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Abstract In this paper, we consider the situation where a database may contain
suspect values, i.e. precise values whose validity is not certain but whose attached
uncertainty level is unknown. We propose a database model based on the notion of
possibilistic certainty to deal with such values. The operators of relational algebra
are extended in this framework. A crucial aspect is that queries have the same data
complexity as in a classical database context.

1 Introduction

The need to handle uncertain values in a database context has been recognized a
long time ago, and a variety of uncertain database models have been proposed to
this aim. In these models, an ill-known attribute value is generally represented by a
probability distribution (see, e.g. [4, 10]) or a possibility distribution [1], i.e. a set of
weighted candidate values. However, in many situations, it may be very problematic
to quantify the level of uncertainty attached to the different candidate values.Onemay
not even know the set of (probable/possible) alternative candidates. Then, using a
probabilisticmodel in a rigorousmanner appears quite difficult, not to say impossible.
In this work, we assume that all one knows is that a given precise value is suspect,
i.e. not totally certain, and we show that a database model based on the notion of
possibilistic certainty is a suitable tool for representing and handling suspect data.
An introductory and abridged version can be found in [8].
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The remainder of the paper is structured as follows. Section 2 presents the un-
certain database model that we advocate for representing tuples that may i) involve
suspect attribute values, ii) be themselves uncertain (due to the fact that some op-
erations generate “maybe tuples”). Section 3 gives the definitions of the algebraic
operators in this framework.Query equivalences are studied inSection 4. InSection 5,
we discuss a way to make selection queries more flexible, which makes it possible
to discriminate the uncertain answers to a query. Finally, Section 6 recalls the main
contributions and outlines perspectives for future work.

2 The Model

In possibility theory [3, 11], each event E — defined as a subset of a universe �

— is associated with two measures, its possibility �(E) and its necessity N (E).
� and N are two dual measures, in the sense that N (E) = 1 − �(E) (where
the overbar denotes complementation). This clearly departs from the probabilistic
situation where Prob(E) = 1 − Prob(E). In possibility theory, being somewhat
certain about E (N (E) has a high value) forces you to have E rather impossible
(1 − � is impossibility), but it is allowed to have no certainty neither about E nor
about E . Generally speaking, possibility theory is oriented towards the representation
of epistemic states of information, while probabilities are deeply linked to the ideas
of randomness, and of betting in case of subjective probability.

In the following, we assume that the certainty degree associated with the uncertain
events considered (that concern the actual value of an attribute in a tuple, for instance)
is unknown. Thus, we use a fragment of possibility theory where three values only
are used to represent certainty : 1 (completely certain), α (somewhat certain but not
totally), 0 (not at all certain). The fact that one uses α for every somewhat certain
event does not imply that the certainty degree associated with these events is the
same; α is just a conventional symbol that means “a certainty degree in the open
interval (0, 1)”. Notice that this corresponds to using three symbols for representing
possibility degrees as well: 0, β (= 1 − α), and 1 (but we are not interested in
qualifying possibility here). In otherwords, we are representing pieces of information
of the form N (E) ≥ α, which might be regarded as “known unknowns” [5] in
the sense that their certainty level α cannot be precisely assessed, while “unknown
unknowns" remain out of reach (states of acknowledged ignorance corresponding to
�(E) = �(E) = 1, or equivalently N (E) = N (E) = 0, cannot be captured either).

The model that we introduce hereafter is a simplified— thus “lighter” — version
of that introduced in [2] and detailed in [9], where a certainty level is attached to
each ill-known attribute value (by default, an attribute value has certainty 1). As we
will see, representing suspect attribute values also leads us to representing the fact
that the existence of some tuples (in the result of some queries) may not be totally
certain either. Let us first discuss the philosophy of the approach, before describing
the model and the operations more precisely.

