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Abstract. We consider the scenario where the executions of different
business processes are traced into a log, where each trace describes a
process instance as a sequence of low-level events (representing basic
kinds of operations). In this context, we address a novel problem: given
a description of the processes’ behaviors in terms of high-level activities
(instead of low-level events), and in the presence of uncertainty in the
mapping between events and activities, find all the interpretations of each
trace Φ. Specifically, an interpretation is a pair 〈σ, W 〉 that provides a
two-level “explanation” for Φ: σ is a sequence of activities that may have
triggered the events in Φ, and W is a process whose model admits σ. To
solve this problem, we propose a probabilistic framework representing
“consistent” Φ’s interpretations, where each interpretation is associated
with a probability score.

1 Introduction

Thanks to the diffusion of various automated process management and tracing
platforms, many process logs (i.e., collections of execution traces) have become
available. Log data can be exploited to analyze and improve the processes, by
possibly using process mining techniques [2], such as those for inducing a pro-
cess model [1], for checking whether log traces comply to a model [3], and for
quantifying “how much” a log and a model conform one to the other [7].

All of these techniques, however, require log events to be univocally mapped
to activity concepts corresponding to some high-level view of the process, suit-
able for the analysis. For example, in order to evaluate the compliance (or the
conformance) of a log w.r.t. a given process model, it is necessary that each event
in the log refers to one of the activities that appear in the model. Unfortunately,
this assumption does not hold often in practice. As a matter of fact, in logs of
many real systems, the recorded events just represent low-level operations, with
no clear reference to the business activities that were carried out through these
operations, as shown in the following example.
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Fig. 1. Two process models (left and middle), and all the possible mappings between
their activities and the low-level event types, shown inside dashed squares, that occur
in the log (right).

Example 1. Consider the case of a phone company, where two business processes
are carried out: 1) service activation, and 2) issue management. Assume that an
abstract description of the behaviors of the two processes above is available,
encoded by two models, named W1 and W2 and sketched in Fig. 1 in the form of
precedence graphs. Therein, nodes and edges (some of which are labeled with typ-
ical split/join constraints) represent activities and precedence links, respectively.
Basically, these models describe the corresponding processes in terms of high-
level activities. In particular, W1 (service activation) features the set of activities
AW1 = { R (Receive a service request), O (Open a new case), S (Select a ser-
vice package), G (Gather more information on the customer), V (Validate the
package), D (Dispatch a contract proposal), N (Notify the request’s outcome),
C (Close the case)}. Analogously, W2 (issue notification) features AW2 = { R′

(Receive a request of help), O′ (Open a ticket), S′ (Search the issue in a knowl-
edge base), F ′ (Fix the issue), N ′ (Notify the solution), C ′ (Close the ticket)}1.

All these activities are performed via low-level operations (provided by differ-
ent collaborative-work tools, including databases and communication services)
that correspond to instances of the following event types: g (resp., s, c, p): get-
ting an email from (resp., sending an email to, opening a chat session with,
making a phone call to) a customer ; r: delivering a report ; q: posing a query
against a database. Thus, performing any activity results in the execution of one
of the above events, and the correspondence between event and activity types is
many to many, as depicted on the right-hand side of Fig. 1. For instance, activity
G (Gather more information on the customer) can be accomplished by either
opening a chat session with the customer (event c) or making a phone call to
the customer (event p). Analogously, an instance of event p can be generated by
the execution of either activity G or N .

The enactments of the processes is monitored by a tracing system that stores
the executions of the low-level operations triggered during the process execution.
Hence, an instance of process W1 consisting in the execution of the sequence
R S GV N C can be stored in the log as the (low-level event) trace g q p q s q,
or as the trace g q c q p q, depending on the low-level operations triggered by
each activity instance. �

1 Two disjoint sets of activities are here shown for the two models only for the sake
of readability. In fact, our approach can deal with activities shared by an arbitrary
number of process models.
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In such a setting, we address a novel challenging analysis problem: given a log
L (possibly containing traces generated by different processes), and a set W of
candidate process models (encoded each as a set of behavioral constraints), we
want to assess whether each trace in L can be regarded as an instance of each
model in W, and to what degree of confidence. In order to support such analysis,
we need to interpret each step of the trace (i.e. each low-level event registered
in the trace) as the execution of an activity from one of the process models, so
that the whole trace can be eventually viewed as a instance of that model.

