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Abstract. Graph models do excel where data have an element of uncer-
tainty or unpredictability and the relationships are data’s main features.
However, existing graph models neglect the semantics of node and rela-
tionship type.

To capture as much semantics as possible, we extend the nodes in
graph model with some object-oriented features and edges with multi-
ple semantic information, and propose a Semantic Graph Model (SGM).
SGM is a schema-less model and supports dynamic data structures as
well as extra semantics. Although the class definition is unknown at
the beginning, the schema can be extracted from the semi-structured
and semantic data. The excavated domain model can help further data
analysis and data fusion, and it is also important for graph query opti-
mization.

We have proposed graph create statements to represent data in SGM
and have implemented a conversion layer to store, manage and query the
graph upon the graph database system, Neo4j.

1 Introduction

Due to the increasing requirement of query and analysis on linked data, such as
social networking, master data management, geospatial, recommendations, web
RDF data, etc., graph databases have attracted a lot of interests for their ability
to represent connections [1,2]. A graph consists of a set of nodes and a set of
edges (or relationships) that connect them. Real world entities are represented
as nodes in a graph and the ways in which those entities are related in the world
as relationships. This general-purpose, expressive structure allows graph model
to represent all kind of scenarios.

A consensus schema is hard to define when integrating data from the Web
for data expressions as structures are uncertain and unpredictable [3,4]. For
example, from the Wikipedia the structures of countries are quite different, China
makes up of provinces, USA comprises states and UK includes four countries.
This is an example that data from one source may have different structures, as
well as data from different sources and describing different aspects of information.
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Schema-less graph models are suitable here to represent data from different
sources with various structures.

Semantics are important for analysis and schema-less applications, and peo-
ple try to capture as much semantics as possible. To our knowledge, there are
two kinds of semantic data, one is the well-defined schema or pre-defined con-
ceptual knowledge base established before instance data are created; the other
is semantics lies in instance data. For example, “consists of” is a containment
relationship, which is the former kind; China includes Province Hubei and this
connection has containment meaning, which is the latter kind.

The former semantic data need lots of work to conclude and integrate. Existing
semantic graph models, such as RDF, SKOS and OWL, belong to this kind[5–7].
RDF can represent conceptual and reasoning rules in a triple form, while it doesn’t
consider the relationships between relationships. Simple Knowledge Organization
System (SKOS) is an RDF vocabulary and supports semantic relationships.

For the second kind of semantic data, the extra semantics can be captured,
represented and used with extracted data. Some semantics of heterogeneous data
are left over and are not captured and leveraged via existing graph models, which
is the task we aim at. These semantics are mainly types of nodes and relationships,
and there is no way to identify and classify important entities and relationships in
a graph. In the country example given above, China, USA and UK are countries,
and the relationships between provinces and China, states and USA, and countries
and UK are containment connections.

The more semantics we capture, the more knowledge we can use [8–11].
Additionally, the semantics of nodes and relationships are necessary for graph
query optimization [12–14]. Hence, we extend the nodes in graph model with
some object-oriented features and edges with multiple semantic information,
and we call this extension the Semantic Graph Model (SGM).

In SGM, every node is treated as an object and objects are classified into
classes. Objects have various relationships with each other. Based on the data we
extract and integrate from the Web, we attach three kinds of semantics to relation-
ships: relationship type (including containment, role and user-defined type), rela-
tionship hierarchy and inverse relationship. Some relationships are unidirectional,
some are bidirectional, and some directed relationships are pairwise. Pairwise rela-
tionships have a strong dependency on each other and they are fundamentally one
relationships between two objects with two different labels for two directions.

In this way, SGM can represent as much semantics as possible in a schema-
less manner. What’s more, due to the semantics captured and semi-structure
of data, the structures of classes can be extracted from data and the domain
model is obtained, and from the model more knowledge can be excavated and
applies to further integrate and fuse heterogeneous data. Also, the semantics and
structures of the graph are applied to query optimization.

This paper is organized as follows: Section 2 gives an overview of SGM,
Section 3 and Section 4 respectively elaborate the extension of nodes and rela-
tionships, Section 5 introduces the implementation of SGM upon Neo4j [15] and
finally Section 6 concludes the paper.
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2 Overview

2.1 Our Model

SGM is extended based on property graph model, in which every node and rela-
tionship can have properties. Nodes are objects and relationships are connections
between objects.

