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Abstract. Cognitive robotics presents unique research challenges as it straddles
the boundaries between two very different fields. Its name promises robots that
exhibit cognitive behaviour and suggests that the research would be beneficial
and interesting to researchers in both robotics and cognitive science. However,
this is not generally the case. Many roboticists are disinterested in the develop‐
ments of cognitive robots unless these robots are proven to be superior in terms
of speed, efficiency and accuracy. Similarly, cognitive scientists are disinterested
in the work of roboticists unless the robot’s behavior is fit to some known empir‐
ical data and the models implemented are cognitively plausible. These different
requirements, each from their own field, are often at odds, and has hampered the
development of cognitive robotics, causing researchers to use robots only as a
platform for simulating cognitive ideas or to use cognitive science as a weak
source of ideas for robot mapping. In this article, we argue that a better synthesis
of ideas from both fields must be encouraged and that cognitive robotics should
move beyond its artificial limitations and in the process better serve robotics and
cognitive science.

Keywords: Cognitive mapping · Robotics · Cognitive science · Cognitive
robotics

1 Introduction

Academia is structured in such a way as to make interdisciplinary research difficult.
Every field and subfield has unique methodology, terminology, and systems of eval‐
uation. When stepping from one discipline to another one must quickly learn all of the
differences between fields or success will be extremely difficult. In recent years
computational scientists have bucked this general trend because they have brought
new tools to nearly every field from the Humanities to the Sciences. Even so, within
other disciplines there is always strong resistance (e.g. see Drucker 2012; McPherson
2012). Often these new methods from other fields are seen as a threat to existing
methodologies and to old ways of doing things. By contrast, cognitive science has
long since embraced computational methods. Computer models of psychological
theories have a long history going back to Newell, Shaw and Simon’s work on GPS
(Newell et al. 1959). However, as with other fields, the intersection of computational
methodologies with cognitive science is not always smooth. In the case of cognitive
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robotics it is not so much a resistance to computation, as the fact that cognitive
science and robotics as fields have such different methods of evaluation. Here we
will broadly characterize the two fields while at the same time recognizing that the
truth is far more nuanced.

Broadly speaking the goal of Robotics is to build ever more capable robots. This
means robots that can do more, are smarter, and are more efficient. As a subfield of
computer science this is reflective of computer science as a whole. In its memo on tenure
the Computer Research Association had this to say, “When one discovers a fact about
nature, it is a contribution per se, no matter how small. Since anyone can create some‐
thing new [in a synthetic field], that alone does not establish a contribution. Rather, one
must show that the creation is better.” (Patterson et al. 1999) The memo goes on to say
that contributions will lead to “better results.” This is perfectly sensible for computer
science as a discipline. So in publishing in computer science, and by extension robotics,
it is generally necessary to prove that one’s work is “better” than what came before. In
robotics, meanwhile, “better” can often be directly quantified. It might mean a more
accurate map, a faster path, or more efficient computation. It should be no surprise that
these are standard means of evaluating robot models.

The situation is quite different in cognitive science. The field has many goals, but
most of them revolve around understanding human cognition. In many cases such
understanding comes through building models. The goal of such models is not to be
“better” in the same sense as computer science, but to be a more accurate reflection of
human cognition and therefore be a potentially more useful tool in understanding how
cognition works. When models are judged by characteristics of speed, accuracy and
efficiency, it is not to be certain that such quantities are maximized, but rather that they
closely reflect data on their human counterparts.

Mapping provides a simple and concrete example of how the two ways of working
are at odds and throughout this article, we will use this example when discussing the
problems cognitive robotics face. In robotics, the mapping literature is currently domi‐
nated by SLAM (Simultaneous Localization and Mapping) methods (e.g. see Thrun
2008). In SLAM, a robot’s goal is to navigate an environment and simultaneously build
an accurate map of the environment. SLAM models strive to build as precise a map of
their environment as is possible. The better the map the better the robot will be able to
use it later to navigate. Meanwhile human navigation is a completely different story.
While humans are capable of amazing navigational feats, it has been repeatedly shown
that their internal maps are actually quite distorted and sketchy. Roboticists interested
in cognition might find themselves with a typical robot setup involving a small wheeled-
robot with a laser rangefinder. They could then use such a robot to build human-like
maps of its environment. From the perspective of mainstream robotics such maps are
going to look poor compared to the best SLAM methods. From the perspective of
cognitive science such maps may not be interesting simply because they were created
using inputs from lasers; the latter is so unhuman.

