for knowledge representation in the GOAL
agent framework, as it is a first natural choice for cognitive agent programming,
due to its computational powers and the features of logic programming.

Next we describe how we instantiated the interface with SWI-Prolog using
the JPL API. The high-level API’s class hierarchy consists of the top-level
classes: Term, Query, JPLException. The abstract superclass Term consists of
subclasses for variables, compounds, atoms as a specialization of compounds,
integers and floats. A Query is a wrapper around a term, but it also has a
mechanism to hold the retreived results and much more.

A clear match of terminology could be found between the way the KRI cap-
tures language constructs and the hierarchy of the JPL API. An Expression is a
JPL term representing a Prolog expression, the most general language construct
in Prolog. The Var is mapped to a JPL variable, Constants to integers, floats,
and strings, and a Function is matched to a Compound term. A JPL term is
the representation of both a Term, a DBFormula, and a Query. We chose not
to map the JPL’s query class to the KRI’s Query. The former attaches more
functionality of the querying process to the class than what the representation
a query formula would necessitate. The solution to use a term as a query conve-
niently matches the JPL idea. Then, performing the check if a term is valid to

46 T. Bagosi et al.

be inserted in a database, or can be used as a query is delegated to the parser
for efficiency reasons (to avoid such checks at runtime).

An Update is a term that is assumed to be a conjunction that can be split
into a list of conjuncts. We needed to separate the literals to be added or deleted,
so we distinguished the positive from the negative literals (with a preceding not
operator) to denote the two lists. A Substitution is a mapping of distinct
variables to terms. We do not use JPL variables as keys, because it has no
implementation for hash code, and therefore putting these in a map will fail.
Thus, we were forced to using strings.

The main issue encountered during the implementation was the question of
a parser. Existing Prolog implementations do not completely conform to the
ISO/IEC 13211-1 International Standard. We created our own lexer and parser,
following the standard in most cases. Our reasons for deviating have been prag-
matically motivated: we wanted to keep our grammar simple, and we did not
want it to support certain options that quickly lead to unreadable code, such as
using graphic tokens as predicate names, or redefine operators’ precedence.

The module feature of Prolog has been used to implement different types of
stores. As a conclusion of this choice, modules cannot be made available to an
agent programmer any more, as it would potentially clash with the modules that
are introduced automatically by the interface.

SWI-Prolog has one fast database to hold all formulas. To be able to dif-
ferentiate different Databases for various mental state construction, we need to
specify for each clause which database it belongs to. Our solution was to prefix
each database formula with the database name.

Destroying a database removes all predicates and clauses from the SWI-
Prolog database, but this is not fully implementable in SWI-Prolog. The JPL
interface does not support removing the dynamic declarations. The suggested
practice is to reset a database to free up some memory, but after resetting not
to re-use this database, but to make a new one.

SWI-Prolog needs access to various libraries at runtime and to load these
dynamically. If many agents try to do this at the same time, this creates access
errors. A possible solution is to load these libraries upfront when we need them,
that implies a check whether we need a library of course. The benefit is that we
only need to synchronize the creation of databases and not all query calls. As a
pragmatic choice, we solved this issue by adding synchronized querying.

5.2 Ontological Language Implementation

We implemented the proposed KR interface using the OWL ontological language
with DL-safe SWRL rules, such an agent being considered a novelty in the field
of agent programming. The web ontology language standard (OWL) is a W3C
standard recommendation [21] for formalizing an ontology. It is based on the
underlying logic called: Description Logic (DL) [2], which has become one of the
main knowledge representation formalism. The Semantic Web Rule Language
(SWRL) [18] is an OWL-based rule language, and is an extension to the existing
ontology language OWL, to provide more expressivity through rules. In order to

Designing a Knowledge Representation Interface 47

preserve decidability, SWRL rules are restricted to so called DL-safe rules [23],
which requires each variable in a rule to occur in a data atom in the rule body.
A data atom is one that refers to existing named individuals in the ontological
knowledge base.

In order to instantiate the interface, two APIs are available for the ontological
language: the OWL API [17], that contains representation for SWRL rules as
well, or the SWRL API [25] of Protégé-OWL, which is built on top of the OWL
API, but extends it further with a query language and provides a parser.

In the following we describe the identified matching between the KRI con-
structs and the ontological rule language. The higher level concept Expression
was mapped to SWRLRule, that consists of a head and a body. The Function
concept was mapped to SWRLAtom, since atoms are the building blocks of rules, a
Constant to a SWRLArgument, representing a data object or an individual object.
A variable is corresponding to SWRLVariable.

In order to create a shared, persistent storage, and to access the Semantic
Web, a Database is mapped to an RDF repository (or triple store). The Resource
Description Framework (RDF) is a serialized representation of an ontology, in
triple format [26]. The most performant reasoners are available for triple store
technologies, and can be queried using the query language SPARQL [27], the
adopted standard by the community.

The choice of query language for OWL and SWRL was not a straightforward
decision. Query languages for Semantic Web ontologies are categorized into two:
RDF-based and DL-based. The default and mostly used querying mechanism
is the RDF-based SPARQL, but since it operates on the RDF serialization of
OWL, it has no semantic understanding of the language constructs that those
serializations represent. On the other hand, the Semantic Query-enhanced Web
Rule Language (SQWRL) [24] is a DL-based query language designed on top
of the SWRL rule language, with a working implementation provided by the
Protégé-OWL API, which would be a very convenient choice in our case.

Faced with the decision between using two different languages for represent-
ing knowledge and querying on one hand, or not benefiting from the available
advanced triplestore technologies on the other hand, we decided to try to keep
the advantages of both. We created a transformation from SWRL rules into
SPARQL queries, by treating them as query bodies, with all free variables being
considered as part of the query pattern. Having established a querying mecha-
nism, an Update then consists of an addition and a deletion operation, provided
by the SPARQL Update syntax’s insert and delete.

5.3 Discussion of the KRI Implementation

In this section we reflect on the outcomes of our work: the KRI, and how well it
performed when put to the test by implementing it with two different KRTs. We
reflect on the implementation process, and complement our discussion with extra
features that the KRI makes available for the agents. Revisiting the creation
of mental states for agents, GOAL poses a difficult requirement: it should be
possible to query the combination of a knowledge and belief base (and knowledge

48 T. Bagosi et al.

and goal base), i.e., query the union of two bases. It was possible to do this with
the proposed KRI, since most KRTs provide either some mechanism to import
knowledge from one base into another (e.g., modules in SWI-Prolog) or allow
for multi-base querying (federated SPARQL queries for OWL).

An implementation of a specific KR with the interface was highly dependent
on the available Java API for the technology. In case several APIs for a language
were available, we assessed which one fits best our needs, and can provide most
features. Then, the concept hierarchy had to be matched to the interface’s cor-
responding elements, and the functionality correspondence validated. In general
the proposed KRI turns out to be generic enough to be implemented for differ-
ent KR technologies. Following the design principles described in Sect. 3.1 and
incorporating features identified in Sect. 3.3, the KRI satisfies all requirements
deemed fundamental to represent mental states for cognitive agents (Sect. 3.2);
moreover, different types of states (cf. Jason vs GOAL, Sect. 3.2) can be
implemented.

The KRI can make use of the extra features that come along with the two
languages, e.g., it allows for ontological language with rules to use triple store
technologies existing on the web, accessing the Semantic Web thus becoming
implicitly available to agents. Another example is parallel querying, that again,
agents are at liberty to perform using OWL and SWRL, which comes from
exploiting the benefit of a triple store for an agent’s mental database. A third
benefit of OWL agents that the interface makes possible, is the creation of a
shared database, so multiple agents can operate on the same set of knowledge,
incrementing data reuse and sharing. On the other hand, when chosing Prolog as
the KR, the agent is powerful in computational tasks, and can work easily with
lists. This support that would not have been available when chosing OWL, since
lists are not by default present in OWL, and are not supported by reasoners that
can handle rules. The major benefits of the two languages could be exploited
through the instantiation of the interface, which shows that our proposal does
not limit the use of a KR for agents.

6 Conclusions and Future Work

In conclusion, this paper introduced a generic KRI that is reusable across a range
of agent frameworks that can benefit from the use of different KR languages.
Our contribution is a methodological analysis of the features and requirements
between knowledge representation technologies and cognitive agent program-
ming frameworks. We proposed and implemented a generic interface to create
an abstraction layer and a modular setup to how agents can use a KR. The need
for such a KR interface and the apparent lack of such a construct in related
work has motivated the design of the interface, governed by the following three
aspects (as described in Sect. 3): (1) a number of design principles serving as
guidelines, (2) the concept of cognitive agents and related assumptions that we
make about agent frameworks, and (3) the identification of features provided by
various KRs that are considered as requirements for a KRI. We put this interface

Designing a Knowledge Representation Interface 49

to the test with two knowledge representations, namely Prolog and OWL with
SWRL rules, in the agent programming framework GOAL. Based on these two
cases we conclude that the KRI is generic enough to support a variety of KR
languages, and could be easily applied in the GOAL agent framework.

In the future we will focus on the improvement points identified during
the process, and move to a next step of trying different knowledge represen-
tation technologies and other agent programming frameworks, to discover the
full extent of applicability of, and any modifications needed to our proposed
interface.

References

1. Anguswamy, R., Frakes, W.B.: Reuse design principles (2013)
2. Baader, F.: The Description Logic Handbook: Theory, Implementation, and Appli-

cations. Cambridge University Press (2003)
3. Bechhofer, S., Horrocks, I., Patel-Schneider, P.F., Tessaris, S.: A proposal for a

description logic interface. In: Proceedings of Description Logics, pp. 33–36 (1999)
4. Bordini, R.H., Hübner, J.F.: Jason-A Java-based interpreter for an extended ver-

sion of AgentSpeak (2007)
5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems

in AgentSpeak using Jason, vol. 8. Wiley (2007)
6. Cingolani, P., Alcala-Fdez, J.: jfuzzylogic: a robust and flexible fuzzy-logic inference

system language implementation. In: 2012 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pp. 1–8, June 2012

7. Dastani, M.: 2APL: a practical agent programming language. Auton. Agent. Multi-
Agent Syst. 16(3), 214–248 (2008)

8. Dastani, M., Hindriks, K.V., Novák, P., Tinnemeier, N.A.M.: Combining multi-
ple knowledge representation technologies into agent programming languages. In:
Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008.
LNCS (LNAI), vol. 5397, pp. 60–74. Springer, Heidelberg (2009)

9. Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag.
14(1), 17 (1993)

10. Dix, J., Hindriks, K.V., Logan, B., Wobcke, W.: Engineering multi-agent systems
(dagstuhl seminar 12342) (2012)

11. Dix, J., Zhang, Y.: IMPACT: A multi-agent framework with declarative semantics.
In: Multi-Agent Programming, pp. 69–94 (2005)

12. Freitas, A., Schmidt, D., Panisson, A., Meneguzzi, F., Vieira, R., Bordini, R.H.:
Integrating multi-agent systems in JaCaMo using a semantic representations. In:
Workshop on Collaborative Agents, CARE for Intelligent Mobile Services (2014)

13. Heintz, F.: Dyknow: A stream-based knowledge processing middleware framework
(2009)

14. Hindriks, K.V.: The GOAL Agent Programming Language hub. https://github.
com/goalhub/krTools/tree/master/krInterface

15. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming: Lan-
guages, Tools and Applications, pp. 119–157. Springer (2009)

16. Hirsch, B., Konnerth, T., Heßler, A.: Merging agents and services the JIAC agent
platform. In: Multi-Agent Programming: pp. 159–185. Springer (2009)

https://github.com/goalhub/krTools/tree/master/krInterface
https://github.com/goalhub/krTools/tree/master/krInterface

50 T. Bagosi et al.

17. Horridge, M., Bechhofer, S.: The OWL Api: A Java Api for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

18. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.,
et al.: SWRL: A semantic web rule language combining OWL and RuleML. W3C
Member Submission 21, 79 (2004)

19. Klapiscak, T., Bordini, R.H.: JASDL: a practical programming approach com-
bining agent and semantic web technologies. In: Baldoni, M., Son, T.C., van
Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397,
pp. 91–110. Springer, Heidelberg (2009)

20. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)
21. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview.

W3C Recommendation 10(10), 2004 (2004)
22. Moreira, A.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-oriented program-

ming with underlying ontological reasoning. In: Baldoni, M., Endriss, U., Omicini,
A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 155–170. Springer,
Heidelberg (2006)

23. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Web
Semant.: Sci., Serv. Agents World Wide Web 3(1), 41–60 (2005)

24. O’Connor, M.J., Das, A.K.: SQWRL: a query language for OWL. In: OWLED,
vol. 529 (2009)

25. O’Connor, M.J., Shankar, R.D., Musen, M.A., Das, A.K., Nyulas, C.: The SWR-
LAPI: a development environment for working with SWRL rules. In: OWLED
(2008)

26. Pan, J.Z.: Resource description framework. In: Handbook on Ontologies, pp. 71–90.
Springer (2009)

27. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM
Trans. Database Syst 34(3), 16:1–16:45 (2009)

28. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:
Multi-agent programming, pp. 149–174. Springer (2005)

29. Russell, S., Jordan, H., O’Hare, G.M.P., Collier, R.W.: Agent factory: a frame-
work for prototyping logic-based AOP languages. In: Klügl, F., Ossowski, S. (eds.)
MATES 2011. LNCS, vol. 6973, pp. 125–136. Springer, Heidelberg (2011)

30. Silva, D.G., Gluz, J.C.: AgentSpeak (PL): A new programming language for BDI
agents with integrated bayesian network model. In: 2011 International Conference
on Information Science and Applications (ICISA), pp. 1–7. IEEE (2011)

31. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semant.: Sci., Serv. Agents World Wide Web 5(2), 51–53
(2007)

32. Wang, J., Ju, S.E., Liu, C.N.: Agent-oriented probabilistic logic programming. J.
Comput. Sci. Technol. 21(3), 412–417 (2006)

33. Winikoff, M.: JACK intelligent agents: An industrial strength platform. In: Multi-
Agent Programming, pp. 175–193. Springer (2005)

A Probabilistic BPMN Normal Form to Model
and Advise Human Activities

Hector G. Ceballos1(B), Victor Flores-Solorio1, and Juan Pablo Garcia2

1 Tecnologico de Monterrey, Campus Monterrey, Monterrey, Mexico
ceballos@itesm.mx, vmfsolorio@gmail.com

2 Universidad Autonoma de Baja California, Mexicali, Mexico
pablo.garcia@uabc.edu.mx

Abstract. Agent-based technologies, originally proposed with the aim
of assisting human activities, have been recently adopted in industry for
automating business processes. Business Process Model and Notation
(BPMN) is a standard notation for modeling business processes, that
provides a rich graphical representation that can be used for common
understanding of processes but also for automation purposes. We propose
a normal form of Business Process Diagrams based on Activity Theory
that can be transformed to a Causal Bayesian Network, which in turn
can be used to model the behavior of activity participants and assess
human decision through user agents. We illustrate our approach on an
Elderly health care scenario obtained from an actual contextual study.

Keywords: BPMN · Agent-based systems engineering · Bayesian
networks · Activity theory

1 Introduction

BPMN is a standard notation for modeling business processes that provides a
rich graphical representation that can be used for common understanding of
processes [13]. Furthermore, BPMN has been used for process automation with
support of agent technologies [10].

BPMN uses gateways for representing decisions, which are usually labeled
with textual descriptions indicating the criterion followed. These decisions are
based on information that is available at the moment of decision making and
may refer to information of the process in course or to historical information
(data-based decisions).

But when the BPMN workflow describes a human activity in terms of user
tasks this decision criterion might be unknown or inaccessible to the modeler, e.g.
the buying decision of a customer. For dealing with the uncertainty introduced
by human intervention, approaches like [6] have proposed annotating edges with
the probability of each alternative. Nevertheless, this approach does not permit
to determine if the cause of such variability comes from some part of the process
under the control of some participant, i.e. capture causal relationships between
c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 51–69, 2015.
DOI: 10.1007/978-3-319-26184-3 4

52 H.G. Ceballos et al.

non-consecutive nodes. And despite BPMN has been recently used for agent-
based software engineering, decision making under uncertainty has not been
addressed in current approaches [3,7,10,12].

For these reasons, we propose a normal form of BPMN Process Diagrams
for modeling human activities suitable for generating a probabilistic representa-
tion of activity’s dynamic suitable for discovering causal relationships. Possible
scenarios specified in the BPMN workflow can be used for predicting the behav-
ior of human participants based on observable events. The BPMN normal form
is inspired by Activity Theory [4], providing goal-oriented BPMN Process Dia-
grams capable of representing collective human activities.

This paper is organized as follows. In Sect. 2, we present other applications
of BPMN for agent-based software engineering and introduce probabilistic for-
malisms traditionally used for agent decision making. In Sect. 3 we discuss the
pertinence of using BPMN for modeling human activities and propose a BPMN
normal form suitable for its transformation to a Bayesian Network. We pro-
vide an automatic transformation procedure that produces a probabilistic rep-
resentation of activity’s dynamics that can be used for agent decision making
based on previous activity developments. In Sect. 4, we present other probabilis-
tic approaches to BPMN and compare our selection of BPMN elements with
other agent engineering approaches. Finally, in Sect. 5, we present our conclu-
sions and future work.

2 Background

We revise current applications of BPMN for agent-based system engineering,
and review probabilistic graphic models used for decision making.

2.1 Business Process Diagrams for Agent Engineering

Business Process Model and Notation (BPMN) is a standard notation used by
organizations for understanding internal business procedures in a graphical nota-
tion. Due to its expressivity and its growing adoption by industry, it has been
also used as a tool for modeling MultiAgent Systems [3,7,10,12].

Endert et al. [3] proposed a mapping of Business Process Diagram (BPD)
elements to agent concepts. In particular they considered a BPMN fragment
constituted by: event nodes (start, intermediate and end), activity nodes, sub-
process nodes, split and merge gateways (XOR, OR, AND), and pools. They
map each pool to an agent and the process itself constitutes a plan; properties
of start (and end) events constitute inputs (respectively outputs) for the plan.
Independent subprocesses are mapped to goals and embedded subprocesses are
mapped to plans. Activity nodes are represented by plan operations, whereas
control flows are mapped to sequences, if-else blocks and loops. Data flow, i.e.
arguments passed to messages and operations, is captured in node attributes
and it is used for modeling agent beliefs.

A Probabilistic BPMN Normal Form to Model and Advise Human Activities 53

Hinge and colleagues developed a tool for annotating BPMN in order to
provide a semantic description of events and actions [7]. Actions are described by
their direct effects: the observable conditions that hold immediately after action
execution. These annotations are used for calculating the current development
of a process, this is, determining which events and actions have occurred by
observing the accumulation of effects on a knowledge base. The knowledge base
is considered non-monotonic as long as this approach counts with a procedure
for detecting the removal of facts.

Muehlen and Indulska evaluated the combination of modeling languages for
business processes and business rules [12]. Their overlap analysis look for the
minimization of redundancy on constructors and the maximization of model-
ing expressivity. Modeling constructors were grouped in four categories: sort of
things, states, events and systems. They conclude that the highest representa-
tion power is given by the combination of BPMN for representing the business
process and SWRL [8] for representing business rules. Nevertheless, their analy-
sis reveals that this combination, despite it is the most complete, lacks of a
representation of states.

Jander and colleagues proposed Goal-oriented Process Modeling Notation
(GPMN), a language for developing goal-oriented workflows [9]. The process
is initially modeled by decomposing a main goal into subgoals, and then each
subgoal is linked to a BPMN diagram that represents the plan to achieve that
goal. This graphical language includes activation plans which decide subgoal
parallelization or serialization, replicating the functionality of gateways in the
goal hierarchy tree. A goal can be connected to multiple plans, enabling means-
end reasoning.

Finally, Kuster and colleagues provide a full methodology for process oriented
agent engineering that complements BPMN process diagrams with: declaration
of data types (ontology engineering), a model for agent organization and distrib-
ution, low-level algorithms for activity nodes (service engineering), and use cases
diagrams that link roles and process diagrams [10]. This framework implements
the mapping of BPMN to agents described in [3] for agent engineering.

These approaches show how BPMN workflows can be used for designing agent
specifications from the description of their interactions in a process. Nevertheless
they assume that all the information needed by agent for making a decision is
available, which in turn produces reactive agent specifications but is not sufficient
for coping with uncertainty.

2.2 Decision Making Based on Bayesian Networks

Bayesian Networks (BNs) have been used for quite a while for representing deci-
sion making under uncertainty and learning through observation/experience.
BNs are suitable for identifying causal dependencies between random variables
representing events and actions occurred at different time steps. Despite Markov-
ian Decision Processes (MDPs) have gained popularity for their capacity for
providing efficient probabilistic inference in long term processes, their represen-
tation lacks of memory, i.e. it only captures conditional dependencies between

54 H.G. Ceballos et al.

contiguous time steps. Nevertheless, MDPs are suitable for capturing causal
dependencies in cyclic sequences of events where the final outcome is the result
of numerous attempts or iterations.

Bayesian Networks. A Bayesian Network is a probabilistic graphical model
that represents a set of events denoted by random variables, and their conditional
dependencies via a directed acyclic graph (DAG), denoted:

M = 〈V,GV , P (vi|pai)〉

where V is a set of random variables, GV is the graph consisting of variables in
V and directed arcs between them, and P (vi|pai) is a conditional probabilistic
distribution where the probability of vi depends on the value of its parents (pai)
in GV .

A random variable Vi is a numerical description of the outcome of an exper-
iment, and can be either discrete or continuous. The set of possible values a
discrete random variable may hold, or domain Dom(Vi) = {vi1, ..., vin}, repre-
sents the possible outcomes of a yet-to-be-performed experiment, or the potential
values of a quantity whose already-existing value is uncertain.

The realization of a random variable Vi to the value vij ∈ Dom(Vi) is rep-
resented as Vi = vij , or vi if the realization value is not relevant in a given
context.

Random variables satisfy the probability theory requisite which dictates that
in an experiment, a random variable can be realized to a single value of its
domain. This means that all events represented by a random variable are disjoint.

GV is an independence map (I-Map), i.e. a minimal graph where the presence
of an arc from Vi to Vj indicates conditional dependence whereas its absence
indicates conditional independence. An I-Map is called minimal because indirect
dependencies are not included.

Bayesian Networks can be modeled from two distinct perspectives: evidential
or causal. If arrows go from effects to causes the perspective is evidential, e.g.
determining the disease based on the patient symptoms. A network is modeled
from a causal perspective if arcs go from causes to effects. For instance, in
Dynamic Bayesian Networks a different set of random variables represents the
state of the system at time t, t+ 1, ... , t+n; arcs can go from a variable in t to
another in t + i, but the opposite is not allowed.

Bayesian networks are used to find out updated knowledge of the state of a
subset of variables v̄1 when another variables v̄2 (evidence) are observed, denoted
P (v̄1|v̄2). This process of computing the posterior distribution of variables given
certain evidence is called probabilistic inference.

Influence Diagrams. An Influence Diagram is a generalization of a Bayesian
Network devised for modeling and solving decision problems using probabilis-
tic inference. Nodes may represent decisions (rectangles), uncertain conditions
(ovals) or the utility obtained in a given scenario (diamond).

A Probabilistic BPMN Normal Form to Model and Advise Human Activities 55

Arcs ending in decision nodes denote the information taken into account for
making the decision. Arcs between uncertain nodes propagate uncertainty or
information like in Bayesian Networks.

Decision nodes and their incoming arcs determine the alternatives. Uncer-
tainty nodes and their incoming arcs model the information. Value nodes and
their incoming arcs quantify the preference on the outcome. An alternative is
chosen based on the maximum expected utility in the given scenario, calculated
by the a posteriori probability of all nodes (including unknown values).

Causal Bayesian Networks. Judea Pearl introduced the notion of Causality
on Bayesian Networks under the concept of intervention, where the value of a
variable could be subject to alteration through a mechanism F or let its value
being freely set [15]. Pearl and Robins proposed that nodes in a Bayesian network
can be classified into purely observable variables, or Covariates (Z), and con-
trollable variables (X) which are subject to intervention, denoted by do(xi) [16].
From this distinction they establish a graphical method for identifying the set of
covariates (Wk ⊂ Z) that must be observed for determining the causal effect of a
sequence of interventions do(x1), ..., do(xk) on Y , i.e. P (y|do(x1), ..., do(xk), wk).
This sequence of interventions constitutes a plan, which probability of success
can be evaluated a priori and be revised once that the network is updated with
information.

3 Probabilistic Decision Making on Business Process
Diagrams

An Activity of Daily Living (ADL) modeled as a BPMN workflow is used for
illustrating the proposed normal form. Then a procedure for transforming this
workflow to a Bayesian Network is provided and some examples of probabilistic
inference are given to validate the model.

The subset of graphical elements of the BPMN 2.0 specification [13] we use in
our example and in our normal form is shown in Fig. 1. BPMN Business Process
Diagrams (BPDs) basically describe a process in terms of events and actions
connected through control flows that indicate valid sequences in the process
development. Gateways are special nodes connected through control flows that
indicate whether the process develops in parallel (AND), alternatively (XOR)
or optionally (OR). The beginning of the process is denoted by an initial event
node and its conclusion by a set of end event nodes.

3.1 An Example of an ADL Modeled in BPMN

We motivate the discussion using as example the medical consultation of an elder
person, taken from an actual contextual study based on Activity Theory [5].
In this activity, the subject is an older adult who has a medical appointment
(the object). The objective of the activity is having a medical appraisal and its

56 H.G. Ceballos et al.

Fig. 1. BPMN graphical notation.

outcome includes getting a prescription, supply medicines and schedule a next
appointment. The community involved in the activity includes a family member
(optionally) and the doctor.

This diagram is used for compensating the lack of a formal representation
of the activity’s dynamic in Activity Theory (AT) [4]. At some extent, control
flows and gateways formalize the set of rules specified in the AT specification.

Figure 2 shows the activity diagram modeled with BPMN. It illustrates two
alternative ways the elder may choose for getting to the hospital: going by
himself, or being carried out by a family member. It also shows five possible
outcomes for the activity: (1) treatment finished, (2) taking new medication,
(3) taking medication and follow up, (4) medication not available at the hospi-
tal’s pharmacy, and (5) missing the appointment (failure outcome).

3.2 A Probabilistic BPMN Normal Form

The proposed normal form has the purpose of illustrating alternative sequences
of actions performed by activity participants, mediated by intermediate events
that the subject or other participants can observe. XOR gateways are used for
representing disjoint alternatives. Activity’s development has a triggering condi-
tion (initial event) and a set of successful or failure outcomes (end events). The
resulting graph must be acyclic for facilitating its translation to a Bayesian Net-
work through a graphical procedure. A BPMN BPD satisfies the probabilistic
normal form if it observes the following constraints:

1. A Business Process Diagram W is represented by a set of pools (P), lanes
(L), nodes (N) and control flows (F).

W = {P,L,N,F}
2. Nodes (N) allowed in the diagram are: start events (NS), intermediate events

(N I), end events (NE), atomic actions (NA) and gateways (NG).

N = NS ∪ N I ∪ NE ∪ NA ∪ NG

A Probabilistic BPMN Normal Form to Model and Advise Human Activities 57

Elderly Healtcare

Elder

Elder

Z1 - Tim
e for

Consultation

X1 - Elder goes
by him

self to the
Hospit

al

X4 - Elde
m

edicine

X5 - Elder
request

appointm
ent

Z7.3 - New
m

edicine

Z7.4 - M
edicine

and
follow

 up

Z7.2 - Pending
m

edicine

Z6 - Ne
xt

appointm
ent

Z5.1 - M
edicine

incom
plete/m

issing

Z5.2 - M
edicine

available

Z3.1 - Elde
r

at Hospita
l

Z3.2 - Elder
doesn't show

 up

Family Member

Fam
ily M

em
ber

X2 - Fam
ily

m
em

ber takes
Elder to the

hospital
Z7.5 - Appointm

ent
m

issed
Z2.1 - Fam

ily
m

em
ber arrives
on tim

e

Z2.2 - Fam
ily

m
em

ber arrives
late

Doctor

D
oc tor

X3 - D
octo

r
auscultates

to
Elder

Z7.1 - Treatm
ent

Z4.3 - D
octor

presc
ribes

m
ed

icine and
follo

w
 up

Z4.1 -

Z4.2 - D
o

ctor prescribes
m

ore/n
ew

 m
edication

Fig. 2. Business process diagram of the medical consultation activity.

58 H.G. Ceballos et al.

3. The diagram must have a single pool (p ∈ P) containing at least one lane
(li ∈ L, i ≥ 1). Each lane represents a human participant in the activity, and
nodes must be allocated in a single lane (in(n, li), n ∈ N).

4. All sequence flows are unconditional, denoted as F (ni, nj) ∈ F where ni, nj ∈
N . Conditional or default control flows are not allowed; instead, intermedi-
ate event nodes are used for representing both data-based and event-based
control flow.

5. A single start event s ∈ NS is defined (|NS | = 1), given that the activity
is modeled from the perspective of a single individual (the subject), and it
must be labeled with the condition perceived by the subject that triggers
activity’s development.

6. Intermediate event nodes (i ∈ N I) are labeled with a natural language
description that corresponds to the condition (partial world state) that must
hold for proceeding with the activity’s course.

7. Similarly, atomic action nodes or tasks (a ∈ NA) are labeled with a verb
expressed in active voice that denotes the action performed by a participant,
indicating other actors involved in collective actions, as well as required
artifacts and locations.

8. Two consecutive action nodes must be mediated by at least one intermediate
event node and as many gateways as needed, i.e. two action nodes are not
connected directly through sequence flows. Observable intermediate events
will permit monitoring the activity development and introducing agent assis-
tance [2].

∀a ∈ NA, (F (n, a) ∈ F ∨ F (a, n) ∈ F) → n �∈ NA

9. Each split or merge of control flows must be mediated by a splitting gateway
(NG

S ⊆ NG) or a merging gateway (NG
M ⊂ NG), respectively. Gateways

can be of type Parallel-AND (A), Optional-OR (O), or Exclusive-XOR (X).
Gateways with both multiple incoming and outgoing flows are not permitted.

∀g ∈ NG, type(g, t) → t ∈ {A,O,X}
10. Splitting gateways XOR (g ∈ NG

S , type(g,X)) must be followed by interme-
diate event nodes (F (g, i) ∈ F, i ∈ N I) or other XOR gateways, denoting
alternative ways on which the activity can develop. Event node labels indi-
cate the reason for selecting each alternative.

11. The diagram might have multiple end nodes, but two end nodes cannot
represent the same outcome; their labels must reflect some difference. Control
flows and gateways must be used for connecting all possible workflows ending
in the same outcome.

∀e1, e2 ∈ NE → Label(e1) �≡ Label(e2)

12. The graph GN constituted by all F (ni, nj) ∈ F must not have any directed
cycle or loop, i.e. it must be a Directed Acyclic Graph (DAG).

13. All other nodes, gateways and control flows are disallowed in the diagram.
BPMN artifacts (associations, groups and text annotations) are ignored.

A Probabilistic BPMN Normal Form to Model and Advise Human Activities 59

3.3 Translating BPDs to Bayesian Networks

Next we describe the rules and the procedure used for translating a BPD sat-
isfying the previous normal form to a Bayesian Network. In short, events and
actions are mapped to observable and controllable random variables, respec-
tively, whereas control flows and gateways are used for building the conditional
dependency graph and the probabilistic distribution of the model.

Events. Events represent partial world states in the activity context, hence their
representation is associated to observable random variables (Zi), whereas their
occurrence is represented probabilistically by the realization of these variables
(Zi = zi).

The start event is detected by the activity subject and it is represented by the
boolean variable ZS , which realization to True holds on any process execution.
ZS has no parents and it is used for start process monitoring. In our example,
the start event is the doctor’s appointment time (ZS = Z1).

s ∈ NS → define(ZS),Dom(ZS) = {True, False},map(s, ZS = True) (1)

The function define(Vi) is used for declaring random variables, whereas the
function map(n, Vi = vi), n ∈ N, establishes the correspondence between ele-
ments of both representations.

A BPD might include multiple end nodes as shown in our example. Given
that each end node corresponds to different outcomes of the activity, all of them
are represented by a single random variable ZE . Each outcome node e represents
a possible realization of ZE . In our example Z7 represents ZE , with Dom(Z7) =
{7.1, 7.2, 7.3, 7.4, 7.5}.

∀e ∈ NE → e ∈ Dom(ZE),map(e, ZE = e) (2)

Intermediate event nodes are used in the BPD for two reasons: (1) observing
the evidence of actions performed by people in the real world (event-based control
flow), and (2) controlling the workflow based on data produced during process
execution (data-based control flow). Additionally to generic intermediate event
nodes that can be expressed with expressions in First Order Logic, timeout nodes
are introduced for representing temporal reasoning for process monitoring.

Intermediate event nodes are classified as subgoals or alternative events.
Subgoal events are event nodes that must be performed in order to continue
with process execution in a given workflow. A subgoal event is represented by a
boolean random variable, where its realization to True indicates that the con-
dition/event was met and False if it did not occurred during process execution.
The node representing the scheduling of the Next appointment (Z6) is an exam-
ple of a subgoal event.

∀i ∈ N I , F (n, i) ∈ F, (n �∈ NG ∧ (n ∈ NG,¬type(n,X)))) → (3a)
define(Zi),Dom(Zi) = {True, False},map(i, Zi = True) (3b)

60 H.G. Ceballos et al.

Alternative events are mutually exclusive world states denoted by interme-
diate event nodes preceded by a XOR gateway, and are represented by a single
observable random variable. We define the set Alt for identifying these gate-
ways in further steps of the transformation. For instance, the events Follow up
finished (Z4.1), Doctor prescribes more/new medication (Z4.2), and Doctor pre-
scribes medicine and follow up (Z4.3), are represented by the random variable
Z4. Successor intermediate events mediated exclusively by XOR gateways are
included in the set of disjoint events as well (see 4c–4e).

∀g ∈ NG
S , type(g,X), F (g, i) ∈ F, i ∈ N I → (4a)

define(Zg), i ∈ Dom(Zg),map(i, Zg = i), g ∈ Alt (4b)

∀g ∈ NG
S , type(g,X), F (g, g1) ∈ F, g1 ∈ NG, type(g1,X), ..., (4c)

F (gk−1, gk) ∈ F, gk ∈ NG, type(gk,X), F (gk, i) ∈ F, i ∈ N I → (4d)
define(Zg), i ∈ Dom(Zg),map(i, Zg = i), g ∈ Alt (4e)

Observable random variables Zi representing intermediate events are consid-
ered mandatory if Zi is included in all paths connecting the start variable ZS

with the end variable ZE . And it is considered optional if other alternative paths
exist that connect ZS and ZE that do not pass through it. All optional random
variables include the value False in their domain for considering those cases
where the process develops through an alternative path. This rule is applied
after having obtained the conditional dependence graph GV as explained next.
Z3 is an example of a mandatory variable with Dom(Z3) = {3.1, 3.2}, whereas
Z4 is optional given the alternative path through Z3.2, making Dom(Z4) =
{4.1, 4.2, 4.3, False}.

∃pi = path(ZS , ZE) ∈ GV , Zj �∈ pi → False ∈ Dom(Zj) (5)

Actions. Action nodes in BPDs might represent atomic actions or subprocesses.
In this analysis we only consider atomic actions, which correspond to the def-
inition of action given by Leontiev [11], i.e. something that the person makes
consciously to achieve a goal. This action might require the participation of
other actors, like in the auscultation made by the doctor to the elder (X3), or be
performed individually, like when the elder going by himself to the hospital (X1).

Similarly to subgoal events, atomic actions are represented by boolean ran-
dom variables, denoted Xi, where the value True denotes the execution of the
action, and False represents its omission. If the action is not performed, the
value of the variable is set to False at the end of activity’s monitoring.

∀a ∈ NA → define(Xa),Dom(Xa) = {True, False},map(a,Xa = True) (6)

Control Flows. Control flows encode necessary conditions for the development
of a process, this is, the occurrence of previous events or actions enables event
observation or action execution. For instance, medical consultation (X3) requires

A Probabilistic BPMN Normal Form to Model and Advise Human Activities 61

the patient being at the hospital (Z3 = 3.1), and the next appointment (Z6)
requires that the elder had request it (X5).

A control flow Vi → Vj indicates: (1) temporal precedence of the action/event
Vi with respect to another action/event Vj , and (2) conditional dependence of
Vj on Vi. For this reason, the equivalent representation of the BPD is a Bayesian
Network modeled from a causal perspective.

In order to identify conditional dependencies between events and actions, we
use control flows incoming and outgoing to their corresponding random variables.
A copy of the DAG constructed with these control flows, denoted G′

N : N × N ,
is modified according to rules (7a) – (7d) in Fig. 3 for removing unnecessary
gateways and unifying end nodes in a single one. In these rule we use graph
operations such as adding/removing arcs and absorbing nodes. Absorbing n
consists on adding control flows F (ni, nj) for the cross product given by every
pair F (ni, n) – F (n, nj), and then removing the node n and those arcs connected
to it.

∀i ∈ NI , F (g, i) ∈ G′
N , g ∈ Alt → absorbe(i, G′

N) (7a)

∀g ∈ NG
M → absorbe(g,G′

N) (7b)

∀g ∈ NG
S , g �∈ Alt → absorbe(g,G′

N) (7c)

∀ei ∈ NE , i > 1, F (n, ei) ∈ G′
N → remove(F (n, ei), G

′
N), add(F (n, e1), G

′
N) (7d)

Fig. 3. Transformation of GN to G′
n.

The resulting DAG G′
N and those mappings generated in the first stage of the

process are used for defining the arcs that constitute the conditional dependence
graph between random variables GV : V × V .

∀F (ni, nj) ∈ G′
N ,map(ni, Vi = vi),map(nj , Vj = vj) → add(Arc(Vi, Vj), GV)

(8)

At this point, the conditional dependence graph GV of the medical consulta-
tion activity is shown in Fig. 4. Random variables labeled Zi represent observable
variables, whereas Xi denote atomic actions. Note that alternative event nodes
are grouped in random variables Z2, Z3, Z4 and Z5.

Gateways. Gateways, on the other hand, codify how likely is that two or more
events/actions occur during process execution, which corresponds to the defini-
tion of the Conditional Probabilistic Distribution (CPD), i.e. P (vi|pai).

The different process developments (scenarios) that can be generated accord-
ing to gateway constraints provide the joint probabilistic distribution of the
process. This distribution assumes that all scenarios are equally likely and it is
used for learning the CPDs of random variables using the dependencies given by
the graph in Fig. 4. Figure 5 shows the 15 scenarios that can be generated from

62 H.G. Ceballos et al.

Fig. 4. The medical consultation activity’s conditional dependence graph

Fig. 5. Valid process developments.

the process in Fig. 2, where columns indicate the realization of random variables
in each scenario.

Table 1 shows the structures supported by our normal form, aligned with the
corresponding transformation rules. The column Mappings shows the correspon-
dence between BPD nodes and random variables, indicating the rule applied,

A Probabilistic BPMN Normal Form to Model and Advise Human Activities 63

and the last column indicates which nodes prevail in the reduced graph G′
N ,

indicating the rule that makes the reduction.

Table 1. Valid structures in the BPD normal form.

3.4 The Activity Causal Bayesian Network

The Bayesian Network produced by the transformation process described above
is defined as follows.

Definition 1. An Activity Causal Bayesian Network (ACBN) is represented by

D = 〈GV ,X, Z, ZS , ZE , P (vi|pai)〉

where GV is a minimal DAG which arcs denote temporal precedence and con-
ditional dependence between observable events (Z) and actions (X), P (vi|pai)
encodes conditional probabilistic dependencies between random variables V =
Z ∪ X, and GV has at least one directed path from the initial condition ZS ∈ Z
to the outcome variable ZE ∈ (Z \ ZS).

The Causal Bayesian Network of the activity modeled in Fig. 2 has seven
observable conditions or events (Z1 – Z7) and five human actions (X1 – X5).
The initial condition is the appointment time (Z1) and the outcome variable is
Z7. Its graph GV is shown in Fig. 4 and the corresponding P (vi|pai) is learned
from the process instances shown in Fig. 5.

64 H.G. Ceballos et al.

Probabilistic Inference. Figure 6 shows an example of probabilistic inference
for a partially observed activity instance where the observed evidence (e) is: the
family member arrived late to elder’s house (Z2 = 2.2), the elder arrived to the
hospital on time (Z3 = 3.1), and the doctor prescribed new medication only
(Z4 = 4.2). Posterior probabilities for the other variables are shown in Fig. 6.

Fig. 6. Probabilistic inference on a valid scenario.

The probabilistic model can be used with two purposes: (1) predicting the
most plausible world, and (2) deciding between alternative actions based on
desirable outcomes.

In a general form, the posterior probability P (vi|e) indicates how likely is
that an event or action vi had occurred or will occur, given observed evidence e.
Posterior probabilities of human actions (Xi) indicate how likely is their execu-
tion despite the model is only feed with information of observable events. For
instance, it predicts that the elder will refill medicine (P (X4 = True|e) = 0.9285)
but he will not request a new appointment (P (X5 = False|e) = 0.9285), which
is consistent with the BPMN workflow. On the other hand, the probability of the
elder going to the hospital alone (X1 = True) is slightly higher than he being
carried out by his family member (X2 = True), which can be explained by the
fact that the last arrived late to elder’s home but the elder arrived on time at
the hospital.

In the example of Fig. 6, the probability of the elder getting all the medicine
(Z7 = 7.3) or part of it (Z7 = 7.2) are slightly higher than the other outcomes.

A Probabilistic BPMN Normal Form to Model and Advise Human Activities 65

Both probabilities increase if more evidence is given (e.g. Z5 and Z6). Given
that the Bayesian network was trained with valid process developments only,
it predicts well the outcome on similar scenarios (see P (z7|e) in Fig. 6), but it
assigns the same probability to all the five outcomes in invalid scenarios, which
represents an uncertain outcome.

On the other hand, the probabilistic model can be used for decision making
when the activity reaches a splitting exclusive gateway and the activity’s sub-
ject must decide between alternative actions. In our example, the elder must
decide between going to the hospital by himself or being taken by a family mem-
ber. Assuming that the probabilistic distribution is obtained from real activity
developments it is quite likely to observe that a late arrival of the family mem-
ber provokes missing the appointment. A proper representation of this causal
dependency can be encoded in the Bayesian Network by an arc from Z2 to Z3,
which is not possible in the BPMN diagram.

The probability of observing a successful outcome would then be represented
by

∑
i P (zFi|xj , e), where zFi represents all the successful outcomes, xj the

action to choose, and e is the observed evidence. Going alone to the hospital
would be recommended when the family member is known to arrive late (Z2 =
2.2), if:

∑

i

P (zFi|X1 = True, Z2 = 2.2) >
∑

i

P (zFi|X2 = True, Z2 = 2.2)

4 Discussion

First we analyze other probabilistic approaches to BPMN. Then we compare
our selection of BPMN elements with other approaches that transform BPDs to
agent-based system specifications. Finally we discuss the applications of proba-
bilistic workflows as agent engineering tool.

4.1 Probabilistic Approaches to BPMN

In 2008, Prandi and colleagues [17] proposed a formal semantics for BPMN based
on the process calculus COWS. Each BPD node is considered as a COWS ser-
vice and the translation describes the message flow between them. They provide
a COWS formula for each node-centered structure supported by their normal
form and produce a single composite formula that represents the flow of tokens
across the BPD. BPDs are formalized as Continuous Time Markov Chains, a
model used for automated verification of Web Service composition. Thanks to
the implementation of COWS in the probabilistic model checker PRISM, the
probability of observing certain event or condition at a time t can be estimated.
Tasks, annotated with a duration range, occur at a different time in each alter-
native workflow produced by gateways present in the workflow; hence the prob-
ability of observing an event or action at a time t is expressed probabilistically.

66 H.G. Ceballos et al.

Herbert and Sharp [6] proposed stochastic BPMN workflows, an extension
of Core BPMN that includes: probabilistic flows (sequence flows with a given
probability) and rewards associated to the execution of tasks. Using PRISM,
authors transform BPMN workflows into Markovian Decision Processes (MDPs).
A PRISM module is generated for each task based on a structure supported by
their normal form; code templates codify transitions between states (represented
by tasks), mediated by actions (represented by gateway conditions and task
completion). PRISM is then used for generating all valid action sequences and
calculating: (1) transitory and steady state probabilities of process conditions,
(2) the probability of occurrence of an event (at a time t), (3) best and worst
scenarios, and (4) the average time of process execution.

On the other hand, Bobek and colleagues [1] proposed a transformation of
BPMN workflows to Bayesian Networks (BNs). The translation is straightfor-
ward, each node (action, event or gateway) is translated into a Boolean random
variable whereas control flows are used for constructing the conditional depen-
dency graph. The Bayesian Network is trained with BPMN workflows obtained
from a process library, producing CPTs that indicate how likely is to observe a
node N1 followed by another node N2. The resulting BN is used for recommend-
ing missing nodes during a new process specification. This approach lacks of a
mechanism for recognizing disjoint events and detecting equivalent events/tasks
across different BPDs.

4.2 Translatable Fragments of BPMN Workflows

The BPMN fragment of our approach differs from the one used in the translation
of BPMN to BPEL [14] in two aspects. First, in [14] exist two types of end events,
one for indicating that the participation of a component has finished, and another
for indicating process termination. Given that we model the process from the
perspective of the activity’s subject, end events represent the different ways on
which the process might terminate, successfully or on failure for the subject.
Second, in our approach we don’t consider data/event-based XOR gateways
as long as an equivalent expressivity is provided by XOR gateways followed by
intermediate events that might represent the event to observe for deciding which
branch is followed during process execution.

Unlike the mapping of BPMN to agents proposed in [3], we only consider a
single pool on which every lane represents a role. The use of multiple pools forces
to specify illocutions between agents as part of the activity description, which
produces a low-level specification which is not the purpose of our approach at
this point. In contrast, BPEL, used for specifying systems based on Web Services,
does not capture the attribution of agent capabilities (perceptions and actions)
grouped around roles, which is evidenced on that it does not consider BPMN
pools and lanes on its translation [14].

A limitation of our normal form is that we do not permit the representation
of cycles in the BPMN workflow as long as it would produce non-acyclic graphs.
This can be solved by replacing the feedback arc by a subprocess that replicates
the cyclical section and it is called recursively until reaching the stop condition.

A Probabilistic BPMN Normal Form to Model and Advise Human Activities 67

Another approach would be translating the cyclic section to a MDP, as proposed
by [6,17].

Another limitation is that the definition of random variables from interme-
diate events relies in a single fixed structured (XOR gateways). This mechanism
can be generalized by calculating the different ways on which the graph can
be traversed and determining which events never occur together, establishing a
criterion for grouping proximate disjoint nodes.

4.3 Probabilistic Workflows as Agent Engineering Tool

Modeling human activities using BPMN from an Activity Theory perspective
provides a goal-oriented plan representation for the User agent representing to
the activity’s subject in a MAS. The corresponding ACBN can be used for
modeling other participants and providing recommendations to the user. Given
that human actions are not directly observable, observable events between them
can be used for estimating what happened or what will occur next.

As we show in [2], the causal network can be further used for introducing the
participation of software agents and generating Prometheus scenarios. As shown
in Fig. 7, agent actions can facilitate the occurrence of an event, e.g. a reminder,
or they can be used for monitoring the occurrence of human actions, e.g. the
arrival of the elder to the hospital. BPMN workflows provide a user-friendly way
of specifying the activity dynamics and its probabilistic distribution.

Fig. 7. Introducing agent assistance in ACBNs.

In this paper we illustrate how the BPD can be modeled from the perspective
of a single actor (the subject) meanwhile it captures his interactions with other

68 H.G. Ceballos et al.

participants. Modeling a complex system where other actors should achieve their
own goals requires capturing in a single BPD the perspective of other partic-
ipants, or modeling their perspectives in separate BPDs and calculating their
intersections. For instance, the participation of the Doctor is conditioned to his
presence at the hospital previous to the appointment time; this is not represented
in Fig. 2, but such precondition should be available in the Doctor’s consultation
workflow.

5 Conclusions

We introduced a BPMN Business Process Diagram (BPD) normal form based
on Activity Theory that can be used for representing the dynamics of a collective
human activity from the perspective of a subject. We introduce a novel automatic
procedure that transforms this workflow into a Causal Bayesian Network that
can be used for modeling human behaviors and assessing human decisions.

The resulting Bayesian Network is not only consistent with the valid process
developments encoded in the BPD, but it can be further complemented with
causal dependencies discovered by algorithms like Pearl’s Inferred Causation
[15] from actual process developments in order to improve goal achievement’s
prediction.

Providing a semantic representation of event and action nodes will permit
to overcome the limitations of other approaches for detecting equivalent nodes
and will provide the platform for the composition of workflows, the generation
of agent role descriptions and plans, and the implementation of a process moni-
toring procedure. Using these descriptions, the proposed transformation can be
extended with a proper translation of loops and subprocesses, which in turn
could be used for providing a work around for cycles.

Acknowledgments. This research was supported by Tecnologico de Monterrey
through the “Intelligent Systems” research group, and by CONACyT through the
grant CB-2011-01-167460.