Every node (object) is an instance of one or multiple classes. If the class
information of an object is unknown, it can be omitted. In order to represent the
complex properties of real-world entities, properties of objects in SGM can have
multiple value (array) and aggregation of properties. Relationships are named
and directed, and always have a start and end node. In SGM, we introduce three
features to relationships: relationship type (containment, role, user-defined type),
relationship hierarchy and inverse relationship. Hence, an extended node EN is
the expansion of a graph node N and a semantic edge SE is the extension of
graph edge E in graph model G = (N, E).

1. Every relationship has a label indicates its natural meaning that is the rela-
tionship name, such as friend, parent and etc. Relationship type refers to the
extra semantics of the connection, like the two pre-defined types in SGM,
containment and role.
Relationships with composition semantics can be represented as contain-
ment relationships, such as relationship “consist of”, “has a” and etc. Rela-
tionships of a type share common inference rules. General connections omit
the interdependent relationship that objects to some degree depend on the
object containing them. Furthermore, containment relationship is transitive
such that if A contains B, B contains C then A contains C.
Real world entities have various natural and complex properties and relation-
ships with each other and via these relationships, objects play various roles
that form their context, and then have the corresponding context-dependent
properties. Even though relationships are first-class citizens in graph models,
existing ones oversimplify and ignore the complex relationships and context-
dependent properties. To model the dynamic aspect of an object, we intro-
duce role relationships in SGM. An object can play the same role in different
organizations or circumstances, as well as different roles in the same context.
In specified context and as particular role, entity can have context-dependent
properties and relationships.
Users can classify relationships into ad hoc relationship types for different
applications.

2. In some cases, the relationships between objects are exhibited in a hierarchi-
cal way from a general relationship to a more specific one. Hence, in SGM,
the hierarchies of a relationships are kept.

3. In addition, there are uniliteral and mutual relationships, and as in graph
relationships are directed, to represent mutual relationships, relationships
in two directions are defined respectively in existing models, while in this
way, the correspondence information between this two relationships is lost.
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SGM supports the definition of mutual relationships in pairs to maintain
their correspondence.

SGM is a schema-less and semi-structured model just like graph model; that
is, there is no need to predefine schema for nodes and relationships in advance.
However, with data represented in SGM, we can excavate the class definition
from the object data, and generate the model graph. The extracted model sum-
marizes and displays the structure and semantics of the object data and mean-
ingful knowledge can be mined from it.

Also, with the knowledge of the data, graph query optimization can proceed.

2.2 Introduction of Neo4j

To manage and store data represented by SGM in a database system, we select
Neo4j as the database system, transform the SGM data into structures that
Neo4j can process, and at the same time keep the extra semantic information we
capture in SGM. We manage and analyze data mainly extracted from the Web
by taking advantage of Neo4j.

As in [16], the latest version of Neo4j released in May 2015, Neo4j is a labeled
property graph making up of nodes, relationships, properties and labels. In
Neo4j, Nodes contain properties. Nodes store properties in the form of arbi-
trary key-value pairs. In Neo4j, the keys are strings and the values are the Java
string and primitive data types, plus arrays of these types. Nodes can be tagged
with one or more labels. Labels group nodes together, and indicate the roles they
play within the dataset. Relationships connect nodes and structure the graph. A
relationship always has a direction, a single name, and a start node and an end
node - there are no dangling relationships. Together, a relationship’s direction
and name add semantic clarity to the structuring of nodes. Like nodes, rela-
tionships can also have properties. The ability to add properties to relationships
is particularly useful for providing additional metadata for graph algorithms,
adding additional semantics to relationships (including quality and weight), and
for constraining queries at runtime.

Cypher, the language Neo4j uses to create and query graphs, is concise and
easy to use. Neo4j is a full-fledged native graph database system and achieves a
good data access efficiency. We take use of features of Neo4j to keep and store
data as well as their semantics. The semantics SGM capture is information of
nodes and relationships, and a easy way to maintain the information is taking
advantage of properties of nodes and relationships.

3 Extension of Nodes

As SGM is a schema-less model, and the properties and relationships in an object
are not predefined and vary from objects to objects of a class. Hence, except
the object-oriented features related to definitions of classes, like encapsulation
and polymorphism, SGM extends graph model with objects and classes, and
composition and inheritance.
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Although the structure of a class is not known in SGM, illustrating the class
an object belongs to needs not defining upfront. Additionally, the schema-less
model can be used to represent the relationships between classes, like the class
hierarchies.