Due to these differences and the problems inherent in evaluating such models, the
development of cognitive robots has been hampered. Cognitive robotics researchers
often end up with models that interest cognitive science or robotics but not both. Conse‐
quently, cognitive researchers have shown little interest in robotics beyond as a platform
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for implementing and testing their ideas and roboticists have shown little interest in
cognitive science beyond borrowing some simple ideas to improve upon their models.
For example, the idea that SLAM models might have anything to teach cognitive scien‐
tists is seen as absurd within much of cognitive science. Indeed we are unaware of any
mainstream models of human navigation or cognitive mapping that have been signifi‐
cantly influenced by SLAM methods. Again, on the face of it this seems reasonable,
after all robots are very different than humans and most SLAM researchers would not
claim that their methods are reflective of human navigation. We believe, however, that
such a view is shortsighted. To get a glimpse of why this is the case one need look no
further than the work on animal navigation. Cognitive research has been greatly
impacted by work on many different species, from rats whose brains share a significant
amount of structure with humans to ants whose brains have little in common with human
brains. The common element of all such species is that they all face challenges in navi‐
gation that they have evolved to overcome. By studying a wide range of species it is
possible to start finding principles that are common to all of them. Such principles may
be implemented very differently for a given animal, but if the principle is powerful
enough, it is likely that many different systems will have “discovered” it through the
process of evolution. The very fact that diverse animals are using the same principles is
evidence of the power and utility of such principles.

We are proposing that by viewing robots and humans as different species solving
the same problem (an idea first proposed in Yeap 2011b), there is much to be learned
from each other. From this perspective, cognitive robotics is not restricted to the use of
robots for testing cognitive ideas but also to find solutions to problems that baffled
cognitive scientists. The latter leads to discovering new navigational principles and new
algorithms that would benefit research in robotics and provide new insights into spatial
cognition. Different models (i.e. species) can then be built to evaluate the applicability
of the principles identified. Indeed, the different capabilities of robots – having wheels,
sonar, lasers, and others – provides a test of the generality of the methods and principles
that are being proposed.

In the rest of this article we discuss the nature of interactions between cognitive
science and robotics through cognitive robotics, both in the successes and the challenges
that have emerged over the years but also in suggesting that much more is possible,
especially with regard to the contributions that both sides have to gain from each other.

2 What Do Cognitive Models Offer Robotics?

There are many reasons why robotics researchers might not be interested in cognitive
models of navigation. For instance, it would be easy to conclude that the human brain
is just too complex and little understood. While cognitive models offer significant
insights, they often lack the detail necessary for an implementation, and in particular,
the details most lacking are normally computational. Further, human navigation makes
use of an unparalleled object recognition system that dominates even the most sophis‐
ticated machine vision system. Meanwhile, even when navigating humans are constantly
doing other things and have many other cognitive processes that impact navigation

296 E. Chown and W.K. Yeap



performance. These range from emotional factors to things that take attention away from
navigation. From the point of view of robotics it would appear that building systems
that do not have such distractions would ultimately lead to better performance. It there‐
fore stands to reason that doing things the way humans do them may not be the best path
for robots. Further, the history of Artificial Intelligence (AI) suggests that eventually
robots will be better than humans at navigation, just as with chess and with many other
problems once thought to be “hard.” And just as with chess and other problems, the
solutions that AI finds may have little or nothing to do with the way that humans perform
them. So what does cognition have to offer robotics? Why not simply pursue a path of
ever more refined mathematical models?

In the early days, AI researchers were eager to learn from nature for two reasons.
First, nature provides a rich source of ideas and second, nature’s solutions are both
interesting and tested by the need to survive. For mapping, roboticists have already
borrowed many ideas from cognitive mapping albeit mainly at the structural level. For
example, topological maps, inspired by human “route maps” have long been a staple of
robotics (e.g. see Thrun and Bücken 1996). “Gateways”, first developed as part of a
theory of human cognitive mapping (Chown et al. 1995) found their way into numerous
robot systems (e.g. Beeson et al. 2010). In both of these cases roboticists took an initial
idea from cognitive models and used it as a starting point to end up with something new.

