
Provalets

OSGi-Based Prova Agents for Rule-Based Data Access

Adrian Paschke(B)

Freie Universitaet Berlin, Berlin, Germany
paschke@inf.fu-berlin.de

Abstract. Rule-based Data Access (RBDA) has become an active R&D
topic in the recent years. In this paper we propose an easy to use agent-
based rule programming model and a general component architecture for
RBDA. The programming model supports rapid prototyping and reuse
of existing Prova rule agents/components which are published and man-
aged in OntoMaven repositories. We name these components Provalets.
We propose a declarative component description language that is power-
ful enough to represent different types of Provalets, including the repre-
sentation of their functional interfaces and their semantics as well as their
non-functional collaboration aspects and quality of service attributes.

1 Introduction

In this publication we propose the concept of Provalets, specifically for use
in the context of for Rule-based Data Access (RBDA). Provalets use ideas
from (mobile) software agents, automated Maven repository and build man-
agement (OntoMaven [6,7]), trusted OSGi component runtime environments
and cloud infrastructures to encapsulate data intensive routines and rule-based
decision and reaction logic in Prova agents [9]1. In this paper we describe the
principles of Provalets (section 2), the declarative description language for
Provalets (section 3) and the OSGi-based reference implementation of Provalets
(section 4). We conclude our work in section 5.

2 Principles of Provalets

Provalets are (mobile) rule-based software agents [9] that act as inference com-
ponent providing rule-based data access and rule-based data processing using
Prova. Prova (Prolog + Java) is both a declarative rule-based programming lan-
guage and a Java-based rule engine which can be used in Prova agents. Prova
provides various built-ins for rule-based data access2. For instance, the following
example defines a rule-based data access rule which selects with the SPARQL
query built-in of Prova all luxury car manufacturers from DBpedia.
1 http://prova.ws
2 Prova has various built-ins for rule-based data access such as Java object access, file

access, XML (DOM), SQL, RDF triples, XQuery, SPARQL.

c© Springer International Publishing Switzerland 2015
C. Debruyne et al. (Eds.): OTM 2015 Conferences, LNCS 9415, pp. 519–526, 2015.
DOI: 10.1007/978-3-319-26148-5 35

http://prova.ws


520 A. Paschke

luxuryCar(Manufacturer) :-
sparql_connect(Connection, "http://dbpedia.org/sparql"),
Query="SELECT ?manufacturer ?name ?car % SPARQL RDF Query

WHERE {?car <http://purl.org/dc/terms/subject>
<http://dbpedia.org/resource/Category:Luxury_vehicles> .

?car dbo:manufacturer ?man .
?man foaf:name ?manufacturer. } ORDER by ?manufacturer",

sparql_select(Connection, Query, QueryID),
sparql_results(QueryID, Manufacturer).

Provalets have a clear REST input and output interface, specifically an input
URI and an output URI. They run in a controlled and secure runtime environ-
ment that guarantees that Provalets can only read data from input resources and
write data to output resources. Provalets describe their functionality in terms of
pre- and post-conditions on the sets of input and output data (section 3 defines
the declarative interface description of Provalets).

Provalets describe themselves using the Linked Data principles: Each
Provalet has a unique URI that is resolvable via HTTP. The description contains
metadata about the Provalet including runtime dependencies and permissions
required on the runtime platform as well as the description of the functionality
it provides in the form of statements about pre- and post-conditions over the
sets of input and output data.

2.1 Input and Output Interface of Provalets

Each Provalet is configured with one input URI that it is allowed to read from
and one output URI that it is allowed to write to. The runtime environment of
a Provalets should not allow the Provalet to cause any other side effects. The
runtime environment controls which types of data and which KB sources of data
are accessible by the Provalet.

This restriction of the Provalet side effects allows to describe their function-
ality in a more formal way than is possible with todays web services. Provalets
can be described as algebraic operators on sets of RDF data. For example, a
Provalet may describe the output data as a subset or superset of the input data,
assertions borrowed from set theory. A Provalet may as well restrict itself to
produce only specific kinds of data as semantically defined result sets. Provalets
make no other assumption about the input and output sources other than they
provide and accept data.

2.2 Permissions of Provalets

Provalets described permissions they require as metadata that is read by the
runtime environment during deployment. By default Provalets are solely allowed
to see the data which are directly served by the configured input URI. Provalets
may define additional required permission. For example to access additional
static URIs or crawl URIs that are visible in the set of input data. The sources
of data may be restricted by subnets, domains, protocols or even types of data
a Provalets is allowed to see. Provalet may provide HTTP access credentials to
the input and output resources upon request.



