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Abstract. This paper is meant as a short survey on analytically defined
digital geometric objects. We will start by giving some elements on digiti-
zations and their relations to continuous geometry. We will then explain
how, from simple assumptions about properties a digital object should
have, one can build mathematically sound digital objects. We will end
with open problems and challenges for the future.
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1 Introduction

Geometry is historically the field of mathematics dealing with objects and their
properties: length, angle, volume, shape, position and transform. The word
Geometry stems from the ancient greek words for Earth and Measure. Geome-
try was the science of shapes and numbers as practical tool for measuring fields,
distances between far away places, volumes for commerce, etc. For centuries,
properties were proven and geometric objects were constructed based on con-
struction rules. Euclid with his manuscripts Elements, revolutionized geometry
with his formalization of abstract reasoning in mathematics and more signifi-
cantly in geometry. The second revolution was brought upon by René Descartes
with the introduction of coordinates. This marked a profound change in the way
geometry was considered. It established a link between Euclidean geometry and
algebra: Analytical Geometry was born. Many advances were now possible in
astronomy, physics, engineering, etc. Many different forms of geometries have
since been proposed such as Differential geometry, Algebraic geometry, etc.

Digital Geometry is one of the most recent forms of geometry. It can be
broadly defined as the geometry of digital objects and transforms in a digital
space. In this paper we are mainly considering digital points with integer coor-
dinates (points in Z

n). Digital Geometry has the particularity of, usually, not
being an independent geometry but a digital counterpart of Euclidean geometry.
Digital objects are supposed to behave and look as much as possible as their con-
tinuous counterpart. This question of representing/coding the continuous world
in a finite computer is, of course, not limited to digital geometry. From the begin-
ning, when sensors went from analog to digital and when the display mode went
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from continuous (vector monitor) to digital (raster graphics), the fundamental
question of object and space definition has been raised. It proved more elusive
than initially thought [49]. Elementary rules of topology or geometry, that seem
so obvious that they have been raised to the axiomatic status by Euclid, have
proven to be false in Digital Geometry [20]: two, non identical, parallel 2D dig-
ital straight lines can have an infinite number of intersection points while two
orthogonal 2D digital straight lines may have no intersection point. Particular
versions of the Jordan theorem had to be divised that are in some sense specific
to digital geometry [55].

This confrontation between the digital and the continuous worlds has given
birth to various theories. One way of solving this hiatus is to consider the digital
information as a sampled version of continuous information. The digital world
is an approximation where information has been lost. Signal Theory provides
the theoretical toolkit. Although one of the most efficient approaches when it
comes to handling digital information (image processing, image analysis), it does
little in helping defining actual geometry. It does not really provide any tool if
one wants to draw, for instance, a line on a screen. We are considering another
approach that finds its origins in the question of drawing digital equivalents of
continuous objects on a raster screen (or earlier on, on a plotter). Digital Geom-
etry is, in this sense, more closely linked to computer graphics or arithmetics.
As for the continuous geometry, digital geometry started out focusing on very
concrete and basic questions: how can one generate a digital analog of a contin-
uous object for visualization purposes? This algorithmic approach has prevailed
for many decades, with algorithms such as the Bresenham Digital Straight line
drawing algorithm or Arie Kaufman et al. that proposed many digital primitive
generation algorithms [40–42,47,48,61]. The main drawback of such an algo-
rithmic approach is that it is difficult to ensure global properties from the local
construction scheme. The other problem with a definition by construction is that
you can only generate finite digital objects. As an alternative, researchers tried
to describe and categorize digital objects not as a result of an algorithm but
as digital classes with properties, be it geometrical or, more generally, topolog-
ical [34,38,44,45,51,56]. This allows to define (classes of) digital objects that
are infinite and without boundaries such as planes or surfaces in general. This
approach proved useful to construct object classes with desired properties but
it proved difficult to ensure tightness for the classes. And, as for the continuous
geometry, analytical characterization of digital objects has proven to be effective
in describing objects and the related transforms. It is a bit early to claim that it
will revolutionize Digital Geometry but it allowed new insight and brought new
tools for the definition of digital objects, in pattern recognition and design of
digital transforms. Consider this paper as a short introduction paper into digi-
tization transforms in general and Digital Analytical Geometry in particular.