Let us consider a database containing suspect values. In the following, a suspect
value will be denoted using a star, as in 17∗. A value a∗ means that it is somewhat
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certain (thus completely possible) that a is the actual value of the considered attribute
for the considered tuple, but not totally certain (otherwise we would use the notation
a instead of a∗). When evaluating a selection query Q based on a conditionψ (made
of atomic conjuncts ψi ), one may distinguish between three groups of answers:

– the completely certain answers. A tuple t is a completely certain answer to Q iff
t does not contain any suspect value concerned by ψ , and every attribute value of
t concerned by a conjunct ψi satisfies ψi . For instance, t = 〈John, 35*, Paris〉 is
a completely certain answer to Q = σci ty=‘Paris’(r).

– the somewhat certain (thus completely possible) answers. A tuple t is a somewhat
certain answer to Q iff i) t contains at least one suspect value concerned by a
conjunct ψi , and every suspect value concerned by a conjunct ψi satisfies this
conjunct, ii) every nonsuspect attribute value of t concerned by a conjunct ψi

satisfies ψi . For instance, t = 〈John, 35*, Paris〉 is a somewhat certain answer to
Q = σci ty=‘Paris’ and age=35(r).

– the somewhat possible (but not at all certain) answers. A tuple t is a somewhat
possible answer iff i) t contains at least one suspect value that does not satisfy
the corresponding conjunct ψi from ψ , ii) every nonsuspect attribute value of t
concerned by a conjunct ψi satisfies ψi . For instance, t = 〈John, 35*, Paris〉 is a
somewhat possible answer to Q = σci ty=‘Paris’ and age=40(r).

As to the other tuples (those that contain at least one nonsuspect value that does not
satisfy the associated conjunct ψi from ψ), they are of course discarded.

In fact, in the model we propose, we restrict ourselves to the computation of the
twofirst groups (i.e., the completely or somewhat certain answers), since dealingwith
the answers that are only somewhat possible raises important difficulties. Namely, in
order to have a sound compositional framework (and to preserve the possible worlds
semantics), one would have to be able to represent not only values of the type a∗ but
one would need to maintain a complete representation of attribute values in terms of
possibility distributions. Moreover, we are then faced with the problem of handling
intertuple dependencies generated by the join operation in particular [9].

Notice that the framework we propose is compatible with the use of null values
for representing attribute values that exist but are currently (totally) unknown. If
a tuple includes a null for an attribute concerned by a selection condition, it will
simply be discarded sincewe are only interested in answers that are somewhat certain.

Uncertain tuples are denoted by α/t where α has the same meaning as above.
α/t means that the existence of the tuple in the considered relation is only somewhat
certain (thus, it is also possible to some extent that it does not exist). It is mandatory
to have a way to represent such uncertain tuples since some operations of relational
algebra (selection, in particular) may generate them. The tuples whose existence is
completely certain are denoted by 1/t . A relation of the model will thus involve an
extra column denoted by N , representing the certainty attached to the tuples.
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3 Algebraic Operators

In this section, we give the definition of the different operators of relational algebra
in the certainty-based model defined above.

3.1 Selection

Let us denote by c(t.A) the certainty degree associated with the value of attribute A
in tuple t : c(t.A) equals 1 if t.A is a nonsuspect value, and it takes the (conventional)
value α otherwise (with α < 1). It is the same thing for the certainty degree N
associated with a tuple (the notation is then N/t).