References

1. Bobek, S., Baran, M., Kluza, K., Nalepa, G.J.: Application of bayesian networks to
recommendations in business process modeling. In: Proceedings of the Workshop
AI Meets Business Processes 2013, CEUR, vol. 1101, pp. 41–50 (2013)

2. Ceballos, H., Garćıa-Vázquez, J.P., Brena, R.: Using activity theory and causal
diagrams for designing multiagent systems that assist human activities. In: Castro,
F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part I. LNCS, vol. 8265, pp.
185–198. Springer, Heidelberg (2013)

3. Endert, H., Kuster, T., Hirsch, B., Albayrak, S.: Mapping BPMN to agents: An
analysis. Agent, Web Services, and Ontologies Integrated Methodologies. In: Inter-
national Workshop MALLOW-AWESOME 2007, pp. 43–58 (2007)

A Probabilistic BPMN Normal Form to Model and Advise Human Activities 69

4. Engeström, Y., Miettinen, R., Punamäki, R.: Perspectives on Activity Theory.
Learning in Doing: Social, Cognitive and Computational Perspectives, Cambridge
University Press, New York (1999)

5. Garcia-Vazquez, J.P., Rodriguez, M.D., Tentori, M.E., Saldana, D., Andrade, A.G.,
Espinoza, A.N.: An agent-based architecture for developing activity-aware systems
for assisting elderly. J. Univ. Comput. Sci. 16(12), 1500–1520 (2010)

6. Herbert, L., Sharp, R.: Precise quantitative analysis of probabilistic business
process model and notation workflows. J. Comput. Inf. Sci. Eng. 13(1), 011007(1–9)
(2013)

7. Hinge, K., Ghosey, A., Koliadisz, G.: Process seer: A tool for semantic effect annota-
tion of business process models. In: Proceedings of 13th IEEE International Enter-
prise Distributed Object Computing Conference, EDOC 2009, pp. 54–63 (2009)

8. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
A semantic web rule language combining OWL and RuleML. W3C Member Sub-
mission, 21 May 2004

9. Jander, K., Braubach, L., Pokhar, A., Lamersdorf, W., Wack, K.J.: Goal-oriented
processes with GPMN. Int. J. Artif. Intel. Tools 20, 1021–1041 (2011)

10. Kuster, T., Lutzenberger, M., Hessler, A., Hirsh, B.: Integrating process modelling
into multi-agent systems engineering. In: Multiagent and Grid Systems, pp. 105–
124 (2012)

11. Leont’ev, A.: Activity, Consciousness, and Personality. Prentice-Hall, Englewood
Cliffs (1978)

12. zur Muehlen, M., Indulska, M.: Modeling languages for business processes and
business rules: A representational analysis. Inf. Syst. 35(4), 379–390 (2010)

13. OMG: Business Process Model and Notation (BPMN), Version 2.0, January 2011.
http://www.omg.org/spec/BPMN/2.0

14. Ouyang, C., van der Aalst, W., Dumas, M., Hofstede, A.: Translating BPMN to
BPEL. BPM Center Report BPM-06-02, BPMcenter.org (2006)

15. Pearl, J.: Causality. Models, Reasoning, and Inference. Cambridge University
Press, New York (2000)

16. Pearl, J., Robins, J.: Probabilistic evaluation of sequential plans for causal models
with hidden variables. In: Besnard, P., Hanks, S. (eds.) Uncertainty in Artificial
Intelligence, vol. 11, pp. 444–453 (1995)

17. Prandi, D., Quaglia, P., Zannone, N.: Formal analysis of BPMN via a translation
into COWS. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol.
5052, pp. 249–263. Springer, Heidelberg (2008)

http://www.omg.org/spec/BPMN/2.0

ACE: A Flexible Environment for Complex
Event Processing in Logical Agents

Stefania Costantini(B)

Department of Information Science and Engineering, and Mathematics (DISIM),
University of L’Aquila, L’Aquila, Italy

stefania.costantini@univaq.it

Abstract. In this paper we propose the general software engineering
approach of transforming an agent into an Agent Computational Envi-
ronment (ACE) composed of: (1) the “main” agent program; (2) a num-
ber of Event-Action modules for Complex Event Processing, including
generation of complex actions; (3) a number of external contexts that
the agent is able to access in order to gather information. In our view an
ACE is composed of heterogeneous elements: therefore, we do not make
assumptions about how the various components are defined, except that
they are based upon Computational Logic. In order to show a concrete
instance of ACE, we discuss an experiment based upon the DALI agent-
oriented programming language and Answer Set Programming (ASP).

1 Introduction

Event processing (also called CEP, for “Complex Event Processing”) has emerged
as a relevant new field of software engineering and computer science [1,2]. In fact,
a lot of practical applications have the need to actively monitor vast quantities
of event data to make automated decisions and take time-critical actions (the
reader may refer to the Proceedings of the RuleML Workshop Series). Several
products for event processing have appeared on the market, provided by major
software vendors and by start-up companies. Many of the current approaches are
declarative and based on rules, and often on logic-programming-like languages
and semantics: for instance, [3] is based upon a specifically defined interval-based
Event Calculus [4].

Complex Event Processing is particularly important in software agents. Nat-
urally most agent-oriented languages, architectures and frameworks are to some
extent event-oriented and are able to perform event-processing. The issue of
Event Processing Agents (EPAs) is of growing importance in the industrial field,
since agents and multi-agent systems are able to manage rapid change and thus
to allow for scalability in applications aimed at supporting the ever-increasing
level of interaction.

This paper is concerned with logical agent-oriented languages and frame-
works, i.e., those approaches whose semantics is rooted in Computational Logic.
There are several such approaches, some mentioned below (for a recent survey
cf., e.g., [5]). For lack of space, we are not able here to discuss and compare
c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 70–91, 2015.
DOI: 10.1007/978-3-319-26184-3 5

ACE: A Flexible Environment for Complex Event Processing 71

their event-processing features. Rather, we recall only the ones that have more
strongly influenced the present work.

A recent but well-established and widely used approach to CEP in computa-
tional logic is ETALIS [6,7], which is an open source plug-in for Complex Event
Processing implemented in prolog which runs in many Prolog systems (available
at URL http://code.google.com/p/etalis/). ETALIS is in fact based on a declara-
tive semantics, grounded in Logic Programming. Complex events can be derived
from simpler events by means of deductive rules. ETALIS, in addition, supports
reasoning about events, context, and real-time complex situations, and has a
nice representation of time and time intervals aimed at stream reasoning. Rela-
tions among events can be expressed via several operators, reminiscent of those
of causal reasoning and Event Calculus.

In the realm of logical agents, some work about CEP is presented in [8,9],
which discuss the issue of complex reactivity by considering the possibility of
selecting among different applicable reactive patterns by means of simple prefer-
ences. In [10], more complex forms of preferences among possible reactive behav-
iors are introduced. Such preferences can be also defined in terms of “possible
worlds” elicited from a declarative description of a current or hypothetical sit-
uation, and can depend upon past events, and the specific sequence in which
they occurred. [11–13] discuss event-based memory-management, and temporal-
logic-based constraints for complex dynamic self-checking and reaction.

Teleo-Reactive Computing by Kowalski and Sadri [14,15] is an attempt to
reconcile and combine conflicting approaches in logic programming, production
systems, active and deductive databases, agent programming languages, and the
representation of causal theories in AI, also considering complex events. In this
approach, enhanced reactive rules determine the interaction of an agent with the
environment in a logical but not necessarily “just” deductive way. The semantics
relies upon an infinite Herbrand-like model which is incrementally constructed.

In this paper, we propose a novel conceptual view of Complex Event Process-
ing in logical agents and a formalization of the new approach. We observe that a
complex event cannot always result from simple deterministic incremental aggre-
gation of simple events. Rather, an agent should be able to possibly interpret a
set of simple events in different ways, and to choose among possible interpreta-
tions. We also consider complex actions, seen as agent-generated events. To this
aim, we propose to equip agents with specific modules, that we call Event-Action
modules (whose first general idea was provided in [16,17]), describing complex
events and complex actions. Such modules are activated by a combination of sim-
ple events, and may return: (i) possible interpretations of a set of simple events
in terms of complex events; (iii) detection of anomalies; (iv) (sets of) actions
to perform in response. An Event-Action module is re-evaluated whenever new
instances of the “triggering” events become available, and may adopt any rea-
soning technique, including preferences, to identify plausible scenarios and make
a choice in case of several possibilities.

Each agent can be in principle equipped with a number of such modules, pos-
sibly defined in different languages/formalisms. Also, in order to reason about

http://code.google.com/p/etalis/

72 S. Costantini

events an agent may have to resort to extracting knowledge from heterogeneous
external sources, that in general cannot be “wrapped” and considered as agents.
We draw inspiration from the Multi-Context Systems (MCS) approach, which
has been proposed to model information exchange among several knowledge
sources [18–20]. MCSs are purposely defined so as to avoid the need to make such
sources in some sense homogeneous: rather, the approach deals explicitly with
their different representation languages and semantics. Heterogeneous sources
are called “contexts” and in the MCS understanding are fundamentally differ-
ent from agents: in fact, contexts do not have reactive, proactive and social
capabilities, while it is assumed that they can be queried and updated. MCSs
have evolved from the simplest form [18] to managed MCS (mMCS) [21], and
reactive mMCS [20] for dealing with external inputs such as a stream of sensor
data. MCSs adopt “bridge rules” for knowledge interchange, which are special
rules assumed to be applied whenever applicable, so that contexts are constantly
“synchronized”.

In this paper we propose the software engineering approach of transforming
an agent into an Agent Computational Environment (ACE) composed of: (1) the
“main” agent program, or “basic agent”; (2) a number of Event-Action modules;
(3) a number of external contexts that the agent is able to access. We assume
the following. (i) Agents and modules can query (sets of) contexts, but not
vice versa. (ii) Agents and modules are equipped, like contexts in MCSs, with
bridge rules for knowledge interchange. Their application is however not only
aimed at extracting knowledge from contexts, but also at knowledge interchange
among the basic agent and Event-Action modules. On the one hand modules
can access the agent’s knowledge base, on the other hand the agent can access
modules’ conclusions. (iii) We do not make assumptions about how the various
components are defined, except that they are based upon Computational Logic.
We propose a full formalization with a semantics, where again we draw inspira-
tion from MCSs’ equilibrium semantics, on which we make necessary non-trivial
enhancements. However, we devise a smooth extension which introduces as little
additional technical machinery as possible. The approach proposed here intro-
duces substantial advancements with respect to preliminary work presented in
[16,17]. The formalization and the semantics are fully novel.

To demonstrate practical applicability of ACEs, we discuss a prototypical
example that we have experimented by using the DALI agent-oriented language
[22,23]. In the experimental setting we have adopted Answer Set Programming
(ASP) for implementing Event-Action modules. In fact, Answer Set Program-
ming (cf., among many, [24–27]) is a well-established logic programming para-
digm where a program may have several (rather than just one) “model”, called
“answer set”, each one representing a possible interpretation of the situation
described by the program. We show how ASP-based Event-Action modules can
be defined in a logic-programming-like fashion (we adopt in particular a DALI-
like syntax) and then translated into ASP and executed via an ASP plugin
integrated into the DALI interpreter. We define precise guidelines for the trans-
lation, and provide a practical example.

ACE: A Flexible Environment for Complex Event Processing 73

The paper is organized as follows. In Sect. 2 we provide the necessary back-
ground on MCSs. In Sect. 3 we present the proposal, its formal definition and
its semantics. In Sects. 4 and 5 we discuss one particular instance, based upon
DALI and ASP modules. Finally, in Sect. 6 we discuss some related work and
conclude.

2 Background

Managed Multi-Context systems (mMCS) [19–21]) model the information flow
among multiple possibly heterogeneous data sources. The device for doing so is
constituted by “bridge rules”, which are similar to prolog or, more precisely, dat-
alog rules (cf., e.g., [28] a for survey about datalog and prolog and the references
therein for more information) but allow for knowledge acquisition from external
sources, as in each element of their “body” the “context”, i.e. the source, from
which information is to be obtained is explicitly indicated. In the short summary
of mMCS provided below we basically adopt the formulation of [20], which is
simplified w.r.t. [21].

Reporting from [19], a logic L is a triple (KBL;CnL;ACCL), where KBL is
the set of admissible knowledge bases of L, which are sets of KB-elements (“for-
mulas”); CnL is the set of acceptable sets of consequences, whose elements are
data items or “facts” (in [19] these sets are called “belief sets”; we adopt the more
neutral terminology of “data sets”); ACCL : KBL → 2CnL is a function which
defines the semantics of L by assigning each knowledge-base an “acceptable” set
of consequences. A managed Multi-Context System (mMCS) M = (C1, . . . , Cn)
is a heterogeneous collection of contexts Ci = (Li; kbi; bri) where Li is a logic,
kbi ∈ KBLi

is a knowledge base (below “knowledge base”) and bri is a set of
bridge rules. Each such rule is of the following form, where the left-hand side
o(s) is called the head, also denoted as hd(ρ), the right-hand side is called the
body, also denoted as body(ρ), and the comma stand for conjunction.

o(s) ←(c1 : p1), . . . , (cj : pj),
not (cj+1 : pj+1), . . . , not (cm : pm).

For each bridge rule included in a context Ci, it is required that kbi ∪ o(s)
belongs to KBLi and, for every k ≤ m, ck is a context included in M , and
each pk belongs to some set in KBLk

. The meaning is that o(s) is added to the
consequences of kbi whenever each atom pr, r ≤ j, belongs to the consequences
of context cr, while instead each atom pw, j < w ≤ m, does not belong to the
consequences of context cs. While in standard MCSs the head s of a bridge rule
is simply added to the “destination” context’s knowledge base kb, in managed
MCS kb is subjected to an elaboration w.r.t. s according to a specific operator o
and to its intended semantics: rather than simple addition. Formula s itself can
be elaborated by o, for instance with the aim of making it compatible with kb’s
format, or via more involved elaboration.

If M = (C1, . . . , Cn) is an MCS, a data state or, equivalently, belief/
knowledge state, is a tuple S = (S1, . . . , Sn) such that each Si is an element

74 S. Costantini

of Cni. Desirable data states are those where each Si is acceptable accord-
ing to ACCi. A bridge rule ρ is applicable in a knowledge state iff for all
1 ≤ i ≤ j : pi ∈ Si and for all j + 1 ≤ k ≤ m : pk �∈ Sk. Let app(S) be
the set of bridge rules which are applicable in a data state S.

For a logic L, FL = {s ∈ kb | kb ∈ KBL} is the set of formulas occur-
ring in its knowledge bases. A management base is a set of operation names
(briefly, operations) OP , defining elaborations that can be performed on for-
mulas, e.g., addition of, revision with, etc. For a logic L and a management
base OP , the set of operational statements that can be built from OP and
FL is FOP

L = {o(s) | o ∈ OP, s ∈ FL}. The semantics of such statements is
given by a management function, which maps a set of operational statements
and a knowledge base into a modified knowledge base. In particular, a man-
agement function over a logic L and a management base OP is a function
mng : 2FOP

L × KBL → 2KBL \ ∅. The management function is crucial for knowl-
edge incorporation from external sources, as it is able to perform any elaboration
on the knowledge base given the acquired information.

Semantics of mMCS is in terms of equilibria. A data state S = (S1, . . . , Sn)
is an equilibrium for an MCS M = (C1, . . . , Cn) iff, for 1 ≤ i ≤ n, kb′

i = Si ∈
ACCi(mngi(app(S), kbi)). Thus, an equilibrium is a global data state composed
of acceptable data states, one for each context, encompassing inter-context com-
munication determined by bridge rules and the elaboration resulting from the
operational statements and the management functions.

Equilibria may not exist (where conditions for existence have been stud-
ied, and basically require the avoidance of cyclic bridge-rules application), or
may contain inconsistent data sets (local inconsistency, w.r.t. local consistency).
A management function is called local consistency (lc-) preserving iff, for every
given management base, kb′ is consistent. It can be proved that a mMCS where
all management functions are lc-preserving is locally consistent. Algorithms for
computing equilibria have recently been proposed (see, e.g., [29] and the refer-
ences therein). Notice that bridge rules are intended to be applied whenever they
are applicable. In [20], where mMCS are adapted so as to continuous reasoning in
dynamic environments, where contexts’ contents are updated by external input,
the notion of a “run” is in fact introduced. A run of mMCS M under a sequence
Obs0, Obs1, . . . of observations is a sequence R = 〈S0,KB0〉, 〈S1,KB1〉 . . . such
that 〈S0,KB0〉 is a full equilibrium of M under Obs0, and for i > 0 〈Si,KBi〉 is
a full equilibrium of M under Obsi, where a full equilibrium is obtained by taking
the observations into consideration in every context for bridge rules application:
in fact, observation literals can occur in bridge rule bodies.

3 Agents as Computational Environments

In the approach that we present here, an agent is equipped with a number of
Event-Action modules for performing Complex Event Processing, and with a
number of contexts which are known to the agent and to which the agent may
resort for gathering information. We assume the agent to be based upon its

ACE: A Flexible Environment for Complex Event Processing 75

own underlying logic, and so are the Event-Action modules and the contexts.
Different Event-Action modules may be based on different logics, depending
upon the task they are supposed to perform: for instance, some modules might
be aimed at event interpretation, some others at learning patterns from event
occurrences, some others at evaluating possible courses of action, etc.

In order to finalize an agent’s operation, we assume that each Event-Action
module admits just one acceptable sets of consequences, differently from MCSs
where each context may in principle admit several. In such case, we assume to
choose one by means of some kind of selection function. In [20] the problem is
mentioned in the conclusions, referring to unwanted sources of non-determinism
that may arise. They thus suggest to adopt a global preference criteria to fix
the problem, and also mention some existing preference functions that might be
exploited. However, as seen below we will take the problem as solved for contexts
to which agents are able to refer to, so we will care only about consequences
selection for Event-Action modules.

Let a logic L be defined as reported in previous section.

Definition 1. Let a Logic with Preferences LP be a quadruple (KBLP ;CnLP ;
ACCLP ;P) where ACCLP is a function which extends the one defined before for
a logic L since it selects the “preferred” one among acceptable set of consequences
of the given knowledge base, according to the preference criterion P.

As seen, we leave the preference criterion as an open parameter, as each
module may in principle employ a different one. In general, a preference criterion
is some kind of device which induces a total order on CnLP . On one extreme
it can even be random choice, though in general domain/application-dependent
criteria will be better suited.

Similarly to what is done in Linear Time Logic (LTL), we assume a discrete,
linear model of time where each state/time instant can be represented by an
integer number. States t0, t1, . . . can be seen as time instants in abstract terms.
In practice we will have ti+1 − ti = δ, where δ is the actual interval of time after
which we assume a given system to have evolved. In particular, agent systems
usually evolve according to the perception of events (among which we include
communications with other agents).

Definition 2. Let Π = Π1,Π2, . . . be a sequence of sets of events, where Πi is
assumed to have been perceived by given agent at time i > 0. Each event in Π,
say E, can be denoted as E : ti where ti is a time-stamp indicating time i, and
meaning that E ∈ Πi. By E : [ti, tj] with 1 ≤ i ≤ j we mean that E persists
during an interval, i.e., we have E : ts for every i ≤ s ≤ j.

A number of expressions can be defined on events, for instance: E1, . . . , Ek :
[ti, tj] to mean that all the Eis, i ≤ k, persist in given interval; E1, . . . , Ek \ E :
[ti, tj] intending that all the Eis persist in given interval, where E does not
occur therein. We do not go into the detail, but we assume that some syntax
is provided for defining Event Expressions, where each such expression can be
evaluated to be true or false w.r.t. Π.

76 S. Costantini

Definition 3. Let H be a set of sequences of sets of events as defined above,
i.e., Π ∈ H is of the form Π = Π1,Π2, . . . Let E be a set of event expressions
and let evE : E ,H → {true, false} be an evaluation function which establishes
whether an event expression ε ∈ E is true/false w.r.t. Π ∈ H.

Below we define Event-Action modules, which include an event expression
that functions as a trigger, meaning that the module is evaluated whenever
the given event expression is entailed by the present event sequence. Event-
Action modules may resort to bridge rules for obtaining knowledge from both
external contexts, and from the agent’s knowledge base. They elicit, by means of
some kind of reasoning, complex events that may have occurred and/or actions
that the agent might perform. In case several possibilities arise, preferences are
employed to finalize the reasoning.

Definition 4. We let an Event-Action module be defined as M = (LM
P ; kbM ;

brM ;mngM ; trM) where LM
P
i is a Logic with Preferences (as defined above) and

kbM ∈ KBLM
P is a knowledge base. brM is a set of bridge rules of the form

defined for mMCS (seen in previous section), and mngM is the management
function adopted by the module. trM is an event expression which triggers the
module evaluation, where trM belongs to a given set E associated to evaluation
function evE .

Definition 5. An Event-Action module M is active w.r.t. sequence Π of sets
of events (or simply “active” if leaving Π implicit) iff evE(trM ,Π) = true, i.e.,
if Π enables the module evaluation.

Complex events and/or actions derived from the evaluation of an active
Event-Action module will be included in its set of consequences, whose contents
will also depend upon bridge-rules application.

An agent program can be defined in any agent-oriented computational-logic-
based programming language, such as, e.g., DALI (cf. [22,23]), AgentSpeak (cf.
[30,31] and the references therein), GOAL (cf. [32] and the references therein)
3APL (cf. [33] and the references therein), METATEM (cf. [34] and the references
therein), KGP (cf [36] and the references therein), or any other (cf. [35] for a
survey). So, to our purposes we provide a very simple general definition of a basic
agent, able to encompass any of the mentioned approaches. Only, we add bridge
rules, in a form which allows an agent to access contexts, and to incorporate
Event-Action modules results that can be either complex events or complex
actions.

Definition 6. We let a basic agent be defined as A = (LA; kbA; brA,mngA)
where LA is a logic, kbA ∈ KBLA

is a knowledge base (encompassing the agent
program), and brA is a set of bridge rules of the form:

o(s) ←B1, . . . , Bj,

notCj+1, . . . , notCk.

ACE: A Flexible Environment for Complex Event Processing 77

where, for j > 0, k ≥ 0, each of the Bs and Cs can be in one of the following
forms, where p is an atom: (i) (c : p) where c is a context. (ii) (m : ce : p)
or (m : act : p) where m is an Event-Action module, ce is a constant mean-
ing “complex event” and act is a constant meaning “complex action”. mngA is
the management function which, analogously to what seen before for mMCSs,
incorporates the conclusion o(s) of bridge rules into the agent’s knowledge base.

Thus, agent A can update its knowledge base according to what can or cannot
be concluded by a set of contexts and Event-Action modules and according to
its own knowledge management policies.

Definition 7. An Agent Computational Environment (ACE) A is a tuple

〈A,M1, . . . ,Mr, C1, . . . , Cs〉

where, for r, s ≥ 0, A is a basic agent, the Mis are Event-Action modules and
the Cis are contexts in the sense of MCSs1. All components can include bridge
rules. For the basic agent A they are of the form just seen above. For the other
components they are of the form seen for mMCSs, with the following restrictions
on bridge rule bodies: both contexts and the basic agent A can be mentioned in
bodies of bridge rules in the Mis; only contexts can be mentioned in bodies of
bridge rules in the Cis.

That is, contexts can only query other contexts; Event-Action modules can
query contexts, but also the basic agent (thus, they have some access to its
knowldedge base); the basic agent can query every component (and will in gen-
eral interact with the environment and with other agents).

Definition 8. Let A = 〈A1, . . . , Ah〉 be an ACE, defined as above (i.e., the
Ais include the basic agent, and, possibly, Event-Action modules and contexts).
A data state of A is a tuple S = (S1, . . . , Sh) such that each of the Sis is an
element of Cni, according to the logic in which Si is defined.

As for MCSs, desirable data states are those where each Si is acceptable
according to ACCi, taking bridge rules application into account. However, bridge
rules applicability here is different. In fact, it is required that each Event-Action
module which is queried is also active. So, the app function must be extended
w.r.t. mMCSs, as for determining which bridge rules can be applied in a certain
data state it will have to take into consideration also the sequence of sets of
events occurred so far.

Definition 9. Let S be a data state of ACE A, and let Π be a sequence of
sets of events. A bridge rule ρ is applicable in S given Π iff every Event-Action
module mentioned in the body is active w.r.t. Π, and for every positive literal
in the body referring to component Ai the atom occurring therein belongs to Si

1 The acronym “ACE” emerged by chance: nevertheless, with the occasion the author
wishes to dedicate the ACE approach to the memory of Alan Turing.

78 S. Costantini

and for every negative literal in the body referring to component Ai the atom
occurring therein does not belong to Si. Let app(S,Π) be the set of bridge rules
which are applicable in a data state S w.r.t. sequence of sets of events Π.

We can extend to ACEs the definition of equilibrium already provided for
mMCSs.

Definition 10. A data state S = (S1, . . . , Sn) of ACE A is an equilibrium w.r.t.
sequence of sets of events Π, and is then denoted as ΞAΠ , iff for 1 ≤ i ≤ n,
kb′

i = Si ∈ ACCi(mngi(app(S,Π), kbi)).

For every component which based upon a preferential logic (i.e., at least
Event-Action modules) ACCi is, as said before, univocal. It is easy to see that
if the set of contexts included in ACE A constitutes in itself an mMCS which
admits equilibria, then also A does so. As soon as the sequence of set of events
acquires more elements over time, this determines new equilibria to be formed.

Definition 11. Given ACE A and sequence of sets of events Π = Π1,Π2, . . . ,
Πk, . . ., the corresponding ACE-Evolution is the sequence of equilibria ΞAΠ1 ,
ΞAΠ1,Π2 , . . . , ΞAΠ1,Π2,...,Πk , . . .

This implies that each Event-Action module is either evaluated or not in
different stages of an ACE’s evolution. In case a bridge rule queries a module
which at that stage is not active, no result will be returned. This is a departure
from MCSs, where each literal in a bridge rules is supposed to always evaluate
to either true or false. In case of ACEs, some bridge rules will be “idle” at some
evolution stages, i.e., unable to return results. Results may anyway have been
returned previously or may be returned later, whenever the involved modules
become active. Event-Action modules might be for instance defined in ETALIS,
or in Reactive Answer Set Programming [37], or in Abductive Logic Program-
ming or in many other formalisms.

For lack of space we cannot discuss verification. However we may notice
that via LTL (Linear Temporal Logic), interesting properties of an ACE can be
defined and verified. For instance, for proposition ϕ it can be checked whether ϕ
holds for agent A in some equilibrium reached at a certain time or within some
time interval.

4 Event-Action Modules in DALI

The ACE framework is especially aimed at designing agent-based computational
environments involving heterogeneous components. Purposely, the proposal does
not make assumptions about the logics and the preference rules the various com-
ponent are based upon. In order to make the proposal less abstract by demon-
strating its practical applicability, in this section we however report about an
experiment that we have been developing in DALI, where: the basic agent is a
DALI agent; contexts are simply prolog knowledge bases; Event-Action modules

ACE: A Flexible Environment for Complex Event Processing 79

are defined in a DALI-like syntax, and are then translated into Answer Set Pro-
gramming (ASP), and thus executed by means of the ASP plugin which has been
integrated into the DALI interpreter. ASP is in fact quite suitable for obtaining
plausible scenarios from a set of constraints. Several approaches to preferences
have been defined for ASP: cf., e.g., [20] and the references therein, and also
[38–41] and [42,43]). The translation is discussed in the next section.

In the examples below syntax is reminiscent of DALI, which is a prolog-
like language with predicates in lowercase and variables in uppercase. Postfix E
designs a predicate as an event, postfix A as an action, and postfix P an event
which has occurred in the past. Special keywords indicate, for the convenience
of programmers and readers, different parts of each module. However, there is
no special reason for adopting these keywords rather than any other syntax.

4.1 Examples of Event-Action Modules

Deriving Complex Events. The following example illustrates an Event-
Action module evaluating symptoms of either pneumonia, or just flu, or both
(clearly, we do not aim at medical precision). The Event-Action module will be
activated whenever its triggering events occur within a certain time interval, and
according to specific conditions: in the example, the module is evaluated when-
ever in the last two days both high temperature and intense cough have been
recorded. For the sake of conciseness the example is propositional, thus referring
to an unidentified single patient. In general, it might, by means of introducing
variables, refer to a generic patient/person.

EVENT-ACTION-MODULE diagnosis

TRIGGER
(high temperatureE AND intense coughE) : [2days]
COMPLEX EVENTS
suspect flu OR suspect pneumonia

suspect flu :- high temperatureP .
suspect pneumonia :- high temperatureP : [4days], intense coughP .
suspect pneumonia :-

diagnosis(clinical history , suspect pneumonia) : diag knowledge base.
PREFERENCES
suspect flu :- patient is healty .
suspect pneumonia :- patient is at risk .
ACTIONS
stay in bedA :- suspect flu.
take antibioticA :- suspect flu,

high temperatureP : [4days], not suspect pneumonia.
take antibioticA :- suspect preumonia.
consult lung doctorA :- suspect preumonia.
MANDATORY
suspect preumonia :- high temperatureP : [4days],

suspect fluP , take antibioticP : [2days].

80 S. Costantini

From given symptoms, either a suspect flu or a suspect pneumonia or both
can be derived. This is stated in the COMPLEX EVENTS section, which in
general lists the complex events that the module might infer from the given
definition. For suspecting pneumonia high temperature should have lasted for at
least four days, accompanied by intense cough. Pneumonia is also suspected if the
patient’s clinical history suggests this might be the case. This is an example of a
bridge rule, as the analisys of clinical history is demanded to an external context,
here indicated as diag knowledge base. Notice that, in our implementation, every
predicate not defined within the module is obtained from the agent’s knowldge
base via a standard bridge rule, that might look, for agent Ag, of the form
A :- A : Ag. As stated before in fact, in an ACE every Event-Action module has
access, via bridge rules, to the basic agent knowledge base.

Explicit preferences are expressed in the PREFERENCES section. A con-
clusion is preferred if the conditions are true: therefore, in this case it is stated
that hypothesizing a flu should be preferred in case the patient is healthy, while
pneumonia is the preferred option for risky patients. Actions to undertake in the
two cases are specified, and the agent can access them via bridge rules. In this
case, if a flu is suspected then the patient should stay in bed, and if the high
temperature persists then an antibiotic should also be assumed (even if pneumo-
nia is not suspected). In case of suspect pneumonia, an antibiotic is mandatory,
plus a consult with a lung doctor.

The MANDATORY section of the module includes constraints, that may be
of various kinds: in this case, it specifies which complex events must be manda-
torily inferred in module (re)evaluations if certain conditions occur. Specifically,
pneumonia is to be assumed mandatorily whenever flu has been previously
assumed, but high temperature persists despite at least two days of antibiotic
therapy.

Monitoring the Environment. The next Event-Action-module models an
agent’s behavior if encountering a traffic light. The triggering events are the
presence of the traffic light, and the color of the traffic light as perceived by
the agent. The objective of the module is to assess whether the observed color
is correct (CHECK section), to detect and manage possible anomalies, and to
determine what to do then. The module evaluates as correct any color which
is either red or yellow or green. Section ANOMALIES detects violations to the
expected color or color sequence which is, namely, yellow after green, red after
yellow and green after red. Actions for both the normal and anomalous case are
specified. Postfix P indicates the last previous value of an event.

Thus, if the agent meets a traffic light which is, say, red, then the agent
stops, and the event colorE(tl, red) is recorded as a past event in the form
colorP (tl, red). If, after some little while, the event colorE(tl, green) arrives,
then the module is re-evaluated and the agent passes. The ANOMALIES section
copes with two cases: (i) the color is incorrect, e.g., the traffic light might be
dark or flashing; (ii) the agent has observed the traffic light for a while, and
the color sequence is incorrect. This is deduced by comparing the present color
colorE (tl , c1) with previous color colorP(tl , c2). Actions to undertake in case of

ACE: A Flexible Environment for Complex Event Processing 81

anomaly are defined, that in the example imply passing with caution and report-
ing to the police in the former case, and choosing another route and reporting
to the police in the latter. Anomaly detection is in our opinion relevant, as
anomalies in event occurrence may be considered themselves as particular (and
sometimes important) instances of complex events.

EVENT-ACTION-MODULE traffic

TRIGGER traffic lightE(tl) AND colorE(tl ,C)
CHECK
color ok(tl ,C),C = red XOR
color ok(tl ,C),C = green XOR
color ok(tl ,C), C = yellow :- colorE(tl ,C)

ANOMALIES
anomaly1 (tl) :- colorE(tl ,C), not color ok(tl ,C).
anomaly2 (tl) :- colorE(tl , red), not colorP(tl , yellow).
anomaly2 (tl) :- colorE(tl , yellow), not colorP(tl , green).
anomaly2 (tl) :- colorE(tl , green), not colorP(tl , red).

ACTIONS
stopA :- color ok(tl , red).
stopA :- color ok(tl , yellow).
passA :- color ok(tl , green).

ANOMALY MANAGEMENT ACTIONS
pass with cautionA,
report to policeA(tl) :- anomaly1 (tl).
stopA,
change wayA,
report to policeA(tl) :- anomaly2 (tl)

Generating Complex Actions. The last example is related to what happens
when two persons meet. In such a situation, it is possible that the one who first
sees the other smiles, and then either simply waves or stops to shake hands:
section RELATED EVENTS specifies, as a boolean combination, events that
may occur contextually to the triggering ones. Some conditions are specified
on these events, for instance that one possibly smiles and/or waves if (s)he is
neither in a bad temper nor angry at the other person. Also, one who is in a
hurry just waves, while good friends or people who meet each other in a formal
setting should shake hands. In this sample formulation, actions simply consist in
returning what the other one does, and it is anomalous not doing so (e.g., if one
smiles and the other does not smile back). The expression meet friend(A,F)
means that agent A meets agent F : then, each one will possibly make some
actions and the other one will normally respond. This module is totally revertible,
in the sense that it manages both the case where “we” meet a friend and the
case where vice versa somebody else meets us. This is the reason why in some
module sections events have no postfixes. In fact, meet friend(A,F), smile, wave
and shake hands are present events if a friend meets “us”, and are actions if
“we” meet a friend.

Postfixes appear in the ACTIONS and ANOMALY sections, where all ele-
ments (whatever their origin) have become past events to be coped with.

82 S. Costantini

The PRECONDITIONS section expresses action preconditions, via connective :
<. Section MANDATORY defines obligations, here via a rule stating that it
is mandatory to shake hands in a formal situation. The anomaly management
section may include counter-measures to be taken in case of unexpected behavior,
that in the example may go from asking for explanation to getting angry, etc.

EVENT-ACTION-MODULE meet

TRIGGER meet friend(A,F),
RELATED EVENTS
smile(A,F)OR (wave(A,F) XOR shake hands(A,F))

PRECONDITIONS
smileA(A,F) :<not angry(A,F), not bad temper(A).
waveA(A,F) :<not angry(A,F).
shake handsA(A,F) :<

good friends(A,F), not angry(A,F), not in a hurry(A), not in a hurry(F).

MANDATORY
shake handsA(A,F) :- formal situation(A,F).

ACTIONS
smiled(X,Y) :- smileP(X,Y).
waved(X,Y) :-waveP(X,Y).
shaken hands(X ,Y) :- shake handsP(X ,Y).
smileA(A,F) :- smiled(F,A).
waveA(A,F) :-waved(F,A).
shake handsA(A,F) :- shaken hands(F ,A).

ANOMALY
anomaly1 (meet friend(A,F)) :- smileP(A,F), not smileA(F,A).
anomaly2 (meet friend(A,F)) :- waveP(A,F), notwaveA(F,A).
anomaly3 (meet friend(A,F)) :- shake handsP(A,F), not shake handsA(F,A).
ANOMALY MANAGEMENT ACTIONS
. . .

5 ASP Representation of DALI Event-Action Modules

The examples that we have illustrated above have been presented in a DALI-
like syntax. However, DALI (being a prolog-like language with a minimal model
semantics [44]) cannot account for the different scenarios outlined by Event-
Action modules. In fact, each module can perform a selection (according to
conditions and preferences) among different complex events or complex actions
that might result from the given simple events and the available complex events/
actions description. In order to suitably implement such intended behavior, we
have devised a prototypical implementation where Event-Action modules are
translated into Answer set programs. Answer set programming (ASP) is nowa-
days a well-established and successful programming paradigm based upon answer
set semantics [24,45–47], with applications in many areas (cf., e.g., [25–27] and
the references therein). An answer set program may have several answer sets,
each one representing a solution of the problem encoded in the program. As seen
below, each Event-Action module can be translated in a fully automated way
into an ASP module.

ACE: A Flexible Environment for Complex Event Processing 83

The way of evaluating Event-Action modules within a DALI ACE basic func-
tioning is the following.

– At each agent’s evolution step, i.e., when new events have been perceived, ASP
modules corresponding to Event-Action modules are (re-)evaluated given the
history of all events perceived, and the agent’s current knowledge base. It
is required to re-evaluate a module whether the condition in the TRIGGER
headline is satisfied. As seen, this condition is specified in terms of a boolean
combination of present and/or past events. DALI is equipped with timestamps
and time intervals and is thus able to perform such evaluation.

– A module will admit as a result of evaluation none, one or more answer sets.
Non-existence of answer sets can result from constraint violation, and implies
that no reaction to triggering events can be determined at present.

– If the module admits answer sets, one answer set among the available ones
must be selected. Answer set selection is performed according to the prefer-
ences expressed in section PREFERENCES. If there are answer sets which
are equally preferred, the current solution in the prototypical implementation
is random choice. Methods for choosing answer sets according to preferences
are discussed for instance in [38,48].

5.1 Answer Set Programming (ASP) in a Nutshell

Answer Set Programming (ASP) is a logic programming paradigm based upon
logic programs with default negation under the answer set semantics, which
[24,45]. This semantics considers logic programs as sets of inference rules (more
precisely, default inference rules). In fact, one can see an answer set program as a
set of constraints on the solution of a problem, where each answer set represents
a solution compatible with the constraints expressed by the program. The reader
may refer, among many, to [24,25,27,45] for a presentation of ASP as a tool for
declarative problem-solving.

Syntactically, an answer set program (or, for short, just “program”) Π is a
collection of rules of the form H ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n where
H and each Lis, m ≥ 0 and n ≥ 0, are atoms. Symbol ← is usually indicated
with :- in practical systems. An atom Li and its negative counterpart notLi are
called literals. The left-hand side and the right-hand side of the clause are called
head and body, respectively. A rule with empty body is called a fact. A rule with
empty head is a constraint, where a constraint of the form ← L1, ..., Ln. states
that literals L1, . . . , Ln cannot be simultaneously true in any answer set.

A program may have several answer sets, each of which represents a solution
to the given problem which is consistent w.r.t. the problem description and
constraints. If a program has no answer set, this means that no such solution
can be found. and the program is said to be inconsistent (w.r.t. consistent).

In practical terms, a problem encoded by means of an ASP program is
processed by an ASP solver which computes the answer set(s) of the program,
from which the solutions can be easily extracted by abstracting away from irrel-
evant details. Several well-developed answer set solvers [49] can be freely down-
loaded by potential users. All solvers provide a number of additional constructs

84 S. Costantini

and features useful for practical programming, that for simplicity we do not con-
sider here. Solvers are periodically checked and compared over well-established
benchmarks, and over challenging sample applications proposed at the yearly
ASP competition (cf. [50]). The expressive power of ASP and its computational
complexity have been deeply investigated [51].

5.2 Translation Guidelines

The answer set programming (module) Π corresponding to a given Event-Action
module is obtained by translating into ASP the contents of sections COM-
PLEX EVENTS, CHECK, RELATED EVENTS, ANOMALIES and MANDA-
TORY. The translation can be fully defined and automated. Sections ACTIONS,
ANOMALY MANAGEMENT ACTIONS and PRECONDITIONS do not need
translation, as they are in fact composed of logic programming rules which by
definition are ASP rules. So, these sections are just copied (with some minor
modifications seen below) into the ASP version of the given Event-Action mod-
ule. Notice that we do not need stream or reactive answer set programming, as
triggers and time intervals are coped with by the underlying DALI interpreter.
Each module resulting from the translation is evaluated in the standard ASP
fashion whenever the conditions for doing so occur. The translation can be in
particular performed by exploiting the following ASP patterns. Please consider
that ASP solvers provide sophisticated and flexible programing constructs for
expressing many of these patterns. However, for the sake of clarity we consider
only the basic simple forms listed below.

conj In ASP, the conjunction among a number of elements a1, . . . , an is simply
expressed as conj ← a1, . . . , an.

or-xor Disjunction between two elements a and b is expressed by the cycle
a ← not b b ← not a. This disjunction is not exclusive, since either a or
b or both might be derived elsewhere in the program. To obtain exclusive
disjunction, a constraint ← a, b must be added. A constraint in ASP can be
read as it cannot be that all literals in the body are true. In the case of the
exclusive disjunction of a and b, it cannot be that both a and b belong to the
same answer set. Disjunction can also be expressed on several elements.

choice Choice, or possibility, or hypothesis, expressing that some element a
may or may not be included in an answer set, can be expressed by means
of a cycle involving a fresh atom, say na. The cycle is of the form a ←
not na na ← not a. Therefore, an answer set will contain either a or na, the
latter signifying the absence of a.

choyf Makes the choice pattern stronger: element a can be in fact chosen only
if certain conditions Conds are satisfied, is expressed by a choice pattern plus
a rule c ← Conds and a constraint ← a, not c. The constraint states that a
cannot be hypothesized in an answer set if c does not hold, i.e., if Conds are
not implied by that answer set.

mand Mandatory presence in an answer set of atom a defined by rule a ← Body
whenever Body is implied by that answer set can be obtained as follows.

ACE: A Flexible Environment for Complex Event Processing 85

In addition to the defining rule a ← Body , a constraint must be added of
the form ← not a,Body stating that it cannot be that an answer set implies
Body but does not contain a. The constraint is necessary for preventing a to
be ruled out by some other condition occurring elsewhere in the program.

Specifically, the translation can be performed by means of the following guide-
lines (a full and formal definition of the translation is not possible here for lack
of space).

– Sections COMPLEX EVENTS and RELATED EVENTS are basically coped
with by the conj and choice patterns. More involved combinations of events
may require the choyf and or-xor patterns.

– Constraints in the MANDATORY section can be expresses by means of the
mand pattern.

– Sections CHECK and ANOMALIES can be either translated by a plain trans-
position of their rules into ASP, or by exploiting the conj and or-xor patterns.

5.3 Translation Example

We provide below an example of translation, considering the Event-Action mod-
ule ‘diagnosis’ that we have presented before. Notice preliminarly that, for each
past event evP , it is possible to specify atoms of the form evP(N ,M) where
M is a unit of time (specifically, M can be seconds, minutes, days) and N is a
number of units of time. Such an atom is evaluated by means of a plugin, and
returns true (succeeds) in case event ev has been recorded at least once for each
of the N time units. E.g., evP(4 , days) succeeds whenever event ev has occurred,
and has consequently been recorded as a part event, at least once a day for four
days. A plugin is also provided for bridge rules: in fact, each atom p(args) : c
occurring in the body of such a rule is transformed into p(args, c) and evaluates
to true (with suitable instantiations of the arguments) if context c returns the
corresponding answer.

Concerning the Complex Events section, the translation procedure exploits
the or pattern for the expression:

suspect flu OR suspect preumonia

and then just copies the remaining rules of the section, with suitable syntactic
rearrangements. The result is the following:

suspect flu :-not suspect pneumonia.
suspect pneumonia :-not suspect flu.
suspect flu :- high temperatureP .
suspect pneumonia :- high temperatureP(4 , days), intense coughP .
suspect pneumonia :-

diagnosis(clinical history , suspect pneumonia, diag knowledge base).

Translation of the MANDATORY section, i.e.:

suspect preumonia :-
high temperatureP : [4days], suspect fluP , take antibioticP : [2days].

86 S. Costantini

exploits the mand pattern, with result

:-not suspect preumonia,
high temperatureP(4 , days), suspect fluP , take antibioticP : (2 , days).

Rules in the ACTIONS section are just copied (modulo minor rearrangements),
with result:
stay in bedA :- suspect flu.
take antibioticA :- suspect flu,

high temperatureP(4 , days), not suspect pneumonia.
take antibioticA :- suspect preumonia.
consult lung doctorA :- suspect preumonia.

Adapting the notation of [42], the PREFERENCES section

suspect flu :- patient is healty .
suspect pneumonia :- patient is at risk .

would be translated into the conditional p-lists:

suspect flu > suspect pneumonia :- patient is healty .
suspect pneumonia > suspect flu :- patient is at risk .

The (prototypical) Raspberry inference engine [52] would then be able to execute
the resulting program, thus returning the preferred answer set. The recent aspirin
system [38] might also be used.

6 Related Work Concluding Remarks

In this paper we have proposed ACE, as a framework for the design of component-
based agent-oriented environments where a “main” agent program, the basic
agent, is enriched with a number of Event-Action modules for Complex Event
Processing and complex actions generation, and with a number of external data
sources that can accessed via bridge rules, borrowed from MCSs. Components of
an ACE are in principle heterogeneous, though we assume them to be based upon
Computational Logic. The only condition for employing any computational-
logic-based language for defining ACE agents or Event-Action modules is that
such language must be extended with the possibility of defining bridge rules:
this improvement should not however imply either semantic or technical difficul-
ties. We have proposed a formalization and a semantics for ACE. We have also
discussed a prototypical experimentation of the approach in the DALI agent-
oriented programming language, employing ASP as an implementation tool.

A research work which is related to the present one is DyKnow [53], which
is a knowledge processing middleware framework providing software support for
creating streams representing high-level events concerning aspects of the past,
current, and future state of a system. Input is gathered from distributed sources,
can be processed at many different levels of abstraction, and finally transformed
into suitable forms to be used by reasoning functionalities. A knowledge process
specification is understood as a function. DyKnow is fully implemented, and has
been experimented in UAVs (Unmanned Aerial Vehicles) applications.

ACE: A Flexible Environment for Complex Event Processing 87

ACE can be considered as a generalization of such work, in that ACE:
(i) is agent-oriented; (ii) is aimed at managing heterogeneity in the defini-
tion/description of knowledge sources, that moreover can interact among them-
selves and with external sources; (iii) is aimed at providing a uniform semantics
of single components and of the overall system; (iv) is aimed at allowing for
verification of properties.

Several future directions are ahead of us. First, simple preferences are just
one possible way of selecting among plausible alternatives. More generally, we
plan to consider also informed choice deriving from a learning process: i.e., an
agent should learn from experience what is the “best” interpretation to give to a
situation, or which are the preference criteria to (dynamically) adopt. Learning
should be a never-ending process, as different outcomes might be more plausible
in different contexts and situations. Verification of ACE systems is a very relevant
aspect to be coped with. We believe that both a priori verification and run-time
assurance (cf., e.g., [54]) should be combined for ensuring desirable properties
of this kind of systems. Formalization and verification of MASs (Multi-Agent
Systems) composed of ACE agents is a further important issue that we intend
to consider. ACE agent systems can in principle be part of DACMACSs (“Data-
Aware Commitment-based MASs”). The approach of DACMACS, recently pro-
posed in [55,56] as an extension of DACMAS [57], includes (like in DACMAS)
the element of logical ontologies within Multi-Agent systems, but also allows
agents of the MAS to query heterogeneous external contexts, possibly with bi-
directional interchange of ontological definitions.

