
Betty H.C. Cheng · Benoit Combemale
Robert B. France · Jean-Marc Jézéquel
Bernhard Rumpe (Eds.)

Globalizing
Domain-Specific Languages

St
at

e-
of

-th
e-

Ar
t

Su
rv

ey
LN

CS
 9

40
0

 123

International Dagstuhl Seminar
Dagstuhl Castle, Germany, October 5–10, 2014
Revised Papers

Lecture Notes in Computer Science 9400

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Betty H.C. Cheng • Benoit Combemale
Robert B. France • Jean-Marc Jézéquel
Bernhard Rumpe (Eds.)

Globalizing
Domain-Specific Languages
International Dagstuhl Seminar
Dagstuhl Castle, Germany, October 5–10, 2014
Revised Papers

123

Editors
Betty H.C. Cheng
Michigan State University
East Lansing, MI
USA

Benoit Combemale
IRISA, Université de Rennes 1
Rennes
France

Robert B. France (†)
Colorado State University
Fort Collins, CO
USA

Jean-Marc Jézéquel
IRISA, Université de Rennes 1
Rennes
France

Bernhard Rumpe
RWTH Aachen University
Aachen
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-26171-3 ISBN 978-3-319-26172-0 (eBook)
DOI 10.1007/978-3-319-26172-0

Library of Congress Control Number: 2015953257

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Foreword

Dismantling the “Tower of Babel”

The design and construction of complex technical systems such as cyber-physical
systems has always been a difficult process due to the sheer number and diversity of
design decisions that need to be made. What makes this particularly challenging is the
fact that many of these design choices are interdependent, so that selecting a particular
alternative constrains the choices available for other decisions. This issue is becoming
more vexing as the number of potential technical alternatives increases with technical
progress while, at the same time, there is an ever-growing demand for more sophis-
ticated system functionality. To make this intricate task manageable, engineers have
throughout history relied on the trusted “divide and conquer” technique; that is, first
decomposing a complex problem to be solved into more manageable sub-problems,
then solving each of them individually, and, finally, combining the resulting solutions
into a single integrated system. Depending on the size and complexity of the system
under consideration, the same approach may have to be applied at multiple hierar-
chically nested levels.

A fundamental weakness of this approach is that any decomposition of the original
problem is itself a critical design choice that invariably has repercussions on many key
downstream design decisions. Exacerbating this is the fact that the decomposition
decision has to be made early, when least is known about the problem and possible
solutions. Consequently, it is not uncommon to see that, as development progresses and
problem understanding grows, engineers begin to realize that their chosen decompo-
sition is suboptimal and that others would have been more suitable. Unfortunately, all
too often this realization comes too late because significant time, resources, and effort
may have already been expended developing the system based on the original
decomposition, meaning that any major re-engineering would be either impractical or
prohibitively expensive.

To minimize the risk of inappropriate decompositions, it is necessary for the design
and development teams to gain insight and experience with the problem on hand as
early as possible. Clearly, since the system to be developed does not exist until it is
implemented, another age-old engineering technique is used: the use of models to
represent the intended design of components yet to be built. These engineering models
can take many different forms, including renderings that only exist as ideas in designers
heads. However, to be truly useful, an engineering model must take on a concrete form
so that it can be communicated to other stakeholders as well as analyzed for suitability.
Formal models in particular are desirable since they can be analyzed by formal (i.e.,
mathematical or logical) means, which, if the analyses are conducted correctly, are
more likely to yield correct and, hence, more trustworthy results. Moreover, if the

models are realized on a computer, many of the mechanistic aspects of the analysis
procedure can be automated.

While computer-based models can help provide more trustworthy analysis results,
they do not on their own solve the problem of design decision inter-dependencies
unless, of course, the models themselves are linked in appropriate ways. How to link
models, particularly models of different subsystems, is one of the primary themes of
this volume. Until we had computer-based subsystem models, the only way to link
models was through textual reference or human recall methods that have proven highly
error prone at best. With the use of computer-supported hyperlinking it is possible to
make such links not only more reliable but, even more importantly, more meaningful.
This is because it is possible for them to account in various ways for the specific
semantics of the model elements that are being linked. Thus, a hyperlink between a
software component in a model of the software and an element representing a processor
in a model of the intended hardware platform can be customized to capture the specific
nature of the software deployment relationship. With that information it might be
possible, for example, to compute whether or not the processor is sufficiently powerful
to support that software component.

But, even with such computer-aided support, one major problem remains: what if
the models whose elements are to be linked are specified using different modeling
languages? This is much more than just a syntactical issue: different modeling lan-
guages may be based on very different semantic foundations. For example, time in one
language may be modeled as a continuous quantity whereas it may be discrete in
another. Or, one language may be used to model software while another represents the
thermal aspects of a system – two radically different domains based on very different
paradigms and different ontologies. Yet, although the various languages used in the
design of a complex system deal with different phenomena, they all describe compo-
nents of the same system, including some that are simultaneously present in multiple
models but in different forms.

How should this heterogeneity of paradigms and languages be handled? What is the
nature of these “semantically aware” hyperlinks? The salient approaches proposed here
may come as a surprise to some, particularly given the use of the term “globalization”,
which might in the minds of some people connote an Esperanto-like homogenization
and unification. What we see, instead, is a more subtle and a much more pragmatic
approach based on integration rather than replacement. Even a superficial analysis on
how much has been invested in existing technologies and languages reveals that it
would be impractical to replace them with some new “universal” language and toolset
combination – even if we could realistically devise one. The history of technological
progress teaches us that most viable technical disciplines are constantly evolving,
sprouting new offshoots (i.e., new sub-disciplines) along the way. Each of these is a
specialization of another specialization, all of it driven by the need to reason concisely
and yet accurately about domain-specific concerns and phenomena. This leads to an
ever-increasing number of domain-specific modeling paradigms and languages. Without
doubt, this trend will never cease. Consequently, “globalization” as used in this volume
means co-existence, and more specifically, collaboration at the system level.

Needless to say, such solutions to this “Tower of Babel” syndrome are not new, yet
we have failed to deal with it effectively in the past. So, what has changed to give us

VI Foreword

hope that we finally have a realistic crack at overcoming it now? It is my conjecture that
this is mostly due to the recent emergence of (or, more precisely, the beginnings of) a
general theory of modeling languages. This was prompted by the standardization of a
few key modeling languages including notably UML and SysML. While neither
of these can be held up as a paragon of technical perfection, their very flaws (ambi-
guity, redundancy, lack of precision, etc.) inspired a strong research movement to
understand how they can be improved. This seems to have provided the necessary
catalyst, which, combined with other recent technological advances, such as ever more
powerful computing and communications systems and new generations of
computer-based tools, has created the basis for radically new ways of engineering
complex technical systems. That is, when these methods and associated technologies
reach maturity, engineers will be able to make much more informed design choices
much more rapidly, through extensive yet efficient design space exploration. Such
dramatic qualitative leaps occur rarely, since much of today’s technical progress tends
to occur in small increments. This is why I am so excited about the work presented in
this volume; I fully expect that it will serve as a core reference source both for
researchers and practitioners for many years to come.

In closing, I take this opportunity to pay homage to an exceptional individual, an
inspirational leader, a dear friend, and a true gentleman, Dr. Robert France. Sadly,
Robert passed away earlier this year, but not until he contributed in fundamental ways to
the organization of the Dagstuhl workshop whose results are presented in this volume.
However, Robert’s contribution to the budding field of model-based software engi-
neering goes far beyond that. He was without doubt one of its true pioneers and will
always be fondly remembered as such. One of the initiators of the MoDELS conference
series – which has become the premier technical venue for publishing and discussing
both research and practical work in the domain—Robert was also the founding editor
of the Journal of Software and Systems Modeling (SoSym) the mainline scientific
publication for model-based papers. A patient but persistent man with high technical
standards, Robert always strived for cooperation and synergy, drawing all of us working
on models and modeling into a diverse and yet unified force, giving thus greater weight
to our work and our messages. He worked tirelessly, not hesitating in his efforts even
after he was diagnosed with a fatal disease. Thus let this volume be a tribute to this
lovely and important human being, to whom we all owe much.

September 2015 Bran Selić

Foreword VII

Preface

This book is a result of the 2014 Dagstuhl seminar no. 14412 entitled “Globalizing
Domain-Specific Languages.”1 This Dagstuhl seminar provided a forum in which
discussion was focused on the problem of developing complex software systems that
span multiple domains of expertise. In the software and system modeling community,
research on domain-specific languages (DSLs) aims at providing technologies for
developing languages and tools allowing domain experts to efficiently develop system
solutions in a particular domain. Unfortunately, the lack of support for explicitly
relating concepts expressed in different DSLs made it difficult for developers to reason
about information spread across models describing different system aspects. Supporting
coordinated use of DSLs leads to what we call the globalization of domain-specific
languages.

The goal of the seminar was to develop a research initiative that broadens the DSL
research focus beyond the development of independent DSLs to one that supports
globalized DSLs, that is, DSLs that facilitate coordination of work across different
domains of expertise. In the globalized DSLs vision, integrated DSLs provide the
means for teams working on systems that span many specialized domains and concerns
to determine how their work on a particular aspect influences work on other aspects.

September 2015 Betty H.C. Cheng
Benoit Combemale
Robert B. France

Jean-Marc Jézéquel
Bernhard Rumpe

1 http://www.dagstuhl.de/14412

http://www.dagstuhl.de/14412

Organization

Organizers

Betty H.C. Cheng Michigan State University - East Lansing, USA
Benoit Combemale University of Rennes and Inria, France
Robert B. France Colorado State University, USA
Jean-Marc Jezequel University of Rennes, France
Bernhard Rumpe RWTH Aachen, Germany

Sponsoring Initiatives

The GEMOC Initiative, see http://gemoc.org
The ReMoDD Initiative, see http://www.cs.colostate.edu/remodd

Participants

Colin Atkinson
Cedric Brun
Barrett Bryant
Benoit Caillaud
Betty H.C. Cheng
Tony Clark
Siobhn Clarke
Benoit Combemale
Julien Deantoni
Thomas Degueule
Robert B. France
Ulrich Frank
Jean-Marc Jezequel
Gabor Karsai

Ralf Lämmel
Marjan Mernik
Pieter J. Mosterman
Oscar Nierstrasz
Bernhard Rumpe
Martin Schindler
Friedrich Steimann
Eugene Syriani
Janos Sztipanovits
Juha-Pekka Tolvanen
Antonio Vallecillo
Mark van den Brand
Markus Völter

http://gemoc.org
http://www.cs.colostate.edu/remodd

Tribute to Robert B. France

At the time of finalizing this book, we were devastated to learn of the passing of Prof.
Robert B. France, on the evening of Sunday, February 15, 2015. His passing was
painless, after a battle against cancer. He was 54 years old. Robert B. France was one
of the initiators of the Dagstuhl seminar no. 14412, fully devoted in the organization,
even during the seminar itself, while already suffering from his illness. We dedicate this
book to his memory.

Robert’s Scientific Life

Robert started his scientific life at the University of the West Indies, St. Augustine,
Trinidad and Tobago in the Caribbean. He graduated in 1984 and began working as a
computer specialist in a project called USAID Census in the St. Vincent office of a US
company. In 1986, he moved on to the Massey University in Palmerston, New Zealand,
where he received his PhD in Computer Science in 1990. From 1990 to 1992, he
worked as a postdoctoral fellow at the University of Maryland, Institute for Advanced
Computer Studies, USA.

Robert was appointed as an assistant professor at the Computer Science and
Engineering Department, Florida Atlantic University in Boca Raton, Florida, and
stayed there for six years (1992–1998). In 1999, he moved to the Colorado State
University (CSU) in Fort Collins as tenured Associate Professor and was promoted to
Full Professor in 2004.

In the period 2006–2007, Robert spent his sabbatical year at Lancaster University
in the UK and at IRISA/Inria in Rennes, France. He also made a number of extended
scientific visits: to the University of Nice in 2009 and 2012, to SINTEF, Norway, in
2009 and 2011, and the University of Pau in 2003. From 2011, he held a position as
visiting Adjunct Professor at the University of the West Indies. In his visits and travels,
he was often accompanied by his wife, Sheriffa.

Robert was active at CSU in both organizational and scientific positions for as long
as his health allowed him and even helped to organize the Modularity Conference,
which took place in Fort Collins in March 2015.

During his scientific life, Robert made a remarkable number of research
contributions. His CV (last updated in August 2014) lists:

– 33 journal articles
– 10 book chapters
– One invited paper
– 107 refereed conference papers
– 40 refereed workshop papers
– 13 proceedings and journal editorials

And we know that more papers with his name are still being published. As of
March 20, 2015, DBLP lists 236 published entries co-authored by Robert, including
informal summaries and SoSyM editorials, and an astonishing list of 223 collaborating
authors. Google Scholar lists 387 entries! Since he was an Editor-in-Chief of SoSyM
from its inception, Robert was never allowed to publish his work there. Therefore his

XII Organization

modeling papers were mostly published at conferences. Otherwise, we are sure that his
journal paper count would have been even higher!

In addition to his amazing research productivity and a 16-year labor-intensive
commitment to SoSyM, Robert was also an active member of IEEE-CS, ACM, and the
OMG. In addition, he served on one of the UML task forces as part of his OMG
participation. Robert served as a keynote speaker, invited panelist, panel moderator,
invited speaker, summer school lecturer, and, in addition, gave numerous talks at
companies and conferences all around the world. He also served as an Associate Editor
of IEEE Computer (2006–2012) and the Journal of Software Testing, Verification and
Reliability (2006–2015). Furthermore, he cared deeply about the computer science
educational curriculum, serving on the IEEE Computer Society Educational Activities
Board (2011–2013). However, his most sustainable scientific service achievement was
the role he played in establishing the UML/MODELS conference series. He was the
general chair and the local arrangements chair of the first UML/MODELS conference
held in Fort Collins in 1999, right after an initial UML workshop in France in 1998.
This conference series brought together a research community that eventually made
SoSyM the success it is today.

Robert Was an Outstanding Researcher

He was a pioneer in the cross-fertilization of formal methods and informal or
semi-formal specification languages used in software engineering. His work provided
the scientific foundations of the “integrated methods” which have evolved into a
rigorous model-driven engineering (MDE). His contributions in the fields of languages,
verification, and modeling have provided the mathematical tools used in the design of
critical systems. The exceptional quality of his work on modeling, and his contribution
to the object-oriented programming and modeling community, was honored in 2014
with the AITO Dahl-Nygaard Senior Prize, awarded on the occasion of the ECOOP
conference. The steering committee of the MODELS conference also awarded him in
January 2015 the first MODELS Career award.

Robert Was a Recognized Teacher

Robert was recognized for his teaching skills, his proximity with the students, and his
ability to share his vision. Sharing knowledge with students always concerned him. He
actively participated in the democratization of computer science education, being a
member of the Steering Committee of the “IEEE/ACM Computer Science Curriculum
Recommendation, CS2013” and head of the committee “IEEE Curricula.” He was
responsible for the international program REUSSI, and was a mentor for many
researchers around the world and helped them to develop a culture and scientific rigor,
as well as appreciating the richness of this job. Since 2014, he was Professor Laureate
at Colorado State University (CSU), the highest honor that can be awarded to a teacher,
recognizing his qualities.

Organization XIII

Robert Was Passionate About the Animation of the Scientific Community

Robert was a founding member of the pUML initiative to define a formal semantics for
the UML standard. He organized the first UML conference in 1999 in Denver, and the
first edition of the newly renamed MODELS conference in 2005 at Montego Bay,
Jamaica. He was also a founding member and editor-in-chief of the SoSyM Journal.
More recently, he promoted various initiatives to take a new step in MDE through a
maturation phase: the ReMoDD initiative, which aims at the creation of a repository of
models to build experimental results that are sound and reproducible; and the GEMOC
initiative, which aims to develop the foundations, methods, and tools to facilitate the
creation, integration, and automated processing of heterogeneous modeling languages.

Robert Was a Child of the Caribbean

Always concerned with providing excellent training, he worked a lot to enable young
researchers to access studies, build their academic networks, and benefit from
exceptional collaborations. He devoted his energy to allow Caribbean students to
access their expected studies. These efforts have become part of the heritage of the
Caribbean, awarded in 2014 by the Institute of Caribbean Studies.

XIV Organization

Contents

On the Globalization of Domain-Specific Languages 1
Betty H.C. Cheng, Benoit Combemale, Robert B. France,
Jean-Marc Jézéquel, and Bernhard Rumpe

Conceptual Model of the Globalization for Domain-Specific Languages. 7
Tony Clark, Mark van den Brand, Benoit Combemale,
and Bernhard Rumpe

Motivating Use Cases for the Globalization of DSLs 21
Betty H.C. Cheng, Thomas Degueule, Colin Atkinson, Siobhan Clarke,
Ulrich Frank, Pieter J. Mosterman, and Janos Sztipanovits

Globalized Domain Specific Language Engineering 43
Barrett Bryant, Jean-Marc Jézéquel, Ralf Lämmel, Marjan Mernik,
Martin Schindler, Friedrich Steinmann, Juha-Pekka Tolvanen,
Antonio Vallecillo, and Markus Völter

Domain Globalization: Using Languages to Support Technical and Social
Coordination. 70

Julien Deantoni, Cédric Brun, Benoit Caillaud, Robert B. France,
Gabor Karsai, Oscar Nierstrasz, and Eugene Syriani

Author Index . 89

http://dx.doi.org/10.1007/978-3-319-26172-0_1
http://dx.doi.org/10.1007/978-3-319-26172-0_2
http://dx.doi.org/10.1007/978-3-319-26172-0_3
http://dx.doi.org/10.1007/978-3-319-26172-0_4
http://dx.doi.org/10.1007/978-3-319-26172-0_5
http://dx.doi.org/10.1007/978-3-319-26172-0_5

On the Globalization of Domain-Specific
Languages

Betty H.C. Cheng1, Benoit Combemale2,3(B), Robert B. France4,
Jean-Marc Jézéquel2, and Bernhard Rumpe5

1 Michigan State University, East Lansing, USA
2 University of Rennes, Rennes, France

3 Inria, Rennes, France
benoit.combemale@irisa.fr

http://people.irisa.fr/Benoit.Combemale
4 Colorado State University, Fort Collins, USA

5 Software Engineering, RWTH Aachen, Aachen, Germany
rumpe@se-rwth.de

Abstract. In the software engineering community, research on domain-
specific languages (DSLs) is focused on providing technologies for design-
ing languages and tools that enable domain experts to develop system
solutions efficiently. Unfortunately, the current lack of support to explic-
itly relate concepts expressed in different DSLs makes it difficult for
software and system engineers to reason about information distributed
across models or programs describing different system aspects, at differ-
ent levels of abstraction. Supporting the coordinated use of DSLs is what
we call the globalization of DSLs. In this chapter, we introduce a grand
challenge of the globalization of DSLs, and we present a few motivating
scenarios for such a grand challenge.

Keywords: Domain-specific language · DSL · Globalization of DSLs ·
Model coordination · Modelling

1 Introduction

The development of current and future complex software-based systems such
as avionic, intelligent transportation, smart grid, and smart city and building
lifecycle management systems, requires experts from diverse domains to work
in a coordinated manner on different aspects of the system. For example, the
development of a software system that provides energy-efficient building lifecycle
management support for energy-aware development, occupation, maintenance,
and demolition of smart buildings, typically requires a system development team
that includes experts from a variety of domains, including building architecture,
material sciences, environmental sciences, energy management, urban/city/town
planning, cybersecurity, software engineering, and sensor networks. Each domain
has its own knowledge space that is supported by specialized software languages,
techniques, and tools. A major problem facing such development teams is how
c© Springer International Publishing Switzerland 2015
B.H.C. Cheng et al. (Eds.): Globalizing Domain-Specific Languages, LNCS 9400, pp. 1–6, 2015.
DOI: 10.1007/978-3-319-26172-0 1

2 B.H.C. Cheng et al.

to bridge the expertise gap between the diverse domains during system develop-
ment. Communication among the different domain experts is difficult to achieve
due to the lack of a common vocabulary and/or mechanisms that effectively
relate domain-specific system information expressed in the different models,
tools, techniques, and processes used by the domain experts. Coordination of
development activities across the different domains of expertise is particularly
necessary when the domains are intertwined, that is, when system decisions made
by experts in one domain depends on or influences decisions made by experts in
other domains. This type of dependency is common in modern complex systems
and can add significant complexity to these systems.

2 Domain-Specific (Modeling) Languages

Model-Driven Engineering (MDE) aims at reducing the accidental complexity
associated with developing complex software-intensive systems [8]. A primary
source of accidental complexity is the large gap between the high-level concepts
used by domain experts to express their problem statements and the low-level
abstractions provided by general-purpose programming languages [4]. Manually
bridging this gap, particularly in the presence of changing requirements, is costly
in terms of both time and effort. MDE approaches address this problem through
the use of modeling techniques that support separation of concerns and auto-
mated generation of major system artifacts (e.g., test cases, implementations)
from models. In MDE, a model describes an aspect of a system and is typically
created for specific development purposes. Separation of concerns is supported
through the use of different modeling languages, each providing constructs based
on abstractions that are specific to an aspect of a system. For example, General-
ized Stochastic Petri Nets can be used to create performance models [1], while the
notation provided by the Simulink1 tool is adapted to simulation models. MDE
technologies also provide support for manipulating models; for example, there
exists tool support for querying, transforming, merging, and analyzing (including
executing) models. As such, modeling languages are at the core of MDE.

Incorporating domain-specific concepts and best practices development expe-
rience into MDE technologies can significantly improve developer productivity
and system quality. This realization has led to work, starting in the late nineties,
on MDE-based language workbenches that support the development of domain-
specific (modeling) languages (DSLs) and associated tools (e.g., model editors
and code generators) [3]. A DSL provides a bridge between the (problem) space
in which domain experts work and the implementation (programming) space.
Domains in which DSLs have been developed and used include those for auto-
motive, avionics, and cyber-physical systems (CPS). More and more details are
also used to describe technical domains, such as configuration of distributed sys-
tems and communication networks, deployment structures, mappings of high-
level messages to low-level signals, or script languages that guide and control the
generation, compilation and deployment processes. It is worthwhile to distinguish
1 http://www.mathworks.com/products/simulink.

http://www.mathworks.com/products/simulink

On the Globalization of Domain-Specific Languages 3

technological DSLs and application DSLs, and to recognize that typically several
of those DSLs need to be coordinated within a given project.

Through an empirical study, Whittle et al. identified practices and trends
that seem to indicate that DSLs can pave the way for wider industrial adop-
tion of MDE [9]. Research on systematic development of DSLs has produced
a technology base that is sufficiently robust to support the integration of DSL
development processes into large-scale industrial system development environ-
ments. Current DSL workbenches support the development of DSLs to create
models that play pivotal roles in different development phases.

Workbenches such as Microsoft’s DSL tools2, MetaCase’s MetaEdit+3,
JetBrains’s MPS4, Eclipse Modeling Framework (EMF)5, MontiCore6 and the
Generic Modeling Environment (GME)7 support the specification of the abstract
syntax, concrete syntax and the static and dynamic semantics of a DSL. These
workbenches address the needs of DSL developers in a variety of application
domains.

3 A Grand Challenge of the Globalization of DSLs:
Looking Ahead

The development of modern complex software-intensive systems often involves
the use of multiple DSLs that capture different system aspects [2]. In addi-
tion, models of the system aspects are seldom manipulated independently of
each other. System engineers are thus faced with the difficult task of relating
information presented in different models. For example, a system engineer may
need to analyze a system property that requires information scattered in mod-
els expressed in different DSLs. Current DSL development workbenches provide
good support for developing independent DSLs, but provide little or no support
for integrated use of multiple DSLs. The lack of support for explicitly relating
concepts expressed in different DSLs makes it difficult for developers to reason
about information distributed across different models.

Past research on DSLs focused on their use to bridge the wide problem to
implementation gap. A new generation of complex software-intensive systems, for
example, smart health, smart grid, smart home, intelligent automation, build-
ing energy management, and intelligent transportation systems, presents new
opportunities for leveraging modeling languages. The development of these sys-
tems requires expertise in a variety of domains. Consequently, different types
of stakeholders (e.g., scientists, engineers and end-users) must work in a coor-
dinated manner on various aspects of the system across multiple development
phases. DSLs can be used to support the work of domain experts who focus
2 http://www.microsoft.com/en-us/download/details.aspx?id=2379.
3 http://www.metacase.com/fr/mwb/.
4 https://www.jetbrains.com/mps.
5 http://www.eclipse.org/modeling/emf.
6 http://www.monticore.de.
7 http://www.isis.vanderbilt.edu/projects/gme/.

http://www.microsoft.com/en-us/download/details.aspx?id=2379
http://www.metacase.com/fr/mwb/
https://www.jetbrains.com/mps
http://www.eclipse.org/modeling/emf
http://www.monticore.de
http://www.isis.vanderbilt.edu/projects/gme/

4 B.H.C. Cheng et al.

on a specific system aspect (e.g., network communication or security), but they
can also provide the means for coordinating work across teams specializing in
different aspects and across development phases.

Supporting coordinated use of DSLs leads to what we call the globalization
of DSLs, that is, the use of multiple DSLs to support coordinated development
of diverse aspects of a system. We can make an analogy with globalization in
the real world, in which relationships are established between sovereign coun-
tries to regulate interactions (e.g., travel and commerce related interactions),
while preserving each country’s independent existence. The term “DSL global-
ization” is used to highlight the overarching objective that DSLs developed in
an independent manner to meet the specific needs of domain experts should
also have an associated framework that regulates interactions needed to support
collaboration and work coordination across different system domains.

