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Abstract. Extreme learning machine (ELM) is a fast algorithm to train
single-hidden layer feedforward neural networks (SLFNs). Like the traditional
classification algorithms, such as decision tree, Naïve Bayes classifier and
support vector machine, ELM also tends to provide biased classification results
when the classification tasks are imbalanced. In this article, we first analyze the
relationship between ELM and Naïve Bayes classifier, and then take the deci-
sion outputs of all training instances in ELM as probability density represen-
tation by kernel probability density estimation method. Finally, the optimal
classification hyperplane can be determined by finding the intersection point of
two probability density distribution curves. Experimental results on thirty-two
imbalanced data sets indicate that the proposed algorithm can address class
imbalance problem effectively, as well outperform some existing class imbal-
ance learning algorithms in the context of ELM.
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1 Introduction

Extreme learning machine proposed by Huang et al., [1] has become a popular research
topic in machine learning in recent years [2]. It is proved that single-hidden layer
feedforward neural networks (SLFNs) with arbitrary hidden parameters and continuous
activation function can universally approximate to any continuous functions [1]. Some
recent research [3–6], however, indicated that the performance of ELM could be
destroyed by class imbalance distribution, which is similar with some traditional
classifiers, such as support vector machine, Naïve Bayes classifier and decision tree. In
class imbalance scenario, the accuracy of the minority class always tends to be
underestimated, causing meaningless classification results [7]. Therefore, it is necessary
to adopt some strategies to make the classification model provide impartial classifi-
cation results.

In the context of ELM, some researchers have presented several class imbalance
learning algorithms. Weighted extreme learning machine (WELM) appoints different
penalty parameters for the training errors belonging to the instances in different cate-
gories, decreasing the possibility of misclassifying the minority class samples [3]. The
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penalty parameters, however, can be only allocated empirically. A similar algorithm
called Fuzzy ELM (FELM) was proposed in [4], which changes the distributions of
penalty parameters by inserting a fuzzy matrix. As two well-known data-layer class
imbalance learning algorithms, random oversampling (ROS) and synthetic minority
oversampling technology (SMOTE) have also be integrated into ELM to deal with
practical class imbalance applications [5, 6].

In this article, we try to present a novel algorithm to deal with class imbalance
problem in the context of ELM. First, we analyze the relationship between ELM and
Naïve Bayes classifier, and indicate that the decision output in ELM approximately
equals to the posterior probability in Naïve Bayes classifier. Then, on the decision
output space, we estimate the probability density distributions for two different classes,
respectively. Finally, the optimal position of the classification hyperplane can be
determined by finding the intersection point of two probability density distribution
curves. We compare the proposed algorithm with several popular class imbalance
learning algorithms, and the experimental results indicate its superiority.

2 Theories and Methods

2.1 Extreme Learning Machine

Considering a supervised learning problem where we have a training set with
N training instances and m classes, ðxi; tiÞ 2 Rn � Rm. Here, xi is an n × 1 input vector
and ti is the corresponding m × 1 target vector. ELM aims to learn a decision rule or an
approximation function based on the training data. In other words, ELM is used to
create an approximately accurate mapping relationship between xi and ti.

Unlike the traditional back-propagation (BP) algorithm [8], ELM provides the
hidden parameters randomly to training SLFNs. Suppose there are L hidden layer
nodes, then for an instance x, the corresponding hidden layer output can be presented
by a row vector h xð Þ ¼ ½h1 xð Þ; . . .; hL xð Þ�, thus the mathematical model of ELM is:

Hb ¼ T ð1Þ

where H ¼ h x1ð Þ; . . .; h xNð Þ½ �T is the hidden layer output matrix for the whole training
set, β is the output weight matrix and T is the target vector. Here, only the output
weight matrix β is unknown. Then we can adopt least square method to acquire the
solution of β that can be described as follows:

b ¼ Ĥ
y
T ¼ HTðIC þHHTÞ�1T;when N� L

b ¼ Ĥ
y
T ¼ ðIC þHTHÞ�1HTT;when N[ L

8<
: ð2Þ

Here, Ĥ
y
is the Moore-Penrose “generalized” inverse of the hidden layer output matrix

H, which can guarantee the solution is least norm least square solution of Eq. (1). C is
the penalty parameter to mediate the balance relationship between the training errors
and the generalization ability.
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2.2 Relationship Between ELM and Naïve Bayes Classifier