Example 2 (contd.). Consider the trace Φ= gqqssq. In order to interpret Φ as
the result of an execution of the models in Fig. 1, we should first translate Φ into
a sequence of activities σ (by interpreting each of its events as the execution of a
single activity), and then interpreting σ as an instance of W1 or W2. Actually, as
each event can have different causes (in terms of activities that have generated
it), Φ may admit multiple sequences of activities “explaining” it. In turn, the
same sequence of activities may be compatible with different process models.
Hence, there can be multiple reasonable interpretations of Φ as a pair 〈σ,W 〉
(where σ is a sequence of activities and W a process): those where the mappings
event/activity used for obtaining σ agree with the right-hand side of Fig. 1, and
σ complies with the model of W .

It is easy to see that, based on this reasoning, the only valid interpretations
for Φ consist in viewing it as generated by either the sequence ROV DNC or
RSV DNC, and viewing both these sequences as generated by an instance of
process W1. In fact, any other translation of Φ into a sequence of activities
consistent with the event-activity mappings in Fig. 1 does not conform to any
process model. �

Contribution. We propose a probabilistic framework for facing the interpre-
tation problem above in a uniform synergistic way, at both mapping levels (i.e.
events vs. activities, and traces vs. process models). As a matter of fact, current
log abstraction techniques [4–6] do not approach this problem adequately, as
they do not address the specific “interpretation” problem faced in this paper.

The ultimate result of our approach is a “conditioned interpretation set”
(named ci-set) for each input trace Φ, which stores, for each candidate model W ,
the probability that Φ is an instance of W , along with probabilistically-scored
mappings between the steps of Φ and instances of the activities in W . Techni-
cally, we first introduce a model for formally describing the structure of each
process (via precedence constraints), and for probabilistically ranking the event-
activity and trace-process mappings (via a-priori probabilities). Next, based on
this model, we describe the conditioning approach for encoding all and only the
interpretations of the input trace Φ, which are consistent with the structure of
the processes, and the probabilities assigned to the mappings from each step of
Φ to an activity, and from the whole Φ to a process. Preliminary experiments on
a real-life scenario, prove that the approach is effective yet not efficient enough.
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2 Preliminaries

Logs, Traces, Processes, Activities and Events. A log is a set of traces.
Each trace Φ describes a process instance at the abstraction level of basic events,
each generated by the execution of an activity. That is, an instance w of a process
W is the execution of a sequence A1, . . . , Am of activities; in turn, the execution
of each activity Ai generates an instance ei of an event Ei; hence, the trace
describing w consists in the sequence e1, . . . , em of event instances. For any event
ei occurring in a trace, we assume that the starting time point of its execution
is represented in the log, and denote it as ei.ts.

In the following, we assume given the sets W, A, E of (types of) processes,
activities, and events, respectively, and denote their elements with upper-case
alphabetical symbols (such as W , A, E). Process-, activity-, and event- instances
will be denoted with lower-case symbols (such as w, a, e).

Given an event instance e, we denote the event of which it is an instance as
E-type(e).

Composition Rules for the Processes (Process Models). We assume that
every process W ∈ W is “regulated” by a “composition rule”, that restricts
the sequences of activities that are allowed to be executed when W is enacted.
Basically, the composition rule associated with W is a pair 〈ActSet, IC〉 (whose
members will be also denoted as W.ActSet and W.IC, respectively), where Act-
Set is the set of activities that are allowed to be executed within any instance of
W , and IC is a set of constraints of the form A ⇒T B (called must-constraint)
or A ⇒T ¬B (called not-constraint), where A, B ∈ A and T is of the form ‘≤ c’,
where c is a constant. Basically, A ⇒T B (resp., A ⇒T ¬B) imposes that, within
every instance of W , the beginning of an instance a of A always (resp., never)
precedes the beginning of an instance b of B such that the width of the interval
between the starting times of a and b satisfies T . Omitting T is equivalent to
specifying T =‘≤ ∞’. The set of composition rules associated with the processes
in W will be denoted as CR.

Correspondence Between Events and Activities. Under the above-
discussed assumption that the execution of an activity generates one event
instance, we consider the general case that the correspondence between activi-
ties and event types is many to many : different instances of the same event can
be generated by executions of different activities, and vice versa. For instance,
with reference to Example 1 (see Fig.1), activity G (Gather more information
on the customer) can generate an instance of either event c (opening a chat
session...) or of event p (making a phone call...), while an instance of event p
can be generated by both the activities G and N (Notify the request’s outcome).