Globalized DSLs are intended to support the following critical aspects of
developing complex systems: communication across teams working on different
aspects, coordination of work across the teams, and well-defined management
of the teams to ensure product quality. In the vision for globalized DSLs, inte-
grated DSLs support teams working on systems that span many domains and
concerns to determine how their work on a particular aspect influences work
on other concerns. The objective is to offer support for communicating relevant
information, and for coordinating development activities and associated tech-
nologies within and across teams. In addition, globalized DSLs should provide
support for imposing control over development artifacts produced by multiple
teams.

Coordination and related separation of concerns issues have been the focus of
software engineering since early work on modularizing software [7]. For example,
Parnas’ use of the term “work product” to denote a module that can be the
source of independent development is also a focus of team demarcation across
design and implementation tasks. Modularity in modern software-intensive sys-
tems development leads to well-known coordination problems, such as problems
associated with coordinating work over temporal, geographic or socio-cultural
distances [6]. This line of work has also led to the recognition of socio-technical
coordination, including coordination of the stakeholders and the technologies
they use to perform their development work, as a major system development
challenge [5].

In this context, DSLs can be used to support socio-technical coordination
by providing the means for stakeholders to bridge the gap between how they
perceive a problem and its solution, and the programming technologies used to
implement a solution. DSLs also support coordination of work across multiple
teams when they are supported by mechanisms for specifying and managing their
interactions. In particular, proper support for coordinated use of DSLs leads to
language-based support for social translucence, where the relationships between
DSLs are used to extract the information needed to make teams working on
different aspects of the system aware of the project activities from other teams.

On the Globalization of Domain-Specific Languages 5

Such awareness is needed to minimize the counter-productive form of social
isolation that can occur when work is distributed across different teams.

4 Motivating Scenarios for the Globalization of DSLs

We now discuss several motivating scenarios for the globalization of DSLs. For
each, we describe the typical scenarios encountered by engineers that lead to the
need for globalization and show the impact on the overall globalized ecosystem.

Global System Checking: The need for the globalization of DSLs first arises
when a system engineer wants to assess a system property that requires
crosscutting information scattered in various models. In such a case, sys-
tem engineers face the difficult task to either build a global structural or
behavioral specification of the system from the various models to be able
to check the global property or to enhance coordination techniques at hand
that enable coordinated models to be checked for global properties.

Model Consistency Checking: In complex software intensive systems where
different intertwined DSLs are used to describe the models of the various
aspects of the same system, evolving a DSL or a model may have important
consequences on the system design as a whole. Since the models of the dif-
ferent system aspects are seldom manipulated in isolation, the development
of a model expressed in one DSL can directly influence the form of models
created using other DSLs. Similarly, if the different DSLs used for different
aspects of a system are tightly coupled, then it is likely that evolving one of
them will impact the others. In both cases, syntactic and semantic consis-
tency relationships defined across the DSLs can be used to ensure that the
different models and DSLs are consistent with one another.

Traceability for Impact Analysis: As a particular case of consistency check-
ing, one may analyze the impact of a change in one model with respect
to other models. For instance, when a requirement changes, one may eval-
uate the impact on the entire system design. In such cases, traceability
links between the various models built all along the development process
are required.

Language Evolution: By definition, DSLs evolve as the concepts in a domain
and the expert understanding of the domain evolves. As such, it is essential to
address consistency between models and DSLs when the DSL specifications
change. As a DSL evolves, the conforming models need to evolve accord-
ingly in order to remain consistent with new constructs, new constraints,
or changes in the semantics. These consistency demands might lead to a
snowball effect, where all the tools, transformations, or workbenches defined
around a language need to be updated. In typical large projects, neither all
languages nor all models of these languages are evolved in parallel. Therefore,
it is necessary to coordinate the parallel use of models in different variants
of the same language as well.

Model Composition: Separation of concerns is achieved in MDE by defining as
many models as concerns of the system. Eventually, all the different models

6 B.H.C. Cheng et al.

must be composed in order to support, for example, the generation of the
entire system implementation. When different DSLs are used to define the
various models, composition rules must be defined between the DSLs.

Simulation: Unfortunately, a simulation of a substantial part of the real world
needs to describe different parts and aspects of the world typically using
several languages. To run simulations, we need a stable coordination of lan-
guages and their respective models for execution. This coordination enables
us to understand, for example, whether the models fit together and whether
they correctly describe the real world and system to be designed. Examples
for coordinated model simulation can be found in various domains, including
climate that models whether flow of water, cultivation of areas, run in par-
allel, and etc. Other simulations are used to understand how control devices
in a car cooperate or how the multitude of existing devices in an airplane
can be managed by pilots for example.

References

1. Balbo, G.: Introduction to generalized stochastic petri nets. In: Bernardo, M.,
Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 83–131. Springer, Heidelberg
(2007)

2. Combemale, B., Deantoni, J., Baudry, B., France, R., Jézéquel, J.-M., Gray, J.:
Globalizing modeling languages. Computer 47, 68–71 (2014)

3. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Heidelberg (2013)

4. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Briand, L.C., Wolf, A.L. (eds.) Proceedings of the Future of Software
Engineering Symposium (FOSE 2007), pp. 37–54. IEEE, July 2007

5. Herbsleb, J.D.: Global software engineering: the future of socio-technical coordi-
nation. In: Briand, L.C., Wolf, A.L. (eds.) Proceedings of the Future of Software
Engineering Symposium (FOSE 2007), pp. 188–198. IEEE, July 2007

6. Herbsleb, J.D., Grinter, R.E.: Architectures, coordination, and distance: Conway’s
law and beyond. IEEE Softw. 16, 63–70 (1999)

7. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053–1058 (1972)

8. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. IEEE Com-
put. 39(2), 25–31 (2006)

9. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Softw. 31(3), 79–85 (2014)

Conceptual Model of the Globalization
for Domain-Specific Languages

Tony Clark1, Mark van den Brand2, Benoit Combemale3(B),
and Bernhard Rumpe4

1 Middlesex University, London, UK
2 TU Eindhoven, Eindhoven, Netherlands

3 University of Rennes and Inria, Rennes, France
benoit.combemale@irisa.fr

4 Software Engineering, RWTH Aachen, Aachen, Germany

Abstract. Domain Specific Languages (DSL) have received some promi-
nence recently. Designing a DSL and all their tools is still cumbersome
and lots of work. Engineering of DSLs is still at infancy, not even the
terms have been coined and agreed on. In particular globalization and all
its consequences need to be precisely defined and discussed. This chapter
provides a definition of the relevant terms and relates them, such that
a conceptual model emerges. The authors think that this clarification of
terms and the meaning will foster the field of efficient DSL definition and
evolution in the future.

Keywords: Globalized DSLs · Conceptual model

1 Towards a Conceptual Model of Globalization

Software Engineering, unlike other engineering disciplines, such as Civil, Chem-
ical or Material, deals with constructing precise descriptions of highly complex
systems, where each new application contains structure and behaviour that is
essentially unique. In essence, each new application is a novel theory of struc-
ture and execution, and requires a way of expressing this meta-information [2].
Traditionally General Purpose Languages (GPLs) have been used to encode
the theories in executable, but implicit forms (e.g., libraries). However recent
advances in language engineering technologies have made it possible to develop
Domain Specific Languages (DSLs) each of which is more suited to encoding
theories relating to specific application domains [4].

Modern applications tend to be large, heterogeneous and distributed, involv-
ing the use of many different languages including mixtures of GPLs and DSLs.
Given that an application consists of many different sub-systems written in dif-
ferent languages, there is a requirement to ensure that the languages and there-
fore the sub-systems work together effectively and must share the same concepts
(theories). Sub-systems written in DSLs are attractive because the languages
can provide better support for the specific application domains, however they
c© Springer International Publishing Switzerland 2015
B.H.C. Cheng et al. (Eds.): Globalizing Domain-Specific Languages, LNCS 9400, pp. 7–20, 2015.
DOI: 10.1007/978-3-319-26172-0 2

8 T. Clark et al.

tend to be less mature than their GPL counterparts and therefore there is an
interesting research challenge: how to achieve language globalization [1] whereby
GPLs and DSLs can co-exist and work together in order to achieve a high quality
assured system.

DSLs introduce meta-architectures into the process of systems development.
Naur [2] argues that systems development is the process of encoding theories
about a specific system into GPLs. By the same argument, DSLs involve the
process of encoding theories of a complete domain. Encoding a system theory
into a GPL involves finding a way of mapping the theorems into the (often
computationally-centric) domain supported by the GPL, even if this is done via
libraries; whereas encoding a system theory into a DSL requires less cognitive
dissonance. At least at the conceptual level, integration respectively globaliza-
tion is achieved by finding mappings between the different theories that make
up a system such that the mappings are maintained when mapped to the imple-
mentation languages.

A system that requires no integration with respect to globalization effort must
be implemented in a single perfect DSL. Increased use of separate DSLs within
a system will require mappings between the distinct theories, but will require no
implementation mappings to be applied to the point-wise correspondences. This
is possible if the DSLs are implemented using the same programming language
or framework. A hybrid DSL/GPL system will need to deal with several such
implementation mappings where the domain-specific nature of the theories has
been lost through an implementation encoding; finally a GPL-only system must
face a situation where all mappings are computationally encoded.

There has been very little exploration of the foundations and concepts that
underpin methods and technologies needed to address the challenges of global-
ization such as those outlined above. The aim of this chapter is to perform a
domain analysis for globalization such as defined in Definition 7 and to propose
a conceptual model that can be used to organise and classify these challenges.
In attempting to produce such a model we will encounter issues for which there
are no current or no generally accepted solutions; these will be listed as research
challenges at the end of the chapter.

2 Basic Terms

Definition 1 (Model). A model has three characteristics: There is an original
that it models. The model is an abstraction with respect to the original. The model
has a purpose with respect to the original. (Definition to Stachowiak, 1973) [3].

Models are used in almost every science and engineering discipline for quite
some time and for a variety of purposes. Some are prescriptive, where the model
is developed before the system and used to describe and / or predict the systems
properties. In natural and social sciences models are used to describe the systems
under study (from subatomic particles to galaxies, from molecules to cells to
animal behavior to societal behavior) and thus to understand (part) of these

Conceptual Model of the Globalization for Domain-Specific Languages 9

systems. It is important to precisely define the purpose of the model, in order
to understand its appropriateness of the model as abstraction from the original.
The intended purposes are often clarified by the questions that a model should
be able to answer.

Modelling is a rather old mechanism, computer science, however has made
it possible that models are also shared between humans and computers, which
led to the necessity to make modeling more explicit and more precise. Modelling
languages necessarily emerged.

Definition 2 (Language). A language is a means for communication between
humans, machines, and humans and machines. A language describes the set of
possible sentences that may be communicated between the stakeholders.

Languages allow us to describe various things, among others expressing data
(structure), computations (behavior), interaction, requirements, physical struc-
ture, networking structure, etc. As a consequence languages are amenable to both
mechanical and cognitive processing. Usually sentences are handled as individu-
ally storable, versionable and manipulable artifacts. So it is legal to identify the
sentence with the artifact that contains the sentence.

While the definition does not explicitly speak about language semantics or
potential forms of use, a language normally also intends a semantics for its
sentences as well as a pragmatics to clarify the forms of use.

Definition 3 (Domain Specific Language (DSL)). A DSL is a language
that is specifically dedicated to a domain of interest.

DSLs are therefore typically restricted, both in the domain, where they are
used and in their expressiveness. This on the other hand gives us the advantage
to more easily design the language including syntax and semantics of all the lan-
guage elements. A DSL should be seen in contrast to a general-purpose language
(GPL) that is broadly applicable without any feature for a particular domain.
In particular programming languages are typically GPL, but the Unified Model-
ing Language also is a general-purpose and thus domain agnostic language. If a
DSL is used for modeling purposes, then we speak of a domain specific modeling
language or DSML.

While a language set of sentences is usually infinite, we need a finite, com-
prehensive form to define a language. We distinguish the terms language and
language definition, to make it precise what we are speaking about. There are
many definitions for the same language and in the globalization context we
manipulate language definitions, while defining new languages. For example the
Java languages is a set of sentences (called programs) and can be described by
a variety of mechanisms, including different forms of grammars.

Definition 4 (Language Definition). A language is defined by the following
concepts:

10 T. Clark et al.

– Concrete syntax: e.g. in textual, tabular, or graphical form describing the set
of sentences of the language.

– Abstract syntax: describing essential concepts and structure of the sentences
without semantically irrelevant concrete sugar.

– Static semantics (or context conditions): Is a boolean predicate based on the
concrete respectively abstract syntax. Sentences that fulfill the static semantics
are called well-formed. They obey the context (scope, type system, etc.)

– Meaning (or dynamic semantics) of the sentences e.g. as operational, denota-
tional, or axiomatic semantics.

3 DSL Integration

A language that is used as the basis of mechanical processing consists of a collec-
tion of components including syntax, well-formedness checking, and semantics.
Following Naur, we abstract from the implementation of a language to its defi-
nition, in which case the language consists of a collection of integrated theories.
Each theory consists of theorems that relate to one particular aspect of the
language, for example concrete syntax (its grammar), type checking, security,
execution, memory usage, etc. In addition, a collection of mappings between
the theories ensures that they work collectively to answer any question that is
of interest relating to the language, for example linking information contained
in a syntax-theorem to elements used in a type-theorem and a corresponding
operational theorem.

The computational models used by GPLs have been under development for
many years and are rather mature, though not really standardized. A number
of meta-languages for expressing language-based theories have grown up around
these models, for example λ-calculi, Hoare Logic, natural deduction systems,
variants of states transition systems, petri-nets and pi-calculi. Deduction within
these systems is well understood and general purpose, and it is possible to map
from one to another.

Our conceptualisation should not be limited to those aspects of systems that
are known to be supported by practical tools (parsers, type-checkers, compil-
ers, and run-time systems). We wish to think of any aspect of a system being
expressed using a theory that co-exists with all other aspectual theories so that
an entire system including its history and its future is captured by a family of co-
dependent theories. Therefore, theories relating to design co-exist with theories
relating to security or privacy, and theories relating to distributed development
can be related to theories about usability or hardware failure rates.

If a system is defined using these meta-languages then there is a good corre-
spondence between GPLs and the resulting theories. However, following Naur, a
system consists of a collection of domain-specific theories. For example a financial
system may contain a theory about Sarbanes-Oxley or a pan-european education
system may contain a theory about the Bologna Process. The domain-specific
theories are not necessarily computational, but must be encoded within compu-
tational theories in order to achieve a practical system.

Conceptual Model of the Globalization for Domain-Specific Languages 11

Encoding domain-specific theories within GPL computational theories, via
libraries, leads to a problem that DSLs address. As an extreme example, con-
sider a simple information system LibSys consisting of theories relating to library
borrowing. The LibSys theories are not computational in the sense that they
describe a step-by-step process, they simply define the arrangements of infor-
mation that must hold and the services that are offered. In contrast, consider
a machine that processes binary information in terms of a stack, a heap and a
simple instruction set. There is a theory M that describes computations that
are performed given specific starting states for the machine. Our challenge is to
encode the LibSys theory into the M theory.

To understand and describe a language it is useful to regard it as a collection
of inter-related theories which themselves are denoted in a collection of meta-
languages, each of which is itself a language. This regress is usually grounded by
using meta-languages that are well-understood and that do not require further
elaboration. Introducing DSLs however means that there is an extra level of lan-
guage definition that requires meta-languages to be defined on a per-application
basis. This leads us to meta-meta-languages being the basis for definition, but
also provides scope for the basic meta-meta-language to be fixed for all DSLs
that are used in an application. Whilst this is not always possible, it is attrac-
tive because it facilitates the relationships between theories that are required for
globalization.

4 Language Components and Interfaces

The integration of languages works best, when we use modularization techniques
similar to those available for programming. We therefore propose the use of
language components.

A language component captures all information about the language and
exposes aspects to language users. Globalization is achieved by mapping between
aspects in terms of the concrete interface data. The idea of language definition
liberates us from having to say how the language is implemented and also how
the interfaces are achieved.

Definition 5 (Language Component). A language component (aka. language
module or language unit) is a reusable encapsulation of a, possibly incomplete, lan-
guage. A language component includes a language definition and might include
explicit provided and required language interfaces.

A language component may be incomplete in three ways: First it may be
parameterized, such that other language components can be plugged in. Second
the language component may itself be dedicated for composition and thus not
be of (much) use as standalone language. That also means that each language
itself is a language component, that however is free of parameters and complete
in that sense that it can be used purposeful.

Third, a language may be incomplete in its components. While the main
ingredient of a language, namely the abstract syntax must always be given, a

12 T. Clark et al.

language component may omit the concrete syntax or a definition of the semantic
domain and mapping. For an engineering point of view, it may also omit editor,
compiler, generator, and other operational realizations useful for a language. We
assume that language adaptations take place to add missing constituents of a
language.

Globalization of components enforce interfaces, where components are glued
together.

Definition 6 (Language Interface). A language interface is a relevant
abstraction for a specific purpose of a provided or required part of a language com-
ponent. An interface can be defined manually in a separate artifact or inferred
automatically from the language component definition.

This is a very general description for language interfaces that will have differ-
ent characteristics dependent on languages that are interfaced and the purpose
of the composition. It may be a syntactic interface, connecting syntax, may be an
interface describing imported and exported types, variables and other kinds of
names, or maybe a purely semantic interface allowing to connect the semantics of
language components. Technical interfaces also may connect editors, analyzers,
synthesizers or code generators for the respective language components (Fig. 1).

Language
Component

Language
Specification

Language
Interface

*

1 *

LanguageComposite
Language

*

Required Provided

Fig. 1. Language component (open question!)

Figure 2 gives a simple view of globalization in terms of language definitions.
A language definition captures the information about a language in a technology
independent manner, i.e., without recourse to implementation technologies such
as parsers, compilers, run-time systems etc.

The idea is that a language definition is the essential characterising infor-
mation about a language. All aspects of a language are captured in principle,
however some will be of more use than others with respect to globalization. For
example, if globalization is to occur exclusively at run-time then the syntactic
definition of a language (the set of program phrases) is of no interest; whereas,
if an editor is to be used to integrate two or more languages then syntax may
be the only aspect of interest.

Conceptual Model of the Globalization for Domain-Specific Languages 13

Fig. 2. Language components and interfaces

5 Globalization

Definition 7 (Globalization). Globalization deals with the purposeful
construction, adaptation, coordination and integration of explicitly defined lan-
guages, to be amenable to mechanical and cognitive processing, with the goal of
improving quality and reducing the cost of system development.

Globalization is achieved (partially or wholly) in terms of syntactic and/or
semantic integration from the perspective of globalization stakeholders. Glob-
alization addresses all aspects of the life-cycles of languages and the systems
developed with them and therefore affects their development and coordination of
multiple concerns, methods, documentation, tools, variations and maintenance.
Language globalization affects several levels, such as type or meta-type, and may
be achieved statically or dynamically, or a mixture of both.

It is useful to be aware of the different stakeholders and especially their
individual and therefore often conflicting goals and backgrounds (Fig. 3).

Definition 8 (Globalization Stakeholder). Any person who is affected by
the definition or use of a language or its components is a globalization stake-
holder.

Globalization stakeholders include the globalization strategist who is respon-
sible for the globalization strategy for an organisation; the language engineers
that develop or prepare languages to be globalized; language integrators that
ensure that two or more languages are globalized; software and system engineers
that use a collection of globalized languages for manipulating artifacts (Fig. 4).

14 T. Clark et al.

L
an

g
u
ag

e
C
o
m
p
o
si
ti
o
n

L
an

g
u
ag

e
In
te
g
ra
ti
o
n

L
an

g
u
ag

e
C
o
o
rd
in
at
io
n

L
an

g
u
ag

e
R
el
at
io
n

*
L
an

g
u
ag

e
C
o
m
p
o
n
en

t
L
an

g
u
ag

e
S
p
ec

if
ic
at
io
n

L
an

g
u
ag

e
D
ef
in
it
io
n

L
an

g
u
ag

e
In
te
rf
ac

e

*
1

1

1
*

L
an

g
u
ag

e
To

o
lin

g

* * C
o
n
cr
et
e

S
yn

ta
x

A
b
st
ra
ct

S
yn

ta
x

1

S
em

an
ti
c

D
o
m
ai
n

0.
.1

1

S
yn

ta
ct
ic

M
ap

p
in
g

S
em

an
ti
c

M
ap

p
in
g

*
*

G
lo
b
al
iz
at
io
n

*
*

*
*

*

L
an

g
u
ag

e

Fig. 3. Conceptual model for the globalization of DSLs

Conceptual Model of the Globalization for Domain-Specific Languages 15

Artefact
1

Artefact
2

Language
1

Language
2

Globalization
Strategist

Language
Engineer Language

Integrator

System
Engineer

Fig. 4. Globalization stakeholders

Globalization will involve at least two but usually more language definitions.
Integration will occur in terms of the information contained in different aspects.
The information used for integration is defined by the language interface since
they will be used in mappings between languages. For example, if two different
languages have type systems then they must expose their respective type defi-
nitions to a mapping that associates types from one language to corresponding
types in the other.

Globalization is specified in terms of language definitions and the specifica-
tion of relations between them. Once globalization is specified, it must be imple-
mented. Clever implementation techniques must be found that achieve efficient
mappings between the required aspects.

6 Language Relations

We examine the various existing forms of relationships between languages:

Definition 9 (Language Relation). A language relation relates the sentences
of multiple languages.

In simple cases, only two languages respectively their sentences are related.
However, it may be that in a relation sets of sentences are related to each other
on both sides. This captures e.g. composition and slicing as relations.

If a relation needs to be effectively executed, an algorithmic mapping is nec-
essary to realize the relation:

16 T. Clark et al.

Definition 10 (Language Mapping). A language mapping is a language rela-
tion that has an algorithmic, effectively executable realization that maps sen-
tences of the source languages to sentences of the target languages.

As many languages do have infinitely many sentences, a relation has to be
expressed in a finite form for example using the language definitions. So instead
of relating entire sentences of the languages, usually concepts of the syntax struc-
ture or the semantic structure are related. The relation can range from purely
syntax based to a relation between the semantic domains. Several interesting
cases are:

– If some of the syntax constructs and the corresponding semantics of the lan-
guages are identical the relation for these constructs is the identity. It is suf-
ficient that the abstract syntax is identical, the concrete syntax may differ.

– If the abstract syntax constructs differ but the semantic domains are identical,
then there is no need for a semantic integration anymore. For an even tighter
coupling a syntax based relation can be added, that is consistent with the
semantics relation.

– If both differ syntactical and semantical relations can be provided.
– The case that the abstract syntax is the same, but the corresponding semantics

differs should be avoided, because this leads to unsolvable problems. However,
it may be that the abstract syntax is the same, but the semantics encoding
differs even though the intended meaning of both languages is the same. In
this case a relation of between the semantics (respectively their encodings)
should be provided.

The complexity of the semantic relation depends on the “distance” between
the semantic domains of both languages. While we don’t feel able to fully define
the term “distance” here, we might agree that the larger the “distance” between
two languages is, the deeper the “encoding” of one language in the other needs
to be. E.g. state machines can be “deeply” encoded to a relational database
schema, by encoding their entire syntactic structure using a state and transition
table, while a relation between class diagrams and relational data base schemata
can be relatively “shallow”. If may even be not feasible to define a semantic
relation. The syntactic relation may be influenced by the fact that information
has to be removed or created.

The type of mappings used in globalization between language definitions
is defined in terms of the types of the constituent interfaces. For example, if
two type-systems are defined using different meta-languages then the mapping
is a relation between the meta-languages. The types of the interfaces are called
aspects of the language. As noted above, some aspects may be of more importance
to globalization than others, and some aspects may be limited to the construction
of the definitions, i.e., hidden to any external language user.

Conceptual Model of the Globalization for Domain-Specific Languages 17

7 Composition

Definition 11 (Language Composition). This is an abstract concept that
achieves globalization in terms of multiple languages working together to achieve
a common goal.

Composition may be achieved using a number of strategies including lan-
guage integration and language coordination. The composition of two or more
languages may require additional information in the form of a correspondence
between the syntax and/or semantics of the constituent languages. A language
can be decomposed to produce two or more languages in which case the decom-
position is to be viewed as the inverse of the corresponding composition.

Our claim is that globalization requirements can be conceptualized in terms
of language definitions, their interface definitions and associated aspect defini-
tions. A globalization requirement for a set of language definitions S involves the
specification of a new language definition L such that a collection of constraints
holds between L and S. The language L is the required globalization language.

Consider two languages L1 and L2 and a requirement to globalize with respect
to both syntax and operational semantics. This might be expressed as the con-
struction of a new language definition where the globalization requirement is
expressed in terms of the syntax and operational semantics interface definitions
(that are required to be present by reference to the associated aspect definitions).
Such a requirement might involve the definition of two language transformations
p1 and p2 that are defined in terms of the interface definitions and capture the
syntax and operational semantics of the language L3 as shown in Fig. 5.

Language components contain the definitions of interfaces that correspond
to theories about aspects of the languages that are required for globalization.
As such, language components are themselves structured elements that can be
subject to transformation and combination with other language components.
Therefore, we envisage a calculus of language module construction, combination
and transformation operators that characterise globalization.

Fig. 5. Language composition

18 T. Clark et al.

8 Language Coordination

The coordination of several languages is a special, loose form of composition.

Definition 12 (Language Coordination). Language Coordination is a form
of composition where individual sentences of the coordinated languages are col-
laborating to achieve a common goal.

As a consequence of this definition is that, while the languages are coordi-
nated for a specific purpose, the artifacts (containing the sentences) of the coor-
dinated languages remain as individual artifacts. This allows to independently
reuse them, and include artifacts of each of the languages in the coordination.