The data collected from various sources are instances and structures
extracted from the instances are schemas. Hence, there are two kinds of extended
nodes (EN) in SGM: object nodes (ON) and class nodes (CN).

Definition 1. ON = (L, P), where
L = {l1, ..., ln} is an optional set of class names (or labels) that the object

belongs to, where li ∈ L with 1 ≤ i ≤ n is a class name. As an example from
Fig. 1, the label of node China is Country. In SGM, the labels of an object can
be omitted if the classification information is unknown.

P = {p1, ..., pn} is a set of properties, where each pi is an attribute-value
and the value can be a array or a aggregated one. The value of a property can
also be a node in SGM. If the value of a node property is a node, it should be
represented as a relationship. Hence, the value of a node property is better not a
node. A relationship property whose value is a node indicates relationship-based
relationships, which will be illustrated in Section 4.1.

Definition 2. CN = (R, EP), where
R = {r1, ..., rn} is a set of class hierarchical relationships as it shown in

Example 1.
EP = {ep1, ..., epn} is a set of property definitions extracted from object

data.

In this section, we explain the object-oriented features SGM extends and how
the class information and complex property are represented in SGM.

3.1 Objects and Classes

The label of every object node makes it possible to extract the definition of
every type, otherwise what we can get are the property and relationship names
without classifications. Hence, a node in SGM is an object which is an instance
of a particular class or multiple classes. As SGM is schema-less and there are no
definitions of attributes and relationships for a given type or class of an object,
and objects are not required to match a schema. The classes an object belongs
to do no impact on the object and just indicates the type of the object. In some
cases, the knowledge of an object’s classification maybe remain unknown, and
the class of an object can be a default one Object that is the superclass of any
classes.

Although the definition of a class is not required at the beginning, the classes
and structures can be extracted from the object data. The structure and content
of a class may be huge because different sources depicts different aspects of
data in the same domain and language expressions vary. Hence, the extracted
structure is a complete representation of objects in a class and a collection of
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language statement of all properties of a class, in which we can find the synonym
sets under the context of a class.

As the latest release of Neo4j supports nodes with labels, which can be treated
as classifications of objects, we directly follow the usage of label to denote objects
and classes.

3.2 Composition and Inheritance

Objects can contain other objects; this is known as object composition. As this
feature is related to relationships between objects, it will be elaborated with
containment relationship in Section 4.1.

With introducing classes into SGM, it’s natural to support subclass relation-
ships between classes. This is predefined conceptual knowledge and can be used
for data analysis after the classes are extracted from object data. In SGM, the
inheritance mainly displays a hierarchy that represents “is-a-type-of” relation-
ships among classes. What is different from usual inheritance is that subclasses
will not inherit the properties of the superclass as the definition of a superclass
is unknown.

Schema information classifies objects and the class hierarchies will make sense
when querying and analyzing.

In SGM, we can define classes and their inheritance relationships via class
definition statements, which is new from existing graph models. Neo4j supports
definition of domain model, that is the schema of the graph. However, there is
no metadata of the class hierarchies. Hence, we bring a keyword class to create
statement to indicate the class node definition.

Example 1. The following are two statements representing that Country,
Province and City are subclasses of Region.

create class (Region), class (Country), class (Province),

class (City), (Region) - [:subsume] -> (Country),

(Region) - [:subsume] -> (Province), (City) - [:isa] -> (Region);

3.3 Complex Properties

SGM is a property graph model and every node and relationship can have prop-
erties. To directly represent multiple value and nested attributes, we support the
array and aggregation of properties in SGM.

Example 2. The following is the node creation statement for Person Alice who
is female, has two phone numbers (+1(613)520-2525 and +1(613)520-4049), and
the address is an aggregation of four values, which are addressline “1125 Colonel
By Drive”, city Ottawa, country Canada and address type “Company address”.

create (Alice:Person { gender:female,
phone no.:[+1(613)520-2525,+1(613)520-4049]
address:{AddressLine1:"1125 Colonel By Drive",

City:Ottawa, Country:Canada, Type:"Company address"}});
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4 Extension of Relationships

In this section, we introduce semantics attached to relationships (SE): relation-
ship type (including containment relationship, role relationship and user-defined-
type relationship), relationship hierarchies and inverse relationship.

