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Abstract. For any positive integer M , M -object fuzzy connectedness
(FC ) segmentation is a methodology for finding M objects in a digital
image based on user-specified seed points and user-specified functions,
called (fuzzy) affinities, which map each pair of image points to a value in
the real interval [0, 1]. FC segmentation has been used with considerable
success on biomedical and other images. We provide a brief presentation
of the literature on the topic of FC segmentation.
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1 Introduction

Image segmentation is an important and challenging task for which a multitude
of different techniques have been developed; see, e.g., Sect. 1.6 of [19] and the
survey articles in Part IV of that book. Our paper deals with the segmentation
methodology known as fuzzy connectedness (or FC ) segmentation, which has
been used with considerable success—see, e.g., Fig. 1—on biomedical and many
other kinds of images [1–11,13–18,21–23,25–33]. One typical example is [1], in
which FC segmentation is used to delineate nodules in computerized tomography
(CT) images of the lungs of patients. In medical imaging, FC segmentation was
first developed by Udupa and Samarasekera [32]. Earlier uses of FC segmenta-
tion in an entirely different context (geophysical data processing) are reported
in [8–11].

Much of the theory of FC segmentation has developed along two different
tracks. In one of the tracks [1,2,13–18,21,27,28,31,33] two kinds of segmenta-
tion are used: relative fuzzy connectedness (RFC ) segmentation and iterative
relative fuzzy connectedness (IRFC ) segmentation. The other track [3–7,22,25]
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uses a third kind of segmentation that is called multi object fuzzy segmentation
(MOFS ). In [12] we present a general theory of FC segmentation that encom-
passes both tracks and unifies them.

2 Basic Definitions

Let V be the set of all points of a digital image (so that V is finite and nonempty),
let M be a positive integer, and let S1, . . . , SM be pairwise disjoint nonempty
subsets of V . Then FC (short for fuzzy connectedness) segmentation can be
understood as one method of identifying M subsets O1, . . . , OM of V such that
Si ⊆ Oi ⊆ Si ∪ (V \ ⋃

j Sj) for 1 ≤ i ≤ M . Each of the sets O1, . . . , OM that is
identified is called an object, and (for 1 ≤ i ≤ M) each point in the originally
specified set Si is called a seed point or simply a seed for the ith object Oi. In
many applications one of the M objects is called the background.

In a practical application, the sets S1, . . . , SM may be specified in any way
appropriate for that application. For example, to specify the seed sets that
resulted in the 4-object segmentation shown at the bottom of Fig. 1, the cre-
ator of that segmentation displayed on the computer screen the image shown at
the top of Fig. 1 and, for 1 ≤ i ≤ 4, used mouse clicks to indicate the locations
of all the points in Si. But this is not the only way to select seed points; for
example, [1] describes procedures for selecting seed points automatically in a
manner that is different for the background object and the other objects (that
are all nodules in [1]). Automatic seed selection has the potential of reducing
the time that the user needs to spend on providing input to the segmentation
process.

In addition to using the term FC segmentation to refer to the process by
which the objects O1, . . . , OM are found, we will also call the sequence of objects
O1, . . . , OM an FC segmentation or an M -object FC segmentation of the set V
of image points.

An FC segmentation is not necessarily a segmentation in the most typical
sense because it is not necessarily a partition of the set V of image points: It is
not required that the Oi be pairwise disjoint nor that their union be the whole of
V . However, FC segmentation is the only kind of segmentation we discuss here,
and we will often refer to FC segmentations as “segmentations.”

The objects Oi that are found by FC segmentation depend on user-specified
mappings called fuzzy affinities or just affinities. An affinity (on V ) is a mapping
ψ : V × V → [0, 1] such that ψ(v, v) = 1 for all v ∈ V . For all u, v ∈ V , we call
the value ψ(u, v) ∈ [0, 1] the ψ-affinity value of (u, v).

An affinity on V may be regarded as an edge-weight function of the complete
digraph (with loops) on V. Affinity values are described in [32] and elsewhere as
(user-specified) measures of the “hanging togetherness” of pairs of image points.

One of the ways that RFC segmentation and IRFC segmentation differ from
MOFS is that, for any seed sets S1, . . . , SM , the RFC and IRFC segmentations
of V are determined by a single affinity ψ : V × V → [0, 1], whereas the MOFS
segmentation of V depends on M affinities ψ1, . . . , ψM (i.e., one affinity for each
of the M objects).
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Fig. 1. Top: A slice of a patient’s head obtained by magnetic resonance imaging (MRI).
Bottom: A 4-object MOFS of the same slice. The number 4 reflects the fact that this
FC segmentation aims at dividing up the image according to four tissue types (shown
in red, green, blue, and yellow. (Reproduced from [6]) (Color figure online)
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FC segmentation is unlikely to identify useful objects unless the affinity or
affinities we use are appropriate for our application. The important problem
of how to define appropriate affinities is discussed, e.g., in [3,7,14,15,24,25].
In MOFS each affinity ψi is quite frequently defined based on some statistical
analysis of the image values assigned to points in neighborhoods of the seed
points in Si; see, for example, [5,6,25].