Coordination implies that the controlled languages remain independent. For
example, dynamic coordination might be achieved by registering an observer
with two independent run-time systems that propagates changes from one run-
time to another. Language coordination is to be contrasted with language inte-
gration where two or more languages are merged to produce a new language.

Coordination can be achieved via sharing concepts with the same semantics.
The corresponding models do not exchange information explicitly, but reasoning
about artifacts related to shared semantic concepts becomes easier. Coordination
can also be achieved via sharing of concepts with different semantics. The corre-
sponding models have to exchange information explicitly. Tools that manipulate
the models should provide facilities to exchange of information. The information
can data or control based.

As an example, consider a globalization requirement for two DSLs. The first
DSL L1 manages a data-base and provides a collection of event-based rules.
Events occur when data changes. Rule-actions can cause further updates to the
data. The second DSL L2 defines simple form-based input screens. Buttons can
occur on forms. The language component for L1 provides an event aspect and
a data aspect. A hidden aspect of L1 is a sequence of event-driven data-base
traces. The language component for L2 provides a button-press aspect and a
form-content aspect. A hidden aspect of L2 is a button-press driven sequence of
form-traces. The mapping that specifies the globalization of L1 and L2 associates
the events from L1 with the button presses of L2 and the data states of L1 with
the form-content of L2.

The implementation of the globalization specification may require some form
of common data representation to be defined to that the form information is
available to the data-base when the event is raised. In addition, a communication
mechanism must be implemented that ensures an event is raised in L1 when a
button is pressed in L2. There are many such implementation architectures that
would be consistent with the globalization specification.

9 Language Integration

Another major form of language composition is the integration of two languages:

Conceptual Model of the Globalization for Domain-Specific Languages 19

Definition 13 (Language Integration). Language Integration is the produc-
tion of a new language from a set of individual languages.

The resulting language has a its own set of sentences, but each sentence has
“sub-sentences” which come from the individual sub-languages. For modeling
languages we also call those constituencies “model components” in correspon-
dence to the language components.

An integrated language is not required to exhibit all language concepts of
its sublanguages. For example, state machines and Java might be integrated to
produce a new state machine language that uses Java statements as actions and
Java boolean expressions as guards.

Language integration has been studied since it became clear that the def-
inition of new languages is complex and error-prone. Language integration is
the type of form of the reuse of individual components and heavily relies on
a crisp and well-defined notion of language interface, because this is the place
where languages are syntactically integrated and where static semantics as well
as dynamic semantics has to conform.

10 Towards the Conceptualisation of the Globalization
of DSLs

This article defines a number of terms in an abstract way for dealing with the
globalization of DSLs and relates them in various ways. However, in practical
use there are pretty many open questions, to answer.

1. What is a language interface?
2. What is a language component?
3. What is language composition?
4. How to use a language interface?
5. How to facilitate language integrations?
6. How to facilitate language coordination?
7. Are there other forms of language composition?
8. What is an appropriate formulation for language relation?
9. How does a language relation relate to a language concept relation?

10. Can we identify general mechanisms for language composition or is compo-
sition highly specific to syntax, semantics and purpose of languages?

The key to globalization is the ability for all stakeholders to understand how
the interaction between models can be facilitated via the relationships between
the constituent languages. It would appear that a fruitful way to achieve this is
to apply a component based approach to language composition. Such an app-
roach implies a clear definition of language component and language interface,
however this is an open research question at this stage. Therefore, an important
area for future research should be to conceptualise language components and
to propose concrete mechanisms for component and interface definitions. For
example, should interfaces be models? How can existing languages be wrapped

20 T. Clark et al.

to produce components? How can components be linked together via interfaces?
What should a provided and required interface for a language be? If interfaces are
models are there such things as meta-interfaces? Can interfaces provide access
to all levels of language (instance, model, meta-model)?

System developers within a globalization context should be, as far as possible,
unaware of the integration machinery when developing their models. This is
a significant research challenge for tool developers. In addition to tooling, a
new methodology for MDE may be required in order to guide globalization
stakeholders.

In addition to the primary concepts defined in this chapter, the follow-
ing issues are potentially relevant to successfully achieving globalization: lan-
guage libraries; language viewpoints; sub-languages; language transformation
and adaptation; language construction; language and system quality. We do not
have definitions for these terms in the context of globalization and therefore they
should be considered as areas for further work.

References

1. Combemale, B., Deantoni, J., Baudry, B., France, R., Jézéquel, J.-M., Gray, J.:
Globalizing Modeling Languages. IEEE Comput. 47(6), 68–71 (2014)

2. Naur, P.: Programming as theory building. Microprocess. Microprogram. 15(5),
253–261 (1985)

3. Stachowiak, H.: Allgemeine Modelltheorie. Springer-Verlag, Wien, New York (1973)
4. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated

bibliography. ACM Sigplan Not. 35(6), 36 (2000). http://homepages.cwi.nl/paulk/
publications/Sigplan00.ps

http://homepages.cwi.nl/paulk/publications/Sigplan00.ps
http://homepages.cwi.nl/paulk/publications/Sigplan00.ps

Motivating Use Cases
for the Globalization of DSLs

Betty H.C. Cheng1(B), Thomas Degueule2, Colin Atkinson3, Siobhan Clarke4,
Ulrich Frank5, Pieter J. Mosterman6,7, and Janos Sztipanovits8

1 Michigan State University, East Lansing, USA
chengb@cse.msu.edu

2 University of Rennes and Inria, Rennes, France
3 University of Mannheim, Mannheim, Germany

4 Trinity College, Dublin, Republic of Ireland
5 University of Duisburg-Essen, Essen, Germany

6 MathWorks, Natick, USA
7 McGill University, Montreal, Canada
8 Vanderbilt University, Nashville, USA

Abstract. The development of complex software-intensive systems
involves many stakeholders who contribute their expertise on specific
aspects of the system under construction. Domain-specific languages
(DSLs) are typically used by stakeholders to express their knowledge
of the system using dedicated tools and abstractions. In this chapter, we
explore different scenarios that lead to the globalization of DSLs through
two motivating case studies – a command and control wind tunnel and a
smart emergency response system – and outline the concrete engineering
challenges they raise. Finally, we list some of the general research chal-
lenges related to the globalization of DSMLs and discuss some promising
approaches for addressing them.

Keywords: Multi-model integration · Language integration

1 Introduction

Languages have been used in the development and evolution of software sys-
tems since the beginning of the computer industry. For many years, software
engineers only needed to concern themselves with one language, the one general
purpose programming language typically used to program an application (e.g.
FORTRAN, COBOL, C or Pascal). Today, however, software engineers have to
cope with a vast array of languages, supporting descriptions of different aspects
and parts of software systems from the viewpoints of multiple stakeholders, lev-
els of abstraction and concerns. This creates many new challenges for languages
engineers beyond the traditional need to define a language’s syntaxes (concrete
and abstract) and semantics. Now language engineers have to cope with mul-
tiple semantic interactions between the entities and concepts described by lan-
guages and cope with the co-evolution and management of families of interrelated
languages.
c© Springer International Publishing Switzerland 2015
B.H.C. Cheng et al. (Eds.): Globalizing Domain-Specific Languages, LNCS 9400, pp. 21–42, 2015.
DOI: 10.1007/978-3-319-26172-0 3

22 B.H.C. Cheng et al.

Traditionally these challenges have been addressed in ad hoc ways, primarily
at the level of the entities and concepts described by languages (i.e. at the level of
statements made in a language) rather than at the level of the languages them-
selves (i.e. at the level of language definitions). However, as domain-specific mod-
eling technologies have matured, and the problems of engineering single-purpose
language solutions have been mastered, new conceptual tools and technologies
for engineering heterogeneous solutions at the language level have started to
emerge. Researchers now have the means to create new methodologies and tool
ecosystems for combining independently-developed language fragments into new
solutions that can leverage the vast amounts of knowledge and experience embed-
ded within language definitions. The challenge of language globalization is to
realize this vision.

Language globalization therefore aims to improve the way software systems
are developed and evolved with a view to raising software quality and reducing
costs. A major source of motivating use cases for this technology can be found
in the realm of software systems engineering. Language globalization can be
expected to improve the way in which key systems engineering challenges can be
addressed, such as enhancing the functionality and information content of soft-
ware systems, as well as adding new views and view types by which stakeholders
can visualize them. This chapter illuminates the key language globalization chal-
lenges by exploring the language exploitation opportunities occurring in typical
software development use cases. In particular, we present a set of concrete use
cases in the context of two real-world example applications. After introducing
these two applications and presenting the language engineering challenges they
raise, we discuss the resulting research challenges.

2 Command and Control Wind Tunnel (C2WT)

The C2WT1 is a model-integrated distributed simulation environment devel-
oped at the Institute for Software Integrated Systems at Vanderbilt University
for complex, multi-modeling simulation tasks frequently required in virtual pro-
totyping, end-to-end mission simulation and resilience studies. The application
scenario below led to its original development as a part of an Air Force Office of
Scientific Research (AFOSR) project.

2.1 Application: Evaluation of Command and Control Architectures
in Mission Scenarios

The evaluation of emerging command and control (C2) architectures necessitates
a sophisticated modeling and simulation infrastructure that supports the con-
current modeling, simulation, and evaluation of (1) the C2 system architecture
(advanced system-of-systems modeling), (2) the mission environment (scenario

1 https://wiki.isis.vanderbilt.edu/OpenC2WT/.

https://wiki.isis.vanderbilt.edu/OpenC2WT/

Motivating Use Cases for the Globalization of DSLs 23

modeling and generation), and the (3) human organizations and (group and indi-
vidual) decision-making processes (human performance and man-machine inter-
action modeling). Using simulated C2 environments to evaluate design concepts,
validate new systems and components, and explore hazardous as well as ambigu-
ous scenarios is easily justified from both cost and practicality perspectives.

An example of this application is shown in Fig. 1. The mission scenario focuses
on flying teleoperated Unmanned Aerial Vehicles (UAVs) in an urban environ-
ment for finding and tracking moving vehicles on the ground [15]. Each UAV is
controlled by a human operator who inspects a video stream from the on-board
sensor and remotely controls the UAV. The operators coordinate their track and
search activities amongst each other and with a remote command center. Mission
success is measured in terms of the time required for finding a moving vehicle
with specific characteristics and the length of time tracking the vehicle without
losing it. The specific evaluation scenarios examine the impact on mission success
UAV characteristics (such as mobility, level of autonomy, sensor resolution), net-
work attacks, allocation of decision responsibilities in the C2 architecture, and
others.

Fig. 1. Command and control (C2) architecture analysis

The scenario identifies a network of interacting simulations (Fig. 2). The indi-
vidual modeling languages were selected based on the relevance of their respec-
tive domains to the simulation goals: Colored Petri Net (CPN) for
modeling decision processes and interactions in command and control organiza-
tions, Simulink/Stateflow for modeling vehicle dynamics and controller dynam-
ics, DEVS for modeling abstract behavior of software components, OMNeT for

24 B.H.C. Cheng et al.

Fig. 2. Modeling languages and technologies involved in the C2WT

modeling communication links, and Google Earth for modeling motion in spe-
cific 3D environments. In addition, the overall simulation was executed in real-
time interacting with two UAV operators. The choice of modeling languages is
strongly motivated by the need for reusing existing model libraries and existing
simulators. However, neither of them was designed for incorporating all the other
modeling abstractions.

2.2 Technical Challenges

Complex command and control environments have many disparate facets that
need to be modeled and simulated. The constituent models include decision
processes, dynamics of moving objects in a 3-D environment, sensors and infor-
mation flows, communication networks, operator work stations, and mission
scenarios. The modeling languages have different timing semantics (continuous
time, discrete time, discrete event) and data semantics (3-D geometry, com-
mands, physical variables). The simulations running on different simulation
engines need to be coordinated, and the data needs to be routed. As a result, a
heterogeneous collection of integrated simulations, all acting in a tightly coordi-
nated environment, must be employed.

Individual simulations comprise two parts: a domain-specific model, such
as a model of a flight control system in Simulink, and an underlying simu-
lation engine, such as the Simulinks solver. Each modeling language has its
own unique execution semantics as implemented by its simulation engine. All of
the executions in federated (integrated) simulations must be coordinated in a
meaningful way to ensure that the larger C2 simulation environment is useful.

Motivating Use Cases for the Globalization of DSLs 25

The problems in developing integrated simulations can be decomposed into two
integration problems:

Model Integration ensures that the domain models (UAV dynamics model in
Simulink, communication channel model in OMNeT, etc.) can be integrated
in a semantically consistent manner.

Simulation Integration ensures that execution of simulations can be syn-
chronized by a distributed global clock (that can be kept in synchrony also
with the wall clock), the events generated by the individual simulators can
be used for event-driven interaction among objects controlled by different
simulators, and data can be routed among the simulators under the time
constraints required by the progress of the distributed global clock.

Next, we explore these challenges in further detail.

2.3 Model Integration Challenge

There exist several ways to approach the challenge of integrating domain models
in a semantically consistent way.

Modeling Language Embedding. Embedding requires an injective struc-
ture preserving mapping between one or more DSMLs and a host language.
Accordingly, the semantic domain of the host language must be rich enough
to provide a common semantic domain for all DSMLs. While from the point
of view of time semantics, the continuous time (CT) semantics of Simulink
can embed the discrete event (DE) semantics of CPN, DEVS and OMNeT,
mapping many of their domain-specific languages constructs onto Simulink
constructs would be impractical. Some variant of model embedding is facili-
tated by the external blocks allowed in some modeling languages (e.g. Model-
icas external function calls, and FMU import, Simulinks S-function interface)
but they require suppressing many details of an external model, transform
it into a simple construct in the host language, therefore they cannot be
regarded as an example of model embedding in the usual sense.

Formal Modeling Language Composition. There have been formally estab-
lished methods for the precise composition of DSMLs in an algebraic/logic
framework [15]. The approach introduces a range of composition operators
(includes, restricts, extends, as, pseudo-product “*”, pseudo-coproduct “+”)
with appropriate semantics. These composition operators have been intro-
duced in the FORMULA tool [1] developed by Ethan Jackson at Microsoft
Research. While precise and tool-supported, practical full formal treatment
in this case study was restricted by the absence of a formal, FORMULA-
based specification of the semantics of the constituent modeling languages.

Model Integration Language. In many (if not most) multi-modeling prob-
lems, physical or computational objects modeled in different modeling
languages need to interact with each other. The interaction might have
behavioral, structural, or conceptual meaning. If the semantics of the

26 B.H.C. Cheng et al.

interaction is restricted only to some shared aspects of the semantics of the
individual modeling languages, then the problem can be solved effectively by
the specification of a model integration language [24] that includes the speci-
fication of a semantic interface for the individual modeling languages and the
specification of integration constructs that are not part of either of the inte-
grated modeling languages but support the integration of the models across
the semantic interfaces. In the C2WT case study, the purpose of the model
integration is the coordination of timed behavior of objects in a 3D space
using various forms of communication. The required interaction semantics
is discrete event and the data semantics is based on a distributed (but par-
tial) data model that need to be established for the scenario. Consequently,
model integration requires the specification of a relatively narrow semantic
interface for the individual DSMLs and a Model Integration Language that is
built atop these semantic interfaces, extends them with integration-specific
constructs and supports the rapid modeling of arbitrary model integration
scenarios.

2.4 A Model Integration Language Solution for C2WT

The technical challenges for the C2WT modeling and simulation application
offer a compelling case for using a model integration language. The individual
modeling languages are rich and have complex semantics not defined formally
(and in addition they evolve independently with new releases). The required
interaction semantics across the models is relatively narrow and restricted to
only some aspects of the rich semantics of modeling languages. However, these
simplifying conditions only mean that the solution is feasible, but not that it is
simple.

The primary difficulty in defining a model integration language for the C2WT
application is that it requires runtime support for model and simulation inte-
gration on a distributed computing platform. Support for model integration
means availability of services for data distribution (in real-time scenarios under
time constraints), simulation integration means availability of services for dis-
tributed time management and interaction control. In fact, the development and
use of these services represent the core technical challenges in this application.
Fortunately, distributed simulation is important in many application domains,
therefore well-developed standard frameworks are available, such as the High
Level Architecture (HLA) [4] that was selected as simulation integration plat-
form for C2WT. With this, our task was simplified to developing a C2WT model
integration language and related tools. The High-Level Architecture is a stan-
dardized architecture for distributed computer simulation systems. Communi-
cations between different federates is managed via the Run-Time Infrastructure
(RTI) layer – an implementation of the HLA standard.

The HLA standard focuses on three primary areas. The first is time coordi-
nation throughout the federation. The evolution of time is a key thread through
each of the integrated simulators. Each simulation engine must slave its progres-
sion of time to that of the overall HLA clock. The HLA standard provides several

Motivating Use Cases for the Globalization of DSLs 27

methods to accomplish this. Second is coordination of inter-federate messages
and shared data objects. The HLA standard provides a publish-and-subscribe
mechanism for passing messages and object updates throughout the federation.
Third, the HLA standard provides for basic simulation execution control. A lim-
ited ability to start, pause, and stop the execution of a simulation is built directly
into the HLA standard. The C2WT relies upon the services provided by the RTI
during run-time. As HLA is an accepted standard, a number of commercial, aca-
demic, and alternate RTI implementations are available. Currently, we use the
Portico RTI [2] which provides support for both C++ and Java clients and is
compliant with version 1.3 of the HLA standard.

The integrated system is shown in Fig. 3. The simulators are interfaced to
the HLA RTI through the simulator federates. The federates use the HLA RTI
API for time management, data distribution and execution control. Clearly, the
federations capture all of the required code needed to implement the multi-
model simulation. We explicitly model this information using the C2WT model
integration language, and translate this integration model into federation code.
Details, including the metamodels of the integration languages are described
in [14]. We used the following strategy to design the C2WT Model Integration
Language:

1. The constituent modeling languages remain unchanged,
2. The C2WT model integration language is used for describing the integration

(i.e. the system-of-system) architecture,
3. The semantics of the model integration language is provided by the HLA

services for time and data management,
4. The semantic interface is the simplest possible required for the integration

tasks.

The semantic relationship between federates are defined in the model integra-
tion language using two main aspects: the data representation and the data flow.
An integration model describes both data representation and data flow elements,
and, in some cases, includes special elements as the placeholders for concepts
specific to particular simulation engines. Data representation models consist of
interaction and object models. Interactions are stateless, and can have para-
meters, while objects have states, which are represented as a set of attributes.
Both interactions and objects are permitted to have inheritance hierarchies.
These data representation models directly map to the HLA Federation Object
Model (FOM). The federates (interfaces of simulators to HLA) are automatically
generated from the integration models. The model integration language was
specified by the usual means (informal (MetaGME) and formal (FORMULA)
metamodels) and published in [14]. The full open source package is available on
the OpenC2WT web site [3].

The set of integrated modeling languages and simulators is open, they do not
influence HLA or each other. Currently the integrated modeling languages and
engines include Simulink/Stateflow, CPN (Colored Petri Net), NS-2, OMNET,
Delta3D, DEVSJava, Google Earth and Java-based custom federates (e.g. oper-
ator interface for user interaction in real-time simulation).

28 B.H.C. Cheng et al.

Fig. 3. Integration of DSMLs and Simulators using HLA

3 Smart Emergency Response System (SERS)

A MathWorks Summer Research Internship project [18] developed an automated
emergency response system in order to dynamically manage emergency response
personnel and equipment to handle emergencies on the roadways in the San
Francisco area [20]. The system was then expanded into a Smart Emergency
Response System (SERS) [26].

SERS coordinates the dispatch of flight systems (both rotorcraft and fixed-
wing aircraft), ground supp:ort vehicles, and search and rescue dogs equipped
with a harness to hold electronic devices. A smart device app enables emergency
responders and survivors to share information in the field, learn about the current
state of response operations, and request assistance. The information from the
field as well as aid requests combined with available provisions (e.g., prescription
medication, thermal blankets, defibrillators) and the configuration of the vehicle
fleet serve as the input to a planning module that computes the time optimal
mission. The deployment plan for each of the vehicles is then sent and executed
autonomously by the respective vehicles (rotorcraft, fixed wing aircraft, and
ground vehicles).

A sample scenario is as follows. An emergency occurs (e.g., a multiple vehicle
accident) on a San Francisco roadway, and one or more persons at the scene who
have a SERS app that lists all the services available can request provisions (e.g.,
defibrillator, medicine, oxygen masks, splints, etc.). Once the Command and Con-
trol (CC) receives the request(s), an analysis ismade on the number, type, and loca-
tion of requests to determine the best places (i.e., depots) to deploy their ground
service vehicles. For each cluster of requests associated with a depot, a number of

Motivating Use Cases for the Globalization of DSLs 29

rotorcraft will also be deployed to pick up provisions from the depot and drop off
the respective provisions.

Model-Based Design (MBD) was used to develop the system, where several
different types of models were integrated to deliver the overall system function-
ality. These models were provided by different stakeholders, involved different
types of modeling languages, and supported numerous types of capabilities, such
as simulation of real-world scenarios, visualization of vehicles in 2D space, vir-
tual reality interaction with the flight systems atop Google Map of the area, etc.,
including support for incorporating the physical devices.

3.1 SERS as a Cyber-Physical System

SERS exemplifies the emerging paradigm of Cyber-Physical Systems as ensem-
bles of collaborating embedded software systems [21]. The design of such systems
challenges existing approaches for embedded systems such as the V design app-
roach that is common in the aerospace and automotive industry. In the V app-
roach, the system requirements first drive design by a top-down decomposition
into subsystems and components, which is then followed by a bottom-up inte-
gration into a top-level system. Ultimately, the system integrator is responsible
for the end product.

Increasingly, systems are being developed that follow a less rigid design
process. These systems comprise systems in their own right and come into exis-
tence at runtime. Design and operation of such systems of systems is a chal-
lenging endeavor, the success of which is predicated on the use of models across
systems, system perspectives, design stages, operational phases, and organiza-
tions. SERS serves as an example to highlight some of the key challenges and
issues in successfully bringing systems of collaborating systems online.

Figure 4 shows the architecture of SERS [19]. At the core of SERS is Mission
Command & Control. As shown along the top of the figure, interaction of emer-
gency personnel with Mission Command & Control takes place via mobile apps,
a mission user interface, video stream display, and virtual reality visualization.
Along the bottom, devices are shown that communicate with Mission Command
& Control and that operate in the physical world. These devices include ground
vehicles to set up depots, delivery rotorcraft to deliver provisions in response to
aid requests, fixed wing aircraft to provide situational awareness, sensory rotor-
craft for use by emergency responders, network rotorcraft to setup an ad hoc
network infrastructure [25], a robot arm to provide teleoperated manipulation,
a humanoid robot to operate in dangerous environments, and search and rescue
dogs with sensory equipment to find survivors and help with damage assessment.

As a reflection of the typical situation for collaborating systems, a broad
range of organizations is involved in the design of SERS. These organizations
provide expertise in the domains of operations, control, image processing, search
and rescue dogs, robotics, communications, networks, and virtual environments.

30 B.H.C. Cheng et al.

Fig. 4. Architecture of the smart emergency response system

3.2 SERS Design

Figure 5 depicts the SERS elements and their relationships. The overall system
synchronizes on time and location. For ground-based entities, location is further
restricted to the midpoint of the roads, shown in the lower-left corner of Fig. 5.
These midpoints can be retrieved from curated shape files from government sites
such as the City and County of San Francisco2.

Fig. 5. The elements of SERS

The SERS Base station hosts Command & Control and is situated roadside,
and is thus attached to a midpoint. Similarly, there are a number of locations
(e.g., parks, schools, parking lots, etc.) where the ground vehicles may set up a
2 https://data.sfgov.org/Geographic-Locations-and-Boundaries/Streets-of-San-

Francisco-Zipped-Shapefile-Format-/wbm8-ratb.

https://data.sfgov.org/Geographic-Locations-and-Boundaries/Streets-of-San-Francisco-Zipped-Shapefile-Format-/wbm8-ratb
https://data.sfgov.org/Geographic-Locations-and-Boundaries/Streets-of-San-Francisco-Zipped-Shapefile-Format-/wbm8-ratb

Motivating Use Cases for the Globalization of DSLs 31

Depot, so these are also attached to midpoints. Clearly the ground vehicles (GV)
must be attached to midpoints while they are originally stationed at the base.
Each of the ground vehicles is capable of carrying rotorcraft (RC) that have a
payload carrying capability so that they can deliver provisions to service aid
Requests. Note that the rotorcraft may also remain stationed at the base. The
list of possible provisions to deliver includes a sensory rotorcraft (QC) that can
stream sensory information such as video from a high definition camera. This
video may be streamed back to the Command & Control Center or to a mobile
device, for example, operated by a first responder. As the mission unfolds, fixed-
wing aircraft (FW) embark on reconnaissance sorties, for example, to determine
the health of the infrastructure. To this end, video may be streamed back to the
Command & Control Center as well as to a first responder. Finally, humanoid
Robots that also support video streaming may be deployed.

In the overall design of SERS, the various elements are represented in many
forms using many formalisms. In addition, abstract functionality such as opti-
mizations must be represented. An overview of the range of representations is
provided in Fig. 6, where the formalisms used to represent the different elements
are attached to these elements with a thick dotted line and shown in gray. The
autonomous vehicles are at the center of the overall system and have various
representations. In the form of a Computer Aided Design (CAD) model, the
structure of the vehicles may be captured. This structure may be stored in a
format such as the XML-based collaborative design activity (COLLADA) format
or a unified robot description format (URDF).

From the structural model, a dynamics model of the physics can be auto-
matically generated. Such a model may be represented by a block diagram with
continuous time, differential equation, semantics (e.g., a Simulink model). Alter-
natively, a domain-specific representation such as SimMechanics multibody
model may be automatically generated. In addition, a model of the control con-
tributes to the dynamics. The low-level control model may be represented by a
block diagram with continuous time or discrete time semantics. There may be
different forms of low-level control such as for nominal operation and for system
identification purposes. In addition, other forms of control such as supervisory
control may be included, which is more appropriately represented by a discrete
state formalism such as statecharts.