To the extent that cognitive ideas have had a positive impact on robotics, it is because
these ideas can easily be translated onto a robot whatever its capabilities. For example, a
topological map consists of a network of “landmarks.” Such representations are powerful
and useful regardless of whether the landmarks were learned by using vision, sonar or
lasers. The navigational principles that these representations encapsulate are powerful
enough that they can be implemented in an almost unlimited number of ways. The Gateway
notion has a similar history. In humans Gateways occur where there is a visual occlusion
followed by an opening. In other words Gateways are places where new information
becomes available. A robot does not need the powerful human visual system to take
advantage of the principle that locations in the environment where new information
becomes available are important. One of the first uses of gateways (Kortenkamp and
Weymouth 1992), for example, used sonar, a sensor that is notoriously noisy. For a robot
moving down a corridor, however, sonar makes it extremely easy to identify gateways. As
the robot is moving past walls it should get relatively constant, if noisy, reading. However,
when a new corridor opens up, or there is an open door, the readings will jump dramati‐
cally, far beyond the magnitude of normal noise. Thus the principle that a sudden large
environmental change should drive new representations is easily exploited by robots with
a wide variety of sensory capabilities. This principle is powerful enough that it can be used
to organize a map even for a perceptually weak robot.

The landmark example is instructive for the larger point that we are making. Topo‐
logical maps have been a staple of cognitive theories of navigation going back to Piaget
(Piaget and Inhelder 1967). These theories then made their way into robotics. Once
robotics got ahold of them there were essentially two camps working on topological
models. One consisted of cognitive roboticists who tended to slavishly try to mimic the
exact details of human navigation. The second camp consisted of roboticists who wanted
to make their robots navigate as effectively as possible. Both of these camps have narrow
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goals that naturally limited the scope of their work. The robot camp, for example rarely
considers the full complexity of landmarks. Since their only goal is to build robots that
navigate as effectively as possible they focus squarely on using perception to identify
landmarks. A researcher, for example, using lasers for input, will work to engineer
solutions optimized for lasers. A similar story will be true for robots with cameras or
sonar. In each case landmarks are taken to be any object in view that has a unique
perceptual signature, and consequently landmarks are perceived almost everywhere by
robots because there is almost always something in any given view that stands out.

By contrast, humans remember a much smaller number of objects as landmarks,
apparently using a much different, more global, criteria, and consequently each landmark
is more important and more memorable. It is much more difficult to implement this on
a robot because it is still not well understood exactly how humans select landmarks, and
of course the human vision system is a crucial part of the process.

In this way the two points of view represent a kind of continuum of strategies that a
cognitive being might use in navigation. Different points along this continuum might
have different strengths and weaknesses with regard to different environments. For
example, some environments, such as a dessert or prairie, are known to be landmark
poor for humans. A robot might have better success in creating landmarks on the fly in
such a place. On the other hand, with so many landmarks in their maps, robots may be
more susceptible to becoming confused when changes in the environment occur as
happens so often in so many environments. Robotic solutions along these lines are often
accused of being brittle. This is one of the oldest criticisms of AI models. For example,
consider the application of probabilistic solutions in robot soccer competitions such as
RoboCup (Chown and Lagoudakis 2015). While these algorithms perform well in it,
even small changes to the domain can cause them to completely break. This would
appear to be in stark contrast to human intelligence. Humans appear to effortlessly adapt
to even large changes in domain rules. For example, not only can a group of five year
olds instantly adapt to the outdoor conditions of a new soccer field, they can even create
a field on the fly using sticks, trees, and bushes and then localize beautifully on the ad
hoc pitch. It would be more than a stretch to suggest that such children are creating
highly precise internal maps to accomplish such feats. Indeed it may well be the case
that the lack of such precise models is a key to such adaptability.

Computer science and AI have championed the idea that problems can be viewed as
search. It is certainly possible to view “navigation” as such a problem. What we are
seeing is that a very small part of that space is being explored right now. There are
researchers who are exploring the space that most closely resembles human navigation
and there are researchers who are looking to optimize what robots with specific sets of
capabilities can do. In search terms both groups are essentially looking for local maxima
using different criteria for defining their maxima. The “better” required in robotics is a
kind of hill climbing as is the drive for ever more realistic models in cognitive science.
Cognitive robotics affords the chance to pursue more global strategies. Strategies that
might provide a deeper understanding of the space and could ultimately lead to solutions
that combine the flexibility of human navigation with the precision of robot navigation.
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3 What Does Robotics Offer Cognition?