Provalets 521

Provalets must request permission to use additional computing resources
on the machine they are executed. A Provalet may request harddisk space to
store intermediate results. Other resources include memory, CPU time, account
information, access to other web services. The latter can be used by Provalet
to enforce license models through trusted providers. It is the task of the run-
time container of a Provalet to grant required permissions and allow access to
requested resources.

2.3 Runtime Environment of Provalets

Not only the the permissions for Provalets are enforced by the runtime environ-
ment. Essentially Provalets are shielded from any platform details. By default
Provalets are not allowed to access any resource on the host system. For example
Provalets should not even be allowed read information about the systems time or
memory consumption. Basically Provalets should only be allowed to manipulate
data without making any assumptions of the system nor to collect information
about it.

Container Resource. The container resource acts like a knowledge base resource
and describes itself with metadata in RDF. A user or agent receives information
about a container resource by sending an HTTP request to the container URI.
For example the container resource describes which permissions it can grant.

To use a container resource to execute a Provalet the user sends an HTTP
request adding three parameters to the container URI: the Provalet URI, the
input URI and the output URI. This way it is straight forward to execute a
Provalet and lookup the results afterwards, by receiving the HTTP response of
the output URI.

2.4 Lifecycle of Provalets

The life cycle of a Provalet is as follows:

1. Activation request: the Provalet’s URI is passed as a parameter to a container
resource together with the URI of the input and the output resource.

2. Reading the Provalet’s description: the resource container makes an HTTP
request to the URI of the Provalet and fetches data describing the it.

3. Permission enforcement: the runtime container is configured with the
requested permissions for the Provalet. If the requirements do not match
the containers restrictions the request is answered with HTTP status code
200.

4. Resolving Provalet dependencies: the fetched description contains metadata
that allows to compute all runtime-dependencies of a Provalet. See section 4
for technical details of our reference implementation.

5. Downloading runtime dependencies: the container resource fetches all
required libraries and constructs the classpath for executing it.



522 A. Paschke

6. Provalet execution: the Provalet bundle is deployed in a secured local runtime
environment and the Provalet bundle is started.

7. Provalet response: the user request is answered with an HTTP status code
200 (asynchronous container), or the agent is redirected to the output URI
(synchronous container).

8. Writing the result set, the data that form the result are written to the output
URI.

9. Finalizing Provalet, all additionally requested resources such as file and mem-
ory are released.

10. Undeploy, this step is optional, if configured so the runtime container may
erase all libraries from the system. Which will require to download them for
the next call.

Our reference implementation is written in Java and is based on web stan-
dards and open source libraries.

3 Provalet Description Language

Provalets are described by a semantic component description language that is
powerful enough to represent their functional interfaces and their semantics as
well as their non-functional collaboration aspects and quality of service attributes.
These component descriptions are based on a plug-able semantic vocabulary to
model the Provalets component descriptions in a platform-independent manner.
The Provalet component description follows the classification of component con-
tracts from Beugnards et al. [4] into four layers:

1. Basic syntactic Provalet component description layer expressing the Provalet
artifact characteristics and functional interfaces.

2. Behavioural Provalet description specifying Provalet component semantics.
3. Synchronisation Provalet description describing dependencies between

Provalets.
4. Quality of service and licensing Provalet description describing requirements

with respect to response times, quality of results etc., as well as rights and
obligations with respect to security, trust and licensing (e.g. metering and
accounting).

A Provalet description contains

– A set of defined types (URIs) contributed by the Provalet.
– A set of defined properties (URIs) contributed by the Provalet.
– A set of defined constraint relationships (URIs) contributed by the Provalet.
– A function (URI Rest) to load a Provalet resource given a reference and a

resource type.
– A function (URI Rest) that can be used to check the properties and rela-

tionships contributed by the Provalet component.

A Provalet component description has four parts:



Provalets 523

1. In the Provalet component section the Provalet interfaces and necessary
artifact characteristics are described, such as the groupId, artifactId, version
and the optionally repository dependencies of the Provalet.

2. In the input data section the input resources of the Provalet are defined. The
resources defined are constants identified by name and type. The types are
defined in an (external) ontology and represented by URIs. This information
can be used by the Provalet component to query the RDF data resources if
needed.

3. In the output data section, the resources of the Provalet are defined. This
is where a Provalet component provides (computed) data resources to be
consumed by a consumer. These resources are also typed.

4. In the constraints part, the pre- and post conditions, rights and obligations
are specified. The semantics supports the use of standard logical connectives
such as AND, OR and XOR to define complex conditions. In addition to the
conditions, value properties and existence conditions are supported as well.