In Sect. 2, we are going to discuss different types of digitizations. In Sect. 3
we are going to focus on digital analytical objects. We will then conclude and
propose some perspectives.
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2 Digitization

2.1 Notations

Let us denote n the dimension of space (digital or Euclidean) in this paper. Let
{e1, . . . , en} denote the canonical basis of the n-dimensional Euclidean vector
space and O the center of the associated geometric coordinate system. Let Z

n

be the subset of R
n that consists of all the integer coordinate points. A digital

(resp. Euclidean) point is an element of Z
n (resp. R

n). We denote by xi the i-th
coordinate, associated to ei, of a point or a vector x. A digital (resp. Euclidean)
geometric object is a set of digital (resp. Euclidean) points. A digital inequality
is an inequality with coefficients in R from which we retain only the integer
coordinate solutions. A digital analytical object is a digital object defined as
union and intersection of a finite set of digital inequalities. The family of sets
over Z

n (resp. R
n) is denoted P (Zn) (resp. P (Rn)). A digitization is a transform

from sets in the Euclidean to sets in the digital world: Δ : P (Rn) → P (Zn).
For all k ∈ {0, . . . , n−1}, two integer points v and w are said to be k-adjacent

or k-neighbors, if for all i ∈ {1, . . . , n}, |vi−wi| ≤ 1 and
∑n

j=1 |vj−wj | ≤ n−k. In
the 2-dimensional plane, the 0- and 1-neighborhood notations correspond respec-
tively to the classical 8- and 4-neighborhood notations. In the 3-dimensional
space, the 0-, 1- and 2-neighborhood notations correspond respectively to the
classical 26- ,18- and 6-neighborhood notations [5,6,55].

A k-path is a sequence of integer points such that every two consecutive points
in the sequence are k-adjacent. A digital object E is k-connected if there exists
a k-path in E between any two points of E. A maximum k-connected subset of
E is called a k-connected component. Let us suppose that the complement of a
digital object E, Z

n \ E admits exactly two k-connected components F1 and F2,
or in other words that there exists no k-path joining integer points of F1 and F2,
then E is said to be k-separating in Z

n. If there is no path from F1 to F2 then E
is said to be 0-separating or simply separating. A point v of a k-separating object
E is said to be a k-simple point if E \ {v} is still k-separating. A k-separating
object that has no k-simple points is said to be strictly k-separating. The notion
of k-separation is defined for digital surfaces without boundaries. See [24] for
more general notions.

For A and B two subsets of R
n, A ⊕ B = {a + b : a ∈ A, b ∈ B} is the

Minkowski sum of A and B. Let us denote Ǎ = {−a : a ∈ A} the reflection
set of A. Let us denote A the flat of smallest dimension containing A. For a
distance d, then the let us denote Bd(r) = {x ∈ R

n : d(x,O) ≤ r}, the ball of
radius r for the distance d. Let us denote d1, d2, d∞ respectively the Manhat-
tan, Euclidean and Chebychev distance. Let us denote ‖x‖k the corresponding
norm (with k = 1, 2,∞).

2.2 General Remarks on Digitizations

Let us first start with some general remarks about digitization methods. The
digitization of objects is fundamentally an ill-defined problem [49]: any digital
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objects can be considered as the digitization of any continuous object. Usually
the goal is to have digital objects that ressemble the continuous object. The
resulting digital objects may keep some, but not all, properties of the continuous
object [21,24,52,53]. See [21,53] for a more formal presentation of a link between
the continuous and the digital worlds based on non-standard analysis.

A digitization is defined broadly as a transform from the family of Euclidean
sets to the family of the digital sets. However, most of the literature deals with
digital objects defined as digitization of specific classes of geometric objects [1,2,
9,12,13,15,26,27,30–32,40–42,47,48,61–63]: for instance, the Bresenham digital
straight line segment generation algorithm [12] works only for continuous straight
line segments between two digital points. In this case, the digitization transform
is usually implicit. The fact that the digitization scheme is not explicitely defined
is also an important problem for pattern recognition: comparing two digital circle
recognition algorithm supposes that the underlying digital circles are defined
in the same way or otherwise it is like comparing apples to oranges. Other
digitization transforms are defined only for linear objects [5,6] and others still
for all objects [7].