According to some previous work, the decision outputs of SLFNs trained by BP algo-
rithm [8] can be regarded as an approximation of posteriori probability functions in Naïve
Bayes classifier [9, 10]. Suppose there are lots of training instances, and each of them
belongs to one of m classes. We can train an SLFNs to obtain the output weight matrix
w. Let fkðx;wÞ be the output of the kth output node of the SLFNs, i.e., the discriminant
function corresponding to the kth class wk , then we can recall Bayes formula,

P wkjxð Þ ¼ P xjwkð ÞPðwkÞPm
i¼1 P xjwið ÞPðwiÞ ¼

pðx;wkÞ
PðxÞ

and the Bayes decision for any instance x: choosing the class wk which has the largest
discriminant function fk xð Þ ¼ P wkjxð Þ. Without loss of generality, suppose the training
outputs are restricted as {0, 1}, where 1 denotes the output of the corresponding class
and 0 denotes the outputs of the other classes. The contribution to the criterion function
based on a single output unit k for finite number of training samples x is:

J wð Þ ¼
X
x

ðfk x;wð Þ � tkÞ2

¼
X

x2wk
ðfk x;wð Þ � 1Þ2 þ

X
x62wk

ðfk x;wð Þ � 0Þ2

¼ n
nk
n

1
nk

X
x2wk

ðfk x;wð Þ � 1Þ2 þ n� nk
n

1
n� nk

X
x 62wk

ðfk x;wð Þ � 0Þ2
� �

ð3Þ

where n denotes the number of training instances, while nk stands for the number of
instances belonging to the class wk. In the limit of infinite data, we can use Bayes
formula to express Eq. (3) as:

limn!1
1
n
J wð Þ ¼ ~J wð Þ

¼ pðwkÞ
Z

ðfk x;wð Þ � 1Þ2 P xjwkð Þdxþ pðwi6¼kÞ
Z

fk x;wð Þ2 P xjwi6¼k
� �

dx

¼
Z

f 2k x;wð Þp xð Þdx� 2
Z

fk x;wð Þpðx;wkÞdxþ
Z

pðx;wkÞdx

¼
Z

ðfk x;wð Þ � pðwkjxÞÞ2p xð Þdxþ
Z

pðwkjxÞpðwi 6¼kjxÞp xð Þdx

ð4Þ

Obviously, the right-hand side in Eq. (4) is irrelevant with the weight w, thus
SLFNs is to minimize:

Z ðfk x;wð Þ � pðwkjxÞÞ2p xð Þdx ð5Þ
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Because this is true for each class, SLFNs minimizes the sum:

Xm

k¼1

Z ðfk x;wð Þ � pðwkjxÞÞ2p xð Þdx ð6Þ

Therefore, in the limit of infinite data, the outputs of the trained SLFNs will
approximate the true posterior probabilities in a least-squares sense, i.e.,
fk x;wð Þ ¼ pðwkjxÞ.

As we know, like BP algorithm, ELM also provides approximate least squares
solution of Eq. (1) though it simultaneously minimizes the norm of the weight matrix.
Therefore, the decision outputs in ELM reflect the posteriori probabilities of different
classes in Naïve Bayes classifier to some extent.

2.3 Probability Density Estimation

As described above, the decision outputs in ELM can reflect posteriori probabilities of
different classes, thus for binary-class problem, we can map all instances from original
feature space to an one-dimensional space. Here, ELM is used as a feature extraction
tool. Then, we regard to estimate the probability density distributions of two different
classes on the compressed one-dimensional feature space. Specifically, kernel proba-
bility density estimation [11], which is a nonparametric way to estimate the probability
function of a random variable, is adopted.

Figure 1 shows a schematic diagram about probability density distributions of a
binary-class problem on the one-dimensional decision output space acquired from
ELM. From Fig. 1, we observe that after estimating probability density distributions,
the prior probabilities for the two classes pðwþ Þ and pðw�Þ, and the corresponding
conditional distribution probabilities pðxjwþ Þ and pðxjw�Þ can be both obtained, then
recall Bayes function, the posterior probabilities of two classes can be calculated as:

p wþ jxð Þ ¼ pðxjwþ Þpðwþ Þ
pðxÞ ; p w�jxð Þ ¼ pðxjw�Þpðw�Þ

pðxÞ ð7Þ

Fig. 1. Probability density distributions, original and optimal break points for a binary-class
imbalanced problem, where w+ denotes the positive class (minority class), and where w- denotes
the negative class (majority class).
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It is clear that when p wþ jxð Þ ¼ p w�jxð Þ, i.e., when p xjwþð Þp wþð Þ ¼
pðxjw�Þpðw�Þ, the corresponding x value is selected as break point in Bayes decision.
For class imbalance data, however, because pðwþ Þ � pðw�Þ, to guarantee
p xjwþð Þp wþð Þ ¼ pðxjw�Þpðw�Þ, the actual break point will be pushed towards the
minority class. Therefore, Fig. 1 shows that using the original break point acquired
from ELM will seriously destroy the performance of the minority class, but when we
find the horizon axis corresponding to the intersection point of two density distribution
curves, it can be seen as the optimal break point for the classification task.

2.4 Description of the Proposed Algorithm

The detailed computational procedure of the proposed algorithm is described as follows:

3 Experiments

3.1 Datasets and Parameters Settings

The experiments are carried out on thirty-two binary-class imbalanced data sets
acquired from Keel data repository [12]. The detailed information of these data sets are
summarized in Table 1, where IR denotes the class imbalance ratio.

To present the superiority of the proposed algorithm, we compared it with some
other class imbalance learning algorithms in the context of ELM, including ELM [1],
WELM1 [3], WELM2 [3], ELM-RUS, ELM-ROS [5] and ELM-SMOTE [6]. In
addition, to guarantee the impartiality of the comparative results, grid search was
adopted to search the optimal parameters, where sigmoid function was used as acti-
vation function at the hidden level, and two other parameters L and C were selected
from {10, 20, …, 200} and {2−20, 2−18, …, 220}, respectively. As for the performance
evaluation, G-mean metric was used.

3.2 Results and Discussions

Considering the randomness of ELM, five fold cross-validation was adopted, and each
experiment was randomly executed 10 times, finally the average classification results
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were given. Table 2 provides the G-mean values of various algorithms, where in each
row, the bold denotes the best result, the underline labels the second best and the italic
stands for the worst one.

From Table 2, we observe that nearly all other algorithms outperform the original
ELM algorithm, demonstrating each bias correction strategy can effectively alleviate
the class imbalance problem. We also note that sampling and weighting technologies
have quitely similar classification performance. As we know, WELM1 and WELM2
adopt different weights to punish the training errors, but there seems no a clear winner
between them, as they have acquired the highest G-mean values on five data sets,

Table 1. Data sets used in the experiments.

Data set Number of features Number of instances IR

ecoli3 7 336 8.6
glass1 9 214 1.82
haberman 3 306 2.78
new_thyroid1 5 215 5.14
pima 8 768 1.87
vehicle1 18 846 2.9
wisconsin 9 683 1.86
yeast3 8 1484 8.1
abalone9_18 8 731 16.4
ecoli4 7 336 15.8
shuttle_c0_vs_c4 9 1829 13.87
vowel0 13 988 9.98
yeast4 8 1484 28.1
yeast5 8 1484 32.73
page_blocks0 10 5472 8.79
ecoli_0_1_vs_2_3_5 7 244 9.17
ecoli_0_1_vs_5 6 240 11
ecoli_0_3_4_vs_5 7 200 9
ecoli_0_6_7_vs_3_5 7 222 9.09
ecoli_0_6_7_vs_5 6 220 10
led7digit_0_2_4_5_6_7_8_9_vs_1 7 443 10.97
yeast_0_2_5_7_9_vs_3_6_8 8 1004 9.14
yeast_0_3_5_9_vs_7-8 8 506 9.12
cleveland_0_vs_4 13 177 12.62
shuttle_2_vs_5 9 3316 66.67
shuttle_6_vs_2-3 9 230 22
winequality-red_4 11 1599 29.17
winequality-red_3_vs_5 11 691 68.1
iris0 4 150 2
page-blocks_1_3_vs_4 10 472 15.86
vehicle0 18 846 3.25
glass_0_1_5_vs_2 9 172 9.12
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respectively. We consider that the optimal weight settings should be closely related
with the practical instance distributions. In sampling series algorithms, oversampling
performs better than undersampling on majority data sets, especially on those highly
skewed ones. On these data sets, the instances in the minority class are quitely sparse,
causing much useful information loss by using RUS algorithm. Moreover,
ELM-SMOTE obviously outperforms ELM-ROS as it have acquired two more best
results and seven more second best results.

