
Reneta P. Barneva
Bhargab B. Bhattacharya
Valentin E. Brimkov (Eds.)

 123

LN
CS

 9
44

8

17th International Workshop, IWCIA 2015
Kolkata, India, November 24–27, 2015
Proceedings

Combinatorial
Image Analysis

Lecture Notes in Computer Science 9448

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7412

http://www.springer.com/series/7412

Reneta P. Barneva • Bhargab B. Bhattacharya
Valentin E. Brimkov (Eds.)

Combinatorial
Image Analysis
17th International Workshop, IWCIA 2015
Kolkata, India, November 24–27, 2015
Proceedings

123

Editors
Reneta P. Barneva
SUNY Fredonia
Fredonia, NY
USA

Bhargab B. Bhattacharya
Indian Statistical Institute
Advanced Computing and Microelectronics

Unit (ACMU)
Kolkata, West Bengal
India

Valentin E. Brimkov
SUNY Buffalo State
Buffalo, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-26144-7 ISBN 978-3-319-26145-4 (eBook)
DOI 10.1007/978-3-319-26145-4

Library of Congress Control Number: 2015953004

LNCS Sublibrary: SL6 – Image Processing, Computer Vision, Pattern Recognition, and Graphics

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the articles presented at the 17th International Workshop on
Combinatorial Image Analysis, IWCIA 2015, which was held at the Indian Statistical
Institute in Kolkata, during November 24–27, 2015. The 16 previous meetings were
held in Paris (France) 1991, Ube (Japan) 1992, Washington DC (USA) 1994, Lyon
(France) 1995, Hiroshima (Japan) 1997, Madras (India) 1999, Caen (France) 2000,
Philadelphia, PA (USA) 2001, Palermo (Italy) 2003, Auckland (New Zealand) 2004,
Berlin (Germany) 2006, Buffalo, NY (USA) 2008, Playa del Carmen (Mexico) 2009,
Madrid (Spain) 2011, Austin, TX (USA) 2012, and Brno (Czech Republic) 2014.

Combinatorial image analysis provides theoretical foundations and methods for
solving problems from various areas of human practice. In contrast to traditional
approaches to image analysis that implement continuous models, float arithmetic, and
rounding, combinatorial image analysis features discrete models using integer arith-
metic. The developed algorithms are based on studying combinatorial properties of
classes of digital images, and often appear to be more efficient and accurate than those
based on continuous models.

IWCIA is an exciting opportunity for scholars, graduate students, and educators
across the world to meet and share information about their latest findings in the field of
combinatorial image analysis, get enriched with new ideas, reflect on some open
problems, learn about new applications, and reconnect with colleagues. All papers
submitted to the conference were carefully reviewed as each manuscript was sent for a
double-blind review to at least three highly qualified members of the international
Program Committee. The submission and review process of the workshop was carried
out through the professional EasyChair conference management system. After a rig-
orous review process, 25 papers authored by 71 researchers from 12 countries were
accepted for presentation at the workshop and for inclusion in this volume.

IWCIA 2015 featured keynote talks delivered by two outstanding scholars, whose
excellent presentations inspired the audience with new ideas.

Eric Andres (Head of Signal-Image-Communications Department at the Université
de Poitiers, France) presented a survey of analytically defined digital geometric objects.
He started from some elements of digitization and their relation to continuous geom-
etry. Then, he explained how mathematically sound digital objects could be built from
simple assumptions about the properties a digital object should have. He concluded
with some open problems and challenges.

Tetsuo Asano (President of Japan Advanced Institute of Science and Technology)
surveyed algorithms for image processing that use small amounts of memory. He
started with in-place algorithms, where the input image matrix can be modified, and
introduced small-work-space algorithms for several important basic problems on image
processing, including connected components labeling. This is a problem that has been
extensively studied and a number of approaches have been proposed so far under
several different computational models. For example, a linear-time algorithm is known

for the problem using linear work space. Asano showed that it is possible to reduce the
amount of work space into the square root of n while increasing the running time from
O(n) to O(nlogn). He also discussed other space-efficient algorithms and their effec-
tiveness for applications to scanners.

The full paper of the keynote talk of Prof. Andres is included in the beginning of this
volume.