The models of the different vehicles are identified and calibrated against
measurements derived from experiments. The corresponding data is represented
in spreadsheets and multi-dimensional tables. Moreover, analysis and validation
relies heavily on representation of data as graphs for convenient interpretation
and documentation.

For optimization purposes, it is essential to characterize the various vehicles
in terms of their longevity, payload, and wind speed. For example, a ground
vehicle can set up a depot and operate for days. Rotorcraft, on the other hand,
may only be able to fly for 15 min depending on the weight of the payload. Such
characterization can be derived from the dynamics models where the data may
be captured in the form of a spreadsheet.

32 B.H.C. Cheng et al.

Fig. 6. The various SERS elements and formalisms (gray) used to represent them

Optimization input includes information about the infrastructure in terms of
a combination of geospatial (road midpoints) and map information. These two
pieces of data provide information as to how ground vehicles can be routed but
also where there are potential locations to set up depots.

The remaining input to the optimization relates to the aid requests. First,
there is the set of aid requests that come in from either the Command & Con-
trol Center or from mobile device apps in the field. To submit the requests, a
Java data structure stores request information directly in the mobile device app
or a spreadsheet representation may be used to share an underlying mapping.
The Command & Control Center, in turn, may rely on a domain-specific lan-
guage (DSL) to represent the various different requested provisions. Second, for
the optimization process, it is necessary to characterize the provisions that can
be requested (e.g., how much they weigh), which is information that is repre-
sented by a spreadsheet. This characterization is performed for the entire set of
provisions, both of which are represented in a spreadsheet.

The optimization itself is then formulated in a mathematical representation.
At the foundation are data structures that represent attributed graphs. Specific
problems are then solved by using a mixed-integer linear programming (MILP)
representation. The result of the optimization is a set of trajectories with ser-
vice (delivery and pick-up) information attached. Each trajectory is an array of

Motivating Use Cases for the Globalization of DSLs 33

waypoints that comprise geospatial data consisting of longitude, latitude, and
altitude information as well as dwell time once a waypoint is reached.

A critical aspect of the overall system is visualization to help in design,
analysis, test, training, and operation. The Command & Control Center has
access to two different types of visualization. In a low fidelity representation,
icons that represent the various vehicles are superimposed as images onto a
representation of the region as a map. This visualization also shows the different
types of aid requests on the map as they come in and at their requested location.
The mission trajectories for each of the vehicles as computed by the optimization
are also shown in the form of line segments between the waypoints that make
up the trajectories. Alternatively, a high-fidelity visualization is available where
the vehicles are shown performing their missions as realistic objects (based on
the CAD models) in Google Earth as a virtual world. Motion of the objects is
shown based on position and orientation information obtained from real-time
simulations or physical measurements. Finally, live video data can be streamed
to be displayed in the Command & Control Center.

3.3 A Smart Intersection

In a separate project to developing SERS, city planners may wish to install smart
intersections that build on vehicle-to-vehicle and vehicle-to-infrastructure tech-
nology. A smart intersection system may consist of the elements shown in Fig. 7.
The smart intersection system may rely on a Central Control unit to coordinate
use of the shared intersection surface area. The Central Control unit may have
access to the Streets that intersect along with the Traffic in each of the streets.
In addition, the Central Control unit may have access to a Communication Unit
that allows vehicle-to-infrastructure communication via communication units of
the Lights at the intersection and the Vehicles that wish to cross. Both the lights
and the vehicle are equipped with a Control Unit to implement the functionality
necessary to operate as part of a smart intersection. Finally, the central control
unit has a network interface to communicate beyond the smart intersection, for
example, with city infrastructure monitoring facilities.

3.4 Formalism Integration

At some point in time, the smart intersection infrastructure may wish to be
integrated with the SERS. To design an integrated system, a domain-specific
formalism would need to account both for the SERS specific elements in Fig. 5
as well as the pertinent smart intersection elements in Fig. 7. These smart inter-
section elements may include information about the traffic in the streets, and,
therefore, only a subset of the smart intersection elements must be integrated
with the SERS elements.

SERS involves the integration of at least seven different languages, many of
which are domain-specific. Collectively, these languages involve different types
of data, different granularity of data, continuous and discrete information, and
different levels of abstraction. A wall clock is used to synchronize the activities

34 B.H.C. Cheng et al.

Fig. 7. The elements of a smart intersection

provided by the different components of the system – CAD diagrams, Block
Diagrams (Simulink), Geospatial models, Mixed-Integer Linear Programming
(MILP) models, Android app language, Shape models (map data in terms of
longitude and latitude) and Excel spreadsheets.

4 Research Challenges

The development and analysis of DSMLs has been a research topic for some
time. Thus far, the main focus has been on languages for supporting software
construction in technical domains. There are convincing reasons why the rele-
vance of research on DSMLs will substantially increase in the future. To date,
only a few organizations, even in technical domains, are using DSMLs. Many
domains have not been addressed so far. At the same time, languages and espe-
cially DSMLs are at the core of the digital transformation that many societies
and organizations are facing. Among other things, the digital transformation
is characterized by an increasing amount of reality being represented in infor-
mation systems and by the fact that an ever increasing amount of services is
performed by computers instead of human actors.

Globalization implies the demand for efficiently exchanging information with
systems around the world. As a consequence, there is a need to support the
economic creation and maintenance of application systems as well as their inte-
gration. Application systems are linguistic artifacts, i.e., they are constructed
and used through language. DSMLs promise to facilitate the representation of
the domain that is targeted by an application substantially, since they do not
require modelers to build domain-specific concepts from scratch. At the same
time, they promote system integrity, because they, to a certain extent, prevent
inappropriate models from being created. Finally, DSMLs enable the creation of

Motivating Use Cases for the Globalization of DSLs 35

models that represent complex real world objects and corresponding application
systems, thereby empowering users.

The concepts in DSMLs should correspond directly to concepts with which
users are familiar. In addition, they should feature a concrete syntax that fosters
the intuitive understanding of models. As a consequence, users are not only sup-
ported in gaining a better understanding of the systems – and the environment
in general – in which they work, but are also enabled to change the respective
models and, in turn, the systems they represent. DSMLs also support the effi-
cient exchange of information by allowing the description of complex objects
in a more specific way, i.e. with more semantics, thereby substantially reducing
the effort and risk caused by the need to reconstruct semantics. In addition to
the increased demand for DSMLs, there are various challenges that researchers
needs to address to foster the application of DSMLs.

4.1 Software Engineering Challenges Related to the Formal
Foundation of Languages

While separation of concerns demands an ever growing number of specialized
DSMLs, many use scenarios require the integration of DSMLs. The current
state of research includes various promising approaches, however, more chal-
lenges remain. Therefore, there is a need for advanced abstractions that enable
more sophisticated integration technologies that support the integration or com-
position of languages and related tools. To take advantage of models during
the entire lifecycle of systems (i.e., to support the idea of “models at runtime”)
future research needs to focus on the integration of modelling tools and appli-
cation systems. On the one hand, more research on the notorious problem of
synchronizing models and code is required, and on the other hand, it requires
more research that is aimed at overcoming the principle limitations of current
programming languages

Since these languages usually include one classification level only, (meta)
classes that are manipulated in respective modelling tools have to be represented
as objects on level M0 that creates the need to generate code. Alternatively,
programming languages that allow for many classification levels would enable a
common representation of models and code. With respect to maintaining DSMLs
or family of DSMLs, powerful abstraction concepts are essential. Languages that
focus on static information already have support for various abstraction concepts
such as classification or generalization/specialization. Unfortunately, this is not
the case for process modelling languages. These languages present a specific
research challenge because dynamic abstractions are an obstacle to monotonic
extensions, i.e., they do not allow a straightforward enforcement of the substi-
tutability constraint [17]. Existing approaches that focus on relaxed versions of
the substitutability constraint (e.g. [5,23]) are insufficient, because they depend
on premises that often cannot be satisfied.

36 B.H.C. Cheng et al.

4.2 Challenges Related to the (Re-) Construction of Domain-Specific
Concepts

The construction of DSMLs cannot be restricted to their formal properties.
Instead, they are intended to provide domain-specific concepts, the (re-) con-
struction of which is not trivial. At the same time, it is usually not an option
to leave this part of DSML development to domain experts, because they lack
the knowledge required to develop appropriate abstractions. Against this back-
ground, future research on DSMLs has to take into account the peculiarities of
reconstructing domain-specific concepts.

Methods that Support the Development of DSMLs. Existing methods
for requirements analysis and system development are only partially suited to
support the development of DSMLs. With respect to analyzing requirements,
there is the problem that prospective users often lack a sufficient understanding
of the artifact to be developed. In other words, they do not know what to expect.
Hence, respective methods need to support users in developing a clearer picture
of a DSML and/or the functionality it may provide. With respect to designing
a DSML, methods should provide guidance for supporting various challenging
decisions (see below). Research on specific methods for DSML development has
recently emerged (e.g. [10]).

Distinguishing Between a Language and Its Application. The techni-
cal terms found in a domain are candidates for being included in a respective
DSML. However, not all of them are suited for that purpose. The decision of
whether a concept should be part of a DSML or should rather be specified with
that DSML can be a remarkable challenge. The following example concepts illus-
trate this challenge: “Document”, “Goal”, “Product”, “Risk”, “ERP System”,
“Department”. It is conceivable that all of these concepts are part of a DSML
or can be defined using a DSML. Even though this decision depends on the
specifics of a given case, it also depends on general criteria that have not been
investigated sufficiently. They relate to economic and epistemological concerns.

Economics of DSMLs. The design of a DSML presents a fundamental eco-
nomic challenge. On the one hand, a DSML should promote modelling produc-
tivity. For this reason it should provide specific concepts that fit the particular
requirements of a domain. In other words, the concepts should reflect a high
degree of domain-specific semantics (in the sense of information content). On
the other hand, a DSML should enable a wide range of reuse in order to pro-
mote economies of scale. For this purpose, it should be built from concepts that
abstract from specific features of domains. Since both objectives are of pivotal
relevance for the economics of DSML and, as a consequence, for their use in prac-
tice, this conflict creates a research challenge that should be addressed. Figure 8
illustrates the problem.

Motivating Use Cases for the Globalization of DSLs 37

Fig. 8. Illustration of DSML design conflict

Note that the gradients of the curve will usually not be known precisely. The
two example concepts show how the apparent conflict can be relaxed by including
concepts on a higher level of abstraction (such as “Organizational Unit”) that
can be further refined to more specific needs (e.g. “University Department”).
This situation reveals two research challenges. First there is the need to struc-
ture DSMLs into high level (“textbook”) concepts and more specific ones that
are tuned to narrower domains. Second, the semantics of the required refine-
ment has to be specified. This is not a trivial task, since in many cases neither
specialization nor inheritance alone is sufficient. Figure 9 illustrates this chal-
lenge. It represents concepts to model products. While the level of abstraction
is apparently increasing from the bottom to the top, the relationships between
the levels seem to combine characteristics of instantiation and specialization,
which creates a serious problem, since there is a strict dichotomy between both
refinement operations.

A further aspect of the above trade-off is related to standardization. With
respect to the use of DSMLs, standardization is of pivotal relevance. It con-
tributes to the protection of investments, fosters the dissemination of languages
and, hence, economies of scale. Furthermore, decision makers appreciate stan-
dardization because it provides legitimization. However, standardization has a
severe downside – it freezes a certain state and, because of the benefits it pro-
vides, creates a substantial obstacle to progress. Research on DSMLs can hardly
ignore this conflict and therefore needs to aim at abstractions that are suited to
develop standards that are open for evolution.

38 B.H.C. Cheng et al.

Fig. 9. Illustration of stepwise refinement of concepts over multiple classification levels

Top-Down Versus Bottom-Up Development. To effectively address the
conflicts outlined above it seems most promising to develop DSMLs in a top-
down approach. That would allow similarities between different domains to be
exploited. As a consequence, a top-down approach would be especially promising
with respect to reuse and integration of languages. However, it is unrealistic to
assume that existing languages can be easily replaced – people are accustomed
to them and investments need to be protected. Therefore, research should focus
on approaches that are suitable for combining aspects of top-down approaches
with those of bottom-up approaches.

Epistemology of DSML Design. Designing DSMLs for global use has to
account for remarkable conceptual diversity. The technical languages used in
certain related communities around the world not only vary with respect to
designators, but also with respect to the semantics of concepts. From an episte-
mological perspective, there are two extreme interpretations of this conceptual
diversity. On the one hand, one may assume that particular domains are actually
different with respect to relevant objects, tasks, constraints etc. In that case, the

Motivating Use Cases for the Globalization of DSLs 39

diversity of technical languages would simply reflect ontological diversity and has
to be accepted. On the other hand, one may regard conceptual diversity as the
result of a cultural evolution that is characterized by chance and arbitrariness.
Hence, actual technical languages are a contingent matter – they could be differ-
ent and still serve their purpose. There is evidence for the latter assumption. The
widespread use of ERP systems shows that organizations are able to adapt to
a certain common conceptual foundation. As a consequence of this assumption,
diversity could be reduced by proposing DSMLs that replace existing concepts
with new ones in order to enable unified domains of discourse. While these con-
siderations seem to be of a philosophical nature only, they are actually highly
relevant for the design of DSMLs. They imply that it may not be sufficient to
reconstruct the actual use of technical languages, but to ask whether they are
appropriate and how conceptual diversity can be overcome.

Quality of DSMLs. If we follow Kant, who claims there is no recognition
without concepts [16], and furthermore accept that certain concepts are more
or less suited to structure a domain of interest with respect to a given purpose,
then the construction of a DSML should not just aim at representing existing
concepts, but eventually at reconstructing them with the intention to making
them a better instrument for modeling. This corresponds to what Richard Rorty
demanded for Philosophy – “Philosophers have long wanted to understand con-
cepts, but the point is to change them so as to make them serve our purposes
better.” [22]. As a consequence, research on DSMLs needs to develop an elabo-
rate, multi-perspective notion of language quality that not only comprises formal
aspects, but also accounts for domain-specific concepts as well as for economic
and cognitive aspects (for a respective approach see [10]).

Support for Language Evolution. The world is going to change. However,
we lack powerful theories that would allow for comprehensive predictions. As a
consequence, it seems unavoidable that DSMLs have to be adapted from time to
time. Therefore, future research needs to aim at supporting language evolution,
including abstractions as well as respective tools that foster flexibility. Further-
more, the organization of the evolution is essential – should it be a managed
process or would an agile approach be more suitable? What kind of incentives
could be built to motivate stakeholders to contribute to language evolution and
to migrate to new language versions.

Accounting for Cultural Challenges. The success of a DSML not only
depends on its quality, it also depends on economic and political decisions that
enable its use and dissemination. However, neither in organizations nor in the
public is there sufficient awareness of the pivotal relevance of languages in gen-
eral, and DSMLs in particular, for managing the digital transformation. As a
consequence, funding for respective research projects remains relatively limited
and organizations are reluctant to invest in language technologies. If research

40 B.H.C. Cheng et al.

on DSMLs is seriously interested in practical impact, it cannot ignore these
obstacles. Instead, we need to put more emphasis on clarifying the tremendous
economic and societal relevance of designing and disseminating DSMLs. This
also includes the revision of university curricula.

Organization of Research. The development of DSMLs and related tools
requires substantial effort. That is even more so if one aims at languages and tools
that should be disseminated in practice. Most research institutions, especially
those in academia, do not have the resources to accomplish this objective on
their own. This would require not only bundling of resources, but would also
require the involved groups to agree on common concepts. Unfortunately, such
an approach would contradict a core characteristic of scientific research – in
order to promote progress, researchers are supposed to compete and challenge
their peers. This conflict has to be taken into consideration.

4.3 Thoughts on Possible Future Directions to Pursue

The above considerations are intended to point at gaps in the state of the art that
future research might address. Finally, we consider a few promising approaches
for addressing selected challenges.

Multilevel Language Architectures. Traditional approaches to conceptual
modeling are based on two classification levels: The M2 layer is used to define
the metamodel of a modeling language and the M1 layer serves to represent
corresponding models. However, such a language architecture is insufficient since
it does not address the pivotal conflict of designing DSMLs – that is, it is not
possible to specify a generic DSML that is subsequently refined into more specific
ones, thereby supporting both a wide range of reuse (on the more generic level)
and high productivity of reuse (on more specific levels). Multilevel language
architectures that enable an arbitrary number of classification levels [6] and
support “deep instantiation” [7,11] address this problem.

However, current programming languages that feature one classification level
only prevent a tight integration of models and respective application systems at
runtime. Elements of conceptual models, even though located conceptually at M1
or higher have to be represented within a tool at the M0 level. As a consequence,
they cannot be further instantiated, which makes it mandatory to keep code and
models in separate representations resulting in the notorious problem of synchro-
nizing code and models. Programming languages that allow for multiple levels of
classification, such as those that are based on the “golden braid” architecture [8]
allow models to be represented at the intended level of classification and, as a con-
sequence, allow for a common representation of models and code.

Establishing “Open Model” Communities. The effort required to develop
an elaborate DSML is not only beyond the capabilities of single research insti-
tutions, it also demands the involvement of stakeholders from practice, such

Motivating Use Cases for the Globalization of DSLs 41

as prospective users and tool vendors. At the same time, it seems reasonable
to demand that DSMLs should be available to everybody in order to promote
their dissemination and further development. Against this background, it seems
promising to take the open source software initiative (which has been impres-
sively successful in places) as a model for building similar communities that focus
on the joint development and dissemination of DSMLs and respective models.
Respective initiatives could also aim at fostering collaboration between various
disciplines that are required to develop DSMLs. Furthermore, they can be seen
as a new model for organizing research following the ideas of open science [13]
and as a catalyst for disseminating research results to business practice. Early
attempts to establish “open model” communities [9,12] indicate that it is crucial
to account for building effective incentives for participation, both for academics
and practitioners.

Raising Awareness. In various disciplines such as Philosophy, Psychology,
and Sociology, the recognition that language is of pivotal relevance for almost
all investigations resulted in “linguistic turns”. As a consequence, the awareness
for the foundational role of language has considerably grown in these disciplines.
In Computer Science, language has always been a key foundation, especially
formal languages and programming languages. However, with respect to the
development of DSMLs, there is a need to increase the awareness of content, i.e.
the relevance of reconstructing domain-specific concepts, which clearly requires
to climb over the “firewall” that Dijkstra suggested. In addition to that, it will
be important to start campaigns that aim at convincing funding agencies and
politicians that artificial languages are not just a marginal instrument for pro-
moting automation, but lie at the core of the digital world and will thus play a
crucial and essential role in our future lives.

References

1. http://research.microsoft.com/en-us/projects/formula/
2. www.porticoproject.org
3. https://wiki.isis.vanderbilt.edu/OpenC2WT/index.php/Main Page
4. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture

(HLA) - Framework and Rules. IEEE Std. 1516–2000, pp. i–22 (2000)
5. van der Aalst, W.M.P., Basten, T.: Inheritance of workflows: An approach to tack-

ling problems related to change. Theo. Comput. Sci. 270(1–2), 125–203 (2002)
6. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M.,

Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg
(2001)

7. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Soft.
Syst. Model. 7(3), 345–359 (2008)

8. Clark, T., Sammut, P., Willans, J.: Applied metamodelling: a foundation for lan-
guage driven development. Ceteva, 2nd edn. (2008)

9. France, R.B., Bieman, J., Cheng, B.H.C.: Repository for Model Driven Develop-
ment (ReMoDD). In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 311–317.
Springer, Heidelberg (2007)

http://research.microsoft.com/en-us/projects/formula/
www.porticoproject.org
https://wiki.isis.vanderbilt.edu/OpenC2WT/index.php/Main_Page

42 B.H.C. Cheng et al.

10. Frank, U.: Domain-specific modeling languages - requirements analysis and design
guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Wand, Y., Cohen, S.,
Bettin, J. (eds.) Domain Engineering: Product Lines, Conceptual Models, and
Languages, pp. 133–157. Springer (2013)

11. Frank, U.: Multilevel modeling: toward a new paradigm of conceptual modeling
and information systems design. Bus. Inf. Syst. Eng. 6(6), 319–337 (2014)

12. Frank, U., Strecker, S.: Open reference models - community-driven collaboration
to promote development and dissemination of reference models. Enterp. Model.
Inf. Syst. Architect. 2(2), 32–41 (2007)

13. Guadamuz, A.L.: Open science: Open source licences in scientific research. North
Carolina J. Law Technol. 7(2), 321–366 (2006)

14. Hemingway, G., Neema, H., Nine, H., Sztipanovits, J., Karsai, G.: Rapid synthesis
of high-level architecture-based heterogeneous simulation: a model-based integra-
tion approach. Simulation, page 0037549711401950 (2011)

15. Jackson, E., Porter, P., Sztipanovits, J.: Semantics of domain specific modeling
languages. In: Mosterman, P.J., Nicolescu, G. (eds.) Model-Based Design of Het-
erogeneous Embedded Systems, pp. 437–486 (2009)

16. Kant, I.: Critique of Pure Reason. Penguin Classics (2007)
17. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.

Lang. Syst. 16, 1811–1841 (1994)
18. Mosterman, P.J., Sanabria, D.E., Bilgin, E., Zhang, K., Zander, J.: A heterogeneous

fleet of vehicles for automated humanitarian missions. Comput. Sci. Eng. 12, 90–95
(2014)

19. Mosterman, P.J., Sanabria, D.E., Bilgin, E., Zhang, K., Zander, J.: Automating
humanitarian missions with a heterogeneous fleet of vehicles. Ann. Rev. Control
38(2), 259–270 (2014)

20. Mosterman, P.J., Sanabria, D.E., Bilgin, E., Zhang, K., Zander, J.: A heterogeneous
fleet of vehicles for automated humanitarian missions. Comput. Sci. Eng. 16(3),
90–95 (2014)

21. Mosterman, P.J., Zander, J.: Cyber-physical systems challenges–a needs analy-
sis for collaborating embedded software systems. Softw. Syst. Model. 15(1), 1–12
(2016). (in press)

22. Rorty, R.: Universality and truth. In: Brandom, R.B. (ed.) Rorty and His Critics,
pp. 1–30. Blackwell Publishing Ltd., Malden, MA and Oxford and Carlton (2000)

23. Schrefl, M., Stumptner, M.: Behavior-consistent specialization of object life cycles.
ACM Trans. Softw. Eng. Methodol. 11(1), 92–148 (2002)

24. Simko, G., Lindecker, D., Levendovszky, T., Neema, S., Sztipanovits, J.: Spec-
ification of cyber-physical components with formal semantics – integration and
composition. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.)
MODELS 2013. LNCS, vol. 8107, pp. 471–487. Springer, Heidelberg (2013)

25. Wan, Y., Shengli, F., Zander, J., Mosterman, P.J.: Transforming on-demand emer-
gency communication: Needs, analyses, and solutions. Homel. Secur. Today 11(9),
32–35 (2015)

26. Zander, J., Mosterman, P.J.: Model-based design of a smart emergency response
system. Design News (2014)

Globalized Domain Specific Language
Engineering

Barrett Bryant1, Jean-Marc Jézéquel2, Ralf Lämmel3, Marjan Mernik4,
Martin Schindler5, Friedrich Steinmann6, Juha-Pekka Tolvanen7(B),

Antonio Vallecillo8, and Markus Völter9

1 University of North Texas, Denton, USA
2 University of Rennes, Rennes, France

Jean-Marc.Jezequel@irisa.fr
3 University of Koblenz-Landau, Koblenz, Germany

4 University of Maribor, Maribor, Slovenia
5 MaibornWolff GmbH, Munich, Germany

6 FernUniversität in Hagen, Hagen, Germany
7 MetaCase, Jyväskylä, Finland

jpt@metacase.com
8 University of Málaga, Málaga, Spain

9 Independent/itemis, Stuttgart, Germany

Abstract. This chapter is dedicated to discussing the engineering
aspects involved in the integration of modeling languages, as an essential
part of the globalization process. It covers the foundations of language
integration, the definition of the relationships between the languages to
be integrated, and the various dimensions of language and tool integra-
tion. Language variants, evolution, refactoring and retirement are also
discussed, as key issues involved in the globalization of modeling lan-
guages.

Keywords: Globalized DSLs · Language Engineering

1 Problem Statement

Today’s software development is characterized by a large degree of improvisa-
tion: different languages and language-based tools are used to create different
artifacts that act on the same (physical or logical) system. Such multiplicity
is not a problem in itself, but rather the common situation of those languages
and tools to be insufficiently integrated. The languages and tools though involve
interaction at the system level and these interactions are hard to understand
without good integration. In fact, the actual interactions may disagree with the
intended interactions. Any analysis or verification is going to be hard. Excessive
testing may be needed and still fail to be conclusive.

We just may hope for the engineers collaborating on the same system to limit
themselves to a set of languages implemented with a single language workbench.
Version changes of languages and tools would be semantics preserving (both

c© Springer International Publishing Switzerland 2015
B.H.C. Cheng et al. (Eds.): Globalizing Domain-Specific Languages, LNCS 9400, pp. 43–69, 2015.
DOI: 10.1007/978-3-319-26172-0 4

44 B. Bryant et al.

backwards and forward compatible) and therefore not require any changes to
the current artifacts.

Clearly, this is impractical. One issue is that engineers need to use multiple
languages to deal with different concerns. This poses the obvious problems of
co-reference, as illustrated by several motivating examples given in Sect. 2 of this
chapter.