Given an affinity ψ : V × V → [0, 1] on V and A,B,W ⊆ V , a W -path
from A to B of length l is any sequence p = 〈w0, . . . , wl〉 of points in W such
that w0 ∈ A and wl ∈ B; the ψ-strength of p = 〈v0, . . . , vl〉, denoted by ψ(p),
is defined by ψ(p) = min1≤k≤l ψ(vk−1, vk) if l > 0 and ψ(p) = 1 if l = 0; the
ψ-strength of connectedness of A 	= ∅ to B 	= ∅ via W is defined as

ψW (A,B) = max {ψ(p) | p is a (W ∪ A ∪ B) - path from A to B}. (1)

For a, b ∈ V , a W -path from {a} to {b} will also be called a W -path from
a to b. Similarly, we write ψX(a,B), ψX(A, b), and ψX(a, b) for ψX({a}, B),
ψX(A, {b}), and ψX({a}, {b}), respectively. Note that ψ(a, b) = ψ∅(a, b) ≤
ψX(a, b) ≤ ψV (a, b), that ψX(A,B) = 1 if A ∩ B 	= ∅, and that ψ∅(A,B) =

max
a∈A,b∈B

ψ(a, b).

We say that the seed sets S1, . . . , SM are consistent with the affinities
ψ1, . . . , ψM if ψV

i (Si, Sj) < 1, for all distinct i and j in {1, . . . , M}. In other
words, S1, . . . , SM are consistent with the affinities ψ1, . . . , ψM if, and only if,
for all distinct i and j in {1, . . . , M} and for every V -path 〈v0, . . . , vl〉 from Si

to Sj , there exists a k, 1 ≤ k ≤ l, such that ψi(vk−1, vk) < 1.

3 A Simple Multi Object Fuzzy Segmentation (MOFS)
Algorithm

The following algorithm for computing the M -object MOFS of the set V for
pairwise disjoint nonempty seed sets S1, . . . , SM ⊂ V and affinities ψ1, . . . , ψM

on V is not intended to be efficient. Rather, it is intended to be simple and
concise, so as to give readers who are new to the subject a quick (yet completely
accurate) understanding of the nature of the objects that are found by MOFS.
A much more efficient (but less easily understood) method for computing MOFS
is Algorithm 5 of [12], which is akin to Dijkstra’s shortest-path algorithm [20],
computes all of the objects simultaneously, and may be regarded as a simplified
version of the MOFS algorithm of [6, Sect. 3].

Let Ψ = 〈ψ1, . . . , ψM 〉 be any sequence of affinities on V and let S =
〈S1, . . . , SM 〉 be any sequence of M pairwise disjoint nonempty subsets of V .
Then we denote the MOFS segmentation 〈OMOFS

1 , . . . , OMOFS
M 〉 that is pro-

duced by Algorithm 1 for affinities ψ1, . . . , ψM and seed sets S1, . . . , SM by
〈OMOFS

1 (Ψ,S), . . . , OMOFS
M (Ψ,S)〉. We now proceed to give an alternative, non-

algorithmic, characterization of this segmentation (in statements 1(a) and 1(b)
below) and to state some related facts about the segmentation and Algorithm 1.



Fuzzy Connectedness Segmentation 25

Algorithm 1. MOFS Segmentation of a Nonempty Finite Set V into M
Objects
Data: M pairwise disjoint nonempty seed sets S1, . . . , SM ⊂ V ; M affinities

ψ1, . . . , ψM on V
Result: The MOFS segmentation 〈OMOFS

1 , . . . , OMOFS
M 〉 of V

1 for i ← 1 to M do Ti ← Si

2 sort A =
⋃

j ψj [V × V ] \ {0} into 1 = α1 > . . . > α|A|
3 for n ← 1 to |A| do /* the main loop */

4 for i ← 1 to M do newTi ← Ti ∪ {v ∈ V \⋃j Tj | ψ
V \⋃j Tj

i (Ti, v) ≥ αn}
5 for i ← 1 to M do Ti ← newTi

6 for i ← 1 to M do OMOFS
i ← Ti

Let A =
⋃

j ψj [V × V ] \ {0} and let 1 = α1 > . . . > α|A| be the sequence
obtained by sorting A into decreasing order. For 1 ≤ i ≤ M and 0 ≤ n < |A|,
let Tn

i be the value of the variable Ti at the beginning of the n + 1st iteration
of the main loop when Algorithm 1 is executed, and let T

|A|
i be the value of Ti

at the end of the |A|th iteration of the main loop (which is the value of Ti when
Algorithm 1 terminates). Then