The contributed papers are grouped into two parts. The first one includes 16 papers
devoted to theoretical foundations of combinatorial image analysis, in particular studies
on geometry and topology of digital curves and surfaces, the design of space-efficient
algorithms, array grammars and languages for image analysis, research on picture
transformations, and others. The second part includes nine papers presenting applica-
tions of combinatorial methods in image analysis.

We believe that all presented works were of high quality and the attendees benefited
from the scientific program.

We would like to express our gratitude to everyone who contributed to the success
of IWCIA 2015 – from the Steering to the Program and Organizing Committees. We
are indebted to the Indian Statistical Institute, Kolkata, for providing space and
equipment for holding the conference.

We wish to express our special thanks to the invited speakers Eric Andres and Tetsuo
Asano for their remarkable talks and overall contribution to the workshop program. We
thank all authors for their valuable works and hope that the reader will find them
interesting and useful. We wish to thank the participants and everyone who made this
workshop an enjoyable and fruitful scientific event. We appreciate the support of SUNY
Buffalo State, and especially of President Katherine S. Conway-Turner, Provost Melanie
L. Perreault, and Dean Mark W. Severson, for sponsoring the best student paper awards.
Finally, we express our gratitude to Springer Computer Science Editorial, and especially
to Alfred Hofmann and Anna Kramer, for their efficient and kind cooperation in the
timely production of this book.

November 2015 Reneta P. Barneva
Bhargab B. Bhattacharya

Valentin E. Brimkov

VI Preface

Organization

IWCIA 2015 was held at the Indian Statistical Institute, Kolkata, India, November
24–27, 2015

General Chair

Bhargab B. Bhattacharya Indian Statistical Institute, Kolkata, India

Program Co-chairs

Arindam Biswas IIEST Shibpur, India
Partha Bhowmick IIT Kharagpur, India

Publication Chair

Reneta P. Barneva SUNY Fredonia, USA

Steering Committee

Valentin E. Brimkov SUNY Buffalo State, USA
Gabor T. Herman CUNY Graduate Center, USA
Kostadin Koroutchev Universidad Autonoma de Madrid, Spain
Josef Slapal Technical University of Brno, Czech Republic
Petra Wiederhold CINVESTAV-IPN, Mexico

Invited Speakers

Eric Andres Université de Poitiers, France
Tetsuo Asano JAIST, Japan

Program Committee

Lyuba Alboul Sheffield Hallam University, UK
Akira Asano Kansai University, Japan
Soumen Bag ISM Dhanbad, India
Péter Balázs University of Szeged, Hungary
George Bebis University of Nevada at Reno, USA
Sara Brunetti Università degli Studi di Siena, Italy
Guillaume Damiand LIRIS-CNRS, Université de Lyon, France
Partha Pratim Das IIT Kharagpur, India
Mousumi Dutt IIIT Kalyani, India
Isabelle Debled-Rennesson Nancy University, LORIA, France
Chiou-Shann Fuh National Taiwan University, Taiwan

Edgar Garduño IIMAS-UNAM, Mexico
Yan Gerard Université d’Auvergne Clermont CNRS, France
Rocío González Díaz University of Seville, Spain
María José Jiménez University of Seville, Spain
Bertrand Kerautret LORIA Campus Scientifique, France
Jacques-Olivier Lachaud Université de Savoie, UFR SFA, France
Gaëlle Largeteau-Skapin Université de Poitiers, France
Jerome Liang SUNY Stony Brook, USA
Joakim Lindblad Swedish University of Agricultural Sciences, Sweden
Hongbing Lu Fourth Military Medical University, China
Rémy Malgouyres Université d’Auvergne, France
Petr Matula Masaryk University, Czech Republic
Jayanta Mukhopadhyay IIT Kharagpur, India
Benedek Nagy University of Debrecen, Hungary
Shyamosree Pal NIT Jamshedpur, India
Kalman Palagyi University of Szeged, Hungary
Petra Perner Institute of Computer Vision and Applied Computer