Case of a condition of the form A θ q where A is an attribute, θ is a comparison
operator, and q is a constant:

σA θ q(r) = {N ′/t | N/t ∈ r and t.A θ q and N ′ = min(N , c(t.A))} (1)

Example 1. Let us consider the relation Emp represented in Table 1 (left) and the
selection query σ job=‘Engineer’ (Emp). Its result appears in Table 1 (right). �

Table 1 Relation Emp (left), result of the selection query (right)

#id name city job N
37 John Newton* Engineer* 1
53 Mary Quincy* Clerk* 1
71 Bill Boston Engineer 1

#id name city job N
37 John Newton* Engineer* α

71 Bill Boston Engineer 1

Case of a condition of the form A1 θ A2 where A1 and A2 are two attributes and θ

is a comparison operator:

σA1 θ A2(r) = {N ′/t | N/t ∈ r and t.A1 θ t.A2 and

N ′ = min(N , c(t.A1), c(t.A2))}. (2)

Case of a conjunctive condition ψ = ψ1 ∧ . . . ∧ ψm :

σψ1 ∧...∧ψm (r) = {N ′/t | N/t ∈ r and ψ1(t.A1) and . . . and ψm(t.Am)

and N ′ = min(N , c(t.Ai ), . . . , c(t.Am))}. (3)

Case of a disjunctive condition ψ = ψ1 ∨ . . . ∨ ψm :

σψ1 ∨...∨ψm (r) = {N ′/t | N/t ∈ r and (ψ1(t.A1) or . . . or ψm(t.Am))

and N ′ = min(N , max
i such that ψi (t.Ai )

(c(t.Ai )))}. (4)
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3.2 Projection

Let r be a relation of schema (X, Y ). The projection operation is straightforwardly
defined as follows:

πX (r) = {N/t.X | N/t ∈ r and

� N ′/t ′ ∈ r such that sbs(N ′/t ′.X, N/t.X)}.

The only difference w.r.t. the definition of the projection in a classical database
context concerns duplicate elimination, which is here based on the concept of “pos-
sibilistic subsumption”. Let X = {A1, . . . , An}. The predicate sbs, which expresses
subsumption, is defined as follows:

sbs((N ′/t ′.X, N/t.X) ≡
∀i ∈ {1, . . . , n}, t.Ai = t ′.Ai and

c(t.Ai ) ≤ c(t ′.Ai ) and N ≤ N ′and
((∃i ∈ {1, . . . , n}, c(t.Ai ) < c(t ′.Ai )) or N < N ′).

(5)

Example 2. Let us consider relation Emp represented in Table 2 (left) and the pro-
jection query π{ci ty, job} (Emp). Its result is represented in Table 2 (right). �

Table 2 Relation Emp (left), result of the projection query (right)

#id name city job N
35 Phil Newton Engineer* 1
52 Lisa Quincy* Clerk* α

71 Bill Newton Engineer α

73 Bob Newton* Engineer* α

84 Jack Quincy* Clerk α

city job N
Newton Engineer* 1
Newton Engineer α

Quincy* Clerk α

3.3 Join

The definition of the join in the context of the model considered is:

r1 ��A=B r2 = {min(N1, N2, c(t1.A), c(t2.B))/t1 ⊕ t2 |
∃ N1/t1 ∈ r1, ∃ N2/t2 ∈ r2 such that t1.A = t2.B

(6)

where ⊕ denotes concatenation.

Example 3. Consider the relations Person and Lab from Table 3 and the query:

PersLab = Person ��Pcity=Lcity Lab
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Table 3 Relations Person (left), Lab (right), result of the join query (bottom)

#Pid Pname Pcity N
11 John Boston* 1
12 Mary Boston α

17 Phil Weston* α

19 Jane Weston 1

#Lid Lname Lcity N
21 BERC Boston* α

22 IFR Weston 1
23 AZ Boston 1

#Pid Pname Pcity #Lid Lname Lcity N
11 John Boston* 21 BERC Boston* α

11 John Boston* 23 AZ Boston α

12 Mary Boston 21 BERC Boston* α

12 Mary Boston 23 AZ Boston α

17 Phil Weston* 22 IFR Weston α

19 Jane Weston 22 IFR Weston 1

which looks for the pairs (p, l) such that p (somewhat certainly) lives in a city where
(somewhat certainly) a research center l is located. Its result appears in Table 3
(bottom). �

In the case of a natural join (i.e., an equijoin on all of the attributes common to
the two relations), one keeps only one copy of each join attribute in the resulting
table. Here, this “merging” keeps the more uncertain value for each join attribute.
This behavior is illustrated in Table 4.

