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Abstract. Thinning is a frequently applied technique for extracting
skeletons or medial surfaces from volumetric binary objects. It is an
iterative object reduction: border points that satisfy certain topological
and geometric constraints are deleted in a thinning phase. Sequential
thinning algorithms may alter just one point at a time, while parallel
algorithms can delete a set of border points simultaneously. Two thin-
ning algorithms are said to be equivalent if they can produce the same
result for each input binary picture. This work shows that it is pos-
sible to construct subiteration-based equivalent sequential and parallel
surface-thinning algorithms. The proposed four pairs of algorithms can
be implemented directly on a conventional sequential computer or on
a parallel computing device. All of them preserve topology for (26, 6)
pictures.
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1 Introduction

A digital binary picture on the digital space Z
3 is a mapping that assigns a color

of black or white to each point [6]. Thinning is an iterative object reduction
until only some skeleton-like shape features (i.e., medial curves, medial surfaces,
or topological kernels) are left [4,6,19,25]. Thinning algorithms use reduction
operators that transform binary pictures only by changing some black points
to white ones, which is referred to as deletion. Parallel thinning algorithms are
comprised of reductions that can delete a set of border points simultaneously
[4,8,26], while sequential thinning algorithms traverse the boundary of objects
and may remove just one point at a time [8,26].

Two reductions are said to be equivalent if they produce the same result
for each input picture. Similarly, a deletion rule is called equivalent if it yields
equivalent parallel and sequential reductions. One of the authors established
some sufficient conditions for equivalent deletion rules [21]. This concept can be
extended to complex algorithms composed of reductions: two surface-thinning
algorithms are called equivalent if they produce the same medial surface for each
input picture.
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Sequential reductions (with the same deletion rule) suffer from the drawback
that different visiting orders (raster scans) of border points may yield various
results. A deletion rule is called order-independent if it yields equivalent sequen-
tial reductions for all the possible visiting orders. In [21] one of the authors
gave necessary and sufficient conditions for order-independent deletion rules. By
extending this concept: a sequential reduction is said to be order-independent
if its deletion rule is order-independent, and a sequential surface-thinning algo-
rithm is called order-independent [22] if it is composed of order-independent
sequential reductions.

There are three major strategies for parallel thinning [4]: a fully parallel algo-
rithm applies the same parallel reduction in each iteration step; a subiteration-
based algorithm decomposes an iteration step into k ≥ 2 successive parallel
reductions according to k deletion directions, and a subset of border points
associated with the actual direction can be deleted by a parallel reduction; and
in subfield-based algorithms the digital space is partitioned into s ≥ 2 subfields
which are alternatively activated, at a given iteration step s successive paral-
lel reductions assigned to these subfields are performed, and some black points
in the active subfield can be designated for deletion. In this paper, our atten-
tion is focussed on the subiteration approach. Since there are six kinds of major
directions in 3D, 6-subiteration 3D thinning algorithms are generally proposed
[3,9,11,15,19,23,27,28]. Note that there are some 8-subiteration [16] and 12-
subiteration [10,17] 3D thinning algorithms as well.

In [20] one of the authors proved that the deletion rule of the known 2D fully
parallel thinning algorithm proposed by Manzanera et al. [14] is equivalent.
Furthermore, he also showed in [21] that a fully parallel thinning algorithm
with an equivalent deletion rule yields various subfield-based algorithms that are
equivalent to the original fully parallel one. As far as we know, no one showed
that there exists a pair of equivalent parallel and sequential 3D subiteration-
based thinning algorithms. In this paper we propose four pairs of equivalent
parallel and sequential 6-subiteration surface-thinning algorithms that use the
same deletion rules, but they apply diverse geometric constraints.

The rest of this paper is organized as follows. Section 2 gives an outline
from basic notions and results from digital topology, topology preservation, and
equivalent reductions. Then in Sect. 3 the proposed algorithms are presented. In
Sect. 4 we show that our parallel algorithms are equivalent to topology-preserving
sequential surface-thinning algorithms. Finally, we round off the paper with some
concluding remarks.