References

1. Chandy, M.K., Etzion, O., von Ammon, R.: 10201 executive summary and man-
ifesto - event processing. In: Chandy, K.M., Etzion, O., von Ammon, R. (eds.)
Event Processing. Number 10201 in Dagstuhl Seminar Proc., Dagstuhl, Germany,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2011)

2. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co.,
Greenwich (2010)

3. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
53–66. Springer, Heidelberg (2009)

4. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput.
4, 67–95 (1986)

5. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents:
a road map of current technologies and future trends. Comput. Intell. J. 23(1), 61–
91 (2007)

6. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Real-time complex event recog-
nition and reasoning - a logic programming approach. Appl. Artif. Intell. 26(1–2),
6–57 (2012)

7. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in ETALIS. Semant. Web 3(4), 397–407 (2012)

88 S. Costantini

8. Costantini, S., Dell’Acqua, P., Tocchio, A.: Expressing preferences declaratively in
logic-based agent languages. In: Proceedings of Commonsense 2007, the 8th Inter-
national Symposium on Logical Formalizations of Commonsense Reasoning. AAAI
Spring Symposium Series (2007). (a special event in honor of John McCarthy)

9. Costantini, S.: Answer set modules for logical agents. In: de Moor, O., Gottlob, G.,
Furche, T., Sellers, A. (eds.) Datalog 2010. LNCS, vol. 6702, pp. 37–58. Springer,
Heidelberg (2011)

10. Costantini, S., De Gasperis, G.: Complex reactivity with preferences in rule-based
agents. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 167–
181. Springer, Heidelberg (2012)

11. Costantini, S., De Gasperis, G.: Memory, experience and adaptation in logical
agents. In: Casillas, J., Mart́ınez-López, F.J., Vicari, R., De la Prieta, F. (eds.)
Management Intelligent Systems. AISC, vol. 220, pp. 17–24. Springer, Heidelberg
(2013)

12. Costantini, S.: Self-checking logical agents. In: Gini, M.L., Shehory, O., Ito, T.,
Jonker, C.M. (eds.) Proceedings of AAMAS 2013, 12th International Conference
on Autonomous Agents and Multi-Agent Systems, IFAAMAS/ACM, pp. 1329–
1330 (2013). (Extended Abstract)

13. Costantini, S., De Gasperis, G.: Meta-level constraints for complex event processing
in logical agents. In: Online Proceedings of Commonsense 2013, the 11th Interna-
tional Symposium on Logical Formalizations of Commonsense Reasoning (2013)

14. Kowalski, R.A., Sadri, F.: Reactive computing as model generation. New Gener.
Comput. 33(1), 33–67 (2015)

15. Kowalski, R.A., Sadri, F.: Teleo-reactive abductive logic programs. In: Artikis, A.,
Craven, R., Kesim Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Sergot Festschrift
2012. LNCS, vol. 7360, pp. 12–32. Springer, Heidelberg (2012)

16. Costantini, S., Riveret, R.: Event-action modules for complex reactivity in logi-
cal agents. In: Bazzan, A.L.C., Huhns, M.N., Lomuscio, A., Scerri, P. (eds.) Pro-
ceedings of AAMAS 2013, 13th International Conference on Autonomous Agents
and Multi-Agent Systems, IFAAMAS/ACM, pp. 1503–1504 (2014). (Extended
Abstract)

17. Costantini, S., Riveret, R.: Complex events and actions in logical agents. In:
Giordano, L., Gliozzi, V., Pozzato, G.L. (eds.) Proceedings of the 29th Italian
Conference on Computational Logic. CEUR Workshop Proceedings, vol. 1195, pp.
256–271. CEUR-WS.org (2014)

18. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence,
pp. 385–390. AAAI Press (2007)

19. Brewka, G., Eiter, T., Fink, M.: Nonmonotonic multi-context systems: a flexible
approach for integrating heterogeneous knowledge sources. In: Balduccini, M., Son,
T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic
Reasoning. LNCS, vol. 6565, pp. 233–258. Springer, Heidelberg (2011)

20. Brewka, G., Ellmauthaler, S., Pührer, J.: Multi-context systems for reactive rea-
soning in dynamic environments. In: Schaub, T. (ed.) ECAI 2014, Proceedings of
the 21st European Conference on Artificial Intelligence, IJCAI/AAAI (2014)

21. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In:
Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, IJCAI/AAAI, pp. 786–791 (2011)

22. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems.
In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI),
vol. 2424, p. 1. Springer, Heidelberg (2002)

ACE: A Flexible Environment for Complex Event Processing 89

23. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language.
In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 685–688.
Springer, Heidelberg (2004)

24. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the 5th International Conference
and Symposium on Logic Programming (ICLP/SLP 1988), pp. 1070–1080. The
MIT Press (1988)

25. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

26. Gelfond, M.: Answer sets. In: Lifschitz, V., van Hermelen, F., Porter, B. (eds.)
Handbook of Knowledge Representation. Elsevier, Amsterdam (2007)

27. Truszczyński, M.: Logic programming for knowledge representation. In: Dahl, V.,
Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 76–88. Springer, Heidelberg
(2007)

28. Apt, K.R., Bol, R.: Logic programming and negation: a survey. J. Logic Program.
19–20, 9–71 (1994)

29. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed evaluation of
nonmonotonic multi-context systems. JAIR, the Journal of Artificial Intelligence
Research (2015) (to appear)

30. Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using Jason
(tutorial paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol.
3900, pp. 143–164. Springer, Heidelberg (2006)

31. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In: Fikes,
R., Sandewall, E. (eds.) Proceedings of International Conference on Principles
of Knowledge Representation and Reasoning (KR), Cambridge, Massachusetts,
Morgan Kaufmann (1991)

32. Hindriks, K.V., van der Hoek, W., Meyer, J.-J.C.: GOAL agents instantiate inten-
tion logic. In: Artikis, A., Craven, R., Kesim Çiçekli, N., Sadighi, B., Stathis, K.
(eds.) Sergot Festschrift 2012. LNCS, vol. 7360, pp. 196–219. Springer, Heidelberg
(2012)

33. Dastani, M., van Riemsdijk, M.B., Meyer, J.C.: Programming multi-agent sys-
tems in 3APL. In: Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E.
(eds.) Multi-Agent Programming: Languages, Platforms and Applications. Multia-
gent Systems, Artificial Societies, and Simulated Organizations, vol. 15, pp. 39–67.
Springer, New York (2005)

34. Fisher, M.: MetateM: The story so far. In: Bordini, R.H., Dastani, M., Dix, J.,
Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp. 3–22.
Springer, Heidelberg (2006)

35. Bordini, R.H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A.E., Gómez-Sanz,
J.J., Leite, J., O’Hare, G.M.P., Pokahr, A., Ricci, A.: A survey of programming
languages and platforms for multi-agent systems. Informatica (Slovenia) 30(1),
33–44 (2006)

36. Bracciali, A., et al.: The KGP model of agency for global computing: computational
model and prototype implementation. In: Priami, C., Quaglia, P. (eds.) GC 2004.
LNCS, vol. 3267, pp. 340–367. Springer, Heidelberg (2005)

37. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set program-
ming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp.
54–66. Springer, Heidelberg (2011)

90 S. Costantini

38. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: customizing answer
set preferences without a headache. In Bonet, B., Koenig, S. (eds.) Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1467–1474.
AAAI Press (2015)

39. Bienvenu, M., Lang, J., Wilson, N.: From preference logics to preference languages,
and back. In: Proceedings of the Twelfth International Conference on the Principles
of Knowledge Represent and Reasoning (KR 2010), pp. 414–424 (2010)

40. Brewka, G., Niemelä, I., Truszczyński, M.: Preferences and nonmonotonic reason-
ing. AI Mag. 29(4), 69–78 (2008)

41. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey
of preference handling approaches in nonmonotonic reasoning. Comput. Intell.
20(12), 308–334 (2004)

42. Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP.
Fundamenta Informaticae 105(1–2), 1–33 (2010)

43. Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on
resource consumption and production in ASP. J. Algorithms Cogn. Inform. Logic
64(1), 3–15 (2009)

44. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent lan-
guages. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005.
LNCS (LNAI), vol. 3904, pp. 106–123. Springer, Heidelberg (2006)

45. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9, 365–385 (1991)

46. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

47. Marek, V.W., Truszczyński, M.: Stable logic programming - an alternative logic
programming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren,
D.S. (eds.) Logic Programming Paradigm, pp. 375–398. Springer, New York (1999)

48. Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP.
Fundam. Inform. 105(1–2), 1–33 (2010)

49. Web-references: Some ASP solvers Clasp: potassco.sourceforge.net; Cmodels: www.
cs.utexas.edu/users/tag/cmodels; DLV: www.dbai.tuwien.ac.at/proj/dlv; Smod-
els: www.tcs.hut.fi/Software/smodels

50. Calimeri, F., Ianni, G., Krennwallner, T., Ricca, F.: The answer set programming
competition. AI Mag. 33(4), 114–118 (2012)

51. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

52. Formisano, A., Petturiti, D.: Raspberry: an implementation of RASP (2010).
http://www.dmi.unipg.it/∼formis/raspberry/

53. Heintz, F., Kvarnström, J., Doherty, P.: Bridging the sense-reasoning gap: Dyknow
- stream-based middleware for knowledge processing. Adv. Eng. Inform. 24(1), 14–
26 (2010)

54. Costantini, S., De Gasperis, G.: Runtime self-checking via temporal (meta-)axioms
for assurance of logical agent systems. In: Bulling, N., van der Hoek, W. (eds.)
Proceedings of LAMAS 2014, 7th Workshop on Logical Aspects of Multi-Agent
Systems, held at AAMAS 2014, pp. 241–255 (2014). Also in: Proceedings of the
29th Italian Conference on Computational Logic. CEUR Workshop Proceedings
1195

55. Costantini, S.: Knowledge acquisition via non-monotonic reasoning in distributed
heterogeneous environments. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.)
LPNMR 2015. LNCS, vol. 9345, pp. 228–241. Springer, Heidelberg (2015)

http://www.potassco.sourceforge.net
www.cs.utexas.edu/users/tag/cmodels
www.cs.utexas.edu/users/tag/cmodels
www.dbai.tuwien.ac.at/proj/dlv
www.tcs.hut.fi/Software/smodels
http://www.dmi.unipg.it/~formis/raspberry/

ACE: A Flexible Environment for Complex Event Processing 91

56. Costantini, S., Gasperis, G.D.: Exchanging data and ontological definitions in
multi-agent-contexts systems. In: Paschke, A., Fodor, P., Giurca, A., Kliegr,
T. (eds.) RuleMLChallenge track, Proceedings. CEUR Workshop Proceedings,
CEUR-WS.org (2015)

57. Montali, M., Calvanese, D., De Giacomo, G.: Specification and verification of
commitment-regulated data-aware multiagent systems. In: Proceedings of AAMAS
2014 (2014)

A Testbed for Agent Oriented Smart Grid
Implementation

Jorge J. Gomez-Sanz1(B), Nuria Cuartero-Soler1,
and Sandra Garcia-Rodriguez2

1 Universidad Complutense de Madrid, Madrid, Spain
{jjgomez,ncuarter}@ucm.es

2 CEA Saclay, DRT/DM2I/LADIS, 91191 Gif-sur-Yvette Cedex, France
sandra.garciarodriguez@cea.fr

Abstract. The aim of this paper is to present a platform for helping
agent researchers to become familiar with Smart Grids. Agent technology
has been recognised as one of the enablers for Smart Grids. A Smart Grid
intends to make an advanced use of available metering and generation
capabilities in order to use more efficiently the electricity. Contributions
of agent resea1rchers to this domain are still reduced and this may be
because of the highly specialised knowledge that is required to run cur-
rent Smart Grid simulators and the cost of commercial ones. This paper
aims to share the experience acquired during a project where distributed
control approaches were devised using open source solutions. An impor-
tant result is a simulator for Smart Grids that facilitates the research
of how agents can operate such grids. This paper introduces an example
case study and discusses how agents can be applied in these situations.

1 Introduction

In the last few years, power grids have gone through several changes to make them
work as “Smart Grids”. For instance, several elements have been added such as sen-
sors and meters, network nodes with computation capabilities, switches or actua-
tors, and so on. Together, they allow the grid setup to be highly configurable [8].

Traditionally, the term “electrical grid” is assigned to the interconnected
energy transmission system. However, the concept “Smart Grid” has been more
oriented to the entire electrical system including generation, transmission and
distribution. Regarding distribution, several efforts target the increase of man-
ageability and efficiency by dividing the smart distribution grid into sub-systems.
Such sub-systems are called “Microgrids” and consist of energy consumers and
producers at a small scale that are able to manage themselves [19]. Inside Micro-
grids, it is usual to find a number of Distributed Energy Resources (DERs), such
as solar power plants or wind generators. Examples for Microgrids may be, for
instance, villages, industry sites, or a university campus. Furthermore, a Micro-
grid can either be connected to the backbone grid, to other Microgrids, or it
can run in island mode. Moreover, since the distribution system is considered
as the largest and most complex part of the entire electrical system [10], most
literature is focused on Smart Grids located at this level.
c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 92–108, 2015.
DOI: 10.1007/978-3-319-26184-3 6

A Testbed for Agent Oriented Smart Grid Implementation 93

Conventional power grid control is usually done in an automated and cen-
tralised manner, perhaps with some human-in-the-loop operations. There are
security concerns that are implemented right at the transformation centres before
achieving the customers location. Power grids processing power is usually located
into SCADA (Supervisory Control And Data Acquisition) systems, which are
centralised ones gathering information from connected sensors and, sometimes,
issuing orders. Besides, power grids are not flexible enough to support future
demands from customers. A customer may install one day a photovoltaic panel
to address new needs. Such operation is inexpensive from the customer’s point
of view but adds instability to the power grid. Therefore, all kW produced needs
to be consumed by someone or something. Having a thousand customers doing
something like this means trouble in a conventional power grid. Power which is
not consumed by anyone has to be dissipated by some specialised and expen-
sive equipment. If the operational parameters of those equipments are exceeded,
surely the safety mechanisms may cut down parts of the grid to protect them
from the extra surge. All this could be avoided if additional measurement and
control elements were added, which is what Smart Grids intend.

Rather creating isolated control artifacts for groups of Microgrids, or DERs
inside them, it is more convenient to consider the Microgrid as a collection of
interested parties that perform control functions to accommodate some higher
level goal. The benefit comes mainly from the scalability of the resulting system
(it can grow to have more control/DER elements) and the fault tolerance (parts
can fall into island/disconnected mode in a controlled way). In order to operate
with a Smart Grid, an advanced metering infrastructure is needed. Metering
is made through devices which are in fact ARM-based computers, and they
may even run Linux distributions. Hence, there is an important amount of new
hosting devices where new information processing capabilities are available.

An agent researcher will recognise this setup as one scenario where agent
technology, inherently distributed and capable of decentralised control, may be
a key one [9]. Among current studies, it is appropriate to cite the two made
by the IEEE Power and Energy Society Multi-Agent Systems Working Group
(MASWG). The MASWG issued two reports [11,12] using as main informa-
tion sources FIPA standards and frequently cited development tools. They dis-
cuss how this technology could change the way of designing power grid control.
Though helpful, these reports, and other existing ones, are not using the agent
technology to its full extent. As defended in [9], one of the key features of agent
technology is its capability to provide a decentralised control by means of a
peer-to-peer coordination, which is opposite to the client-server paradigm cur-
rently applied through SCADA systems. Another analysis [17] identifies areas
where agent-related research could be applied, such as self-healing networks or
virtual power plants, and points out the need of simulation tools to show stake-
holders the benefits of agent oriented solutions.

Agent researchers have an opportunity to contribute to this area more inten-
sively. It is necessary to overcome the lack of tools for performing actual research
without prior knowledge of how a power grid works. Authors usually devise their
own simulators, most using MatLab or SimuLink, and find ways to feed that data

94 J.J. Gomez-Sanz et al.

to the agents [14]. Others implement custom solutions based on their knowledge
of how grid works [3]. Both requires extensive knowledge to define and repro-
duce the Microgrid behaviour in a reliable way. If a simpler, yet correct, way of
defining and running the Microgrid was possible, more agent researchers would
be able to contribute to this problem domain.

Another issue is the nature of the simulation. Most existing Microgrid sim-
ulation tools are discrete event ones where weeks of data can be generated in a
few real time minutes. To evaluate or experiment with an agent oriented control
system for the Microgrid, it necessarily needs to be included into the simulation
loop. This requirement is a major drawback to reuse existing technologies for
agent development, such as JADE or Jack, which run their own control threads.
Ideally, if the simulator could be conceived also as an emulator of the Microgrid,
integration of both systems could be easier. A prototyping development would
start by connecting an external process, implemented with those technologies,
with the Microgrid simulator. The process would feed from data from the sim-
ulator and issue orders in real time. To achieve this, the simulator must be
able to perform real time simulation, i.e., to run the simulation loop using real
time units. Real time simulation is in fact useful when the situation requires a
software-in-the-loop or a hardware-in-the-loop approach. Those situations have
in common that there is an external element interacting with the simulation,
being it hardware or software [4].

The contribution of this paper is a testbed, called SGSimulator, that reduces
the agent researchers’ effort in defining and experimenting with Microgrid control
while using an industrial grade simulation tool. This work bases on GridLAB-D [6],
which is wide spread and extensively tested power grid simulation tool. This tool
cannot act as a Microgrid emulator, though. SGSimulator provides with this adi-
tional service and enables a researcher connects agents to the Microgrid emula-
tion. The analysis and design of the MAS solution for operating the Microgrid
will be aided by the SGSimulator in several ways. Agent researchers can run fast
or slow experiments, and visually check the effect of orders in the Microgrid. The
Microgrid can still be simulated separatedly in a discrete event simulation man-
ner. It also can become an emulation of the Microgrid that the agents can connect
to anytime. The testbed was developed during the MIRED-CON project, which
pursued an intelligent decentralised control for Microgrids.

The testbed is developed using plain Java and RMI as technology. Hence,
it ought to be compatible with different agent solutions as long as they allow
referring to external Java Objects. The proof of concept is made with INGE-
NIAS methodology [15] and JADE based agents. It shows how to define agents
and connect them to the simulation platform. The testbed comes with a few
pre-defined Microgrids, but the notation is friendly enough to ensure that new
ones can be created. The case of study introduced in this paper defines a simple
MAS that is connected to controllable elements in a Microgrid. The case study
identifies some coordination problems and control issues and suggests how to
deal with them. In particular, it shows how bad control coding can lead to unde-
sirable cycles in the operation of Microgrid storage elements; and the necessity of
coordinating the micro-generation of electricity so as not to inject current in the

A Testbed for Agent Oriented Smart Grid Implementation 95

substation, which may lead to instability of the main grid. Links to the software
are provided so that other researchers can download the framework and work
out possible solutions to the scenarios.

The paper is organised as follows. First, Sect. 2 introduces the Smart andMicro-
grids and how agents are supposed to operate within it. Section 3 explains the test-
bed elements and how agents are expected to interact with them. Section 4 presents
the case study with INGENIAS and shows some snapshots of the tool. The case
study uses a simple Microgrid operated by agents that intend to reduce the billing
costs and avoid producing more energy than required. Other similar frameworks
are discussed into Sect. 5.

2 Agents in a Microgrid

This paper assumes a specific way of modeling the Microgrid and agents within.
In a Microgrid, see Fig. 1, there are elements producing energy (Distributed
Energy Resources or DER from now on), elements consuming this energy (loads
from now on), power lines transporting the energy, transformation centres (TC
from now on) isolating low voltage sections from medium/high voltage sections,
and metering infrastructure or Smart Meters (SM from now on). There are
also batteries, but they can act either as loads (while charging) or as DERs
(while discharging). Microgrids can be connected to a main power line through
a substation. When the energy generated inside the Microgrid is not enough
to supply the consumption, the lack of energy is demanded from the power line
through this substation. Readers should be aware that no one “demands” energy
from the power line. There is no actual request. It just happens that energy is
borrowed from the closer energy source.

Communication can be assumed to be widely available, though not always
reliable. When there is no mobile networks, such as GPRS, Power Line Commu-
nication (PLC) can be an option. Hence, TCP/IP may be used just anywhere
and be assumed to be sufficiently fast.

Agents can be hosted in any of the previous elements that is capable of
having processing and has communication capabilities. Both conditions are met
more easily in the SMs, which are expected to be deployed almost anywhere in
a Smart Grid. If possible, a SM is needed per DER to measure how much power
is consumed (a photovoltaic panel usually comes with a battery, so it consumes
too) or produced; a SM per load (loads tend to be buildings); and one SM per
TC. A TC may act as hub for the SMs underneath so that its SM may be more
complex than others.

It can be assumed that, be it inside SM or be it inside some other process-
ing capable element of the abovementioned elements, the agents can be hosted
anywhere in the Microgrid and communicate with each other anytime. Despite
this, disconnections are possible. Elements in the Microgrid may not provide
measurements or react to orders because they maybe disconnected. A defect of
the simulator in this version is that this disconnection does not affect inter-agent
communication, though.

96 J.J. Gomez-Sanz et al.

Substation

DER
SM

Load
SM

TC
SM

TC
SM

Load
SM

Load
SMLoad

SMLoad
SMLoad

SM

Medium/High Voltage
powerline

Medium/High Voltage
powerline

Low Voltage
powerline

Low Voltage
powerline

TC
SM

Battery
SM

DER
SM

DER
SM

DER
SM
DER
SM

Main
powerline

MICROGRID

DER
SM

Fig. 1. Elements in a microgrid

What agents can do inside the Microgrid is a subject of further discussion.
Reports from the MASWG [11,12] point out possible uses. Protection is not one
of them. For instance, if it is not safe to operate a DER, the agent would not be in
charge of forbidding its use, but a lower level hardware implemented mechanism.
It seems that a main function of agents would be defining/choosing the strategy
of the Microgrid and delivering orders accordingly. The term “strategy” has
been chosen on purpose since agent actions have to fit into a medium/long term
scenario. The electricity consumed everywhere comes from markets where energy
production quotas are bought and sold. Selling the excess of energy production
can be an alternative which requires scheduling in advance the operation of
DERs. Sometimes, it may be cheaper to buy the energy than producing it, e.g.
because the fuel used by a generator is more expensive. To add more complexity,
energy production is subject of government regulations. For instance, in the
case of Spanish regulations, a producer must be registered within a listing of
producers and must ensure some operational parameters. When a Microgrid
delivers energy when it is not supposed to, or delivers too much energy, a fine is
issued. The reason is to harmonize the production with the consumption.

Agents can also take decisions about which DER ought to produce the
required energy at a given moment. To satisfy the demand of a load, it is more
efficient to increase the production of the closer DERs. The power line and TCs
interconnecting the DER to the load are not one hundred percent efficient. There
is some amount of energy which is lost during its distribution. The longer the
distance, the higher the loss.

A Testbed for Agent Oriented Smart Grid Implementation 97

3 The Agent Testbed

The testbed is made by starting from a core that delivers the Microgrid simula-
tion/emulation service. This service is based on GridLAB-D [6], an agent based
Microgrid simulator that performs a static analysis of the grid. It focuses on the
stable states a power grid achieves. It does not address problems with harmonics
or the intermediate states that arise, for instance, when a new element starts
producing energy. As a consequence, it is fast. GridLAB-D runs a discrete event
agent based simulation to obtain, in a few minutes, weeks of simulation data.

In this contribution, and through some Java layers, the GridLAB-D was
transformed into a real time simulation platform. This platform allows to run
an emulated Microgrid together with the associated agents which will deliver
orders and get results. Time can be accelerated, but unless agents are involved
in the simulation cycle, the result may not be meaningful.

The interest of the real time version is the possibility of using the simulator
as a Smart Grid emulator. With this transformation, the agent based simulator
GridLAB-D can be used to experiment with agents working in real time with the
system in a “software-in-the-loop” manner. Agents communicate with GridLAB-
D through some interfaces that allow to send orders or to poll about the current
state. Notification services are possible, but they are not implemented by default.
In an event driven solution, however, agents would have to strictly stick to the
simulation cycle and perform calculations just as the simulator progresses.

Agent

SGSimulator Proxy

SGSimulator

1: orders

2:sensors

Microgrid
Description

0:read and run
description

1.1: perform
order as
they arrive

2.1: retrieve
sensor data in
current sim time
from the stored
weeks period

2.2: sensor
data retrieved

GridLAB-D

1.2 Ask the GridLAB for
results along week

1.3 Return
 a week's time

Fig. 2. Collaboration diagram showing how agents send orders and receive data from
the simulator

98 J.J. Gomez-Sanz et al.

This new system is called Smart Grid Simulator (SGSimulator from now on)
whose behaviour is briefly described in Fig. 2. The agent sends orders to the
simulator through a proxy which uses RMI to deliver orders to the simulator.
The reason for this is to allow each agent to be hosted in a different machine
and provide a suitable entry point so that this simulator can be used by other
agent platforms. Integrating the proxy will be enough to start delivering orders
and polling about the current status.

The orders are processed as they arrive to the emulator. There is a possible
delay since the order is delivered until the order is processed, just as in real
systems. GridLAB-D executes the orders as delivered by the SGSimulator and
returns a sufficiently large set of measurements. This set becomes a buffer which
is then used to deliver measurements in real time to the agent until the buffer
is empty or a new order arrives or an event happens. Such cases require a new
run of GridLAB-D to obtain the data for the new configuration.

In the MIRED-CON project, it was intended that the conditions met by the
agents were as close as possible to the real Microgrid. From this perspective,
it was necessary to simulate delays in the order processing, missing or ignored
orders, and orders which do not produce the expected results in time.

4 Case Study with INGENIAS

Figure 3 introduces the case study Smart Grid. Power lines transport 3 phased
AC electricity along the case study. The Microgrid is made of seven buildings.
Each one of them consumes energy according to a predetermined pattern, which
will be explained later on. All PV panels are the same kind with a max through-
put of 10kW. Buildings are represented by different loads, ranging from 5000 W
to 6000W. The single battery is a Lithium-ion one that can deliver as much as
30kW and store 60kWh. Inverters of the battery are not included in the descrip-
tion and are added by default in the produced Microgrid description.

Buildings and other elements are connected to transformers which are hosted
into transformation centres. There are three transformation centres and one
substation. The substation connects the Microgrid with the main power line.
Connection between transformation centres is made through medium voltage
power lines. Downstream the transformation centres, lower voltage is used. The
existence of transformation centres matters because if one PV panel produces
energy for a building situated into another different transformation centre, there
will be energy transport loses due to the transformation process (from lower
voltage, to medium voltage, and then to lower voltage) and the implicit power
line loses. Controllable elements in the grid will be the battery, battery 31, and
photovoltaic panels, e.g. Solar 11 or Solar 312. If the Smart Grid Simulation
is run without agents, no element will be switched on and only loads will be
taken into account. Figure 4 presents this particular case, showing all controllable
elements as powered off.

Load and DER performance is coded as a CSV file and can be understood
as a scenario description. The scenario is shown in Table 1. Each building or

A Testbed for Agent Oriented Smart Grid Implementation 99

Fig. 3. Microgrid representation using SGSimulator grid rendering tool

DER generator is associated to a maximum consumption or generation output.
The profile from Table 1 declares the amount of load or generation that will
take part at the particular time of the day identified in the first column. As
expected, maximum PV generation will take place starting at 12:00 and ending
at 18:00. Wind generators will have maximum performance during the night,
mainly. Load will be maximum during working hours.

The Microgrid definition as well as the generation scenario is processed by
SGSimulator to generate a detailed GridLAB-D definition and to start running
in emulation mode. Figure 3 shows the previous configuration in execution. At
the left side, there is a depiction of the abovementioned Smart Grid. The status
of each controllable element is shown in the middle of the screen. All of them
are off in Fig. 4. Also, disconnect actions are available in the middle column.
The weather is measured at the bottom right of the figure. Wind and sun are
changing along the day according to a predefined profile. To simplify the problem,
the chart represents which amount of the expected power is being generated.
The information is taken from the profile introduced in Table 1. When the sun
is at 25 %, it means photovoltaic panels (PV from now on) produce 25 % of
their maximum throughput. The bottom right part of the figure shows a panel
from which different parts of the Smart Grid can be disconnected. This feature is
used to simulate the disconnection of elements. Finally, the top right of the figure
shows a chart with the status of the Smart Grid. Meaningful data obtained from

100 J.J. Gomez-Sanz et al.

Fig. 4. Smart grid simulator dash control without agents

the system is the amount of consumed power in the grid (consumption curve),
power generated within the grid (grid generation curve), the amount of power
demanded from the main power line (substation demand), and losses due to the
distribution of the energy (losses curve).

The default scenario runs with a simulation cycle at one minute per second.
Each second in real time is equivalent to almost one minute in simulated time.
This configuration was chosen to facilitate observing the effect of orders. Agents
can get in and out anytime. As a proof of concept, the agents from Fig. 5 are
instantiated. There are agents in charge of PV panels and agents responsible of
batteries. They pursue the goal of reducing the total bill the Microgrid owner
pays. Those agents are directly connected to specific controllable devices, but
could be hosted as well in their corresponding transformation centres. Agents
access to the controlled devices through a SMClient instance, which is auto-
matically created and connected to the Smart Grid emulation. The SMClient is
translated as set of Java classes accessible by agents playing the role TCMan-
ager. The role TCManager, or Tranformation Centre Manager, aims to reduce
the power grid consumption and reduce the monthly expenses.

The instantiation of the agents is done in two different deployments, accord-
ing to Fig. 6. The first deployment, named sample case, involves two agents: one
of the PV panel Solar 11 and another for Battery 31. The second deployment,
named full case, launches one agent per PV panel and one agent per battery.

A Testbed for Agent Oriented Smart Grid Implementation 101

Table 1. Scenario description with per hour percentage over the maximum grid load
and maximum PV/Wind throughput

#Time Load Sun Wind

00:00:00 15 0 90

01:00:00 15 0 90

02:00:00 15 0 90

03:00:00 15 0 90

04:00:00 15 0 90

05:00:00 15 0 90

06:00:00 15 0 90

07:00:00 30 10 80

08:00:00 50 30 70

09:00:00 50 60 50

10:00:00 90 60 50

11:00:00 90 60 0

12:00:00 90 95 0

13:00:00 90 95 0

14:00:00 90 60 0

15:00:00 90 95 0

16:00:00 50 95 50

17:00:00 50 95 50

18:00:00 60 95 90

19:00:00 60 70 90

20:00:00 50 30 50

21:00:00 50 0 50

22:00:00 50 0 90

23:00:00 50 0 90

As a result, this second deployment launches seven agent instances, whereas
the first launched only two. Each PV controller instance is initialized with a
reference to the controlled device, which is defined in a separated diagram.

The battery controller agent runs a task to check the status of the battery and
operate it. This task is executed repeatedly each 9 seconds, which are 6 min in
simulated time approximately. Rather than having a fine grain decomposition of
this task, for this paper it was decided to just put together the pieces into a single
task. This task uses the SMClient to perform status queries to the Microgrid and
to send orders to the battery. The orders in this case is to charge the battery until
10kWh are stored and then deliver them to the grid. Nothing prevents that this
task sends orders to other elements or that the agent gains global knowledge of
the whole simulator rather than its closest scope. Whether the simulation works

102 J.J. Gomez-Sanz et al.

Fig. 5. Agents and roles in the system

Fig. 6. Agents and roles in the system

with total or partial information, and total or partial controlling capabilities is
a decision left to the developer.

Similarly, the PV control agent, see Fig. 8, checks the PV Panels and switch
them on each 3 s in real time, which are approximately 2 min in simulated time.
In the case of PV panels, an additional piece of information, associated unit,
informs the task which is the ID of the controlled device. The entity associated
unit is assigned a specific value during the deployment, as explained in the Fig. 6.

The result of the two defined deployments is introduced in Figs. 9 and 10. The
naive definition of the behaviour of the agents points at the need of coordination
between them and a better control of the battery. Both figures include timing
information to tell the developer when, in simulated time, the order was received,
the first part of the timestamp, and when it was executed, the second part
of the timestamp. This information is also available in CSV form for careful
inspection after each system run. Information is referred to the sensors hosted
at the substation point. CSV information include the measured energy; the power

A Testbed for Agent Oriented Smart Grid Implementation 103

Fig. 7. Controlling the battery

Fig. 8. Controlling the PV panels

demand; the voltage in phases A, B, and C; the current (real and imaginary)
at phases A,B, and C; power peaks; reactive power; and orders issued at the
inspected timestamp.

Figure 9 shows a cycle problem due to the definition of the battery charge cycle.
The task is not taking into account the need of perform full charge/discharge
cycles, if possible. Also, it is not looking for periods where the energy is more
expensive. As a result, Fig. 9 starts demanding energy from the substation at
8:30AM, 8:41AM, and 8:54AM to charge the battery. The energy is used to
reduce the load curve which is stable at 17.5kW. The grid generation capabilities
oscillates too with the battery. When the battery is producing electricity, there
is a huge reduction of the substation demand. The reason is that the battery is
not demanding power and it is also returning the stored energy.

Figure 10 situation is worse from the billing perspective. Besides the cycle
problem which already existed in the two agent simulation case, there is also
an excess of production. In the deployment full case, all PV panels are acti-
vated. As a result, there is more electricity than it is consumed. The excess is
injected into the main power line, up to 30kW. This adds instability to the main
grid unless the transport operator is aware of the Microgrid production capa-
bility. The case illustrates well one of the technical issues with renewall energy
where a big number of individuals decide to connect to the grid PV panels.
Again, coordination between the PV controller agents would be needed to switch
off from the grid PV panels when the generation does not match the demand.

104 J.J. Gomez-Sanz et al.

Fig. 9. Evolution of the microgrid with deployment Sample case. Right hand side of the
text of each order is aligned with a vertical line showing when the order was executed.

Fig. 10. Evolution of the microgrid with deployment Full case. Right hand side of the
text of each order is aligned with a vertical line showing when the order was executed.

A Testbed for Agent Oriented Smart Grid Implementation 105

Also to coordinate with the battery controller agents when the demand from the
buildings require the stored energy.

This case study stops here because it was not the purpose to find a solution,
but to show the problems and the capability of the SGSimulator to capture
them. At this point, agent research is needed to address the previous issues.
Adding communications to the different agents ought to be a first step. Accord-
ing to Sect. 2, it can be assumed there are TCP/IP communications across the
Microgrid. Possibilities include adding awareness to PV controllers agents so
that they recognise each other in the Microgrid and find emergent patterns of
interaction adequate to the problem. Interaction with battery agents is neces-
sary too so as not to inject the excess of power at the substation. It could be
the case that the researcher is interested in handling that excess and reselling
it to others. The definition of markets is feasible from this point, as well as the
coordination of electricity production across several Microgrids, as the Virtual
Power Plant concept proposes.

Eventhough INGENIAS was used, all the interaction with SGSimulator was
used with RMI clients. The software demoing SGSimulator launches the basic
RMI server and includes the API for developing alternative clients. The demon-
stration is GPL v3 software and can be downloaded from GitHub in https://
github.com/escalope/sgsim-ingenias. The real time simulator is published at
http://sgsimulator.sf.net.

5 Related Work

The need of a testbed for agents in Smart Grids has not been strongly defended
in the literature. Most published multi-Agent based systems have been produced
without such testbeds.

For instance, Oyarzabal et al. [14] addresses a Microgrid management system
built using a JADE based system. Agents in the experiments took data from
real hardware and measurements were taken each 20 seconds. The contribution
of this paper would have facilitated earlier experimentation in cases like this.
Besides, it is cheaper to run a simulator than creating a real Microgrid. It is less
reliable too. A working solution in the simulator may not work in a real setup.
However, adapting a working solution surely will take less effort than developing
everything from scratch in the real scenario. Other researchers created their own
simulator, for instance, with MatLAB. This is the case of IDAPS [16].

The alternative for most agent researchers is reusing existing simulators.
There are several works proposing powergrid simulators, such as GridLAB-D [6]
which is the one used in this contribution. The two main open source ones
are GridLAB-D and OpenDSS [7]. The later considers the transitory analysis,
which may enable the developer to study the effect of switching on elements,
like engines. There is the DSSIM-PC which is an initiative to make OpenDSS a
non-deterministic real time simulator [13].

Literature cites other real time simulators, like eMEGAsim [5] and GridSim [1].
None of them could be found to deliver open source software and enable a simi-
lar experimentation as the one done in this contribution. The eMEGAsim uses

https://github.com/escalope/sgsim-ingenias
https://github.com/escalope/sgsim-ingenias
http://sgsimulator.sf.net

106 J.J. Gomez-Sanz et al.

FPGAS and multiple CPUs to run Simulink instances and provide almost real
time data of systems. Its goal is not to reproduce control elements but to address
hardware-in-the-loop experiments. Simulated elements are run together with real
ones. The control devices are then embedded inside the simulated elements rather
than decoupled as in this contribution. GridSim [1] is a complete tool made of
three parts: a framework for collecting data (GridStat), a framework for sim-
ulating the communication network (GridNet), a cloud extension (GridCloud),
and the powergrid itself (GridSim). It considers too the transitory states of the
system through a modified version of an commercial product and combining the
generated output in a similar way as SGSimulator does. It is not evident from
the documentation if distributed control is allowed. The paper cites explicitly
a control center which is where all data from current SCADAS is stored. On
the other hand, the GridSim site suggests that there is a power control software
inside each substation in the simulated system. In any case, it is not considered
control at the DER or transformation centre level, or event at a lower scale, as
shown in the case study of this contribution. This may allow a higher capability
of SGSimulator for a finer grain decentralisation.

Not all works remark what kind of simulation is used, though. The work
[18] shows a project for a decentralized control system where consumer energy
demands aligns with the actual production. The way the grid is simulated is
not explained. The evaluation framework, from [2], points out at issues in Smart
Grids and how MAS could deal with them. Several MAS related works in the
literature are cited and evaluated according to this evaluation framework. The
underlying simulation framework is not considered in most cases, focusing on
the features each MAS implements. Only Matlab/Simulink is cited in the case
of IDAPS work. Nevertheless, prospective works, like [17], remark the importance
of having simulation systems that can accurately represent both the grid and
the reaction of consumers.

6 Conclusions

The paper has introduced some basic concepts about the role of agents in the
control of Microgrids. In particular, it has discussed where agents can be hosted
and what they are expected to do. In this paper, agents are expected to hosted
by Smart Meters which are essential elements in Smart Grids. The paper has
also introduced the Smart Grid Simulator and how agents can be connected
to it. As a proof of concept, INGENIAS methodology and JADE agents have
been used to model and run the agents used in the simulation. Other agent
platforms and methodologies could be applied provided they integrate with RMI
technology. The case of study is a simple one whose purpose is twofold: to show
there are control problems that could be solved using agent technology; and also
provide software so that other researchers can experiment with it and compare
the performance of proposed solutions. Disconnection issues were not studied,
but they are very relevant to justify the use of agent technology. A distributed
decentralized MAS will be less sensible to disconnection issues. Disconnected

A Testbed for Agent Oriented Smart Grid Implementation 107

parts may still become stable islands where production of electricity still matches
the demand.

Acknowledgement. This work has been co-funded by the project MIRED-CON IPT-
2012-0611-120000, supported by Spanish Ministry for Economy and Competitiveness,
and Fondo Europeo de Desarrollo Regional (FEDER). It also has been supported by
the Programa de Creación y Consolidación de Grupos de Investigación UCM-Banco
Santander, call GR3/14, for the group number 921354 (GRASIA group).

References

1. Anderson, D., Zhao, C., Hauser, C.H., Venkatasubramanian, V., Bakken, D.E.,
Bose, A.: Intelligent design real-time simulation for smart grid control and com-
munications design. IEEE Power Energy Mag. 10(1), 49–57 (2012)

2. Basso, G., Gaud, N., Gechter, F., Hilaire, V., Lauri, F.: A framework for qualifying
and evaluating smart grids approaches: focus on multi-agent technologies. Smart
Grid Renew. energy 4(04), 333 (2013)

3. Basso, G., Hilaire, V., Lauri, F., Roche, R., Cossentino, M.: A MAS-based simulator
for the prototyping of smart grids. In: 9th European Workshop on Multiagent
Systems (EUMAS11), November 2011

4. Bélanger, J., Venne, P., Paquin, J.N.: The what, where and why of
real-time simulation (2010). http://www.opal-rt.com/technical-document/
what-where-and-why-real-time-simulation

5. Bélanger, J., Lapointe, V., Dufour, C., Schoen, L.: eMEGAsim: an open high-
performance distributed real-time power grid simulator. architecture and specifi-
cation. In: Proceedings of the International Conference on Power Systems (ICPS
2007), pp. 12–24 (2007)

6. Chassin, D.P., Fuller, J.C., Djilali, N.: Gridlab-d: An agent-based simulation frame-
work for smart grids. J. Appl. Math. 2014, 12 (2014). doi:10.1155/2014/492320

7. Dugan, R.: Opendss, introductory training, level 1. Electric Power Research Insti-
tute, Palo Alto, California (2009)

8. Farhangi, H.: The path of the smart grid. IEEE Power Energy Mag. 8(1), 18–28
(2010)

9. Gomez-Sanz, J.J., Garcia-Rodriguez, S., Cuartero-Soler, N., Hernandez-Callejo,
L.: Reviewing microgrids from a multi-agent systems perspective. Energies 7(5),
3355–3382 (2014)

10. Hassan, R., Radman, G.: Survey on smart grid. In: Proceedings of the IEEE South-
eastCon 2010 (SoutheastCon), pp. 210–213. IEEE, March 2010

11. McArthur, S.D.J., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziargyriou,
N.D., Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applica-
tions - part i: concepts, approaches, and technical challenges. IEEE Trans. Power
Syst. 22(4), 1743–1752 (2007)

12. McArthur, S.D.J., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziargyriou,
N.D., Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applica-
tions - part ii: technologies, standards, and tools for building multi-agent systems.
IEEE Trans. Power Syst. 22(4), 1753–1759 (2007)

13. Montenegro, D., Hernandez, M., Ramos, G.A.: Real time opendss framework for
distribution systems simulation and analysis. In: Transmission and Distribution:
Latin America Conference and Exposition (T D-LA), 2012 Sixth IEEE/PES, pp.
1–5, September 2012

http://www.opal-rt.com/technical-document/what-where-and-why-real-time-simulation
http://www.opal-rt.com/technical-document/what-where-and-why-real-time-simulation
http://dx.doi.org/10.1155/2014/492320

108 J.J. Gomez-Sanz et al.

14. Oyarzabal, J., Jimeno, J., Ruela, J., Engler, A., Hardt, C.: Agent based micro grid
management system. In: 2005 International Conference on Future Power Systems,
p. 6, November 2005

15. Pavón, J., Gómez-Sanz, J.J.: Agent oriented software engineering with INGENIAS.
In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI),
vol. 2691, pp. 394–403. Springer, Heidelberg (2003)

16. Pipattanasomporn, M., Feroze, H., Rahman. S.: Multi-agent systems in a distrib-
uted smart grid: Design and implementation. In: Power Systems Conference and
Exposition. PSCE ’09. IEEE/PES, pp. 1–8 (2009)

17. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘smarts’
into the smart grid: a grand challenge for artificial intelligence. Commun. ACM
55(4), 86–97 (2012)

18. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.: Agent-based control for
decentralised demand side management in the smart grid. In: The 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, AAMAS ’11,
vol. 1, pp. 5–12, Richland, SC. International Foundation for Autonomous Agents
and Multiagent Systems (2011)

19. Sobe, A., Elmenreich, W.: Smart microgrids: Overview and outlook. CoRR,
abs/1304.3944 (2013)

http://arxiv.org/abs/1304.3944

Quantitative Analysis of Multiagent Systems
Through Statistical Model Checking

Benjamin Herd(B), Simon Miles, Peter McBurney, and Michael Luck

Department of Informatics, King’s College London, London, UK
{benjamin.c.herd,simon.miles,peter.mcburney,michael.luck}@kcl.ac.uk

Abstract. Due to their immense complexity, large-scale multiagent sys-
tems are often unamenable to exhaustive formal verification. Statistical
approaches that focus on the verification of individual traces can provide
an interesting alternative. However, due to its focus on finite execution
paths, trace-based verification is inherently limited to certain types of
correctness properties. We show how, by combining sampling with the
idea of trace fragmentation, statistical model checking can be used to
answer interesting quantitative correctness properties about multiagent
systems on different observational levels. We illustrate the idea with a
simple case study from the area of swarm robotics.

Keywords: Verification · Statistical model checking · Multiagent sys-
tems · Quantitative analysis

1 Introduction

Due to their distributed nature and their capability to exhibit emergent behav-
iour, multiagent systems can be hard to engineer and to understand. Similar to
other software systems, however, questions of correctness arise and verification
plays an important role. Formal verification aims to answer correctness ques-
tions in a rigorous and unambiguous way. Temporal logic model checking, for
example, aims to find an accurate solution to a given correctness property by
exhaustively searching the state space underlying the system under considera-
tion (the model) and thus exploring all possible execution paths [1]. This is only
possible if the state space of the model is of manageable size. In the presence
of non-determinism which may, for example, arise from the different possible
interleavings of individual agent actions or from uncertainty w.r.t. the represen-
tation of individual agent behaviours, the state space may grow exponentially
which renders formal exhaustive verification infeasible for non-trivial systems.
This exponential blow-up in the number of states is a well-known problem and
commonly referred to as ‘state space explosion’. In order to address this issue, a
wide range of techniques has been developed. For example, if one can assume that
agents are homogeneous, then the symmetry within the system can be exploited
to reduce the complexity of verification significantly [5,14–16,26]. Unfortunately,
such simplifying assumptions are not always possible.
c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 109–130, 2015.
DOI: 10.1007/978-3-319-26184-3 7

110 B. Herd et al.

Another interesting alternative way to circumvent combinatorial explosion
that works for probabilistic systems is to use a sampling approach and employ
statistical techniques to obtain approximate verification results. In this case, n
finite execution paths or traces are sampled from the underlying state space and
a property φ is checked on each of them. By increasing the number of traces
that φ is checked on, the probability of φ can be estimated to the desired level
of precision. Techniques for statistical inference, e.g. hypothesis testing, can then
be used to determine the significance of the results. Approaches of this kind
are summarised under the umbrella of statistical model checking [21]. Due to
its approximate nature, statistical model checking allows for the verification of
large-scale (or even infinite) systems in a timely manner. Traces are typically
obtained through simulation, either by repeatedly executing an existing real-
world system, or by ‘unrolling’ a formal state transition representation of a
system for a certain number of time steps (as in the case of statistical model
checking).

Consider, for example, a robot swarm whose efficiency is defined by its emer-
gent collective behaviour. Due to the high level of interconnectivity and the global
focus, it is not sufficient to verify individual robots in isolation. On the other hand,
aspects such as a heterogeneity, complex environments, or simply an interest in the
individual behaviours may also render the application of pure macro-level veri-
fication insufficient. In this case, statistical verification represents an interesting
alternative. However, because of its focus on finite execution paths, trace-based
verification is inherently limited to linear time properties and lacks some of the
quantitative capabilities of its non-statistical counterpart [18]. For example, due
to the lack of branching information, properties about the transition behaviour
are not verifiable in a trace-based context. Furthermore, existing statistical model
checking approaches generally ignore the internal structure of the traces which
limits their use for the verification of complex multiagent systems.

On the other hand, the statistical approach provides interesting opportuni-
ties. In this paper, we present our research efforts with respect to the aforemen-
tioned problems by showing how trace-based verification in combination with
statistical analysis can be used to answer interesting quantitative correctness
properties about multiagent systems. The contributions of this paper can be
summarised as follows.

1. In Sect. 5, we introduce a simple specification language for the formulation of
properties about multiagent system traces. The language supports the formu-
lation of statements on different observational levels as well as the formulation
of statements about the average behaviour of agents.

2. In Sect. 6, we show that simulation traces of multiagent systems represent
sets of sets of samples obtained from different sample spaces, the choice of
which depends on the question to be answered. We formally introduce the
notion of trace fragments and describe how they correspond with fine-grained
correctness properties. We also introduce the idea of in-trace sampling.

Quantitative Analysis of Multiagent Systems 111

3. In Sect. 7, we show how a combination of trace fragmentation and statisti-
cal verification can be used to estimate residence probabilities and transition
probabilities, and to detect correlations between different types of events.

The usefulness of quantitative analysis is illustrated with a small case study
from the area of swarm robotics which is introduced in Sect. 4 and further elab-
orated upon in Sect. 8. We start with some theoretical background in Sect. 2,
followed by an overview of related work in Sect. 3.

2 Background

Model checking [6] is a popular verification technique which uses a formal rep-
resentation M of the system under consideration (usually a finite state model)
together with a specification of the system’s desired properties p, typically given
in temporal logic. The verification of a system’s correctness is then done by check-
ing whether M satisfies p (formally M |= p) in all possible execution paths. In
the case of violation, the model checker can provide a counterexample. In order
to deal with inherently random systems, probabilistic extensions to model check-
ing have been developed [19]. Despite impressive advances, exponential growth
of the underlying finite-state model (the so-called state space explosion) remains
a central problem which makes the verification of non-trivial real-world systems
difficult or even impossible. In order to tackle this problem, a number of reduc-
tion, abstraction, compositional verification, and approximation techniques have
been developed.

Whilst the classical, non-probabilistic approach to model checking produces
a clear yes/no answer to a given correctness property, quantitative analysis
aims to use verification techniques to produce numeric insights into the sys-
tem under consideration, e.g. transition probabilities, costs or rewards. It is thus
not surprising that quantitative analysis forms an important part of probabilistic
approaches to model checking. PRISM [20], for example, the most widely used
probabilistic model checker, allows for the verification of a wide range of quan-
titative properties, among them best-case, worst-case, and average-case system
characteristics [18]. PRISM uses BDD-based symbolic model checking and allows
for the verification of properties formulated in a variety of different logics —
among them probabilistic versions of Computation Tree Logic (CTL) and Linear
Temporal Logic (LTL), as well as Continuous Stochastic Logic (CSL) — on differ-
ent types of models, e.g. Discrete-Time (DTMC) and Continuous-Time Markov
Chains (CTMC) and Markov Decision Processes (MDP). It is, for example, pos-
sible to integrate costs and rewards into the verification process which allows for
the formulation of properties about expected quantities, e.g. the ‘expected time’,
or the ‘expected number of lost messages’. Due to its exhaustive nature, PRISM
generally suffers from the same combinatorial issues as other non-probabilistic
model checkers. In order to circumvent this problem, it also allows for simulation-
based (i.e. trace-based) verification using different statistical model checking
approaches [25]. In this context, both conventional probabilistic linear time prop-
erties, i.e. P=?(φ), and reward-based properties, i.e. R=?(φ), can be answered.

112 B. Herd et al.

At the current stage, PRISM views traces as monolithic entities and does not
exploit their internal structure. This limits its usefulness for the verification of
complex multiagent systems, i.e. systems in which there are many, possibly het-
erogeneous, components acting and interacting with each other.

3 Related Work

Model Checking Multiagent Systems: Since its beginnings around 30 years ago,
model checking has gained huge significance in computer science and software
engineering in particular and has been successfully applied to many real-world
problems. Model checking has also gained increasing importance in the multia-
gent community and numerous approaches have been presented in literature [8].
In alignment with the classical problems studied in the community, multiagent
verification typically focusses on qualitative properties involving notions such
as time, knowledge, strategic abilities, permissions, obligations, etc. In order
to allow for the verification of larger agent populations, model checking algo-
rithms for temporal-epistemic properties have also been combined successfully
with ideas such as bounded model checking [24], partial order reduction [23]
and parallelisation [17]. Despite impressive advances, however, verification still
remains limited to relatively small populations. A particularly promising app-
roach is based on parametrised interleaved interpreted systems (PIIS) [15]. A PIIS
models a template agent from which all agents in the population are derived
(i.e. agents are required to be identical) together with a parameter that denotes
the number of agents. Lomuscio and Kouvaros showed that, within a restricted
class of PIIS, populations with an unbounded number of agents are verifiable.
A related approach based on strong homogeneity assumptions has been presented
by Pedersen and Dyrkolbotn [26].

In recent years, probabilistic approaches to model checking and quantitative
analysis have also gained increasing importance in the multiagent community.
Examples include the verification of systems with uncertainty w.r.t. communi-
cation channels and actions [7], qualitative and quantitative analysis of agent
populations with uncertain knowledge [28], verification of probabilistic swarm
models [14], or automated game analysis [2]. Similar to their non-probabilistic
counterparts, these approaches also suffer from the state space explosion and are
thus either limited to relatively small systems or dependent upon strong homo-
geneity or symmetry assumptions which increase their scalability but also limit
the range of systems that they are applicable to.

Quantitative Analysis and Trace-Based Verification: Apart from the general
work on simulation-based verification using PRISM, quantitative analysis in the
context of trace-based verification has been largely neglected to date. An inter-
esting idea has been presented by Sammapun et al. [27]. The authors propose
a trace decomposition based on the idea of repetitive behaviour. The decompo-
sition is performed by means of conditional probabilities. This is then extended
with hypothesis testing in order to determine the confidence in the estimation.

Quantitative Analysis of Multiagent Systems 113

As opposed to our approach which assumes the presence of a (possibly large)
number of individual sample traces (e.g. obtained through simulation), the work
of Sammapun et al. is focussed on a pure runtime verification setting in which
only one consistently growing trace is available. The decomposition is used to
obtain from the runtime trace a number of individual sample traces which are
then used to answer conventional probabilistic linear-time properties such as
done by PRISM. A related approach has been presented by Finkbeiner et al.
[9]. They propose an extension of LTL which allows for the formulation of addi-
tional statistics over traces, e.g. the “average number of X” or “how often does
X happen”. Similar to the work of Sammapun et al., they focus on a single trace
obtained by observing a running system.