Definition 3. SE = (t, P, h, i), where
t is the type of a relationship, and the default relationship is a general one

without special semantics. t can be any value such as containment, role or other
user-defined ones.

P = {p1, ..., pn} is a set of properties as it is defined in Definiton 1. The value
of a relationship property can be not only text and can be other nodes, which
indicates the interdependency between relationships.

h indicates the hierarchical structure of a relationship.
i is the inverse relationship which establishes the connection between mutual

relationships.

4.1 Relationship Type

Containment Relationships. As it is mentioned in Section 3.2, Object
composition is used to represent “has-a” relationships: every employee has an
address, so every Employee object has a place to store an Address object. This
is a feature of object-oriented model.

The address of a person is a detailed geographic location that can be repre-
sented as aggregated properties as shown in Section 3.3 and can be also repre-
sented as an entity node with a connection to the person. The description of a
geographic location always contains information of country, state/province, city
and street that is from a larger scale to smaller ones. That a country is com-
prised of states/provinces and that a state/province consists of cities are special
relationships with containment semantics.

There are two reasoning rules of containment relationship. Firstly, included
entities depends on larger-scale entities. Once an entity is deleted, the entities it
contains will also be deleted. Secondly, the containment relationship is transitive;
that is, if A contains B, and B contains C, then A contains C.

Example 3. In Figure 1, it displays the containment relationships between Coun-
try China with Province Hubei and Guangzhou, and with Municipality Bei-
jing, as well as the containment relationships between Province Hubei and City
Wuhan and Yichang. As it shows, included nodes are inside larger-scale nodes.

create (China:Country {name:"China"}), (Beijing:City {name:"Beijing"}),
(Wuhan:City {name:"Wuhan"}), (Guangzhou:Province {name:"Guangzhou"}),
(Hubei:Province {name:"Hubei"}), (Yichang:City {name:"Yichang"}),
(China) -[containment:municipality] -> (Beijing),
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Fig. 1. A graph of contain-
ing objects.

Fig. 2. A graph of Leo’s resume.

(China) -[containment:provinces] -> (Hubei),

(China) -[containment:provinces] -> (Guangzhou),

(Hubei) -[containment:city] -> (Wuhan),

(Hubei) -[containment:city] -> (Yichang);

Note that keyword containment is introduced to indicate the containment
semantic of the connection.

Role Relationships. An object has static aspects as well as dynamic aspects.
Real world entities have various natural and complex relationships with each
other and via these relationships, objects play various roles that form their con-
texts, and then have the corresponding context-dependent properties. Object
properties are often based on their contexts, and contexts can be nested to form
complex context dependent information.

For example, a student may have studied at one or more universities as an
undergraduate, master, or Ph.D student, and thus may have several distinct
properties with the same name (e.g. year). Each university involved is the con-
text. Undergraduate, master, and Ph.D are also nested contexts for the proper-
ties. Similarly, a faculty member may have worked at one or more universities as
an assistant professor, associate professor, or full professor and thus may have
some context-dependent properties with the same name as well.

Existing graph models treat roles of an entity as individual nodes and con-
nects role nodes with entity nodes and context organization nodes respectively,
while role nodes are not independent entities and have containing relationships
with original entity.
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Example 4. A person’s resume (education and career network) is a typical exam-
ple that displays connections between he/she and some schools or companies, and
different roles he/she plays in different organizations. In Figure 2, it illustrates
the education and work experience of Person Leo. He was an undergraduate stu-
dent in university WHU from year 2000 to year 2004, and as an undergraduate
student, he participated the Man’s Football Team in year 2001. From year 2004
to year 2007, he obtained master’s degree in WHU and under this context, he
was supervised by Ben and took course OS. Then he turned to university CLU
and obtained master’s degree for year 2007 to year 2009 and was supervised by
John, and he obtained doctor’s degree for year 2009 to year 2012 and switched
to supervisor Alice. After getting his doctor’s degree, Leo worked in university
PEU as assistant professor from year 2012 to year 2014 and taught course DB.
Since 2014, he is a associate professor and teaches course DS and AL.