Sciences, Germany
Hemerson Pistori Dom Bosco Catholic University, Brazil
Ioannis Pitas University of Thessaloniki, Greece
Konrad Polthier Freie Universität Berlin, Germany
Sanjoy Pratihar NIT Meghalaya, India
Md. Atiqur Rahman Ahad University of Dhaka, Bangladesh
Hong Qin SUNY Stony Brook, USA
Ajit Rajwade IIT Bombay, India
Mariano Rivera CIMAT, Mexico
Arun Ross West Virginia University, USA
Angel Sappa Computer Vision Center, Spain
Henrik Schulz Helmholtz-Zentrum, Germany
Nikolay Sirakov Texas A&M University, USA
Ali Shokoufandeh Drexel University, USA
Josef Slapal Technical University of Brno, Czech Republic
Alberto Soria CINVESTAV, Mexico
Robin Strand Uppsala University, Sweden
K.G. Subramanian Liverpool Hope University, UK
Akihiro Sugimoto National Institute of Informatics, Japan
Imants Svalbe Monash University, Australia
Mohamed Tajine University Louis Pasteur, Strasbourg, France
Joao Manuel R.S. Tavares University of Porto, Portugal
Peter Veelaert Ghent University, Belgium
Jinhui Xu SUNY University at Buffalo, USA
Yasushi Yagi Osaka University, Japan
Pavel Zemčík Brno University of Technology, Czech Republic
Richard Zanibbi Rochester Institute of Technology, USA

VIII Organization

Organizing Committee

Arijit Bishnu - Chair ISI Kolkata, India
Ansuman Banerjee ISI Kolkata, India
Ranita Biswas IIT Kharagpur, India
Suprativ Biswas ISI Kolkata, India
Mousumi Dutt IIEST Shibpur, India
Sasthi Charan Ghosh ISI Kolkata, India
Nilanjana Karmakar IIEST Shibpur, India
Papia Mahato IIT Kharagpur, India
Sachchidanand Mahato ISI Kolkata, India
Debabrata Mitra ISI Kolkata, India
Apurba Sarkar IIEST Shibpur, India

Sponsoring Institutions

Indian Statistical Institute, Kolkata, India
SUNY Buffalo State, Buffalo, NY, USA

Organization IX

Contents

Invited Talk

Digital Analytical Geometry: How Do I Define a Digital Analytical Object? 3
Eric Andres

Theoretical Foundations of Combinatorial Image Analysis –
Digital Geometry and Topology

Fuzzy Connectedness Segmentation: A Brief Presentation of the Literature 21
Gabor T. Herman, T. Yung Kong, and Krzysztof Chris Ciesielski

Equivalent Sequential and Parallel Subiteration-Based Surface-Thinning
Algorithms . 31

Kálmán Palágyi, Gábor Németh, and Péter Kardos

Relative Convex Hull Determination from Convex Hulls in the Plane 46
Petra Wiederhold and Hugo Reyes

Spatiotemporal Barcodes for Image Sequence Analysis 61
Rocio Gonzalez-Diaz, Maria-Jose Jimenez, and Belen Medrano

Characterization and Construction of Rational Circles on the Integer Plane. . . 71
Papia Mahato and Partha Bhowmick

On the Connectivity and Smoothness of Discrete Spherical Circles 86
Ranita Biswas, Partha Bhowmick, and Valentin E. Brimkov

Optimal Consensus Set for nD Fixed Width Annulus Fitting 101
Rita Zrour, Gaelle Largeteau-Skapin, and Eric Andres

Number of Shortest Paths in Triangular Grid for 1- and 2-Neighborhoods . . . 115
Mousumi Dutt, Arindam Biswas, and Benedek Nagy

Construction of 3D Orthogonal Convex Hull of a Digital Object. 125
Nilanjana Karmakar and Arindam Biswas

Efficient Dominant Point Detection Based on Discrete Curve Structure 143
Phuc Ngo, Hayat Nasser, and Isabelle Debled-Rennesson

Thoughts on 3D Digital Subplane Recognition and Minimum-Maximum
of a Bilinear Congruence Sequence . 157