2 Basic Notions and Results

We use the fundamental concepts of digital topology as reviewed by Kong and
Rosenfeld [5,6]. Note that there are other approaches that are based on cellu-
lar/cubical complexes [7]. The most important of them uses critical kernels [2]
which constitute a generalization of minimal non-simple sets. Since the topo-
logical correctness of the thinning algorithms presented in this paper is based
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only on the concept of simple points, we can consider the traditional paradigm
of digital topology.

Consider the digital space Z3, the three frequently applied adjacency relations
on Z

3 (see Fig. 1), and a point p ∈ Z
3. Then, we denote by Nj(p) ⊂ Z

3 the set of
points that are j-adjacent to point p and let N∗

j (p) = Nj(p)\{p} (j = 6, 18, 26).

◦ • ◦
• S •
◦ • ◦

• U •
W p E

• D •

◦ • ◦
• N •
◦ • ◦

Fig. 1. The considered three adjacency relations on Z
3. The set N6(p) contains p and

the six points marked ‘U’, ‘D’, ‘N’, ‘E’, ‘S’, and ‘W’; the set N18(p) contains N6(p)
and the twelve points marked ‘•’; the set N26(p) contains N18(p) and the eight points
marked ‘◦’.

The sequence of distinct points 〈x0, x1, . . . , xn〉 is called a j-path of length n
from x0 to xn in a non-empty set of points X if each point of the sequence is in
X and xi is j-adjacent to xi−1 for each i = 1, . . . , n. Note that a single point is
a j-path of length 0. Two points are said to be j-connected in the set X if there
is a j-path in X between them. A set of points X is j-connected in the set of
points Y ⊇ X if any two points in X are j-connected in Y . A j-component of a
set of points X is a maximal j-connected subset of X.

A (26, 6) binary digital picture on Z
3 is a quadruple (Z3, 26, 6, B), where

each point in B ⊆ Z
3 is called a black point ; each point in Z

3 \ B is said to be
a white point . A black component (or object) is a 26-component of B, while a
white component is a 6-component of Z3 \B. A black point p is an interior point
if all points in N∗

6 (p) are black. A black point is said to be a border point if it is
not an interior point (i.e., it is 6-adjacent to at least one white point).

Topology preservation [5,6,12] is a major concern of thinning algorithms.
A black point is called simple point if its deletion is a topology-preserving reduc-
tion. A sequential reduction and a sequential thinning algorithm is topology-
preserving if their deletion rules delete only simple points. Various authors gave
characterizations of simple points in (26, 6) pictures [5,6,13,24]. We make use of
the following one:

Theorem 1. [13,24] A black point p is simple in picture (Z3, 26, 6, B) if and
only if all of the following conditions hold:

1. The set N∗
26(p) ∩ B contains exactly one 26-component.
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2. N∗
6 (p) \ B �= ∅.

3. Any two points in N∗
6 (p) \ B are 6-connected in the set N∗

18(p) \ B.

Theorem 1 states that the simplicity of a point p in (26, 6) pictures is a local
property (i.e., it can be decided by examining N∗

26(p)).
Existing sufficient conditions for topology-preserving parallel reductions are

generally based on (or derived from) the notion of minimal non-simple sets [5,12].
One of the authors established a new sufficient condition for arbitrary pictures
with the help of equivalent deletion rules [21]. Let us recall and rephrase his
results:

Theorem 2. Let R be a deletion rule, let (Z3, 26, 6, B) be a picture, and let
p ∈ B be a black point that can be deleted by R from that picture.
If deletion rule R deletes only simple points and the deletability of any black
point in q ∈ B \{p} by R does not depend on the ‘color’ of p, then the followings
hold:

1. The parallel reduction with deletion rule R is topology-preserving.
2. The sequential reduction with deletion rule R is order-independent and

topology-preserving.
3. The parallel and the sequential reductions with deletion rule R are equivalent.