Traditionally the major, if not the only, reason for a researcher interested in cognition
to use robots has been to test ideas. The benefit of using robots is concreteness. If a
model cannot be implemented on a robot, or if it simply does not work when imple‐
mented, then these are strong evidence of a model’s deficiencies. In turn such deficien‐
cies are indicative of places where existing theories need to be updated or discarded.
Ironically then, success, in terms of lessons learned through robotics, typically has come
through failures in implementation. However, when a model is successfully imple‐
mented, it is easy to dismiss that success. Some models are dismissed out of hand on
the grounds of differences in hardware, with others it is because the model used is too
general. In fact it is difficult to prove anything by building a model. Generally the best
that can be done is to use the model to make novel predictions that can later be checked
experimentally (e.g. by testing human subjects). Despite this apparently pessimistic view
where knowledge only comes through failure, the act of making theories concrete via
the use of robot is invaluable.

However, while the importance of making theories concrete is hard to overstate, an
important lesson learned in developing early AI models of cognition is that the theory must
be formulated and tested at the appropriate level. For example, in the early history of AI and
cognitive science, many models of cognition were developed at a high level of thinking
(Langley 2007). Conscious thinking at that time was deemed to be the most interesting and
important part of cognition. Perhaps the greatest lesson of robotics and related fields such
as machine vision, is that they provided stark and unequivocal evidence of just how diffi‐
cult and important perception is. This is evidenced by the famous story of how in the early
days of AI Marvin Minsky assigned some of his students to solve the problem of using a
camera to identify objects as a good “summer project.” More than 50 years later and it is
still nowhere close to being solved. Robotic provides an excellent platform for developing
concrete ideas about the perceptual process that cognitive theories often lack but require.
It is surprising then that this aspect of the advancements from robotics has largely been
ignored. Research on SLAM provides an instructive example.

Many cognitive theories of navigation have converged around the idea that people
learn a series of views as one form of navigation (Yeap 1998; Chown et al. 1995;
Franz et al. 1998). All of these theories, even the ones implemented on robots, have not
fully tested the implications of this idea. Meanwhile SLAM models have been imple‐
mented and tested on enormous scale at levels far beyond what the cognitively inspired
models have managed. What SLAM researchers have found is that the process of building
a global map of an environment based on integrating successive views of the environ‐
ment has a fundamental problem – the accumulation of error. As has long been known in
robotics, when an agent moves through an environment little errors tend to accumulate.
Over time and space these little errors turn into large errors. Imagine, for example, that you
want to head north, but your heading is off by a small amount. The further you go on that
heading the more you stray from true north. Over large distances you will end up a long
way away from your goal. SLAM researchers have had to learn to cope with this problem
and have come up with techniques that allow them to correct for the errors that cannot
help but occur when building a global map.
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If humans do indeed build maps out of successive views, than this process is neces‐
sarily going to run into the same problems of accumulating errors. It is also possible,
and may even be likely, that the solutions being found by SLAM researchers have also
been “found” by evolution. At the very least SLAM is leading to a more thorough
understanding of the problems and issues inherent in such processes. The question is
what if any of this knowledge has found its way back into psychological models and
testing? The answer, as far as we can tell, is “little or none.” Cognitive scientists by and
large are not interested in SLAM because it isn’t a cognitive model. Worse, from their
point of view, it is often implemented on robots with very different capabilities than
humans. A cognitive scientist might say that SLAM isn’t relevant because humans can
resolve their errors through the use of their superior vision systems or in some other way
that is different than SLAM. It is possible that this is even true but what would such a
model be? Cognitive science has not proposed any as of yet. It is also possible that the
general principles used by SLAM systems may be similar, or even the same, as the
principles used in human cognition. If this is the case then it is clearly a good idea to
identify those principles. A different cognitive scientist might say that it doesn’t matter
anyway since human cognitive maps are known to be distorted and sketchy. Indeed one
of the co-authors of this article has leveled both of these criticisms at SLAM in the past.
Saying a cognitive map is distorted, however, does not mean that it can be distorted
without limit. Indeed this suggests an interesting line of research on the nature of distor‐
tions in internal maps and just how distorted they can become while still being functional.
More to the point these are things that are not known. There is still a great deal to be
learned about the nature of cognitive maps, about the nature of dealing with errors in
maps, and about how navigation works in general. Robotics provides a tool for exploring
these questions and the answers that roboticists are finding may provide critical infor‐
mation for better understanding how humans navigate. Cognitive roboticists, and by
extension cognitive scientists, would be wise to pay more attention to these explorations
and to use them as springboards for their own work.