Table 4 Result of the natural join query (assuming a common attribute City)

#Pid Pname City #Lid Lname N
11 John Boston* 21 BERC α

11 John Boston* 23 AZ α

12 Mary Boston* 21 BERC α

12 Mary Boston 23 AZ α

17 Phil Weston* 22 IFR α

19 Jane Weston 22 IFR 1

3.4 Intersection

For the sake of readability of the following definition, we denote a suspect value v∗
by (v, α) and a totally certain value v by (v, 1). The intersection r1 ∩ r2 is defined
as follows:

r1 ∩ r2 =
{min(N1, N2)/〈(t.A1, min(ρ1,1, ρ2,1)), . . . , (t.An, min(ρ1,n, ρ2,n))〉

such that N1/〈(t.A1, ρ1,1), . . . , (t.An, ρ1,n)〉 ∈ r1
and N2/〈(t.A1, ρ2,1), . . . , (t.An, ρ2,n)〉 ∈ r2}.

(7)
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Recall that ρi, j equals either 1 (certain value) or α (suspect value).

Example 4. Consider the relations from Table 5 (left and middle). The result of the
intersection query r1 ∩ r2 is given in Table 5 (right). �
Table 5 Relations r1 (left), r2 (middle), and r1 ∩ r2 (right)

Job City N
Engineer* Boston 1
Engineer Newton* α

Technician Boston 1
Technician Quincy* 1

Job City N
Engineer* Boston* 1
Engineer Newton 1
Clerk* Boston α

Technician Boston 1

Job City N
Engineer* Boston* 1
Engineer Newton* α

Technician Boston 1

3.5 Union

Union is defined as usual (and has the same data complexity), except that duplicate
elimination is based on the notion of “possibilistic subsumption” (see Subsection
3.2) :

r1 ∪ r2 =
{N/t | (N/t ∈ r1 and N ′/t /∈ r2) or (N/t ∈ r2 and N ′/t /∈ r1) or

(N/t ∈ r1 and N/t ∈ r2 or

(N/t ∈ r1 and N ′/t ′ ∈ r2 and V (t) = V (t ′) and sbs(N/t, N ′/t ′)) or
(N/t ∈ r2 and N ′/t ′ ∈ r1 and V (t) = V (t ′) and sbs(N/t, N ′/t ′))}

(8)

where V (t) is the tuple formed with the attribute values of t made certain. For
instance, if t = 〈17, John, Engineer*, Boston, 35*〉, then V (t) = 〈17, John, Engineer,
Boston, 35〉.
Example 5. Consider the relations from Table 6 (left and middle). The result of the
union query r1 ∪ r2 is given in Table 6 (right). �

3.6 Difference

Let us now consider the difference r1 − r2. Its definition is as follows:

r1 − r2 = {N ′/t | N/t ∈ r1 and N ′ = min(N , δ) with

δ = min
t ′∈r2

max
i=1..n

N (t.Ai �= t ′.Ai )} (9)

where

N (t.Ai �= t ′.Ai ) =

⎧
⎪⎨

⎪⎩

1 if t.Ai �= t ′.Ai and c(t.Ai ) = c(t ′.Ai ) = 1,

0 if t.Ai = t ′.Ai ,

α otherwise.
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Table 6 Relations r1 (left), r2 (middle), and r1 ∪ r2 (right)

Job City N
Engineer* Boston 1
Engineer* Quincy* α

Manager Newton 1

Job City N
Manager* Boston α

Manager Newton 1
Engineer* Boston* α

Job City N
Engineer* Boston 1
Engineer* Quincy* α

Manager Newton 1
Manager* Boston α

In Formula 9, δ corresponds to the certainty degree associated with the event “all the
tuples t ′ from r2 differ from t” or, in other words, “for every tuple t ′ that appears in
r2, one of the attribute values of t ′ differs from the corresponding attribute value in
t”. The universal quantifier (“for every tuple”) is interpreted by a min whereas the
existential one (“one of the attribute values”) is interpreted by a max.