Types, properties and relationships are defined in plugable ontologies. The
resource types are defined using the web ontology language OWL or RDFS. The
component semantics is described by relations between pre- and post-conditions
of the Provalet method invocations. Test cases are used for this purpose by using
JUnit as the Java standard. The Provalet descriptions provide test suites as part
of specifications. Furthermore, Java annotations are used in order to stipulate
in the description that a Provalet has to use annotations provided by addi-
tional components. Annotations are useful if the Provalet is to take advantage
of injected services.

property semantics verification
usesAnnotation classes use the annotations defined JVM, ASTanalyser

implements classes implement the interface or extend the abstract class JVM
extends classes extend other classes (transitive) JVM

isVerifiedBy a class is verified by a test suite JUnit test runner
tests a test suite provides tests for an abstract type JVM

Rule-based conditions in Provalet descriptions can be either atomic or com-
plex. To build complex conditions, the usual rule-based logical connectives with
their standard semantics can be used. Three types of atomic conditions are
supported: relationships between resources, resource properties, and conditions
that a resource must exist. Based on these we can now define rules describing the
validity constraints, rights and obligations of a Provalet. For instance, consider
the following rule:

extends(?x, xp1 : ProvaletInstance) :-
parser(?x : ProvaletInterface, ?c : JavaInstantiableClass),
implements(?c, i : JavaAbstractType),
tests(?s : TestSuite, i),
isVerifiedBy(?c, ?s).

The Provalet component has to supply an implementation class of the Provalet
interface that must pass a test suite. In order to run the tests, the test runner must
instantiate the implementation class, and bind the variable in the test cases within
the test suite to this instance. Then the test cases are executed.



524 A. Paschke

4 Implementation

As execution environment for Provalets we applied a framework implementing
the OSGI standards [5]. It allows us to dynamically install, update, and unin-
stall a Provalet and its dependencies, in a running system. Furthermore the
OSGI specification provides a security model that is capable of offering a secure
execution environment. Our current implementation deploys Apache Felix [1] as
OSGi framework, but can be exchanged with another one as well.

Provalets themselves are Maven OSGi artifacts deployed in an OntoMaven
artifact repository using OntoMaven [6,7] for the automated management.
To automatically generate a new Provalet a Maven archetype can be used.
An OntoMaven generated Provalet project provides all necessary dependen-
cies and mechanism. The included Provalet class extends the AbstractProvalet
from our ProvaletCore API and must be filled with the Provalet functionalities.
The ProvaletActivator class extending the AbstractProvaletActivator serves as
an OSGi entrance point to the Provalet. During the Provalet development the
developer has to keep attention to only specify dependencies to APIs being OSGi
capable. The artifact specification can be found in the Provalet description.

To execute the Provalet on a selected input resource the user needs to call
the URI of a container resource (containerURI ) via an HTTP GET request
providing the URI of the Provalet (ProvaletURI ), the input (inputURI ) and the
output URI (outputURI ) as parameters:

<containerURI>?Provalet=<ProvaletURI>&input=<inputURI>&output=<outputURI>

The container resource is a special resource with an assigned OSGi environment
for the execution of Provalets. It handles the Provalet call and answers the HTTP
request with an HTTP response message. First it resolves the Provalet character-
istics by calling the ProvaletURI and reading the Provalet description which also
includes the necessary artifact characteristics (groupId, artifactId, version and
optionally the repository). With OntoMaven’s dependency resolution mechanism
[3,7] the Provalet artifact and all its dependencies are resolved and downloaded
to a local temporary repository using the integrated Aether library [11]. The
downloaded artifacts are then deployed into the OSGi framework of the con-
tainer resource and the RDF representation of the inputURI is passed as an
object to the working method of the Provalet. Finally the container resource
starts the installed Provalet bundle. After execution of the working method the
Provalet passed its resulting data back to the container. The container checks
the contend and enforces restrictions on the Provalet execution and the output
and writes the RDF representation to the outputURI.

Once an instantiated Provalet exists, verification of the Provalet constraints
and rules can be performed using Prova’s inference mechanisms. The OSGi bun-
dle classloader is used to load the resources and instantiate a Provalet instance
as OSGi component with the translated Provalet rules and ontologies describing
the Provalet conditions and constraints. Furthermore, OSGi features (see RFC
125 OSGi) are used to make Provalet licensing information part of the machine



Provalets 525

readable component meta-data. This enables the Provalet execution applications
to reason about this.

Finally, the container resource is responsible for uninstalling all bundles and
optionally removing all the locally installed dependencies.