4 Cognitive Robotics – on the Edge of Discovering New Ideas

Early work on cognitive robotics, rightly so, has emphasized on the use of robots as test
beds for evaluating cognitive theories. However, the fact that robots are so different from
humans has meant that cognitive scientists are unlikely to view the work of cognitive
roboticists as making a significant contribution to their understanding of how the mind
works. Similarly, the fact that cognitive ideas are so semantically laden and so specific
to humans has meant that roboticists are unlikely to view cognitive robotics as practically
significant. What we are proposing in this article is that cognitive robotics should pay
more attention to the questions cognitive scientists raise and attempt to find answers to
those questions using robots often borrowing developments in robotics to do so. Initially,
these questions should center on perceptual problems since this is where cognitive theo‐
ries tend to be weakest and where robotics must necessarily find solutions. In this section,
we provide two examples of exploring such questions.
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4.1 Contributions to Cognitive Science

While cognitive scientists in general and psychologists in particular have made signif‐
icant discoveries concerning cognitive mapping, their theorizing often lacks important
computational details concerning the underlying process itself. Such omissions are not
a matter of mere details since without those details the correctness of any such theory
is impossible to verify. This is because any representation inferred from behavioral
results could be challenged with an alternative representation. For example, even the
most fundamental idea of cognitive mapping – that humans and animals compute a map
of their environment, first proposed by Tolman (1948) and later given significant support
from two prominent pieces of work: Lynch (1960) and O’Keefe and Nadel (1978) – is
controversial precisely because proponents of the theory have failed to demonstrate
exactly the kind of map computed and how it is learned. Consequently, by providing
alternative explanations to account for the behavior observed, many have challenged
the very idea that a map is computed at all. For example, for rats searching for food next
in a radial arm maze, Brown (1992) argue that they could have considered only which
alley not visited and thus would not need to use a spatial map. In the water maze problem,
Benhamou (1996) argue that rats could use some orientation mechanisms and not a
spatial map to locate the platform in the water maze (for further discussions, see Yeap
2011b). Even for humans, the idea that we compute a map in the head has been chal‐
lenged recently. Wang and Spelke (2002) argue that humans maintain only a transient
egocentric map that allows awareness of their immediate surroundings but not an
enduring non-egocentric map. The latter is too empowering (Yeap 2014) and based on
their observation that other lower animals do not compute such a map and their belief
that all animals navigation abilities should build on a common set of mechanisms, they
conclude that no such map is computed at the perceptual level.

This gap in cognitive science research is what cognitive roboticists could fill via
experimentations using robots. To do so, cognitive roboticists need to address how the
key ideas/representations identified in cognitive science are physically realized and in
ways that match their characterization by cognitive scientists. For example, cognitive
roboticists, unlike traditional roboticists, must not only show how a map of the envi‐
ronment is computed, but the map must also bear many of the characteristics of a cogni‐
tive map. For example, one distinctive characteristic of a cognitive map is that it is
fragmented and inexact. Successfully implementing such a process on a mobile robot,
even with sensors that differ from cognitive agents, would provide insights into the
nature of the process. Recently, Yeap (2011a) describes one such process implemented
on a mobile robot equipped with a laser sensor and an odometer (see also Yeap et al.
2011). Unlike SLAM, Yeap’s process eschews error corrections, continuous updating,
and continuous self-localization. Instead it takes a snapshot of the environment as a kind
of map of a local environment that it is about to explore, and as it moves out of its current
bounded space, it takes a new snapshot corresponding to the next local environment that
it will explore and so on. What is computed as it explores is a trace of the individual
local maps. When moving in each of the local areas, objects within the area are tracked
in each subsequent view by the moving robot and these tracked objects enable the robot
to recover its pose (its position and orientation in space) in these maps, thereby allowing
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the robot to generate a global metric map. This metric map ends up being incomplete
and inexact, but it is not as distorted as a similar map generated via integrating successive
views. The map produced is accurate enough to allow the robot to orient itself in the
environment.