Example 6. Consider the relations fromTable 5 (left andmiddle). The result of r1−r2
is given in Table 7 (right). Note that the tuple 〈Manager, Chicago〉 is uncertain in the
result because of the tuple 〈Cashier*, Boston*〉 from r2 which has a (1−α)-possible
interpretation equal to 〈Manager, Chicago〉. �

Table 7 Relations r1 (left), r2 (middle), and r1 − r2 (right)

Job City N
Engineer* Boston* 1
Engineer Quincy* 1
Manager Chicago 1
Clerk Springfield 1

Job City N
Engineer Newton* α

Clerk Quincy* α

Clerk Springfield α

Cashier* Boston* α

Job City N
Engineer* Boston* α

Engineer Quincy* α

Manager Chicago α

A crucial point is that the join operation does not induce intertuple dependencies
in the result, due to the semantics of certainty. This is not the casewhen a probabilistic
or a full possibilistic [1] model is used, and one then has to use a variant of c-tables
[6] to handle these dependencies, which implies a non-polynomial complexity. On
the other hand, since none of the operators of relational algebra induces intertuple
dependencies in ourmodel, the queries have the same data complexity as in a classical
database context; see [9] for a more complete discussion.

4 About Query Equivalences

Let us recall that relational algebraic queries can be represented as a tree where the
internal nodes are operators, leaves are relations, and subtrees are subexpressions.The
primary goal of query optimization is to transform expression trees into equivalent
ones, where the average size of the relations yielded by subexpressions in the tree are
smaller than theywere before the optimization. This transformation process uses a set
of properties (query equivalences), and the question arises whether these properties



A Certainty-Based Approach to the Cautious Handling of Suspect Values 81

remain valid in the certainty-based model. The most common query equivalences
are:

1. πX (πXY (r)) = πX (r),
2. σψ2(σψ1(r)) = σψ1(σψ2(r)) = σψ1 ∧ ψ2(r),
3. σψ1 ∨ ψ2(r) = σψ1(r) ∪ σψ2(r),
4. σψ(πX (r)) = πX (σψ(r)) if ψ concerns X only,
5. σψ(r1 × r2) = σψ1 ∧ ψ2 ∧ ψ3(r1 × r2) = σψ3(σψ1(r1) × σψ2(r2)) where ψ =

ψ1 ∧ ψ2 ∧ ψ3 and ψ1 concerns only attributes from r1, ψ2 concerns only
attributes from r2, and ψ3 is the part of ψ that concerns attributes from both r1
and r2,

6. σψ(r1 ∪ r2) = σψ(r1) ∪ σψ(r2),
7. σψ(r1 ∩ r2) = σψ(r1) ∩ σψ(r2) = σψ(r1) ∩ r2 = r1 ∩ σψ(r2),
8. σψ(r1 − r2) = σψ(r1) − σψ(r2) = σψ(r1) − r2,
9. πX (r1 ∪ r2) = πX (r1) ∪ πX (r2),
10. πZ (r1 × r2) = πX (r1) × πY (r2) if X (resp. Y ) denotes the subset of attributes

of Z present in r1 (resp. r2).

It is straightforward to prove that all of these equivalences remain valid in the model
we propose (they are direct consequences of the definitions of the operators given
above). As an illustration, let us demonstrate Property 3.