Si ⊆ OMOFS
i (Ψ,S) ⊆ Si ∪ (V \

⋃

j
Sj)

for 1 ≤ i ≤ M . Moreover:

1. For 1 ≤ i ≤ M we have that:

(a) T 0
i = Si, and Tn

i = Tn−1
i ∪{v ∈ V \⋃

jT
n−1
j | ψ

Tn−1
i ∪(V \⋃j Tn−1

j )

i (Si, v) =
αn} for 1 ≤ n ≤ |A|.

(b) OMOFS
i (Ψ,S) = T

|A|
i .

2. {v ∈ V \ ⋃
jT

n−1
j | ψ

Tn−1
i ∪(V \⋃j Tn−1

j )

i (Si, v) > αn} = ∅ for 1 ≤ i ≤ M and
1 ≤ n ≤ |A|.

3. Tn
i = Tn−1

i ∪ {v ∈ V \ ⋃
jT

n−1
j | ψ

Tk
i

i (Si, v) = αn} for 1 ≤ i ≤ M and
1 ≤ n ≤ k ≤ |A|.
Now let us assume the seed sets S = 〈S1, . . . , SM 〉 are consistent with the

affinities Ψ = 〈ψ1, . . . , ψM 〉. Then there is an arguably even more easily compre-
hended characterization of the MOFS segmentation

〈OMOFS
1 (Ψ,S), . . . , OMOFS

M (Ψ,S)〉

than the characterization that is given by statements 1(a) and 1(b) above: The
segmentation is the unique sequence of sets 〈O1, . . . , OM 〉 such that

Oi = {v ∈ V | maxj �=i ψ
Oj

j (Sj , v) ≤ ψOi
i (Si, v) 	= 0} for 1 ≤ i ≤ M. (2)
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That this is the case is stated (and proved) as part of Theorem 3.10 in [12].
The proof makes use of the concept (introduced in [12]) of a recursively optimal
path.

Let us expand this characterization. Suppose that a sequence of sets

〈O1, . . . , OM 〉

satisfies (2). Then, for 1 ≤ i ≤ M , Si ⊆ Oi and, for any v ∈ V , v ∈ Oi if, and
only if:

1. There is an (Oi∪{v})-path 〈v0, . . . , vl〉 from Si to v such that ψi(vk−1, vk) > 0
for 1 ≤ k ≤ l. (This implies that ψOi

i (Si, v) > 0.)
2. For 1 ≤ j ≤ M , the ψj-strength of any (Oj ∪ {v})-path from Sj to v is not

greater than ψOi
i (Si, v).

Furthermore, since the characterization uniquely determines the sequence

〈O1, . . . , OM 〉

it follows that the definition

σ(v) = max
1≤i≤M

ψOi
i (Si, v) (3)

assigns a value from [0, 1] to every v ∈ V . If σ(v) = 0, then ψOi
i (Si, v) = 0 and

v /∈ Oi for 1 ≤ i ≤ M . On the other hand, if σ(v) 	= 0, then there must be at
least one i such that maxj �=i ψ

Oj

j (Sj , v) ≤ ψOi
i (Si, v) = σ(v), and v ∈ Oi for all

such i. (This is a good place to point out a second difference between MOFS and
either RFC segmentation or IRFC segmentation: While in MOFS the Oi may
overlap, objects in any RFC or IRFC segmentation are pairwise disjoint.) When
representing the outcome of such a segmentation by a color image (as in the
bottom image of Fig. 1), we can associate a different pure hue with each of the
is (in the case of the bottom image of Fig. 1, there are four pure hues used: red,
green, blue, and yellow): If v ∈ Oi, then the hue associated with i is assigned
to the pixel v. In the bottom image of Fig. 1, the brightness that is assigned to
each v ∈ Oi is σ(v), which is often regarded (see, for example, [6]) as the grade
of membership of v in Oi.

4 Robustness of Fuzzy Connectedness Segmentations

In practice the seed points may be selected by the user clicking on images (as was
done to produce the 4-object MOFS shown at the bottom of Fig. 1) or in some
more automatic manner (as described, for instance, in [1]). In the first case, the
choice of the seed points is likely to be different for different users and even for
the same user at different times. Even in the second case, we have variability; the
noise in the image of an object is not deterministic and an automated process
for determining the location of the seeds may depend on the noise in the image
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(for example, if it involves finding local minima or maxima). It would make the
practical usefulness of FC segmentation questionable if the outcome were highly
dependent on the exact selections of the seed points. Fortunately, this has not
been found to be the case: FC segmentations are generally robust with respect
to small changes in seed sets.