Thinning algorithms generally classify the set of black points of the input
picture into two (disjoint) subsets: the set of interesting points (i.e., potentially
deletable points) for which the deletion rule associated with a thinning phase is
evaluated and the constraint set whose black points are not taken into consider-
ation (i.e., safe points that cannot be deleted). Since a phase of a subiteration-
based algorithm cannot delete interior points and border points that do not fall
into the actual type, these points are certainly in the constraint set.

Conventional thinning algorithms preserve some simple (border) points called
endpoints that provide relevant geometrical information with respect to the
shape of the object. Here we consider the following characterizations of surface-
endpoints.

Definition 1. [19] A black point p in picture (Z3, 26, 6, B) is a surface-endpoint
of type 1 if there is no interior point in N∗

6 (p) ∩ B (i.e., p is not 6-adjacent to
any interior point).

Definition 2. [17] A black point p in picture (Z3, 26, 6, B) is a surface-endpoint
of type 2 if at least one of the three pairs of points in N∗

6 (p) ∩B (U,D), (N,S),
and (E,W) is formed by two white points.

Definition 3. [3] A black point p in picture (Z3, 26, 6, B) is not a surface-
endpoint of type 3 if ‖N∗

26(p)∩B‖ ≥ 8, or 4 ≤ ‖N∗
26(p)∩B‖ ≤ 7 and N∗

6 (p)∩B
contains three mutually 26-adjacent points. ( ‖S‖ stands for the count of elements
in set S).
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Definitions 1–3 make us possible to specify three pairs of endpoint-based
surface-thinning algorithms (P-6-SI-i, S-6-SI-i) (i = 1, 2, 3), see Algorithms
1 and 2 in Sect. 3.

Some advanced thinning algorithms preserve accumulated isthmuses [1] (i.e.,
generalization of curve interior points):

Definition 4. [1] A black point p in a (26, 6) picture is a surface-isthmus of type
4 if p is a non-simple border point (i.e., Condition 1 of Theorem1 or Condition
3 of Theorem1 is violated).

Definition 4 helps us to give a pair of isthmus-based surface-thinning algo-
rithms (P-6-SI-4, S-6-SI-4), see Algorithms 1 and 2 in Sect. 3.

Note that surface-endpoints of type 4 and surface-isthmuses of type i (i =
1, 2, 3) are not defined (i.e., there is neither surface-endpoint of type 4 nor surface-
isthmuses of type i (i = 1, 2, 3)). Definitions 1–4 make us possible to give a unified
description of the proposed endpoint-based and isthmus-based surface-thinning
algorithms (see Algorithms 1 and 2 in Sect. 3).

3 Parallel and Sequential 6-Subiteration Surface-Thinning
Algorithms

In this section, four pairs of 3D parallel and sequential 6-subiteration surface-
thinning algorithms (P-6-SI-i, S-6-SI-i) are presented for (26, 6) pictures (i =
1, 2, 3, 4). All of these algorithms use the same deletion rule, but diverse pairs of
them apply different constraint sets. The proposed parallel thinning algorithms
P-6-SI-i and the sequential algorithms S-6-SI-i are given by Algorithms 1 and
2, respectively.

It is easy to see that the first three pairs of algorithms (P-6-SI-i, S-6-SI-i)
are endpoint-based (i = 1, 2, 3), and the fourth pair of algorithms (P-6-SI-4,
S-6-SI-4) is isthmus-based (see Definitions 1–4).

By comparing the parallel algorithm P-6-SI-i (see Algorithm 1) and sequen-
tial algorithm S-6-SI-i (see Algorithm 2), we can state that in the parallel case
the initial set of black points P is considered when the deletability of all the
interesting points are investigated. On the contrary, the set of black points S is
dynamically altered when a sequential reduction/subiteration is performed; the
deletability of the actual point is evaluated in a modified picture (in which some
previously visited interesting points are white).

The applied deletion rules that specify d-DELETABLE points (d = U, D,
N, E, S, W) are given by 3 × 3 × 3 matching templates depicted in Fig. 2. Note
that the six deletion rules were originally proposed by Gong and Bertrand [3] in
their endpoint-based 6-subiteration surface-thinning algorithm with respect to
surface-endpoints of type 3 (see Definition 3).