Eric Andres, Dimitri Ouattara, Gaelle Largeteau-Skapin, and Rita Zrour

http://dx.doi.org/10.1007/978-3-319-26145-4_1
http://dx.doi.org/10.1007/978-3-319-26145-4_2
http://dx.doi.org/10.1007/978-3-319-26145-4_3
http://dx.doi.org/10.1007/978-3-319-26145-4_3
http://dx.doi.org/10.1007/978-3-319-26145-4_4
http://dx.doi.org/10.1007/978-3-319-26145-4_5
http://dx.doi.org/10.1007/978-3-319-26145-4_6
http://dx.doi.org/10.1007/978-3-319-26145-4_7
http://dx.doi.org/10.1007/978-3-319-26145-4_8
http://dx.doi.org/10.1007/978-3-319-26145-4_9
http://dx.doi.org/10.1007/978-3-319-26145-4_10
http://dx.doi.org/10.1007/978-3-319-26145-4_11
http://dx.doi.org/10.1007/978-3-319-26145-4_12
http://dx.doi.org/10.1007/978-3-319-26145-4_12

Construction of Sandwich Cover of Digital Objects 172
Apurba Sarkar and Mousumi Dutt

Theoretical Foundations of Combinatorial Image Analysis – Grammars
and Other Formal Tools

Picture Array Generation Using Pure 2D Context-Free Grammar Rules 187
K.G. Subramanian, M. Geethalakshmi, N. Gnanamalar David,
and Atulya K. Nagar

Scanning Pictures the Boustrophedon Way. 202
Henning Fernau, Meenakshi Paramasivan, Markus L. Schmid,
and D. Gnanaraj Thomas

Accepting H Iso-Array System . 217
V. Masilamani, D.K. Sheena Christy, D.G. Thomas, A.K. Nagar,
and T. Robinson

Construction of Perfect Auto-correlation Arrays and Zero Cross-correlation
Arrays from Discrete Projections. 232

Benjamin Cavy and Imants Svalbe

From Theory to Applications

Character Segmentation of Hindi Unconstrained Handwritten Words 247
Soumen Bag and Ankit Krishna

Retinal Blood Vessel Segmentation and Bifurcation Point Detection 261
Tapash Dutta, Nilanjan Dutta, and Oishila Bandyopadhyay

Reconstruction of Bicolored Images . 276
Alain Billionnet, Fethi Jarray, Ghassen Tlig, and Ezzeddine Zagrouba

Combinatorial Exemplar-Based Image Inpainting . 284
Veepin Kumar, Jayanta Mukherjee, and Shyamal Kumar Das Mandal

Incremental Updating of 3D Topological Maps to Describe Videos 299
Guillaume Damiand, Sylvain Brandel, and Donatello Conte

Parallel Strip Segment Recognition and Application to Metallic Tubular
Object Measure. 311

Nicolas Aubry, Bertrand Kerautret, Isabelle Debled-Rennesson,
and Philippe Even

Analysis and Performance Evaluation of ICA-Based Architectures
for Face Recognition . 323

Anu Singha, Mrinal Kanti Bhowmik, Prasenjit Dhar,
and Anjan Kumar Ghosh

XII Contents

http://dx.doi.org/10.1007/978-3-319-26145-4_13
http://dx.doi.org/10.1007/978-3-319-26145-4_14
http://dx.doi.org/10.1007/978-3-319-26145-4_15
http://dx.doi.org/10.1007/978-3-319-26145-4_16
http://dx.doi.org/10.1007/978-3-319-26145-4_17
http://dx.doi.org/10.1007/978-3-319-26145-4_17
http://dx.doi.org/10.1007/978-3-319-26145-4_18
http://dx.doi.org/10.1007/978-3-319-26145-4_19
http://dx.doi.org/10.1007/978-3-319-26145-4_20
http://dx.doi.org/10.1007/978-3-319-26145-4_21
http://dx.doi.org/10.1007/978-3-319-26145-4_22
http://dx.doi.org/10.1007/978-3-319-26145-4_23
http://dx.doi.org/10.1007/978-3-319-26145-4_23
http://dx.doi.org/10.1007/978-3-319-26145-4_24
http://dx.doi.org/10.1007/978-3-319-26145-4_24

Optimization of Low-Dose Tomography via Binary Sensing Matrices 337
Theeda Prasad, P.U. Praveen Kumar, C.S. Sastry, and P.V. Jampana

Knot Detection from Accumulation Map by Polar Scan 352
Adrien Krähenbühl, Bertrand Kerautret, and Fabien Feschet

Author Index . 363

Contents XIII

http://dx.doi.org/10.1007/978-3-319-26145-4_25
http://dx.doi.org/10.1007/978-3-319-26145-4_26

Invited Talk

Digital Analytical Geometry: How Do I Define
a Digital Analytical Object?