Proof. Let us assume that condition ψ1 (resp. ψ2) concerns attribute A1 (resp. A2).
Let us consider a tuple N/t from r such that ψ1(t.A1) ∨ ψ2(t.A2) holds (which
is a necessary condition for t to belong to (σψ1 ∨ ψ2(r)) on the one hand, and to
(σψ1(r) ∪ σψ2(r))) on the other hand. Four cases have to be considered:

– c(t.A1) = 1 and c(t.A2) = 1: then, N/t generates a tuple N/t in ψ1(t.A1) ∨
ψ2(t.A2) (indeed min(N , max(1, 1)) = min(N , 1) = N ) and a tuple N/t both
in σψ1 and in σψ2 , thus in (σψ1(r) ∪ σψ2(r)).

– c(t.A1) = 1 and c(t.A2) = α: then, N/t generates a tuple N/t in ψ1(t.A1) ∨
ψ2(t.A2) (indeed min(N , max(1, α)) = min(N , 1) = N ). It also generates
a tuple N/t in σψ1 and a tuple α/t in σψ2 . Thus, it generates a tuple N/t in
(σψ1(r) ∪ σψ2(r)) since N/t subsumes (or is equal to) α/t .

– c(t.A1) = α and c(t.A2) = 1: this case is similar to the previous one.
– c(t.A1) = α and c(t.A2) = α: then N/t generates a tuple α/t in ψ1(t.A1) ∨

ψ2(t.A2) (indeed min(N , max(α, α)) = α). It also generates a tuple α/t in σψ1

and in σψ2 . Thus, it generates a tuple α/t in (σψ1(r) ∪ σψ2(r)).

5 Making Selection Queries More Flexible

If one assumes that the relation concerned by a selection condition is a base relation
(i.e., where all the tuples have a degree N = 1), a tuple in the result is uncertain iff
it involves at least one suspect value concerned by the selection condition. If such a
tuple involves several such suspect values, it will be no more uncertain (N = α) than
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if it involves only one. However, one may find it desirable to distinguish between
these situations. For instance, considering the query

σ job=‘Engineer ′ and city=‘Boston′ and age=30(Emp)

the tuple 〈John, Engineer*, Boston, 30〉 could be judged more satisfactory (less
risky) than, e.g., 〈Bill, Engineer*, Boston*, 30〉, itself more satisfactory than 〈Paul,
Engineer*, Boston*, 30*〉.

For a selection condition ψ = ψ1 ∧ . . . ψm and a tuple t , this amounts to saying
that “every attribute value (certain and suspect) of t must satisfy the conditionψi that
concerns it, and the less there are suspect values concerned by a ψi in t , the more t
is preferred”. In other words, the selection condition becomes:

ψ1 ∧ . . . ∧ ψm and as many (t.A1, . . . , t.Am) as possible are totally certain.

In a user-oriented language based on the algebra described above, one may then
introduce an operator is certain (meaning “is totally certain”), in the same way as
there exists an operator is null in SQL.

The fuzzy quantifier [12] as many as possible (amap for short) corresponds to a
function from [0, 1] to [0, 1]. Its associated membership functionμamap is such that:
i) μamap(0) = 0, ii) μamap(1) = 1, iii) ∀x, y, x > y ⇒ μamap(x) > μamap(y).
Typically, we shall take μamap(x) = x .

The selection condition as expressed above is made of two parts: a “value-based
one” — that may generate uncertain answers —, and a “representation-based” one
that generates gradual answers. A tuple of the result is assigned a satisfaction degree
μ (seen as the complement to 1 of a suspicion degree), on top of its certainty degree
N . For a conjunctive query made of m atomic conjuncts ψi , the degree μ associated
with a tuple t is computed as follows:

μ(t) = μamap

(∑m
i=1 certain(t, i)

m

)
(10)

where

certain(t, i) =

⎧
⎪⎨

⎪⎩

1 if ψi if of the form A θ q and c(t.A) = 1,

1 if ψi if of the form A1 θ A2 and min(c(t.A1), c(t.A2)) = 1,

0 otherwise.

In order to display the result of the query, one rank-orders the answers on N first,
then on μ (in a decreasing way in both cases).