A period of six subiterations/reductions (i.e., the kernel of the repeat cycle
in Algorithms 1 and 2) is decomposed into six successive subiterations according
to the six main directions in 3D, and this period is repeated until stability is
reached (i.e., no point is deleted within the last six subiterations/reductions).
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Algorithm 1. Parallel thinning algorithm P-6-SI-i (i = 1, 2, 3, 4)
Input: set of black points B
Output: set of black points P
P = B
I = ∅
repeat

// a period of six subiterations/reductions
for each d ∈ {U, D, N, E, S, W} do

// accumulating isthmuses
I = I ∪ { p | p ∈ P is a surface-isthmus of type i }
// forming the constraint set
C = I ∪ { p | p ∈ P is not a d-border point }
C = C ∪ { p | p ∈ P is a surface-endpoint of type i }
// forming the set of interesting points
X = P \ C
// deletion
Dd = { p | p ∈ X is a d-DELETABLE point in P }
P = P \ Dd

until DU ∪ DD ∪ DN ∪ DE ∪ DS ∪ DW = ∅

Algorithm 2. Sequential thinning algorithm S-6-SI-i (i = 1, 2, 3, 4)
Input: set of black points B
Output: set of black points S
S = B
I = ∅
repeat

// a period of six subiterations/reductions
for each d ∈ {U, D, N, E, S, W} do

// accumulating isthmuses
I = I ∪ { p | p ∈ P is a surface-isthmus of type i }
// forming the constraint set
C = I ∪ { p | p ∈ S is not a d-border point }
C = C ∪ { p | p ∈ P is a surface-endpoint of type i }
// forming the set of interesting points
X = S \ C
// traversal of the elements in X
del(d) = 0
for each p ∈ X do

if p is a d-DELETABLE point in S then
// deletion
S = S \ {p}
del(d) = del(d) + 1

until del(U) + del(D) + del(N) + del(E) + del(S) + del(W) = 0
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TU

y0 w0 y1

x0 v0 x1

· · ·

w3 w1

v3 p v1

· ·

y3 w2 y2

x3 v2 x2

· · ·

TD

· · ·
x0 v0 x1

y0 w0 y1

· ·
v3 p v1

w3 w1

· · ·
x3 v2 x2

y3 w2 y2

TN

· · ·
· ·
· · ·

x3 v2 x2

v3 p v1

x0 v0 x1

y3 w2 y2

w3 w1

y0 w0 y1

TE

· x3 y3

· v2 w2

· x2 y2

· v3 w3

p

· v1 w1

· x0 y0

· v0 w0

· x1 y1

TS

y3 w2 y2

w3 w1

y0 w0 y1

x3 v2 x2

v3 p v1

x0 v0 x1

· · ·
· ·
· · ·

TW

y3 x3 ·
w2 v2 ·
y2 x2 ·

w3 v3 ·
p

w1 v1 ·

y0 x0 ·
w0 v0 ·
y1 x1 ·

Fig. 2. Matching template Td associated with d-DELETABLE points (d =
U,D,N,E,S,W). Notations: the central position marked p matches an interesting
(black) point; the position marked ‘�’ matches a (black) point in the constraint set; the
position marked ‘�’ matches a white point; if the position marked ‘vk’ coincides with a
white point, then the position marked ‘wk’ coincides with a white point (k = 0, 1, 2, 3);
if all the three positions marked ‘vk’, ‘x(k+1) mod 4’, and ‘v(k+1) mod 4’ coincide with
white points, then the position marked ‘y(k+1) mod 4’ coincides with a white point
(k = 0, 1, 2, 3); each ‘·’ (don’t care) matches either a black or a white point.

We propose the following ordered list of the deletion directions: 〈U,D,N,E,
S,W〉. Note that a subiteration-based thinning algorithm is sensitive to the
order of directions. Hence choosing another order of the deletion directions yields
another algorithm.