4 Motivational Example: Swarm Foraging

In order to motivate the usefulness of quantitative analysis in the context of
trace-based verification, we use a small example from the area of swarm robotics.
The choice is motivated by the fact that, albeit often conceptually startlingly
simple, swarm models exhibit a significant level of complexity which typically
prevents them from being amenable to conventional formal verification. On the
other hand, they may require a high level of provable correctness. We show how,
through statistical model checking in combination with quantitative analysis as
described above, interesting properties that reach beyond pure reachability and
safety checking can be answered efficiently and with a good level of precision.
We focus here on foraging, a problem which has been widely discussed in the
literature on cooperative robotics [4]. Foraging describes the process of a group
of robots searching for food items, each of which delivers energy. Individual
robots strive to minimise their energy consumption whilst searching in order to
maximise the overall energy intake. The study of foraging is important because it
represents a general metaphor for a broad range of (often critical) collaborative
tasks such as waste retrieval, harvesting or search-and-rescue.

The model described in this section is based on the work of Liu et al. [22].
A certain number of food items are scattered across a two-dimensional space.
Robots move through the space and search for food items. Once an item has
been detected within the robot’s field of vision, it is brought back to the nest
and deposited which delivers a certain amount of energy to the robot. Each action
that the robot performs also consumes a certain amount of energy. The model
is deliberately kept simple. Each robot can be in one of five states: searching for
food in the space, grabbing a food item that has been found, homing in order to
bring a food item back to the nest, depositing a food item in the nest, and resting
in order to save energy. Transitions between states are probabilistic and either
fixed or (which is clearly more realistic) dependent upon the state of the other
agents. The overall swarm energy is the sum of the individual energy levels.

Instead of viewing a population of robots as an abstract entity in which agents
have a certain probability of finding food (as, for example, done in [14]), we focus
here on an agent-based representation of the scenario in which the world that

114 B. Herd et al.

robots inhabit is represented explicitly. As opposed to an idealised representation
in which, for example, robots are assumed to be entirely symmetric, this allows us
to take into account the heterogeneity that arises from the agents’ situatedness
in a environment in which food is randomly distributed. It is common to model
the environment as a two-dimensional grid, in our case a grid of 100 × 100 cells.
Each grid cell can be inhabited by an arbitrary number of agents. Food items
are distributed uniformly across the grid. In the current version of the model,
there are 1,000 food items distributed across 10,000 grid cells, which amounts to
a food density of 10 %. Agents of make 0 are able to detect all food items within
a radius of 1, agents of make 1 are able to detect all food items within a radius
of 4. The behavioural protocol that each agent follows is shown below.

– If searching: look for food. If food has been found, move to the cell and start
grabbing; otherwise remain searching. If no food can be found within Ts time
steps, start homing.

– If grabbing: if the food is still there after Tg time steps, grab it and start
depositing; otherwise start homing.

– If depositing: start resting after Td time steps.
– If homing: start resting after Th time steps.
– If resting: start searching after Tr time steps.

It is important to stress that our goal is not to construct an overly realistic
model here; the main focus is on illustration and the model is thus kept delib-
erately simple. Despite its conceptual simplicity, however, the model already
exhibits a significant level of complexity which prevents it from being amenable
to conventional exhaustive verification. Due to the use of floating point variables
for the agents’ energy levels, the state space is effectively infinite. Even if the
energy level is limited to a comparatively small value (e.g. 1,000), the number
of possible states would be beyond what is currently verifiable formally. In order
to make things even more interesting, we assume that there are initially two
different types or makes of agent which only differ in terms of their field of
vision.

An important aspect when assessing the correctness of the swarm is its energy
consumption. A basic requirement could, for example, be formulated as the fol-
lowing safety property: “the swarm must never run out of energy” (formally:
¬ F(energy ≤ 0)). Although useful, a pure macro-level criterion like this is
rarely sufficient since, despite the whole swarm always having enough energy,
individual agents may still run out. If we can access the energy levels of the indi-
vidual agents at any point in time, then we could formulate a more fine-grained
criterion using quantification. Rather than stating that the swarm as a whole
must never run out of energy, we may, for example, stipulate that “no individual
agent must ever run out of energy” (formally: ∀ a • ¬ F(energya ≤ 0)). Check-
ing this criterion would catch those cases in which individual agents run out of
energy, but we would still not know (i) how many of them do, and (ii) why this
is the case. Quantitative analysis may help to shed further light on the dynamics
of the system. In addition to the two safety criteria above, it may, for example,
be useful to collect the following measurements.

Quantitative Analysis of Multiagent Systems 115

– Average/minimum/maximum probability of an agent running out of energy.
– Fraction of time spent homing, resting, etc.
– Fraction of time spent transitioning, e.g. from depositing to resting (= overall

probability of recharging).
– Probability of transitioning

• from searching to grabbing (= probability of finding food)
• from grabbing to depositing (= probability of losing out on food)

– Correlation between agent type and probabilities.

It is clear that neither transition probabilities or times spent in a certain
state nor any other quantitative criteria are generally sufficient to prove the
correctness of a complex system; but they can, if collected in good combination
and to a sufficient extent, provide insights into the dynamics which a human
user can then use to make its own judgement.

As described in Sect. 3, probabilistic model checkers such as PRISM are capa-
ble of performing such quantitative analyses, yet they suffer from state space
explosion just like any other purely qualitative model checker [18,20]. In the
following sections, we describe our efforts to circumvent this problem by deter-
mining quantitative measures such as those mentioned above through a combi-
nation of statistical model checking and trace analysis. We start by introducing
a simple property specification language in Sect. 5, followed by some theoreti-
cal background and necessary algorithms in Sects. 6 and 7. In Sect. 8, we return
to the swarm robot scenario and give a detailed description of its quantitative
verification.

5 Formulating Multiagent Correctness Properties

In order to be able to better explain the ideas described in the following sec-
tions and formulate properties about multiagent simulation traces, we need an
appropriate specification language. We start with a formal representation of the
type of multiagent system that we are interested in. We are not concerned with
advanced modalities like knowledge or strategies here, so we assume that the
state of an individual agent is defined as a simple set of attributes and their
values. The state space of the multiagent system can then be described as a
simple state transition system. Let Si denote the set of states of agent i. For n
agents, S = S1 × S2 × ...Sn then denotes the set of global states1.

We assume that the multiagent system is probabilistic in nature, i.e. in the
presence of multiple successor states, a probabilistic choice about which state
the system transitions into will be made. Let therefore P : S × S → [0, 1] be
a probabilistic transition function such that ∀ s : S • ∑

s′∈S P (s, s′) = 1. The
multiagent system can then be described formally as a probabilistic transition
system M = (S, P, s0) where s0 ∈ S is the initial state. We denote each possible
finite path ω = 〈s0, s1, ..., sk〉 through M as a simulation trace. In the presence of
individual agents, simulation traces have an internal structure. Given n agents,
1 For simplicity, we omit the environment in our formal description.

116 B. Herd et al.

a simulation trace can be subdivided into n agent traces. We denote with ωi the
i−th agent trace within ω. We further denote with ω[t] (or ωi[t], resp.) the t−th
state of trace ω (or ωi, resp.).

Since each trace comprises a sequence of states, it is natural to assume linear
temporal flow and thus linear temporal logic (LTL) as the basis for a specification
language. In the context of multiagent systems, it is useful to formulate prop-
erties both about individual agents as well as about arbitrary groups of agents.
Conventional LTL is not expressive enough in that case. We thus present here
L, a simple LTL-based specification language which satisfies those requirements.
L is a simplified version of simLTL [11], the specification language used in the
verification tool MC2MABS [10].

The syntax of L is subdivided into two separate layers, an agent layer and
a population layer, which allows for a distinction between agent properties φa

and population properties φp. The syntax of agent and population formulae is
defined as follows.

φa ::= true | p | ¬ φa | φa ∧ φa | φa ∨ φa | Xφa | φa U φa | att �� val

φp ::= true | p | ¬ φp | φp ∧ φp | φp ∨ φp | Xφp | φp U φp | att �� val

φa describes the syntax of an agent property, i.e. a property formulated about
the behaviour of an individual agent; φp describes the syntax of a population
property, i.e. a property formulated about the behaviour of the entire population.
The basic building blocks are atomic propositions p, the Boolean connectives ∧
(‘and’), ∨ (‘or’) and ¬ (‘not’) and the temporal connectives X (‘next’) and U
(‘until’). The formulae of L are evaluated over finite simulation traces (and, of
course, the agent traces contained in them). In general, for formula φ and (agent
or simulation) trace ω, φ holds in ω (formally ω |= φ) iff φ holds in the first
state of ω. For any state s, true always holds, p holds iff p is true in s, φ1 ∧ φ2

holds iff φ1 holds and φ2 holds in s, φ1 ∨ φ2 holds iff either φ1 or φ2 holds in
s, ¬ φ holds iff φ does not hold in s, and Xφ holds iff s has a direct successor
state s′ (i.e. s is not the final state of the trace) and φ holds in s′2. For formulae
φ1 and φ2, φ1 U φ2 holds iff φ1 holds in s and φ2 holds at some future point
s′ along the finite trace. Other logical connectives such as ‘⇒’ or ‘⇔’ can be
derived in the usual manner: φ1 ⇒ φ2 ≡ ¬ φ1 ∨ φ2 and φ1 ⇔ φ2 ≡ (φ1 ⇒
φ2) ∧ (φ2 ⇒ φ1). Additional temporal operators such as F (‘eventually’), G
(‘always’) and W (‘weak until’) can be derived as follows: Fφ ≡ trueUφ (φ holds
eventually), Gφ ≡ ¬ F(¬ φ) (φ holds always) and φ1Wφ2 ≡ (φ1 U φ2) ∨ Gφ1

(φ1 may be succeeded by φ2). Although not formalised explicitly above, the state
of both individual agents and groups of agents is defined by the values of their
attributes. In the case of individual agents, attributes are either basic (e.g. ‘age’)
or aggregate in nature (e.g. ‘total income from all jobs’); in the case of groups of
agents, attributes are typically only aggregate in nature (e.g. ‘total income of all
agents’). In order to include those attributes into the verification process, L also

2 For simplicity, we ignore some of the intricate semantic issues of LTL in the presence
of finite traces. For more information, please refer to the literature [3].

Quantitative Analysis of Multiagent Systems 117

allows for the specification of attribute–value relations. att : Name denotes an
(agent or group) attribute name and val : V alue denotes an attribute value, and
�� ∈ {=, =, <,≤, >,≥} is a comparison operator. This allows us to formulate
properties such as F(age > 20).

Building upon the notion of agent and population properties, the syntax of
any L full formula φ is then defined as follows:

φ ::= 〈〈φa〉〉φp | [i]φa

〈〈φa〉〉φp describes a selective population property ; it is true iff φp is true for
the group of all agents that satisfy property φa, formally ω |= 〈〈φa〉〉φp ⇔ {ωi ∈
ω | ωi |= φa} |= φp. [i]φa describes an indexed agent property ; i : N denotes
an identifier that specifies which agent trace within the current simulation trace
formula φa is to be evaluated upon3, formally ω |= [i]φa ⇔ ωi ∈ ω ∧ ωi |= φa.

The ability to formulate properties about groups of agents as well as about
individual agents is important, yet there is more to be done. In a multiagent
context, we often have to deal with large populations of agents. In this case,
in addition to the probability of a property about a particular agent, it is also
interesting to obtain the probability of a property about the average agent. For
example, instead of asking for the probability of the income of agent 1 falling
below x, we may be interested in the probability of an agent’s income falling
below x on average. This can be achieved through in-trace sampling, i.e. the
repeated evaluation of an agent property on randomly selected agent traces as
described in Sect. 6 further below. In order to integrate this mechanism into L,
we simply assume that, if the agent identifier is omitted from an indexed agent
property, then the property is checked on a uniformly randomly chosen agent
trace.

6 Events, Properties, and Their Probability

Up until now, we used the term ‘events’ loosely when speaking about the formu-
lation of properties. The purpose of this section is to give a formal definition for
the notion of events and their association with formulable correctness properties.

6.1 Structure and Probability of Simulation Traces

The purpose of this section is to formally associate the set of traces of a multia-
gent system obtained through simulation with a probability space. This allows us
to talk about events and their probability. We show that, by varying the set of
outcomes that one focusses on, events of different granularity become detectable.

In the presence of transition probabilities (as described in Sect. 5), it is intu-
itively clear that each simulation trace ω occurs with a certain probability,
denoted Pr(ω), which is the product of all individual transition probabilities:

3 We assume that agents are numbered from 1 to n and that the number of agents is
fixed.

118 B. Herd et al.

Pr(ω) = P (s0, s1) · P (s1, s2) · ... · P (sn−1, sn) =
∏

0≤i<n

P (si, si+1) (1)

In the presence of long simulation runs, restricting the focus of attention to
the probability of full traces may be too coarse-grained. Traces represent (pos-
sibly long) sequences of system states which themselves also have a complex
internal structure; in the course of a simulation run, numerous events take place
which constitute themselves as changes to the state of the system. A trace repre-
sents all the states of the underlying run and can thus be seen as a rich source of
analysis. In addition to the probability of the trace itself, it is therefore useful to
also determine the probability of all individual events represented by it. However,
in order to talk about events and their probability, we first need to make sets of
traces measurable. To this end, we associate a probability space with the set of
simulation traces. A probability space is a triple (Ω,Σ,Pr) where Ω is the sam-
ple space, Σ ⊆ PΩ is a σ-algebra and Pr : Σ → [0, 1] is a probability measure.
The sample space Ω can be seen as the set representing all possible outcomes
of an experiment. Imagine, for example, throwing a die. In this case, the sample
space is Ω = {1, 2, 3, 4, 5, 6}. We can now start to define possible events within
the set of outcomes. A single event represents a set of outcomes which all satisfy
a common criterion. For example, getting an even number when throwing a die
is represented by the set {2, 4, 6}. Formally, the set of events forms a σ-algebra
Σ ⊆ PΩ on Ω, where Σ is a subset of the power set of Ω. A σ-algebra Σ also
needs to satisfy the following requirements: (i) Σ contains the empty set ∅, (ii) Σ
is closed under complements: if A is in Σ then so is its complement A = (Ω\A),
and (iii) Σ is closed under countable unions: if A1, A2, ... are in Σ then so is their
union A =

⋃
An. Furthermore, in order to assign a probability with an event,

we need a probability measure Pr : Σ → [0, 1] which is a function that assigns
to each event E ∈ Σ a number between 0 and 1. Pr also needs to satisfy the
following requirements: (i) Pr is countably additive: for all countable collections
A = {A1, A2, ..., An} ∈ Σ, Pr(

⋃
Ai) =

∑
(Pr(Ai)), and (ii) Pr(∅) = 0 and

Pr(Ω) = 1. A probability space is then defined as a triple (Ω,Σ,Pr) comprising
the sample space Ω, σ-algebra Σ and probability measure Pr. In the context of
probability theory, the events ω ∈ Σ are said to be measurable [1].

6.2 Simulation and Sampling: Trace Fragmentation

In order to talk about events in the context of simulation runs, the set Trs of
simulation traces which a simulation can produce needs to be made measurable
by associating it with a probability space. We start with the sample space. A
trace obtained through a single simulation run (if properly randomised, which
we assume here) can be seen as a single sample drawn from the set of finite
traces as defined by the logic within the model. However, at the same time, a
single trace of length k also represents a set of k samples drawn from the set of
states defined by the model. Furthermore, it also represents a set of

(
k
2

)
samples

drawn from the set of state tuples, a set of
(
k
3

)
samples drawn from the set of

state triples, and so on. Even more, given n agents, each simulation trace also

Quantitative Analysis of Multiagent Systems 119

represents n samples drawn from the set of agent traces, each of which itself
represents a set of k samples from the set of agent states, etc.

In general, the description of a probabilistic state-based model yields a large
range of different sets of outcomes that one can draw from: a set of agent or group
states (one for each possible group of agents), of agent or group state pairs, of
agent or group state triples, etc. Each individual simulation run represents one or
many samples from each of those sets. As described above, each set of outcomes
corresponds with a different probability space and thus allows for the detection
of different events. Just by interpreting the same outcome in different ways,
different types of events become detectable.

Let us now briefly look at the types of outcomes that one is typically inter-
ested in. We can assume that, in a simulation context, we are mostly interested
in events defined over coherent trace fragments, rather than over arbitrary tuples
of states. Informally, a coherent trace fragment is any sequence of states which
exists in the underlying state space. Fragments of length 1 represent individ-
ual states, fragments of length 2 represent states and their direct successors,
fragments of length 3 represent states and their two subsequent states, etc. For-
mally, the set Fk of coherent trace fragments of length k is defined as the set of
sub-sequences of states, i.e. sub-traces, of length k:

Fk ==
⋃

ω∈Trs

{p in ω | # p = k} (2)

Each fragment size represents a certain level of granularity with respect to
the simulation outcome. Before defining the sample space of a simulation, it is
therefore important to clarify the granularity necessary to answer a given ques-
tion. For example, some questions are formulated over entire simulation traces,
i.e. members of the set Ft. Typical representatives of this group are temporal
questions that involve statements like, for example, eventually or always. In this
case, the set from which samples need to be drawn is the set of all full traces,
i.e. Ω = Trs. The σ-algebra Σ (the set of possible events defined as a subset of
PΩ) thus represents the set of all possible sets of traces.

For other questions, a finer level of granularity is needed. Consider, for exam-
ple, a question about the existence of a particular state transition. On a full sim-
ulation trace, the state transition of interest may occur several times. In order
to detect all occurrences (and thus measure the event’s probability), it is not
sufficient to look at complete traces. Instead, we need to look at trace fragments
of length 2, i.e. at tuples of immediately succeeding states drawn from the set
F2. This is necessary since any state transition is described by its start and end
state. If questions about the probability of a single agent attribute valuation are
to be answered, i.e. questions about a particular property of an individual state,
then the set that samples need to be drawn from is the set of trace fragments of
length 1, i.e. the set of individual states.

We can generalise that, in order to answer any question, we need trace frag-
ments of length k where 0 < k ≤ t and t is the maximum number of time steps
in the simulation. The sample space is then defined as the set of all fragments
of length k, i.e. we have Ω = Fk. The σ-algebra Σ is a subset of the power set

120 B. Herd et al.

of Ω and thus represents the set of all possible sets of trace fragments of length
k, i.e. Σ ⊆ PFk.

In order to define a probability measure for any event in Σ, we first need to
define the probability of a certain trace fragment. The probability of fragment
f = 〈sj , sj+1, ..., sk〉 of trace t = 〈s0, s1, ..., sn〉 where 0 ≤ j ≤ n and j ≤ k ≤ n
is the probability of trace t divided by the number of coherent fragments of t of
size (k − j):

Pr(〈sj , ...sk〉) =

∏
0≤i<n P (si, si+1)

n − (k − j) + 1
(3)

The probability measure for any event σ ∈ Σ (which represents a set of trace
fragments) can then be defined as the sum of the probabilities of each trace
fragment ω ∈ σ:

Pr(σ) =
∑

ω∈σ

Pr(ω) (4)

The association of a probability space with a simulation transition system
makes it possible to talk about events and their probability. Events are described
by properties. A property refers to a set of possible outcomes of a simulation.
Consider, for example, a property ϕ which states that the system will eventually
reach a given state s. This clearly needs to be answered on full simulation traces,
i.e. the set of outcomes is defined as the set of all trace fragments of length t where
t is the maximum trace length. Σ = {σ ∈ Ft | σ |= ϕ} is then defined as the set
of those trace fragments σ that satisfy this condition (denoted σ |= ϕ) and thus
eventually end up in state s. On the other hand, let ψ denote a property that
states that the population transitions from state x to state y. This represents
a statement about the full population, yet, due to its focus on transitions, it
requires trace fragments of length 2 in order to be answered correctly, i.e. we have
Σ = {σ ∈ F2 | σ |= ψ}. As a final example, let ψ denote a property which states
that a single agent transitions from state x to state y. Similar to the previous
property, it describes a state transition and thus requires trace fragments of
length 2. However, it is also of individual nature, i.e. the set of outcomes that
it refers to is the set of all fragments of length 2 of individual agent traces. By
formulating the properties in the appropriate way, we can answer quantitative
properties about the behaviour of the full population, about the behaviour of
groups within the population or about the behaviour of individual agents. By
evaluating an individual property on independent and randomly chosen agent
traces, we can even answer questions about the average behaviour of individual
agents. We refer to this process as in-trace sampling.

Since, as described above, the traces of a simulation are measurable, the
probability of any property φ is defined as the sum of the probabilities of all
trace fragments of length k in the associated σ-algebra Σ = {σ ∈ Fk | σ |= φ}:

Pr(φ) =
∑

σ∈Σ

Pr(σ) (5)

Quantitative Analysis of Multiagent Systems 121

In order to make clear what fragment size a property is being verified upon
(and thus, which interpretation of the sample space is being chosen), we add the
sample size as a subscript variable to Pr. For example, we refer to the probability
of a property φ that is to be evaluated upon trace fragments of size 2 as Pr2(φ).
We omit the subscript if (i) the formula is to be evaluated upon sets of full traces,
or, (ii) if the fragment size does not matter for the purpose of description.

Let us briefly summarise the ideas described above. Essentially, a simulation
trace, i.e. the output of a single simulation run, can be seen as a single sam-
ple from the set of finite traces defined by the underlying model. Following this
interpretation, the set of outcomes, i.e. the set that events and thus also prop-
erties are being formulated upon, is fixed as the set of finite traces. However, a
single simulation trace can also be interpreted as a set of sample states drawn
from the set of states, as a set of sample state tuples drawn from the set of state
tuples, as a set of sample state triples drawn from the set of state triples, and so
forth. Furthermore, sampling can be performed on the macro, meso and micro
level and thus refer to the behaviour of the population, of groups of agents or of
individual agents. Depending on how the set of possible outcomes is interpreted,
different events can be defined which, ultimately, allows for the expression of
richer properties. Given a property φ, its meaning and, of course, also its prob-
ability may vary depending on which set of outcomes it is interpreted on. It
is therefore important to make the fragment size a central parameter of the
verification algorithm.

6.3 Complexity

It is obvious that trace fragmentation has an impact on the complexity of prop-
erty evaluation. Rather than once for each state in the trace in worst case,
fragmentation requires each property φ to be evaluated once for each state for
each fragment. Since fragments are, in most cases, overlapping, most states are
evaluated twice.

We start the complexity analysis by assuming that φ is a conventional LTL
formula, i.e. does not allow for quantification. This assumption is relaxed further
below.

Lemma 1. Let φ be a propositional (i.e. non-temporal) formula. The complexity
of checking φ on a system state s is O(|φ|).

We prove by induction on the structure of propositional formulae. Evaluating
an atomic proposition p requires a constant number c of steps; evaluating a
negated formula ¬ φ requires |φ| steps; evaluating φ1 ∧ φ2 requires |φ1| + |φ2|
steps, as does φ1 ∨ φ2. In general, every subformula of φ needs to be evaluated
once. The complexity of evaluating any propositional formula φ on a state is
thus in O(|φ|). ��
Lemma 2. Let φ be a conventional LTL formula. The complexity of checking φ
on a trace of length t is O(t · |φ|).

122 B. Herd et al.

In order to check a temporal formula φ on a trace of length t, we can use a
recursive labelling procedure (see, e.g. [10] for details). Here, each state s of the
trace is labelled with those subformulae of φ that hold in s. As a consequence,
the whole trace needs to be iterated over |φ| times. The complexity of evaluating
φ is thus in O(t · |φ|). ��
Theorem 1. The complexity of checking an LTL formula φ on a trace of length t
and subdivided into coherent fragments of length k s.t. 0 < k ≤ t is in O

(
t2 · |φ|).

Proof. Each trace of length t contains t − k + 1 coherent fragments of length
k. φ needs to be evaluated once for each fragment. In worst case, t/2 fragments
need to be examined, each of which requires t/2 · |φ| steps (see Lemma 2). The
evaluation of φ on a trace of length t, subdivided into coherent fragments of
length k is thus in O(t2 · |φ|). ��

For Lemma 1 we assumed φ to be a conventional LTL formula which does
not contain quantifiers. If the property specification language allows for nested
quantifiers (as, for example, described in Sect. 5), then the complexity of checking
a property on an individual state needs to be adapted accordingly.

The following theorem makes a more general statement about the complexity
of evaluating a property φ formulated in an arbitrary language L.

Theorem 2. Given a property φ of language L, let C denote the complexity of
evaluating φ on a given trace of length t. Then the complexity of evaluating φ on
a trace of length t which is subdivided into fragments of length k is in O

(
t2 · C)

.

Proof. The proof follows from Lemmas 1 and 2, and Theorem 1. Fragmentation
thus adds a factor that is, in worst case, quadratic in the length of the trace to
the overall complexity of verification. ��

7 Quantitative Trace-Based Analysis

The purpose of this section is to illustrate the usefulness of trace fragmentation
in combination with sampling for the purpose of quantitative analysis. In Sect. 6,
the probability of a property has been defined as the sum of the probabilities
of all traces (or, more precisely, trace fragments) in the associated σ-algebra.
Or, in other words, the probability of φ being true in a set of traces Tr denotes
the ratio between those traces tr ∈ Tr for which φ holds (denoted tr |= φ)
and those traces tr′ ∈ Tr for which φ does not hold (denoted tr′ |= φ). It
remains to discuss, how this probability can be computed practically. Clearly, if
a complete set of traces is available, then the exact probability can be obtained
in a straightforward way, by simply counting those traces for which φ holds
and dividing their number by the overall number of traces. In general, however,
complete sets of traces cannot be assumed to be available. Given the vast size of
real-world state spaces, the number of possible traces will be too large and we
can only expect to have access to a small subset. In this case, statistical analysis
is used to esimate the actual probability of a property [21]. In the remainder
of this paper, when we refer to a probability Pr(φ), we thus always mean the
estimated probability.

Quantitative Analysis of Multiagent Systems 123

7.1 Analysis Types

Up until now, we have completely ignored the fact that properties correspond
with trace fragments rather than with full traces, as described in Sect. 6. In this
section, we bring together the two ideas of (i) probability estimation and (ii) trace
fragmentation in order to describe advanced types of quantitative analysis. In
the following paragraphs, we are mostly interested in the relationship between
states of a system. States correspond with trace fragments of length 1 which, in
turn, correspond with atemporal properties (i.e. properties that do not contain
a temporal operator). To that end, we denote with La the atemporal subset of
L. Furthermore, we abbreviate (φ1 ∧ Xφ2) with φ1 → φ2.

State Residency: We start with the notion of a state residency probability, i.e.
the probability of being in a certain state. Informally, of all the time spent in
any state, the residency probability of state s describes the fraction of time
that is spent in s. Properties about individual states are inherently atemporal in
nature and thus correspond with trace fragments of length 1. Given an atemporal
property φ, the probability of an agent (or any groups of agents) being in a state
that satisfies φ can then be obtained by simply calculating the probability of φ
on trace fragments of length 1, i.e. Pr1(φ). The state residency probability srp
can thus be formally defined as follows:

srp : La → R

∀φ : La • srp(φ) = Pr1(φ)

Transition Residency: In addition to the probability of being in a certain state,
it is crucial to ask properties about the transitions between states. Similar to
the residency w.r.t. states defined above, we may, for example, be interested
in how much of its time a given agent spends in a particular transition. This
can be calculated by simply obtaining the probability of a temporal succession
property describing on trace fragments of size 2 (because of the ‘next’ operator).
For example, if we are interested in the transition from φ1 to φ2 (where both φ1

and φ2 are atemporal), then the transition residency probability can be obtained
by calculating Pr2(φ1 → φ2). This leads to the following formal description of
the transition residency probability trp:

trp : La × La → R

∀φ1, φ2 : La • trp(φ1, φ2) = Pr2(φ1 → φ2)

Transition Probability: The purpose of the next type of quantitative analysis is to
determine a particular transition probability, i.e. the probability of transitioning
into a particular successor state in which φ2 holds, given that we are currently

124 B. Herd et al.

in state in which φ1 holds. The transition probability is obtained by dividing
the probability of transitioning from φ1 to φ2 by the residency probability of φ1,
i.e. trp(φ1, φ2)/Pr2(φ1). It is important to note that both probabilities need to
be obtained on trace fragments of size 2 (even the second, atemporal one!). A
formal definition of the transition probability tp can now be given as follows:

tp : La × La → R

∀φ1, φ2 : La • tp(φ1, φ2) = trp(φ1, φ2)/Pr2(φ1)

Correlation Analysis: Probabilistic analysis can be used conveniently to deter-
mine probabilistic dependence or correlation. Correlation analysis represents an
important building block in the quality assurance process. It can give insights
into the system’s dynamics by revealing behaviours that are coupled, i.e. whose
occurrence is (entirely or to some extent) synchronised. Furthermore, the analysis
of correlations may indicate causal relationships and can thus be used to detect
symptoms that can motivate further, more tailored experiments. For example,
if A and B are positively correlated, one can be sure that one of the following
three facts is definitely true: (i) A is a cause of B, (ii) B is a cause of A or,
(iii) there is a common cause for A and B. Positive correlation can be defined
formally as follows4:

posCorr : L × L → {true , false}
∀φ1, φ2 : L • posCorr(φ1, φ2) ⇔ Pr(φ1 ∧ φ2) > Pr(φ1) · Pr(φ2)

This concludes the description of our analyses. As illustrated in the case
study in the next section, quantitative analysis becomes most powerful if it is
performed on different observational levels.

8 Example: Quantitative Analysis of a Robot Swarm

Following the description of our approach to quantitative analysis, we now
return to the motivational example from swarm robotics described in Sect. 4 and
describe its verification. As described above, our goal is to determine whether
the model is reasonably robust, i.e. whether agents have enough energy during
the simulated timespan5. We start with the following (largely arbitrary) para-
metrisation:
4 The definition of functions for negative correlation and non-correlation, i.e. statistical

independence, are omitted; they can be given accordingly.
5 All experiments were conducted on a Viglen Genie Desktop PC with four Intel R©

CoreTM i5 CPUs (3.2 GHz each), 3.7 GB of memory and Gentoo Linux (kernel version
3.10.25) as operating system, using the verification tool MC2MABS [10]. Results are
based on experiments involving 100 replications of the given model.

Quantitative Analysis of Multiagent Systems 125

Table 1. Transition probabilities for all agents, agents of make 0 and agents of make 1

All agents Make 0 Make 1

Transition Total time Probability Total time Probability Total time Probability

S → G 1 m 52 s 0.1701 2 m 40 s 0.0363 2 m 50 s 0.6223

G → D 2 m 01 s 0.1735 2 m 40 s 0.1945 2 m 40 s 0.1678

G → H 2 m 09 s 0.0076 2 m 46 s 0.0034 2 m 42 s 0.0090

D → R 2 m 02 s 0.1868 2 m 50 s 0.1912 2 m 42 s 0.2111

R → S 2 m 03 s 0.1913 2 m 55 s 0.1950 2 m 47 s 0.1833

– 100 agents, 1,000 ticks
– Time spent in each state: Ts = Tg = Tr = Th = Td = 5
– Energy consumed in each state: Es = 12, Eg = 12, Eh = 6, Er = 2, Ed = 62
– Initial level of energy per agent: 40

In order to check if this parametrisation already satisfies the given require-
ments, we first define the following population-level property stating that the
swarm as a whole will never run out of energy (note the use of ‘〈〈true 〉〉’ to refer
to the whole population):

φ1 = G(〈〈true 〉〉(swarm energy ≥ 0))

Despite every robot having 40 units of initial energy, the verification of
Property φ1 returns a probability of 0 which shows that the parametrisation
given above is not suitable for this version of the model. In order to gain a
deeper understanding of why this may be the case, it is useful to study how
frequently robots switch from one state into another by determining their aver-
age transition probabilities. Following the description in Sect. 7, this requires the
comparison of different probabilities, each of which has been obtained on trace
fragments of length 2. We illustrate the formulation for the transition proba-
bility from searching to grabbing. In order to verify this property, we need the
following two subformulae: φG = grabbing and φS = searching. The overall
transition probability for an individual agent is then calculated as follows:

Pr(S → G) = tp(φS , φG) (6)

The results for 100 replications are shown in the first section of Table 16.
We can see that robots have an equal probability of finding and grabbing food
(≈17%). We can also see that agents have a very low probability of transitioning
into the homing state, which is positive since homing is always caused by a
timeout and is thus undesirable.

However, when calculating the transition probabilities, we need to take into
account that we have two different makes of agent, each of which can be expected
6 For clarity, we abbreviate states with their capitalised first letters in all subsequent

tables.

126 B. Herd et al.

Table 2. Expected individual transition prob. and prob. of constant positive swarm
energy

Vision Pr(S → G) Pr(G → D) Prt(φ1) trp(depositing, resting)

1 0.3416 0.1889 0.0 0.0108

2 0.1344 0.1853 0.0 0.0300

3 0.3735 0.1711 0.0 0.0438

4 0.6571 0.1631 0.0 0.0460

5 0.8364 0.1630 0.0 0.0470

to have different probabilities. In order assess whether this is really the case,
we could, for example, check whether being of make 0 is positively correlated
(or being of make 1 is negative correlated, respectively) with finding food. We
will instead ‘zoom in’ and assess robots of different makes separately. This
can be achieved by using a selection operator 〈〈〉〉 as described in Sect. 5. For
example, for robots of make 0 (for which we assume that proposition make0
is always true), the properties necessary for calculating the transition proba-
bility Pr(S → G) from searching to grabbing can be formulated as follows:
ψS = 〈〈make0〉〉searching and ψG = 〈〈make0〉〉grabbing. The overall transi-
tion probability can then be calculated similar to the previous property, i.e.
Pr(S → G) = tp(ψS , ψG). The results for all checks are shown in Table 1. It is
obvious that robots of make 1 have a significantly higher probability of finding
food which, given their larger field of vision, is intuitively correct. What is also
interesting, however, is that a robot’s make seems to have a small but obvious
impact on its probability of grabbing food; this is indicated by the lower prob-
ability of transitioning from grabbing to depositing for robots of make 1. One
possible explanation is that, due to their larger field of vision and their conse-
quently higher probability of finding food, robots of make 1 may block each other
by ‘stealing’ food that is already aimed for by a different robot. This explanation
may also be underpinned by the slightly higher probability of robots of make 1
moving from grabbing to homing than robots of make 0: the only reason for per-
forming this transition is that a food item aimed for is lost to a different agent.
Given the small sample size, however, care needs to be taken when interpreting
the numbers — especially when differences are very small, as in this case.

The numbers seem to suggest that the size of the field of vision has a positive
impact on the food finding probability and a slightly negative impact on the food
grabbing probability. This hypothesis can be investigated further by performing
a range of experiments in which the vision parameter is constantly increased.
The results are shown in Table 2. The numbers in the second column indicate
that, in fact, the size of the field of vision has a significant positive impact
on the probability of finding food (as expected). This shows that there is a
causal dependence between an agent’s field of vision and its probability of finding
food. The numbers in the third column indicate that there is a slightly negative
correlation between the field of vision and the probability of grabbing food. The
fourth column of the table shows the probability of Property φ1 which is 0 in

Quantitative Analysis of Multiagent Systems 127

Table 3. Expected individual state distribution

Vision srp(searching) srp(grabbing) srp(homing) srp(resting) srp(depositing)

1 0.2952 0.0563 0.2694 0.3234 0.0555

2 0.2147 0.1553 0.1668 0.3122 0.1505

3 0.1251 0.2486 0.0810 0.3119 0.2337

4 0.0873 0.2896 0.0470 0.3083 0.2647

5 0.0691 0.3087 0.0330 0.3109 0.2763

Table 4. Expected state distribution and energy development for Tr = 1 and Tg = 1

Vision Scenario srp(S) srp(G) srp(H) srp(R) srp(D) Prt(φ1) Prt([](energy > 0))

5 Tr = 1 0.0925 0.4095 0.0466 0.0828 0.3691 0.0 0.0

5 Tg = 1 0.0923 0.0816 0.0262 0.4135 0.3893 1.0 0.78

all cases; varying the field of vision alone is thus not sufficient for sustaining a
positive energy level (at least not in the current scenario).

The numbers suggest that, despite the slight loss in grabbing probability, the
swarm designer is best off by giving all robots a high field of vision. In order to
confirm this assumption, we can formulate another property which denotes the
overall probability of an agent gaining energy. Remember that energy is always
gained in the final time step of the depositing state, i.e. before the agent starts
resting. In order to determine the overall probability of an agent gaining energy,
we can formulate the following property:

trp(depositing, resting) = Pr2(depositing → resting) (7)

Since this is a property whose truth needs to be ascertained on state tran-
sitions, it needs to be checked on trace fragments of size 2. It is also important
to note that, since it is not conditional upon the agent’s being depositing (i.e.
it does not use logical implication), this property does not describe a transition
probability in its strict sense. Instead, it describes the overall probability of per-
forming this particular transition and can thus be used to determine the overall
probability of an agent gaining energy. For simplicity, we assume that 5 is the
maximum level of vision that can be realised technically. The verification results
are shown in the last column of Table 2. They strengthen the assumption that
the scenario with the largest field of vision is the most efficient one since, in this
case, agents are most likely to gain energy.

The numbers so far give a strong indication that the probability of grabbing
food should be increased. In order to choose the right strategy for achieving this
goal, it is essential to explain its current level first, i.e. to understand why it is so
low. The intuitive assumption is that an increased field of vision also increases
competition among robots which itself increases the probability of agents missing
out when trying to grab food. This assumption can be checked by determining
the expected state distribution, i.e. the amount of time a robot is expected to spend

128 B. Herd et al.

in each of the states. The properties are formulated with the help of the state
residency probability srp described in Sect. 7.1. The expected state distribution
can be obtained by checking all properties above on trace fragments of size 1,
i.e. on individual states. This is important since the properties are state prop-
erties and, in order to determine their probability, we need to sample from the
distribution of states. The verification results are shown in Table 3. It becomes
apparent that in case of lower vision, a significantly higher proportion of robots
spend their time searching and homing (due to timeouts) than in case of higher
vision. However, it also becomes apparent, that in case of higher vision, a signifi-
cantly higher proportion of agents spend their time grabbing. This suggests that
grabbing becomes a bottleneck which impedes foraging. Apart from grabbing,
in all scenarios, a significant number of agents spend their time resting.

We now have two possible directions to improve the overall efficiency of the
swarm: we can either try to decrease the time individuals spend for resting or we
can try to decrease the time spent for grabbing food items. In order to compare
the effect of both changes, we determine again the expected state distribution
for each of the two cases. The results are shown in Table 47. Reducing the rest-
ing time to 1 has the effect of forcing more robots into searching, grabbing and
depositing. Likewise, reducing the grabbing time to 1 forces more robots into
searching, resting and depositing. Both scenarios only differ with respect to the
number of agents grabbing or resting. Taking into account the energy consump-
tion of each agent intuitively suggests that scenario 2 (reduced grabbing time)
must be significantly more effective since, in this case, more agents are resting
which consumes significantly less energy than depositing. This assumption can
be strengthened by looking at the overall probability of Property φ1 (shown in
Column 7) of Table 4. In the case of reduced resting time, the probability of the
swarm always having positive energy is 0; in the case of reduced grabbing time,
the probability is 1.0. In terms of individual energy levels, individual robots have
an average probability of always having positive energy of ≈78%, as shown by
the unindexed individual agent property in Column 8 of Table 4.

We have now reached a situation in which the overall swarm energy level
as well as the majority of all individual energy levels are always positive. This
concludes our small case study. In fact, there is still a significant number of
individual robots (≈22%) running out of energy. Their calibration, however, is
not further discussed here.

9 Conclusions and Future Work

Statistical model checking can provide a powerful alternative for the verification
of systems that are unamenable to conventional formal verification. Because of
its focus on finite traces, statistical verification is typically focussed on com-
paratively simple properties. This critically limits the verifiability of large-scale
multiagent systems with their complex, internal structure. In this paper, we
7 For space limitation, the states are abbreviated with lower-case letters, e.g. s for

searching.

Quantitative Analysis of Multiagent Systems 129

showed how, by combining statistical verification with an advanced type of
sampling and trace fragmentation, interesting quantitative analyses on different
observational levels can be performed. Using a simple case study from the area
of swarm robotics, we showed that, albeit approximate in nature, those types of
analyses can be helpful to shed light on the dynamics of complex systems and
uncover some of their internal mechanisms.

In this paper, we restricted our attention to a small number of quantitative
analyses. Combining the expressiveness of temporal logics with statistical veri-
fication, a much wider range of analyses is possible. For example, in statistical
time series analysis, correlation can be generalised to the temporal case by mea-
suring the autocorrelation of a time series. The same idea could be applied in
a trace-based verification scenario. Furthermore, probabilistic analysis provides
an interesting basis for the analysis of causal relationships, either in a statistical
sense (e.g. Granger causality) or by utilising probabilistic theories of causation
[12]. In a verification context, causal analysis is a powerful tool for the explana-
tion of phenomena. We plan to further investigate this idea, with a particular
focus on the work of Kleinberg and Mishra [13].

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Ballarini, P., Fisher, M., Wooldridge, M.: Uncertain agent verification through
probabilistic model-checking. In: Barley, M., Mouratidis, H., Unruh, A., Spears,
D., Scerri, P., Massacci, F. (eds.) SASEMAS 2004-2006. LNCS, vol. 4324, pp. 162–
174. Springer, Heidelberg (2009)

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Logic Comput. 20(3), 651–674 (2010)

4. Cao, Y.U., Fukunaga, A.S., Kahng, A.: Cooperative mobile robotics: antecedents
and directions. Auton. Robots 4(1), 7–27 (1997)

5. Clarke, E., Emerson, E., Jha, S., Sistla, A.: Symmetry reductions in model check-
ing. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 147–158. Springer,
Heidelberg (1998)

6. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

7. Dekhtyar, M.I., Dikovsky, A.J., Valiev, M.K.: Temporal verification of probabilistic
multi-agent systems. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars
of Computer Science. LNCS, vol. 4800, pp. 256–265. Springer, Heidelberg (2008)

8. Dix, J., Fisher, M.: Specification and verification of multi-agent systems. In: Mul-
tiagent Systems. MIT Press, Cambridge (2013)

9. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.B.: Collecting statistics over run-
time executions. Formal Methods Syst. Des. 27(3), 253–274 (2005)

10. Herd, B.: Statistical runtime verification of agent-based simulations. Ph.D. thesis,
King’s College London (2015)

11. Herd, B., Miles, S., McBurney, P., Luck, M.: An LTL-based property specification
language for agent-based simulation traces. Technical Report 14–02, King’s College
London, October 2014

130 B. Herd et al.

12. Hitchcock, C.: Probabilistic causation. In: Zalta, E.N. (ed.) The Stanford Encyclo-
pedia of Philosophy. Winter 201 edn. (2012)

13. Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: Proceedings
of the 25th Conference on Uncertainty in Artificial Intelligence, pp. 303–312. AUAI
Press (2009)

14. Konur, S., Dixon, C., Fisher, M.: Formal verification of probabilistic swarm behav-
iours. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 440–447.
Springer, Heidelberg (2010)

15. Kouvaros, P., Lomuscio, A.: Automatic verification of parameterised multi-agent
systems. In: Proceedings of the 12th International Conference on Autonomous
Agents and Multi-agent Systems, Richland, SC, pp. 861–868 (2013)

16. Kouvaros, P., Lomuscio, A.: A cutoff technique for the verification of parame-
terised interpreted systems with parameterised environments. In: Proceedings of
the 23rd International Joint Conference on Artificial Intelligence, pp. 2013–2019.
AAAI Press (2013)

17. Kwiatkowska, M., Lomuscio, A., Qu, H.: Parallel model checking for temporal
epistemic logic. In: Proceedings of the 19th European Conference on Artificial
Intelligence, pp. 543–548. IOS Press, Amsterdam (2010)

18. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the proba-
bilistic model checker PRISM. Electron. Notes Theor. Comput. Sci. 153(2), 5–31
(2006). Proc. 3rd Workshop on Quantitative Aspects of Programming Languages

19. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

20. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Qadeer, S., Gopalakrishnan, G. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

21. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010)

22. Liu, W., Winfield, A., Sa, J.: Modelling swarm robotic systems: a case study in
collective foraging. In: Towards Autonomous Robotic Systems, pp. 25–32 (2007)

23. Lomuscio, A., Penczek, W., Qu, H.: Partial order reductions for model checking
temporal-epistemic logics over interleaved multi-agent systems. Fundamenta Infor-
maticae 101(1–2), 71–90 (2010)

24. Lomuscio, A., Penczek, W., Woz̀na, B.: Bounded model checking for knowledge
and real time. Artif. Intell. 171(16–17), 1011–1038 (2007)

25. Nimal, V.: Statistical approaches for probabilistic model checking. MSc Mini-
project Dissertation, Oxford University Computing Laboratory (2010)

26. Pedersen, T., Dyrkolbotn, S.K.: Agents homogeneous: a procedurally anonymous
semantics characterizing the homogeneous fragment of ATL. In: Boella, G., Elkind,
E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS,
vol. 8291, pp. 245–259. Springer, Heidelberg (2013)

27. Sammapun, U., Lee, I., Sokolsky, O., Regehr, J.: Statistical runtime checking of
probabilistic properties. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol.
4839, pp. 164–175. Springer, Heidelberg (2007)

28. Wan, W., Bentahar, J., Ben Hamza, A.: Model checking epistemic and probabilistic
properties of multi-agent systems. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C.,
Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part II. LNCS, vol. 6704, pp. 68–78.
Springer, Heidelberg (2011)

Semantic Mutation Testing
for Multi-agent Systems

Zhan Huang(&) and Rob Alexander

Department of Computer Science, University of York, York, UK
{zhan.huang,robert.alexander}@cs.york.ac.uk

Abstract. This paper introduces semantic mutation testing (SMT) into
multi-agent systems. SMT is a test assessment technique that makes changes to
the interpretation of a program and then examines whether a given test set has
the ability to detect each change to the original interpretation. These changes
represent possible misunderstandings of how the program is interpreted. SMT
can also be used to assess robustness to and reliability of semantic changes. This
paper applies SMT to three rule-based agent programming languages, namely
Jason, GOAL and 2APL, provides several contexts in which SMT for these
languages is useful, and proposes three sets of semantic mutation operators (i.e.,
rules to make semantic changes) for these languages respectively, and a sys-
tematic approach to derivation of semantic mutation operators for rule-based
agent languages. This paper then shows, through preliminary evaluation of our
semantic mutation operators for Jason, that SMT has some potential to assess
tests, robustness to and reliability of semantic changes.

Keywords: Semantic mutation testing � Agent programming languages �
Cognitive agents

1 Introduction

Testing multi-agent systems (MASs) is difficult because MASs may have some
properties such as autonomy and non-determinism, and they may be based on models
such as BDI which are quite different to ordinary imperative programming. There are
many test techniques for MASs, most of which attempt to address these difficulties by
adapting existing test techniques to the properties and models of MASs [9, 15]. For
instance, SUnit is a unit-testing framework for MASs that extends JUnit [19].

Some test techniques for MASs introduce traditional mutation testing, which is a
powerful technique for assessing the adequacy of test sets. In a nutshell, traditional
mutation testing makes small changes to a program and then examines whether a given
test set has the ability to detect each change to the original program. These changes
represent potential small slips. Work on traditional mutation testing for MASs includes
[1, 10, 16–18].

In this paper, we apply an alternative approach to mutation testing, namely
semantic mutation testing (SMT) [5], to MASs. Rather than changing the program,
SMT changes the semantics of the language in which the program is written. In other
words, it makes changes to the interpretation of the program. These changes represent

© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 131–152, 2015.
DOI: 10.1007/978-3-319-26184-3_8

possible misunderstandings of how the program is interpreted. Therefore, SMT
assesses a test set by examining whether it has the ability to detect each change to the
original interpretation of the program.

SMT can be used not only to assess tests, but also to assess robustness to and
reliability of semantic changes: Given a program, if a change to its interpretation cannot
be detected by a trusted test set, the program is considered to be robust to this change,
in other words, this change is considered to be reliable for the program. It is possible
for SMT to further explore whether some reliable change leads to better performance.

This paper makes several contributions. First, it applies SMT to three rule-based
agent programming languages, namely Jason, GOAL and 2APL. Second, it provides
several contexts (scenarios) in which SMT for these languages is useful. Third, it
proposes sets of semantic mutation operators (i.e., rules to make semantic changes) for
these languages respectively, and a systematic approach to derivation of semantic
mutation operators for rule-based agent languages. Finally, it presents a preliminary
evaluation of the semantic mutation operators for Jason, which shows some potential of
SMT to assess tests, robustness to and reliability of semantic changes.

The remainder of this paper is structured as follows: Sect. 2 describes two types of
mutation testing, namely traditional mutation testing and semantic mutation testing.
Section 3 describes SMT for Jason, GOAL and 2APL by showing several contexts in
which it is useful and the source of semantic changes required to apply SMT in each
context. Section 4 proposes sets of semantic mutation operators for these languages and
an approach to derivation of semantic mutation operators for rule-based agent lan-
guages. Section 5 evaluates the semantic mutation operators for Jason. Section 6
compares our approach to related work, summarizes our work and suggests where this
work could go in the future.

2 Mutation Testing

2.1 Traditional Mutation Testing

Traditional mutation testing is a test assessment technique that generates modified
versions of a program and then examines whether a given test set has the ability to
detect the modifications to the original program. Each modified program is called a
mutant, which represents a potential small slip. Mutant generation is guided by a set of
rules called mutation operators. For instance, Fig. 1(a) shows a piece of a program and
Fig. 1(b)–(f) show five mutants generated as the result of the application of a single
mutation operator called Relational Operator Replacement, which replaces one of the
relational operators (<, ≤, >, ≥, =, ≠) by one of the others.