Given an event E ∈ E , we denote as cand-act(E) the set of activities whose
execution is known to possibly generate an instance of E. In turn, given an
instance e of E, we use cand-act(e) as a shorthand for cand-act(E-type(e)):
basically, cand-act(e) contains every “candidate” activity A such that e can be
viewed as the result of executing A.
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3 The Interpretation Problem and Our Approach for
Solving It

Problem Statement. The problem addressed in this paper is that of “inter-
preting” an input trace Φ = e1 . . . em from an event log. This means deciding, for
each ei of Φ, the activity Ai ∈ cand-act(ei) whose execution generated ei, and, in
turn, the process W whose execution caused the sequence of activities A1 . . . Am

to be performed. When deciding this, the models of the processes encoded by
the composition rules in CR must be taken into account.

More formally, the solution of an instance Φ = e1 . . . em of this problem is
called interpretation for Φ consistent with CR (or, simply, consistent interpreta-
tion, when Φ and CR are understood), and is a pair 〈σ,W 〉, where:
– σ is called sequence-interpretation and is a sequence A1 . . . Am of activities,

where each Aj is in cand-act(ei), meaning that each ej is interpreted as the
result of executing an instance of the activity Aj ;

– W is called process-interpretation, meaning that Φ is interpreted as the result
of an execution of the process W ;

– σ conforms to the composition rule of W .

Example 3. Given W = {W1,W2}, A = {A,B,C}, E = {E1, E2, E3}, let
〈A, {A ⇒ B;A ⇒ C}〉 be the composition rule of W1, and 〈A, {B ⇒ A;B ⇒
¬C}〉 the composition rule of W2. Moreover, assume that cand-act(E1) = {A},
cand-act(E2) = {B}, cand-act(E3) = {A,B,C}. Consider the trace Φ = e1 e2 e3,
where E-type(e1) = E1, E-type(e2) = E2, E-type(e3) = E3. If we consider only
the correspondence between events and activities encoded by cand-act(·), Φ can
be interpreted as the result of executing one of the following sequences of activi-
ties: σ1 = AB A, or σ2 = AB B, or σ3 = AB C. It is easy to see that σ1 = AB A
is inconsistent with the composition rule of W1, but consistent with that of W2;
σ2 = AB B is inconsistent with both the composition rules of W1 and W2; finally,
σ1 = AB C is consistent with the composition rule of W1, but inconsistent with
that of W2. Hence, there are two consistent interpretations for Φ: 〈AB C,W1〉
and 〈AB A,W2〉. �

Dealing with the Interpretation Problem in Probabilistic Terms. The
above example describes an instance of the interpretation problem admitting
multiple solutions. This situation is likely to happen frequently, for the following
reasons: 1) the correspondence between events and activities is many to many,
thus an event instance can be interpreted as the result of different activity exe-
cutions; 2) the description of the process models provided by composition rules
can be rather “loose”, thus there can be process instances consistent with the
composition rules of different processes: that is, the execution of a sequence of
activities can be interpreted as the execution of different processes.

The presence of this uncertainty suggests to address the interpretation problem
in probabilistic terms. Under the probabilistic perspective, the problem becomes
that of finding all the consistent interpretations, and associating each of them
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with the probability of being the actual one. A starting point for probabilisti-
cally addressing the interpretation problem could be that of modeling the cor-
respondence between events and activities probabilistically. In this direction, we
assume that the many-to-many correspondence between events and activities
is modeled by a probability distribution function (pdf) pa(A|E) returning the
a-priori probability that an instance of event E is generated by an execution
of A. For instance, pa(A1|E1) = 0.75 and pa(A2|E1) = 0.25 means that any
instance of event E1 is generated by the execution of either A1 or A2, and that
the former case is three times more probable than the latter. This pdf is said
to be a-priori since it assigns probabilities to the different ways of interpreting
an event in terms of an activity execution, without looking at the context where
the event instance happened. That is, it provides an interpretation for the events
that occur in a trace without looking at the other events occurring in the trace.

Analogously, we assume given a pdf pa(W ) over W, assigning to each W ∈ W
the a-priori probability that a trace in a log encodes an instance of W . For
instance, given W = {W1,W2}, pa(W1) = pa(W2) = 0.5 means that, in the
absence of further knowledge, W1 and W2 are equi-probable interpretations of
any trace.

It is worth noting that assuming that pa(A|E) and pa(W ) are known is real-
istic: as done in our experiments, these pdfs can be obtained by computing
statistics taken from historical data, or by encoding domain-expert knowledge.