An interesting black point (p ∈ X) is d-DELETABLE if template Td matches
it (d = U,D,N,E,S,W). Note that the templates assigned to the deletion direc-
tion d give the condition to delete certain d-border points, and templates asso-
ciated with the last five deletion directions can be obtained by proper rotations
of the templates that give U-DELETABLE points.

In experiments the proposed pairs of equivalent algorithms (P-6-SI-i, S-6-
SI-i) were tested on objects of different shapes. Here we have room to present
four illustrative examples, see Figs. 3, 4, 5 and 6. The results of our four pairs
of algorithms can be compared to the medial surfaces produced by two existing
3D parallel surface thinning algorithms proposed by Manzanera et al. [14] and
Palágyi [18]. The numbers refer to the count of black points in the pictures.
We can state that the isthmus-based pair of algorithms (P-6-SI-4, S-6-SI-4)
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result less object points than the other five methods. The authors note that,
unfortunately, there is no known method for quantitative comparison of surface-
thinning algorithms.

4 Verification

Now we will show that the 6-subiteration parallel surface-thinning algorithm
P-6-SI-i and the sequential algorithm S-6-SI-i are equivalent and topology-
preserving (i = 1, 2, 3, 4). It will also be proved that the sequential algorithms are
order-independent. It is sufficient to show that deletion rules of these algorithms
(see Sect. 3) satisfy all conditions of Theorem2.

Since the five templates TD, TN, TE, TS, and TW assigned to d-DELETABLE
points (d = D,N,E,S,W) are rotated versions of the template TU (see Fig. 2),
it is sufficient to prove that the deletion rule associated with the first subiteration
deletes only simple points, and the deletability of a point does not depend on the
‘color’ of a deletable point. It can be carried out for the remaining five deletion
rules in the same way.

Let us state some important properties of the U-DELETABLE points:

Lemma 1. All U-DELETABLE points are simple.

It is obvious by a careful examination of the matching template TU that all
conditions of Theorem1 hold.

Lemma 2. The deletability of a point by template TU does not depend on the
‘color’ of a U-DELETABLE point.

Proof. Let us assume that the (interesting) black point p is U-DELETABLE.
Since U-DELETABLE points are given by a 3 × 3 × 3 matching template, it is
sufficient to investigate the deletability of interesting black points in N∗

26(p).
Due to the symmetries that are present in template TU (see Fig. 2), it is

sufficient to check the eight template positions marked ‘�’ in Fig. 7a. Hence it is
assumed that the U-DELETABLE point p coincides with these eight positions.
Consider the deletability of an interesting black point q ∈ N∗

26(p) with the help
of the eight corresponding configurations depicted in Figs. 7b–i.

Let us investigate all that eight cases:

– If the U-DELETABLE point p coincides with a position marked ‘�’ in Fig. 7b,
d, e, f, g, and i, then the deletability of q does not depend on the ‘color’ of p.

– If point p coincides with a position marked ‘�’ in Fig. 7c (after its deletion),
then the interesting point q is in the constraint set. Hence we arrived at a
contradiction.

– If point p coincides with a position marked ‘�’ in Fig. 7h (before its deletion),
then the interesting point p is in the constraint set. Hence we arrived at a
contradiction. ��
We are now ready to state our main theorem — as an easy consequence of

Theorem 2, Lemmas 1 and 2.
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original — 74 250

Manzanera et al. (2002) [14] — 8 726 0518—]81[)8002(iygálaP

(S-6-SI-1,P-6-SI-1) — 15 840 (S-6-SI-2,P-6-SI-2) — 2 310

(S-6-SI-3,P-6-SI-3) — 2 308 (S-6-SI-4,P-6-SI-4) — 1 856

Fig. 3. The original 45 × 45 × 45 image of a cube with two tunnels and its six medial
surfaces produced by two existing algorithms and the proposed four pairs of equivalent
6-subiteration surface-thinning algorithms.
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original — 767 233