After mutant generation, the original program and each mutant are executed against
all tests in the test set. For a mutant, if its resultant behaviour differs from the behaviour
of the original program on some test, the mutant will be marked as killed, which
indicates that the corresponding modification can be detected by the test set. Therefore,
the fault detection ability of the test set can be assessed by the mutant kill rate– the ratio
of the killed mutants to all generated mutants: the higher the ratio is, the more adequate
the test set is. In the example shown in Fig. 1, a test set consisting of a single test in

132 Z. Huang and R. Alexander

which the input is x = 3, y = 5 cannot kill the mutants shown in Fig. 1(b) and
(f) because on that test these two live mutants result in the same behaviour as the
original program (i.e., return a). Therefore, the mutant kill rate is 3/5. According to this
result we can enhance the test set by adding a test in which the input is x = 4, y = 4 and
another test in which the input is x = 4, y = 3 in order to kill these two live mutants
respectively and get a higher mutant kill rate (the highest kill rate is 1, as this example
shows).

Many studies provide evidence that traditional mutation testing is a very rigorous
test assessment technique, so it is often used to assess other test techniques [2, 14].
However, the mutation operators used to guide mutant generation may lead to a large
number of mutants because a single mutation operator has to be applied to each
relevant point in the program and a single mutant only contains a modification to a
single relevant point (as shown in Fig. 1). This makes comparing the behaviour of the
original program with that of each mutant on each test is computationally expensive.

Another problem is that traditional mutation testing unpredictably produces
equivalent mutants– alternatives to the original program that are not representative of
faulty versions, in that their behaviour is no different from the original in any way that
matters for the correctness of the program. Thus, no reasonable test set can detect the
modifications they contain. Equivalent mutants must therefore be excluded from test
assessment (i.e., the calculation of the mutant kill rate). The exclusion of equivalent
mutants requires much manual work although this process may be partially automated.

2.2 Semantic Mutation Testing

Clark et al. [5] propose semantic mutation testing (SMT) and extend the definition of
mutation testing as follows: suppose N represents a program and L represents the
semantics of the language in which the program is written (so L determines how N is
interpreted), the pair (N, L) determines the program’s behaviour. Traditional mutation

Fig. 1. An example of traditional mutation testing

Semantic Mutation Testing for Multi-agent Systems 133

testing generates modified versions of the program namely N ! (N1, N2, …, Nk) while
SMT generates different interpretations of the same program namely L ! (L1, L2, …,
Lk). For SMT, L1, L2, …, Lk represent semantic mutants, their generation is guided by
a set of rules called semantic mutation operators. For instance, Fig. 2 shows a piece of
a program, a semantic mutant (i.e., a different interpretation of this program) is gen-
erated by the application of a single semantic mutation operator that causes the if
keyword to be used for mutual exclusion (i.e., when an if is directly followed by
another if, the second if statement is interpreted the same as an else-if statement).

SMT assesses a test set in a similar way as traditional mutation testing– comparing
the behaviour under each semantic mutant with that under the original interpretation, in
order to detect the killed mutants. In the example shown in Fig. 2, a test set consisting
of a single test in which the input is x = 2 cannot kill the semantic mutant because on
that test the mutant results in the same behavior as the original interpretation (i.e., only
do A). Therefore, the mutant kill rate is 0/1 = 0. We can enhance this test set by adding
another test in which the input is x = 4 in order to kill the live mutant.

Compared with traditional mutation testing, SMT aims to simulate a different class
of faults, namely possible misunderstandings of how the program is interpreted.
Although many semantic misunderstandings can also be simulated by mutation of the
program, a single semantic change may require multiple changes to the program rather
than a single, small change made by traditional mutation testing. In addition, some
semantic misunderstandings may lead to complex faults that simple program changes
are hard to represent, and these complex faults may be harder to detect than small slips,
e.g., [5] shows that SMT has potential to capture some faults that cannot be captured by
traditional mutation testing.

SMT has another difference to traditional mutation testing: it generates far fewer
mutants because a single semantic mutation operator only leads to a single semantic
mutant1, namely a different interpretation of the same program (as shown in Fig. 2),
while a single traditional mutation operator may lead to many mutants each of which
contains a modification to a single relevant point in the program (as shown in Fig. 1).
This makes SMT much less computationally costly.

Fig. 2. An example of semantic mutation testing

1 This rule can be relaxed, namely mutating the semantics of only parts of the program instead of
mutating the semantics of the whole program. This is useful, e.g., when the program is developed by
several people.

134 Z. Huang and R. Alexander

SMT can be used not only to assess tests, but also to assess robustness to and
reliability of semantic changes. Given a semantic mutant, if it cannot be killed by a
trusted test set2, it will be considered to be “equivalent”3, which indicates that the
program is robust to the corresponding semantic change or the semantic change is
reliable for the program, otherwise the program may need to be improved to resist this
change, or this change has to be discarded. In the example shown in Fig. 2, if the
program is required to be robust to the semantic change, it can be modified to ensure
that at most one branch is executed in any case.

We know that SMT makes semantic changes for assessing tests, robustness to and
reliability of semantic changes. For a particular language, which semantic changes
should be made by SMT are context-dependent. For instance, to assess tests for a
program written by a novice programmer, semantic changes to be made can be derived
from common novices’ misunderstandings of the semantics. To assess the portability of
a program between different versions of the interpreter, semantic changes to be made
can be derived from semantic differences between these versions.

3 Semantic Mutation Testing for Jason, GOAL and 2APL

We investigate semantic mutation testing for MASs by applying it to three rule-based
programming languages for cognitive agents, namely Jason, GOAL and 2APL. These
languages have generally similar semantics – an agent deliberates in a cyclic process in
which it selects and executes rules according to and affecting its mental states. They
also have similar constructs to implement such agents such as beliefs, goals and rules.
The details of these languages can be found in [4, 6, 8] and are not provided here.

From Sect. 2.2 we know that for a particular language, the semantic changes that
can most usefully be made by SMT is context-dependent. In the remainder of this
section we provide several contexts in which SMT for the chosen agent languages is
useful – use of a new language, evolution of languages, common misunderstandings,
ambiguity of informal semantics and customization of the interpreter. We also show the
source of semantic changes required to apply SMT in each context.

3.1 Use of a New Language

When a programmer starts to write a program in a new (to him or her) language, he or
she may have misunderstandings that come from the semantic differences between the
new language and the old one(s) he or she has ever used. Therefore, in order for SMT
to simulate such misunderstandings, we should first find out their source, namely the
semantic differences, by comparison between the new and the old languages. We use

2 A trusted test set is the one that is considered to be “good enough” for the requirement. It doesn’t
need to be the full test set that is usually impractical; instead it can choose not to cover some aspects
or to tolerate some errors.

3 Here the term “equivalent” is different to the one used in the context of test assessment, in which a
mutant is equivalent only if there exist no tests that can kill the mutant. In the context of
robustness/reliability assessment, a mutant is equivalent if only the trusted test set cannot kill it.

Semantic Mutation Testing for Multi-agent Systems 135

Jason, GOAL and 2APL as an example: a programmer who has ever used one of these
languages may start to use one of the others. Since these languages each have large
semantic size and distinctive features, we use the following strategies to guide the
derivation of the semantic differences between them.

• Dividing the semantics of each of these languages into five aspects, as shown in
Table 1. We do this because first of all, it provides a focus on examining four
aspects of the semantics, namely deliberation step order, rule selection, rule exe-
cution, and mental state query and update, all of which are important and common
to rule-based agent languages, while including other aspects that will be generally
examined in order for completeness. Second, it is reasonable that common aspects
of the semantics are more likely to cause misunderstandings than distinctive aspects
in the context of using a new language, because distinctive aspects are usually
supported by distinctive constructs that a programmer would normally take time to
learn.

• Focusing on semantic differences between similar constructs. As [5] suggests, such
differences easily cause misunderstandings because when writing a program in a
new language a programmer may copy the same or similar old constructs without
careful examination of their semantics given by the new language.

• Examining both formal and informal semantics of these languages. We start with
examining the formal semantics because they can be directly compared. We also
verify those that are informally defined through coding and reviewing the interpreter
source code.

• Focusing on the default interpreter configuration. The interpreters of these lan-
guages are customizable, for instance, the Jason agent architecture can be cus-
tomized by inheritance of the Java class that implements the default agent
architecture; the GOAL rule selection order can be customized in the GOAL agent
description. We think the default interpreter configuration is more likely to cause
misunderstandings in the context of using a new language because if a programmer
customizes an element it suggests he or she is familiar with its semantics.

Table 1. The aspects of the semantics of Jason, GOAL and 2APL (those marked with an
asterisk are the ones we focus on)

ID Aspect Description

1 Deliberation step
order*

Each deliberation cycle consists of a sequence of steps, e.g.,
rule selection ! rule execution is a two-step sub-sequence

2 Rule selection* Rule selection is an important deliberation step in which one or
several rules are chosen to be new execution candidates

3 Rule execution* Rule execution is an important deliberation step in which one
or several execution candidates are chosen to execute

4 Mental state query
and update*

Mental states (i.e., beliefs and goals) can be queried in some
deliberation steps such as rule selection and updated by
execution of rules

5 Other Other aspects of the semantics not listed above

136 Z. Huang and R. Alexander

Table 2 shows the semantic differences we found between Jason, GOAL and 2APL.
These form the source of semantic changes required to apply SMT in the context of
starting to use one of Jason, GOAL and 2APL from one of the others.

Difference 1 comes from the order of two important deliberation steps, namely rule
selection and rule execution. A Jason agent first selects a rule to be a new execution
candidate and then chooses to execute an execution candidate. A GOAL agent processes
its modules one by one, in each module it first selects and executes event rules and then
selects and executes an action rule (both event and action rules are defined in the module
being processed). A 2APL agent first selects action rules to be new execution

Table 2. Semantic differences between Jason, GOAL and 2APL

ID Source Jason GOAL 2APL

1 The order of
rule
selection
and rule
execution

select a rule
!
execute a
rule

(select and execute event
rules ! select and
execute an action rule)
x Number_of_Modules

select action rules !
execute rules !
select an external
event rule ! select
an internal event
rules ! select a
message event rule

2 Rule
selection

• applicable • enabled • applicable
• linear • linear (action rules) and

linearall (event rules)
• linear (event rules)
and linearall (action
rules)

3 Rule
execution

• one
rule/cycle

• one rule/cycle (action
rules) and all
rules/cycle (event
rules)

• all rules/cycle

• one
action/rule

• all actions/rule • one action/rule

4 Belief query linear random linear
5 Belief

addition
start end end

6 Goal query E ! I;
linear

random linear

7 Goal
addition

end of E end start or end

8 Goal
deletion

delete the
event and
intention
that
relates to
the goal φ

delete all super-goals of
the goal φ

delete only the goal φ,
all sub-goals of φ or
all super-goals of φ

9 Goal type procedural declarative declarative
10 Goal

commitment
strategy

no blind blind

Semantic Mutation Testing for Multi-agent Systems 137

candidates, and then executes all execution candidates, next selects an external event
rule, an internal event rule and a message event rule to be new execution candidates.

Difference 2 comes from the rule selection deliberation step. Jason, GOAL and
2APL differ in two aspects of this step, namely the rule selection condition and the
default rule selection order. For the rule selection condition, a Jason or 2APL rule can be
selected to be a new execution candidate if both its trigger condition and guard condition
get satisfied (“applicable”), while a GOAL rule can be selected if it is applicable and the
pre-condition of its first action gets satisfied (“enabled”). For the default rule selection
order, Jason rules are selected in linear order (i.e., rules are examined in the order they
appear in the agent description, and the first applicable rule is selected), GOAL action
rules are selected in linear order while GOAL event rules are selected in “linearall” order
(i.e., rules are examined in the order they appear in the agent description, and all enabled
rules are selected), 2APL action rules are selected in “linearall” order while 2APL event
rules of each type (external, internal, message) are selected in linear order.

Difference 3 comes from the rule execution deliberation step. In this step a Jason
agent chooses a single execution candidate and then executes a single action in this
candidate, a GOAL agent executes all actions in each selected event rule and each
selected action rule4, a 2APL agent executes a single action in each execution candidate.

Difference 4 comes from the belief query. In a Jason or 2APL agent, beliefs are
queried in linear order (i.e., beliefs are examined in the order they are stored in the belief
base, and the first matched belief is returned). In a GOAL agent, beliefs are queried in
random order (i.e., beliefs are randomly accessed, and the first matched belief is
returned).

Difference 5 comes from the belief addition. In a Jason agent, a new belief is added
to the start of the belief base. In a GOAL or 2APL agent a new belief is added to the
end of the belief base.

Difference 6 comes from the goal query. In a Jason agent, since goals exist in
related events and intentions, the agent queries a goal by first examining its event base
then its intention set following linear query order. In a GOAL agent, goals are queried
in random order. In a 2APL agent, goals are queried in linear order.

Difference 7 comes from the goal addition. In a Jason or GOAL agent, a new goal is
added to the end of the event or goal base. In a 2APL agent, a new goal is added to the
start or the end of the goal base according to the relevant agent description (i.e., adopta
or adoptz).

Difference 8 comes from the goal deletion. Given a goal φ to be deleted, a Jason
agent deletes the event and intention that relates to φ, a GOAL agent deletes all goals
that have φ as a logical sub-goal, a 2APL agent deletes only φ, all goals that are a
logical sub-goal of φ, or all goals that have φ as a logical sub-goal according to the
relevant agent description (i.e., dropgoal, dropsubgoal or dropsupergoal).

Difference 9 comes from the goal type. Jason adopts procedural goals– goals that only
serve as triggers of procedures although it supports declarative goal patterns. GOAL and
2APL adopt declarative goals– goals that also represent states of affairs to achieve.

4 Unlike Jason and 2APL, a GOAL agent has no intention set or similar structure, so a GOAL rule is
immediately attempted to execute to completion once selected.

138 Z. Huang and R. Alexander

Difference 10 comes from the goal commitment strategy. Jason doesn’t adopt any
goal commitment strategy (i.e., a goal is just dropped once its associated intention is
removed as the result of completion or failure) although it supports various commit-
ment strategy patterns. GOAL and 2APL adopt blind goal commitment strategy, which
requires a goal is pursued until it is achieved or declaratively dropped.

3.2 Evolution of Languages

When a programmer moves a program from a language to its successor (either a
different language or a newer version of the same language), he or she may have
misunderstandings that come from the semantic evolution, or may want to examine
whether a program is robust to the semantic evolution or whether the semantic evo-
lution is reliable. To derive semantic changes required to apply SMT in these cases, we
should first find out their source, namely the semantic differences between the language
and its successor. We take 2APL and its predecessor 3APL [7], and different versions
of Jason as examples: Table 3 shows some semantic differences between 2APL and
3APL; Table 4 shows some semantic differences between different versions of Jason,
which are derived from the Jason changelog [11]. We explain these differences as
follows.

Semantic Differences Between 2APL and 3APL. Difference 1 comes from the
PR-rules. In 2APL, the abbreviation “PR” means “plan repair”, a PR-rule (i.e. an
internal event rule) is selected if a relevant plan fails. In 3APL, “PR” means “plan
revision”, a PR-rule is selected if it matches some plan.

Difference 2 comes from the order of rule selection and rule execution deliberation
steps. The order adopted by a 2APL agent has been described in Sect. 3.1. In contrast, a
3APL agent selects an action rule then a PR-rule to be new execution candidates, then
chooses to execute an execution candidate.

Difference 3 comes from the action rule selection order. As described in Sect. 3.1,
2APL action rules are selected in “linearall” order. In contrast, 3APL action rules are
selected in linear order.

Difference 4 comes from the rule execution deliberation step. As described in
Sect. 3.1, a 2APL agent executes all execution candidates in a deliberation cycle. In
contrast, a 3APL agent chooses to execute a single execution candidate.

Table 3. Some semantics differences between 2APL and 3APL

ID Source 2APL 3APL

1 PR-rules plan repair plan revision
2 The order of rule selection

and rule execution
see Table 2 select an action rule ! select a

PR-rule ! execute a rule
3 Action rule selection linearall linear
4 Rule execution all

rules/cycle
one rule/cycle

Semantic Mutation Testing for Multi-agent Systems 139

Semantic Differences Between Different Versions of Jason. Difference 1 comes
from the belief deletion action. Since Jason v0.95 the belief deletion action-b deletes
b if b is a mental note (i.e. b has the annotation source(self)), while this action deletes
b wherever it originates from before that version of Jason.

Difference 2 comes from the drop desire action. Since Jason v0.96 the drop desire
action .drop_desire(d) removes the event and intention that is related to d, while this
action removes only the related event before that version of Jason.

3.3 Common Misunderstandings

A programmer may have semantic misunderstandings that are common to a particular
group of people he or she belongs to. Such misunderstandings can be identified by
analysis of these people’s common mistakes or faults. We take GOAL as an example:
Table 5 shows some possible misunderstandings of the GOAL’s semantics, which are
derived from some common faults made by GOAL novice programmers [20]. We
explain these misunderstandings as follows.

Possible misunderstanding 1 comes from the fault of the wrong rule order. If a
programmer makes this fault in the GOAL agent description, he or she may have the
misunderstanding that rules are selected in another available order5 by default, e.g.,
action rules are selected in “linearall” order rather than linear order.

Possible misunderstanding 2 comes from the fault of a single rule including two
user-defined actions. If a programmer makes this fault, he or she may have the
misunderstanding that this is allowed like other agent languages.

Possible misunderstanding 3 comes from the fault of using “if then” instead of
“forall do”. If a programmer makes this fault, he or she may have the misunderstanding
that “if then” is interpreted the same as “forall do”.

Table 4. Some semantic differences between different versions of Jason

ID Source Before some version Since that version

1 Belief deletion
action

-b deletes b wherever it
originates from

-b deletes b if b has the annotation
source(self)

2 Drop desire
action

Remove only the related
event

Remove the related event and
intention

Table 5. Some possible novice programmers’ misunderstandings of GOAL

ID Fault Possible misunderstanding

1 Wrong rule order By default rules are selected in another
available order

2 A single rule including two
user-defined actions

A rule can have more than one user-defined
action

3 Using “if then” instead of “forall do” “if then” is interpreted the same as “forall
do”

5 GOAL supports four available rule evaluation orders: linear, linearall, random and randomall.

140 Z. Huang and R. Alexander

3.4 Ambiguity of Informal Semantics

A programmer may have misunderstandings of the semantics that are imprecisely or
informally defined. For instance, [3] gives two examples of such misunderstandings of
Jason as shown in Table 6. We explain these misunderstandings as follows.

Possible misunderstanding 1 comes from the goal deletion event. A goal deletion
event (-!e or -?e) is generated if an intention that has the corresponding goal addition
triggering event (+!e or +?e) fails. A programmer may have the misunderstanding that
this event is generated if this intention is removed as the result of completion or failure.

Possible misunderstanding 2 comes from the test action. A test action (?e) gener-
ates a test goal addition event if it fails. A programmer may have the misunderstanding
that a test action generates a test goal addition event if it is executed, which is similar to
an achievement goal action (!e).

3.5 Customization of the Interpreter

The interpreters of Jason, GOAL and 2APL can be customized through
modifying/overriding the functions of the interpreter or choosing between the provided
options that can change the interpreter behaviour. Given an agent description, a pro-
grammer may want to know whether a custom interpreter provides an alternative to the
original interpretation of the description. (The programmer may further examine
whether the alternative interpretation leads to better performance, e.g., higher execution
efficiency.) SMT can be applied in this context to represent potential customizations of
the interpreter. We take Jason as an example: Table 7 shows some Jason interpreter
configuration options, which are derived from the Jason changelog [11].

3.6 Discussion

SMT is interesting to Jason, GOAL and 2APL in the contexts discussed above
considering:

• These languages are declarative languages. They provide a focus on describing
capabilities and responsibilities of an agent in terms of beliefs, goals, plans, etc.,

Table 6. Some possible misunderstanding of the Jason’s informal semantics

ID Source Possible misunderstanding

1 Goal deletion
event

“if an intention fails” ! “if an intention is removed”

2 Test action Generate a test goal addition event if the action fails ! Generate a
test goal addition event if the action is executed

Table 7. Some Jason interpreter configuration options

ID Option description

1 Enable/disable tail recursion optimization for sub-goals
2 Enable/disable cache for queries in the same cycle
3 Choose whether the event generated by the belief revision action will be treated as

internal or external

Semantic Mutation Testing for Multi-agent Systems 141

while encapsulating in the interpreter how an agent goes about fulfilling the
responsibilities using the available capabilities. As a result, programmers are likely
to pay insufficient attention to how an agent works, and therefore have relevant
misunderstandings.

• These languages have customizable semantics. Since the semantics affects the agent
behaviour and performance as well as the agent program, it is useful to explore
different customizations of the semantics.

4 Semantic Mutation Operators for Jason, GOAL and 2APL

According to our derived sources of semantic changes required to apply SMT in
different contexts, we derive three respective sets of semantic mutation operators for
Jason, GOAL and 2APL as shown in Tables 8, 9 and 10. Due to space limitations we
don’t explain each semantic mutation operator in details.

It is worth noting that each operator set does not cover each context discussed in
Sect. 3, e.g., the operator set for Jason has no operators that are derived from common
misunderstandings of Jason. Therefore, we will improve each set when we acquire
more sources of potential semantic changes to the corresponding language. In Table 8
each operator is labeled with its context(s) from which it is derived, e.g., the rule
selection order change (RSO) operator for Jason is labeled with UNL (use of a new
language), which indicates that this operator is derived from and can be used in (but is
not limited to) the context of use of a new language discussed in Sect. 3.1.

Another noteworthy thing is that not every possible semantic change derived from
Tables 2, 3, 4, 5, 6, and 7 develops into a (or part of a) semantic mutation operator
because some of them are considered to be unrealistic. Therefore, these unrealistic
changes are adapted or simply discarded. A semantic change is considered to be
unrealistic if it satisfies one of the following.

• It requires a significant change in the interpreter. We think that a programmer is not
very likely to misunderstand the semantics a lot or to make such semantic change.

• It leads to the significantly different behaviour of each of our selected agent pro-
grams written in the corresponding language (i.e., 6 Jason programs, 6 GOAL
programs or 4 2APL programs). We think that this semantic change is very easy to
detect.

After analysis of these semantic mutation operators we find that most of them
concern three kinds of the interpreter behaviour, namely select, query and update6. The
elements to be selected include deliberation steps, rules, intentions, actions, etc; those
to be queried or updated include beliefs, goals, events, etc. We also find that most

6 We ever considered two more kinds of the interpreter behaviour, namely transit (between
deliberation steps) and execute (a rule or action). However, we find that these two kinds can be
classified as select, namely select between deliberation steps and select a rule or action to execute.
This simplifies our classification.

142 Z. Huang and R. Alexander

operators change certain aspects of the interpreter behaviour, i.e., order, quantity,
position and condition7. Tables 11(a) and (b) list the kinds of the interpreter behaviour
and the changeable aspects respectively (other kinds and aspects not mentioned above
are included in order for completeness). Therefore, we propose a systematic approach
to derivation of semantic mutation operators for rule-based agent languages, namely
application of a changeable aspect into a kind of the interpreter behaviour. In Table 8
each semantic mutation operator is labeled with the kind of the interpreter behaviour it
concerns and the aspect it changes, both of which are identified by their IDs shown in
Table 11 (i.e., KID and AID respectively).

Abbreviations for the contexts discussed in Section 3

Use of a New Language: UNL Evolution of Languages: EL
Common Misunderstandings: CM Ambiguity of Informal Semantics: AIS
Customization of Interpreter: CI

Table 8. Semantic mutation operators for Jason

ID Semantic mutation
operator

Description Context KID AID

1 Rule selection order
change(RSO)

linear ! linearall UNL 1 1

2 Intention selection order
change (ISO)

one intention/cycle ! all
intentions/cycle

UNL 1 1

3 Intention selection order
change 2 (ISO2)

interleaved selection of
intentions !
non-interleaved selection
of intentions

UNL 1 1

4 Belief query order
change (BQO)

linear ! random UNL 2 1

5 Belief addition position
change (BAP)

start ! end UNL 3 3

6 Belief revision action
semantics change
(BRAS)

generate internal events !
generate external eventsa

CI 3 3

7 Belief deletion action
semantics change
(BDAS)

-b deletes b if b has the
annotation source(self) ! -
b deletes b

EL 3 4

8 Goal addition position
change (GAP)

end ! start UNL 3 3

(Continued)

7 These changeable aspects may have overlaps, e.g., the change “select one rule ! select all rules”
can be a change to the order or the quantity.

Semantic Mutation Testing for Multi-agent Systems 143

Table 8. (Continued)

ID Semantic mutation
operator

Description Context KID AID

9 Drop desire action
semantics change
(DDAS)

remove the related event and
intention ! remove only
the related event

EL 3 2

10 Test goal action
semantics change
(TGAS)

generate a test goal addition
event if the action fails !
generate a test goal
addition event if the action
is executed

AIS 3 4

11 TRO enable/disable
(TRO)

enable/disable tail recursion
optimization for sub-goals

CI 3 5

12 Query cache
enable/disable (QC)

enable/disable cache for
queries in the same cycle

CI 2 5

aThe plan chosen for an internal event will be pushed on top of the intention from which the
event is generated; the plan chosen for an external event will become a new intention

Table 9. Semantic mutation operators for GOAL

ID Semantic mutation
operator

Description Context KID AID

1 Rule selection and
execution order
change (RSEO)

select and execute event rules
then an action rule ! select
and execute an action rule
then event rules

UNL 1 1

2 Rule selection
condition change
(RSC)

enabled ! applicable UNL 1 4

3 Rule selection order
change (RSO)

change between linear,
linearall, random and
randomall

UNL, CM 1 1

4 Belief query order
change (BQO)

random ! linear UNL 2 1

5 Belief addition
position change
(BAP)

end ! start UNL 3 3

6 Goal query order
change (GQO)

random ! linear UNL 2 1

7 Goal addition
position change
(GAP)

end ! start UNL 3 3

8 “delete φ’ if it is a super-goal
of φ” ! “delete φ’ if it is φ”

UNL 3 4

(Continued)

144 Z. Huang and R. Alexander

Table 9. (Continued)

ID Semantic mutation
operator

Description Context KID AID

Goal deletion
semantics change
(GDS)

or “delete φ’ if it is a
sub-goal of φ”

9 The maximum
number of
user-defined
actions change
(MNUA)

1 ! more than 1 CM 4 2

10 “if then” semantics
change (ITS)

make “if then” interpreted the
same as “forall do”

CM 2 2

Table 10. Semantic mutation operators for 2APL

ID Semantic mutation
operator

Description Context KID AID

1 Rule selection and
rule execution
order change
(RSREO)

change the original order “select
action rules ! execute rules
! select event rules” to
“select action rules ! select
event rules ! execute rules”
or “select event rules ! select
action rules ! execute rules”

UNL, EL 1 1

2 Rule selection
condition change
(RSC)

applicable ! enabled UNL 1 4

3 Rule selection
order change
(RSO)

change between linear and
linearall

UNL, EL 1 1

4 Plan selection order
change (PSO)

all plans/cycle ! one plan/cycle UNL, EL 1 1

5 Belief query order
change (BQO)

linear ! random UNL 2 1

6 Belief addition
position change
(BAP)

end ! start UNL 3 3

7 Goal query order
change (GQO)

linear ! random UNL 2 1

8 PR-rule selection
condition change
(PRSC)

select a PR-rule if the relevant
plan fails ! select a PR-rule if
it matches some plan

EL 1 4

Semantic Mutation Testing for Multi-agent Systems 145

5 Evaluation of Semantic Mutation Operators for Jason

In order to assess the potential of SMT to assess tests, robustness to and reliability of
semantic changes, we develop a semantic mutation system for Jason called smsJason.
smsJason has three components, namely tests, semantic mutation operators, and
controller, which are explained as follows.

• tests contains the following two custom parts for a particular Jason project:
– A collection of tests. Each test is an array of values that can be used to instantiate

the parameterized agent/environment description. A random test generator is
employed to generate random tests given the constraints of each parameter. In
addition, each test will be assigned a lifetime at runtime. This lifetime equals to
the time taken by the Jason project under the original interpretation to pass this
test plus a specified generous tolerance value for this test8. The Jason project
under any mutant on this test will terminate anyhow when reaching this lifetime,
if the project does not terminate as the result of passing this test yet.

– Test pass criteria. The test pass criteria will be constantly examined at runtime in
order to judge whether the Jason project has passed the current test. If the Jason
project under the original interpretation is found to pass the current test, it will
terminate and the lifetime of the test will be derived; if the project under any
mutant is found to pass the current test before the lifetime of the test, it will
terminate and the mutant will be marked as “live”, otherwise it will terminate
when reaching this lifetime and the mutant will be marked as “killed”.

• semantic mutation operators implements our derived semantic mutation operators
for Jason as shown in Table 8. Each operator leads to a modified version of the
Jason interpreter (v1.4.1) which is pointed by a branch in Git [12] and can therefore
be switched to another at runtime via Git API.

• controller implements the process of semantic mutation testing as shown in the
following pseudo-code. JRebel [13], a powerful class reload technique, is employed
to deploy each test (namely each instance of the parameterized agent/environment
description) at runtime quickly.

Table 11. (a) Kinds of the interpreter behaviour (b) Changeable aspects of the interpreter
behaviour

(a)

KID Kind

1 Select

2 Query

3 Update

4 Other

(b)

AID Aspect

1 Order

2 Quantity

3 Position

4 Condition

5 Other

8 The tolerance value is added because the exact time taken by the Jason project varies over a limited
range in different runs. It is generous because the execution efficiency is not considered as part of the
test pass criteria.

146 Z. Huang and R. Alexander

We apply smsJason into two Jason projects released with the Jason interpreter,
namely Domestic Robot (DR) and Blocks World (BW). In DR, a robot constantly gets
beer from the fridge and then serves its owner the beer until the owner exceeds a certain
limit of drinking. The robot will ask the supermarket to deliver beer when the fridge is
found empty. In BW, an agent restacks the blocks as required, by a series of actions of
carrying or putting down a single block. We specify tests and test pass criteria for DR
and BW as summarized in Tables 12 and 13, after which we start the semantic mutation
testing for each project. We analyze the SMT results displayed by smsJason and
present the final results in Table 14.

smsJason identifies the killed mutants (K), and we further classify those live
mutants. First, by static analysis of the agent program we find that some live mutants
are inapplicable (N/A) because the program has no constructs concerning the mutated
semantics. For instance, the BW agent program has no actions of belief revision, belief
deletion, drop desire and test goal, hence BRAS, BDAS, DDAS and TGAS are
inapplicable to BW. Second, we attempt to identify equivalent mutants (E) among the

Table 12. The tests and test pass criteria for the Domestic Robot

Parameter Constraints Test Pass Criteria

Drinking limit (Dl) Dl [0, 16] All of the following must be satisfied.
1. The robot is not carrying beer;
2. The robot has advised the owner about

having exceeded the drinking limit;
3. The robot has checked the current time as

requested by the owner;
4. Dl + 1 = Ib + Db Rb, where Db is the

beer delivered by the supermarket and Rb
is the remaining beer in the fridge.

Map size (S x S) S [1, 16]

Initial beer in the fridge (Ib) Ib [0, 16]

Initial position of the robot (Pr) Pr, Pf and Po

take the form of

(X, Y), where X,

Y [0, S - 1]

Initial position of the fridge (Pf)

Initial position of the owner (Po)

Total number of tests: 160

Semantic Mutation Testing for Multi-agent Systems 147

applicable mutants by static and dynamic analysis of the agent program. For instance,
we find that the DR or BW agent program has no constructs that cause the order of goal
related events to matter; we also verify this through observing in Jason’s mind
inspector the relevant changes in agents’ mental attitudes on all tests. Therefore, we
conclude that GAP probably leads to the equivalent mutant. If we find a mutant likely
to be not equivalent we will attempt to improve the tests or test pass criteria in order to
kill it and classify it as non-equivalent (NE).

5.1 Assessment of Tests

The non-equivalent mutants (NE) indicate the weaknesses in the tests or test pass
criteria. In order to kill such a mutant that RSO leads to, we need to capture the
differences in the resultant agent behaviour between selecting all applicable plans and
selecting only the first applicable plan. These plans must have the same triggering
event, the contexts that are not mutually exclusive and the ability to affect the agent

Table 13. The tests and test pass criteria for the Blocks World

Parameter Constraints Test pass
criteria

Original Stacks of
Blocks (OS)

OS or ES is a set of lists and a partition of the set {“a”,
“b”, “c”, “d”, “e”, “f”, “g”} representing all blocks; 1
≤|OS|,|ES| ≤ 3

OS = ES

Expected Stacks of
Blocks (ES)

Total number of tests: 80

Table 14. Results of semantic mutation testing

SMOP Domestic robot Blocks world
Percentage of tests that kill
the mutant

Mutant
type

Percentage of tests that
kill the mutant

Mutant
type

RSO 0 NE 0 E
ISO 0 E 0 E
ISO2 100% K 0 E
BQO 0 E 0 NE
BAP 0 E 37.5% K
BRAS 0 N/A 0 N/A
BDAS 0 E 0 N/A
GAP 0 E 0 E
DDAS 0 N/A 0 N/A
TGAS 91.88% K 0 N/A
TRO 0 E 0 E
QC 0 E 0 E

148 Z. Huang and R. Alexander

behaviour. In the DR agent program, the only two such plans are the robot’s plan to get
beer when the fridge is empty (p1) and the robot’s plan to get beer when the owner
exceeds the limit of drinking (p2). Therefore, we need a test on which the owner just
exceeds the limit of drinking when there is no beer in the fridge. This test will cause p2
to execute twice under the mutant so that the robot will advise the owner twice about
having exceeded the drinking limit. We also need to improve the test pass criteria to
capture the number of advices given by the robot.

In order to kill the non-equivalent mutant that BQO leads to, we need to capture the
differences in the resultant agent behaviour between querying beliefs in linear order and
in random order. In the BW agent program, there is only one place that causes the
belief order or belief query order to matter, namely the context of the plan (p) which is
to remove a block from the top of a stack in order to further move a block (b) in the
same stack. It is worth noting that b can belong to more than one stack held by the
belief base, for instance, there are two stacks, namely S(b1, b2, b) and S(b2, b), where
the former contains the latter. In order to move b, b1 has to be removed first.

Under the original interpretation where beliefs are queried in linear order, the
context of p always first returns S(b1, b2, b) so that b1 can be removed first. This is
because the larger the stack is, the more recently it is added to the start of the belief
base, as the result of the application of the belief revision rule to derive stacks. In
contrast, under the mutant that BQO leads to, the context of p is likely to first return S
(b2, b), which causes p to retry until S(b1, b2, b) is returned because b2 cannot be
removed before b1. Therefore, we need to improve the tests or test pass criteria in order
to capture the retrying of p, e.g., we can design a test on which there exists a large stack
S(b1, b2, b3, b4, b5, b6, b) while the target block to be moved is b. This test will
probably cause p to retry many times so that the number of the slots, each of which is
assigned by an execution of p to place a block, will exceed the table capacity.

5.2 Assessment of Robustness to Semantic Changes

The equivalent mutants (E) indicate that the agent program is robust to the corre-
sponding semantic changes, while the killed or non-equivalent mutants (K or NE)
indicate the weaknesses in robustness. In order for the DR agent program to be robust
to the semantic change caused by RSO, we can improve the program by ensuring that
there is only one applicable non-empty plan at most in every deliberation cycle. As
mentioned in Sect. 5.1, there are only two non-empty plans (p1 and p2) which are
likely to become applicable simultaneously in the same cycle, therefore, we can make
their contexts mutually exclusive, e.g., by strengthening the context of p2.

In order for the BW agent program to be robust to the semantic changes caused by
BQO and BAP, we need to make the program’s behaviour independent of the order of
beliefs or querying beliefs. As mentioned in Sect. 5.1, there is only one place that
causes these orders to matter, namely the context of p. Therefore, we can strengthen
this context to ensure that it always first returns the largest stack.

As for the semantic changes caused by ISO2 and TGAS, we find it very expensive
hence inappropriate to make the agent program be robust to these changes.

Semantic Mutation Testing for Multi-agent Systems 149

5.3 Assessment of Reliability of Semantic Changes

We have improved the DR agent program to resist the semantic change caused by RSO
and the BW agent program to resist the semantic changes caused by BQO and BAP, as
suggested in Sect. 5.2. Therefore, RSO, BQO and BAP lead to reliable alternative
interpretations of the corresponding agent program as well as the equivalent mutants as
shown in Table 14. To further assess the execution efficiency that these reliable
alternative interpretations lead to, we make smsJason be able to compare the test
execution time under the original interpretation and under each reliable alternative
interpretation. We present the results of execution efficiency assessment in Table 15.

In Table 15, the inapplicable or unreliable mutants are marked as “N/A”. Among
the reliable mutants, the one caused by ISO is interesting because it significantly
reduces the average execution time of DR and BW by 7.5 and 28.42 percent respec-
tively, and it leads to efficiency improvement on all tests.

The changes in efficiency that are caused by other reliable mutants are not sig-
nificant hence may be mainly caused by normal floating of execution time.

6 Related Work and Conclusions

In Sect. 2 we compared SMT to traditional mutation testing. Here we compare them in
terms of multi-agent systems, by two examples showing that the semantic mutation
operators for GOAL as shown in Table 9 can simulate some faults that cannot be
captured by the traditional mutation operators for GOAL which are derived by
Savarimuthu and Winikoff [18].

Table 15. Results of execution efficiency assessment

SMOP Domestic robot Blocks world
Percentage of
avg saved time

Percentage of tests
that saved time

Percentage of
avg saved time

Percentage of tests
that saved time

RSO −0.06% 45.63% −0.33% 41.25%
ISO 7.5% 100% 28.42% 100%
ISO2 N/A −0.72% 37.5%
BQO 0.49% 53.75% 0.16% 63.75%
BAP −0.34% 38.75% −0.15% 41.25%
BRAS N/A N/A
BDAS −0.01% 43.75% N/A
GAP 0.23% 50.63% 0.19% 51.25%
DDAS N/A N/A
TGAS N/A N/A
TRO 0.33% 45.63% 0.08% 50%
QC 0.13% 43.13% 0.27% 46.25%

150 Z. Huang and R. Alexander

The RSO semantic mutation operator for GOAL can change the action rule
selection order from “linear” to “linearall”, which is similar to the change from else-if
to if. We examine the traditional mutation operators for GOAL and find no operators
that can simulate this semantic change. For instance, one traditional mutation operator
can drop a single rule and another can swap two rules, however, they cannot simulate
this semantic change.

The BQO semantic mutation operator changes the belief query order from “ran-
dom” to “linear”. Again we cannot find any traditional mutation operator for GOAL
that can simulate this semantic change.

In this paper, we applied SMT to Jason, GOAL and 2APL. We showed that SMT
for these languages is useful in several contexts, namely use of a new language,
evolution of languages, common misunderstandings, ambiguity of informal semantics
and customization of the interpreter. We derived sets of semantic mutation operators
for these languages, and proposed a systematic approach to derivation of semantic
mutation operators for rule-based agent languages. Finally, we used two Jason projects
in a preliminary evaluation of the semantic mutation operators for Jason. The results
suggest that SMT has some potential to assess tests, robustness to and reliability of
semantic changes.

Our future work will focus on further evaluation of the semantic mutation operators
for Jason. To further evaluate the ability of these operators to assess tests, we will
examine their representativeness by comparing to realistic semantic misunderstandings
and their power by looking for more hard-to-kill mutants (as we have done in this
paper), as suggested by [10]. To further evaluate the ability of these operators to assess
robustness to and reliability of semantic changes, we will apply them to more Jason
projects so as to provide more suggestions on improving program robustness and
optimizing interpreter.

References

1. Adra, S.F., McMinn, P.: Mutation operators for agent-based models. In: Proceedings of 5th
International Workshop on Mutation Analysis. IEEE Computer Society (2010)

2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press,
New York (2008)

3. Bordini, R.H., Hübner, J.F.: Semantics for the Jason variant of AgentSpeak (plan failure and
some internal actions). In: Proceedings of ECAI 2010, pp. 635–640 (2010)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. Wiley, Hoboken (2007)

5. Clark, J.A., Dan, H., Hierons, R.M.: Semantic Mutation Testing. Science of Computer
Programming (2011)

6. Dastani, M.: 2APL: a practical agent programming language. Auton. Agent. Multi-Agent
Syst. 16(3), 214–248 (2008)

7. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent systems in
3APL. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent
Programming. Languages, Platforms and Applications, pp. 39–67. Springer, Heidelberg
(2005)

Semantic Mutation Testing for Multi-agent Systems 151

8. Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini, R.H., Dastani, M., Dix,
J., El Fallah Seghrouchni, A. (eds.) Multi-agent programming. Languages, platforms and
applications, vol. 2, pp. 3–37. Springer, Heidelberg (2009)

9. Houhamdi, Z.: Multi-agent system testing: a survey. Int. J. Adv. Comput. Sci. Appl.
(IJACSA) 2(6), 135–141 (2011)

10. Huang, Z., Alexander, R., Clark, J.: Mutation testing for Jason agents. In: Dalpiaz, F., Dix, J.,
van Riemsdijk, M. (eds.) EMAS 2014. LNCS, vol. 8758, pp. 309–327. Springer, Heidelberg
(2014)

11. Jason changelog. http://sourceforge.net/p/jason/svn/HEAD/tree/trunk/release-notes.txt
12. JGit documentation. https://eclipse.org/jgit/documentation/
13. JRebel documentation. http://zeroturnaround.com/software/jrebel/learn/
14. Mathur, A.P.: Foundations of Software Testing. Pearson, New Delhi (2008)
15. Nguyen, C.D., Perini, A., Bernon, C., Pavón, J., Thangarajah, J.: Testing in multi-agent

systems. In: Gomez-Sanz, J.J. (ed.) AOSE 2009. LNCS, vol. 6038, pp. 180–190. Springer,
Heidelberg (2011)

16. Saifan, A.A., Wahsheh, H.A.: Mutation operators for JADE mobile agent systems. In:
Proceedings of the 3rd International Conference on Information and Communication
Systems, ICICS (2012)

17. Savarimuthu, S., Winikoff, M.: Mutation operators for cognitive agent programs. In:
Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2013), pp. 1137–1138 (2013)

18. Savarimuthu, S., Winikoff, M.: Mutation operators for the GOAL agent language. In:
Winikoff, M. (ed.) EMAS 2013. LNCS, vol. 8245, pp. 255–273. Springer, Heidelberg
(2013)

19. Tiryaki, A.M., Öztuna, S., Dikenelli, O., Erdur, R.C.: SUNIT: a unit testing framework for
test driven development of multi-agent systems. In: Padgham, L., Zambonelli, F. (eds.)
AOSE VII/AOSE 2006. LNCS, vol. 4405, pp. 156–173. Springer, Heidelberg (2007)

20. Winikoff, M.: Novice programmers’ faults & failures in GOAL programs. In: Proceedings of
the 2014 International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2014), pp. 301–308 (2014)

152 Z. Huang and R. Alexander

http://sourceforge.net/p/jason/svn/HEAD/tree/trunk/release-notes.txt
https://eclipse.org/jgit/documentation/
http://zeroturnaround.com/software/jrebel/learn/

A Formal Description of a Mapping
from Business Processes to Agents

Tobias Küster(B), Marco Lützenberger, and Sahin Albayrak

DAI-Labor, Technische Universität Berlin,
Ernst-Reuter-Platz 7, 10587 Berlin, Germany

tobias.kuester@dai-labor.de

Abstract. Having many notions in common with multi-agent systems,
business processes are well suited for modelling agents and their interre-
lations. However, often vague semantics and structural differences make
a mapping from business processes to multi-agent systems difficult. In
this paper, we formally describe a mapping from business process models
to multi-agent systems that can be applied to different agent frameworks
and languages. Using the same mapping, we created three semantically
equivalent and interoperable implementations suiting different areas of
application.

Keywords: Technological · Methodological

1 Introduction

Business process modelling has many notions in common with agents-oriented
programming: It serves as a high-level abstraction for distributed systems com-
posed of many cooperative or competing actors, communicating via messages
and services, and reacting to events. Thus, it is not surprising that process mod-
elling has been adopted for the modelling of multi-agent systems in a number of
works (cf. [4–6], and others).

One common problem with translating processes to agents (or, in fact, most
other programming systems) is the mapping of free-form process graphs to block
structured programming languages. Also, the mapping is often informal and
ambiguous, or it covers just a part of the notation, particularly for more expres-
sive (and thus interesting) notations like BPMN [18].

In this paper, we describe a mapping from BPMN processes to multi-agent
systems. The mapping covers diverse aspects of processes and agents, such as
actors/roles, reaction rules, behaviours, events, services, and message-based com-
munication [13], and can be applied to different agent programming languages
and frameworks. It also includes a formal description of how individual process
structures can be mapped to equivalent structures in block-oriented languages.

The mapping has been implemented in three different fashions for the JIAC V
agent framework [16]. While each implementation has individual strength and
weaknesses, making it suited for different applications, they behave the same
c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 153–170, 2015.
DOI: 10.1007/978-3-319-26184-3 9

154 T. Küster et al.

Fig. 1. Class diagram of agent meta model, slightly simplified

and are all interoperable with each other, such that different parts of the same
process can be mapped to different implementation styles.

The remainder of this paper is structured as follows: In Sect. 2 we describe
the models used for agents and processes. In Sect. 3, we use those models to
define a mapping between them. Then, in Sect. 4, we present three different
implementations of the mapping. Finally, we present related work in Sect. 5 and
conclude in Sect. 6.

2 Agent and Process Model

In this section, we describe the meta models used for modelling the agent systems
and processes. While some models can be found in the literature [3], we decided
to provide our own definitions in order to have a uniform representation and to
focus on those parts most relevant to the mapping.

2.1 Agent Meta Model

A common problem when dealing with agent systems is that the notion of an
agent is not very clearly defined (see [8] for a number of possible definitions).
Thus, in the following we provide a semi-formal definition of what constitutes an
agent, and what those agents have to provide for the mapping to be applicable.
Note that we are not pursuing to provide a general and exhaustive definition
for agents, but to have a meta model streamlined for the task at hand: as a
foundation for the mapping from processes to agents (Fig. 1).

The field of agents is immensely broad, and not only is it near impossible
to define an agent meta model that suits all the different aspects of agents, but
neither could a process modelling notation like BPMN be used to model all of
those aspects. Thus, our goal is to keep this model as simple and as abstract as
possible, so that the mapping is applicable to many different agent frameworks,
even though it may not cover all of their specialities.

A Formal Description of a Mapping from Business Processes to Agents 155

Agent Architecture. A multi-agent system mas = (id, Agents, Roles) con-
sists of several defined roles, and a number of concrete agents implementing
those roles. Each agent agent = (id, Rol, Bel) is primarily defined by the roles
Rol ⊆ Roles it implements. It may also have a number of beliefs Bel, both
initial and those added at runtime. How those beliefs are represented is not of
importance for this mapping. Roles define the behaviour of the agent. Each role
role = (id, P lans, Rules, Goals) consists of a number of plans, rules, and
optionally goals. While the plans hold the actual actions to be taken, rules and
goals specify when those actions should be executed.

Each plan plan = (id, In, Out, pre, eff, script) describes one behav-
iour, which is detailed in an agent script. Plans have inputs and output lists,
holding the names and types of the parameters and return values, as well as
a semantic description in the form of preconditions and effects (IOPE). Rules
rule = (cond, plan, map) link an execution condition, matched against the
agent’s current beliefs, to a plan, and provide a mapping of values and variables
from the condition to input parameters of the plan. Goals goal = (cond, P ′)
are defined by a condition, or world state to be achieved, and a number of plans
from the agent’s set of plans P ′ ⊆ Plans available for fulfilling that goal.1

Agent Behaviour. The agent’s plans are made up of script elements. How
these scripts are implemented in an actual agent framework is irrelevant for the
mapping, as long as the following atomic behaviours are supported:

– send(m): Send message m = (snd, rec, cnt) with given content cnt from
sender snd to recipient rec.

– receive(m): Receive message matching template m = (snd, rec, cnt).
– invoke(p, i, o): Call plan p with input i and store output in o.
– ass(x, y): Evaluate expression y and assign result to variable x.
– achieve(g): Add goal condition g to agent’s goals and wait for completion.
– nop: No Operation.

Further, the following control-flow structures are required, including simple
conditions and loops, but also basic threading for parallel execution:

– seq(s1, . . . , sn): Execute scripts s1, . . . , sn sequentially.
– par(s1, . . . , sn): Execute scripts s1, . . . , sn in parallel.
– cond(c, x, y): Execute x, if condition c is true, else y.
– while(c, s): Execute script s, while condition c is true.
– fork(id, x): Execute script x in thread with ID id.
– join(id): Wait for thread with ID id to finish.
– stop(id): Interrupt Thread with ID id.
– wait(t): Suspend execution for time t.
1 We are only regarding achieve goals here. While there are several types of goals [21],
achieve goals and maintain goals are clearly the most interesting of those. Further,
maintain goals can easily be emulated with achieve goals and rules, by having a rule
set a new achieve goal whenever the condition to be maintained is violated.

156 T. Küster et al.

Fig. 2. Class diagram of process meta model, slightly simplified

While statements such as as fork and join, may not be present in some
high-level agent languages, they could be emulated with different language ele-
ments, e.g., additional reaction rules. Otherwise, some features of the mapping,
particularly the mapping of event handlers, can not be applied.

2.2 Process Meta Model

We decided to use BPMN (Business Process Model and Notation) [18] for mod-
elling multi-agent systems. BPMN is a standardised notation that is widely used
in practice [20]. It allows for modelling with a high level of abstraction while
being detailed enough to generate readily executable systems. Also, it exhibits
several language features that make it particularly useful for modelling distrib-
uted and autonomous systems, such as communication, interaction, and event
handling.

While the BPMN specification focuses on the notational aspects of the lan-
guage, there are several other works detailing its formal semantics (see, e.g., [7]).
Still, we will define our own BPMN-based process meta model (see Fig. 2), being
streamlined for describing the mapping proposed in this paper.