Two working modes of container resources are defined. Asynchronously work-
ing containers immediately response with an HTTP response code indicating
that the Provalet working method was successfully started. The user of an asyn-
chronously started Provalet has in principal two possibilities to work with the
results: (1) an agent polls the output URI after a defined time and (2) the agent
uses a subscription mechanism to be informed about updates in the output URI.
In the synchronous working mode of a Provalet container the agent is redirected
to the output URI once the results have been successfully written to the out-
put URI. In this working mode the user can read the result immediately after
receiving the HTTP response. However if the execution of the Provalet is taking
too long the server may return with a timeout.

5 Conclusions

We conclude by summarizing the advantages of the Provalet concept.

– Provalets have functional properties with a logic/rule-based semantics. They
are guaranteed to produce the same output for the same input.

– Provalets can be formally described with pre- and post conditions over input
and output data. This allows formalizing their functionality.

– Provalets can be formally described by their functionality, which allows for
automated test generation and automated service consumption. This guar-
antees their quality.

– Provalets are standardized OSGi components, which execute on a local desk-
top, in the cloud or on a database system without the need of changing the
code or the configuration.

– Provalets cannot violate data privacy constraints. Because they can move to
the data and are then not allowed to communicate to the outside.

– Provalets allow simple development and testing independently of the plat-
form they execute on. Provalets support REST protocols.

– No configuration is necessary to execute a Provalet. All steps from selection,
download, deployment and execution of a Provalet is packaged in one REST
URL call.

– Provalets support reuse of mobile software agents and thereby reduce cost
for developing and testing software.

– Provalets dynamically benefit from scaling-out resources. Provalets may
spawn themselves to more nodes and split the workload by partitioning.

– Provalets dynamically benefit from scaling-up resources. By adding more
resources to a server more Provalets can run on this machine. This reduces
network traffic between Provalets.



526 A. Paschke

Future work on the Provalet concept include the use of the new OMG
API4KP standard [2,8] for the Provalet interface descriptions and the support
of aspects in the automated Aspect OntoMaven [10] deployment of Provalets.

Acknowledgments. This work has been partially supported by the “InnoProfile-
Corporate Smart Content” project funded by the German Federal Ministry of Educa-
tion and Research (BMBF) and the BMBF Innovation Initiative for the New German
Länder - Entrepreneurial Regions.

References

1. Apache Software Foundation. Apache felix project. http://felix.apache.org/
2. Athan, T., Bell, R., Kendall, E., Paschke, A., Sottara, D.: API4KP metamodel:

a meta-api for heterogeneous knowledge platforms. In: Bassiliades, N., Gottlob, G.,
Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202,
pp. 144–160. Springer, Heidelberg (2015)

3. Athan, T., Schäfermeier, R., Paschke, A.: An algorithm for resolution of common
logic (edition 2) importation implemented in ontomaven. In: Proceedings of the
8th International Workshop on Modular Ontologies Co-located with the 8th Inter-
national Conference on Formal Ontology in Information Systems (FOIS 2014),
September 22, 2014, Rio de Janeiro (2014)

4. Beugnard, A., Jézéquel, J.-M., Plouzeau, N.: Making components contract aware.
IEEE Computer 32(7), 38–45 (1999)

5. OSGI Alliance. OSGi Service Platform, Core Specification, Release 4, Version 4.2.
Technical report, OSGI Alliance, September 2009

6. Paschke, A.: Ontomaven API4KB - a maven-based API for knowledge bases. In:
Proceedings of the 6th International Workshop on Semantic Web Applications and
Tools for Life Sciences, December 10, 2013, Edinburgh (2013)

7. Paschke, A.: Ontomaven: maven-based ontology development and management of
distributed ontology repositories (2013). CoRR, abs/1309.7341

8. Paschke, A., Athan, T., Sottara, D., Kendall, E., Bell, R.: A representational anal-
ysis of the API4KP metamodel. In: Cuel, R., Young, R. (eds.) FOMI 2015. LNBIP,
vol. 225, pp. 1–12. Springer, Heidelberg (2015)

9. Paschke, A., Boley, H.: Rule Responder: Rule-Based Agents for the Semantic-
Pragmatic Web. International Journal on Artificial Intelligence Tools 20(6),
1043–1081 (2011)

10. Paschke, A., Schäfermeier, R.: Aspect ontomaven - aspect-oriented ontology devel-
opment and configuration with ontomaven (2015). CoRR, abs/1507.00212

11. Sonatype. Aether, June 2011. http://aether.sonatype.org/

http://felix.apache.org/
http://aether.sonatype.org/

	Provalets
	1 Introduction
	2 Principles of Provalets 
	2.1 Input and Output Interface of Provalets
	2.2 Permissions of Provalets
	2.3 Runtime Environment of Provalets
	2.4 Lifecycle of Provalets

	3 Provalet Description Language
	4 Implementation
	5 Conclusions
	References