Manzanera et al. (2002) [14] — 59 351 Palágyi (2008) [18] — 50 835

(S-6-SI-1,P-6-SI-1) — 55 243 (S-6-SI-2,P-6-SI-2) — 40 568

(S-6-SI-3,P-6-SI-3) — 32 571 (S-6-SI-4,P-6-SI-4) — 30 928

Fig. 4. The original 321×153×227 image of a bird and its six medial surfaces produced
by two existing algorithms and the proposed four pairs of equivalent 6-subiteration
surface-thinning algorithms.
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original — 596 360

Manzanera et al. (2002) [14] — 54 561 Palágyi (2008) [18] — 48 680

(S-6-SI-1,P-6-SI-1) — 58 433 (S-6-SI-2,P-6-SI-2) — 27 915

(S-6-SI-3,P-6-SI-3) — 26 033 (S-6-SI-4,P-6-SI-4) — 24 852

Fig. 5. The original 47×193×193 image of a gear and its six medial surfaces produced
by two existing algorithms and the proposed four pairs of equivalent 6-subiteration
surface-thinning algorithms.
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original — 1 244 162

Manzanera et al. (2002) [14] — 91 415 Palágyi (2008) [18] — 66 856

(S-6-SI-1,P-6-SI-1) — 97 906 (S-6-SI-2,P-6-SI-2) — 61 442

(S-6-SI-3,P-6-SI-3) — 50 679 (S-6-SI-4,P-6-SI-4) — 49 199

Fig. 6. The original 350 × 132 × 217 image of a dolphin and its six medial surfaces
produced by two existing algorithms and the proposed four pairs of equivalent 6-
subiteration surface-thinning algorithms.
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(a)

q

(b)

q

(c)

q

(d)

q

(e)

q

(f)

q

(g)

q

(h)

q

(i)

q

Fig. 7. The eight positions marked ‘�’ are checked by Lemma 2 (a), and the eight
configurations (b)–(i) are associated with these positions. Points marked ‘�’ are in the
constraint set, and points marked ‘�’ are white.

Theorem 3. The followings hold for the proposed algorithms:

1. The sequential surface-thinning algorithm S-6-SI-i is order-independent (i =
1, 2, 3, 4).

2. The sequential surface-thinning algorithm S-6-SI-i is topology-preserving for
(26, 6) pictures (i = 1, 2, 3, 4).

3. The parallel surface-thinning algorithm P-6-SI-i is topology-preserving for
(26, 6) pictures (i = 1, 2, 3, 4).

4. Algorithms S-6-SI-i and P-6-SI-i are equivalent, i.e., they produce the same
result for each input picture (i = 1, 2, 3, 4).

Note that Lemma 2 is valid for arbitrary constraint sets — not only for the
four kinds of sets that are used by algorithms (S-6-SI-i, P-6-SI-i) (i = 1, 2, 3, 4).
Other constraint sets coupled with the set of templates depicted in Fig. 2 yield
additional pairs of equivalent 6-subiteration parallel and sequential thinning
algorithms.
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It is important to emphasize that the parallel algorithm P-6-SI-3 coincides
with the 6-subiteration 3D parallel surface-thinning algorithm proposed by Gong
and Bertrand in 1990 [3]. According to Theorem 3, that existing parallel algo-
rithm is equivalent to the (order-independent) sequential algorithm S-6-SI-3
(with the same deletion rules and constraint set). In addition, the topological
correctness of an existing parallel thinning algorithm is also confirmed. Note that
Gong and Bertrand sketched a proof in [3] to show that their algorithm does
not change the topological properties of the input pictures. At that time (i.e.,
in 1990) they could not apply the very first sufficient conditions for topology-
preserving 3D parallel reductions reported by Ma in 1994 [12].

5 Conclusions

In this paper four pairs of 3D 6-subiteration sequential and parallel surface-
thinning algorithms were presented. Each of the proposed algorithm uses the
same deletion rules that are given by 3×3×3 matching templates, but different
pairs of algorithms apply diverse constraint sets. It was shown that the proposed
pairs of algorithms are equivalent (i.e., they produce the same medial surfaces
for each input picture). It was also proved that all the reported algorithms are
topology-preserving for (26, 6) pictures.

Acknowledgements. This work was supported by the grant OTKA K112998 of the
National Scientific Research Fund.
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