The following statement shows how to represent above situation in SGM.
It represents node Perosn Leo, and connections that Leo relates to university
WHU, CLU and PEU, roles that Leo respectively plays under those contexts
and context-dependent properties and relationships.

create (Leo:Person {name:"Leo"}), (WHU:Univ {name:"WHU"}),
(CLU:Univ {name:"CLU}), (OS:Course {name:"Operating System"}),
(Ben:Person {name:"Ben"}), (DS:Course {name:"Distributed System"}),
(Alice:Person {name:"Alice"}), (PEU:Univ {name:"PKU"}),
(DB:Course {name:"Database"}), (John:Person {name:"John"}),
(AL:Course {name:"Algorithm"}),
(ManFbTeam:Team {name:"Man’sFootballTeam"}),
(WHU) <- [:studies in {(Leo:UnderGrad {year:2000-2004}) -

[:participate {(Leo:Athlete {year:2001})}] -> (ManFbTeam),

(OS) <- [:take] - (Leo:Master {year:2004-2007})
- [:supervisor] -> (Ben)} ] - (Leo) -

[:studies in {(Leo:Master {year:2007-2009}) - [:supervisor] -> (John),

(Leo:PhD {year:2009-2012}) - [:supervisor] -> (Alice)}] -> (CLU),

(Leo) - [:works in {(Leo:AssiProf {year:2012-2014}) - [:teaches] ->

(DB)},
(AL) <- [:teaches] - (Leo:AssoProf {year:2014})
- [:teaches] -> (DS)] -> (PEU);

On the one hand, to represent the roles Leo play under different contexts
and on the other hand, to represent the relationships and properties based on
the role, in the relationship that the context-dependent properties occur, there
is not only text value but also node value for a relationship property, and prop-
erties with node values are also treated as relationship based relationships or
context-dependent relationships. For example, in the relationship Leo studies in
WHU, there are two properties in this relationship and each of the properties is
an relationship between a role object derived from the role relationship and other
objects. A context dependent relationship can also have context-dependent rela-
tionships, like the the relationship Leo participate Man’s Football Team, which
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depends on the relationship that Leo is an under graduate student in WHU.
Hence, the relationship behaves in nested way.

A role node, such as the node Leo:UnderGrad, is a special object node in order
to represent an object combined with a certain context and context-dependent
relationships by using role nodes as their start/end nodes. The role an object
plays is also a class, as shown in role node Leo:UnderGrad, UnderGrad is a
role class and a role class is the subclass of the class of the original object, for
example UnderGrad will be a subclass of class Person. This role class and class
relationship will be used when model extracting.

The following is the modeling example of Leo’s resume in a different way, that
is starting from organizations, WHU, CLU and PEU, Leo is connected by role
relationships. Corresponding to every role relationship, a role node will be gener-
ated in according entity. For example, induced from role relationship underGrad
between WHU and Leo, role node WHU.underGrad is generated in entity Leo.
It is important to note that the role relationship athlete between Man’s Football
Team and role node WHU.underGrad Leo.

create (WHU) - [role:UnderGrad {year:2000-2004,
(Leo:UnderGrad) - [:participate {year:2001}] -> (ManFbTeam)}] ->

(Leo),

(WHU) - [role:Master {year:2004-2007}] -> (Leo),

(CLU) - [role:Master {year:2007-2009,
(Leo:Master) - [:supervisor] -> (John)}] -> (Leo),

(CLU) - [role:PhD {year:2009-2012,
(Leo:PhD) - [:supervisor] -> (Alice)}] -> (Leo),

(PEU) - [role:AssiProf {year:2012-2014,
(Leo:AssiProf) - [:teaches] -> (DB)}] -> (Leo),

(PEU) - [role:AssoProf {year:2014-,
(AL) <- [:teaches] (Leo:AssoProf) - [:teaches] -> (DS)}] -> (Leo);

User Defined Relationship Type. Besides the two pre-defined relationship
type which has the certain inference rules, user can classify a relationship to any
type according to the application requirement, and by query statements, this
type property can be used to infer certain results.

4.2 Hierarchical Relationships

The relationships between objects are sometimes hierarchical from a general
one to more specific ones. Usually, the most direct relationship is maintained in
graph model, and the semantics indicates the meaning and structure of object
connections is lost. SGM keeps the relationship with its hierarchies.