While Yeap’s process is not an exact analog of how human and/or animal cognitive
mapping works, it nonetheless bears many interesting commonalities with human cogni‐
tive mapping, especially when compared with the SLAM approach. For example, the
central idea is that tracking objects as the robot moves can compensate for the normal
errors that might build up during the mapping process. The objects provide a natural
source of error correction as the robot moves. Global correctness is not necessarily
important. This is as opposed to the SLAM-based approach whereby a robot has to
continuously localize and correct its position in the map. In SLAM, robots are constantly
trying to place themselves in the correct position in the global map, whereas in Yeap’s
approach the robot is merely trying to solve the simpler problem of determining where
it is relative to nearby landmarks. As already noted, human navigation makes use of an
unparalleled object recognition system and thus it would be natural that any process
proposed for human mapping would take maximum advantage of such a system. Imagine
our hypothetical traveller heading to the north. As they head north they will naturally
accumulate error. But then if they see a known landmark along the way the landmark
will naturally and automatically correct the errors that they have accumulated. Such a
traveller need not have a precise map in their head, they need only have one good enough
to get to the next landmark. As has been noted before in robotics, “the world is its own
best model” (Brooks 1991). Given this, it is hard to imagine that the humans would
compute an exact and complete map, and indeed it is well known that they do not.

4.2 Contributions to Robotics

Within its own space, roboticists are proud of finding a solution to the principle problem
that they have identified – namely how to correct the sensor errors and produce a correct
map while simultaneously exploring the environment – and rightly so. Their confidence in
this approach has led some to predict that the future key challenges lie in developing ever
larger, more persuasive demonstrations of the approach, such as mapping a city, or massive
structures such as the Barrier Reef or the surface of Mars (Bailey and Durrant-Whyte 2006;
Durrant-Whyte and Bailey 2006). Not surprisingly then, these algorithms have been
extended for handling dynamic environments (e.g. Fox et al. 1999; Hahnel et al. 2003), for
creating maps in large outdoor environments (Thrun and Montemerlo 2006; Folkesson and
Christensen 2007), for creating 3D maps (Nüchter et al. 2007; Pathak et al. 2010), for
creating sub-maps as places in a topological map (Konolige et al. 2011; Ranganathan and
Dellaert 2011), and for use with vision (Ho and Newman 2007; Schleicher et al. 2010).
More recently SLAM-based approaches have become a popular choice for use with drones.

Despite all of this work and all of these successes with SLAM, and despite the fact
that the basic processes involved in SLAM are similar to what cognitive scientists are
interested in with humans, cognitive science has not paid attention to the results of
SLAM research, even though some of these results indicate problems that must be
resolved by cognitive models going forward. Humans may not resolve the accumulation
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of error in the same way that SLAM does, for example, but SLAM research has very
effectively shown that it must be resolved in some way, it cannot simply be ignored.
Conversely, nature must have discovered an alternative approach to the one being
studied and adopted by roboticists because there are so many examples of successful
animal navigators. As discussed above, one such alternative, as illustrated in Yeap
(2011a), could provide an alternative paradigm for robot mapping. As we have already
witnessed in the development of SLAM-based approaches, if the robotics community
take interests in such alternative approaches, they will help accelerate the development
and understanding of the alternative paradigms and thus more effectively help to search
the space for solving the larger problem of general purpose navigation, both for humans
and robotics.

5 Concluding Remarks

When two different fields intersect in a new way it is natural for the early work at the
intersection to run into the problems inherent in attempting to please two different
masters with two distinct sets of needs. This has certainly been the case with cognitive
robotics. Ultimately the different standards of evaluations stemming from the two fields
can be restrictive, stifling and even self-defeating. In this article we have proposed that
cognitive robotics should move in new directions aimed less at slavishly modeling
human navigation and instead focus more on processes and principles. In the end we
expect that all of the fields involved will gain. Cognitive science can benefit from the
work done in robotics in exploring the problems of situating real agents in the real world.
This work continues to uncover new problems and alternative solutions to such prob‐
lems. Meanwhile, robotics can benefit from ideas stemming from systems that are far
more general and flexible than any produced by man to date.
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