Eric Andres(B)

Laboratoire XLIM, SIC, UMR CNRS 7252, Université de Poitiers,
BP 30179, 86962 Futuroscope Chasseneuil, France

eric.andres@univ-poitiers.fr

Abstract. This paper is meant as a short survey on analytically defined
digital geometric objects. We will start by giving some elements on digiti-
zations and their relations to continuous geometry. We will then explain
how, from simple assumptions about properties a digital object should
have, one can build mathematically sound digital objects. We will end
with open problems and challenges for the future.

Keywords: Digital analytical geometry · Digital objects

1 Introduction

Geometry is historically the field of mathematics dealing with objects and their
properties: length, angle, volume, shape, position and transform. The word
Geometry stems from the ancient greek words for Earth and Measure. Geome-
try was the science of shapes and numbers as practical tool for measuring fields,
distances between far away places, volumes for commerce, etc. For centuries,
properties were proven and geometric objects were constructed based on con-
struction rules. Euclid with his manuscripts Elements, revolutionized geometry
with his formalization of abstract reasoning in mathematics and more signifi-
cantly in geometry. The second revolution was brought upon by René Descartes
with the introduction of coordinates. This marked a profound change in the way
geometry was considered. It established a link between Euclidean geometry and
algebra: Analytical Geometry was born. Many advances were now possible in
astronomy, physics, engineering, etc. Many different forms of geometries have
since been proposed such as Differential geometry, Algebraic geometry, etc.

Digital Geometry is one of the most recent forms of geometry. It can be
broadly defined as the geometry of digital objects and transforms in a digital
space. In this paper we are mainly considering digital points with integer coor-
dinates (points in Z

n). Digital Geometry has the particularity of, usually, not
being an independent geometry but a digital counterpart of Euclidean geometry.
Digital objects are supposed to behave and look as much as possible as their con-
tinuous counterpart. This question of representing/coding the continuous world
in a finite computer is, of course, not limited to digital geometry. From the begin-
ning, when sensors went from analog to digital and when the display mode went
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-26145-4 1

4 E. Andres

from continuous (vector monitor) to digital (raster graphics), the fundamental
question of object and space definition has been raised. It proved more elusive
than initially thought [49]. Elementary rules of topology or geometry, that seem
so obvious that they have been raised to the axiomatic status by Euclid, have
proven to be false in Digital Geometry [20]: two, non identical, parallel 2D dig-
ital straight lines can have an infinite number of intersection points while two
orthogonal 2D digital straight lines may have no intersection point. Particular
versions of the Jordan theorem had to be divised that are in some sense specific
to digital geometry [55].

This confrontation between the digital and the continuous worlds has given
birth to various theories. One way of solving this hiatus is to consider the digital
information as a sampled version of continuous information. The digital world
is an approximation where information has been lost. Signal Theory provides
the theoretical toolkit. Although one of the most efficient approaches when it
comes to handling digital information (image processing, image analysis), it does
little in helping defining actual geometry. It does not really provide any tool if
one wants to draw, for instance, a line on a screen. We are considering another
approach that finds its origins in the question of drawing digital equivalents of
continuous objects on a raster screen (or earlier on, on a plotter). Digital Geom-
etry is, in this sense, more closely linked to computer graphics or arithmetics.
As for the continuous geometry, digital geometry started out focusing on very
concrete and basic questions: how can one generate a digital analog of a contin-
uous object for visualization purposes? This algorithmic approach has prevailed
for many decades, with algorithms such as the Bresenham Digital Straight line
drawing algorithm or Arie Kaufman et al. that proposed many digital primitive
generation algorithms [40–42,47,48,61]. The main drawback of such an algo-
rithmic approach is that it is difficult to ensure global properties from the local
construction scheme. The other problem with a definition by construction is that
you can only generate finite digital objects. As an alternative, researchers tried
to describe and categorize digital objects not as a result of an algorithm but
as digital classes with properties, be it geometrical or, more generally, topolog-
ical [34,38,44,45,51,56]. This allows to define (classes of) digital objects that
are infinite and without boundaries such as planes or surfaces in general. This
approach proved useful to construct object classes with desired properties but
it proved difficult to ensure tightness for the classes. And, as for the continuous
geometry, analytical characterization of digital objects has proven to be effective
in describing objects and the related transforms. It is a bit early to claim that it
will revolutionize Digital Geometry but it allowed new insight and brought new
tools for the definition of digital objects, in pattern recognition and design of
digital transforms. Consider this paper as a short introduction paper into digi-
tization transforms in general and Digital Analytical Geometry in particular.