Let us mention some classes of digitization transforms that are important:
A general digitization is a digitization that is defined for all continuous objects.
A coherent digitization transform Δ verifies the following property E ⊂ F ⇒
Δ(E) ⊂ Δ(F ).

2.3 Morphological Digitizations

Let us build a narrative for the construction of a general, coherent digitization
transform Δ. For a geometric object E, how can we build its digital counterpart
Δ(E) that ressembles E? Simply considering that Δ(E) = E ∩ Z

n is not a good
idea. There are no particular reasons for E to pass through digital points and
we may end up with Δ(E) = ∅. So let us consider points that are close to E:

Δ(E) = {p ∈ Z
n : d(p,E) ≤ r} , where d is a distance and r ∈ R (1)

There are some important immediate properties that go with such a definition:
Δ(E ∪ F ) = Δ(E) ∪ Δ(F ) and E ⊂ F ⇒ Δ(E) ⊂ Δ(F ), which is a stronger
version of the coherence property. These are fundamental properties when it
comes to digital modeling of complex objects. It defines a general, coherent
digitization transform. There are two parameters to work with: the distance
d and a thickness parameter r. Let us note that the parameter r can also be
defined as a function. See [9,32,63] for examples of digital objects defined with
a non-constant thickness. Considering the points that are close to the original
continuous object seems reasonable if we want the digital object to look like the
original. There are also theoretical reasons for such a choice [21,53].

If a point p verifies d(p,E) ≤ r then a ball Bd(r) of radius r, for the distance
d, centered on p intersects E which leads to the following formulation:

Δ(E) = {p ∈ Z
n : (Bd(r) ⊕ p) ∩ E �= ∅} (2)
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This type of digitization method is part of digitization methods called morpho-
logical digitization [37,46,54,59,60] with Bd(r) as structuring element.

Classically, the distances that have been considered are the Manhattan, the
Euclidean and the Chebychev distances. An interesting set of distances well
adapted for digitization transforms is the set based on adjacency norms [63].
Every digital adjacency relationship can be associated to a norm.

Definition 1. For an integer k, 0 ≤ k < n, the k-adjacency norm [·]k is defined

as follows: ∀x ∈ R
n, [x]k = max

{
‖x‖∞,

‖x‖1
n−k

}
.

These distances are interesting because they verify the following property [63]:
Let p, q ∈ Z

n, then, p and q are k-adjacent iff [p − q]k ≤ 1. See Fig. 1 for
adjacency distance balls.

Fig. 1. 2D and 3D balls for the adjacency distances and the corresponding Flakes [63].

For morphological digitizations [37,43,46], the structuring element is not nec-
essarily a distance ball as in formula (2). One can consider any continuous object
F as structuring element and define a digitization transform of a continuous
object E by [46]:

Δ(E) =
{
p ∈ Z

n :
(
F̌ ⊕ p

) ∩ E �= ∅
}

(3)

The region
{
x ∈ R

n :
(
F̌ ⊕ x

) ∩ E �= ∅
}

is called the offset region. Formula-
tion (3) has implicitly already been used in digitizations such as the grid inter-
section digitization [43] with half-open structuring elements. This is also the
starting point for the analytical characterization of digital objects with the ana-
lytical description of the offset region. Note that, for an arbitrary structuring
element F , it is the reflection F̌ that appears in formula (3) (Fig. 2).

3 Analytical Characterization of Digital Objects

Let us first define what we understand by analytical characterization of a digital
object: a digital object is defined by a set of equations (inequalities typically).
A point belongs to the digital object iff it verifies the set of equations. The
cardinality of the set of equations should be independent of the number of digital
points of the object. The analytical characterization of digital objects has a great
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Fig. 2. This figure has been proposed in [46]. (a)
{
p ∈ Z

2 : F ⊕ p �= ∅
}

(b) (F̌⊕E)∩Z
2.

The region in gray in (b) is called the offset zone.

interest in digital geometry. A digital object is defined in comprehension and
not as a voxel enumeration. Infinite digital objects can be represented. This was
also one of the reasons for trying to define digital objects based on topology
[34,38,44,45,51,56]. The key to the analytical characterization is that it allows
a characterization of digital objects with interesting topological properties.