Example 5. Figure 3 shows the committee structure of CIKM 2015. The commit-
tee of CIKM 2015 is specified into relationships “General Chairs” and “Program
Chairs”, and “Program Chairs” is further specified for tracks, such as “Database
Track” and “Tutorial Chairs”.
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Fig. 3. The Committee of CIKM
2015.

Fig. 4. Jacob’s social network (relationships and
inverse relationships).

create (CIKM2015:Conference {name:"CIKM 2015"}),
(James:Person {name:"James Bailey", affiliation:"The University

of Melbourne"}),
(Timos:Perosn {name:"Timos Sellis", affiliation:"RMIT

University"}),
(Wang:Person {name:"Wei Wang", affiliation:"University of New

South Wales"}),
(CIKM2015) - [:Committee] - [:General Chairs] -> (James),
(CIKM2015) - [:Committee] - [:Program Chairs] -

[:Database Track] -> (Timos),
(CIKM2015) - [:Committee] - [:Program Chairs] -

[:Tutorial Chairs] -> (Wang);

Based on the relationship of Cypher, between nodes, more notations (-[]) are used
to represent the relationship hierarchy. For example, between nodes CIKM2015
and James, the relationship is comprised of two parts, from Committee to Gen-
eral Chairs.

4.3 Relationships and Inverse Relationships

The relationships between entities are either unilateral or mutual. Affection con-
nections can be unilateral, for instance one man loves the other while the love
may not be requited. Compared with unilateral ones, mutual relationships are
more prevalent. In such a case, once a one-way connection occurs from an entity
to another, the reflexive connection also needs to be established.
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For mutual relationships, people always define two relationships in two direc-
tions to make the mutual semantics complete. The two relationships for a mutual
connection have two features. Firstly, the label of a mutual relationship in two
directions can be either the same or different. Secondly, this two relationships
likewise dependent on each other, and once connection in one direction changes,
the other one should change correspondingly. From the perspective of semantic
capturing, the interdependency relationship between two mutually inverse rela-
tionships are important for data analysis. Existing graph models do not support
this feature of mutual connections. Hence, in SGM, users can directly define
mutual relationships using relationship pairs, so that the system can know and
maintain the consistency of relationship pairs.

Example 6. Figure 4 illustrates a network of a person’s family, friends and col-
leagues. Jacob and Grace are a couple and James is their child. Jacob and Alice
are both employees of David. James loves Ingrid (the love is not requited), while
Jacob dislikes her. Grace and Alice are friends, so are James and Zach. As the
figure shows, parallel and pair directed lines indicate mutual connections, in
which one is another’s inverse and they have different labels. The two way lines,
like friend of can be treat as a combined pair relationships for they have the
same label in two directions. Single directed lines are uniliteral relationships.

create (Jacob:Person {name:"Jacob"}), (Grace:Person {name:"Grace"}),
(Ingrid:Person {name:"Ingrid"}), (James:Person {name:"James"}),
(Zach:Person {name:"Zach"}), (David:Person {name:"David"}),
(Alice:Person {name:"Alice"}),
(Jacob) - [:husband of(<- wife of)] -> (Grace),

(Jacob) - [:dad of(<- child of)] -> (James),

(Jacob) - [:dislikes] -> (Ingrid),

(Jacob) - [:employee of(<- boss of)] -> (David),

(Jacob) - [:colleague of] - (Alice),

(Grace) - [:mom of(<- child of)] -> (James),

(Grace) - [:friend of] - (Alice),

(James) - [:friend of] - (Zach),

(James) - [:loves] -> (Ingrid),

(Alice) - [:employee of(<- boss of)] -> (David);

As shown above, -> indicates outgoing relationships, <- indicates the inverse
ones. - represents mutual relationships with the same labels in two direction.
Within a outgoing relationship, we use a clause (<-) to indicate the inverse rela-
tionship of the current one. On the one hand, it defines the inverse relationship
and needs not another clause for the inverse relationship. On the other hand, it
represents that that like “husband of” and “wife of” are conceptually inverse to
each other.
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5 Implementation Upon Neo4j

5.1 Data Conversion to Cypher

To represent the extra semantics introduced by SGM, we take advantage of
properties and labels of Neo4j. For nodes and relationships, we assign some
properties with particular functions to keep the semantics. In this section, we
introduce the particular properties and structures we use for SGM in Neo4j
system.