We now show how the pdfs pa(A|E) and pa(W ) can be exploited as a basis for
probabilistically addressing the interpretation problem. We start by introducing
a naive approach (that will be used in the experiments as term of comparison)
and discuss its limits; then, we briefly introduce the rationale of our framework,
explaining how it overcomes these limits.

Once the a-priori pdfs pa(A|E) and pa(W ) are given, a naive way to solve the
interpretation problem is the following: First, assume that the event instances
in Φ are independent from one another; then, use the a-priori pdf pa(A|E) to
probabilistically interpret each ei in Φ = e1 . . . em as an instance of an activity
Ai, and the pdf pa(W ) to probabilistically interpret the whole Φ as an instance
of one of the processes, say Wj . As implied by the independence assumption,
every sequence-interpretation σ = A1 . . . Am obtained this way will be asso-
ciated with the probability Πm

i=1p
a(Ai|E-type(ei)) (that is the product of the

a-priori probabilities of the event-to-activity mappings at each step), while the
process-interpretation Wj will have probability pa(Wj). Unfortunately, this naive
approach is unlikely to provide reasonable results, as explained in the following
example.

Example 4. Consider the scenario where the sets of processes, activities, and
events are W = {W1,W2}, A = {A,B,C,D}, and E = {E1, E2}, such that
cand-act(E1) = {A,B} and cand-act(E2) = {C,D}. Moreover, assume that
the a-priori probabilities of the processes are pa(W1) = 0.7 and pa(W2) = 0.3,
while those of the activities are pa(A|E1) = pa(B|E1) = 0.5; pa(C|E2) = 0.8;
pa(D|E2) = 0.2.
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Let Φ = e1e2 be the trace to be interpreted, where e1 and e2 are instances
of E1 and E2, respectively. According to the a-priori pdf, if we consider the
events in Φ separately, all the sequence-interpretations are: σ1 = AC; σ2 = AD;
σ3 = BC; σ4 = BD.

Each sequence-interpretation is also associated with a probability, implied by
pa and the independence assumption. Thus, the probability of each sequence-
interpretation σ, denoted as pa(σ), is the product of the a-priori probabilities of
its steps. Hence:
pa(σ1) = pa(A|E1) · pa(C|E2) = 0.4; pa(σ2) = pa(σ4) = 0.1; pa(σ3) = 0.4.
Moreover, owing to pa(W1) and pa(W2), we can say that Φ encodes an execu-

tion of W1 with probability 0.7, and of W2 with probability 0.3.
Now, assume given the context-specific knowledge that the composition rules

are: 〈A, {A ⇒ C;B ⇒ A}〉 for W1, and 〈A, {A ⇒ B;B ⇒ ¬C;B ⇒ ¬D}〉
for W2. Given this, we have that σ2, σ3 and σ4 are inconsistent with the com-
position rules of W1 and W2, and thus they turn out to be invalid sequence-
interpretations. Therefore, given that σ1 conforms to the composition of W1

but not of W2, σ1 remains the only valid sequence-interpretation, and W1 turns
out to be the only valid process-interpretation. Hence, the a-priori probabilities
pa(σ1) = 0.4 and pa(W1) = 0.7 are not reasonable, and should be revised as the
sum of the probabilities of the consistent sequence-interpretations should be 1,
and the same should hold for the consistent process-interpretations. �

Our approach consists in using this naive approach to obtain some initial
interpretations, and then revising them by a-posteriori enforcing the composition
rules. In order to do this, we resort to probabilistic conditioning, that is a well-
known paradigm used in the general context of forcing integrity constraints over
probabilistic databases where the assumption of independence between tuples
is originally used. Generally speaking, applying probabilistic conditioning for a
random variable X in the presence of a set C of constraints means revising f(X)
into f(X|C), where f is the pdf of X: that is, re-evaluating f(X) conditioned
to the fact that the constraints in C are satisfied. In our case, this means that
we will revise the a-priori pdfs pa(σ) and pa(W ) over the sequence- and the
process-interpretations into pa(σ|CR) and pa(W |CR), respectively.

For instance, consider the case of Example 4. If we disregard the composi-
tion rules, the probabilities of the sequence-interpretations are the a-priori ones:
pa(σ1) = pa(σ3) = 0.4; pa(σ2) = pa(σ4) = 0.1. Now, we have seen that if we
take into account the set CR of composition rules, σ2, σ3 and σ4 turn out to be
inadmissible. Thus, the conditioned probabilities are:

pa(σ1|CR) = pa(σ1)
pa(σ1)

= 1; pa(σ2|CR) = pa(σ3|CR) = pa(σ4|CR) = 0.
Thus generally, the conditioned probability of a sequence-interpretation is

either 0, if it is invalid, or the ratio between its a-priori probability and the sum
of the a-priori probabilities of all the valid sequence-interpretations, otherwise.