The assumption of a single version or forward and backward compatible evo-
lution is too limiting, also. As teams grow bigger, different tools, different versions
or variants of the same language or tool will be used by different engineers even
for the same DSL. Even if the different tools allow the interchange of artifacts,
there is no guarantee that the semantics are preserved. Even if a new version of a
tool is fully backward compatible, it is usually not forward compatible, creating
an impediment if some engineers continue using the old tools.

Beyond the pure exchange of prodels1 as a whole, tools may be used to refine
or extend prodels created by another tool; tools may also need to collaborate
on some prodels. Even if the interfaces for refinement, extension, and access
of prodels are explicitly defined (which is trivially the case for single-language
prodels), the (full) semantics is usually implicit in the tool itself. Practically, this
leads to a combined tool whose behavior is difficult to predict, leading to largely
unforeseeable outcomes.

This chapter is dedicated to discussing the engineering aspects involved in
the integration of modeling languages, as an essential part of the globalization
process. It covers the definition of the relationships between the languages to be
integrated (and/or their corresponding prodels), exploring the different dimen-
sions of correspondence in Sect. 3. Then, Sect. 4 discusses the state of the art in
domain-specific programming and modeling languages, with particular empha-
sis on the foundations of language integration. In Sect. 5, the various dimensions
of language and tool integration are elaborated. Section 6 addresses the specific
case of language variants and Sect. 7 addresses language evolution, refactoring,
and retirement.

2 Motivating Examples

2.1 Complementary City Maps

A city is a complex system involving many kinds of concerns: road network,
transportation systems, water and electricity conductions, orography, geomor-
phology, and others. Capturing all the associated data in a single map would be
impossible or useless. Instead, different maps are used, each one focusing on a
different concern and purpose. Thus, each kind of map gives rise to a designated
DSL and there is clearly an integration requirement in how all the different maps
need to be consistent with each other.

Any given map applies a specific abstraction to reality. For instance, the
relative distance between city locations may or may not be preserved by a
specific map. Almost a century ago (in 1931) the first diagrammatic map of

1 We use the term “prodel” to refer to either programs or models.

Globalized Domain Specific Language Engineering 45

London’s rapid transit network was designed by Harry Beck, who invented a
new language that permitted drawing schematic diagrams, not showing the geo-
graphic locations but rather the relative positions of the stations, lines, the
stations’ connective relations, and fare zones. Such a map should then be used
with other city maps, like the one showing the streets, for reasoning about possi-
ble routes or for deciding alternative paths. The integration between them takes
place in the head of the person reading them, and the correspondence between
their elements is implicit, based on the names of the tube stations that appear
in both maps. The names then make a common frame of reference.

2.2 House Building

Building a house involves many trades, including bricklaying, plumbing, and elec-
trical engineering. Each of these trades has its own rules (expressing constraints)
and its own (graphical) languages.

To a certain extent, each trade can design its deliverable independently of
the others. Some requirements of the building (e.g., size, number of rooms, clas-
sification of rooms) are global and hence shared between all trades, others (e.g.,
which rooms need an ethernet plug) are local (i.e., specific to a trade). Each
trade must thus design its deliverable to meet global and local constraints.

Some of the global constraints may imply interaction (coordination) between
trades. For instance, the number of slots in the walls of a building, horizontal
ones especially, is usually to be kept to a minimum. Plumbing and electrical engi-
neering therefore need to share slots, which are to be created by the bricklayers.
The length of the pipes and cables required depends on where the slots are and,
reversely, the slots are best placed so that the used material (or loss of energy)
is minimized. At this point, the trades can no longer work independently; their
designs rely on a shared frame of reference. Since house construction is a material
matter, one such joint frame of reference is position in space.

The use of a joint frame of reference may be carried out in an ad-hoc man-
ner, e.g., by attaching notes; note how this corresponds to adding comments or
annotations to a program. Alternatively, the underlying languages may support
a common frame of reference through designated language constructs. If the
integration is ad-hoc (improvised), it escapes formal analysis, and design errors
will not be detected.

2.3 The A380 Wiring Issue

When the first physical prototype of the A380 was assembled, it was found that
some of the electrical wires and harnesses were too short, even though they
had been manufactured to their specification. One reason for this, it was iden-
tified that the engineers designing the body of the aircraft had upgraded to a
newer version of the jointly used CAD software, while the engineers designing
the wiring still used the old version. This prevented the latter from automati-
cally integrating design changes they made to the wiring into the 3D model of
the aircraft, and also from automatically adapting the wiring to design changes

46 B. Bryant et al.

made to the body. The workarounds used by engineers to integrate their data
nevertheless were imperfect, hence the failure.

While from a technical viewpoint, the reasons for the failure appear to be
clear (as do the measures that would have been necessary to avoid the failure,
namely the use of the same CAD version), it is a fact of life that engineers are
reluctant to change their tools, and hence changes midway through a project are
difficult to accomplish. Changes would not be necessary if the version change
had been engineered with globalization in mind.

2.4 Tool Bug Fixes

Often enough, engineers will discover bugs in the tools they use. Sometimes,
working around these bugs (for instance, by negating a condition that is obvi-
ously interpreted the wrong way, or by adding 1 to an expression to fix an
off-by-one error) is easier than getting the bugs fixed. However, when the tool
does get fixed, the fixed-by-workaround prodels will break. Ideally, this would
be automatically discovered by a globalized prodeling tool.

3 Basic Notions of Language Integration

3.1 Correspondences by Level

In many cases of complex systems the globalization of languages manifests itself
today on the fact that prodels written in completely independent languages refer
to the same system (red arrows in Fig. 1), or more exactly to different aspects of it.

Fig. 1. Correspondences between layers at different levels (Color figure online).

If these aspects are completely independent, or orthogonal, then there is
no particular problem in doing this. The trouble appears as soon as someone
realizes that these aspects need to interact or do interact in perhaps ways that
are not fully understood at a given point in time, for example competition for
the same set of (computational or physical) resources or the heat generated by a
computation and its speed. Then there is a need to relate the two corresponding

Globalized Domain Specific Language Engineering 47

models M1 and M2 through some form of connection (orange arrow). The next
stage is to do it at the language level, by defining a relation (e.g., intersection,
maybe union, maybe a form of composition) between Language1 and Language2
syntactic and semantic domains (blue arrow).

Of course relating languages with such a blue arrow would give for free the
orange connection between models, and allow much more powerful reasoning
capacities on the System.

3.2 Language Relationships

Not all languages are developed independently from each other. Instead a new
language might be developed based on an existing language. Additionally, lan-
guages are often not stable but evolve over time. Each of these resulting lan-
guages can be seen as a separate language but are also related to each other.
To clearly distinguish these different relationships between languages we use the
following definitions within this document:

Variant: Language variants are different languages used for similar purposes
within the same domain, and thus typically sharing a common semantic
domain. For instance Fig. 2 provides a simple example of a language variant.
It shows a very basic metamodel for a state machine language, while Fig. 3
provides a variant of it allowing the concept of hierarchical state machine by
having the class StateMachine inheriting from State. The second one can be
seen as a dialect of the first one. These languages co-exist and can be used
more or less interchangeably.

Version: Language versions are actually the same language which evolved over
time, for instance the language of Fig. 3 could also be seen as an evolution
of the one of Fig. 2. Usually these languages are used in sequence within the
same project scope, which might introduce forward and backwards compat-
ibilities issue (see Sect. 5.3).

Fig. 2. Language variant 1: Meta-model of a state machine.

48 B. Bryant et al.

Fig. 3. Language variant 2: Meta-model of a hierarchical state machine.

Viewpoint: Viewpoint languages are different languages within the same domain
to describe different aspects or concerns of the system, e.g., structure and
behavior, whereas one viewpoint can cover more than one concern. Usually
these viewpoints share some concepts within the domain or might have some
overlapping in the described concerns of the system.

Composition: A composition is a collection of languages with a defined seman-
tic relationship between each other. The relationship might be either defined
by references between the languages keeping the prodels separately (language
family) or by embedding one language into another one (language extension;
see Sect. 4). Usually the languages in the family or the composite language
are variants or concerns.

These language relationships might be either coordinated or uncoordinated.
Language versions are usually created by language evolution by adding, replac-
ing, or removing language constructs within an existing language. This is con-
sidered as a coordinated relationship between the old and the new version of
the language as the evolution is done on an intentional basis. On the other side
variants can occur independently from each other allowing to express the same
aspects of the system with different notations or concepts. This is considered as
an uncoordinated relationship if this happened unintentionally.

Language versions also raise the question of compatibility (backward and
forward) and migration of legacy prodels which are discussed in Sects. 5.3 and
7, respectively.

3.3 Frames of Reference

In order to control the interaction (both direct and indirect, via the system)
between prodels, correspondences (cf. Sect. 5.4) must be established. One way
of expressing correspondence is by using common frames of reference.

Globalized Domain Specific Language Engineering 49

Explicit Frames of Reference. An explicit frame of reference provides an
agreed common representation of the entities that are the subject of the prodels.
These entities could be

– memory locations (i.e., objects on the heap)
– records in a database
– Uniform Resource Identifiers (URIs)
– part numbers or RFID tags (in physical systems)

Jointly using these representations allows coordination at the artifact level.
Each language has to encompass a way of addressing the representations.

Explicit frames of reference are characterized by the occurrence of explicit
references in the prodels that use them. Although these references can be ad
hoc (using comments, notes, etc.), it is preferable that the used prodeling lan-
guage provide for them. This in turn means that the language must subscribe
to the shared frame of reference as well. Thus, using explicit frames of reference,
languages should not be developed entirely independently from each other.

For languages built on a common language infrastructure, the language inter-
operability interface provides a common frame of reference that is adopted by all
participating languages. Here, prodels can refer to elements of prodels in other
languages directly. One example of such an explicit frame of reference is the
CLI standard2, which basically builds on types in the object-oriented sense. The
Microsoft Component Object Model (COM) is another example of a standard-
ized joint frame of reference.

Implicit Frames of Reference. A shared frame of reference may also be
established after the fact. For instance, by analysing a set of different language
prodels, the joint use of same or similar names may suggest that same entities are
referenced in different prodels. For instance, a tube map and a street map may
not use (refer to) the same tube stations explicitly, and yet, the names of tube
stations can often be mapped to the names of streets or places, establishing an
implicit frame of reference. Another, more technical example is that of AspectJ:
here, a pointcut language is used to specify places in (arbitrary) prodels at which
advice is invoked.

The risk of using implicit frames of reference is that their existence is not
made explicit to the stakeholders (meaning that collaborating parties are not
aware of the fact that something is implicit/happening implicitly). On the other
hand, implicit frames of reference are more flexible, as they allow interoperability
without an upfront grand design. A good balance between implicit and explicit
frames of reference can be struck by lifting the mechanisms used to identify the
implicit frames of reference at runtime to design time, where they can be marked
in the prodels. Again, AspectJ with its so-called join point shadows may serve
as an example here.
2 http://en.wikipedia.org/wiki/Common Language Infrastructure.

http://en.wikipedia.org/wiki/Common_Language_Infrastructure

50 B. Bryant et al.

Engineering Frames of Reference. Names usually refer to objects. A com-
mon frame of reference that uses names therefore usually uses objects, and hence
shared state, as the pivots of prodel interaction. Shared state is a problem if a
state change caused by one prodel causes inconsistency of another prodel, for
instance since it violates an invariant. One way to handle this is to push the com-
mon frame of reference to a special environment which guarantees that invari-
ants from all prodels using it are always maintained. A good example of such an
external environment is a database.

Things get much more complicated, however, if the frame of reference uses
other notions, such as behaviour. In fact, when the prodeling paradigms which
require the common frame of reference do not match (which is, for instance, the
case when a system is prodeled using differential equations and UML), engineer-
ing a common frame of reference may be a major engineering effort.

4 Approaches to Language Composition

Language composition is, together with interoperability and collaboration, the
third possibility of interaction among heterogeneous modeling languages for
achieving globalization. The goal is to build a language simply by reusing dif-
ferent language definition modules (fragments), such as modules for expressions,
declarations, and afterwards straightforwardly extend them to reflect language
design changes. This was indeed achieved to some extend using single a formal-
ism and a language workbench. Recently, a taxonomy of language compositions
has been proposed [6]; it was also recognized that language composability is not
a property of languages themselves, but a property of language definitions. To
enable language composition, a language module (fragment) has to be reused as
is; that is, any changes to a language module (fragment) are not allowed, but
new language modules (fragments) can be added that extend or override pre-
vious language modules (fragments). In other words, only non-invasive changes
of previous language modules (fragments) are allowed in language composition.
Four different types of language composition have been identified in [6]:

– In language extension (B � E), the definition of base language B
(a dominant language) is extended with a new language module (fragment)
E. Note, that in this case language module (fragment) E makes little sense
when regarded independently from the base language B. This type of lan-
guage composition also subsumes language restriction (a language module
(fragment) E can remove some features from the language).

– In language unification (L1 � L2), two languages L1 and L2 are composed
together by writing glue code g. Dominance of one language over another does
not exist (as is the case in language extension) and both language definitions
are complete and stand alone.

– In self-extension (H ← E), the language definition does not change. The
host language H is powerful enough that new extensions E can be imple-
mented using macros, templates, function composition, operator overloading,

Globalized Domain Specific Language Engineering 51

or libraries that provide domain-specific constructs. This form of language
composition is also called pure language embedding [15].

– In extension composition, the language definitions are composed using
previous language compositions that show how different compositions can
work together. An examples of extension composition is (L1 � L2) � L3.

Another dimension of language composition is whether a language defini-
tion is informal (language syntax and semantics are hard-coded in compiler or
interpreter), formal (syntax and semantics are formally specified with one of sev-
eral formal methods for language definition), or semi-formal (syntax is formally
specified, but semantics is not). As we can expect different forms of language
compositions are much harder to achieve when syntax and/or semantics are only
informally specified [21].

Globalization of modeling languages requires interaction of heterogenous
modeling languages, which are designed and developed using different formalisms
and different language workbenches. In this case a language composition is even
harder to achieve since we would like to reuse language modules (fragements)
written in different formalism and developed possibly in different language work-
benches. On the other hand, semantics of modeling languages are often only
informally specified making a language composition more difficult. Some open
problems in language composition with respect to globalization of modeling lan-
guages are:

– How to obtain fully modular, extensible, and reusable modeling language def-
initions, which can be combined despite developed using different formalisms
and language workbenches?

– Can various forms of language composition be achieved not only at syntax
level (using different formalisms and tools for describing a syntax), but also
at the semantic level?

– Can language interfaces (Chap. 1) help us in language composition?
– How to change accompanying tools after language composition? Can such

tools be automatically generated?

5 Dimensions for Language and Tool Integration

The composition of two languages can come in two very different flavors: the
first flavor is that a language is explicitly designed to compose with (e.g., extend)
another one. In the second case, two (or more) languages that have been designed
independently are composed. While in the first case the semantics can be aligned,
the second case may lead to unexpected semantic interactions (this is an exam-
ple of the well-know feature interaction problem). It is currently an unresolved
challenge to reason about the composition of independently developed languages
and avoid unexpected interactions.

52 B. Bryant et al.

5.1 Referencing/Explicit Frames of Reference (Based on the Same
Infrastructure/Meta Meta Model)

Name References. The simplest form of language integration is name refer-
ences. A model element in model M1 (expressed in language L1) references a
symbol by name that is defined in M2 (expressed in L2). The reference is really
just a name, with no direct IDE support, (because we cannot modify the tools
to provide the IDE support or the target model is not available). This means
that no technical integration between the two tools (for authoring L1 and L2
models) is necessary. Of course, this approach is very error-prone, so in practice,
one often builds third-party checking tools where, for example, the two models
M2 and M1 are exported and the name references are checked for consistency
relative to the names defined in M2. The user experience is, however, not very
convenient because no real-time support is available for the user when using
names that are (supposedly) defined in M2.

Tool-Supported Name References. An improvement over pure name ref-
erences are tool-supported name references. Specifically this means that as the
user authors M2, he can use code completion (or some other means of selection)
to select any of the existing names in M1. Also, names used in M2 that are not
defined in M1 are flagged as an error, directly in the tool. While this approach is
obviously more convenient and less error-prone, it is harder to achieve because
the two authoring tools for L1 and L2 (called T1 and T2, respectively) have to
be changed:

– If T2 provides an API to query the model, then T1 must be changed to call
this API if the user enters a name (or during name validation). While this
approach is nice in that it provides real-time integration, the drawback is that
T2 has to run for T1 to be able to call the service.

– T1 may load the T2 prodel file and extract the valid names from the model.
This requires no change to T2, but requires changes to T1. The advantage is
that T2 does not have to be running while T1 is used. A related approach is
that T2 exports some kind of file that is dedicated to the collaboration.

Real References. Option 2 already feels like a tight integration from a user’s
perspective. However, as we have discussed in (2), this may require significant
efforts in terms of changing the two tools. A better solution is to build both tools
on top of the same platform (meta meta model). Today this is often Eclipse EMF
Ecore. Once this is done, references in L2 can be actual references to concepts
defined in L1 – the two meta models are directly related. Of course this requires
L2 to be aware of L1: when L2 is built, L1 has to be available to the developer so
he can define the reference. However, once this is done, establishing the references
(e.g., via code completion) and checking referential integrity) becomes simple and
is supported by the EMF infrastructure.

Globalized Domain Specific Language Engineering 53

5.2 Language Embedding

From the point of view of language integration, Fowler [9] has classified Domain-
Specific Languages as internal and external. An external DSL is distinct from
the host language, typically doesn’t share any data structures, and often merely
provides an API through which the DSL operations may be invoked by the host
language. Java Database Connectivity (JDBC) [25] is a typical example of this,
where SQL [26] statements are passed as strings to the SQL interpreter to be
executed, returning the results of queries in a Java data structure.

A domain-specific language is said to be embedded if it is integrated into a
host language, often a general-purpose programming language [31], but it could
also be the case that two or more DSLs are unified [6]. The notion of embedding
corresponds to Fowler’s internal DSL. Internal DSLs may be further classified
as shallow embedded or deeply embedded [12]. Shallow embedded DSLs, while
appearing to be extensions of the host language, restrict their interaction to
returning values that the host language program may use. Embedded SQL [23]
is an example of this. SQL code appears in the host language program directly
and serves to return values, which are then used by the host language program.
In contrast, a language extension such as SQLJ [24], which extends Java with
SQL, is designed to operate much more seamlessly in the Java environment as
opposed to having its own separate implementation. Such language extension is
discussed in more detail in the next section.

Deeply embedded DSL code creates an abstract syntax tree (AST), which
may then be integrated directly into the host language program, and even manip-
ulated by that program. In effect, this allows the DSL code to itself be a first-class
object, as opposed to just the value it computes being the first-class object (i.e.,
shallow embedding). This approach has been efficiently developed in languages
such as Haskell [15] and Scala [11], which have rich type systems capable of
representing such embedded DSL code. In particular, the use of Haskell as a
meta-language for defining the semantics of DSLs has become widespread (e.g.,
see [8]). Hudak [15] points out that this type of language unification allows for
a well-defined “domain semantics” of the DSL, which is defined by an inter-
preter for the ASTs, and is separate from the semantics of the host language.
On the other hand, the DSL can reuse an underlying programming language
infrastructure [14,18]. Furthermore, such embedded DSLs are easier to compose
than DSLs implemented by direct translation into the host language [5,22].

All of the above discussion has been concerned with Domain-Specific Lan-
guages. There are some other issues to be considered when considering Domain-
Specific Modeling Languages (DSMLs), even though the difference between the
two is subtle [33]. Fritzsche et al. [10] discuss the syntactic and semantic dif-
ferences between embedded DSLs and embedded DSMLs. A fundamental one
is that while DSLs must have their semantics fully defined to be executable, a
DSML may still be useful without a complete semantics. From an implementa-
tion point of view, an embedded DSML model may be integrated with the host
model via model transformation.

54 B. Bryant et al.

5.3 Language Extension (Adding New Language Constructs)

Intuitively speaking, extending a language is adding new language constructs
to it – of course, in a modular (non-invasive) way. That turns into adding new
model elements into its meta-model, be it new classes, new attributes or new
associations or inheritance links. Language extensions occur routinely when a
new (backwards compatible) language version with new features is released. The
prototypical example of this is the Java programming language.

But of course adding concepts to the meta-model is not enough. In most of
the cases, it will also have impact on the concrete syntax(es), and the semantics,
which turns into practical issues such as modifying editors, interpreters and
compilers (or model transformations).

Some languages support self-extension. This means that the language con-
tains abstractions to define new things (word used intentionally) that look to
the user like a new language.

Examples include internal DSLs in Scala as well as UML profiles. The app-
roach has the following advantages:

– since the new “languages” are built with the means of the host language, no
additional (or specialized) meta tooling is necessary;

– the host languages are in some sense forward compatible because they allow
users to build new “languages” without a change to the actual language defini-
tion of the host language. The forward compatibility is lost if the host language
changes its means for defining new user-defined languages: languages defined
with a newer version of the host language cannot be used with the old host
languages. The various versions of Scala have this problem;

– also, the existing tools (IDEs, UML tools) can be used to work with these
new, user-defined languages.

The approach of self-extension also has a number of drawbacks:

– In most cases the type system cannot be explicitly adapted to the user-defined
language. This is most apparent in error messages which often report prob-
lems in terms of the underlying (meta-programming) implementation. C++
template meta programming and its infamous error messages come to mind.

– Also, the IDE usually is not explicitly aware of the user-defined language:
debugging, refactoring and things like syntax coloring or code completion are
not adapted (or require manual, specialized adaptations as in MagicDraw’s
custom editors).

– Finally, two extensions can collide – even if they can syntactically match,
semantic clashes are common, and not easy to spot. The challenge here is
how to reason about the composition of independently developed extensions,
when they present some overlap (either because they can refer to the same
elements, or because their semantics overlap).

The alternative to self extension is explicitly creating a new language from
the existing one.

Globalized Domain Specific Language Engineering 55

From the engineering point of view, a difficult problem is how modular this
extension can be, for all the aspects of the language: concrete syntax, abstract
syntax, static semantics, semantics, including interpreters or compilers.

At the concrete syntax level, the current state of the art with tools such
as GMF or Xtext makes it extremely difficult to have this kind of modular
extensions.

Conversely, at the meta-model, adding elements can be realized using some
form of static introduction (i.e., considering meta-model classes as open classes).
When the tool used to implement the meta-model does not natively support the
required modular extension (e.g.; EMF based which is implemented in Java)
however that’s not so easy. Of course one can always copy the original meta-
model MM1 into meta-model MM2, and manually add the extension, but then
the fact that MM2 is an extension of MM1 is lost, so it is not going to be
considered here. One possible technical solution is to work at the JVM level,
using, e.g., AspectJ or Scala to weave the extension into the original metamodel.
Kermeta is one example of compiling language parts into Scala to keep a good
modularization for extensions of meta-models.

A second dimension of the modular extension problem is to make sure that
everything that was written for MM1 is still working for its extension MM2.
Here the notion of model typing, introduced in [32], is useful: if the extension
MM2 is a subtype of MM1, that reuse of model transformations comes for free.

A model oriented typing system is the set of rules for deciding if substi-
tutability between MM1 and MM2 is possible. When meta-models are defined
in an object-oriented way (e.g., in EMF), it is clear that a model oriented typing
system must somehow build on object-oriented typing systems. Substitutability
is supported through subtyping in object-oriented languages. However, object
subtyping does not handle type group specialization (i.e., the possibility to spe-
cialize relations between several objects and thus groups of types, see [7]). Thus,
we need an extended definition of object type matching, as initially introduced
by [4], and used by [13,32] to define a model type matching as a kind of subgraph
isomorphism which takes into account the MOF specificities (e.g., inherited prop-
erties and operations).

With this particular form of extension where MM2 is a subtype of MM1, we
can readily and safely reuse for MM2 models all the model manipulation oper-
ations (including model transformations) that have been defined for MM1. Still
this subtyping is only structural. That can easily be extended to static semantics
by considering OCL constraints as class invariants at the meta-modeling level:
that’s the idea of design by contract applied at the meta-model level. In practice
however, making sure that a constraint added in the extension MM2 does not
contradict an existing constraint of MM1 might need theorem proving for OCL,
which is still a challenge despite many recent works, including those attempting
to translate EMF+OCL to Alloy [1].

Even more challenging is to ensure behavioral subtyping, that is, the fact
that the operational semantics of MM2 is a refinement of MM1’s. Beyond toy
languages, this is of course still an open challenge, but that must be solved for
globalizing DSLs.

56 B. Bryant et al.

5.4 Externally Defined Correspondences (with Associated
Constraints and Consistency Checks)

One of the problems of dealing with independent DSLs is ensuring that the
prodels produced with these languages provide a coherent description of the tar-
get system. In the case of independent languages, the solution for relating them
is by establishing a set of correspondences between them (see Fig. 1). Reasons
for independent languages include:

– they may have been independently developed;
– they may have incompatible semantics;
– they need to be kept detached to allow the separation of concerns required to

avoid complexity, or
– they may live in different tools.

Correspondences do not form part of any one of the DSLs, but provide state-
ments that relate the various different views—expressing their semantic relation-
ships. Correspondences are needed to determine how the independent languages
(and their associated models) fit together, and how they need to be related.
They also enable checking the consistency of the descriptions provided by sepa-
rate models, and permit reasoning about them.

There is a fundamental difference between correspondences and references.
In a reference from a language (or a prodel) to another, the first one is aware
of the other. However, correspondences are “superimposed” (overlaid) on the
language elements, or on the prodels, by an external designer, who establishes
the relationships between them. These relationships are dependent on how we
want to compose the languages, and both the languages and the prodels are
completely unaware of them.