Type. Type is a most important property we use to represent the type of a class
or a relationship. Firstly, there are three kinds of nodes in SGM: class, object
and role. The type of an object node is object and a class node class. Role node
is a special one that represents roles an object plays, and by the role node the
context-dependent properties can be represented and kept in Neo4j. Secondly,
type keeps the relationship type for a relationship.

Path. For a hierarchical relationship, the each layer of it may have its own
properties and hierarchies are not only relationship labels. Also, two objects
connected by a hierarchical relationship can be regarded as that they have con-
nections of each layer of the hierarchies, and a general relationship contains a
more specific one. Thus, for hierarchical relationship, we split the every layer
out and connect the objects by them, and for the more specific relationship, its
super relationships are kept in the property path.

Inverse. For relationships which have according interdependent inverse rela-
tionship, SGM will automatically generate their inverse ones if given the inverse
clauses. To convert relationship to Cypher, two independent relationships are cre-
ated from two directions, and for every relationship there is a property inverse
indicating its inverse relationship.

New Nodes. There are situations new intermediate nodes are needed. One is for
aggregated properties as Neo4j does not support aggregation of properties and
new nodes are generated to capture the aggregation information of properties.
The second situation is for a property when its value is a node that is the
context-dependent relationship, and in this case role nodes are generated.

5.2 Query Examples

Figure 5 illustrates the results of data from above examples converted and stored
in Neo4j. Note that the properties of nodes and relationships are omitted in the
graph.

There give some query examples which leverage the semantics of SGM. For
every query, the result is presented. As every relationship has a property type,
query pattern can match the relationship by type. In this way, we can get mean-
ingful relationships in a schema-less manner without knowing the relationship
names. Moreover, we can get results with certain semantics by taking advantage
of relationship semantics, like containment and role.
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Fig. 5. Results of SGM Data Managed in Neo4j.

1. The following query finds the relationships which have containment rela-
tionship with China.
Match (n {name:"China"})-[r {type:"containment"}] -() return n, r;

The following one finds the containment topology graph of node China. Note
that *1..4 means traverse the relationships in 1 to 4 hops and the condition
{type:”containment”} indicates that only continue traversing if the relationship
type is containment.
Match (c {name:"China"})-[r *1..4 {type:"containment"}] -> (p)
return c, p;

2. If we want to find China’s university, the universities locating in cities
and provinces China contains should be returned. Taking use of the containment
relationship, directly find the universities locates where China contains regardless
of the relationship labels.
Match (u)-[:locatesIn]->()<-[r1 *1..4
{type:"containment"}]-(c {name:"China"}) return u, r1, c;
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3. The following query returns the object Leo and all roles he plays.
Match (n {name:"Leo"}) <- [:IsRoleOf] -(r) -[]- (o) return n, r, o;

4. Find the context-dependent relationship that Leo has as a Master student.
Match (n {name:"Leo"}) <- [:IsRoleOf] -({name:"role:Master"})
-[r]- (o) where r.type="general" return r;

5. As the split of hierarchical relationship, the super relationship will contain
sub relationships. Hence, for the following two queries, the result of the first one
([“James Bailey”,“Timos Sellis”, “Wei Wang”]) contains that of the second one
([“Timos Sellis”, “Wei Wang”]).
Match (c {name:"CIKM 2015"}) - [:Committee] -> (p) return p;
Match (c {name:"CIKM 2015"}) - [:Program Chairs] -> (p) return p;

6. Find the relationships that have corresponding inverse relationships of
Jacob.
Match (n {name:"Jacob"}) - [r] -> (t) - [ir] ->(n) where ir.name =
r.inverse return r,ir;

5.3 Extracted Domain Model

Model information is an outline of the nontrivial integrated heterogeneous data
and provides conceptual knowledge like semantic correlation of words from a
domain and etc. Additionally, the model information can be used to analyze
data structure and assist query optimization, like cost estimation and optimal
plan selection and etc. Although the property and relationship definitions of a
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class are not given at the beginning, we can extract model information from the
labeled nodes and relationships.