In turn, the conditioned probabilities of the process interpretations are:
pa(W1|CR) = pa(W1)

pa(W1)
= 1 and pa(W2|CR) = 0. This corresponds to the fact

that the only valid process-interpretation of Φ is W1.
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Our approach for interpreting an input trace Φ consists in revising pa(σ)
and pa(W ) into pa(σ|CR) and pa(W |CR) by first enumerating all the inter-
pretations of Φ, then discarding those not satisfying the composition rules,
and finally revising the a-priori probabilities of the remaining ones. More
in detail, given a trace Φ a probabilistic interpretation of Φ is the set of
triples CISΦ = {〈σ,W, pa(σ ∧ W |CR)〉|〈σ,W 〉 is an interpretation for Φ}, which
is named ci-set for Φ in the following. It is worth pointing out that CISΦ implic-
itly represent pa(σ|CR) (resp. pa(W |CR)) as pa(σ|CR) =

∑
〈σ,W ′,p〉∈CISΦ

p

(resp. pa(W |CR) =
∑

〈σ′,W,p〉∈CISΦ
p).

4 Experiments

Scenario, Data, and a-priori pdfs. We tested our framework over real-like
data of the administrative units of a phone company (PC). In these scenario, a
process instance is a collection of activities performed by the staff of the units in
response to customers’ requests. We were given the scheme of the processes in
terms of precedence relationships (between activities), that were easily encoded
into composition rules of the form used in our framework. Moreover, we were
given the sets W, A and E , and, for each E ∈ E , the set cand-act(E) of the
activities whose execution is known to possibly generate an instance of E. Besides
the composition rules the phone company gave us a set of real traces along with
suitable values for the a-priori pdfs, based on their knowledge of the domain.
Specifically, we were given by the phone company and the service agency 100 real
traces describing different process instances. Moreover, for each original trace Φ,
we were given also its correct interpretation 〈σΦ,WΦ〉.
Efficiency and Effectiveness of the Conditioning Approach. In Table 1
we report the average running times of the generation of the ci-set (row Times)
vs. trace length (we did not run the generation of the ci-set on traces longer than
30 as it would require too much time). It is easy to see that the generation of
the ci-set is feasible only on short traces (i.e., traces of length 10); more efficient
approaches should be investigated for dealing with longer traces (i.e., traces of
length greater than or equal to 20).

Table 1. Running time of the generation of the ci-set and accuracy of activity queries.

Trace length 10 20 30

Running Times ≈ 21 msec ≈ 24 min halted after 30 min
Accuracy 73% 72% 75%

We now analyze the accuracy of the interpretations. We measured the accu-
racy with which a activity queries can be answered over it. In the following,
we denote as Φ the trace over which the queries are posed, and as 〈σΦ,WΦ〉)
the corresponding correct interpretation. Given this, an activity query (over a
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step i) asks for the activity that has been performed at the i-th step of Φ, thus
its answer is σΦ[i]. The probabilistic answers to activity queries over ci-sets are
the natural probabilistic extensions of their deterministic semantics. Specifically,
given a ci-set CISΦ over Φ, the answer q(CISΦ) of an activity query q over step
i is a set of activities, where each activity A is associated with the probability
encoded in CISΦ that the event ei of Φ was generated by the execution of an
instance of A. Correspondingly, given an activity query q and a ci-set CISΦ over
Φ, the accuracy of q(CISΦ) is measured as the probability associated with A∗ in
q(CISΦ), where A∗ is the answer of q evaluated on σΦ. The average accuracies
of the answers of activity queries, issued over all the steps of the input traces,
are reported in the row Accuracy of Table 1. The results show that, in terms of
accuracy, our approach is rather good and insensitive to the trace length.

5 Discussion, Conclusion, and Future Work

We have presented a novel probabilistic approach to the problem of interpret-
ing a low-level log trace as an instance of one or more given process models,
which relies on computing, for each model, different probability-aware event-
activity mappings, which all comply with the behavioral constraints encoded in
the model. The proposed model is shown to be effective, but it is not efficient
enough to be used in practice. Efficiency issues will be addressed in future work.
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