Correspondences also have other important uses. For example, since they
identify the related elements in a multi-viewpoint specification, they can help to
identify the elements that would be affected by a change (also known as trac-
ing, for example to requirements [16]). Thus, they can be useful in performing
some kind of what-if or impact analysis on the views. Similarly, the constraints
associated with the correspondence rules can be used to maintain consistency in
the viewpoint specifications. Consider, for example, a consistent set of models
related by a set of correspondences. If we make a change in one of the models, in
many situations it is possible to automatically propagate that change through
the correspondences, thereby changing the other models so that the consistency
is restored. In this context, correspondences act as the “binds” that link together
the related elements, enabling the propagation of the changes to maintain con-
sistency [27].

Correspondences need to be specified at two levels, depending on whether
they relate metamodel or model elements. In the first case, correspondences
determine the relationships that should exist between concepts of the two DSLs
to be combined. For example, if we are combining class diagrams with state-
charts, a correspondence between the two language metamodels can specify that
every UML class should be related to one or more statecharts (the ones that

Globalized Domain Specific Language Engineering 57

define the behavior of the instances of that class). But then, instances of such
correspondences (called correspondence links) should be specified at the model
level, identifying which are the individual statecharts that should be related to
a particular class. Making an analogy with programming languages, you need
to define first how the grammars of the two languages can be related, and then
how two individual programs are related using such relations [34].

Most multi-viewpoint platforms, frameworks and languages assume that cor-
respondences between viewpoints are trivially based on name equality between
correspondent elements, and implicitly defined. Or, since the viewpoint lan-
guages are developed together, they may contain explicit references to “tie
together” the viewpoints.

In fact, most proposals and tools for viewpoint modeling take a simplistic
approach to matching based on names: if the same name appears in two views,
they are assumed to represent two aspects of the same object. However, if the
models are to be developed by separate teams, it is not safe to assume they share
a single namespace, or that name assignments are unique, unless they share
a common frame of reference (a well-defined real-world system, see Sect. 3.3).
It is also often the case that the correspondences are not simply one-to-one;
the relationships between elements will generally be more complex [19,27]. In
fact, in many situations establishing correspondences becomes a very complex
task, impossible to automate [20]. For example, when the correspondences relate
complex structures without an obvious mapping between them, or when the
related elements are of different nature. Similarly, establishing correspondences
between non-structural elements such as constraints or pieces of behavior is not
trivial, either.

Existing proposals for expressing correspondences use different alternatives,
from OCL constraints to UML abstraction dependencies (in the case of UML-
based specifications). In the more general case, model weaving techniques are
used for relating the elements of different models, or even model transformation
languages such as QVT [27].

In general there are basically two approaches to model correspondences
between the views of a system: extensional and intensional [27].

Extensional approaches model correspondences between the particular ele-
ments of the views, similarly to what is done for 2D representation of 3D figures.
However, in large systems the number of correspondences hinders their proper
definition, management and maintenance: the system designer cannot deal with
(or even properly define and visualize) thousands of correspondences [20].

Intensional approaches define correspondences as relations between types of
model elements, using predicates, formulae, or constraints. However, this app-
roach may hinder the understandability and usability of the specifications pro-
duced: for typical users of the specification, correspondences are easier to use,
visualize and understand when they are drawn as relationships between individ-
ual elements in the views, instead of being expressed as formulae. Intensional
approaches work very well, for instance, when every object of a certain type in
a given view is related to another object in another view (i.e., when relations

58 B. Bryant et al.

can be defined at the type level). However, there are cases in which correspon-
dences need to be established between particular objects of a specification (as
it happens when the user defines the specific objects in one view that should be
related to others in another view). The problem is that at the type level it is not
that simple and elegant to determine which particular objects should be related.

In addition to languages, models and correspondences, we also need to impose
some further constraints that establish valid well-formed rules between all the
elements involved in the multi-view specification. These rules permit declaring
required correspondences between the elements, imposing constraints on how
the correspondences are established and how the elements are related. In other
words, correspondence rules express constraints that must be enforced for the
set of elements from the two viewpoints being linked, and for the set of corre-
spondences themselves.

Correspondence rules can also serve to provide information about the kind of
relationship that links the elements; such as “uses”, “implements”, “replicates”,
etc. These kinds of relationship are not predetermined, but are normally defined
by the system designers. This definition must include their semantics, indicating
what they are to mean in this system specification.

Open Challenges. The complexity involved in the specification and analy-
sis of systems using separate languages and correspondences between them has
revealed a whole set of new challenges that need to be addressed, some in the
short term, some in a further future.

Correctness of Specification of Correspondences. Specifying correspon-
dences is a complex task. In the first place, it is error-prone and subject to
mistakes. How to check that all necessary correspondences have been specified
between the languages first, and then between the models? (completeness). How
to ensure that the correspondences between the views define one system, and
that this system is precisely the one we have in mind, or the one that we have
to represent? (consistency).

Nowadays consistency is proved by finding the existence of a system (or a
model of it) that fulfills the specification. Although this may be a solution from a
theoretical point of view, it is unrealistic in practice—especially, with the current
tools that we have now.

And even if we manage to build a unified model using the views and the
correspondences that bind them, such a model, once constructed, will show the
problems of scale and complexity that led us to opt for viewpoints in the first
place. The benefits, however, is that this model will not be for human consump-
tion, but for tools to run checks and analyze the behavior of the system we have
specified.

Usability of Specification of Correspondences. Usability is one of the
limitations of most current modeling tools when they have to deal with large

Globalized Domain Specific Language Engineering 59

models. Writing large systems specifications becomes a tedious and cumbersome
task. This is especially relevant in the case of the specification of correspondences,
given that the number of correspondences is normally very large and the related
elements need to be selected individually for each correspondence. Tools can be a
great help in such a situation, and research is much needed for counting on tools
that allow specifying correspondences in a usable and maintainable manner.

One example is provided by the annotation facilities of MPS, that permit
adding information to the elements of one model, referencing related elements
in another (as used in mbeddr requirements tracing). This mechanism is useful
for specifying correspondences in a quick and user-friendly way. Then, from
the annotated model it could be possible to extract the information about the
correspondences themelves, annotate the counterpart model accordingly, etc. For
example, mbeddr supports an assessment that reports all requirements and the
program nodes that trace to it in one compact list [35].

As part of this, relating intensional and extensional correspondences need
to be supported. Usually intensional correspondences are defined as relations
between types of model elements, and this is done only once for every viewpoint
modeling framework. However, there are situations in which the user wants to
start the process by specifying correspondences in an extensional way. The ques-
tion here is how to transform these extensional specifications into intensional
ones (and vice-versa).

Methods and Tools to Specify the Correspondences. In summary, we
need engineering methods for dealing with multi-viewpoint specifications that
incorporate correspondences. How to specify, derive, implement, and maintain
correspondences between viewpoints in a systematic, measurable and predictable
manner?

What Happens with the Semantics? In general, combining the semantics
of the languages related by correspondences is not a trivial task and deserves
its own line of research. When composing languages, we need to consider the
semantics of the individual languages and the semantics of the composition as
such.

In a unification context, where there exists a unified model that integrates
all views (hopefully, built by tools) the semantics of the individual DSLs and the
unified language are preserved, and the (projection of the) results of the analysis
conducted in the unified model are valid in the views. Hence, the unified model
provides a common semantic platform compatible with the semantics of the
views [3].

A major challenge is how tools can derive such a unified model from the
viewpoint specifications, and from the correspondences between them. In this
respect, there is presumably a scale of compatibility of semantics of languages
under composition which makes composition easier or harder. The closer the
semantic domain of the two languages, the easier the unification will be. One
example of “easy” composition of semantics happens when we combine class

60 B. Bryant et al.

diagrams and state machines. An example of a hard composition (if possible at
all) happens when trying to combine the continuous time semantics of MATLAB
or Simulink, with the discrete semantics of UML state machines.

Even when the semantics of the two languages are formally and explicitly
stated, still the question arises whether they are “fit” for composition, not to
mention when the semantics are not explicitly stated, as is normally the case. In
this sense, the unified model can be very useful for providing a semantics for the
separate models, in this common environment. Such semantics can be considered
“the interpretation of those models” in the common semantic domain, and that
precisely corresponds to the semantic domain of the system under study. The
big challenge, here, is again the construction of such a unified model, and the
development of the relationships between that model and the views [3,34].

5.5 All in One Tool vs. Different Tools

Globalization of DSLs is about integrating disparate prodeling languages and
their tools in order to avoid semantic “surprises” (i.e., unexpected interactions on
the model or physical levels). This integration includes several aspects, the most
important being semantics: without a clear definition of what the integration of
two languages means, there is not much point in integrating them. So semantic
integration is obligatory and it may be defined in more or less strict ways based
on a common frame of reference (see Sect. 3.3). Other aspects that are optional
include syntactic integration (using the different languages in the same editor)
and also tool integration (using one tool to manipulate models expressed in
several languages).

The globalization of DSLs starts out with the premise that the languages
continue to be used in their established tools so these tools can be reused. There
are many arguments for this perspective:

– the tools are mature and have proven themselves to be useful to solve real-
world problems in the domain,

– the tools themselves are stable (or at least the problems are well-known and
can be worked around),

– the tools are established, so there is a lot of experience in the industry, the
additional training effort is limited.

However, when trying to integrate a number of such tools, one runs into a
number of problems, most of them related to the fact that many of these tools
have not been designed to be open and integrable:

– the tools may not allow easy access to its data,
– the meta meta models of to-be-integrated tools may be incompatible [17],
– the scripting APIs may be limited so building exporters and importers is hard.

In addition, as long as the various languages continue to reside in separate
tools, syntactic integration is impossible. Also, realtime collaboration (an update

Globalized Domain Specific Language Engineering 61

in one model is immediately visible in another) is hard(er) to achieve. So by defi-
nition, the integration of the languages is less “tight”. In practice these problems
can often be so daunting that we never get to the point of tackling the essen-
tial complexities involved in integrating the semantics; the integration project is
canceled, DSL globalization does not happen.

An alternative approach for globalization is to re-implement established lan-
guages on a tool platform that is built for language integration and multi-concern
modeling. Language workbenches such as MetaEdit+, Spoofax or MPS are built
for this purpose. Below we list the advantages of this approach:

– All languages are based on the same meta meta model so referencing from
one to the other is simple.

– Most language workbenches also support syntactic integration (embedding,
extension).

– Cross-cutting concerns (such as requirements tracing, PLE variability or doc-
umentation) can be handled consistently throughout all the languages.

– The IDE experience for users is consistent, because all languages live in the
same IDE.

– Language workbenches are built to be extended, so additional views, windows
or utilities can be integrated easily.

Of course the price one pays is that the advantages of an existing, established,
stable tool go away. Whether this is a problem may depend on the following
considerations:

– Many organizations use only a small subset of an established tool. Rebuild-
ing this subset of the required functionality/language may be feasible. If an
existing tool is used fully, reimplementation based on a language workbench
is less feasible.3

– The efforts for building languages with language workbenches are lower than
most people expect, because language workbenches are built for this purpose.

– Essentially, the only remaining real challenge is the semantic integration.
– The essential complexity involved in semantic integration has to be solved in

any case, though.

The decision between using established tools and integrating those vs.
rebuilding the languages on top of a language workbench is not black and
white. For example, one can build a core of closely collaborating languages on
a language workbench, while still referencing outside model elements for less
closely integrated concerns. Similarly, the various concerns relevant for a software
3 In practice the decision is not so black-and-white but pragmatic: use e.g., modeling

tool for the parts it work but yet provide integration for programming tools. (e.g.,
Visual Studio and Eclipse plug-ins in MetaEdit+). It is also questionable if there
will even be such a platform that would be one for all users. For example today while
Visual Studio (or Eclipse) are used for programming and some modeling tasks we
can’t expect that e.g., interaction specialists, safety engineers, requirements engineers
etc. would use IDE style tool.

62 B. Bryant et al.

system (architecture, components, algorithms, implementation) can be done in
a language workbench and the connections to systems-engineering level artifacts
or requirements can be done as external references.

5.6 Process Aspects: Maybe We Should Stick with the Same Tool

We always take it for granted that we have to deal with different versions of
tools or different tools. Maybe one alternative is to involve management to force
everybody into the same tool. This is the approach followed, e.g., by UML,
which tries to integrate all aspects into one modeling language, which can be
supported by one single tool. Although the goal is laudable, this is normally
unfeasible because no one single tool offers all functionality required in a project.
Other tools try to integrate different languages and other tools into one single
environment. But then we hit the problems mentioned above. The quest for a
single tool that successfully satisfies the particular requirements of a company,
either globally or within a set of projects is still an open line of research.

5.7 Tool/IDE Integration (Without Language Integration)

The actual integration of different languages can be either done on the syntactical
level (language embedding) or by references. The references can point to concrete
elements of other prodels or to some commonly known elements in the domain.
As these references are usually just references by name there is often no need for
changes on the syntactical level of the integrated languages. So in this case the
languages can be developed completely independent even with different language
workbenches and also used without knowing of each other in one or different
IDEs.

However, as already stated earlier there is always a semantic integration
behind using different languages for describing one system. Once the prodels
should be validated for consistency with other prodels, simulated together, or
transformed to the system level some kind of integration is needed. In case
different IDEs are used to develop the prodels, the corresponding import/export
mechanism to a common format or metamodel could be used. In this way the
prodels could be even validated or simulated in an additional tool. However, just
an export is not enough as error messages or the result of the simulation should
be reported to the prodeler on the level of the involved prodels itself.

Another approach is to provide a common source of connecting elements and
by making these accessible within the IDEs. In each IDE the prodels can then
reference to these elements allowing to at least validate these references. The latest
and also weakest point of integration is on the system level, which means that
the prodels are transformed to code separately from each other in a way that the
resulting system code is integrated. This approach only requires an agreement on
interfaces on the system level for the transformation but has the drawback that
inconsistencies cannot be automatically identified on the prodel level.

Globalized Domain Specific Language Engineering 63

5.8 Interactivity: Realtime Sync, File Exchange, Shared DB

The least interactive (i.e., slowest) form of interaction is file-based. Tool T1 uses
the persisted model file created by T2 as a means of learning about (and then,
referencing or checking against) the model elements available. To make new
model elements available, T2 must update (or re-export) the file. This requires
explicit coordination between the (users of the) two tools. On the plus side, this
approach provides a degree of isolation of T1 from the changes made in T2: It
is the choice of the user of T1 to work against an updated file. This approach
works very well with file-based CVS.

A more immediate form of collaboration is T1 directly calling into T2 through
some kind of service or API. Interaction is potentially immediate. This may be
good or bad; no isolation of model M1 is provided for user U1 if and when user
U2 changes model M2 at the same time. Also, T2 actually has to be running so
T1 can call into T2. This has consequences with respect to resources and licenses.
A model bus (such as Toolbus [2]) is a generalized version of this approach.

The most realtime integration is for the various models M1 and M2 to work
on top of the same repository. The repository can be file based (for example, a
set of EMF files deployed in the same Eclipse instance) or an actual database
(as in MetaEdit+). Changes made in M2 are directly visible to M1. Some form
of explicit transaction control is useful to isolate the users from each other (for
example, as provided by MetaEdit+). A database-based system has the draw-
back that it does not easily integrate with existing, file-based version control
systems.

For the ideal language integration the versioning should be on the level of the
language (aka domain it specifies). For example if a model is about insurance
product the version should be a insurance product but not a number of files that
specify it. In other words: domain sets the scope for versioning (not file system).

For integration, a tool may then put that (domain) like insurance product
into a file for CVS, or version the whole repository, as today a hard disk is not
a scarce resource anymore.

5.9 Collaborative Modeling

In terms of language and tool integration this section has focused on one devel-
oper at a time whereas at least in modeling space (and perhaps in programming
space in future too) several persons can collaboratively work using different
languages to specify the system (a bit like we creating the first version of this
document in Google docs). So, collaboration on language and tool usage is some-
thing that cannot be ignored. Besides, it would also help to address some of the
scalability issues mentioned before in the section, like that tools (storing models
in file) don’t scale to larger models (and teams). In several modeling tools it is
common that multiple persons work collaboratively together (without having to
diff and to merge models constantly) but that is not the case (at least not in
practice) with programming tools currently. There is plenty of work to be done
in this area, both at the research and development sides.

64 B. Bryant et al.

6 Language Variants (i.e., Parallel Globalization)

6.1 Dialects vs. Related Languages

As defined in Sect. 3.2, language variants are different languages used in paral-
lel for similar purposes within the same domain, and thus typically sharing a
common semantic domain.

When the variants Vi have a common ancestor A, Vi being dialects of A, it
can be seen as a special case of language extensions as discussed above: Vi

are extensions of A. There are cases however where the variants Vi do not
have a common ancestor, but still share similars concepts giving them related
forms. This is well known in biology evolution: for example sharks and dolphins
somehow look alike (common points and variations), but they do not have (close)
common ancestors. In the case of languages, let’s take for example MOF, the
class diagram of UML, and the structural subset of Java. All of them share
the abstract concepts of classes, attributes, methods, inheritance, but they do
not have a common concrete ancestor playing the role of a supertype of these
languages. Sen et al. [30] provide and interesting approach to still be able to
reuse model transformations (e.g., a refactoring such as the pull-up method) in
that case: they propose to use the Adapter Pattern at the meta-model level,
using in practice the Kermeta language to weave the adaptation code into the
meta-models to make them look like having a common ancestor. Of course an
interesting challenge is to see whether this approach scales for more complex
cases.

6.2 Variability Management

Variability management is a mechanism for explicitly representing the common-
alities and differences among a family of products that has been developed by
the Software Product Line Engineering community over the last decades.

A family of products is defined as a set of software applications that have
similar purposes and that share some functionality but that is specialized in a
particular type of users or situation. The idea is to effectively reuse the imple-
mentation of such common functionality and having a repository of “common
assets” that implement product features. The process of creating a product by
using the family of products is called product derivation. To do so, it is necessary
to select the desired product features and to offer a mechanism of composition
for integrating the assets corresponding to each feature.

Variability management and the ideas behind SPLE in general, can be applied
in the context of software languages for increasing reusability and then increasing
the productivity of software language engineers. In this context, a family of
products actually is a family of languages where there are some commonalities
and some differences.

Globalized Domain Specific Language Engineering 65

6.3 Challenges in Languages Variability Management

Alignment with the Modularization Approach. It is worth noting that
modularization is a prerequisite for addressing variability management. In fact,
at the implementation level software modularization and variability management
are strongly linked. Each concrete feature expressed in the variability model
must correspond to a software component in the architecture so that a given
configuration can be derived in a concrete functional product. In the case of
software languages each feature should be mapped to one (or more) language
units that offers the corresponding services. Moreover, in [13] van der Linden
et al. present a set of three variability realization techniques at the level of the
software modularization schema. Those techniques can be viewed as a set of
requirements in terms of modularization and composition of the architecture
and they are quite related with the concepts of extension, substitutability and
adaptation, some of them discussed in the previous section. How to conjugate
all those concepts for effectively define an approach that allows the construction
of families of software languages?

Multi-stage Orthogonal Variability Modeling. Typically, a software lan-
guage specification is intended to define the abstract syntax, the concrete syntax
and the semantics of a language. As a result, language units have to contribute
to each of those dimensions. In other words, each language unit specification
includes a partial definition of the abstract syntax, the concrete syntax, and
the semantics. The whole language specification is obtained by putting all the
language units together. In [8] the authors observed that there exists some vari-
ability between each of those dimensions. Thereby, one language construct (i.e.,
a concept in the abstract syntax) may be represented in several ways (i.e., sev-
eral possible concrete syntaxes) and/or may have different meanings (several
possible semantics). This analysis remains the same for both the whole language
specification and each segment defined in language units. Consequently, we have
at least three different dimensions of variability each of them regarding one field
of the tuple:

Abstract syntax variability or functional variability : This variability refers to
the capability of selecting the desired language constructs for a particular prod-
uct as long as the dependencies are respected. Consider for example a family of
languages for state machines where concepts such as timed transitions, compos-
ite states, or history pseudo-states are optional and are only included if the user
of the language needs them. This variability dimension is quite similar to the
classical concept of functional variability of SPLE where each feature represents
a piece of functionality that may be or not included depending on the specific
requirements of a user.

Concrete syntax variability or representation variability : This variability refers
to the capability of offering different representations for the same concept. Con-
sider for example a language for state machines that can have textual or graphical
representations.

66 B. Bryant et al.

Semantics variability or interpretation variability : This variability refers to
capability of offering the different interpretations to the same concept. Consider
for example the semantics differences that exist between state machines lan-
guages explored in [4]. In that work, we can see how, for example, the priorities
between conflicting transitions in a state machine are resolved with different
criteria. If we are able to manage such variability, the reuse opportunities are
drastically increased since we are able to reuse the entire language infrastructure
(e.g., editors, abstract syntax trees) for the implementation of different languages
that are interpreted according to the needs of specific users.

Note that both representation variability and interpretation variability depend
on the functional variability. It makes no sense to select a representation (or inter-
pretation) for a language construct that has not been included as part of the
language product. In other words, the configuration of representation and inter-
pretation must be performed only for the construct selected in the functional vari-
ability resolution.

7 Language Evolution, Refactoring, Retirement (i.e.,
Sequential Globalization)

As any other software artifacts, DSLs and the prodels written in them are subject
to evolution: new requirements force the addition or modification of some lan-
guage features; parts of the language are restructured to accommodate improve-
ments and to permit optimizations; some features become deprecated as others
appear. Globalized ecosystems, as any other ecosystem, should take into account
the life cycle and evolution of their elements.

Language version concerns the evolution of one language over time. Usually
only one version of a language is used in a project at a moment in time. This is in
contrast with the variants discussed above, which are indeed different languages
(although they are for the same purpose and within the same domain), used at
the same time in a project.

In general, language versions can be produced in different ways, some of
which have been discussed above. For example, language extensions can be con-
sidered as (backwards compatible) language versions that incorporate new fea-
tures, producing a new version of an existing language in an ordered, systematic
and predictable way. Other changes to the language can produce new versions in
a less structured and controlled manner, causing, e.g., backwards incompatibility
issues.

This issue also brings along the problem of the co-evolution of the software
ecosystem artifacts [28]. For example, model and metamodel co-evolution: it
happens when a metamodel changes and the models are no longer conformant
to the new metamodel. Should we leave them as they are? Should we make them
evolve? And if we decide to make them evolve, is it possible? Is it automatable?

Other interesting co-evolution problem happens a model transformation
needs to change when any of the metamodels it handles changes [29]. There is

Globalized Domain Specific Language Engineering 67

also the traditional problem of instance migration in databases when an schema
changes4.

Forward compatibility needs also be considered, since it starts to be com-
monplace in extensible languages (such as, e.g., Scala). This kind of compatibil-
ity is lost if the host language changes how new user-defined (guest) languages
are defined, hindering its use with previously defined guest languages. Forward
compatibility is much harder to achieve than backward compatibility because
forward-compatible languages need to deal with unknown future features.

Finally, languages also retire, and the legacy prodels they leave behind must
be either maintained or modernized. These are decisions that involve not only
technical considerations but also (and overall) economical and social aspects.