Since Reveilles proposed the analytical characterization of digital straight
lines [52], many papers have been proposed that describe or discuss properties
of analytical digital objects. Those papers can be roughly classified into two
groups:

– Direct defined Analytical Digital Object: Papers that introduce an analytical
definition of digital objects or classes of objects, or that analytically character-
ize previously known digital objects. Those objects are defined directly in the
digital space without being explicitely associated to a digitization transform.

– Digitized Analytical Objects: papers that introduce a digitization transform
that allows an analytical characterization of digital objects.

3.1 Direct Defined Analytical Digital Objects

Let us first list some of the digital objects that have been directly analytically
defined in the digital space without an explicite reference to a digitization trans-
form. The list is of course not exhaustive.

Digital Analytical Hyperplane: The first class of digital object that has
been analytically characterized has been the digital straight 2D line [19,25]. It
was J-P. Reveilles that proposed an analytical description of a Digital Straight
Line (DSL) 0 ≤ ax − by + c < ω [52] with a thickness parameter ω that allows
a parametrization of its topology. He also made an explicit link between digital
straight lines, topology, quasi-affine transforms and arithmetics [10,23,39,52].
Many papers have been devoted to its study. Indeed, the structure of digital
straight lines is rich, with immediate links to word theory, the Stern-Brocot
tree, the Farey sequence, etc. It allows a natural extension to higher dimensions
[1,27,52] with the analytical characterization of digital hyperplanes:
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H : 0 ≤ a0 +
n∑

i=1

aixi < ω. (4)

See [18,43] for a survey of digital linearity and planarity with interesting histor-
ical perspectives and useful comments and references on digital analytical lines
and hyperplanes. An important step in bringing different theoretical approaches
together, was to establish a link between the thickness of digital hyperplanes and
topology [1]: let us assume, w.l.o.g. that 0 ≤ a1 ≤ . . . ≤ an, the digital hyperplane
0 ≤ a0 +

∑n
i=1 aixi < ω is k-separating iff ω ≥ ∑n

k+1 ai. With ω =
∑n

k+1 ai the
digital hyperplane is strictly k-separating, without simple points. Papers have
been devoted to the study of different classes of digital hyperplanes such as
naive hyperplanes [1], supercover hyperplanes [3,4,7], Graceful lines and planes
[15,16], etc. An interesting sequence of papers has focused on the connectivity
of digital analytical hyperplanes [8,17,39]. The problem proved to be quite diffi-
cult when it comes to digital analytical (hyper)planes with irrational coefficients.
Several papers have dealt with topology especially in order to define a notion of
digital surface [33,34].

Digital Analytical Hyperplanes have been defined as purely analytical digital
objects. It is however quite easy to associate a digitization transform to digital
analytical hyperplanes. The most obvious way is to center a digital hyperplane
on the continuous hyperplane: for H : a0 +

∑n
i=1 aixi = 0, we define Δ(H) ={

p ∈ Z
n : ω

2 ≤ a0 +
∑n

i=1 aixi < ω
2

}
. Note that the Bresenham line [12] is such

a centered Reveilles line [52]. There is the question of orientation of the digital
hyperplane: with a definition such as 0 ≤ a0 +

∑n
i=1 aixi < ω, on which side

do we put the “’≤” and the “<”. One can easily switch side and obtain 0 <
ω−a0+

∑n
i=1(−ai)xi ≤ ω, so a choice has to be made. This question is somewhat

difficult if we want coherent digitization models, so let us focus a moment on so
called closed analytical digital hyperplanes 0 ≤ a0 +

∑n
i=1 aixi ≤ ω (with two

“≤”). Let us suppose that we have a digitization transform Δ that is defined
for hyperplanes such that, for a continuous hyperplane H : a0 +

∑n
i=1 aixi = 0,

we have Δ(H) =
{
p ∈ Z

n : ω
2 ≤ a0 +

∑n
i=1 aixi ≤ ω

2

}
. Under some conditions,

it is possible to take this as a starting point for the construction of a general,
coherent morphological digitization transform:

Definition 2. For some classes of digitization transforms Δ defined for hyper-
planes, one can extend Δ as a general and coherent morphological digitization
with a structuring element Δ(O) that is defined by:

For x ∈ R
n,Δ(O) =

⋂

∀H⊃O

Δ(H).