Process, Pool, Participant. At the top level, each business process system
bps = (id, BPD, Pt) consists of business process diagrams BPD and a set of
participant names Pt. Process diagrams correspond to use cases and participants
to actors having a role in those use cases. Each business process diagram bpd =
(id, P l, MF, Art) (a BPMN diagram), with bpd ∈ BPD, contains one or

A Formal Description of a Mapping from Business Processes to Agents 157

more pools Pl, message flows MF , and optionally artefacts Art, such as text
annotations.2

Each pool pool = (id, wf, pt) is defined by a workflow wf = (O, SF, Prop)
and the name of the participant pt ∈ Pt that is responsible for carrying out
this workflow. A possible subdivision of pools into lanes is not regarded. The
workflow consists of a set of flow objects O that are connected by (conditional)
sequence flows SF ⊂ O × O × (expressions ∪ {ε}). It can also declare a number
of properties Prop ⊂ name × type, i.e. variables.

Workflow Elements. The pool’s workflows are made up of activities (task
or subprocess), events, and gateways. Tasks, events and gateways are subdivided
into different types, each with type-specific attributes At ⊂ key×value. Further,
tasks and events can have an arbitrary number of assignments As ⊂ property ×
expression × {before, after} that can be executed either before or after the
element itself.

A task task = (id, typet, As, Att) is an atomic’ activity. The most important
types of tasks (typet ∈ {service, send, receive, script, . . . }) for this mapping
are for sending or receiving messages, invoking other services, or carrying out a
given script.

Events event = (id, typee, As, Ate) of different types (typee ∈ {message,
timer, rule, . . . }) can be used for ‘passive’ behaviours like waiting for a message
to arrive, for a specific time, or until some condition is satisfied. Events can be
used in the normal flow of control, or in special situations like as event handlers
to a subprocess or after an event-based gateway.

Gateways gateway = (id, typeg, Atg) mark the boundaries of loops and
conditional blocks. Their type (typeg ∈ {xor, or, and, event, complex})
can be exclusive- or inclusive-or, parallel, event-based, or complex. However, we
are not considering the complex type, as its semantics are very vague.

Finally, subprocesses subp = (id, swf, EH, succEH , At) can be used
to aggregate several other activities and events into a sub-workflow swf =
(O′, SF ′, P rop′), i.e. a nested set of flow objects, sequence flows and prop-
erties defined in that subprocess.3 Besides providing structure to the process,
subprocesses also define an individual variable scope and can be endowed with
event handlers EH that will interrupt the entire sub-workflow in case one of the
events is triggered. The successor-relation of those event handlers is given by
succEH ⊂ EH × O.

2.3 Expressions, Data, Communication

In both models we are making use of expressions, e.g., for assignments and
conditions. We are not specifying any particular language to be used for those
2 Both artefacts and message flows are purely documentary; the actual messages are

defined in the respective tasks and events sending and receiving those messages.
3 Subprocesses could also be defined recursively, containing a Call activity invoking

the parent (sub-)process, but this is not discussed here.

158 T. Küster et al.

Fig. 3. Overview: Participants to roles, processes to plans, events to rules [14].

expressions; it should provide the usual mathematical and logical operations and
grant access to the agent’s beliefs and the properties of the process.

Another important aspect of both, multi-agent systems and business
processes, are messages, which are defined by their sender, receiver, and con-
tent: message = (sender, receiver, content). Those attributes can also be used
in expressions, e.g., for memorizing the sender of a message and later send-
ing a reply to that same receiver. Here, sender and receiver can be individual
agents/participants or multicast-addresses. The content is not restricted: It could
be a FIPA message or any kind of serializable object.

Complementary to messages, services describe a particular action to be
invoked: service = (id, provider, Input, Output). They are defined by a ser-
vice ID, their respective provider, and input and output lists. In a multi-agent
system, each plan could be considered as a service, although in practice only a
subset of them will be, as some might be private. In BPMN, each pool that has
a service start event will be exposed as a service.

3 Mapping Processes to Agents

In this section, we describe and formalize the mapping from BPMN processes
to multi-agent systems according to the meta models defined in the previous
section. In a nutshell, participants in the process are mapped to agent roles,
their pools to plans, and the pools’ start events to various mechanisms and rules
for executing those plans (see Fig. 3). For a more in-depth discussion of the
mapping, please refer to [14].

We are using the notation x =⇒ z to denote that the process-element x is
mapped to agent-element z. Analogously, we are using (x, y) =⇒ z to indicate

A Formal Description of a Mapping from Business Processes to Agents 159

that the region of the process graph between x and y (i.e. a self-contained sub-
graph with source x and sink y) is mapped to the (possibly complex) element z.
We use ε for the empty, or null element.

3.1 Mapping of Agent Architecture

The business process system bps = (id, BPD, Pt) is mapped to a multi-agent
system, whereas only roles can be created; agents have to be specified later.4

bps =⇒ mas = (id, Agents, Roles), with
Agents = ∅

Roles = {role | ∃p ∈ Pt : p =⇒ role}
A participant name pt ∈ Pt is mapped to a role, defined by plans and rules,

with that name as its ID. The initial configuration knows neither goals nor
beliefs, but both can be added at runtime. For each pool, one plan is created, as
well as one rule for each start event in those pools.

pt =⇒ role = (pt, P, R, G), with
P = {plan | ∃p = (id′, wf ′, pt) : p =⇒ plan}
R = {rule | ∃es ∈ Owf ′ : es =⇒ rule}
G = ∅

Let bpd = (id1, P l, Art) be a BPD, and pool = (id2, wf, pt) a Pool, such
that pool ∈ Pl and wf = (O, SF, Prop). For each pair of start- and end-events
es, ee ∈ O, with Z being an agent script element, such that (es, ee) =⇒ Z, a
plan is created. The plan’s IOPE remain undefined at first.

pool =⇒ plan = (id1id2, In, Out, pre, eff, Z), with
In = Out = ∅

pre = eff = ε

The start event es = (id, typee, As, Ate) is mapped to a reaction rule,
triggering the same plan. The condition is a rule expression depending on typee,
and variables from that condition that are used in assignments are mapped to
inputs of the plan of the same name.

es =⇒ rule = (cond, plan, map), with
cond = [rule expression, depending on type]
plan = p , such that pool =⇒ p

map = {(x, x) | ass(x, y) ∈ As}
Inplan ← Inplan ∪ {y | (x, y) ∈ map}

4 Different roles (participants) might get aggregated to one agent, or another role
might be implemented in several agents. Neither of this is described in the process
diagram and thus has to be added in a later stage.

160 T. Küster et al.

Fig. 4. Mapping of structures: (a) Sequence, (b) Condition, (c) Parallel, (d) Parallel-
conditional, (e) Event-based condition, (f) While-Loop, (g) Subprocess with event-
handler. Shaded regions correspond to previously matched structures.

3.2 Mapping of Agent Behaviours

In the following, we describe the mapping of the actual processes to different
agent behaviours, i.e. plans. At first, we will take a look at different process
structures, before considering individual elements.

Mapping of Structures. The transformation of process graphs to structured
programs is a complicated task [10]. We are following a bottom-up “structure
identification” approach [17], using different rules to match different structures
(see Fig. 4). Those rules are applied to the elements of a pool p = (id, wf, pt)
or subprocess sp = (id, wf, EH, succEH , At) with wf = (O, SF, Prop).

The simplest and yet most important structure is the sequence, connecting a
number of flow objects xi, yi ∈ O (i ≤ n), such that ∀i < n : (yi, xi+1, ε) ∈ SF
and ∀i ≤ n : ∃zi : (xi, yi) =⇒ zi.

(x1, yn) =⇒ seq(z1, . . . , zn)

Different structures, such as conditions and loops, are delimited by pairs of
gateways, g1 = (id1, type1, At1) and g2 = (id2, type2, At2).

If type1 = type2 = xor, they correspond to an if/else-style condition. Given
x1, y1, x2, y2 ∈ O, and (g1, x1, c), (g1, x2, ε), (y1, g2, ε), (y2, g2, ε) ∈ SF ,
with z1, z2 script elements, such that (x1, y1) =⇒ z1 and (x2, y2) =⇒ z2.

A Formal Description of a Mapping from Business Processes to Agents 161

(g1, g2) =⇒ cond(c, z1, z2)

If type1 = type2 = and, they are mapped to parallel execution. In this case,
all sequence flows are unconditional, i.e. c = ε. Also, instead of just two, an
arbitrary number of branches (and corresponding script elements z1, . . . , zn)
is allowed in between the gateways.

(g1, g2) =⇒ par(z1, . . . , zn)

An inclusive-or gateway, i.e. type1 = or, is mapped to a combination of
parallel and conditional execution. In this case, each of the sequence flows going
out of g1 requires a condition ci �= ε.

(g1, g2) =⇒ par(cond(c1, z1, nop), . . . , cond(cn, zn, nop))

For an event-based gateway (type1 = event), the first element of each branch
has to be an event, i.e. for the ith branch, ei, xi, yi ∈ O, ei being an event, with
(g1, ei, ε), (ei, xi, ε), (yi, g2, ε) ∈ SF , such that ei =⇒ Xi and (xi, yi) =⇒ zi.
The events are checked in separate threads, and the course of the process depends
on the event triggered first.

(g1, g2) =⇒ seq(A, [B1..n], join(idg1), [stop(ideh1..n)], [C1..n])
A = fork(idg1 , while(�, nop))
Bi = fork(idehi

, seq(Xi, ass(ti, �), stop(idg1)))
Ci = cond(ti, zi, nop)

If type1 = type2 = xor, and if the second branch is reversed, i.e. (g1, x1, ε),
(y1, g2, ε), (g2, x2, c), (y2, g1, ε) ∈ SF , the structure is mapped to a loop.

(g1, g2) =⇒ seq(z1, while(c, seq(z2, z1)))

The mapping of a subprocess sp = (ids, swf, ∅, ∅, ∅) without event
handlers corresponds to the mapping of its workflow.5 Let swf = (Osp, SFsp,
P ropsp), and es, ee ∈ Osp unique start- and end events, such that (es, ee) =⇒ Z.

sp =⇒ Z

An ad-hoc subprocess sp = (ids, swf, ∅, ∅, At) with completion condition
cc, i.e. (‘comp-cond’, cc) ∈ At, corresponds to the creation of a goal with the
same condition. For this, the sub-workflow has to contain only service tasks,
their respective plans being available for execution towards the goal, i.e. swf =
({t1, . . . , tn}, ∅, ∅), with ti = (idi, service, ∅, {(‘impl’, (Pi, ε, ε))}).

sp =⇒ achieve((cc, {P1, . . . , Pn}))

5 Depending on the implementation, the workflow might be wrapped into a separate
method, service, or class.

162 T. Küster et al.

A subprocess sp = (ids, swf, EH, succEH , ∅) with event handlers behaves
similar to an event-based gateway, even though instead of just waiting for the
first event to occur, the subprocess is executed. If one of the events is trig-
gered, the execution of the subprocess together with any remaining event han-
dlers is aborted and the process continues after that event. Also, this adds
another branch in case none of the events is triggered. Be x0, y0, g ∈ O, with
(sp, x0, ε), (yi, g, ε) ∈ SF , (i ≤ n) and ei ∈ EH with (ei, xi) ∈ succEH

(1 ≤ i ≤ n). Let Z be a script-element such that sp =⇒ Z.

(sp, g) =⇒ seq(A, [B1..n], join(idsp), [stop(ideh1..n)], C)
A = fork(idsp, Z)
Bi = fork(ehi, seq(Xi, ass(ti, �), stop(idsp)))
C = seq(ass(n, �), [D1..n], cond(n, z0, nop))
Di = cond(ti, seq(ass(n, ⊥), zi), nop)

With those rules, the most important process structures can be mapped to
equivalent agent script elements. Still, there are types of process graphs that
can not be structured in any way [15]. However, this does not pose a significant
limitation, as those graphs tend to contain structural errors leading to deadlocks
and similar undesirable behaviour.

Mapping of Elements. At the bottom level, the above structures are made
up of individual flow objects, i.e. tasks and events (subprocesses and gateways
are part of the structures).

Both tasks and events can contain assignments, that, depending on their
assign time, are to be executed either before or after the actual task or event,
e.g., for handling the input and output of services. Thus, each flow object of the
form fo = (id, type, Ass, At) is mapped to a sequence of assignments together
with the mapping of the task or event itself, Z, which depends only on its type
and attributes, i.e. (type, At) =⇒ Z.

fo =⇒ seq(ab
1, . . . , ab

n, Z, aa
1 , . . . , aa

n), with

ab
i ∈ {ass(prop, expr) | (prop, expr, before) ∈ As}

aa
i ∈ {ass(prop, expr) | (prop, expr, after) ∈ As}

Depending on its respective type and attributes, a task task = (id, typet,
As, Att) can be mapped to different script elements, e.g., sending a message,
invoking a service, or executing some given script.

(typet, Att) =⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

send(m) if type = send, (‘msg’, m) ∈ Att

receive(m) if type = rec, (‘msg’, m) ∈ Att

invoke(p, i, o) if type = service, (‘impl’, (p, i, o)) ∈ Att

script if type = script, (‘script’, script) ∈ Att

nop otherwise

A Formal Description of a Mapping from Business Processes to Agents 163

Similarly, an event event = (id, typee, As, Ate) can be mapped to, e.g.,
receiving a message, or waiting for a certain time or condition. The same mapping
is used whether the event occurs in normal flow or as a subprocess event handler.

(typee, Ate) =⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wait(t) if type = timer, (‘time’, t) ∈ Ate

receive(m) if type = message, (‘msg’, m) ∈ Ate

while(¬c, nop) if type = rule, (‘rule’, c) ∈ Ate

nop otherwise

These are the most important types of tasks and events for creating a usable
system. Other types, such as error events or user tasks, are not regarded in this
mapping, but can still be used in some of its implementations.

4 Implementation

Currently, the mapping has been implemented in three different ways for the
JIAC V multi-agent framework [16]: For creating services in the high-level agent-
scripting language JADL++ [14], for generating Java-based agent beans imple-
menting the respective behaviours [12], and in the form of a JIAC-based process
interpreter [22]. These implementations are integrated into the BPMN modelling
tool VSDT (Visual Service Design Tool) [11].

The VSDT is an extension to the Eclipse IDE. Besides the basic BPMN
editor it also provides a powerful transformation system that is used for the
translation of process graphs to block structures. This structuring stage has been
implemented using graph transformation rules, while the subsequent mapping of
process elements to agent elements is done using a top-down visitor. We decided
against using graph transformation rules for this part, too, as there are many
interdependencies that would have been difficult to express in such rules.

JIAC V (Java Intelligent Agent Componentware, version 5) is a multi-agent
framework that heavily lends from the service-oriented architecture (SOA) para-
digm to create transparently distributed multi-agent systems communicating via
messages and services, with a particular focus on industrial applications [16].
Consequently, the business process metaphor lends itself well to it.

4.1 Generation of JADL Services

At first, the mapping was realised as a transformation to JADL services. Being
a high-level, service-oriented scripting language [9], the adoption of the BPMN
notation was natural. JADL scripts can be passed to an agent at runtime, allow-
ing for dynamically changing or extending its behaviour.

Each process is mapped to one JADL service, with its input and output
determined by the start events. Most structures, including event-based condi-
tions, can be mapped directly onto corresponding control flow elements. Sim-
ple subprocesses are embedded into a nested variable scope within the service,
but subprocesses with event-handlers are not supported in this implementation.

164 T. Küster et al.

Tasks and events for sending and receiving messages and for invoking other
services are mapped directly onto according high-level language elements, thus
making the resulting code particularly easy to understand and to maintain.

The reaction rules derived from the start events are mapped onto a set of
Drools6 rules. JIAC agents can be equipped with a Drools rule engine, syncing
with the agent’s memory and triggering the respective services in case the start
condition – e.g., a message being received, or a timer – is fulfilled, by inserting
an according intention into the agent’s memory. The mapping of participants
to agent roles is reflected in the creation of according JIAC configuration files,
holding the different agent roles, each equipped with a JADL interpreter and a
rule engine and the respective services and rules.

4.2 Creation of JIAC Agent Beans

Complementary to this implementation, BPMN diagrams can also be mapped to
JIAC agent beans [12]. Those are more versatile and provide better extensibility,
making them the best choice for implementing the agent’s core components.
Here, each pool is mapped to one agent bean (i.e. a Java class), encapsulating
the behaviour for that role in that use case. All of the activities are mapped to
activity methods that are orchestrated in a workflow method, representing the
workflow as a whole.

The workflow method is made up of standard Java constructs, such as con-
ditions and loops, calling the activity methods accordingly. Subprocesses are
mapped to similarly structured nested classes. Parallel execution is implemented
via threads, as are event handlers, where the event is monitored in a thread,
eventually interrupting the main workflow thread and re-routing the execution
accordingly. The activity methods encapsulate both that activities assignments
and the actual activity, e.g. sending a message, making the workflow code much
more compact and easy to understand by humans Properties are mapped to Java
variables in the appropriate scope.

Start events are implemented making use of different mechanisms of the
agent beans. For an unspecified, or none start event, the workflow method is
triggered once when the agent starts; a message start event with a service
implementation will expose the workflow method as an action; a message start
event with a message channel will create an according message observer; and a
timer start event will regularly check the time (or time since last execution)
and start the workflow method accordingly.

4.3 JIAC Process Interpreter Bean

Finally, the mapping has been implemented as a JIAC-based process interpreter
agent bean [22]. This one fundamentally differs form the other two, as no source
code is generated, but the BPMN diagram file itself is passed to the bean and
interpreted. Thus, no structuring of the process is necessary.
6 JBoss Drools: http://www.jboss.org/drools/.

http://www.jboss.org/drools/

A Formal Description of a Mapping from Business Processes to Agents 165

The process interpreter agent provides an action, accepting a BPMN diagram
and the name of the participant to play, creating a new interpreter runtime for
that process diagram and participant, i.e. role. It also acts as the “link” between
the interpreted process and the outside world.

The processes are not started immediately; instead, those interpreter run-
times are responsible for monitoring the start events of that role’s processes,
and will create new interpreter instances each time a start event is triggered,
e.g., when some message arrives. They also determine what processes should be
exposed as actions of the interpreter agent (for service start events).

At the lowest level, the interpreter instances keep track of the internal state
of each process. In each iteration of the interpreter agent’s execution cycle, each
process instance performs one ‘step’ in its respective process, keeping track of
the current state of the process, evaluating branching conditions and routing the
flow of control accordingly, until the last active flow object has been executed.

4.4 Comparison and Application

Each implementation has its strengths and weaknesses (see Table 1).

– While providing for compact and readable code, the mapping to JADL suffers
from the language’s lack of expressiveness in some points. Still, it is useful
for high-level behaviours and services, and has the additional advantage that
JADL scripts can be deployed and undeployed at runtime, thus dynamically
changing the agent’s behaviour.

– The generated JIAC agent beans have the highest expressiveness: Not only
can nearly the entire BPMN be mapped to an according Java code, but if
needed the generated beans can also easily be extended with additional code,
e.g., for interaction with a GUI or data base. Those changes are preserved
even when the code is generated anew. On the negative side, the agent beans
are relatively static and not as easy to add to an agent at runtime.

– Not depending on generated code, the interpreter is not limited to processes
following a block-structure but can run arbitrarily structured processes. This
comes at the cost that the business process has to strictly contain everything
that is needed in order to run, as there is no generated code that could be
extended or edited before execution. As with JADL, processes can be dynam-
ically added to and removed from the interpreter agent at runtime. Both
arguments make the interpreter best suited for very high-level behaviour and
composite services. Finally, the interpreter could be linked with the process
modelling tool, showing the current state of the execution (future work).

The three implementations differ in both, their exact coverage of the mapping
(see Table 2, including the mapping from BPMN to BPEL [18] for comparison)
and their strengths and weaknesses, but they are all compatible with each other,
e.g., a message sent by a generated agent bean can be received by the interpreter
or a JADL service and vice versa. Thus, it is possible to export one business
process diagram to a heterogeneous system, mapping one pool to, e.g., a JADL
service and another to an agent bean.

166 T. Küster et al.

Table 1. Comparison of different implementations

Property JADL Agent Beans Interpreter

Plan language JADL++ Java n/a
Rule language Drools Java n/a
Process structure block block any graph
Expressiveness low very high high
Extensibility of code good very good n/a
Deployable at runtime yes no yes

The mapping from BPMN to agents has been developed and – to varying
degrees – applied in different research projects. First, in the SerCHo project, the
mapping to JADL was used to describe and deploy agent service orchestrations,
and similar in the Smart Senior and ILIas projects. Currently, the mapping to
Agent Beans and the interpreter, and particularly the mapping of semantics and
planning, are being advanced in the EMD project for the dynamic orchestration
of e-mobility services.

Business process modelling can best be applied either at an early system
design stage, to visually model the interaction protocols in the core system [14],
or at a later stage, for modelling individual high-level services. Both is supported
by the mapping and its implementations.

5 Related Work

In part, BPMN was developed as a graphical notation for the web service orches-
tration language BPEL, and the resulting mapping from BPMN to BPEL [18]
can be considered a point of reference for all other mappings. Here, each pool
is mapped to a BPEL process, consisting mostly of assignments, calls to other
services, and some event handling. Messages are always service calls or their
respective results; other kinds of communication are not supported, and there
is no direct mapping from start events to service starting behaviour. Thus, the
mapping to BPEL does not use the full potential of BPMN.

The similarities between business processes and agents have already led to
different approaches for combining process modelling and agents.

One of those approaches is WADE (Workflows and Agents Development
Environment), allowing to model the behaviours of JADE agents as process
graphs [6] and generating working Java code from those diagrams. However, the
workflow is not mapped to Java control flow statements, but encoded in a spe-
cial data structure, making the generated code more difficult to follow. Also, the
initially used process notation is much simpler than BPMN, limiting the expres-
siveness of the approach. Later, WADE has been extended to provide better
support for long-running business processes, event handling, user-interaction,

A Formal Description of a Mapping from Business Processes to Agents 167

and Web-service integration [2] and as of today appears to be a very mature
product used in many projects.

Table 2. Comparison of mappings: BPMN to X. -/o/x means no/partial/full support

Element BPEL JADL Ag.Beans Interpr.

W
o
rk

fl
ow

XOR, AND, OR Gtw. x x x x
Event-bsd. XOR Gtw. x x x x
Complex Gateway - - - -
Event Handler, Error x x x x
Event Handler, Other x - x x

A
ct

iv
it

ie
s

Send, Receive Task o x x x
Service Task x x x x
User Task o - o o
Manual Task - - - -
Script Task - x x o
Subprocess o o x x
Transaction - - - -
Call Activity o o o o
Ad-Hoc-Subprocess - - o o

E
v
en

ts

Message o x x x
Timer x x x x
Rule - o x o
Signal - - - o
Escalate - - - -
Error x - x x
Compensate x - - -
Cancel - - - -
Terminate x - x x

M
is

c.

Properties, Assignmt. x x x x
Multiple Lanes - - - -
Data Objects - - - -
Roles - x x x
Service Starter o x x x

Another approach is GO-BPMN (Goal-oriented BPMN), using BPMN
processes to model the plans that are the leafs in a goal hierarchy [5]. However,
only a subset of the BPMN notation is used, describing individual plans and
thus only a single agent. Interactions between agents – for which BPMN would
be very well suited – are not modelled at all. While the combination of BPMN
with agent goals is promising, we believe that BPMN is used at the wrong level
of abstraction, abandoning many of its benefits. Similarly, Go4Flex [4] combines
BPMN with goal hierarchies for Jadex Agents.

168 T. Küster et al.

In another work, the authors also present a mapping from AUML interaction
diagrams to BPMN [19]. AUML interaction diagrams themselves [1] are well
suited for describing the interactions between agents, but following the principle
of UML, they show only this one aspect, while leaving the behaviour in between
the interactions to be modelled with other means. In contrast, BPMN can be
seen as a combination of AUML interaction- and activity -diagrams, conveying
the bigger picture of the agents’ actions and interactions.

Finally, there are numerous agent development methods, many of which also
use business processes and similar graphical notations. One of those is i∗, which
is used, among others, in the TROPOS methodology [23]. Here, the focus lies
particularly on the social relationships between the agents, their goals, intentions
and resulting ‘strategic dependencies’. While i∗ itself is not used for modelling
processes, it could well be used complementary to, e.g., BPMN to model the
rationale behind the agents’ behaviours and interactions.

6 Conclusion

In this paper, we described a mapping from BPMN processes to multi-agent sys-
tems and exemplarily showed how this mapping has been implemented in three
different fashions for the JIAC V multi-agent framework: By generating high-
level JADL scripts, creating versatile agent beans, or having an agent directly
interpret the processes.

Each approach has its strengths and weaknesses: Agent beans are fast and
versatile, making them the best choice for the core processes of the multi-agent
application, while scripts and interpreted processes are more flexible and thus
best suited for dynamic and adaptable behaviours. At the same time, using the
same mapping, all implementations are semantically equivalent and interopera-
ble, such that, e.g., one part of a process system can be mapped to agent beans,
while another part is interpreted.

The mapping covers most important aspects of processes and agents, such
as roles and rules, activities and events, messages and services. It also supports
many different process control flow structures, translating them to equivalent
block-structures.

While already included in the meta-models and the mapping, the imple-
mentation does not yet support goals and semantics. For future work, we are
planning to extend the mapping in this direction. The BPMN ad-hoc subprocess
is a good candidate for this, providing a completion condition that closely resem-
bles an achieve goal in agent systems, but more work is needed for the mapping
to handle ad-hoc subprocesses with more diverse content. Also, this will require
the extension of BPMN with service semantics. Both are goals of our ongoing
research projects.

A Formal Description of a Mapping from Business Processes to Agents 169

References

1. Bauer, B., Müller, J.P., Odell, J.J.: Agent UML: a formalism for specifying mul-
tiagent software systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 91–103. Springer, Heidelberg (2001)

2. Bergenti, F., Caire, G., Gotta, D.: Interactive workflows with WADE. In: 2012
IEEE 21st International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 10–15 (2012)

3. Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., Zambonelli, F.: A study
of some multi-agent meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.)
AOSE 2004. LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

4. Braubach, L., Pokahr, A., Jander, K., Lamersdorf, W., Burmeister, B.: Go4Flex:
goal-oriented process modelling. In: Essaaidi, M., Malgeri, M., Badica, C. (eds.)
Intelligent Distributed Computing IV. Studies in Computational Intelligence, vol.
315, pp. 77–87. Springer, Heidelberg (2010)

5. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-agents for agile goal-
oriented business processes. In: Proceedings of 7th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008), pp. 37–44. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland, SC
(2008)

6. Caire, G., Gotta, D., Banzi, M.: WADE: A software platform to develop mission
critical applications exploiting agents and workflows. In: Berger, M., Burg, B.,
Nishiyama, S. (eds.) Proceedings of 7th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2008). Industry and Applications Track,
pp. 29–36, May 2008

7. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

8. Franklin, S., Graesser, A.: Is It an agent, or just a program?: a taxonomy for
autonomous agents. In: Jennings, N.R., Wooldridge, M.J., Müller, J.P. (eds.)
ECAI-WS 1996 and ATAL 1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg
(1997)

9. Hirsch, B., Konnerth, T., Burkhardt, M., Albayrak, S.: Programming service ori-
ented agents. In: Calisti, M., Dignum, F.P., Kowalczyk, R., Leymann, F., Unland,
R. (eds.) Service-Oriented Architecture and (Multi-)Agent Systems Technology,
vol. 10021 in Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, Germany, Dagstuhl, Germany (2010)

10. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow
modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789,
p. 431. Springer, Heidelberg (2000)

11. Küster, T., Heßler, A.: Towards transformations from BPMN to heterogeneous sys-
tems. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management
Workshops. LNBIP, vol. 17, pp. 200–211. Springer, Heidelberg (2009)

12. Küster, T., Heßler, A., Albayrak, S.: Towards process-oriented modelling and cre-
ation of multi-agent systems. In: Dalpiaz, F., Dix, J., van Riemsdijk, M.B. (eds.)
EMAS 2014. LNCS, vol. 8758, pp. 163–180. Springer, Heidelberg (2014)

13. Küster, T., Lützenberger, M.: An overview of a mapping from BPMN to agents
(extended abstract). In: Bordini, E., Weiss, Y. (eds.) Proceedings of 14th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2015). Istanbul, Turkey, 4–8 May 2015

170 T. Küster et al.

14. Küster, T., Lützenberger, M., Heßler, A., Hirsch, B.: Integrating process modelling
into multi-agent system engineering. Multiagent Grid Syst. 8(1), 105–124 (2012)

15. Liu, R., Kumar, A.: An analysis and taxonomy of unstructured workflows. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 268–284. Springer, Heidelberg (2005)

16. Lützenberger, M., et al.: A multi-agent approach to professional software engineer-
ing. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013.
LNCS, vol. 8245, pp. 156–175. Springer, Heidelberg (2013)

17. Mendling, J., Lassen, K.B., Zdun, U.: Transformation strategies between blockori-
ented and graph-oriented process modelling languages (2005)

18. OMG: Business process model and notation (BPMN) version 2.0. Specification
formal/2011-01-03, Object Management Group, August 2011

19. Pokahr, A., Braubach, L.: Reusable interaction protocols for workflows. In: Work-
shop on Protocol Based Modelling of Business Interactions (2010)

20. Recker, J.C.: BPMN modeling - who, where, how and why. BPTrends 5(3), 1–8
(2008)

21. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: a unifying
framework. In: Proceedings of 7th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2008), pp. 713–720. International Foundation
for Autonomous Agents and Multiagent Systems, Estoril, Portugal, May 2008

22. Voß, M.: Orchestrating Multi-Agent Systems with BPMN by Implementing a
Process Executing JIAC Agent Using the Visual Service Design Tool. Master
thesis, Humboldt Universität Berlin, May 2014

23. Yu, E.S.: Social modeling and i*. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P.,
Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol.
5600, pp. 99–121. Springer, Heidelberg (2009)

Validating Requirements
Using Gaia Roles Models

Nektarios Mitakidis1, Pavlos Delias2, and Nikolaos Spanoudakis3(&)

1 School of Electronic and Computer Engineering (ECE),
Technical University of Crete (TUC), Chania, Greece

nmitakidis@isc.tuc.gr
2 Business School, Eastern Macedonia and Thrace Institute of Technology,

Kavala, Greece
pdelias@teiemt.gr

3 School of Production Engineering and Management (PEM),
Applied Mathematics and Computers Laboratory (AMCL),

Technical University of Crete (TUC), Chania, Greece
nispanoudakis@isc.tuc.gr

Abstract. This paper presents a method that aims at assisting an engineer in
transforming agent roles models to a process model. Thus, the software engineer
can employ available tools to validate specific properties of the modeled system
before its final implementation. The method includes a tool for aiding the
engineer in the transformation process. This tool uses a recursive algorithm for
automating the transformation process and guides the user to dynamically
integrate two or more agent roles in a process model with multiple pools. The
tool usage is demonstrated through a running example, based on a real world
project. Simulations of the defined agent roles can be used to (a) validate the
system requirements and (b) determine how it could scale. This way, engineers,
analysts and managers can configure the processes’ parameters and identify and
resolve risks early in their project.

Keywords: Model checking agents and multi-agent systems � Business process
models � Agent simulation � Gaia methodology

1 Introduction

This paper aims to show how a Gaia Multi-Agent System (MAS) analysis (or archi-
tectural design) role model can be represented as a business process model. This allows
employing available tools to validate specific properties of the modeled system before
its final implementation. Moreover, a business partner has a greater potential to com-
prehend the system being modeled through intuitive process visualization.

Rana and Stout [1] highlighted the importance of combining performance engi-
neering with agent oriented design methodologies in order to develop large agent based
applications. To derive process performance measures, we need a quantitative process
analysis technique. Process simulation appears to be a prominent technique that allows
us to derive such measures (e.g., cycle time) given data about the activities (e.g.,
processing times) and data about the resources involved in the process. Through

© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 171–190, 2015.
DOI: 10.1007/978-3-319-26184-3_10

process simulation an engineer can forecast the process execution time, identify
possible bottlenecks and perform tests regarding the response of the process to
increasing demand. Process simulation is a versatile technique supported by a range of
process modeling and analysis tools [2]. However, to run a process simulation, the
engineer needs a process model.

In this paper we will see how liveness formulas, an important property of agent role
models, introduced by the Gaia methodology [3], and later employed by ROADMAP [4],
the Gaia2JADE process [5], Gaia4E [6] and ASEME [7], can be transformed to process
models. Moreover, we will present a tool that allows these models to be integrated to
produce a process model of a multi-agent system using the XML Process Definition
Language (XPDL) [8] portable standard. Having transformed the MAS role model to a
process model, we can use simulation to validate several properties of the modeled
system, and also determine its ability to scale, as early as the analysis [3] or architectural
design (introduced in the second version of Gaia [9]) phases. This is demonstrated
through a case study based on real world system’s requirements for smart-phone services.

Therefore, this work is expected to have a high impact on (a) Agent Oriented
Software Engineering (AOSE) practitioners using the Gaia methodology and its suc-
cessors, who can immediately take advantage of this work to evaluate their models,
(b) AOSE researchers, and practitioners of other methodologies who can use this
transformation combined with method engineering to compile new methodologies, and,
(c) those who use business process models for agent-based simulations [10, 11] or for
communicating them to business people [12], who can now use an AOSE methodology
to aid them in their modeling tasks.

In the following section we will briefly discuss the background of this work. Then, in
section three, we will present the algorithm for the automatic transformation process and,
in section four, the tool that allows integrating many individual agent processes to build a
common process that will resemble how the different agents collaborate. In section
five we will present the results of a number of simulations. In Sect. 6 we present the
software process fragment that an engineer can use to integrate this method to an existing
software engineering process. Section seven discusses our findings and the tool’s lim-
itations, and, finally, section eight concludes and provides an insight to future work.

2 Background

2.1 The Gaia Liveness Formulas and AOSE

The liveness property of an agent role was introduced by the Gaia methodology [3, 9].
Gaia is an attempt to define a general methodology for the analysis and design of MAS.
MAS, according to Gaia, are viewed as being composed of a number of autonomous
interactive agents forming an organized society in which each agent plays one or more
specific roles. The latest version of Gaia defines a three phase process and at each
phase the modeling of the MAS is further refined. These phases are the analysis phase,
the architectural design phase, and, finally, the detailed design phase. In the analysis
phase, Gaia defines the structure of the MAS using the role model. This model identifies
the roles that agents have to play within the MAS and the interaction protocols between
the different roles. The role model is further refined in the architectural design phase [9].

172 N. Mitakidis et al.

The objective of the Gaia analysis phase is the identification of the roles and the
modeling of interactions between the roles found. Roles consist of four attributes:
responsibilities, permissions, activities and protocols. Responsibilities are the key
attribute related to a role since they determine the functionality. Responsibilities are of
two types: liveness properties – the role has to add something good to the system, and
safety properties – the role must prevent something bad from happening to the system.
Liveness describes the tasks that an agent must fulfill given certain environmental
conditions and safety ensures that an acceptable state of affairs is maintained during the
execution cycle. In order to realize responsibilities, a role has a set of permissions.
Permissions represent what the role is allowed to do and, in particular, which infor-
mation resources it is allowed to access. The activities are tasks that an agent performs
without interacting with other agents. Finally, protocols are specific patterns of inter-
action with other roles.

Gaia originally proposed some schemas that could be used for the representation of
interactions between the various roles in a system. However, this approach was too
abstract to support complex protocols [5]. ROADMAP [4] proposed that protocols and
activities are social actions or tasks and ASEME [13] moved one step further by
allowing protocols to define the involved roles processes as liveness formulas that
would later be included in the liveness of the system role model (a model inspired by
the Gaia roles model). This is one assumption of this work, i.e. that the protocols are a
send message action, a receive message action or a combination of message send and
receive actions and, possibly, other activities for each participating role.

Although the Gaia methodology does not explicitly deal with the requirements
capture phase, it supposes that they exist in some kind of form before the analysis
phase. ASEME supports the systematic gathering of requirements in free text form and
associating them with the goals of specific actors in the System Actor-Goals Model [7].
Since ASEME has adopted a model-driven engineering approach these requirements
influence the role model definition, which emerges at the end of the analysis phase.

In both cases, it makes sense to seek to validate or forecast specific properties of the
system to be, based on its requirements. Until now, an analyst can only reach this goal
by manually transforming the model. In this paper, we propose a systematic method for
achieving the same goal. The advantages of such an approach are that it can be auto-
mated, is less error prone and faster. This is the actual research question of this work.

The liveness model has a formula at the first line (root formula) where activities can
be connected with Gaia operators. Abstract activities must be decomposed to activities
again connected with Gaia operators in a following formula. The operators used in the
liveness formulas are:

A+ (activity A is executed one or more times)
A* (activity A is executed zero or more times)
[A] (activity A is optionally executed)
Α.B (activity B executes after activity A)
A|B (activity A or B exclusively is executed)
A||B (activities A and B are executed in parallel)
A* (activity A is executed forever, the original Gaia operator was the greek char-

acter omega “ω”, however for keyboard compatibility we chose to use the tilde)

Validating Requirements Using Gaia Roles Models 173

Figure 1 shows a Gaia roles model for an indicative role named ComplexProvider.
This role employs two protocols, one for servicing a complex service request and one
for requesting a simple routing service (activities are underlined in the Protocols and
Activities field). In its liveness formula it describes the order that these protocols and
activities will be executed by this role using three liveness formulas.

The liveness property is defined as a string, adhering to a grammar. The latter is
defined using the Extended Backus–Naur Form (EBNF), which is a metasyntax
notation used to express context-free grammars [14]. In Listing 1 we define the liveness
property grammar (char is any lower or upper case alphabetic character).

2.2 Metamodels and Model Transformations

Model transformation is an essential process in Model Driven Engineering (MDE). It is
the process of transforming a model to another model [15]. To define a transformation
an engineer needs the metamodels of the source and target models. A model is defined
as an abstraction of a software system (or a part of it) and a metamodel is an abstraction
defining the properties of the model. A metamodel is itself a model. For example, the
metamodel of a text model can be the EBNF grammar.

A model’s metamodel defines the elements that can be used by the engineer to
create the (terminal) model, usually in a format defined by a metametamodel which is
the language for defining metamodels. The Eclipse Modeling Framework (EMF, [16])
defines such a language, namely ecore, that is much like a UML Class definition. Ecore
defines that a model is composed of instances of the EClass type, which can have
attributes (instances of the EAttribute type) or reference other EClass instances (using
the EReference type). EAttributes can be instances of terminal data types such as string,
integer, real, etc.). EMF allows to extend existing models via inheritance, using the
ESuperType relationship for extending an existing EClass.

Role: ComplexProvider

Description: This role provides an added value service in routing requests. It receives a routing

request containing needed information but also the user’s preferences. Firstly it decides the route

type to request (public transport, car and/or pedestrian), then it composes a simple routing

request and after it gets the results it sorts them according to the user’s preferences.

Protocols and Activities: ComplexService, ReceiveComplexServiceRequest,

DecideRouteType, SimpleService, SortRoutes, SendComplexServiceResponse,

SendSimpleServiceRequest, ReceiveSimpleServiceResponse.

Responsibilities - Liveness:

CP = ComplexService+

ComplexService = ReceiveComplexServiceRequest. DecideRouteType. SimpleService.

 SortRoutes. SendComplexServiceResponse

SimpleService = SendSimpleServiceRequest. ReceiveSimpleServiceResponse.

Fig. 1. Part of the gaia role model for a role.

174 N. Mitakidis et al.

Thus, using EMF technology, in order to define the text to model transformation
that is the liveness to XPDL transformation we need the XPDL metamodel.

Listing 1. The liveness property grammar

2.3 Business Process Modeling

Software Engineering (SE) and Business Process Management (BPM) are two disci-
plines with clear associations. A visible influence of SE to BPM concerns quality
assessment, while SE aims its attention to BPM mainly to take advantage of its
advanced monitoring and controlling functions [17] and its experiment design princi-
ples. For example, following the BPM paradigm, one can find solutions about how
business people and software engineers are facilitated in communicating system
requirements. Stakeholders are able to get involved in the system’s design, and hence
to assure the alignment of the produced software with the business objectives.

Simulation is employed to quantify the impact that a process design is likely to
have on its performance, and to numerically indicate the best design alternatives.
Regarding business process simulation, various tools exist [18], which facilitate the
adoption of BPM as a practical way for designing systems. However, a critical factor in
selecting which tool is more appropriate is the modeling language used.

Popular modeling languages in designing software systems, such as the
object-oriented ones (e.g., UML), lack process views, an issue that has been early
identified by [17]. On the other hand, process models do not usually map clearly to a
programming environment. Both approaches have their relative advantages, so it is a
hard decision to spare one. This is why there have been efforts to bridge object-oriented
models and process models through model transformations [17, 19].

In this work we chose the XML Process Definition Language (XPDL version 2.1)
as the target language. XPDL, a standard supported by the Workflow Management
Coalition (WfMC, http://www.wfmc.org), has a good potential for process interchange
and heterogeneous system integration since it is used today by more than 80 different
products to exchange process definitions and keeps up to date with BPMN 2.0.

Validating Requirements Using Gaia Roles Models 175

http://www.wfmc.org

The XPDL metamodel that we used for our project is shown in Fig. 2. The Package
concept represents a set of processes and contains:

• pools, which represent major participant roles in a process, typically separating
different organizations. A pool can contain:
– lanes, which are used to organize and categorize activities within a pool

according to function or role.
• workflowProcesses, which aggregate sets of activities and transitions

– activities are represented by rounded rectangles and correspond to the execution
of a task or to the functionality of a gateway, which can be:
• XOR gateway (exclusively one of the outgoing transitions will be followed),

which is represented by a diamond shape with the “X” character in the
middle

• parallel gateway (all the outgoing transitions lead to activities that will be
executed in parallel), which is represented by a diamond shape with the “+”
character in the middle

– events are represented by circles and are specific kinds of activities that corre-
spond to something that happens. Common events are the start of a process lane
and its ending

– transitions, are represented with a solid line and arrowhead and have source and
target (at the arrowhead) activities and define the control flow in the workflow
process

• associations, are represented with a dotted line and arrowhead and have source and
target (at the arrowhead) activities and define the message flow between different
pools. Therefore, they also have source and target pools.

3 The Transformation Algorithm

The transformation algorithm uses elements from the liveness formulas grammar
(Listing 1) and the XPDL metamodel (Fig. 2). It is a recursive algorithm that takes the
liveness formula expression elements from left to right and applies the templates shown
in Fig. 3, gradually building the XPDL process. For all templates, the control flows
from left to right, i.e. if a template follows another, then it is connected to its rightmost
element. The algorithm is provided in pseudocode at the appendix.

Regarding the theoretical properties of the algorithm we believe that it can be easily
proved that it is correct using induction and the assumption that if we have a correct
XPDL model and replace an XPDL activity with a correct XPDL fragment (or a well-
structured fragment, as in [20]) the resulting model is correct. The templates are all
correct XPDL diagrams (well structured fragments) if they have a start event on their
left and a transition to an end event on their right, as every task is on a path from the start
event to the end event. Then, for each of these valid models we can easily assert that if
we take a random template and replace an activity of the model with it then, again, the
model is correct. Then, we hypothesize that after n insertions the model is correct and we
insert a new random template. Then we show again that the resulting model is correct.

176 N. Mitakidis et al.

The reader should note the common templates for the * and + operators. Con-
sidering the semantics of the * operator the exclusive gateway should not be used (the
activity should just loop back to itself). In this way, the resulting process model would
not be easily ported to existing analysis techniques as it would not pass the Proper
Completion test (each workflow ends with an end event) [21]. Given the fact that in a
later stage the situation could be remedied by adjusting the gateway to always return
the flow to the activity, and that in the second version of Gaia there is a case where the
authors allow the indefinite operator to be followed by a sequential activity [9], we
believe that our approach is the best compromise for this case.

As far as the algorithm’s complexity is concerned, since we have a recursive
function call inside a for loop, the complexity of our algorithm is O(n2), where n is the
number of activities and protocols present in the liveness formulas. The algorithm
would run forever should there be circular references to LeftHandSide from a formula’s
Expression (or from subsequent formulas), however, we have a pre-processing step
guarding against this possibility and preventing the algorithm from executing.

Fig. 2. The XPDL metamodel (we used the org.enhydra Java package defining the metamodel
for XPDL 2.1, which is distributed under the GNU Free License by Together Teamsolutions Co.,
Ltd., http://tinyurl.com/org-enhydra)

Validating Requirements Using Gaia Roles Models 177

http://tinyurl.com/org-enhydra

4 The Liveness2XPDL Tool

The tool allows defining one or more agent roles. For each role, the user can edit a
liveness formula or import a role model. We researched for the Gaia methodology and
its derivatives’ metamodels to create the relevant import functionality. We found
documented metamodels for the Gaia [22], ROADMAP [23] and the ASEME [7]
methodologies. However, Gaia’s metamodel abstractly defines the LivenessProperty
class and ROADMAP’s metamodel file is not available on-line. Thus, we created an
importer for the ASEME System Roles Model (SRM) metamodel to demonstrate the
capability of our approach in importing meta-models. Since our tool is open source,
interested developers can create an importer for the metamodel they prefer or they can
type their formulas in the text editor.

The tool allows integrating multiple roles in the same XPDL model. We create one
Pool instance for each role in a common Package (the transformation algorithm exe-
cutes as many times as the participating roles with the same Package instance) and then
the user defines the associations for message sending and receiving activities. Then, the
tool creates the needed references of the associations to the pools and outputs the
Package in XPDL format.

In this section we demonstrate the usage of the developed tool. We consider a real
world system developed in the context of the ASK-IT Integrated Project1 where a

A

A A

A1 A2 An...

A1

A2

An

...

Α1

Α2

Αn

...

Op. Template

A~

[A]

A*

A
1.

A
2.

...
.A

n
A

1
|A

2
|…

|A
n

A
1
||A

2
||…

||A
n

Op. Template

A+

Fig. 3. Templates of liveness formula (Gaia) operators (Op.) for XPDL model generation.

1 ASK-IT has been co-funded by the European Union under the 6th Framework Programme (no
IST-2003-511298).

178 N. Mitakidis et al.

personal assistant agent on a lightweight device (e.g., a smart phone) requests services
from a mediator agent (or broker). This broker has the capability to service simple
requests but can also access a complex service provider agent who can offer high level
services. The complex provider also needs simple services from the broker in order to
compose a high level service. In our case, we consider a route calculation service that
can be simple (I want to get from point A to B with a car using the quickest route) or
complex (I want to get from point A to B with the best transport means according to my
user’s impairment needs and habits). In the second case the complex provider will

reason on the type of simple request based on the user’s profile, make a simple route
calculation service request to the broker and then sort the results according to the user’s
habits before replying to the user through the broker.

The agent roles models for the personal assistant and the broker are presented in
Fig. 4 (just the role name and liveness property). The complex provider is the same
with the one presented in Fig. 1.

The user starts the Liveness2XPDL tool and imports through the File menu the
three role models, as presented in Fig. 5. Then, the user can select one role and the
Single role transformation option from the Transform menu, or more than one (holding

Role: PersonalAssistant

Liveness:

PA = SendServiceRequest. ReceiveServiceResponse

Role: Broker

Liveness:

Broker = (ServicePAs || ServiceCP)+

ServicePAs = ReceiveServiceRequest. ProcessRequest. (InvokeDataManagement |

 SendComplexServiceRequest. ReceiveComplexServiceResponse). SendServiceResponse

ServiceCP = ReceiveSimpleServiceRequest.

 InvokeDataManagement. SendSimpleServiceResponse

Fig. 4. The personal assistant and broker role models.

Fig. 5. The main screen of the Liveness2XPDL tool.

Validating Requirements Using Gaia Roles Models 179

down the control key) and the Multiple role transformation option from the Transform
menu. In Fig. 6 the reader can see the single role file for the Complex Provider role.

In the case of multiple roles transformation, the tool then prompts the user to select
where to save and how to name the output XPDL file. If there are activities that send or
receive messages the graphical interface presented in Fig. 7 helps the user to create
message flows.

Finally, in Fig. 8 the reader can see the combined roles process model for all the
roles used in our project. The modeler has used the graphical tool depicted in Fig. 7 to
define the message flows between the agents. A message flow represents the flow of
information between two separate roles (pools). The screenshot in Fig. 8 has been taken
from the Signavio tool2. To import the model into the Signavio tool we first used a free
online XPDL to BPMN conversion service3.

Fig. 6. The complex provider displayed in Together Workflow Editor (a graphical workflow
editor implementing XPDL specification V2.1 using the BPMN graphical notation, http://www.
together.at/prod/workflow/twe).

Fig. 7. The inter-role messages definition screen.

2 The BPM Academic Initiative of Signavio offers a web-based process modeling platform to students,
lecturers and researchers, http://www.signavio.com/bpm-academic-initiative.

3 E.g. the “Convert XPDL to BPMN” service provided freely on-line by Trisotech, http://www.
businessprocessincubator.com.

180 N. Mitakidis et al.

http://www.together.at/prod/workflow/twe
http://www.together.at/prod/workflow/twe
http://www.signavio.com/bpm-academic-initiative
http://www.businessprocessincubator.com
http://www.businessprocessincubator.com

5 Simulating the Roles Interactions

In this section, we demonstrate how simulation can aid the system modeler as well as
the project manager to make important decisions, mainly concerning non-functional
requirements.

Initially, there were two reasons for simulating the ASK-IT system. The first was
that the ASK-IT service providers needed to know if the system can satisfy
non-functional user requirements, one of which was the delivery of the service within
ten seconds. The frequency of service requests was calculated to be one request per
30 s. The second was to find out how the system would scale when service demand
increased. The latter would be used for preparing the project’s exploitation plan.

The Signavio tool allows simulating a process model involving several roles. For
each simulation scenario, it allows to define:

• available resources for each role (how many instances of this role are available)
• the frequency in which a role can appear and start executing
• the percentage of times that a XOR gateway selects one or the other execution path
• activity duration (distribution type, mean and standard deviation values)
• number of simulations for each scenario

Fig. 8. The three agent roles displayed together in Signavio BPM academic initiative.