In this context, Model Transformations have an essential role to play. A
model transformation provides the operationalization of the specification of the
relation between two or more languages. Thus, they can be used not only to
specify the relationship between two versions of a language, but also to help
migrating the corresponding artifacts and prodels, in an automated manner.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to alloy. Softw. Syst. Model. 9(1), 69–86 (2010)

2. Bergstra, J.A., Klint, P.: The ToolBus coordination architecture. In: Hankin, C.,
Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 75–88. Springer,
Heidelberg (1996)

3. Bowman, H., Steen, M., Boiten, E.A., Derrick, J.: A formal framework for view-
point consistency. Formal Methods Syst. Des. 21(2), 111–166 (2002)

4. Bruce, K.B., Schuett, A., van Gent, R., Fiech, A.: Polytoil: a type-safe polymorphic
object-oriented language. ACM Trans. Program. Lang. Syst. 25(2), 225–290 (2003)

5. Dinkelaker, T., Eichberg, M., Mezini, M.: An architecture for composing embed-
ded domain-specific languages. In: Jézéquel, J.-M., Südholt, M. (eds.) Proceedings
of the 9th International Conference on Aspect-Oriented Software Development,
AOSD 2010, pp. 49–60. ACM, Rennes, Saint-Malo, 15–19 March 2010

6. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In:
Sloane, A., Andova, S. (eds.) International Workshop on Language Descriptions,
Tools, and Applications, LDTA 2012, p. 7. ACM, Tallinn, 31 March–1 April 2012

7. Ernst, E.: Family polymorphism. In: Lindskov Knudsen, J. (ed.) ECOOP 2001.
LNCS, vol. 2072, pp. 303–326. Springer, Heidelberg (2001)

8. Erwig, M., Walkingshaw, E.: Semantics first! - rethinking the language design. In:
Sloane, A., Aßmann, U. (eds.) SLE 2011. LNCS, vol. 6940, pp. 243–262. Springer,
Heidelberg (2012)

9. Fowler, M.: Language workbenches: the killer-app for domain specific languages?
(2005)

10. Fritzsche, M., Johannes, J., Aßmann, U., Mitschke, S., Gilani, W., Spence, I.,
Brown, J., Kilpatrick, P.: Systematic usage of embedded modelling languages in
automated model transformation chains. In: Gašević, D., Lämmel, R., Van Wyk,
E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 134–150. Springer, Heidelberg (2009)

4 http://martinfowler.com/articles/evodb.html.

http://martinfowler.com/articles/evodb.html

68 B. Bryant et al.

11. Ghosh, D.: Dsl for the uninitiated. Queue 9(6), 10:10–10:21 (2011)
12. Gill, A.: Domain-specific languages and code synthesis using haskell. Queue 12(4),

30:30–30:43 (2014)
13. Guy, C., Combemale, B., Derrien, S., Steel, J.R.H., Jézéquel, J.-M.: On model

subtyping. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D.
(eds.) ECMFA 2012. LNCS, vol. 7349, pp. 400–415. Springer, Heidelberg (2012)

14. Hudak, P.: Modular domain specific languages and tools. In: Devanbu, P.,
Poulin, J., (eds.) Proceeding of the 5th International Conference on Software Reuse
(ICSR 1998), pp. 134–142. IEEE (1998)

15. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv.
28(4es), 196 (1996)

16. Jarke, M.: Requirements tracing. Commun. ACM 41(12), 32–36 (1998)
17. Kern, H., Stefan, F., Dimitrieski, V., Celikovic, M.: Mapping-based exchange

of models between meta-modeling tools. In: Proceedings of the DSM Forum
at SPLASH 2014, ACM DL (2014). http://www.dsmforum.org/events/DSM14/
Papers/Kern.pdf

18. Kosar, T., López, P.E.M., Barrientos, P.A., Mernik, M.: A preliminary study on
various implementation approaches of domain-specific language. Inf. Softw. Tech-
nol. 50(5), 390–405 (2008)

19. Linington, P.: Black cats and coloured birds what do viewpoint correspondences
do? In: Proceedings of WODPEC 2007, Maryland, USA, October 2007

20. Linington, P.F., Milosevic, Z., Tanaka, A., Vallecillo, A.: Building Enterprise Sys-
tems with ODP - An Introduction to Open Distributed Processing. Chapman
and Hal/CRC innovations in software engineering and software development. CRC
Press, Boca Raton (2011)

21. Mernik, M.: An object-oriented approach to language compositions for software
language engineering. J. Syst. Softw. 86(9), 2451–2464 (2013)

22. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

23. Oracle.: Pro*c/c++ programmer’s guide 10g release 2 (10.2) (2005)
24. Oracle.: Oracle database sqlj developer’s guide and reference 11g release 1 (11.1)

(2007)
25. Oracle.: The javaTM tutorials: Jdbc(tm) database access (2014)
26. Oracle.: Oracle database sql language reference 11g release 2 (11.2) (2014)
27. Romero, J.R., Jaén, J.I., Vallecillo, A.: Realizing correspondences in multi-

viewpoint specifications. In: Proceedings of EDOC 2009, pp. 163–172. IEEE Com-
puter Society, Auckland, September 2009

28. Di Ruscio, D., Iovino, L., Pierantonio, A.: Coupled evolution in model-driven engi-
neering. IEEE Softw. 29(6), 78–84 (2012)

29. Di Ruscio, D., Iovino, L., Pierantonio, A.: A methodological approach for the
coupled evolution of metamodels and ATL transformations. In: Duddy, K., Kappel,
G. (eds.) ICMB 2013. LNCS, vol. 7909, pp. 60–75. Springer, Heidelberg (2013)

30. Sen, S., Moha, N., Mahé, V., Barais, O., Baudry, B., Jézéquel, J.-M.: Reusable
model transformations. Softw. Syst. Model. 11(1), 111–125 (2012)

31. Spinellis, D.: Notable design patterns for domain-specific languages. J. Syst. Softw.
56(1), 91–99 (2001)

32. Steel, J., Jézéquel, J.-M.: On model typing. Softw. Syst. Model. 6(4), 401–413
(2007)

33. Sun, Y., Demirezen, Z., Mernik, M., Gray, J., Bryant, B.: Is my DSL a modeling
or programming language? In: Lawall, J., Réveillère, L. (eds.) Domain-Specific
Program Development, p. 4, Nashville, United States (2008)

http://www.dsmforum.org/events/DSM14/Papers/Kern.pdf
http://www.dsmforum.org/events/DSM14/Papers/Kern.pdf

Globalized Domain Specific Language Engineering 69

34. Vallecillo, A.: On the combination of domain specific modeling languages. In:
Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol.
6138, pp. 305–320. Springer, Heidelberg (2010)

35. Voelter, M., Ratiu, D., Tomassetti, F.: Requirements as first-class citizens: integrat-
ing requirements closely with implementation artifacts. In: ACESMB@MoDELS
(2013)

Domain Globalization: Using Languages
to Support Technical and Social Coordination

Julien Deantoni1, Cédric Brun2(B), Benoit Caillaud3, Robert B. France4,
Gabor Karsai5, Oscar Nierstrasz6, and Eugene Syriani7

1 University of Nice-Sophia-Antipolis, Nice, France
2 Obeo, Carquefou, France

cedric.brun@obeo.fr
3 INRIA, Rennes, France

4 University of Colorado, Boulder, CO, USA
5 Vanderbilt University, Nashville, TN, USA

6 University of Bern, Bern, Switzerland
7 University of Montreal, Montreal, Canada

Abstract. When a project is realized in a globalized environment, mul-
tiple stakeholders from different organizations work on the same system.
Depending on the stakeholders and their organizations, various (possi-
bly overlapping) concerns are raised in the development of the system.
In this context a Domain Specific Language (DSL) supports the work
of a group of stakeholders who are responsible for addressing a specific
set of concerns. This chapter identifies the open challenges arising from
the coordination of globalized domain-specific languages. We identify
two types of coordination: technical coordination and social coordina-
tion. After presenting an overview of the current state of the art, we
discuss first the open challenges arising from the composition of multiple
DSLs, and then the open challenges associated to the collaboration in a
globalized environment.

Keywords: Composition · Coordination · DSL · Globalization

1 Context

In this chapter we describe the issues associated with the coordination aspects of
the globalizing languages challenge. Specifically, the focus is on how globalized
domain-specific languages (DSLs) can be used on projects with multiple stake-
holder groups, each focusing on a different engineering/development concern,
to support analysis of system properties and coordination of work across the
groups. The groups may span multiple organizations that temporarily need to
collaborate on a project, thus one needs to accommodate different collaboration
styles and engineering cultures, and manage differing trust and security proce-
dures when it comes to sharing information. The language-based coordination
mechanisms should take these into consideration.

c© Springer International Publishing Switzerland 2015
B.H.C. Cheng et al. (Eds.): Globalizing Domain-Specific Languages, LNCS 9400, pp. 70–87, 2015.
DOI: 10.1007/978-3-319-26172-0 5

Domain Globalization: Using Languages to Support 71

In this context, a DSL is a software or system language that is specifically
built to support the work of a group of stakeholders that are responsible for
addressing a specific set of concerns. It must therefore be supported by tech-
nologies that serve the particular purposes of the stakeholders. For example, a
DSL’s purpose may be to support static analysis of properties, provide a descrip-
tion of a system component, or it may be used to support simulation of some
behavioral aspect. Based on purpose, a DSL may be declarative, executable,
prescriptive or descriptive.

A distinguishing characteristic of a globalized framework of DSLs is its open-
ness, that is, there is no restriction on the form of languages and supporting
tools that can be added to the framework. Realizing the globalized DSL vision
thus requires consideration of how new DSLs and their toolsets are incorporated
into the language framework.

Two types of language-based coordination can be broadly identified: Techni-
cal and Social. Technical coordination is concerned with the mechanisms used to
compose heterogeneous languages to support analysis of properties that require
information captured in models expressed in different languages. Such analysis
typically requires coordinated analysis of the models expressed in the different
languages. Examples of two forms of analysis are consistency checking and com-
patibility checking. Checking consistency means to determine whether informa-
tion spread across models expressed in different languages is not contradictory.
This is easily understood when considering DSLs expressing logical or numerical
constraints where checking consistency amounts to checking the satisfiability of
the conjunction of the constraints. In system engineering, consistency usually
applies to models belonging to the various viewpoints of the same component.
Compatibility checking is concerned with determining whether two models can
be composed in a particular environment, that is, two models are compatible if
there is an environment in which two models can work together. The simplest
instance of this concept is the type compatibility of components with input and
output ports, where the output of one component should be a subtype of the
input of the other components. Compatibility usually applies to models of several
interacting components that form a system architecture.

To support technical coordination, correspondences between language ele-
ments should be defined at the syntactic level. Elements for identifying and
describing such correspondences needs to be supported.

Language-based social coordination is concerned with how globalized DSLs
can be used to support effective collaboration across stakeholder groups. Coordi-
nation of work through globalized software languages leads to social translucence,
where relatively autonomous groups of stakeholders are made aware of activities
performed by other groups. Groups can thus react accordingly to communicated
information and in turn notify other groups of their reactions. These interac-
tions can take place through the sending of notifications and feedback. Social
coordination can also include support for managing resources across groups. To
support social coordination the DSLs may have, for example, to be augmented
with metadata about activities and resources associated with the DSL language
elements.

72 J. Deantoni et al.

2 State of Art

Multiple DSLs can be composed into a host environment at a variety of different
levels. The coarsest level is that of tool composition, where tools supporting a
domain modeling approach may be composed, but there is no language com-
position per se. With model composition, the underlying models can interact,
but again there is no language composition. Finally, with language composition,
individual DSLs may be integrated or coordinated, either at a syntactic level or
at a deeper semantic level.

2.1 Tool Composition Frameworks

Tool composition frameworks provide a means for individual tools to interact
with one another. “Tool” here can mean a model editing or model execution envi-
ronment, but in practice they may include simpler tools like spreadsheets. The
tools may be domain-specific or general-purpose, and tool composition frame-
works facilitate tool interoperability. Several tool integration patterns have been
developed and used in complex toolchains [5,10,29,31]. Tool chains may support
collaborative work, either directly (when a multitude of developers is assisted by
the framework, in real-time, synchronously), or indirectly (when the collabora-
tion is more asynchronous).

Some tool integration frameworks are distributed (with tools running on
different platforms), some are desktop-based, where the framework provides a
unified visual interface to a suite of the integrated tools. For the latter Eclipse1

is the most prevalent example. Commercial products are also available2.
There also exist tool coordination frameworks whose goal is to orchestrate

the execution/simulation driven by different tools so that data can be exchanged
between them during the simulation. One of the best-known coordination frame-
work is the functional mock-up interface [7].

2.2 Model Composition Frameworks

The purpose of model composition is to provide a consistent view of various mod-
els possibly expressed in different modeling languages for the purposes of analysis
and synthesis. The challenge is that the domain, the syntax, and the semantics of
modeling languages can be widely different, yet the composed model has to have
a semantics on its own that is relevant for the task at hand. Broadly speaking,
models can be composed either via a hierarchy or via side-by-side composition.
In hierarchical composition models coming from one language are embedded in
models expressed in another language, while in side-by-side composition models
at the same level of abstraction are related, usually via their interfaces. Mod-
els can be static artifacts (i.e., passive documents) or dynamic entities (e.g.,
models embedded within a simulation engine). Hence, model integration can be

1 http://en.wikipedia.org/wiki/Eclipse Modeling Framework.
2 http://www.phoenix-int.com/software/phx-modelcenter.php.

http://en.wikipedia.org/wiki/Eclipse_Modeling_Framework
http://www.phoenix-int.com/software/phx-modelcenter.php

Domain Globalization: Using Languages to Support 73

static or dynamic, yielding either a composed (static) document or an active,
integrated dynamic model executing on some platform. In all model integration
frameworks, there is some common foundation to support integration. This could
be syntactic, semantic, operational, or some mixture. By syntactic foundation
we mean a concrete textual or visual notation that allows model integration; by
semantic foundation we mean a common semantic domain, and by operational
foundation we mean some software infrastructure that allows the inter-operation
of models.

UML Profiles provide a mechanism for defining and composing domain-
specific modeling languages in the overall UML framework. These are not new
languages, but already defined UML constructs that are specialized through
stereotyping. Stereotypes are special markers applied to specific UML model ele-
ments, which gain a specific semantics through this process. Profiles often specify
model patterns (built from stereotyped model elements) that have domain-
specific semantics. In this case the model integration platform is UML, and
the integration is supported by the model integration operators of UML.

Coordination languages encompass both the formalisms and the mechanisms
needed to achieve multiple parallel, possibly distributed computation. Their pur-
pose is to coordinate a number of possibly heterogeneous executable models
together, by interfacing with each of them in such a way that they can take
advantage of parallel and distributed systems [25]. Examples of such languages
are Linda [12] for data-driven coordination, or Esper3 for event-driven coordina-
tion. These languages emphasize the benefits of having an explicit coordination
model to reason about the coordination of multiple executable models.

The CyPhy4 [47] modeling language was developed to facilitate model coor-
dination for the design of complex cyber-physical systems, for instance vehi-
cles. This model coordination language is built around a hierarchical component
model where components have four categories of interfaces: parametric and prop-
erties (for setting and getting parametric values), signal interfaces (for causal
interactions among electronic and software components), power interfaces (for
acausal interactions among physical components with dynamics), and structural
interfaces (for geometric 3D composition). CyPhy components contain references
for high-fidelity domain-specific models stored in external modeling tools and
model databases. CyPhy models are composed by connecting the strongly-typed
component interfaces so that the composite allows a coordinated analysis of the
entire system. Note that the analysis can cut across many different domain-
specific models.

The High-Level Architecture5 (HLA) (IEEE-1516) [34] is a run-time
framework for coordinating heterogeneous distributed simulation engines, called
federates. It provides a standard for facilitating interaction among simulations,
including message formats and the synchronization of the logical clocks of the
simulators. Each simulation preserves its own semantics for the model, but as

3 http://www.espertech.com/esper/.
4 http://cps-vo.org/group/avm/meta-overview.
5 http://en.wikipedia.org/wiki/High-level architecture (simulation).

http://www.espertech.com/esper/
http://cps-vo.org/group/avm/meta-overview
http://en.wikipedia.org/wiki/High-level_architecture_(simulation)

74 J. Deantoni et al.

simulations advance in time, their clocks remain synchronized. The semantics of
the federation (composed from the federates) is that of a large-scale dynamic sys-
tem where each component has its own dynamics, yet the temporal progression
of the individual engines is carefully regulated.

2.3 Language Composition Frameworks

Language integration frameworks enable the embedding of multiple DSLs into
a host language. This integration is commonly at a syntactic level. The compo-
sition may also be done at a deeper semantic level either by integration or by
coordination.

Syntactic Integration. Syntactic integration of domain-specific languages is
commonly supported by so-called language workbenches [22], environments that
define (1) a schema for an abstract syntax for a language (i.e., a grammar),
(2) one or more rich editing environments for the language, and (3) language
semantics, typically either by direct interpretation or code generation. Language
workbenches can be based on a variety of parsing technologies, such as general-
ized LR (GLR) parsing [48], generalized LL (GLL) parsing [43], term rewriting
[23], parser combinators [24], or parsing expression grammars [9].

AToMPM6 [46] is a framework for generating syntax-directed domain-specific
modeling editors, performing in-place model transformation, and managing DSMs
in a cloud-based web environment. Each DSL has one meta-model. However, a
model can be built that links instances from different meta-models, therefore a
model can conform to multiple meta-models. A DSL can be assigned multiple
graphical concrete syntaxes.

AToMPM follows a view-based modeling approach. A user only interacts with
a view of a model, specified in a dedicated concrete syntax, showing a sub-set
of the underlying model. Changes in one view are automatically propagated to
the model and to other overlapping views. Multiple users can collaboratively
work on the same view. Concurrent conflicting changes are handled by manual
inspection through a chatting system.

Helvetia7 [40] is a PEG-based language workbench for adding DSLs to
Smalltalk by source code transformation. The transformations are available to
the entire language toolchain, so tools like the editor and the debugger can
exploit them to accurately display the original embedded DSL source rather
than just the generated host language code.

MetaEdit+8 is a mature language workbench that supports graphical dia-
gram, matrix and table representations for DSLs. Languages can be composed by
integrating individual metamodels or by creating a metamodel that includes sev-
eral integrated languages. A language definition is integrated combining abstract

6 http://www-ens.iro.umontreal.ca/∼syriani/atompm/atompm.htm.
7 http://scg.unibe.ch/research/helvetia.
8 http://www.metacase.com/.

http://www-ens.iro.umontreal.ca/~syriani/atompm/atompm.htm
http://scg.unibe.ch/research/helvetia
http://www.metacase.com/

Domain Globalization: Using Languages to Support 75

syntax, static semantics, concrete syntax and transformations. MetaEdit+ sup-
ports collaborative language engineering allowing several persons to create DSLs
at the same time as well as it supports collaborative modeling when using the
DSLs. It is a commercial and supported environment that is used to create hun-
dreds of DSLs.

TXL9 [15] is a source code transformation language based on term rewriting.
TXL can be used to transform embedded DSLs to a host language, much like
Helvetia. Spoofax10 [37] is a language workbench based on term rewriting.
Spoofax offers a fine degree of control over the term rewriting traversal strategy.

MPS11 is a platform enabling the definition and integration of DSLs through
the use of language extensions and projectional editing. Rather than manipulat-
ing a program as a text, MPS stores a program as an abstract syntax tree (AST)
and edits it directly. MPS enables embedding of a language into another while
avoiding the problem of textual grammar ambiguity by not storing language
code as text at all but storing the AST and reifying the notion of Language
Extension: a set of concepts that refine those present in the base model with
their own attributes and references.

The Generic Modeling Environment (GME) [36]12 is a metaprogram-
mable graphical modeling environment that enables the definition of graphi-
cal modeling languages through metamodels. Once defined, the metamodel can
immediately be used in a domain-specific graphical model editor that enforces
the use of concepts, integration operators, and well-formedness rules (i.e., the
structural semantics) of the domain-specific modeling language defined by the
metamodel. The tool has its own meta-metamodel, and provides model access
API-s, both on the meta- (i.e., language-) level and the domain (i.e., model-)
level. Metamodels of languages are composable within the tool, allowing the inte-
gration of domain-specific modeling languages. The most recent development in
GME (called WebGME13) provides a web-based collaborative graphical model-
ing environment with version control and support for distributed model editing.

Dictō [11] follows a lightweight approach to integrating architectural con-
straint checkers. Rather than integrating multiple DSLs, it offers a single, syn-
tactical framework for expressing different kinds of architectural constraints, and
allows tools for checking those constraints to be plugged into the Dictō framework.

Semantic Composition. When the system consists of different executable
languages, it is of primary importance to understand what are the emerging
behaviors (whether expected or not) of the global system. In such cases it is
necessary to understand how the semantics of each language can be composed.
The goal of the semantic composition is to enable simulation and/or verification
activities on the global system according to (1) the semantics of each language

9 http://www.txl.ca/.
10 http://strategoxt.org/Spoofax/WebHome.
11 http://www.jetbrains.com/mps/.
12 http://www.isis.vanderbilt.edu/Projects/gme/.
13 http://webgme.org/.

http://www.txl.ca/
http://strategoxt.org/Spoofax/WebHome
http://www.jetbrains.com/mps/
http://www.isis.vanderbilt.edu/Projects/gme/
http://webgme.org/

76 J. Deantoni et al.

and (2) the behavior scattered in/specified by the heterogeneous models (i.e.,
the models conforming to different languages). In consequence actual approaches
for semantic composition are usually ensure that the coordination of the models
conforming to these languages can be automatically obtained. There exist very
different approaches to deal with this problem.

A first kind of approach, typified by Formula14 [21] or Modelyze15 [8], pro-
vides a formal environment where you can define, based on a specific form of the
grammar, the domain-specific semantics of your language. This involves a trans-
lation of the domain-specific language into a representation suitable for formal
anchoring in the targeted tool. In these approaches, the underlying semantics of
these environment acts as a common semantic domain from which reasoning is
possible. Based on a common representation of the semantics, it is then possible
to specify how they are related. Such an approach provides very interesting for-
mal verification capabilities, but a first drawback is the need for an arbitrarily
complex transformation, which can make the semantics of the original model dif-
ficult to handle. This drawback is often pointed out in more classical approaches
using translational semantics (i.e., the translation of a semantic free language
into a common formal representation). The other drawback relies on the exis-
tence of a common semantic background that must be expressive enough to be
suitable for a wide variety of language while staying well founded for verification
and validation activities.

A second kind of approach makes explicit the notion of a Model of Compu-
tation (MoC) [18,26,42]. In these approaches, a MoC specifies the causalities,
timing and synchronization aspects of a language. First, making a MoC explicit
enables fine tuning of the computational semantics, and usually offers simulation
facilities. Second, it enables a clear specification of some semantic adaptations
between different MoCs so that the semantics of heterogeneous models can be
consistently coordinated. These approaches provide either the capacity to adapt
to a domain-specific language (Ptolemy [18]) or Modhel’X [26]) or the capac-
ity to drive formal refinement and reasoning on the system (Forsyde [42]), hence
forcing the designer to choose between domain adequacy and analysis power.

A third kind of approach is based on the notion of meta-languages. It provides
meta-languages for the specification of the domain-specific syntax (abstract and
concrete) but also meta-languages for the specification of the semantics and
its mapping to the syntax [14]. When using a meta-language like Ecore [45],
you benefit from the associated generative techniques like the generation of a
simple editor, its API, etc. In the same way, when using the meta-language for
behavioral semantics specification, you can draw benefits from the automated
generation of an interpreter and a explorer, making the models executable. The
same advantage is obtained when using a meta-language for behavioral semantic
composition, like BCOoL [49]. The main drawback of this approach comes from
the meta-language for behavioral semantics specification, which is not suitable
for an adequate specification of acausal models.

14 http://research.microsoft.com/en-us/projects/formula/.
15 https://github.com/david-broman/modelyze.

http://research.microsoft.com/en-us/projects/formula/
https://github.com/david-broman/modelyze

Domain Globalization: Using Languages to Support 77

3 Open Challenges

The key challenge in the globalization of domain-specific languages is naturally
how to compose multiple languages, both syntactically and semantically within a
single software system. But there is another challenge related to collaboration in
a globalized environment. It includes the management of the individual artifacts
over time, environmental support for the viewpoints of multiple stakeholders,
and scalable, persistent management of diverse models in a global environment.

We will survey each of these challenges and their associated research questions
in turn.

3.1 Composition of Multiple DSLs

The composition of multiple DSLs for the construction of a single software system
entails a number of fundamental questions. How are such languages composed
syntactically and semantically? Can we view DSLs as components, and, if so,
what are their interfaces? How can we determine if languages are semantically
compatible, and how can we check if the models expressed in them are consistent?
Finally, how can we integrate legacy tools tied to individual DSLs within a
common integrated system?

How Do We Compose Languages? State of the art approaches have mainly
focused on the syntactic integration of languages. They specify operators for
merging the abstract syntaxes of different DSLs. A first challenge would be to
identify and to classify the integration operators and their impact on the prop-
erties of the composed language [13,19]. Existing approaches seldom deal with
the behavioral semantics of the integration. Beyond the syntactic composition,
another challenge is therefore to extend the classification to cover the semantic
aspects of languages.

In many language composition approaches, the composition operators are
specified on languages but the integration (i.e., the merging) itself is applied on
models. They use the knowledge of the meta-language to specify the composi-
tion. Yet another challenge is to understand if it makes sense to adapt such an
idea to the behavioral semantics of language. In this case a directly associated
challenge would be to understand what kind of meta-languages can describe the
behavioral semantics of one language. Then, during the behavioral composition
of languages, does the composition integrate the behavioral semantics of the
languages or is it used to coordinate the behaviors of models that conform the
languages?

Can We View Languages as Components? If So, What Are their Inter-
faces? Component-Based Software Engineering was quite successful in abstract-
ing pieces of code or binary behind interfaces. Interfaces can be used to coordinate
multiple components without requiring any knowledge of the components’ inter-
nal implementation. This idea has penetrated many domain-specific languages so

78 J. Deantoni et al.

that models can be seen as components equipped with interfaces to enable their
coordination. The challenge now is to see the languages themselves as components,
meaning that they can be equipped with purpose-specific interfaces. Beyond the
agreement that an interface is an abstraction of the language, the exact nature of
the interface is far from clear. For instance, if one sees a language as a specification
of a set of models describable in this language, then an interface could offer a way
to specify the subset of models supported by the purpose the interface relates to.
However, it can also be the set of operators, together with a characterization of
what it accepts from the language. It is not clear also if the interface of a language
can be used for language integration or only for language coordination.

Many sub-questions arises from this challenge e.g., does it make sense to
provide some family of language interfaces according to some purpose at the
model level [1,47]? Another research question is: in what language should a
language’s interface be specified? Should such a specification be reflexive at
some point?

Does a Composed System Have a Unified Semantics? Semantic com-
position means that one can analyze the properties of the composition of a set
of models expressed in several DSLs. This analysis can be manual, based on
experts’ knowledge, and possibly on a precise mathematical semantics of the
composition, or it can be automated. If the analysis is to be automated, then
the semantics of the composition of DSLs has to be implemented in some way.
This can range from simple type-checking rules to the composition of hetero-
geneous behavior paradigms: for instance asynchronous processes coupled with
time-triggered processes, or the coupling of discrete-time and continuous-time
dynamical systems.

How can this be achieved in practice? At a first glance, a common semantic
domain could be defined and implemented. Analysis would be performed using
the methods and tools of this unified semantic domain. Unfortunately, unified
semantic domains would become inconceivably complex when composing more
than a few DSLs. Unified semantic domains would be very expressive, and not
surprisingly, even the simplest analyses might turn out to be undecidable. The
unified semantic domain approach certainly has practical value whenever the
semantic domains to be unified are not too dissimilar.

Another approach is to avoid implementing a unified semantic domain, but
rather to provide means to coordinate the different models (e.g., by constructing
on-the-fly combined heterogeneous behavior). This is best understood when the
DSLs describe event-based discrete-time behavior, and each DSL comes with
a transition system based operational semantics. In Gemoc Studio16, behavior
synchronization is achieved on-the-fly, without recourse to an explicit, unified
semantic domain. In Ptolemy II17, programs called directors are used not only
to define models of computation, but also to define how low-level synchronization
between heterogeneous components is achieved.
16 http://gemoc.org/studio.
17 http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm.

http://gemoc.org/studio
http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm

Domain Globalization: Using Languages to Support 79

Composing models with dissimilar semantic domains is largely an open prob-
lem. There are even semantic domains in which composability is difficult to
achieve. A striking example is that of stochastic systems: they are difficult to
compose, unless drastic stochastic independence assumptions are made.