The idea behind this definition is basically the following: For a digitization
transform to be coherent, it has to verify the condition E ⊂ F ⇒ Δ(E) ⊂ Δ(F ).
Δ(O) has to belong to the digitization of all the hyperplanes that pass through
the coordinate center O. If we consider the equality, we basically define the
digitization of a point which in this case can serve as structuring element for
the morphological digitization transform. The difficulty lies in the choice of ω
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for the digitization transform: for a hyperplane H, we want Δ(H) to be equal to⋃
x∈H Δ(x) and that is of course not true for any random choice of ω. There are

classes of digital hyperplane thickness that work, namely those that correspond
to the optimal hyperplane thickness for it to be k-separating: ω is equal to
the sum of the absolute values of the n − k biggest coefficients of H. These
thicknesses correspond to the adjacency norm [.]k based digitization transforms.
It is interesting to note that, for these digitizations, the structuring element
is a polytope and therefore all the linear objects, at least, can be described
analytically as linear digital objects (with linear inequalities). The best known
of such digitization transforms is the Supercover model [3,4,7,20,22,24,43,46,
57,59]. One other thickness that works is ω =

√∑n
i=1 a2

i . The corresponding
structuring element Δ(O) is the unit hypersphere. The associated norm is the
Euclidean norm. What other thicknesses work is an interesting open question.

Andres Hypersphere: The second class of digital objects that have been
defined directly as digital objects are the so called Andres hyperpsheres [2,63]:
S =

{
x ∈ Z

n : ω1 ≤ ∑n
i=1 (xi − ci)

2
< ω2

}
where c is the center of the digital

hypersphere and
√

ω2 − √
ω1 its (Euclidean) thickness. The same method (as

for the hyperplanes) of centering the spherical shell can be used to associate a
digitization transform. The Andres hypersphere has been proposed to overcome
the limitation of the Bresenham circle [13] in particular that is only defined for
integer radius, integer coordinate center and that, at the time, did not have an
analytical characterization. There is one now [9,63]. An interesting property of
such Andres hyperspheres is that concentric Andres hyperspheres pave digital
space. This is quite useful for applications such as simulation of wave propaga-
tion [50].

nD Straight Lines: Flats in general have not been studied that much with the
notable exception of straight lines: 2D analytical lines [52], 3D analytical lines
[28,31], graceful lines [16], analytical nD lines [30]. The study of Digital Analyt-
ical Lines has gained a lot of traction in the arithmetical community [11] for its
link to word theory. It is interesting to note that I. Debled-Rennesson’s 3D line
is defined as the intersection of two orthotropic naive 3D planes (thinnest planes
without 6-connected holes) and thus is an analytically defined 26-connected
object. However, contrary to what one could think, the 3D line one would obtain
by considering naive planes and intersecting them to define a morphological dig-
itization is usually not 26-connected. The choice of the two planes among three
possible orthotropic planes depends on the orientation of the 3D line. I am not
quite sure that there exists a corresponding 3D plane thickness (and thus a
corresponding general digitization transform) that would define such digital 3D
lines. It is an interesting question and it shows that direct analytical definitions
for digital objects may lead to interesting topological properties.
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Other Purely Analytically Defined Digital Objects: There are other ana-
lytically defined objects that could be considered as purely analytically defined
digital objects. Let us just mention some approaches that are particularly inter-
esting: The team around I. Debled-Rennesson proposed the notion of Blurred
analytical objects [29] with applications in noisy digital object recognition. E.
Andres, M. Rodriguez et al. proposed a notion of analytically characterized dig-
ital perpendicular bisector [8] which allowed to tackle the problem of the com-
putation of a circumcenter of several pixels and the recognition of fuzzy circles.
One could add Y. Gerard and L. Provost that proposed a notion of analytically
defined curves and surfaces, named Digital Level Layers [36]. Although based on
a morphological digitization, the objects are purely analytically defined.

3.2 Digitized Analytical Objects

In this section, we are going to take a look at digitized objects that have been
analytically characterized. An immediate example is the Bresenham Straight
line Segment [12] that has been shown to be a Reveilles straight line segment
[52]. In the same way, in [9], most notions of digital circles that have been
introduced have been analytically characterized [13,47]. An extension to higher
dimensions has been proposed in [63] with an explicit mention of Morphological
Digitizations. Let us start with morphological digitization transforms.