In contrast with six other algorithms, the proposed algorithm performs best,
because it has acquired the highest G-mean value on nine data sets and the second
highest G-mean value on fifteen ones. The results demonstrate that exploring the prior
information about data distribution is helpful for improving classification performance
in class imbalance tasks more or less.

Table 2. G-mean values of various algorithms on 32 imbalanced data sets.

Data set ELM WELM1 WELM2 ELM-RUS ELM-ROS ELM-SMOTE Proposed
algorithm

ecoli3 0.7182 0.8792 0.8883 0.8733 0.8780 0.8602 0.8800
glass1 0.6712 0.6923 0.6457 0.6976 0.7030 0.6932 0.7020
haberman 0.4703 0.6262 0.5300 0.6305 0.6310 0.6103 0.6419
new_thyroid1 0.8540 0.9683 0.9327 0.9787 0.9944 0.9743 0.9831
pima 0.6936 0.7442 0.7127 0.7296 0.7314 0.7483 0.7474
vehicle1 0.7709 0.8248 0.7751 0.8049 0.8285 0.8327 0.8293
wisconsin 0.9570 0.9711 0.9667 0.9615 0.9597 0.9667 0.9707
yeast3 0.7612 0.9072 0.8968 0.9199 0.9197 0.9207 0.9221
abalone9_18 0.3536 0.8498 0.8267 0.7954 0.7851 0.8001 0.8729
ecoli4 0.7966 0.9719 0.8532 0.8891 0.9509 0.8292 0.9661
shuttle_c0_vs_c4 0.9930 0.9932 0.9962 0.9930 0.9932 0.9932 0.9930

vowel0 0.9858 0.9860 0.9888 0.9672 0.9981 0.9978 0.9909
yeast4 0.2969 0.8041 0.8088 0.8007 0.8090 0.8133 0.8167
yeast5 0.5668 0.9623 0.9684 0.9414 0.9615 0.9425 0.9680
page_blocks0 0.7914 0.8640 0.8510 0.9123 0.9190 0.9199 0.9265
ecoli_0_1_vs_2_3_5 0.8624 0.8844 0.8849 0.8140 0.8406 0.8973 0.8891
ecoli_0_1_vs_5 0.8737 0.9072 0.9129 0.9213 0.8942 0.8842 0.9181
ecoli_0_3_4_vs_5 0.8398 0.8761 0.8765 0.8986 0.9394 0.9283 0.9352
ecoli_0_6_7_vs_3_5 0.7809 0.8649 0.8900 0.7970 0.8112 0.8697 0.8817
ecoli_0_6_7_vs_5 0.8481 0.8878 0.8962 0.8629 0.8853 0.8966 0.8996
led7digit_0_2_4_5_6_7_8_9_vs_1 0.8809 0.8674 0.8653 0.8223 0.8331 0.8667 0.8514
yeast_0_2_5_7_9_vs_3_6_8 0.8497 0.9072 0.9061 0.8913 0.8987 0.9082 0.9063
yeast_0_3_5_9_vs_7-8 0.4346 0.6934 0.6690 0.6486 0.6526 0.6630 0.6847
cleveland_0_vs_4 0.6549 0.7934 0.7073 0.8270 0.6348 0.7079 0.8189
shuttle_2_vs_5 0.9140 0.9609 0.9389 0.9973 0.9990 0.9988 0.9986
shuttle_6_vs_2-3 0.9573 0.9573 0.9573 0.9357 0.9573 0.9707 1.0000
winequality-red_4 0.0000 0.6936 0.6405 0.6408 0.6630 0.6329 0.6733
winequality-red_3_vs_5 0.0000 0.4057 0.4823 0.6388 0.3562 0.2688 0.6470
iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
page-blocks_1_3_vs_4 0.8186 0.9770 0.9608 0.9338 0.9549 0.9841 0.9782
vehicle0 0.9756 0.9744 0.9662 0.9703 0.9716 0.9757 0.9719
glass_0_1_5_vs_2 0.1146 0.7645 0.7308 0.6829 0.7606 0.7730 0.7555
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4 Conclusions

In this article, a probability density estimation-based ELM classification algorithm is
proposed to classify imbalanced data. Unlike other class imbalance learning algorithms,
the proposed algorithm does not need to change the original data or weight distribu-
tions, but only to estimate the probability density distribution of the decision outputs
acquired from ELM and then to find the optimal position to place the classification
hyperplane. Experimental results on thirty-two benchmark data sets verified the
effectiveness and superiority of the proposed algorithm.
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