Example 7. Let us consider the relation represented in Table 1 (top) and the selection
query σψ(Emp) where ψ is the condition

job = ‘Engineer’ and city = ‘Boston’ and age > 30 and
amap (job is certain, city is certain, age is certain)
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Let us assume that the membership function associated with the fuzzy quantifier
amap is μamap(x) = x . The result of the selection query is represented in Table 8
(bottom). �

Table 8 Relation Emp (top), result of the selection query (bottom)

#id name city job age N
38 John Boston* Engineer* 32 1
54 Mary Quincy* Engineer* 35 1
72 Bill Boston Engineer 40 1
81 Paul Boston* Engineer* 31* 1
93 Phil Boston Engineer 52* 1

#id name city job age N μ

72 Bill Boston Engineer 40 1 1
93 Phil Boston Engineer 52* α 0.67
38 John Boston* Engineer* 32 α 0.33
81 Paul Boston* Engineer* 31* α 0

This extended framework, where two degrees (N and μ) are associated with each
tuple in the relations, can be easily made compositional. One just has to manage the
degreesμ, in the definition of the algebraic operators, as in a gradual (fuzzy) relation
context, see [7]. In base relations, it is assumed that μ(t) = 1 ∀t .

Notice that an alternative solution, of a more qualitative nature, is also possible for
discriminating the tuples that (somewhatcertainly) satisfyaconjunctiveselectioncon-
dition. It consists in using the lexicographic ordering (denoted by >lex hereafter) as
follows. For every tuple t of the result, one builds a vector V (t) ofm values (1 or α):

V (t)[i] =

⎧
⎪⎨

⎪⎩

1 if ψi if of the form A θ q and c(t.A) = 1,

1 if ψi if of the form A1 θ A2 and min(c(t.A1), c(t.A2)) = 1,

α otherwise.

Then V (t) is transformed into V ′(t) by ordering the i components in decreasing
order (first the 1’s, then the α’s if any). Finally,

t � t ′ ⇔ V ′(t) >lex V ′(t ′) (11)

where t � t ′ means that t is considered a more satisfactory answer than t ′.
A refinement consists in taking into account that atomic conditions inψ may have

different importance levels. Let us denote by w(ψi ) the weight (importance level)
associated with the atomic condition ψi and let us assume that the greater w(ψi ),
the more important ψi . With the first method (based on scores), the idea consists in
using a weighted mean instead of an arithmetic mean in Formula 10 for computing
μ(t). With the second method (based on lexicographic ordering), the idea would be,
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in case of ties, to use the complete preorder on the importance levels of the attributes
for introducing another lexicographic refinement in order to break these ties.

6 Conclusion

In this paper, we have proposed a databasemodel and defined the associated algebraic
operators for dealing with the situation where some attribute values in a dataset are
suspect, i.e., have an uncertain validity, in the absence of further information about
the precise levels of uncertainty attached to such suspect values. The framework used
is that of possibility theory restricted to a certainty scale made of three levels. It is
likely that the idea of putting some kind of tags on suspect values/tuples/answers
is as old as information systems. However, the benefit of handling such a symbolic
tag in the framework of possibility theory is to provide a rigorous setting for this
processing.

A crucial point is that the data complexity of all of the algebraic operations is the
same as in the classical database case, i.e., it is either linear or polynomial, which
makes the approach perfectly tractable. Moreover, the definitions of both the model
and the operators are quite simple and do not raise any serious implementation issues.

It is worth mentioning that this model could be rather straightforwardly extended
in order to handle disjunctive suspect values — of the form (v1 ∨ . . . vn)∗ — instead
of singletons. The definitions of the operators would then become a bit more com-
plicated, but the data complexity would not change. Another extension would be to
use a small set of suspicion levels rather than one. This would bring us closer to the
general setting of the certainty-based model described in [9].
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