Validating Requirements Using Gaia Roles Models 181

For our simulations we used several executions of function prototypes to define the
activities durations. Moreover, we added the network latency in the message receiving
activities. All the distributions that we used are Gaussian (Normal). Then, we defined

different scenarios by varying the frequency of PAs appearing in the network and
asking for services, the number of brokers serving the requests and the number of
complex providers (in Fig. 9 you can see a screenshot from the Signavio tool for
defining a scenario).

Our experiments are presented in Fig. 10. We have validated the system to respond
within 10 s in the worst case when we have an incoming request every 30 s with one
broker and one complex provider. Moreover, we can see what the expected quality of
service will be, while the requests’ frequency rises. As far as system scaling is con-
cerned we see that by adding more broker instances, the system performance has a
better gain than by adding complex providers. Finally, we can claim that with three
broker instances the system can offer the required quality of service (respond within ten
seconds) even if we have a request every two seconds.

6 The Method Fragment for Validating the Analysis Model

Method fragments [24] are reusable methodological parts that can be used by engineers
in order to produce a new design process for a specific situation. This allows a
development team to come up with a hybrid methodology that will support the needs of
specific programming and modeling competencies.

Fig. 9. Defining the scenario in the Signavio tool.

182 N. Mitakidis et al.

The method fragment that corresponds to the process of validating an analysis
model is presented in this section. It is defined as a software development process using
the extended SPEM 2.0 language for representing agent oriented methodologies [25].
A Software Process is defined as a series of Phases that produce Work Products. In
each phase simple or complex tasks take place. Tasks are achieved by Human Roles.
Work products can be either graphical or textual models. Graphical models can be
Structural (focusing in showing the static aspects of the system – such as class dia-
grams) or Behavioral (focusing in describing the dynamic aspects of the system – what
happens as time passes). Textual models can be completely Free text or follow some
specifications or grammar (a Structured work product).

0

50

100

150

200

250

012345678910

personal assistant requests frequency (seconds)

One broker, one complex
provider

Average Cycle Time Max Cycle Time

0

10

20

30

40

50

60

70

00.511.522.53

personal assistant requests frequency (seconds)

Three brokers, one complex
provider

Average Cycle Time Max Cycle Time

0

50

100

150

200

250

012345678910

personal assistant requests frequency (seconds)

One broker, two complex
providers

Average Cycle Time Max Cycle Time

0

20

40

60

80

100

120

00.511.522.533.544.55

personal assistant requests frequency (seconds)

Two brokers, two complex
providers

Average Cycle Time Max Cycle Time

0

10

20

30

40

50

60

70

80

00.511.522.53

personal assistant requests frequency (seconds)

Three brokers, two complex
providers

Average Cycle Time Max Cycle Time

0

20

40

60

80

100

120

00.511.522.533.544.55

personal assistant requests frequency (seconds)

Two brokers, one complex
provider

Average Cycle Time Max Cycle Time

Fig. 10. Average and maximum response times in seconds (vertical axis). The horizontal axis
represents the time interval between two requests (in a normal distribution).

Validating Requirements Using Gaia Roles Models 183

Each process package defines a process that contains tasks connected through
dashed arrows like in flowcharts. The black dot shows where the process starts and the
black dot in a circle where it ends. A task has input and output work products. An
arrow from a task to a work product means that the product is created (or updated) by
the task. An arrow from a work product to a task means that the product is an input to
the task.

This method fragment (shown in Fig. 11) can be integrated with the Gaia
methodology or one of its descendants by the software engineer. It is activated at the
end of the analysis phase (or architectural design phase for Gaia 2.0) to validate the
system model. Its inputs are the various activities execution times (average and stan-
dard deviation) and the (Gaia) role models (the liveness property).

The engineer must first define the scenario for validation (first task). The scenario is
written in free text (the “Verification Scenarios” work product). Then the relevant roles
are selected and transformed to process models in the Liveness2XPDL task using the
developed tool. Optionally, using the same tool, in the next task, namely “Define
associations”, the engineer connects the message sending and receiving activities of
the roles. The XPDL work product is automatically produced and in the next task it is
imported to the desired tool that will be used for simulation (in our case study
Signavio). Then, the engineer assigns the activities duration and XOR gateway prop-
erties using the same tool. Finally, the engineer simulates the scenario. The process
package finishes by updating the “Verification Scenarios” with the results of the
simulation or is restarted to simulate a new scenario.

7 Discussion

It is not the first time that the AOSE community studies and uses business process
models. There are a number of works, e.g., one for improving a process model rep-
resenting the behavior of agents [11], another for proposing a method for transforming
BPMN models to agent-oriented models in the Prometheus methodology [26], and

Liveness2XPDL
Define

associations
Assign activities

duration

XPDL

Assign XOR
Gateway properties

Define
scenario

Simulate
scenario

Import to
BPMN tool

Software
Engineer

Verification
Scenarios

Role model(s)
Duration of basic

functionalities execution

Fig. 11. The analysis model validation method fragment in SPEM 2.0.

184 N. Mitakidis et al.

another that provides a mapping of BPMN diagrams to a normalized form checking for
certain structural properties, which normalized form can itself be transformed to a
petri-net that allows for further semantic analysis [27].

All these works can be aligned with ours using method engineering and provide a
number of new paths or possibilities for a system modeler that has come up with the
Gaia analysis models. Thus, an AOSE practitioner can transform the process model
outputted from our work to a system specification using the Prometheus methodology
notation [26] and continue using that methodology. Another might be interested in
checking certain structural properties of the process model [27].

Some preliminary results of this work have appeared in EUMAS 2010 (with
informal proceedings) [28]. In that work, we provided transformation templates tar-
geting the BPMN 1.0 metamodel. This work extends that one by targeting the XPDL
metamodel, which offers a wide range of possibilities when available tools are con-
cerned. Moreover, this work caters for integrating multiple roles in a single process
model.

Although we have achieved our goals, the Liveness2XPDL tool has specific lim-
itations. Firstly, when the user decides to create multiple associations that define
message flows from an activity that will be received by different activities in other
pools the method cannot automatically tell whether one of the possible paths will be
followed, or all of them. The inter-agent messages definition interface allows defining
such associations; however, it is not clear how these can be exploited with simulation.

An important note to the transformation approach concerns the templates’ defini-
tions. Undoubtedly, there is not a single way to express a concept with XPDL (or the
BPMN notation). For example, the A* formula can be represented either with the
template illustrated in Fig. 3, or by adding the loop symbol in the rectangle. Although
some good styles and practices are in use today, in practice there are no rules that
guarantee an optimal design. The appropriateness of the model must every time get
validated by the end user. In our case, the templates were defined considering the
BPMN simulation tools features. For example, for the A* formula, we chose that
particular definition because the loop symbol would introduce sub-processes to the
model, and available simulation tools have limited support for such a feature.

Moreover, in XPDL it is acceptable to create more than one transition from an
activity to other activities. This option reduces the complexity of the model as it is not
mandatory to use XOR gateways. However, a large number of process management
tools do not accept this option and most of the times they suggest that a gateway should
be placed to avoid errors. This is why we used the XOR gateway in our templates.

Finally, after the process model is produced, the user still has to provide some
additional elements concerning the send/receive activities’ configuration. We are cur-
rently working towards automating this step based on the following guidelines (which
are now manually configured):

• All activities that stand for sending or receiving messages are labeled as message
type activities.

• When a receive activity immediately follows a start event, then the start event and
the activity are merged into a start event triggered by a message.

Validating Requirements Using Gaia Roles Models 185

• When a receive activity immediately precedes an end event, then the two are
merged into an end event triggered by a message.

• When a message is intended to be sent to one or more out of many recipients and
this decision has to be evaluated during runtime, then before the “send message”
activity a data-based exclusive gateway is added.

8 Conclusion

In this paper we showed how a development team that employs the Gaia methodology,
or its derivatives, i.e. ROADMAP [4], the Gaia2JADE process [5], Gaia4E [6] and
ASEME [7] can transform the output of the analysis phase model (Role Model) to a
process model. Actually, the role’s liveness property is used for the transformation.

Process models are useful paradigms as they, on one hand, allow the usage of a
wide range of tools (free or proprietary) for simulation, thus providing the means to
explore non-functional properties of the system under construction, even before its
implementation. Therefore, project managers and engineers can evaluate the use of
methods and technologies in their project, but also information about the deployment
and scaling of their application. On the other hand, process models are commonly used
by business stakeholders, who can now understand and appreciate a MAS analysis
model. Finally, such models can be used to define agent and humans interactions based
on the associations of the process model.

Herein, we presented the transformation algorithm, demonstrated the developed
tool and showed how it can be used to validate a system analysis for a real world
application, which was created in the context of ASK-IT project. The open Java sources
and executable java jar file for the Liveness2XPDL tool can be browsed by the
interested reader at github4.

The approach that we followed has some limitations, but also opens interesting
paths for future work. A very promising path lies in developing a code generation tool
based on the process model and targeting the WADE5 toolkit of the popular JADE
platform. Another path is that of accommodating the definition of human-agent
interactions in the modern field of Human-Agent Collectives [29], based on process
models.

Appendix: The Recursive Transformation Algorithm

The pseudocode of the tranformation algorithm is presented below. The different model
elements are represented as classes and their properties as class properties, accessible
using the dot operator, i.e. < classname > .<property > . For representing a list we use a

4 https://github.com/ASEMEtransformation/Liveness2XPDL.
5 WADE is a software platform based on JADE providing support for the execution of tasks defined
using the workflow metaphor, http://jade.tilab.com/wadeproject.

186 N. Mitakidis et al.

https://github.com/ASEMEtransformation/Liveness2XPDL
http://jade.tilab.com/wadeproject

List class that supports the operations add (to add an element to the list) and size (to
return the number of its elements). The program takes as input an XPDL Package
instance and the String liveness property of an SRM Role instance.

Validating Requirements Using Gaia Roles Models 187

188 N. Mitakidis et al.

References

1. Rana, O.F., Stout, K.: What is scalability in multi-agent systems? In: International
Conference on Autonomous Agents. pp. 56–63. ACM, Barcelona, Spain (2000)

2. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer, Berlin (2013)

3. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Auton. Agent. Multi. Agent. Syst. 3, 285–312 (2000)

4. Juan, T., Pearce, A., Sterling, L.: ROADMAP: extending the gaia methodology for complex
open systems. In: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems part 1 – AAMAS 2002, pp. 3−10. ACM Press, New York,
USA (2002)

5. Moraitis, P., Spanoudakis, N.: The GAIA2JADE process for multi-agent systems
development. Appl. Artif. Intell. 20, 251–273 (2006)

6. Cernuzzi, L., Zambonelli, F.: Gaia4E: A tool supporting the design of MAS using gaia. In:
Proceedings of the 11th International Conference on Enterprise Information Systems (ICEIS
2009), 6–10 May, Milan, Italy, vol. SAIC, pp. 82−88 (2009)

7. Spanoudakis, N., Moraitis, P.: Using ASEME methodology for model-driven agent systems
development. In: Weyns, D., Gleizes, M.-P. (eds.) AOSE 2010. LNCS, vol. 6788, pp. 106–
127. Springer, Heidelberg (2011)

8. Workflow Management Coalition: Workflow Standard Process Definition Interface - XML
Process Definition Language, WFMC-TC-1025. (2008)

9. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia
methodology. ACM Trans. Softw. Eng. Methodol. 12, 317–370 (2003)

10. Pascalau, E., Giurca, A., Wagner, G.: Validating auction business processes using
agent-based simulations. In: Proceedings of 2nd International Conference on Business
Process and Services Computing (BPSC 2009), Leipzig, Germany, 23−24 March 2009)

11. Szimanski, F., Ralha, C.G., Wagner, G., Ferreira, D.R.: Improving business process models
with agent-based simulation and process mining. In: Nurcan, S., Proper, H.A., Soffer, P.,
Krogstie, J., Schmidt, R., Halpin, T., Bider, I. (eds.) BPMDS 2013 and EMMSAD 2013.
LNBIP, vol. 147, pp. 124–138. Springer, Heidelberg (2013)

12. Onggo, B.S.S.: BPMN pattern for agent-based simulation model representation. In:
Proceedings of the 2012 Winter Simulation Conference (WSC), pp. 1−10. IEEE (2012)

13. Spanoudakis, N., Moraitis, P.: An agent modeling language implementing protocols through
capabilities. In: 2008 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, pp. 578−582. IEEE (2008)

14. Wirth, N.: Extended Backus-Naur Form (EBNF), ISO/IEC 14977:1996(E) (1996)
15. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-driven

software development. IEEE Softw. 20, 42–45 (2003)
16. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Framework, 2nd

edn. Addison-Wesley Professional, Boston (2008)
17. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: Generating business

process models from object behavior models. Inf. Syst. Manag. 25, 319–331 (2008)
18. Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L.K., Young, T.: Simulation in

manufacturing and business: a review. Eur. J. Oper. Res. 203, 1–13 (2010)
19. Cibrán, M.A.: Translating BPMN models into UML activities. In: Ardagna, D., Mecella, M.,

Yang, J. (eds.) BPM 2008 International Workshops, Milano, Italy, September 1–4, 2008.
Revised Papers, pp. 236–247. Springer, Heidelberg (2009)

Validating Requirements Using Gaia Roles Models 189

20. González-Ferrer, A., Fernández-Olivares, J., Castillo, L.: From business process models to
hierarchical task network planning domains. Knowl. Eng. Rev. 28, 175–193 (2013)

21. Van der Aalst, W.M.P.: The application of petri nets to workflow management. J. Circuits
Syst. Comput. 8, 21–66 (1998)

22. Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., Zambonelli, F.: A study of some
multi-agent meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS,
vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

23. Juan, T., Sterling, L.: The ROADMAP meta-model for intelligent adaptive multi-agent
systems in open environments. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003.
LNCS, vol. 2935, pp. 53–68. Springer, Heidelberg (2004)

24. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design
methodologies: from standardisation to research. Int. J. Agent-Oriented Softw. Eng. 1, 91
(2007)

25. Seidita, V., Cossentino, M., Gaglio, S.: Using and extending the SPEM specifications to
represent agent oriented methodologies. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2008.
LNCS, vol. 5386, pp. 46–59. Springer, Heidelberg (2009)

26. Dam, H.K., Ghose, A.: Agent-based development for business processes. In: Desai, N., Liu,
A., Winikoff, M. (eds.) Principles and Practice of Multi-Agent Systems, pp. 387–393.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2012)

27. Endert, H., Hirsch, B., Küster, T., Albayrak, Ş.: Towards a mapping from BPMN to agents.
In: Huang, J., Kowalczyk, R., Maamar, Z., Martin, D., Müller, I., Stoutenburg, S., Sycara, K.
(eds.) SOCASE 2007. LNCS, vol. 4504, pp. 92–106. Springer, Heidelberg (2007)

28. Delias, P., Spanoudakis, N.: Simulating multi-agent system designs using business process
modeling. In: 8th European Workshop on Multi-Agent Systems (EUMAS 2010), Paris,
France (2010)

29. Jennings, N.R., Moreau, L., Nicholson, D., Ramchurn, S.D., Roberts, S., Rodden, T.,
Rogers, A.: Human-Agent Collectives. Commun. ACM 57, 80–88 (2014)

190 N. Mitakidis et al.

Programming Mirror Worlds: An
Agent-Oriented Programming Perspective

Alessandro Ricci(B), Angelo Croatti, Pietro Brunetti, and Mirko Viroli

DISI, University of Bologna, Via Sacchi 3, Cesena, Italy
{a.ricci,a.croatti,p.brunetti,mirko.viroli}@unibo.it

Abstract. The impressive development of technologies is reducing the
gulf between the physical and the digital matter, reality and virtuality.
Mirror worlds (MW) are agent-based systems that live on this edge.
They are meant to be a conceptual blueprint for designing future smart
environment systems, providing an innovative conceptual framework for
investigating inter-disciplinary aspects – from cognition to interaction,
cooperation, governance – concerning human-agent mixed-reality and
augmented systems. In this paper we focus on the problem of how to
concretely design and program mirror worlds, in particular adopting
high-level programming abstractions that are provided by state-of-the-
art agent-oriented programming models and technologies.

1 Introduction

Mixed reality refers to the merging of real and virtual worlds to produce new
environments and visualisations where physical and digital objects co-exist and
interact in real time [6]. As defined by P. Milgram and F. Kishino, it is “anywhere
between the extrema of the virtuality continuum” [12], that extends from the
completely real through to the completely virtual environment with augmented
reality (AR) and augmented virtuality ranging between.

The fruitful integration of augmented/mixed-reality technologies and agents
and multi-agent systems has been remarked along different perspectives in lit-
erature [11]. The most recent works have emphasized the value of (serious)
mixed-reality games as a platform to explore scenarios in the real world that
are typically hard to study in realistic settings, such as disaster response, to
study the joint activities of human-agent collectives [9]. Similarly, mixed-reality
testbeds have been deployed for the incremental development of human-agent
robot applications [4].

A deeper integration of the research on agents and mixed reality is envi-
sioned in [5,19,22] with the concept of mirror world (MW)1, fostering a new
generation of multi-agent applications based on a bidirectional augmentation
of the physical and digital matter, the physical and the virtual reality. MWs
bring together research contributions from different fields apart agents and MAS,
1 The name mirror world has been used in honour of Gelernter’s book [10] that orig-

inally inspired the first glimpses of this idea.

c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 191–211, 2015.
DOI: 10.1007/978-3-319-26184-3 11

192 A. Ricci et al.

from Ambient Intelligence and smart environments, Internet-of-Things down to
mixed/augmented reality. A MW can be abstractly conceived as a digital world
shaped in terms of a multi-agent system, situated into some virtual environment
which is coupled to some physical environment, augmenting its functionalities
and the capabilities of the people that live or work inside it. Besides smart envi-
ronment applications, they aim at being laboratories where to explore together
inter-disciplinary aspects: how human/agent action, perception, cognition are
enhanced and supported by MWs; how to think about the co-design of physi-
cal objects and environments and related digital counterparts; what models for
interaction, coordination, organization, and governance are promoted by and can
be adopted in these agent-based mixed-reality systems.

In this paper we focus on the problem of how to concretely design and pro-
gram mirror worlds, in particular adopting high-level programming abstractions
that are provided by state-of-the-art agent-oriented programming models and
technologies. The contribution is the definition of a first programming model
based on the A&A (Agents and Artifacts) meta-model [15], which provides first-
class abstractions to model the environment where agents are situated. We
develop a first implementation of the model upon the JaCaMo platform [1],
where the A&A meta-model is integrated with BDI agents, implemented using
the Jason programming language [2]. The result is a first platform that allows for
prototyping simple mirror worlds, and investigate the value (and current limits)
of the idea in different application domains.

Besides mirror worlds, the motivation and contribution of the paper concern –
more generally – the definition and development of proper methods and tech-
niques for modeling, designing and programming augmented worlds, in which
Artificial Intelligence is combined with other domains such as ubiquitous com-
puting, sensor network technologies as well as augmented reality, to shape future
smart environments beyond the current vision of ambient intelligence [19,22]. To
this purpose, we believe that the availability of concrete platforms that would
allow to prototype and play with these kinds of systems – starting from the
simplest cases – would be important, in particular to realize if/how current
agent-based models/architectures/technologies are fully effective for this job or
need to be extended with new concepts and mechanisms.

The remainder of the paper is organized as follows: In Sect. 2 we provide
a background about the main concepts concerning MWs. Then, in Sect. 3 we
describe an agent-oriented programming model, based on A&A, and in Sect. 4
we describe a first implementation based on the JaCaMo platform. In Sect. 5
we discuss real-world applications as well as the challenges to be tackled in the
mirror-world development research agenda.

2 Background: The Mirror World Idea

On the background of MWs there is the broad idea of using agent-oriented
abstractions to shape the continuous real-time distributed flows of situated infor-
mation generated by the physical and social layers (as devised by Smart envi-
ronments, Internet of Things, Big Data contexts), as well as of the distributed

Programming Mirror Worlds: An Agent-Oriented Programming Perspective 193

Fig. 1. An abstract representation of a mirror world, using the ghost in the city game
example.

intelligent software processes that work on that information in order to provide
some smart service or functionality. A mirror world can be conceived as an open
society of software agents situated into a virtual environment augmenting some
physical reality (e.g., a room, a building, a city), to which the environment is
coupled. Mirroring is given by the fact that – to some extent – physical things,
which can be perceived and acted upon by humans in the physical world, have a
digital counterpart (or augmentation, extension) in the mirror, so that they can
be observed and acted upon by agents. Viceversa, an entity in the MW that can
be perceived and acted upon by software agents may have a physical appearance
(or extension) in the physical world – e.g., augmenting it, in terms of augmented
or mixed-reality – so that it can be observed and acted upon by humans—for
instance, by means of wearable devices like smart glasses.

This implies a form of coupling, such that an action on an object in the
physical world causes some kind of changes in one or more entities in the mir-
ror, perceivable then by software agents. Viceversa an action by agents on an
entity in the MW can have an effect on things in the physical world, perceivable
by people. As MW citizens, agents are responsible of autonomously fulfilling
tasks inside a MW, by properly observing/using MW things which are part
of their environment and (directly/indirectly) observing and interacting with
human inhabitants that act in that environment.

A simple but effective example of MW described in [19] is an extension of
the mobile AR game Ghosts in the city (see Fig. 1). The MW is composed by
a collection of treasures and ghosts distributed in some part of a city. There
are two teams of human players. Their objective is to collect as much treasures

194 A. Ricci et al.

as possible – walking around – without being caught by the ghosts. Players
have smart glasses and a smart-phone, used as a magic wand. Ghosts are agents
autonomously moving in the MW – and in the city. Players perceive ghosts by
means of their smart glasses – as soon as they are in the same location. Ghosts as
well can perceive the players, as soon as they are within some distance. Ghosts
aim to catch human players; so they follow them as soon as they can perceive
them. A ghost catches a human player by grabbing her body in the MW—this
can be physically perceived by humans by means of the magic wand (trembling).
Different kinds of ghosts may prefer different (physical) spots, according to some
physical parameter of the spot—e.g., humidity, light, temperature. Besides per-
ceiving the world, ghosts with enough energy could also act on it, for instance
turning off a physical light (by acting on the counter-part in the MW).

In spite of being a game, the example sumarizes the basic kinds of coupling
that are possible between the digital layer and the physical one. A deeper dis-
cussion about the usefulness of the MW idea can be found in [19].

3 An Agent-Oriented Programming Model

As mentioned in the introduction, the conceptual meta-model adopted for mod-
elling and designing MWs, underlying the programming framework, is A&A
(Agents and Artifacts) [15]. A&A introduces artifacts as first-class abstractions
to model and design the application environments where agents are logically situ-
ated. An artifact can be used to model and design any kind of (non-autonomous)
resources and tools used and possibly shared by agents to do their job [20].
Artifacts are collected in workspaces, which represent logical containers possibly
distributed over the network.

In A&A artifacts are then the basic blocks to modularize in a uniform way the
agent environment, which can be distributed across multiple network nodes and
that eventually function also as the interface to the physical environment. As
described in the literature about environments for MAS [24], such environments
can be useful at different levels in engineering MAS, not only for interfacing with
the external environment but also as an abstraction layer for shaping mediated
interaction and coordination among agents.

From the agent viewpoint, an artifact is characterised by two main aspects: an
observable state, represented by a set of observable properties, whose changes can
be perceived by agents as observable events; a set of operations, which represent
the actions that an agent can do upon that piece of environment. When used
by BDI agents, like in the case of the JaCaMo framework (discussed in Sect. 4),
artifacts observable properties are mapped into beliefs that agents have about
the environment that they are perceiving, while operations become the external
actions that agents can perform.

The artifact idea has been conceived by taking inspiration from Activity
Theory [18] and human environments, mimicking the artifacts that are designed,
shared and used by humans (as cognitive agents) to work, to live. So it is not
surprising that we found such an abstraction quite natural to model mirror
words, where the coupling with human physical artifacts is an essential aspect.

Programming Mirror Worlds: An Agent-Oriented Programming Perspective 195

3.1 Modelling MWs with A&A: Mirror Artifacts and Workspaces

A MW is modelled in term of a set of mirror workspaces. A mirror workspace
extends the concept of workspace defined in A&A with an explicit coupling with
the physical world. In particular, for each mirror workspace a map is defined,
specifying which part of the physical world is coupled by the MW. It could
be a part a city, a building, a room. Each point belonging to the map has a
geolocation, which can defined in terms of latitude and longitude, or using local
reference systems.

Fig. 2. Abstract view of organization of a mirror word and of the layers that charac-
terise the MW infrastructure.

Figure 2 shows an abstract representation of the elements composing a MW,
including the infrastructure levels based on JaCaMo platform, which will be dis-
cussed in Sect. 4. A mirror workspace contains a dynamic set ofmirror artifacts —
besides the normal artifacts. Mirror artifacts are artifacts anchored to some
specific location inside the physical world, as defined by the map. Such location
could be either a geo-location, or some trackable physical marker/object. Such a
physical location/position is reified into an observable property. The position can
change dynamically and can be perceived then by agents observing the artifact.

196 A. Ricci et al.

As depicted in Fig. 2, a MW can include multiple mirror workspaces
spread over different computational nodes, used to run the infrastructure. Each
workspace is located on some specific network node; then, when mapping a piece
of a mirror world onto a mirror workspace, that part of the environment will be
executed and managed on the node hosting the workspace.

Mirror Agents. An agent can perceive/continuously observe a mirror artifact
in two basic ways. One is exactly the same as for normal artifacts, that is explic-
itly focusing on the artifact, given its identifier [20]. The second one instead is
peculiar to mirror workspaces and accounts for perceiving an artifact depending
on its position inside the mirror workspace. To that purpose, an agent joining
a mirror workspace can create a body artifact, which is a builtin mirror artifact
useful to situate the agent in a specific location of the workspace. We call mirror
agent an agent with a body in a mirror workspace. A body artifact enables an
agent in a mirror workspace to observe all the mirror artifacts that satisfy some
observability criteria – such as being at a physical distance less than some radius.
These criteria can be controlled by the agent by acting on its body. An agent
can have multiple bodies, one for each joined mirror workspace.

Coupling. Mirror artifacts can be of two different kinds: either completely
virtual, i.e., situated in some physical location but uncoupled from any physical
device, or coupled to some physical artifact. In the first case, the geo-position
inside the mirror (and the physical environment) is specified when instantiating
the artifact, and it can be updated then by operations provided by the artifact. In
the second case, at the infrastructure level, the artifact is meant to be periodically
synched by some device which is responsible to establish the coupling between
the two levels, the mirror and the physical. It can be e.g., a smartphone device
with a GPS sensor, or some other localization device. So, for instance, the body
of a mirror agent can be bound to the position of the smartphone of a user, and
then change as soon as the user moves.

The location of a mirror artifact in the physical world is not necessarily
expressed as an absolute geo-location, but could be a relative position with respect
to some physical object, such as a marker or an existing physical object. In that
case AR technologies – hardware (cameras and other sensors mounted on the
smartglasses) and software (computer vision algorithms, pattern recognition) –
are essential to realize the coupling between the two layers.

Coupling is not limited to the physical location: it could concern any property
of the physical world, of some physical entity, that we want to make it observable
to the agents living in the MW. An example could be the temperature of a room
or the luminosity of a lamp or the force on some object.

Humans in the Loop. A main ingredient of mirror worlds is the capability of
human situated in such environments to perceive the augment layer, by adopting
devices such as smart glasses or AR helmets. This can be modelled by adopting

Programming Mirror Worlds: An Agent-Oriented Programming Perspective 197

user assistant mirror agents with a body coupled to the physical location of the
human user, by means of a smart device—glass, phone, whatever. Such agents
can exploit the device to communicate with the user, in terms of messages, cues,
etc. In more sophisticated scenarios, the user assistant agent can superimpose to
the image of the physical reality information or objects that represent some kind
of extension of the reality, given the set of mirror artifacts perceived. Existing
(mobile) AR frameworks – e.g., Wikitude2 – can be exploited inside the mirror
world middleware to implement these functionalities.

4 Programming Mirror Worlds in JaCaMo: A First API

A main objective and contribution of this paper is the definition of a first agent-
oriented API and platform to explore the development of mirror worlds, based
on the meta-model described before. To that purpose, we devised such a frame-
work on JaCaMo [1], which natively supports the development of multi-agent
systems based on BDI agents living in artifact-based environments. In particu-
lar, JaCaMo is based on the synergistic integration of three different dimensions
(and technologies):

– the agent dimension — agents are programmed using the Jason agent pro-
gramming language [2], which is a practical extension and implementation of
AgentSpeak(L) [17];

– the environment dimension – artifact-based environments are programmed
using the CArtAgO framework [21], which provides a Java API for that purpose;

– the organization dimension – organizations can be specified using the MOISE
organization model and language.

JaCaMo – and in particular CArtAgO – has been recently extended so as to
support situated workspaces and situated artifacts as an extension of normal
workspaces and artifacts, as described in previous section. Mirror words are
realized by situated workspaces equipped by specific maps, establishing a cou-
pling with physical environments such as city zones, buildings, rooms. Mirror
workspaces/artifacts are then a specialisation of situated workspaces/artifacts,
based on the physical/geographical world as context defining the situated-ness.

It is worth remarking that no extension has been necessary on the agent side,
that is: mirror agents are pure JaCaMo agents – i.e., Jason agents situated in
artifact-based environments, organized according to the MOISE model – with a
single important difference, about observation and percepts—described in the
previous section.

Mirror Workspaces. Mirror workspaces are based on a workspace map that
defines a geographical region of the physical environment; for instance, a rec-
tangular region defined by vertices expressed in terms of latitude/longitude.
Inside that region, a simple three dimensional euclidean system of reference is
2 https://www.wikitude.com.

https://www.wikitude.com

198 A. Ricci et al.

used to define positions and distances. Given a point expressed with respect to
this system of reference, it is possible to compute (when needed) its absolute
geographical position in terms of longitude/latitude/altitude by using the
workspace map.

Mirror Artifacts. Mirror artifacts are characterized by:

– a position, defined as a point in the system of reference of the workspace
map—in this case a three-dimensional vector, with coordinates expressed in
meters;

– an observability radius, which is a distance in meters useful to specify who can
perceive the artifact.

The agent body is a predefined mirror artifact with a further information:

– an observing radius, which is a distance useful to define which artifacts an
agent can observe.

The observability radius and observing radius are meant to be properly chosen
when designing the mirror artifacts and mirror agents of the systems, possibly
modified at runtime. Given this information, a mirror artifact X located at the
position Xpos, with an observability radius Xr is observable by a mirror agent
with a body B, located in Bpos, with an observing radius BR, iff d <= Xr and
d <= BR, being d the distance between Xpos and Bpos.

This rule extends the basic agent-artifact observation model used in
CArtAgO [20] and then in JaCaMo. In the case of pure JaCaMo agents, an agent
can perceive the observable state of an artifact and the stream of the observable
events related to its changes only after intentionally focusing the artifact, by
means of the focus action. This action is analogous to the subscribe action in
publish/subscribe systems. Thus, in order to perceive some artifact X, the agent
has to know X before and intentionally issue a focus(X) action. In the case of
mirror agents instead, a JaCaMo mirror agent can perceive mirror artifacts even
without knowing them a priori and without intentionally doing a focus action,
depending on where the artifacts are inside the workspace map with respect to
the agent body, and depending on the radii.

In the remainder of the section we first provide a global picture of the API
used to develop mirror worlds in JaCaMo, then we show their main features using
simple examples.

4.1 API Overview

The API has been conceived with a main objective in mind, that is: to make
the development of such mixed-reality worlds as “natural” as possible for MAS
developers. The full code of the examples is available in [8], along with the
experimental JaCaMo distribution supporting mirror worlds. The Mirror World
API currently include:

Programming Mirror Worlds: An Agent-Oriented Programming Perspective 199

– a new set of actions for creating mirror workspaces and mirror artifacts inside,
including agent bodies. Among the others, used in the examples in next
sections:
• createMirrorWorkspace(name, latitude, longitude) – this action

creates a new mirror workspace named name, centered at the specified
latitude/longitude coordinates – without boundaries.

• createMirrorArtifactAtPos(name, template, initParameters, pos,
observabilityRadius,?id) – creates a new mirror artifact named name,
specifying its template (a Java class name), location pos and the observ-
ability radius. Like the CArtAgO basic action makeArtifact, this action
too allows for getting the identifier of the new artifact created as an action
feedback (output parameter id).

• createMirrorArtifact(name, template, initParameters, observa-
bilityRadius, ?id) – A further way to create a mirror artifact, without
specifying the location because the artifact is meant to be bound to some
mirror world coupling device, defining and constraining its position.

• createAgentBodyAtPos(pos, observableRadius, observingRadius) –
creates a new agent body (attached to the agent that requested this action)
in the workspace, specifying the initial position and the observation-related
radii.

• createAgentBody(observableRadius, observingRadius) – A further
way to create agent body artifacts, analogously to mirror artifacts creation.

These actions are implemented by a new artifact called mw, available by default
in each mirror workspace.

– MirrorArtifact artifact template, extending the Artifact CArtAgO base
class and representing the basic template to be further extended and special-
ized to implement specific kinds of mirror artifacts. The usage interface of this
artifact includes:
• a pos observable property, containing the current location in the mirror

workspace of the artifact;
• observabilityRadius observable property, storing the current observ-

ability radius of the artifact;
• specific operations (setPos, setObservabilityRadius) for updating the

position and the observability radius.

– AgentBody – a predefined artifact used to represent agent bodies. The usage
interface of this artifact includes a further observingRadius observable prop-
erty, storing the current observing radius of the agent, and the related oper-
ation setObservingRadius for updating such radius.

Besides, some utility artifacts are available providing functionalities useful for
agents working in the mirror. An example is given by the GeoTool, which pro-
vides functionalities for converting the coordinates and compute distances. For
instance, the operation toCityPoint(Lat,Long,?Loc) used in the examples

200 A. Ricci et al.

makes it possible to compute the location ?Loc in the local system of refer-
ence of the mirror workspace of a geographical point given its latitude Lat and
longitude Long3.

4.2 Hello, Mirror World!

This first example mimics classic mobile augment reality applications. It is
a very simple mirror world composed by a single mirror workspace (called
mirror-example) mapped onto a city zone in the center of a city (Cesena, in
this case). The mirror workspace is dynamically populated of mirror artifacts
representing simple messages situated in some specific point of the city. Mobile
human users walk around the streets along with their user assistant agents, run-
ning on their smartphone. As soon as user agents perceive a situated message,
they display it on the smart glasses worn by the users (see Fig. 3).

Fig. 3. In the hello mirror world example, each mobile user walking along the streets
has a user assistant agent, with a body located at the position detected by the GPS.
As soon as the user is near to a situated message, this becomes observable by the user
assistant agent. The red circle and the blue rectangle are the symbols used to represent
respectively agent bodies and situated messages in the map in Fig. 4.

The MAS program implementing the mirror includes:

– a majordomo agent, who is responsible of creating and setting up the MW,
composed in this case by a single mirror workspace called mirror-example.
The agent creates also some SituatedMessage mirror artifacts, located at
some specific geo-coordinates;

3 The altitude is not considered in the examples.

Programming Mirror Worlds: An Agent-Oriented Programming Perspective 201

Fig. 4. The map visualised by the control room, showing the position of mirror agents
(red circles) – that is, the body of mirror agents – and the position of mirror artifacts,
i.e. situated messages in the example (Color figure online).

– user-assistant agents, running on the smartphone of each mobile user,
whose task is to promptly react to situated messages perceived in the nearby
of the user and display the corresponding message on the smart glasses;

– a control-room agent, which is responsible of showing the real-time state
of the MW, represented by a map with the current location of the situated
message artifacts and of the user-assistant agents (see Fig. 4). Besides, this
agent is responsible also of dynamically creating new situated messages, in the
positions specified by human users observing the map, by means of the GUI.

The example is useful to give a taste of the API to create mirror artifacts and
agents. Figure 5 shows the source code of the majordomo agent. The goal of the
agent is to initialize the mirror world. First, it creates the mirror workspace (line
19), then it joins it with the subgoal of creating some SituatedMessage mirror
artifacts inside (line 24). The corresponding plan (lines 28–34) creates a couple of
situated messages, storing hello #1 and hello #2, with an observability radius
of 2.5 m. Besides the mirror artifacts, in the workspace the agent creates also
a “normal” artifact called geotool, instance of the GeoTool auxiliary artifact,
which will be used by the other agents joining the workspace. The source code of a
SituatedMessage artifact is shown in Fig. 6: the artifact has a single observable
property called msg (defined in line 6), storing a message specified when the
artifact is created. No specific operations are provided.

Figure 7 shows the source code of the user assistant mirror agent. The
agent first creates (in its default/local workspace) a SmartGlassDevice arti-
fact (line 8), to be used as output device to display messages, by means of the
displayMsg operation. Then, the agent joins the mirror workspace and cre-

202 A. Ricci et al.

Fig. 5. Hello world example: the majordomo agent.

Fig. 6. Code of the SituatedMessage mirror artifact.

ates its body, with observing radius of 10 meters. The body is bound to a
GPSDeviceDriver device driver artifact (line 19), previously created at line 17.
The device driver implements the coupling between the position detected by the
GPS sensor, available on the smartphone of the user. When the human user
approaches a point in the physical world where a situated message is located,
the user assistant agent perceives the message and reacts by simply displaying
it on the glasses (lines 24–26). When (if) the human user moves away from the
mirror artifact, the belief about the message is removed and the use assistant
agent reacts by displaying a further message (lines 28–30).

Programming Mirror Worlds: An Agent-Oriented Programming Perspective 203

Fig. 7. Code of the user-assistant agents.

4.3 Ghosts and Traces

The second example is an extension of the previous one, where some ghost
mirror agents are moving around autonomously along some streets of the city,
perceiving and interacting with the situated messages as well.

The mirror artifact representing a situated message is extended
(SituatedMessageExt, Fig. 8), implementing a new touch operation which
increments a new n touches observable property. The action touch is performed
by user assistant agents and ghost agents each time they start perceiving the
situated message.

The source code of ghost agents is shown in Fig. 9. They have a walk around
goal (line 8), and the plan for that goal (line 12) consists in repeatedly doing
the same path, whose nodes (a list of point-of-interests) are stored in the path
belief (line 5). They move by changing the position of their body, by executing a
moveTowards action available in each mirror artifact—specifying the target point
(to define the direction) and the distance to be covered (in meters). The plan
for reaching an individual destination of the path (lines 23–29) simply computes
the distance from the target (exploiting the computeDistanceFrom, provided
by the GeoTool artifact) and then, if the distance is greater than one meter, it
moves the body of 0.5 m and then goes on reaching, by requesting recursively
the sub-goal !reach dest; otherwise it completes the plan (the destination has
been reached).

204 A. Ricci et al.

Ghosts too react to messages perceived while walking (plan at lines 38–41),
eventually executing a touch action on each message encountered and printing
to the console the current number of touches observed on the message. Instead,
when a ghost perceives a human (lines 43–46) – by perceiving the body of the
user assistant agent – it reacts by making a trembling on the smartphone owned
by the human user. body is an observable property provided by each agent
body artifact, containing the identifier of the user assistant agent which created
the body. Trembling happens by executing a tremble action on the artifact
which the user assistant agent created to enable the physical interaction with
the corresponding human user. By convention, in the example, these artifacts
are created with the name user-dev-X , where X is name of the user assistant
agent. This convention allows the ghost agent to retrieve the identifier of the
artifact dynamically given its logic name, by doing a lookup (line 45).

Fig. 8. Code of SituatedMessageExt artifacts.

This example is useful to show a couple of things. The first one is the develop-
ment of mirror artifacts that are not simply information augmenting the physical
world, but computational entities with a behaviour and a state, which can change
dynamically. The second one is the development of autonomous agents living in
the mirror, able to perceive and being perceived by humans, and act on the
mirror world so as to have effect in the physical reality.

4.4 Coupling with the Physical World

In this last example, some StreetLight mirror artifacts are placed along the
streets, representing (and coupled to) physical street lights. Their state (on,
off) as well as their luminosity level is made observable by means of a couple
of observable properties, light status and light level; instead, a couple of
operations are provided to switch on and off the light (switchOn, switchOff).
When approaching a light, ghosts perceive the level of luminosity and, if it is
higher than a certain threshold, they invert their direction. Other mirror agents
could instead act upon StreetLight artifacts so as to have an effect on the
physical world, by switching on or off the lights.

This case is useful to show mirror artifacts that have both a physical and a
mirror part in sync, so that by observing these artifacts, mirror agents (ghosts

Programming Mirror Worlds: An Agent-Oriented Programming Perspective 205

Fig. 9. Code of ghost agents.

in the example) can perceive the physical reality and by acting on them they
can have an effect on it. This coupling is implemented by means of embedded
devices, connected to the infrastructure.

An important point for artifacts coupled to the physical reality is that the
MW infrastructure is responsible to keep track of the synchronization state
between the digital and physical part, making it observable (to agents) if the
mirror artifact is either synchronized or not, depending on the amount of time
elapsed since the last synchronization done by devices. This is important in par-
ticular for agents that aim at reasoning on the state of the physical world by
considering the actual value of artifact observable state.

206 A. Ricci et al.

5 Discussion

In this section we discuss some main aspects of the approach, first providing
an overview of the real-world application domains where – we believe – mir-
ror worlds can be effectively exploited, and then discussing the challenges and
opportunities to be explored in MW research agenda.

5.1 Real-World Applications

As mentioned in the introduction and in [22], mirror worlds have been conceived
in general as a conceptual blueprint to explore the integration of different kinds
of models and technologies (multi-agent systems, augmented reality, Internet-of-
Things,...) for the design and development of forth-coming open smart environ-
ments, scaling from rooms to cities.

Besides such a broad and general target, we aim at exploring their application
in specific case studies that concern real-time distributed collaborative environ-
ments for teams of human agents engaged in some kind of missions across some
physical environment. Mirror worlds promote the design of these applications as
augmented worlds enacting forms of indirect/implicit communication and stig-
mergic mechanisms as a mean to support human collaboration [5]. This support
is realized by shaping the augmented reality perceived by humans in terms of
augmented entities that are dynamically arranged and manipulated by intelligent
agents, populating the mirror.

A main example of collaborative application that we are investigating is given
by rescue scenarios. The objective is to devise novel information technology
supports to improve the action and coordination of rescuers engaged in civil
or military missions. In that case, a mirror world is deployed on top of the
geographical environment where the rescue mission takes place, where there
are the wounded to be assisted. Rescuers participate to missions by means of
smart glasses/helmets and a smartphone, connected through a network (local
or global, depending on the context). One objective is to support as much as
possible their action in a free-hands mode, minimizing the need of hands for
using devices. Besides the rescuers situated in the field, the team includes also
remote operators – both human agents (such as doctors) and software agents –
following the mission and eventually producing effects on the mirror themselves.
The overall objective here is to make both the action of the individual rescuer
and the coordination of the team more effective, by augmenting their perception,
cognitive and social capabilities through the mirror.

5.2 Challenges and Opportunities for Future Work

The concrete realization of full-fledged mirror words puts forth many important
challenges, to be explored in the MW research agenda. Some main ones are
sketched in the following.

Programming Mirror Worlds: An Agent-Oriented Programming Perspective 207

Coupling – The coupling between the physical and digital layer is a challenging
and critical point. Such a coupling includes, among the other, issues concerned
to localization—every MW application implies the capability to deal with the
static/dynamic physical location of people and physical/digital artifact, both
outdoor and indoor. This is a well-known challenging problem in literature, and
different kinds of technics have been proposed for that purpose. More generally,
depending on the applications, the coupling could require also forms of physical-
world recognition and modeling, and, more general, the real-time recognition
and modelling of the context where human users are immersed. The research
literature on context-aware computing and applications is a main reference in
that case [7].

Distribution and Scale – MW are inherently distributed systems—even the
simplest one includes some part running on the mobile user devices and some
infrastructure part running on some other node on the network. So typical
issues/problems of distributed systems such as intermittent connectivity, fail-
ures, latencies, lack of global clocks cannot be abstracted. Also the scale of a
MW can vary depending on the specific applications. In the simple examples
shown in this paper only one mirror workspace is used. Of course, complex MW
may call for modelling them in terms of multiple workspaces, each one mapping
some portion of the physical environment coupled by the MW. Large-scale MW
will require the adoption of cloud services in the design of some levels of the
MW infrastructure.

Organizations and Institutions – The adoption of proper agent-based orga-
nizational models and related technologies appears an important direction to be
explored in order to tackle the design and programming of large-scale and open,
highly dynamic MWs. Thus, we believe that the definition of proper organiza-
tion and institution models is an important point in the MW research agenda,
eventually integrating the contributions about embodied organizations that have
been developed in literature [16].

To this purpose, JaCaMo already provides a first-class support for
organization-oriented programming, based on the MOISE model, currently not
exploited for programming MW. Thus, future work can quite easily explore the
benefits and limits of this model in the context of MW.

Time in MW – Time, like space, is a main ingredient and aspect of MWs. Time
in MW is necessarily distributed, in fact there is not a single global clock at the
MW level. A clock exists at the individual mirror artifact level, so observable
events produced by actions on mirror artifacts can be ordered in chains. So, in
spite of the distribution, some level of causal consistency must be guaranteed,
related to chains of events that span from the physical to the digital layers and
viceversa. That is, if a mirror artifact produces a sequence of two events con-
cerning the change of its observable state, the same sequence must be observed

208 A. Ricci et al.

by any mirror agent observing the artifact (of the same workspace) and then
indirectly every human user assisted by such agents.

As a further must-have feature, MW must support agent/human observations
and actions changing the physical/digital level with some degree of real-time (not
necessarily hard real-time). Latencies introduced by network communications
and failures can make this aspect quite hard to deal with.

Degrees of Mixed/Augmented-Realities – The support in MWs for aug-
mented/mixed reality does not necessarily require the capability of creating
views on smart-glasses/helmets that merge the appearance of the physical reality
with the rendering of 3D virtual objects or holograms. For many applications, the
augmented reality perceived by a user could be limited to either messages that
appear on the eyewear devices (Google-glass like), or simple symbols appearing
on the FOV (Field-of-View) of the user, possibly associated to some specific
element of physical reality part of the view. These functionalities are nowadays
supported with a more and more level of sophistication by modern AR tech-
nologies, which witnessed an impressive progress in recent years, both at the
consumer/business level – e.g., Epson Moverio BT-200, Sony SmartEyeglass,
Microsoft Hololens – and at the military level – e.g., DARPA ULTRA-Vis pro-
gram and prototype [23].

5.3 Related Work

In literature, the integration of agents and multi-agent systems and
augmented/mixed-reality has been already explored in different ways. A sur-
vey of existing approaches is provided in [3,11].

In [11], agents embodied in a Mixed Reality Environment (referred as MiRAs,
Mixed Reality Agents) are classified as along three axes: agency, weak or strong;
corporeal presence, which describes the degree of virtual or physical presence
and interactive capacity, which is about the ability of MiRAs to sense and act
on the virtual and physical environment. Given that taxonomy, [3] discusses
the features in particular of AuRAs (Augmented Reality Agents), which can
be categorised as MiRA that can both sense and act in the virtual component
of the reality but can only sense in the physical. Among the platforms avail-
able for developing AuRAs, the AFAR toolkit makes it possible to develop BDI
agents for AR applications on the NeXuS mixed reality framework [14], using
AgentFactory as agent programming language [13]. Conceptually, the MW toolkit
based on JaCaMo presented in this paper is strongly related to AFAR, since it
aims at providing a general-purpose framework and API for developing agent-
based applications exploiting various degrees of augmented/mixed reality, and
adopting a BDI agent programming language for implementing agents. A main
difference is that in MW, the virtual layer is not based only on agents, but also
on artifacts, which play a key role also for creating the coupling with the physical
world, besides representing the augmented world itself.

The main objective of AuRAs as described in [3] is to function as embodied
interfaces and design paradigm. The former mainly concerns the development

Programming Mirror Worlds: An Agent-Oriented Programming Perspective 209

of anthropomorphic interfaces, while the latter concerns software agents tasked
with delivering relevant content to the user in a AR scenario. The MW idea con-
ceptually extends these objectives by conceiving AR as one of the ingredients to
develop – more generally – smart environment applications, integrating AR with
pervasive/ubiquitous computing, context-aware computing, Internet of Things.

Finally, recent works have emphasized the value of (serious) mixed-reality
games as a platform to explore scenarios in the real world that are typically
hard to study in realistic settings, such as disaster response, to study the joint
activities of human-agent collectives [9]. Similarly, mixed-reality testbeds have
been deployed for the incremental development of human-agent robot applica-
tions [4].

6 Conclusion

In this paper we presented a first programming model for developing mirror
worlds, and its implementation on top of the JaCaMo platform. Actually, the
model is not specifically bound to JaCaMo, but refers in general to the A&A
meta-model and agents based on a BDI-like model. Given such orthogonality
between the agent/environment/organization dimensions, in principle it is pos-
sible to exploit the same API with agents written in different agent programming
languages, not only Jason.

As remarked in Sect. 5, these are just the first steps of the overall MW
research agenda [19], which include different kinds of challenges and investi-
gations to be done in future work. However, the availability of a first platform
that allows for designing and developing simple MWs could be important both
for investigating the applicability of the idea to real-world applications, and
for exploring further features that concern the future work, by extending and
enriching the platform itself.