Supercover Digitization: One of the first analytically characterized dig-
itization model that has been proposed is the supercover digitization (also
called outer Jordan digitization [22,43]) based on the Chebychev distance d∞
[3,4,7,20,22,24,43,46,57,59]. The supercover digitization is well-known for a
long time because it has a natural geometric interpretation. The unit ball
for the distance Bd∞

(
1
2

)
is a hypercube of side one. If we denote V(p) the

voxel centered on p, Formula (2) for the Chebychev distance is the same as
{p ∈ Z

n : V(p) ∩ E �= ∅}: a point belongs to the supercover of a continuous
object E iff the corresponding voxel is cut by E. The union of all the voxels
of the supercover of a continuous object covers the continuous object, thus the
name supercover. This geometric interpretation is so natural that it has been
considered long (actually as early as the 19th century [22]) before the link to
the Chebychev distance has been made. We will not recall all the details on the
supercover model: see [24] for general properties of the digitization transform.
In [3,4,7] for the analytical characterization of the supercover digitization of m-
simplice and m-flats in dimension n. In [63], the reader will find an analytical
characterization of supercover 2D circles and 3D spheres.

Standard Digitization: The supercover digitization transform has many
interesting topological properties. In particular, a supercover digitization of a
connected object is always (n − 1)-connected and tunnel-free but not strictly
separating. When E crosses and edge or a vertex of a grid voxel then all the
grid points whose voxel share this edge or vertice belong to the digitization.
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This is called a bubble [3,4,7]. The supercover of a hyperplane, for instance, is
(n−1)-connected but with possibly simple points. For theoretical [33–35] as well
as practical reasons, it is interesting to have a model without bubble. Various
methods have been proposed to solve this problem such as modifying the defini-
tion of a voxel [24] but that does not work [5,6]. There is however a way to solve
this problem [5,6]. The idea is the following: the supercover S(H) of a hyperplane
H : a0+

∑n
i=1 aixi = 0 is given by S(H) : −

∑n
i=1|ai|
2 ≤ a0+

∑n
i=1 aixi ≤

∑n
i=1|ai|
2 .

It is (n−1)-connected, tunnel-free but it might have simple points (bubbles). The
analytical hyperplane −

∑n
i=1|ai|
2 ≤ a0+

∑n
i=1 aixi <

∑n
i=1|ai|
2 is (n−1)-connected,

tunnel-free and strictly separating (without bubbles). The only difference comes
from the “≤” for the hyperplane supercover that is replaced by a “<” for the ana-
lytical hyperplane. So transforming one into the other comes down to choosing
a side on which we change a “≤” into a “<”. We define therefore an orientation
convention: A halfspace H : a0 +

∑n
i=1 aixi ≤ 0 is said to have a standard orien-

tation iff a1 > 0 or a1 = 0 and a2 > 0 or . . . if a1 = . . . = an−1 = 0 and an > 0.
Otherwise the halfspace is said to have a supercover orientation.

Since the defining structuring element for the supercover digitization trans-
form is a unit hypercube, it is easy to see that the offset zone for a supercover
linear object is a polytope defined as intersection of a finite sequence of digital
half-spaces S(E) =

{
p ∈

(⋂k
i=1 Hi

)
∩ Z

n;Hi : ai,0 +
∑n

j=1 ai,jxj ≤ 0
}

where k

is the cardinality of the set of halfspaces {Hi} defining the supercover of E. For
such a set of halfspaces, we replace each halfspace Hi : ai,0 +

∑n
j=1 ai,jxj ≤ 0

that has a standard orientation by H ′
i : ai,0 +

∑n
j=1 ai,jxj < 0 in the analytical

characterization of the digital object. If the halfspace has a supercover orienta-
tion, it is not modified. This defines the standard digitization transform St(E) of
a linear Euclidean object E. It has been shown in [14] that the standard digitiza-
tion produces (n − 1)-connected, tunnel-free and strictly separating objects. See
Figure 3 for examples of the standard digitization of points and a 3D triangle.
The standard model keeps most of the properties of the supercover model and
as such is a coherent digitization. It is not general however as it is defined only
for linear objects. There is however a caution. Contrary to the supercover digi-
tization, in general, St(E) �= ⋃

x∈E St(x). The standard digitization is defined as
a finite rewriting of the inequalities defining the supercover of a linear object. It
does not hold for an infinite sequence of inequalities.