When the affinities do not depend on the choice of seeds, we can establish
mathematical results that explain this robustness. In the cases of RFC and IRFC
segmentation, such results are given in [18, Sect. 2.4]. In this section we state
one such result for MOFS, which shows that it is possible to introduce a large
number of additional seed points without changing the resulting MOFS.

Let Ψ = 〈ψ1, . . . , ψM 〉 be any sequence of affinities on V and S =
〈S1, . . . , SM 〉 any sequence of M pairwise disjoint nonempty subsets of V that
are consistent with the affinities. Then, for 1 ≤ i ≤ M , we define Pi(Ψ,S) to be
the collection of all subsets P of V that satisfy both of the following conditions:

1. P ⊆ OMOFS
i (Ψ,S) \ ⋃

j �=i OMOFS
j (Ψ,S).

2. ψ
OMOFS

i (Ψ,S)
i (Si, v) ≥ ψ∅

i (v, V \ P ) for every v ∈ P .

The core of OMOFS
i (Ψ,S), denoted by Pi, is defined as the union of all the

sets in Pi(Ψ,S). We observe that Pi ⊆ OMOFS
i (Ψ,S) \ ⋃

j �=i OMOFS
j (Ψ,S) for

1 ≤ i ≤ M . This implies that the cores of distinct MOFS objects are always
disjoint: Pi ∩ Pj = ∅ whenever i 	= j.

Since Si ⊆ OMOFS
i (Ψ,S) \ ⋃

j �=i OMOFS
j (Ψ,S) (which is clear when we recall

from the previous section that Si ⊆ OMOFS
i ⊆ Si ∪ (V \ ⋃

j Sj) for 1 ≤ i ≤ M),
we see that Si ∈ Pi(Ψ,S) and therefore Si ⊆ Pi for 1 ≤ i ≤ M . A little reflection
will show that it is quite possibly the case that Pi is a much larger set than Si.
Nevertheless, as the following theorem states, using the Pis instead of the Sis
as the seed sets for the objects does not change the resulting MOFS.

MOFS Robustness Theorem [12]: Let Ψ = 〈ψ1, . . . , ψM 〉 be a sequence of
affinities on V and S = 〈S1, . . . , SM 〉 a sequence of pairwise disjoint nonempty
seed sets consistent with the affinities. Let R = 〈R1, . . . , RM 〉 be such that
Si ⊆ Ri ⊆ Pi for 1 ≤ i ≤ M . Then OMOFS

i (Ψ,R) = OMOFS
i (Ψ,S) for 1 ≤ i ≤ M .

Other results regarding the robustness of MOFS with respect to changes in
seed sets (e.g., [12, Corollary 5.6]) can be deduced from this theorem.

All mathematical results the authors are aware of regarding robustness of FC
segmentations assume that affinities remain unchanged when seed sets change.
For example, there appear to be no results in the literature regarding robustness
of FC segmentations when affinities depend on statistical properties of the image
values assigned to points in neighborhoods of the seeds.

5 Unified Theory of FC Segmentations

While we have repeatedly mentioned RFC and IRFC segmentations, until now
we have discussed details only of MOFS. A unified theory that covers all three
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types of segmentations is offered in [12]: In that paper it is shown that a generally
common mathematical approach is applicable in all three cases. Moreover, the
methods and results stated for MOFS above (and some other methods and results
for MOFS) have close analogs for RFC and IRFC segmentations.

One significant fact that emerges from the unified theory of [12] is that the
IRFC segmentation for an affinity ψ and seed sets S1, . . . , SM consistent with ψ
can be found by executing the very efficient Algorithm 5 of [12] for MOFS with
ψ1 = · · · = ψM = ψ: Each object OIRFC

i of the IRFC segmentation consists just
of those points in the corresponding MOFS object OMOFS

i that do not lie in any
of the other M − 1 MOFS objects:

OIRFC
i = OMOFS

i \
⋃

j �=i
OMOFS

j . (4)

For segmentation into more than two objects, this approach (which allows the M
IRFC objects to be computed simultaneously) can compute IRFC segmentations
more quickly than commonly-used algorithms that compute these segmentations
one object at a time.

6 Conclusion

Fuzzy connectedness (FC) image segmentation, which finds objects based on
user-specified seed sets and fuzzy affinity functions, is one of the most computa-
tionally efficient segmentation methodologies and is commonly used in practical
image segmentation tasks (especially in biomedical imaging). As can be seen
from the references cited in this brief presentation, the methodology has a grow-
ing literature which covers mathematical properties of the segmentations as well
as users’ practice and experience.
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