Challenges in DSL Semantic Composition. Semantic composition can be
achieved using several ad-hoc techniques, depending on the semantics to be
composed. Event-based operational semantics, often used for state machines or
dataflow programs can easily be composed by synchronizing the step functions
of their concrete semantics. The same principle applies to timed extensions of
these formalisms, namely timed automata, and the network calculus. The sub-
ject is however still in its infancy and no clear methodology has been proposed to
address the composition of arbitrary semantic domains. We review below several
hard cases of semantic composition.

Composition of Discrete-Time and Continuous-Time Models. How can
one co-simulate a system combining models with radically different semantics:
discrete time dynamical systems on one hand, and continuous time dynamical
systems on the other hand? The discrete time dynamics is often expressed in a
data flow or automata based language, while the continuous dynamics results
from a system of ordinary or algebraic differential equations (resp. ODEs and
DAEs). Several techniques can be used to address this problem, depending on the
overall system architecture and the assumptions that can be made on the overall
system behaviour. These techniques range from simple asymmetric co-simulation
methods, where time is handled by a unique numerical solver, to more involved
techniques combining several numerical solvers. With the Functional Mock-up
Interface18, several models mixing continuous and discrete time dynamics can
be co-simulated, with the restriction that the whole continuous-time dynamics
is handled by a unique numerical solver. Proposals have been put forward to
extend FMI, with for instance roll-back and step-size prediction mechanisms, to
support a deterministic co-simulation with several variable step-size numerical
solvers [17]. These techniques suffer from poor parallelism, and are difficult to
implement on a distributed parallel architecture, making them unusable on large
system models. Radically different techniques with good parallelism have been
explored, but for limited classes of models. For example, Waveform Relaxation
is a distributed simulation method for continuous-time dynamical systems, with
superlinear convergence properties under mild Lipschitz smoothness assump-
tions [51]. An interesting challenge would be to extend Waveform Relaxation
techniques to the hybrid systems case.

Composition of Acausal Models. A key challenge is the compositionality of
acausal continuous time models. They are often expressed using algebraic dif-
ferential equations (DAEs), where the data flow orientation of an incomplete
18 https://www.fmi-standard.org.

https://www.fmi-standard.org

80 J. Deantoni et al.

model may depend on its environment. This makes the generation of simula-
tion code from a component model a difficult problem. The reason is that the
environment of a component is not known before this component instantiated
in a closed model. This problem becomes even harder when considering hybrid
systems with DAEs, found for example in the Modelica language19. The main
reason is that both the dataflow orientation and the differentiation index may
change dynamically, depending on the discrete state of the model. This has
severe consequences on the separate compilation, and the export of Modelica
components encapsulated in a FMU20. Currently, this can be done only under
the stringent assumption that the input/output orientation of variables appear-
ing at the interface of each compilation unit is fixed, and that the differentiation
index is invariant.

Composition of Stochastic Models. Composing stochastic models is a true
challenge. Composition operators can be easily defined, under the assumption
that the probability laws of the two models are independent. Unfortunately, this
assumption most often makes no sense when considering models representing
viewpoints of the same component. It turns out that these probability distri-
butions are marginal probabilities of hidden probability distributions defining
the stochastic behavior of the component. Marginal probabilities are in general
not independent. Several stochastic system theories with good composability
properties have been proposed. Unfortunately, their composition operators are
involved [3,27,33,41] and none of them have been implemented in a DSL, using
the techniques developed in this book.

What Is the Difference Between Compatibility and Consistency? A
component model is said to be consistent if it admits at least one correct realiza-
tion. Since components are often described according to several viewpoints, two
models related to the same component are consistent if and only if there exists
a common correct realization of both models. Hence, consistency is a logical
property that applies to sets of models related to the same component.

Compatibility applies to models related to distinct interacting components.
Two models are compatible if and only if there exists an environment of both
components such that every realization of the two components can work together.
This may have many different meanings. Type compatibility is the simplest form
of compatibility. For example, the compatibility of two Interface Automata [39]
means that there exists an environment that will prevent the occurrence of
an output event whenever the peer component may not be ready to perform
the corresponding input. This notion of compatibility appears also in several
other specification formalisms, for instance Modal Interfaces [28], Sociable Inter-
faces [38] and Session Types [30]. Another fine example of compatibility is the Eif-
fel programming language [4], where preconditions and postconditions attached

19 https://modelica.org.
20 functional mock-up unit, https://www.fmi-standard.org.

https://modelica.org
https://www.fmi-standard.org

Domain Globalization: Using Languages to Support 81

to methods are evaluated at runtime and can raise an exception whenever a
component is incorrectly used.

How Do We Check Compatibility and Consistency of a Composition?
Consistency and compatibility are semantic properties of the composition of
several components that can be checked statically, or by using model-checking
techniques, or at runtime, depending on the semantic domains of the involved
DSLs. Type-checking and timing constraints are classical examples.

How Can We Exploit Legacy Tools in an Integrated System? Spe-
cific domains, such as mechanical engineering or control engineering, each have
well-established tool sets that allows users to perform their tasks efficiently.
Globalizing DSLs implies that different tools must work together. Therefore the
integrated system output from the composition of DSLs must be able to exploit
existing tools without modifying them. Although tool integration is not a new
problem21, it is important to re-use and not re-invent tools for specific DSLs.
When composing DSLs, their affiliated tools must remain part of the globaliza-
tion and therefore appropriate interfacing between the different tools must be
investigated.

3.2 Collaboration in a Globalized Environment

Overall Consistency Along the Lifecycle of DSL Instances. Models are
used to specify and capture different aspects of a system. Although each DSL
has a specific purpose, their instance models might need to refer to elements
from other models conforming to other DSLs. As such, a model can end up
being coupled and inter-related to other models, where it is likely the referenced
model is owned by a different stakeholder.

Coordination is required when a model is updated but a given stakeholder
might not be aware how a provided model is being used by other parts of the
design. There may be few means available to assess the impact that changes may
lead to. Furthermore the client stakeholder who is consuming and referencing
elements from the other model may have no other choice than to inspect the
changes made by the provider to assess their impact on the client model. This
leads to a contradiction: both stakeholders, each having different concerns and
a dedicated language, have to understand the language of the other stakeholder
to collaborate.

In this context coordination requires many interactions among stakehold-
ers who are not even from the same domain. If DSLs can be processed in a
unified way, and the language engineer is the most competent person to express
requirements between language, shouldn’t there be the potential of reducing and
managing this coordination at the tool level? Coupling has to be considered as a
first-class citizen by the language engineer: in a globalized environment in which

21 Pheonix: http://www.phoenix-int.com/software/phx-modelcenter.php.

http://www.phoenix-int.com/software/phx-modelcenter.php

82 J. Deantoni et al.

language reuse and integration are no longer the exception but the general rule,
the language engineer needs to express which concepts are suitable for being
referenced or extended (probably among other possible relationships) and these
might have an impact at the model level regarding instance evolution.

The challenge is to provide a conceptual framework to the language engineer
to extend DSL definitions so that their instances can be coordinated without
requiring the different stakeholders to understand all the domains their work is
coupled to.

How to Characterize a Change for Stakeholders. Enabling the collabora-
tion of different stakeholders through specific languages at a minimum requires
changes to be expressed using a language any stakeholder will understand.
Changes either need to have an obvious semantic for each stakeholder, or to
be unique so that they can be understood by all stakeholders. Changes are the
backbone of collaboration hence have to focus on three properties of socially
translucent systems: visibility, awareness, and accountability [20].

How and When Does the Language Engineer Characterize Model
Compatibility. In the context of multiple DSLs each having their own seman-
tics we have to ask what is a “compatible” change. Is it a change that preserves
the semantics of the model? Is it a change that preserves the fact that all model
instances that were visible are still visible? Just going through several examples
of DSLs it appears that there might be different aspects exposed by a DSL, each
of them probably having its own notion of “compatibility”.

In the SERS use case, autonomous vehicles are represented in the system in
the form of a Computer Aided Design (CAD) model, parts of which are referred
to by other models: the SmartIntersection model refers to a vehicle’s position,
while Mission Command & Control use the longevity and payload characteriza-
tions of the CAD model to reach control decisions.

When a CAD model evolves in reaction to a change in the vehicle’s design or
characteristics, it is very likely that decisions captured in other models need to
be revised. On the other hand many evolutions of the CAD model will have no
effect whatsoever on the other models. Since the CAD model provides different
aspects, changes made in the CAD models might impact those aspects in a
compatible or incompatible way, and consumers will need to assess this impact.

Furthermore in the context of a global collaborative process one has to ask
when compatibility should be checked, and when consumers of models should be
notified of incompatibilities. This can have a dramatic effect on the collaborative
process: too late and much work will need to be done by the other stakeholders,
too frequent and the stakeholders will use most of their time to align their work
with the other changes. There is a need to be isolated yet informed; in this
balance resides a key factor of collaborative process efficiency.

How Should the Concrete Syntax Be Impacted by the Use of an
External Language? The concrete DSL syntax is the primary means avail-
able to stakeholders to adapt and change the models. When parts of models

Domain Globalization: Using Languages to Support 83

are in semantic relationships with other elements from an external language,
new aspects are mandatory to achieve a seamless use of multiple DSLs: con-
crete syntaxes have to be integrated (See the Syntactic Integration Sect. 2.3),
and navigation between the syntaxes has to be considered a first class citizen.

How do we define a concrete syntax so that parts of it can be reused or merged
with others, especially when the types referred to in the languages differ? We will
might need to embed parts of a textual syntax into another textual language, or
possible into a graphical language. What is the common ground to achieve these
syntactic integrations?

Besides these questions, in an open world DSLs and their concrete syntaxes
are not known beforehand and as such these issues should be adressed without
any specific operation by the end-user. The challenge is that the role of a tool
integrator doesn’t exist in such context and the DSL and concrete syntax defi-
nitions themselves will have to be adapted so that the environment can provide
such services at runtime.

Multi-view Modeling Shared by Multiple Stakeholders. The collabora-
tion between stakeholders requires an appropriate tool support for sharing and
jointly working on common models. There are three possible multi-view model-
ing scenarios [16]: (1) Stakeholders are working on exactly the same artifact: both
of them share the same screen. All changes made by one stakeholder are directly
reflected and perceived by the other stakeholders, such as in Google Docs. This
situation is useful when, for example, two stakeholders are manually inspecting
a model together, if one stakeholder is training the other, or in a development
process favoring pair development. In this case, the collaboration is performed
at the granularity of individual model elements and conflicting operations are
resolved per element (or group of elements) as done in AToMPM [46]. (2) Stake-
holders are working on different viewpoints of the same model. This situation
is useful when artifacts are designed incrementally. This is possible when the
language in which the artifact is described, offers a modularity mechanism that
allows one to split its instances into different parts, such as partial classes in C#
and aliases in UML diagrams. In this case, each viewpoint evolves separately,
and changes are made locally to each viewpoint. At specific moments (on save
or commit), changes from different viewpoints are merged into the underlying
model. Conflicts that arise must then be resolved one by one by an expert as
in WebGME. (3) Stakeholders with differing expertise are working on distinct
models that, together, compose the overall system. Each artifact represents a
concern of the overall system, e.g., the electrical, software, and the security con-
cerns of an automotive. This is useful when a system is designed by separating
its concerns, such as in aspect-oriented programming. This case requires trace-
ability across DSLs. The traces need to be modeled explicitly in order to specify,
at the language level, how conflicts are resolved automatically at the model level
as in eMoflon [35].

84 J. Deantoni et al.

Large Scale Model Management. A collaborative modeling environment
typically requires more storage space and more efficient model manipulation
techniques than in a single-user modeling environment. Models grow in size
more rapidly because multiple stakeholders are contributing and evolving them.
Furthermore, traceability links between viewpoints, models, and DSLs must be
stored. It is therefore of paramount importance to seek a suitable data model
for persistent storage. Typically, all modeling artifacts are stored centrally on a
distributed cloud server. Graph databases are of particular interest because they
are optimized for graph representations of models as opposed to relational SQL
database that have been shown to not perform as well [50]. Example candidates
are: Neo4j which supports transaction processing [2], Trinity which virtualizes
random-access memory of a cluster of computer nodes [6], and Apache Giraph
which relies on the Hadoop paradigm [32]. A starting point for comparison is
Shah et al.’s tool for benchmarking NoSQL databases to store models [44].

4 Conclusion

After presenting an overview of current work related to the composition of tools,
models and languages, this chapter compiled a list of key open challenges related
to both technical coordination of domain-specific languages and to social coordi-
nation of stakeholders in a globalized environment. While many challenges have
to be addressed before achieving the globalization of modeling languages, the
number of recent works that are currently paving the road toward this global-
ization makes these challenges very exciting.

References

1. Alam, O., Kienzle, J., Mussbacher, G.: Concern-oriented software design. In:
Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013.
LNCS, vol. 8107, pp. 604–621. Springer, Heidelberg (2013)

2. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4EMF, a scalable
persistence layer for EMF models. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014.
LNCS, vol. 8569, pp. 230–241. Springer, Heidelberg (2014)

3. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.:
Constraint markov chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011)

4. Meyer, B.: Eiffel: The Language. Prentice-Hall, Upper Saddle River (1991)
5. Bézivin, J., Brunelière, H., Cabot, J., Doux, G., Jouault, F., Sottet, J.-S., et al.:

Model driven tool interoperability in practice. In: Proceedings of the 3rd Workshop
on Model-Driven Tool & Process Integration (co-located with ECMFA 2010), pp.
62–72 (2010)

6. Shao, B., Wang, H., Li, Y.: The Trinity Graph Engine. Technical report MSR-TR-
2012-30, March 2012

7. Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauß, C., Elmqvist, H.,
Junghanns, A., Mauss, J., Monteiro, M., Neidhold, T., et al.: The functional
mockup interface for tool independent exchange of simulation models. In: 8th Inter-
national Modelica Conference, Dresden, pp. 20–22 (2011)

Domain Globalization: Using Languages to Support 85

8. Broman, D., Siek, J.G.: Modelyze: a Gradually Typed Host Language for Embed-
ding Equation-Based Modeling Languages. Technical report UCB/EECS-2012-173,
EECS Department, University of California, Berkeley, Jun 2012

9. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: POPL 2004: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 111–122. ACM, New York (2004)

10. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P., Wagner, R.,
Wendehals, L., Zündorf, A.: Tool integration at the meta-model level: the Fujaba
approach. Int. J. Softw. Tools Technol. Transf. 6(3), 203–218 (2004)

11. Caracciolo, A., Lungu, M., Nierstrasz, O.: A unified approach to architecture con-
formance checking. In: Proceedings of the 12th Working IEEE/IFIP Conference
on Software Architecture (WICSA). ACM Press (2015)

12. Carriero, N., Gelernter, D.: How to write parallel programs: a guide to the per-
plexed. ACM Comput. Surv. 21(3), 323–357 (1989)

13. Clavreul, M.: Model and Metamodel Composition: Separation of Mapping and
Interpretation for Unifying Existing Model Composition Techniques. Ph.D. thesis,
Université Rennes 1 (2011)

14. Combemale, B., De Antoni, J., Larsen, M.V., Mallet, F., Barais, O., Baudry, B.,
France, R.B.: Reifying concurrency for executable metamodeling. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 365–384. Springer,
Heidelberg (2013)

15. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program.
61(3), 190–210 (2006)

16. Corley, J., Ergin, H., Van Mierlo, S., Syriani, E.: Cloud-based multi-view model-
ing environments. In: Modern Software Engineering Methodologies for Mobile and
Cloud Environments. IGI Global (2015)

17. Broman, D., Brooks, C.X., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S.,
Wetter, M.: Determinate composition of FMUs for co-simulation. In: Proceedings
of the International Conference on Embedded Software, EMSOFT 2013, Montreal,
QC, Canada, September 29–October 4, 2013, pp. 1–12. IEEE (2013)

18. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity - the Ptolemy approach. Proc. IEEE
91(1), 127–144 (2003)

19. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: Pro-
ceedings of the Twelfth Workshop on Language Descriptions, Tools, and Applica-
tions, LDTA 2012, pp. 7:1–7:8. ACM, New York (2012)

20. Erickson, T., Kellogg, W.A.: Social translucence: an approach to designing systems
that support social processes. ACM Trans. Comput. Hum. Interact. 7(1), 59–83
(2000)

21. Jackson, E.K., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Components, plat-
forms and possibilities: towards generic automation for MDA. In: EMSOFT, pp.
39–48. ACM (2010)

22. Fowler, M.: Language Workbenches: The Killer-App for Domain-Specific Lan-
guages, June 2005

23. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

24. Frost, R., Launchbury, J.: Constructing natural language interpreters in a lazy
functional language. Comput. J. 32(2), 108–121 (1989)

25. Papadopoulos, G.A., Arbab, F.: Coordination Models and Languages. Advances
in Computers, vol. 46, pp. 329–400. Elsevier, Amsterdam (1998)

86 J. Deantoni et al.

26. Hardebolle, C., Boulanger, F.: ModHel’X: a component-oriented approach to multi-
formalism modeling. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 247–
258. Springer, Heidelberg (2008)

27. Kozine, I., Utkin, L.V.: Interval-valued finite markov chains. Reliable Comput.
8(2), 97–113 (2002)

28. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundam. Inform. 108(1–2),
119–149 (2011)

29. Karsai, G., Lang, A., Neema, S.: Design patterns for open tool integration. Softw.
Syst. Model. 4(2), 157–170 (2005)

30. Honda, K.: Session types and distributed computing. In: Czumaj, A., Mehlhorn,
K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp.
23–23. Springer, Heidelberg (2012)

31. Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W.,
Schwinger, W.: Towards a semantic infrastructure supporting model-based tool
integration. In: Proceedings of the 2006 International Workshop on Global Inte-
grated Model Management, pp. 43–46. ACM (2006)

32. Krause, C., Tichy, M., Giese, H.: Implementing graph transformations in the
bulk synchronous parallel model. In: Gnesi, S., Rensink, A. (eds.) FASE 2014
(ETAPS). LNCS, vol. 8411, pp. 325–339. Springer, Heidelberg (2014)

33. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking ω-regular properties of
interval Markov chains. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962,
pp. 302–317. Springer, Heidelberg (2008)

34. Kuhl, F., Dahmann, J., Weatherly, R.: Creating Computer Simulation Systems:
An Introduction to the High Level Architecture. Prentice Hall PTR, Upper Saddle
River (2000)

35. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Di
Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 138–145. Springer,
Heidelberg (2014)

36. Ledeczi, A., Volgyesi, P., Karsai, G.: Metamodel composition in the generic mod-
eling environment. In: Communications at Workshop on Adaptive Object-Models
and Metamodeling Techniques, Ecoop, vol. 1 (2001)

37. Kats, L.C.L., Visser, E.: The spoofax language workbench. Rules for declarative
specification of languages and IDEs. In: Rinard, M. (ed.) Proceedings of the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, October 17–21, 2010, Reno, NV,
USA, pp. 444–463 (2010)

38. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable
interfaces. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 81–
105. Springer, Heidelberg (2005)

39. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 9th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE’01), pp. 109–120. ACM Press (2001)

40. Renggli, L., Gı̂rba, T., Nierstrasz, O.: Embedding languages without breaking
tools. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 380–404. Springer,
Heidelberg (2010)

41. Abbes, S., Benveniste, A.: True-concurrency probabilistic models: Markov nets and
a law of large numbers. Theor. Comput. Sci. 390(2–3), 129–170 (2008)

42. Sander, I., Jantsch, A.: System modeling and transformational design refinement
in ForSyDe [formal system design]. IEEE Trans. Comput. Aided Des. Integr. Circ.
Syst. 23(1), 17–32 (2004)

Domain Globalization: Using Languages to Support 87

43. Scott, E., Johnstone, A.: GLL Parsing. Electron. Notes Theor. Comput. Sci.
253(7), 177–189 (2010)

44. Shah, S.M., Wei, R., Kolovos, D.S., Rose, L.M., Paige, R.F., Barmpis, K.: A frame-
work to benchmark NoSQL data stores for large-scale model persistence. In: Dingel,
J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS,
vol. 8767, pp. 586–601. Springer, Heidelberg (2014)

45. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, Reading (2009)

46. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., Ergin, H.:
AToMPM: a web-based modeling environment. In: MODELS 2013: Invited Talks,
Demos, Posters, and ACM SRC, vol. 1115. CEUR-WS.org, Miami (2013)

47. Sztipanovits, J., Bapty, T., Neema, S., Howard, L., Jackson, E.: OpenMETA: a
model- and component-based design tool chain for cyber-physical systems. In:
Bensalem, S., Lakhneck, Y., Legay, A. (eds.) From Programs to Systems. LNCS,
vol. 8415, pp. 235–248. Springer, Heidelberg (2014)

48. Tomita, M.: Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems, vol. 8. Springer, New York (1985)

49. Larsen, M.E.V., Deantoni, J., Combemale, B., Mallet, F.: A behavioral coordina-
tion operator language (BCOoL). In: ACM/IEEE 18th International Conference
on Model Driven Engineering Languages and Systems (Models) (2015)

50. Varró, G., Friedl, K., Varró, D.: Implementing a graph transformation engine in
relational databases. J. Softw. Syst. Model. 5(3), 313–341 (2006)

51. White, J., Odeh, F., Sangiovanni Vincentelli, A.L., Ruehli, A.: Waveform relax-
ation: theory and practice. Technical report UCB/ERL M85/65, EECS Depart-
ment, University of California, Berkeley (1985)

Author Index

Atkinson, Colin 21

Brun, Cédric 70
Bryant, Barrett 43

Caillaud, Benoit 70
Cheng, Betty H.C. 1, 21
Clark, Tony 7
Clarke, Siobhan 21
Combemale, Benoit 1, 7

Deantoni, Julien 70
Degueule, Thomas 21

France, Robert B. 1, 70
Frank, Ulrich 21

Jézéquel, Jean-Marc 1, 43

Karsai, Gabor 70

Lämmel, Ralf 43

Mernik, Marjan 43
Mosterman, Pieter J. 21

Nierstrasz, Oscar 70

Rumpe, Bernhard 1, 7

Schindler, Martin 43
Steinmann, Friedrich 43
Syriani, Eugene 70
Sztipanovits, Janos 21

Tolvanen, Juha-Pekka 43

Vallecillo, Antonio 43
van den Brand, Mark 7
Völter, Markus 43

	Foreword
	Dismantling the “Tower of Babel”

	Preface
	Organization
	Contents
	On the Globalization of Domain-Specific Languages
	1 Introduction
	2 Domain-Specific (Modeling) Languages
	3 A Grand Challenge of the Globalization of DSLs: Looking Ahead
	4 Motivating Scenarios for the Globalization of DSLs
	References

	Conceptual Model of the Globalization for Domain-Specific Languages
	1 Towards a Conceptual Model of Globalization
	2 Basic Terms
	3 DSL Integration
	4 Language Components and Interfaces
	5 Globalization
	6 Language Relations
	7 Composition
	8 Language Coordination
	9 Language Integration
	10 Towards the Conceptualisation of the Globalization of DSLs
	References

	Motivating Use Cases for the Globalization of DSLs
	1 Introduction
	2 Command and Control Wind Tunnel (C2WT)
	2.1 Application: Evaluation of Command and Control Architectures in Mission Scenarios
	2.2 Technical Challenges
	2.3 Model Integration Challenge
	2.4 A Model Integration Language Solution for C2WT

	3 Smart Emergency Response System (SERS)
	3.1 SERS as a Cyber-Physical System
	3.2 SERS Design
	3.3 A Smart Intersection
	3.4 Formalism Integration

	4 Research Challenges
	4.1 Software Engineering Challenges Related to the Formal Foundation of Languages
	4.2 Challenges Related to the (Re-) Construction of Domain-Specific Concepts
	4.3 Thoughts on Possible Future Directions to Pursue

	References

	Globalized Domain Specific Language Engineering
	1 Problem Statement
	2 Motivating Examples
	2.1 Complementary City Maps
	2.2 House Building
	2.3 The A380 Wiring Issue
	2.4 Tool Bug Fixes

	3 Basic Notions of Language Integration
	3.1 Correspondences by Level
	3.2 Language Relationships
	3.3 Frames of Reference

	4 Approaches to Language Composition
	5 Dimensions for Language and Tool Integration
	5.1 Referencing/Explicit Frames of Reference (Based on the Same Infrastructure/Meta Meta Model)
	5.2 Language Embedding
	5.3 Language Extension (Adding New Language Constructs)
	5.4 Externally Defined Correspondences (with Associated Constraints and Consistency Checks)
	5.5 All in One Tool vs. Different Tools
	5.6 Process Aspects: Maybe We Should Stick with the Same Tool
	5.7 Tool/IDE Integration (Without Language Integration)
	5.8 Interactivity: Realtime Sync, File Exchange, Shared DB
	5.9 Collaborative Modeling

	6 Language Variants (i.e., Parallel Globalization)
	6.1 Dialects vs. Related Languages
	6.2 Variability Management
	6.3 Challenges in Languages Variability Management

	7 Language Evolution, Refactoring, Retirement (i.e., Sequential Globalization)
	References

	Domain Globalization: Using Languages to Support Technical and Social Coordination
	1 Context
	2 State of Art
	2.1 Tool Composition Frameworks
	2.2 Model Composition Frameworks
	2.3 Language Composition Frameworks

	3 Open Challenges
	3.1 Composition of Multiple DSLs
	3.2 Collaboration in a Globalized Environment

	4 Conclusion
	References

	Author Index