Grid Intersection Digitization: A popular digitization scheme is called grid
intersection digitization [57]. For a continuous object E, the intersection points
of E and the grid lines (all the straight lines xi = k, k ∈ Z) are considered
and the closest grid point to these intersection points forms the digital object.
This is the same as considering a structuring element corresponding to the set
of polygons with vertices

(
0, . . . , 0,± 1

2 , 0, . . . , 0,± 1
2 , 0, . . . , 0

)
. It is very similar

to the digitization with the Manhattan distance d1. While the unit ball for this
distance is a diamond shaped polytope with all the above mentioned points
as vertices. The digitization is defined for all k-dimensional objects, k > 0.
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Fig. 3. Standard and Supercover digitization of points on the left and digitization of
a 3D triangle on the right.

Analytical characterization can be obtained by computing the intersection of
the object with one of the orthotropic faces of the structuring element or by
determining the analytical charcterization of the d1-distance digitization. The
Bresenham line [12] is such an object and its characterization has been given
in [52] by JP. Reveilles. In [9,63] there is the analytical characterization of d1
digital circles and spheres.

Flake Digitization [58,62]: The analytical characterization of the supercover
of a sphere S is quite complicated [63]. Most (in the geometric sense) of the offset
region corresponds however simply to a translation of the continuous sphere S.
Indeed, the outer and inner boundary of Bd∞ ⊕ S is in great part determined
by the vertices of the ball. Let us call V∞ the set of vertices of Bd∞ then V∞ ⊕
S corresponds largely to the same surface than the boundary of Bd∞ ⊕ S. If
we consider a structuring element F composed of straight line segments that
join the vertices v of Bd∞ to its reverse v̌ then F ⊕ S is (n − 1)-connected
and tunnel-free if S is big enough (details of S need to be bigger than a voxel
[58,62]). This is true, not only for the supercover model but for all structuring
elements that are polytopes, especially those corresponding to adjacency norms.
The distinctive advantage is that this digitization transform is very simple to
characterize analytically if the surface S is defined by an implicit equation f(x) =
0 such that there is a side of the surface where f(x) < 0 and a side where
f(x) > 0. Let us suppose we have a surface S defined by such an implicit equation
f(x) = 0, x ∈ R

n. Let us suppose that we have a structuring element F which is
a polytope, with central symmetry (for the sake of simplicity here). The vertices
of F form the set vi. Let us define the Flake F ′ formed by the straight lines
joining the vertices vi to its symmetric v̌i (See Fig. 1). Then (F ′ ⊕ S) ∩ Z

n is
analytically characterized by:

{

p ∈ Z
n :

n
min
i=1

(f(vi)) ≤ 0 ∧ n
max
i=1

(f(vi)) ≥ 0
}

(5)

The idea is actually very simple: as morphological digitization, the surface S
cuts a structuring element F ′ ⊕p iff there are vertices on each side of the surface
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Fig. 4. Flake digitizations of the quadric 9x2 − 4y2 − 36z − 180 = 0.

defined by the implicit equation. The so-defined Flake digitization transform
(F ′ ⊕ S) ∩ Z

n is similar to (F ⊕ S) ∩ Z
n except may be on places where S

does not fit some regularity properties [62]. The flake digital object keeps the
topological properties of the original object. This is a way of defining implicit
digital objects is straightforward way with the limitation that it is defined only
for (n−1)-dimensional surfaces that are regular enough. See Fig. 4 for an example
of a implicitly defined quadric digitized with all three 3D adjacency flakes.

4 Conclusion and Perspectives

In this paper we propose a short survey on digital analytical geometry and show
what the ideas are behind the analytical characterization of digital objects. There
are two key points in digital analytical geometry that we have not addressed in
this paper due to space: transforms and object recognition. Both profit greatly of
the analytical characterizations of digital objects. For the transforms, let us just
cite the Quasi-Affine Transforms [23] among many others. For Object Recogni-
tion, having mathematical definitions of objects changes many things. Much has
not been said and many papers have been omitted in this short survey. We have
proposed several open questions along the pages of this article and many others
still remain. As concluding words, let us not forget that beyond digital analyt-
ical geometry, there are many other forms of digital geometry that still need
to be invented or explored: parametric digital geometry, non-Euclidean digital
geometry, multiscale digital geometry, etc.
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