Following statement is a part of the extracted class definition of above exam-
ple data in Cypher. To distinguish the metadata from instances, the type of class
nodes is specified as “class”. The model information are generated.

create (Country:Country {name:"Country", type:"class"}),
(City:City {name:"City", type:"class"}),
(Province:Province {name:"Province", type:"class"}),
(Country) - [:municipality type:"containment"}] -> (City),
(Country) - [:city {type:"containment"}] -> (Province),
(Province) - [:city {type:"containment"}] -> (City)
(Univ:Univ {name:"Univ", type:"class" }),
(Person:Person {name:"Person", type:"class"),
(Team:Team {type:"Team", type:"class"}),
(UdGrad:UnderGrad {name:"UnderGrad", type:"class"}),
(Athlete:Athlete {name:"Athlete", type:"class"}),
(Master:Master {name:"Master", type:"class"}),
(UnderGrad) - [:IsRoleOf] -> (Person),
(Athlete) - [:IsRoleOf] -> (UdGrad),
(Master) - [:IsRoleOf] -> (Person),
(Univ) - [:undergraduate {type:"role"}] -> (UnderGrad),
(Team) - [:athlete {type:"role"}] -> (Athlete),
(Master) <- [:master {type:"role"}] - (Univ),
(Conf:Conference {name:"Conference", type:"class"}),
(Conf) - [:Committee] -> (Person),
(Conf) - [:General Chairs {path:["Committee"]}] -> (Person),
(Conf) - [:Program Chairs {path:["Committee"]}] -> (Person),
(Conf) - [:Database Track {path:["Committee",

"Program Chairs"]}] -> (Person),
(Person)- [:husband of {inverse:"wife of"}] -> (Person),
(Person)- [:dad of {inverse: "child of"}] -> (Person),
(Person)<- [:wife of {inverse:"husband of"}] - (Person),
(Person)<- [:child of {inverse:"dad of"}] - (Person);

Figure 6 demonstrates the model information we extracted and presented in
Neo4j. There are 14 classes in which 6 classes are induced from role relation-
ships. Roughly, we can extracted some knowledge from the semantic object
data. Firstly, Country consists of provinces and provinces consists of cities which
are induced from containment relationships. Secondly, from role relationships,
Person can play roles: undergraduate, master, athlete and etc. Thirdly, rela-
tionship “committee” can be specified as relationship “program chairs”, and if
two objects only have relationship “program chairs”, we can induct that they
are possibly have a relationship “committee”. The quality of heterogenous data
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Fig. 6. Neo4j Results of Extracted Model.

varies, extracted model from data with high quality and more information can
be used to complement imperfect data and benefit schema-less query.

6 Conclusion

Graph models do excel where data have an element of uncertainty or unpre-
dictability and the relationships are the features of the data. To represent and
integrate heterogeneous data and at the same time to capture as much semantics
as possible, we have proposed a novel graph model called Semantic Graph Model
(SGM), that extends the nodes of graph model with object-oriented features and
attachs some semantics to relationships.

Objects and classes are introduced to nodes of SGM; that is, every node is
an object which is an instance of one or more classes. Additionally, we have
introduced two kinds of relationship: containment relationship and role relation-
ship, a new relationship structure, hierarchical relationship, and a new relation-
ship between relationships; that is, the relationship and its inverse relationship
are coexisting. Containment relationship is introduced to represent relationships
with composition semantics. Role relationship models the dynamic aspect of
an object. Some relationships are directed, some are bidirectional, and some
directed relationships are pairwise. Pairwise relationships have a strong depen-
dency on each other and they are fundamentally one relationship between two
objects with two different expression from two directions. Hence, aiming at these
pairwise relationships, relationship and its inverse can be represented and main-
tained in SGM.

The features of SGM are as follows. Firstly, it is a schema-less model. Data
with various structures and semantics can easily be represented with it. Secondly,
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besides the label of nodes and relationships, their type can be specified as well.
Semantics of the data are represented and captured as what they demonstrate
in sources. Thirdly, the structures and definitions of classes can be extracted
from the instance data, and other knowledge can be mined from the extracted
model and used on further integrate and fuse data. Finally, the extra semantics
captured by SGM are important to graph query optimization.

We have also implemented a conversion layer to leverage the data manage-
ment provided in Neo4j. We firstly convert the data represented in SGM to data
that the graph database Neo4j can process, secondly make use of the semantics
SGM captured to do some queries, and thirdly extract domain model from the
object data.

In the future, we will investigate how to integrate, fuse and analyze data
using SGM and how to apply SGM to applications by leveraging extracted model
information, and we will study the query optimization methods taking advantage
of structural semantics.
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