References

1. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with jacamo. Sci. Comput. Program. 78(6), 747–761 (2013)

2. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. Wiley Series in Agent Technology, Wiley (2007). http://
jason.sf.net/jBook

3. Campbell, A.G., Stafford, J.W., Holz, T., OHare, G.M.: Why, when and how to
use augmented reality agents (auras). Virtual Reality 18(2), 139–159 (2014)

4. Cap, M., Pechoucek, M., Jakob, M., Novak, P., Vanek, O.: Mixed-reality testbeds
for incremental development of hart applications. IEEE Intell. Syst. 27(2), 19–25
(2012)

5. Castelfranchi, C., Piunti, M., Ricci, A., Tummolini, L.: AmI systems as agent-based
mirror worlds: bridging humans and agents through stigmergy. In: Bosse, T. (ed.)
Agents and Ambient Intelligence, Ambient Intelligence and Smart Environments,
vol. 12, pp. 17–31. IOS Press, Amsterdam (2012)

http://jason.sf.net/jBook
http://jason.sf.net/jBook

210 A. Ricci et al.

6. Costanza, E., Kunz, A., Fjeld, M.: Mixed reality: a survey. In: Lalanne, D., Kohlas,
J. (eds.) Human Machine Interaction. LNCS, vol. 5440, pp. 47–68. Springer,
Heidelberg (2009)

7. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7
(2001)

8. PSLAB team at DISI, C.: JacaMo-MW– mirror worlds in JaCaMo – open source
distribution (2015). https://bitbucket.org/pslabteam/mirrorworlds

9. Fischer, J., Jiang, W., Kerne, A., Greenhalgh, C., Ramchurn, S.D., Reece, S., Pan-
tidi, N., Rodden, T.: Supporting team coordination on the ground: Requirements
from a mixed reality game. In: 11th International Conference on the Design of
Cooperative Systems (COOP 2014) (2014)

10. Gelernter, D.H.: Mirror Worlds: or the Day Software Puts the Universe in a Shoe-
box...How It Will Happen and What It Will Mean. Oxford (1992)

11. Holz, T., Campbell, A.G., O’Hare, G.M., Stafford, J.W., Martin, A., Dragone, M.:
MiRA - mixed reality agents. Int. J. Hum. Comput. Stud. 69(4), 251–268 (2011)

12. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE
Trans. Inf. Syst. E77–D(12), 1321–1329 (1994)

13. Muldoon, C., O’Hare, G.P., Collier, R.W., O’Grady, M.: Towards pervasive intelli-
gence: Reflections on the evolution of the agent factory framework. In: Seghrouchni,
A.E.F., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming: pp.
187–212. Springer, New York (2009)

14. O’Hare, G.M., Campbell, A.G., Stafford, J.W.: Nexus: delivering behavioural real-
ism through intentional agents. In: Proceedings of the 2005 International Confer-
ence on Active Media Technology, (AMT 2005). IEEE (2005)

15. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Auton. Agent. Multi-agent Syst. 17(3), 432–456 (2008)

16. Piunti, M., Boissier, O., Hbner, J.F., Ricci, A.: Embodied organizations: a unifying
perspective in programming agents, organizations and environments. In: Boissier,
O., Fallah-Seghrouchni, A.E., Hassas, S., Maudet, N. (eds.) MALLOW. CEUR
Workshop Proceedings, vol. 627. CEUR-WS.org (2010)

17. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

18. Ricci, A., Omicini, A., Denti, E.: Activity theory as a framework for MAS coor-
dination. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS
(LNAI), vol. 2577, pp. 96–110. Springer, Heidelberg (2003)

19. Ricci, A., Piunti, M., Tummolini, L., Castelfranchi, C.: The mirror world: Preparing
for mixed-reality living. IEEE Pervasive Comput. 14(2), 60–63 (2015). doi:10.1109/
MPRV.2015.44

20. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent sys-
tems: an artifact-based perspective. Auton. Agent. Multi-agent Syst. 23(2), 158–
192 (2011)

21. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: Seghrouchni, A.E.F., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-
Agent Programming: Languages, Platforms and Applications, vol. 2, pp. 259–288.
Springer, New York (2009)

22. Ricci, A., Tummolini, L., Piunti, M., Boissier, O., Castelfranchi, C.: Mirror Worlds
as agent societies situated in mixed reality environments. In: 13th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014): The
17th International Workshop on Coordination, Organisations, Institutions and
Norms, pp. AAMAS2014–W22 (2014)

https://bitbucket.org/pslabteam/mirrorworlds
http://dx.doi.org/10.1109/MPRV.2015.44
http://dx.doi.org/10.1109/MPRV.2015.44

Programming Mirror Worlds: An Agent-Oriented Programming Perspective 211

23. Roberts, D.C., Snarski, S., Sherrill, T., Menozzi, A., Clipp, B., Russler, P.: Soldier-
worn augmented reality system for tactical icon visualization. In: SPIE Defense,
Security, and Sensing, pp. 828–305. International Society for Optics and Photonics
(2012)

24. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Auton. Agent. Multi-agent Syst. 14(1), 5–30 (2007)

Evaluating Different Concurrency Configurations
for Executing Multi-Agent Systems

Maicon R. Zatelli1(B), Alessandro Ricci2, and Jomi F. Hübner1

1 Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
xsplyter@gmail.com, jomi.hubner@ufsc.br

2 University of Bologna, Bologna, Italy
a.ricci@unibo.it

Abstract. Reactiveness and performance are important features of
Multi-Agent Systems (MAS) and the underlying concurrency model can
have a direct impact on them. In multicore programming it is interest-
ing to exploit all the computer cores in order to improve these desirable
features. In this paper we perform an experiment to evaluate different
concurrency configurations that can be adopted to run an MAS and
analyse the effect caused by each configuration on variables like delib-
eration time and response time. As a result, we identify the advantages
and disadvantages for each configuration allowing thus an MAS devel-
oper to choose a suitable configuration depending upon the priorities of
the application.

1 Introduction

In MAS applications it is desired that agents react promptly to changes in the
environment, reply to messages fast, process other high-cost activities, and all
that at the same time [23]. The model of concurrency adopted in the MAS can
have a direct impact on these issues. However, most researches in MAS focus
on high level issues, while the low level issues still need a deeper investigation
and advances. Multicore processors, multi-threaded operating systems, thread
mapping, context switch overheads are examples of issues that are not compre-
hensively addressed by MAS platforms [17,18,27].

Current agent languages adopt different choices of concurrency features for
the MAS developer. Some allow the use of a certain number of threads to exploit
the cores of a computer by means of thread pools [4,30], and such threads are
shared among all agents in the MAS in order to maximize the parallelism. Other
approaches create separated executions lines (physical threads or processes) for
each intention [10,23,29,37,43]. Yet, others prefer to avoid the internal concur-
rency1 [8,9,33]. In addition, some proposals break the agent reasoning cycle in

The authors are grateful for the support given by CNPq, grants 140261/2013-3,
448462/2014-1, and 306301/2012-1.

1 Internal concurrency means that agents can perform several activities concurrently
(e.g. execute more than one intention at the same time).

c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 212–230, 2015.
DOI: 10.1007/978-3-319-26184-3 12

Evaluating Different Concurrency Configurations 213

different components (such as the sense, deliberate, and act) and execute them
concurrently [11,22,41].

When programming an MAS, different concurrency configurations can lead to
different results in terms of performance and reactivity. For concurrency configu-
ration we mean here the set of concurrency features, including their parameters,
that are used to run the MAS. The analysis and comparison between these con-
figurations — in spite of the specific agent language adopted — is interesting in
order to decide which one is the most suitable for the specific application to be
developed. While the overall MAS execution time is the main concern for some
applications, for others a fast response time of an individual agent is desirable
(i.e. the time necessary for the agent to handle some percept or message). How-
ever, a configuration that provides a suitable overall MAS execution time could
not be good regarding the response time, and vice-versa.

In this paper we develop such analysis and comparison by adopting an
abstract MAS architecture (Sect. 2) which allows us to experiment and tune
different concurrent configurations. We are interested in evaluating MAS com-
posed of several agents by testing different forms to launch intentions, to perform
the reasoning cycle, and to distribute threads among the agents. For this paper,
we focus on BDI agents because it is a highly adopted model in current agent
languages.

We identify some main concurrency configurations (Sect. 3), which reflect the
choices adopted by some agent programming platforms available in literature. We
evaluate their performance using a test case, which has been specifically designed
in order to stress the impact of concurrency configurations on some variables of
interest such as the response time, overall execution time, and deliberation time.
The obtained results (Sect. 4) are useful to understand the importance of devel-
oping MAS platforms that allow to choose or tune the concurrency configuration
to be adopted when running an MAS application. Finally, we present conclusions
and further work in Sect. 5.

2 Conceptual Model

In this section, we describe a conceptual model including the main elements
that concern BDI agents and MAS that are relevant for a concurrency point of
view. While Sect. 2.1 presents a conceptual model for MAS, Sect. 2.2 presents a
conceptual model for BDI agents, and Sect. 2.3 presents an agent architecture
and a simplified version of the agent reasoning cycle.

2.1 MAS Conceptual Model

An MAS is composed of agents, environment, and thread pools (Fig. 1). Agents
are executed by thread pools composed of one or more threads. Multiple agents
can be executed by the same threads of a pool and multiple threads of a pool
can be used to execute a single agent. The environment can be executed by as
many threads as necessary and the form that it uses threads is out of the scope

214 M.R. Zatelli et al.

Fig. 1. MAS conceptual model. Fig. 2. MAS snapshot.

Fig. 3. Agent conceptual model.

of our work, remaining as a future work. Figure 2 illustrates the threads, agents,
environment, and how they can be related to one another at run-time. Several
threads can be used by the MAS in order to better exploit the computer cores.
The number of threads can be greater than the number of computer cores,
which means that while some threads “own the CPU”, others are “sleeping”.
The pentagons represent threads that are being used, while threads without
pentagons represent threads that are not currently being used.

Threads can be grouped in thread pools or be independent (e.g. dedicated
threads to run some intentions). p1, p2, and p3 represent thread pools, each one
composed of five threads, while the system also has four independent threads.
Three different relations among agents and threads can be defined. The first
relation is the use of dedicated thread pools, which allows each agent to have
its own thread pool. This configuration is especially important if the system is
composed of few agents that must perform few activities in multi-core computers.
In the figure, ag1 and ag2 have their own thread pools, p1 and p2 respectively.

Evaluating Different Concurrency Configurations 215

The second relation allows the use of shared thread pools (i.e. different agents
share the same threads). It is important when the number of agents increases
compared to the number of available cores in the computer. Thus, the overhead
caused due context switches can be reduced. In the figure, ag3 and ag4 share p3.

Besides the use of thread pools, agents can also use other threads for more
specific works (e.g. to run some intention). This configuration can be especially
useful in cases where activities do not depend on the same resources and the
number of activities still do not cause a high context-switch overhead. In the
figure, while ag1 uses one independent thread, ag3 uses two, besides their thread
pools. By default, intentions run concurrently even if they do not have one
dedicated thread for each one.

2.2 Agent Conceptual Model

The agent model (Fig. 3) considers several BDI elements already adopted in BDI
agent languages, such as 2APL [13] and Jason [4]. Thus, we consider concepts
like beliefs, goals, intentions, desires, events, and plans. In our model, an agent is
basically composed of a belief base, goals, and a plan library. Beliefs are informa-
tion that the agent has at some moment. They can be about the agent itself, the
environment, or other agents. Goals are state of affairs that the agent wants to
pursue (e.g. an environmental state). While intentions represent the goals that
the agent has already deliberated to commit to, desires represent the goals still
not being pursued by the agent.

The plan library is composed of plans, which are a means to handle some
event or achieve some goal, and their conflicts. A plan is composed of a unique
identifier, a trigger, a context, and a body. The trigger is an event that the plan
can handle (e.g. the adoption of some goal). The context is used to specify the
conditions for the application of the plan and is a logical formula that must be
evaluated according to the agent beliefs. The body is a sequence of deeds2. Plans
can conflict with other plans, which means that some plans may not be executed
concurrently. The aim of defining conflicts is to avoid an undesirable behavior of
the system [24,34,35]. As plans can be added and removed at run-time, conflicts
among plans can also be added and removed at run-time. The policy for adding
and removing conflicts are defined by the MAS developer and it is out of the
scope of this paper.

At run-time, when an agent intends something, it should start acting in order
to achieve that intention. The proper actions for an intention come from plans
that the agent has in its plan library. An intention is thus achieved by means
of the execution of plans. Intentions can be created, suspended, or resumed at
any time, and it is considered terminated when either the plan was executed
successfully, the execution of the plan failed (e.g. the agent failed to perform
an action), or the intention was dropped by the agent (e.g. the agent does not
intend something anymore).

2 The term deed is used in the same form as in [15] and it refers to several kinds of
formulae that can appear in a plan body.

216 M.R. Zatelli et al.

Fig. 4. Agent architecture.

Several events can happen at run-time. Events can produce desires for the
agent (e.g. a message received by the agent can contain a request for the agent to
do something, which produces a desire to be pursued). In our model we consider
five kinds of events: (1) addition and deletion of beliefs; (2) messages that are sent
and received by the agent; (3) percepts that are produced by the environment
and perceived by the agent; (4) goals that are adopted, dropped, achieved, failed,
suspended, or resumed; and (5) detection of conflicts among intentions (i.e. a new
intention becomes active but it conflicts with another already running intention).

2.3 Agent Architecture

The agent architecture (Fig. 4) is inspired on some BDI models [4,11,13,22,39].
While Beliefs, Plans, Threaded Intentions, and Suspended Intentions are placed in
data sets (represented by the horizontal rectangles in Fig. 4), Messages, Percepts,
Events, and Pooled Intentions are placed in queues (represented by the vertical
rectangles in Fig. 4) and processed by the threads in their respective components.
These queues are priority queues in order to process emergencies promptly (e.g.
an event notifying low battery in a robot). The priority policy is customizable by
the MAS developer and agents can perform operations to retrieve and change the
priority for events at run-time. The architecture has some functions (represented
by octagons in Fig. 4) that define some steps of the reasoning cycle of the agent.
Such functions are used, for example, to act in the environment or manipulate the
data sets.

The agent is divided in three main components that can run concurrently,
depending on the configuration. The aim of the concurrent architecture is to
improve reactivity by allowing the agent to concurrently handle messages and
percepts from the environment; handle internal events, belief updates, goal adop-
tions, etc.; and continue executing its intentions. The Sense Component (SC)
is responsible for receiving the inputs from the environment (percepts) and
from other agents (messages), updating the belief base, and generating events.

Evaluating Different Concurrency Configurations 217

The Deliberate Component (DC) is responsible for reasoning about the events and
producing new intentions to handle them. The Act Component (AC) is responsi-
ble for executing the intentions. Each component can have its own thread pool,
named Sense Threads (ST), Deliberate Threads (DT), and Act Threads (AT).

while TRUE do

cPercepts ← Percepts.clone()

cMessages ← Messages.clone()

while cPercepts �= ∅ and cMessages �= ∅ do

Sense(cPercepts, cMessages)

Deliberate()

Act()

Code 1: Synchronous execution.

parallel
while TRUE do

Sense(Percepts,Messages) ||
while TRUE do Deliberate() ||
while TRUE do Act()

Code 2: Asynchronous execution.

The three components can also be configured to share the same thread pool.
It is especially useful to reduce the number of threads in applications with more
agents. For example, the MAS developer can define one single thread for each
agent by configuring the ST, DT, and AT to use the same thread pool that has
only one thread. In addition, all agents in the MAS could share a common thread
pool. Thus, we can run the agent reasoning cycle in two distinct forms: synchro-
nous (Code 1) and asynchronous (Code 2). In the synchronous form, each compo-
nent finishes its execution before the other component starts its execution (i.e. the
sense-deliberate-act cycle is executed sequentially). In the asynchronous form, the
three components run concurrently and do not wait for other components to fin-
ish their execution before doing something, whether they already have something
to do. However, differently from the synchronous execution, where the reasoning
cycle is explicit, in the asynchronous execution the reasoning cycle is implicit by a
producer-consumer strategy, where each component produces inputs for the other
components. For example, the SC produces events for the DC and the DC pro-
duces intentions for the AC. Thus, the reasoning cycle is ensured because for a
component to be executed it will depend on the execution of the previous compo-
nent. Furthermore, if the agent must handle a whole set of percepts before to make
decisions, the asynchronous configuration cannot be used. Some concurrency con-
trol mechanism or strategy must be also adopted to avoid interferences and races,
given the concurrent read/write access to e.g. the belief base, caused by the con-
current execution of the sense, deliberate, act components. A simplified version of
each component is explained as follows, however implementation details are not
presented in this paper due lack of space.

Procedure Sense(pPercepts, pMessages)
if lastInputKind = MESSAGE and pPercepts
�= ∅ then

input ← pPercepts.dequeue()
lastInputKind ← PERCEPT

else if pMessages �= ∅ then
input ← pMessages.dequeue()
lastInputKind ← MESSAGE

if input �= NULL then
IHF (input)

Code 3: Sense.

218 M.R. Zatelli et al.

The Sense Component. The SC is responsible for the first steps of the agent
reasoning cycle (Code 3). The environment enqueues the messages and percepts
for the agent. Percepts and messages are then processed by the available threads
in the ST. Each thread in the ST processes one message or percept at once.
Thus, each thread executes the Input Handler Function (IHF) for the percepts,
messages, and belief updates.

The IHF adds new beliefs related to percepts that are not currently in the
belief base and removes beliefs that are no longer in the percepts from the envi-
ronment (i.e. outdated information). The addition and removal of beliefs always
produce events that are enqueued in the Events queue (by means of the function
Enqueue Event (EE)) to be processed afterwards. According to some kinds of
message, the IHF adds or removes the beliefs (e.g. agents can induce other agents
to believe or to disbelieve something). In addition, all received messages produce
events, even if they do not change the belief base (e.g. a message asking for some
information). In the synchronous execution, all the percepts and messages in the
queue are processed before the DC starts its execution.

Procedure Deliberate
event ← Events.dequeue()
if event �= NULL then

relevantP lans ← UE(event, PlanLibrary)
applicableP lans ← CC(relevantP lans,
BeliefBase)
intention ← CP (applicableP lans)
EI(intention)

Code 4: Deliberate.

The Deliberate Component. The DC is responsible for processing new events
by producing new intentions to handle them (Code 4). The events in the Events
queue are individually processed by the available threads in the DT. Each thread
in the DT processes one event at once. The first step to process an event is to
find the relevant plans to handle the event. It is done by retrieving all plans
where the trigger can be unified with the event. The function Unify Event (UE)
is responsible for finding these plans.

The relevant plans are verified according to the their context, by means of
the function Check Context (CC). The context of a plan determines if the plan
can be applied or not in certain moments. Thus, the CC function selects which
plans, from the relevant plans, are applicable considering the current state of
the agent (e.g. its beliefs).

Several applicable plans can still be used to handle the event, which means
that the agent could choose any of them to handle the event successfully. The
function Choose Plan (CP), by default, selects the first non-conflicting plan
considering the order in which they appear in the plan library. If all applicable
plans conflict with some already running intention, the first one is chosen.

An intention is then produced with the chosen plan and it is added in some
of the Intentions data sets of the agent (by means of the function Enqueue
Intention (EI)) for a further execution. The EI adds the produced intention in

Evaluating Different Concurrency Configurations 219

the Threaded Intentions if it is configured as a threaded intention, otherwise, the
produced intention is enqueued in the Pooled Intentions queue. In the synchro-
nous execution, only one event is processed in each reasoning cycle, and after
that, the execution moves to the AC.

Procedure Act
intention ← PooledIntentions.dequeue()
if intention �= NULL then

PI(intention)

Code 5: Act.

The Act Component. The AC is responsible for the execution of intentions.
They can be executed in two different forms: intentions can be executed by the
available threads in the AT (Pooled Intentions) or be executed by dedicated
threads (Threaded Intentions). In addition, intentions can be suspended and
be placed in the Suspended Intentions set, remaining there until the agent
resumes or drops their execution.

Each thread in the AT (Code 5) executes one deed related to certain pooled
intention at once by means of the function Process Intention (PI). In execution
of PI, the agent can perform some action in the environment, send messages to
other agents, update its beliefs, adopt or drop goals, or execute any other internal
action. When a deed is executed, it can also produce events. For example, when
an agent adopts a new goal, an event related to it is produced and enqueued
in the Events queue. The intention is then updated and placed at the end of
the Pooled Intentions queue for the execution of the remaining deeds. In the
synchronous execution, only one intention is processed in each reasoning cycle.
After processing such intention, the execution moves to the SC and the cycle
begins again.

Threaded intentions also executes the PI and produce events. The main dif-
ference is that they do not compete with other intentions to use threads, since
each threaded intention has its own thread. Even in the synchronous execution,
threaded intentions run independently and do not follow the default reasoning
cycle.

3 Evaluation of Different Concurrency Configurations

We have implemented a prototype following the model and architecture pre-
sented in Sect. 2.3 in order to perform an experiment to evaluate different con-
currency configurations3. The scenario for the experiment consists on executing
agents that must perform certain activities, in this case we use the computation
of the first n Fibonacci numbers. The implementation of the plan to compute
Fibonacci numbers follows the traditional recursive approach. Thus, while the
3 The prototype, experiment, and results are provided at https://sourceforge.net/p/

mrzatelli/code/HEAD/tree/trunk/2015/Experiment2/.

https://sourceforge.net/p/mrzatelli/code/HEAD/tree/trunk/2015/Experiment2/
https://sourceforge.net/p/mrzatelli/code/HEAD/tree/trunk/2015/Experiment2/

220 M.R. Zatelli et al.

computation of big Fibonacci numbers demand more time to be executed, the
computation of small Fibonacci numbers can be executed in a short time.

All requests to compute the first n Fibonacci numbers are given to the agents
in a single shot and placed in the agents perception queue at the beginning of
the execution. No new requests are given to the agents during the rest of the
execution and all agents work on all requests at once. The concurrent compu-
tation of Fibonacci numbers occurs without any interference among themselves.
Sect. 3.1 describes how the experiment was conducted and Sect. 3.2 presents an
analysis of the results.

3.1 Configurations and Experiment Setup

The experiment was performed on a computer Intel(R) Core(TM) i5-2500 CPU
@ 3.30GHz (4 CPU cores) running Linux version 3.9.10-100.fc17.x86 64. Four
different concurrency configurations were chosen to run the aforementioned sce-
nario. In Conf. 1, the agent components run sequentially (synchronous execu-
tion), like the traditional PRS cycle [21], and each agent has only one thread.
Examples of languages that adopt such approach are 2APL [13] and Jason [4].
In Conf. 2, the agent components run sequentially (synchronous execution), like
the traditional PRS, and all the agents share the same thread pool composed of
four threads (same number of cores in the computer). The use of thread pools
is the approach adopted in simpAL [30], but it is also possible in Jason [4]. In
Conf. 3, the agent components (SC, DC, and AC) run concurrently (asynchro-
nous execution) and each one has its own thread pool composed of four threads.
Moreover, the thread pools are shared among all agents. The asynchronous exe-
cution is an approach adopted in works like [22,41]. In Conf. 4, each intention
is launched in different threads, which is an approach adopted in [23,43].

The configurations are also evaluated according to the number of agents in
the MAS. We varied the number of agents from 5 to 10000, using the numbers
of 5, 10, 50, 100, 500, 1000, 5000, and 10000. The aim is to evaluate how each
configuration behaves when the number of agents changes.

The experiment was designed to analyse three variables. (1) The overall MAS
execution time for the whole number of Fibonacci numbers to be computed by
all the agents, which is the difference between the arrival time of the first percept
and the time when the last intention has terminated. (2) The response time for
each Fibonacci number, which is the difference between the arrival time of the
percept and the time when the intention related to that percept has terminated.
(3) The deliberation time for each Fibonacci number, which is the difference
between the arrival time of the percept and the time when an intention is created
to handle it. We chose the Fibonacci test case to evaluate such variables because
we can easily simulate activities that demand a different execution time, stress
the agent with different work loads, and simplify the experiment by using a
scenario where interferences or races do not happen.

Evaluating Different Concurrency Configurations 221

Fig. 5. Impact of the number of agents on the response time for each Fibonacci number
according to each configuration (cfg).

3.2 Results

The resulting data of the experiment is presented by a series of graphs. Figures 5
and 6 present the average response time for each Fibonacci number comparing
the impact caused by the number of agents in each configuration. While Conf. 1,
2, and 3 showed the expected exponential growth of the response time to com-
pute Fibonacci numbers4, Conf. 4 still does not show a perceptible exponential
growth considering the maximum number of Fibonacci used in the experiment.
Moreover, the exponential growth behavior is only possible because each agent
computes the Fibonacci numbers concurrently, by interleaving among the sev-
eral computations that it must perform. Even in cases where intentions are not
4 This exponential growth is an expected behavior for the configurations used in this

experiment because the computation of Fibonacci numbers, implemented following
the traditional recursive approach, has an exponential complexity.

222 M.R. Zatelli et al.

Fig. 6. Impact of the configuration on the response time for each Fibonacci number
according to the number of Fibonacci numbers.

launched in dedicated threads, the agent executes a bit of a different intention
in each turn. In this case, the interleaving mechanism is controlled in the agent
architecture.

The different behavior for Conf. 4 is explained by the thread competition.
While Conf. 1, 2, and 3 have fewer threads, Conf. 4 can produce a high number
of threads that compete for the same resources (computer cores), resulting in
delays to deliberate about new percepts. Thus, while the arrival order of the
percepts does not seem to be an important aspect for Conf. 1, 2, and 3, it is
important for Conf. 4. As another consequence, with fewer active intentions due
to the delay for the thread creation, big Fibonacci numbers can be computed
faster than in the other configurations, as shown in Fig. 5. The opposite behavior
happens for small Fibonacci numbers. Even if the computation of small Fibonacci
numbers is faster than big Fibonacci numbers, the deliberation time can harm
the whole response time for small Fibonacci numbers. Therefore, as also shown
in Fig. 6, Conf. 4 presents an almost constant response time independently of
the Fibonacci number (considering the range of Fibonacci numbers used in this
experiment) to be computed because the response time strongly depends on the
deliberation time.

The reactivity of the agents could be measured by the experiment in this
aspect. Small Fibonacci numbers can be thought as emergencies that the agents
must react promptly. We can see that for Conf. 1, 2, and 3 the agents can respond
fast to them even if they are concurrently performing other high cost activities
(represented by the big Fibonacci numbers). Conf. 4, instead, takes more time to

Evaluating Different Concurrency Configurations 223

Fig. 7. Impact of the configuration on the deliberation time for each number of agents.

react to emergencies, demonstrating a worse result if reactivity is an underlying
requirement for the application.

Fairness is also better in Conf. 1, 2, and 3. If an agent must perform a low cost
activity it is fair to think that the agent must respond faster than the execution
of a high cost activity. In addition, the computation of big Fibonacci numbers
showed that Conf. 2 has the worst response time considering the number of
agents lower than 500, while Conf. 1 has the worst response times considering
the number of agents higher than 1000. In this point of view, Conf. 3 showed
middle term behavior between Conf. 1 and Conf. 2.

Figure 7 presents the deliberation time for each configuration according to
the number of agents. While Conf. 1, 2, and 3 have a fast deliberation time,
Conf. 4 can take more time until the creation of some intention to compute a
Fibonacci number. This result also highlights the contrast between Conf. 1, 2,
and 3 (on the right). Thus, we can see that, after Conf. 4, Conf. 1 has the worst
deliberation time, while Conf. 2 has some improvements, and Conf. 3 has the
fastest deliberation time. This comparison helps the MAS developer to decide
which configuration to adopt for an application where a fast deliberation time
is necessary, for example, to handle some emergency.

Another interesting descriptor to evaluate the data produced by the experi-
ment is the standard deviation. Figure 8 presents the standard deviation of the
response time for each Fibonacci number according to the number of agents. By
means of the standard deviation we can have an idea of how the response times
spread out for each Fibonacci number. While Conf. 4 has a high and unstable
standard deviation, Conf. 1 showed an increasing standard deviation according
to the Fibonacci number to compute, and Conf. 2 and 3 showed a lower and
more stable standard deviation. A lower standard deviation shows that data are
more reliable and it is clustered closely around the mean, which means that we
can expect that the computation of new Fibonacci numbers would be close to
the mean too.

Finally, Fig. 9 presents a graphic where the overall MAS execution time for
each configuration is compared according to the number of agents. While Conf.
4 presents the fastest overall MAS execution time, Conf. 1, 2, and 3 have very

224 M.R. Zatelli et al.

Fig. 8. Impact of the number of agents on the standard deviation of the response time
for each Fibonacci number according to each configuration (cfg).

Fig. 9. Impact of the configuration on the overall MAS execution time varying the
number of agents.

Evaluating Different Concurrency Configurations 225

close times, with Conf. 1 showing the worst overall MAS execution time. The
faster overall MAS execution time for Conf. 4 is explained because each inten-
tion runs in an independent thread and they are not enqueued in the Pooled
intentions queue to be shared with other threads. The only overhead is caused
by the context switch. In the other configurations, threads select intentions from
the Pooled intentions queue. After finishing the execution of the current deed,
threads need to enqueue the intention in Pooled intentions queue again. A syn-
chronizing mechanism is necessary to control the access to the Pooled inten-
tions queue in order to keep a consistent execution. Threads need to wait for
the Pooled intentions queue be released by the thread that currently owns the
access. Thus, up to 10,000 agents, the overhead caused by the Pooled intentions
queue is higher than the context switch overheads.

4 Discussion

The experiment showed that each configuration has its advantages and disad-
vantages. On the one hand, launching intentions in dedicated threads (Conf. 4)
showed better results for an overall MAS execution time and when the response
time should not consider the size of the task, but the order in which the agents
receive the percepts. On the other hand, configurations that do not launch inten-
tions in dedicated threads (Conf. 1, 2, and 3) showed better results to react to
emergencies. Moreover, considering an asynchronous execution for the reasoning
cycle (Conf. 3), the agents showed the fastest deliberation time, while sharing
thread pools among the agents (Conf. 2 and 3) is a more suitable configuration
if a low standard deviation is important.

The MAS developer should be able to choose the most suitable configuration
for the MAS based on the priorities for the application (e.g. fast response time).
However, because most of the current agent languages have a limited set of con-
currency features, the MAS developer is not able to choose the best configuration.
For example, on the one hand, languages like 2APL [13], GOAL [20], JACK [16],
JADE [3], Jadex [28], Jason [4], JIAC [38], simpAL [30], among others, do not
provide any option to execute the reasoning cycle asynchronously. On the other
hand, works that adopt an asynchronous reasoning cycle [11,12,19,22,41], do
not provide any option for a synchronous execution. The number of threads are
also defined differently among the different works. While some languages use a
fixed number of threads for running an MAS based on the number of agents
(Jadex [28], 2APL [13], GOAL [20]), computer cores (simpAL [30]), or any other
policy, other works launch intentions using dedicated threads [12,23,43].

Several other features related to concurrency can be identified in the lit-
erature, however they were not included in the experiment performed for this
paper. For example, some works provide operations that can be performed over
intentions at run-time, such as suspend and resume their execution, and inspect
their current state [3,4,28,30]. Mechanisms for join/fork are also provided by
other works. Hence, it is possible to write a plan A that calls the plan B and C
to run concurrently (in the same or different threads) and waits for both plans

226 M.R. Zatelli et al.

(B and C) to get done to proceed with the execution of the current plan (plan
A) [13,26]. Another feature is the use of priorities to allow the agent, based on
some policy, to decide which activities to prioritize if it needs to execute sev-
eral ones concurrently [14,32,42]. Finally, agents can also be composed of other
agents. Sub-agents can be responsible for controlling specific parts of higher level
agent, such as its beliefs or its reactive behavior [12,19,31].

The experiment presented in the paper demonstrated evidences that an agent
language that provides richer options regarding to concurrency allows the MAS
developer to achieve this aim and improve the MAS execution. It is important
to notice that the effects caused by each configuration used in the experiment
is strictly related to the scenario of the experiment. Thus, the developer will
need to identify the best configuration always based on the application and its
priorities. Moreover, even with the possibility to specify a wide set of concur-
rency configurations, some of these configurations could not be applied in all
kinds of scenarios. For example, it does not make sense to run two threaded
intentions that compete to use the same resources (e.g. updating the same ele-
ment of the environment). At some point, one intention would need to wait
for the other to release the resource. However, it is possible to use threaded
intentions if they do not compete to use the same resources (e.g. working with
different elements of the environment). In the case of running threaded intentions
it would also be necessary to perform deeper experiments adopting other kinds
of configurations to clearly see if it has some advantage or not. The same can
be done when the MAS developer intend to run the agent components concur-
rently (asynchronously). Sometimes all the beliefs must be updated before the
agent makes decisions. Otherwise, the agent could use some already outdated
belief to select the applicable plans for some event that just happened. In the
Fibonacci scenario, there is no need for the agents to handle all the percepts
before to deliberate. Therefore, the MAS developer must consider not only the
concurrency configuration, but also the characteristics of the MAS application
(i.e. the result of the execution must be consistent).

In this paper, we used a very simple reasoning cycle for both synchronous
and asynchronous execution, which was enough to run the experiment. Several
issues still need to be addressed in order to execute more complex scenarios.
Some of them are how to deal with new percepts if the agent has not finished to
handle the internal events produced by the old ones; guarantee that the agent
will handle emergencies promptly; and ensure a consistent context especially
when the agent is selecting plans to be executed.

Other works that perform some experiments related to agents are presented
in [1,2,5–7,17,25,36,40]. However, such works are mostly focused on comparing
different languages, except by the work presented in [40], which makes an com-
parison among a parallel BDI agent architecture against sequential BDI agent
architectures. As in [40], the aim of our work is to compare different configura-
tions for agents instead of comparing different languages. The use of different
languages to compare different configurations is not possible due effects caused
by both variables (language and configuration). They can be mixed and the
results are not reliable to evaluate the configurations.

Evaluating Different Concurrency Configurations 227

5 Conclusions and Future Works

In this paper, we performed an experiment to evaluate different concurrency con-
figurations for an MAS. By means of the experiment, we identified the effects
caused by the use of such configurations and demonstrated the importance for
an agent language to provide richer options regarding to concurrency configu-
rations. In the future, we intend to perform further richer/more complex test
cases than the Fibonacci described in the paper to enhance the evaluation and
analysis. Finally, we plan to consider further configurations, with more specific
and complex strategies in handling concurrency. For example, thread pools with
a dynamic number of threads, which is chosen and allocated at run-time so as
to optimize the MAS execution according to some objective function.

References

1. Alberola, J.M., Such, J.M., Garcia-Fornes, A., Espinosa, A., Botti, V.: A perfor-
mance evaluation of three multiagent platforms. Artif. Intell. Rev. 34(2), 145–176
(2010)

2. Behrens, T.M., Hindriks, K., Hubner, J., Dastani, M.M.: Putting apl platforms to
the test: agent similarity and execution performance. Technical report, Clausthal
University of Technology (2010)

3. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - a Java agent development
framework. In: Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.)
Multi-Agent Programming. Multiagent Systems, Artificial Societies, and Simulated
Organizations, vol. 15, pp. 125–147. Springer, New York (2005)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. Wiley, Liverpool (2007)

5. Burbeck, K., Garpe, D., Nadjm-Tehrani, S.: Scale-up and performance studies of
three agent platforms. In: IPCCC 2004: IEEE International Conference on Perfor-
mance, Computing, and Communications, Phoenix, AZ, USA, pp. 857–863 (2004)

6. Cardoso, R.C., Hübner, J.F., Bordini, R.H.: Benchmarking communication in
actor- and agent-based languages. In: Winikoff, M. (ed.) EMAS 2013. LNCS, vol.
8245, pp. 58–77. Springer, Heidelberg (2013)

7. Cardoso, R.C., Zatelli, M.R., Hübner, J.F., Bordini, R.H.: Towards benchmark-
ing actor- and agent-based programming languages. In: Proceedings of the 2013
Workshop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE! 2013, pp. 115–126. ACM, New York (2013)

8. Cicirelli, F., Furfaro, A., Giordano, A., Nigro, L.: Performance of a multi-agent sys-
tem over a multi-core cluster managed by Terracotta. In Proceedings of the 2011
Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Sym-
posium, TMS-DEVS 2011, pp. 125–133. Society for Computer Simulation Interna-
tional, San Diego (2011)

9. Cicirelli, F., Furfaro, A., Nigro, L.: An agent infrastructure over HLA for distrib-
uted simulation of reconfigurable systems and its application to UAV coordina-
tion*. Simulation 85(1), 17–32 (2009)

10. Clark, K., McCabe, F.: Go! - a multi-paradigm programming language for imple-
menting multi-threaded agents. Ann. Math. Artif. Intell. 41(2–4), 171–206 (2004)

228 M.R. Zatelli et al.

11. da Costa, A.L., Bittencourt, G.: From a concurrent architecture to a concurrent
autonomous agents architecture. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.)
RoboCup 1999. LNCS (LNAI), vol. 1856, pp. 274–285. Springer, Heidelberg (2000)

12. Costa, M., Feijó, B.: An architecture for concurrent reactive agents in real-time
animation. In: Brazilian Symposium on Computer Graphics and Image Processing
(1996)

13. Dastani, M.: 2APL: a practical agent programming language. Auton. Agent. Multi-
Agent Syst. 16(3), 214–248 (2008)

14. de Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent program-
ming language based on the situation calculus. Artif. Intell. 121(1–2), 109–169
(2000)

15. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

16. Evertsz, R., Fletcher, M., Frongillo, R., Jarvis, J., Brusey, J., Dance, S.: Imple-
menting industrial multi-agent systems using JACK. In: Dastani, M., Dix, J.,
El Fallah-Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp.
18–48. Springer, Heidelberg (2004)

17. Fernández, V., Grimaldo, F., Lozano, M., Ordua, J.M.: Evaluating Jason for dis-
tributed crowd simulations. In: Filipe, J., Fred, A.L.N., Sharp, B. (eds.) ICAART,
vol. 2, pp. 206–211. INSTICC Press (2010)

18. Fernández-Bauset, V., Grimaldo, F., Lozano, M., Orduña, J.M.: Tuning java to
run interactive multiagent simulations over jason. In: Li, J. (ed.) AI 2010. LNCS,
vol. 6464, pp. 354–363. Springer, Heidelberg (2010)

19. Gonzalez, A., Angel, R., Gonzalez, E.: BDI concurrent architecture oriented to
goal managment. In: 2013 8th Computing Colombian Conference (8CCC), pp. 1–
6, August 2013

20. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer, US (2009)

21. Ingrand, F.F., Georgeff, M.P., Rao, A.S.: An architecture for real-time reasoning
and system control. IEEE Expert Intell. Syst. Appl. 7(6), 34–44 (1992)

22. Kostiadis, K., Hu, H.: A multi-threaded approach to simulated soccer agents for
the robocup competition. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup
1999. LNCS (LNAI), vol. 1856, pp. 366–377. Springer, Heidelberg (2000)

23. Lee, S.-K., Cho, M., Yoon, H.-J., Eun, S.-B., Yoon, H., Cho, J.-W., Lee, J.: Design
and implementation of a multi-threaded TMN agent system. In: Proceedings of
International Workshops on Parallel Processing, 1999, pp. 332–337 (1999)

24. Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency among strangers. In:
De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 195–229.
Springer, Heidelberg (2005)

25. Mulet, L., Such, J.M., Alberola, J.M.: Performance evaluation of open-source mul-
tiagent platforms. In: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 1107–1109. ACM,
New York (2006)

26. Muscar, A.: Exploring the design space of agent-oriented programming languages.
Ph.D. thesis, University of Craiova (2013)

27. Pérez-Carro, P., Grimaldo, F., Lozano, M., Orduòa, J.M.: Characterization of the
Jason multiagent platform on multicore processors. Sci. Program. 22(1), 21–35
(2014)

Evaluating Different Concurrency Configurations 229

28. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In:
Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.) Multi-Agent
Programming. Multiagent Systems, Artificial Societies, and Simulated Organiza-
tions, vol. 15, pp. 149–174. Springer, US (2005)

29. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
2–55. Springer, Heidelberg (1996)

30. Ricci, A., Santi, A.: Programming abstractions for integrating autonomous and
reactive behaviors: an agent-oriented approach. In: Proceedings of the 2nd Edi-
tion on Programming Systems, Languages and Applications Based on Actors,
Agents, and Decentralized Control Abstractions, AGERE! 2012, pp. 83–94. ACM,
New York (2012)

31. Rodriguez, S.A.: From analysis to design of holonic multi-agent systems: a frame-
work, methodological guidelines and applications. Ph.D. thesis, Universit de Tech-
nologie de Belfort-Montbliard and Universit de Franche-Compt, December 2005

32. Sardina, S., De Giacomo, G., Lespérance, Y., Levesque, H.J.: On the semantics
of deliberation in Indigolog&Mdash;from theory to implementation. Ann. Math.
Artif. Intell. 41(2–4), 259–299 (2004)

33. Sislák, D., Rehák, M., Pechoucek, M., Pavĺıcek, D.: Deployment of A-globe multi-
agent platform. In: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 1447–1448. ACM,
New York (2006)

34. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting & avoiding interference
between goals in intelligent agents. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp.
721–726. Morgan Kaufmann, San Francisco (2003)

35. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting & exploiting positive goal
interaction in intelligent agents. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2003, pp.
401–408. ACM, New York, (2003)

36. Vrba, P.: JAVA-based agent platform evaluation. In: Mař́ık, V., McFarlane, D.C.,
Valckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 47–58.
Springer, Heidelberg (2003)

37. Weerasooriya, D., Rao, A., Ramamohanarao, K.: Design of a concurrent agent-
oriented language. In: Wooldridge, M., Jennings, N. (eds.) Intelligent Agents.
LNCS, vol. 890, pp. 386–401. Springer, Berlin, Heidelberg (1995)

38. Wieczorek, D., Albayrak, Ş.: Open scalable agent architecture for telecommunica-
tion applications. In: Albayrak, Ş., Garijo, F.J. (eds.) IATA 1998. LNCS (LNAI),
vol. 1437, p. 233. Springer, Heidelberg (1998)

39. Zhang, H., Huang, S.-Y.: A parallel BDI agent architecture. In: IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, pp. 157–160, September
2005

40. Zhang, H., Huang, S.Y.: Are parallel BDI agents really better? In: Proceedings
of the 2006 Conference on ECAI 2006: 17th European Conference on Artificial
Intelligence August 29 - September 1, 2006, Riva Del Garda, Italy, pp. 305–309.
IOS Press, Amsterdam (2006)

41. Zhang, H., Huang, S.-Y.: A general framework for parallel BDI agents. In: IAT,
pp. 103–112. IEEE Computer Society (2006)

230 M.R. Zatelli et al.

42. Zhang, H., Huang, S.-Y.: A general framework for parallel BDI agents in dynamic
environments. Web Intell. Agent Syst. Int. J. 6, 327–351 (2008)

43. Zheng, G.-P., Hou, Z.-Y., Yin, X.-N.: Research of the agent technology based on
multi-thread in transformer substation communication. In: 2006 International Con-
ference on Machine Learning and Cybernetics, pp. 56–60 (2006)

Author Index

Albayrak, Sahin 153
Alexander, Rob 131

Bagosi, Timea 33
Brunetti, Pietro 191

Ceballos, Hector G. 51
Costantini, Stefania 70
Croatti, Angelo 191
Cuartero-Soler, Nuria 92

de Greeff, Joachim 33
Delias, Pavlos 171

Flores-Solorio, Victor 51

Garcia, Juan Pablo 51
Garcia-Rodriguez, Sandra 92
Gomez-Sanz, Jorge J. 92

Herd, Benjamin 109
Hindriks, Koen V. 33

Huang, Zhan 131
Hübner, Jomi F. 212

Küster, Tobias 153

Logan, Brian 3
Luck, Michael 109
Lützenberger, Marco 153

McBurney, Peter 109
Miles, Simon 109
Mitakidis, Nektarios 171

Neerincx, Mark A. 33

Ricci, Alessandro 18, 191, 212

Spanoudakis, Nikolaos 171

Viroli, Mirko 18, 191

Zatelli, Maicon R. 212

	Preface
	Organization
	Contents
	Invited Papers
	A Future for Agent Programming
	1 Introduction
	2 Background
	3 Why Are We Failing to Have an Impact?
	3.1 The BDI Model
	3.2 Limitations of Current BDI-Based Languages

	4 The Broader Context
	4.1 Reactive Planning
	4.2 Reactive Programming

	5 The Future
	5.1 Some Ideas
	5.2 What Counts as Progress

	6 Conclusion
	References

	Towards Agent Aggregates: Perspectives and Challenges
	1 Introduction
	2 Aggregate Programming
	2.1 Computing at the Aggregate Level
	2.2 Constructs

	3 Impact on Building Large-Scale Self-Organising MASs
	3.1 Raising the Abstraction Level
	3.2 Towards Libraries of Collective Distributed Sensing and Action
	3.3 Challenges

	4 Impact on Building MAS Environment
	4.1 Coordination Artifacts Enacting Computational Fields
	4.2 Cognitive Fields
	4.3 Tooling
	4.4 Challenges

	5 Impact on Aggregate Plans
	5.1 Life-Cycle of Aggregate Plans
	5.2 Mapping Constructs, and Libraries
	5.3 Challenges

	6 Conclusions
	References

	Contributed Papers
	Designing a Knowledge Representation Interface for Cognitive Agents
	1 Introduction
	1.1 Motivation
	1.2 Scope and Methodology

	2 Related Work
	3 Dimensions of the KRI Design
	3.1 Design Principles
	3.2 Cognitive Agent Frameworks: Functional Requirements
	3.3 Features of Knowledge Representation Technologies

	4 The KR Interface
	5 KR Interface Implementations
	5.1 Prolog Implementation
	5.2 Ontological Language Implementation
	5.3 Discussion of the KRI Implementation

	6 Conclusions and Future Work
	References

	A Probabilistic BPMN Normal Form to Model and Advise Human Activities
	1 Introduction
	2 Background
	2.1 Business Process Diagrams for Agent Engineering
	2.2 Decision Making Based on Bayesian Networks

	3 Probabilistic Decision Making on Business Process Diagrams
	3.1 An Example of an ADL Modeled in BPMN
	3.2 A Probabilistic BPMN Normal Form
	3.3 Translating BPDs to Bayesian Networks
	3.4 The Activity Causal Bayesian Network

	4 Discussion
	4.1 Probabilistic Approaches to BPMN
	4.2 Translatable Fragments of BPMN Workflows
	4.3 Probabilistic Workflows as Agent Engineering Tool

	5 Conclusions
	References

	ACE: A Flexible Environment for Complex Event Processing in Logical Agents
	1 Introduction
	2 Background
	3 Agents as Computational Environments
	4 Event-Action Modules in DALI
	4.1 Examples of Event-Action Modules

	5 ASP Representation of DALI Event-Action Modules
	5.1 Answer Set Programming (ASP) in a Nutshell
	5.2 Translation Guidelines
	5.3 Translation Example

	6 Related Work Concluding Remarks
	References

	A Testbed for Agent Oriented Smart Grid Implementation
	1 Introduction
	2 Agents in a Microgrid
	3 The Agent Testbed
	4 Case Study with INGENIAS
	5 Related Work
	6 Conclusions
	References

	Quantitative Analysis of Multiagent Systems Through Statistical Model Checking
	1 Introduction
	2 Background
	3 Related Work
	4 Motivational Example: Swarm Foraging
	5 Formulating Multiagent Correctness Properties
	6 Events, Properties, and Their Probability
	6.1 Structure and Probability of Simulation Traces
	6.2 Simulation and Sampling: Trace Fragmentation
	6.3 Complexity

	7 Quantitative Trace-Based Analysis
	7.1 Analysis Types

	8 Example: Quantitative Analysis of a Robot Swarm
	9 Conclusions and Future Work
	References

	Semantic Mutation Testing for Multi-agent Systems
	Abstract
	1 Introduction
	2 Mutation Testing
	2.1 Traditional Mutation Testing
	2.2 Semantic Mutation Testing

	3 Semantic Mutation Testing for Jason, GOAL and 2APL
	3.1 Use of a New Language
	3.2 Evolution of Languages
	3.3 Common Misunderstandings
	3.4 Ambiguity of Informal Semantics
	3.5 Customization of the Interpreter
	3.6 Discussion

	4 Semantic Mutation Operators for Jason, GOAL and 2APL
	5 Evaluation of Semantic Mutation Operators for Jason
	5.1 Assessment of Tests
	5.2 Assessment of Robustness to Semantic Changes
	5.3 Assessment of Reliability of Semantic Changes

	6 Related Work and Conclusions
	References

	A Formal Description of a Mapping from Business Processes to Agents
	1 Introduction
	2 Agent and Process Model
	2.1 Agent Meta Model
	2.2 Process Meta Model
	2.3 Expressions, Data, Communication

	3 Mapping Processes to Agents
	3.1 Mapping of Agent Architecture
	3.2 Mapping of Agent Behaviours

	4 Implementation
	4.1 Generation of JADL Services
	4.2 Creation of JIAC Agent Beans
	4.3 JIAC Process Interpreter Bean
	4.4 Comparison and Application

	5 Related Work
	6 Conclusion
	References

	Validating Requirements Using Gaia Roles Models
	Abstract
	1 Introduction
	2 Background
	2.1 The Gaia Liveness Formulas and AOSE
	2.2 Metamodels and Model Transformations
	2.3 Business Process Modeling

	3 The Transformation Algorithm
	4 The Liveness2XPDL Tool
	5 Simulating the Roles Interactions
	6 The Method Fragment for Validating the Analysis Model
	7 Discussion
	8 Conclusion
	Appendix: The Recursive Transformation Algorithm
	References

	Programming Mirror Worlds: An Agent-Oriented Programming Perspective
	1 Introduction
	2 Background: The Mirror World Idea
	3 An Agent-Oriented Programming Model
	3.1 Modelling MWs with A&A: Mirror Artifacts and Workspaces

	4 Programming Mirror Worlds in JaCaMo: A First API
	4.1 API Overview
	4.2 Hello, Mirror World!
	4.3 Ghosts and Traces
	4.4 Coupling with the Physical World

	5 Discussion
	5.1 Real-World Applications
	5.2 Challenges and Opportunities for Future Work
	5.3 Related Work

	6 Conclusion
	References

	Evaluating Different Concurrency Configurations for Executing Multi-Agent Systems
	1 Introduction
	2 Conceptual Model
	2.1 MAS Conceptual Model
	2.2 Agent Conceptual Model
	2.3 Agent Architecture

	3 Evaluation of Different Concurrency Configurations
	3.1 Configurations and Experiment Setup
	3.2 Results

	4 Discussion
	5 Conclusions and Future Works
	References

	Author Index