In Sect. 2, we are going to discuss different types of digitizations. In Sect. 3
we are going to focus on digital analytical objects. We will then conclude and
propose some perspectives.

How Do I Define a Digital Analytical Object? 5

2 Digitization

2.1 Notations

Let us denote n the dimension of space (digital or Euclidean) in this paper. Let
{e1, . . . , en} denote the canonical basis of the n-dimensional Euclidean vector
space and O the center of the associated geometric coordinate system. Let Z

n

be the subset of R
n that consists of all the integer coordinate points. A digital

(resp. Euclidean) point is an element of Z
n (resp. R

n). We denote by xi the i-th
coordinate, associated to ei, of a point or a vector x. A digital (resp. Euclidean)
geometric object is a set of digital (resp. Euclidean) points. A digital inequality
is an inequality with coefficients in R from which we retain only the integer
coordinate solutions. A digital analytical object is a digital object defined as
union and intersection of a finite set of digital inequalities. The family of sets
over Z

n (resp. R
n) is denoted P (Zn) (resp. P (Rn)). A digitization is a transform

from sets in the Euclidean to sets in the digital world: Δ : P (Rn) → P (Zn).
For all k ∈ {0, . . . , n−1}, two integer points v and w are said to be k-adjacent

or k-neighbors, if for all i ∈ {1, . . . , n}, |vi−wi| ≤ 1 and
∑n

j=1 |vj−wj | ≤ n−k. In
the 2-dimensional plane, the 0- and 1-neighborhood notations correspond respec-
tively to the classical 8- and 4-neighborhood notations. In the 3-dimensional
space, the 0-, 1- and 2-neighborhood notations correspond respectively to the
classical 26- ,18- and 6-neighborhood notations [5,6,55].

A k-path is a sequence of integer points such that every two consecutive points
in the sequence are k-adjacent. A digital object E is k-connected if there exists
a k-path in E between any two points of E. A maximum k-connected subset of
E is called a k-connected component. Let us suppose that the complement of a
digital object E, Z

n \ E admits exactly two k-connected components F1 and F2,
or in other words that there exists no k-path joining integer points of F1 and F2,
then E is said to be k-separating in Z

n. If there is no path from F1 to F2 then E
is said to be 0-separating or simply separating. A point v of a k-separating object
E is said to be a k-simple point if E \ {v} is still k-separating. A k-separating
object that has no k-simple points is said to be strictly k-separating. The notion
of k-separation is defined for digital surfaces without boundaries. See [24] for
more general notions.

For A and B two subsets of R
n, A ⊕ B = {a + b : a ∈ A, b ∈ B} is the

Minkowski sum of A and B. Let us denote Ǎ = {−a : a ∈ A} the reflection
set of A. Let us denote A the flat of smallest dimension containing A. For a
distance d, then the let us denote Bd(r) = {x ∈ R

n : d(x,O) ≤ r}, the ball of
radius r for the distance d. Let us denote d1, d2, d∞ respectively the Manhat-
tan, Euclidean and Chebychev distance. Let us denote ‖x‖k the corresponding
norm (with k = 1, 2,∞).

2.2 General Remarks on Digitizations

Let us first start with some general remarks about digitization methods. The
digitization of objects is fundamentally an ill-defined problem [49]: any digital

6 E. Andres

objects can be considered as the digitization of any continuous object. Usually
the goal is to have digital objects that ressemble the continuous object. The
resulting digital objects may keep some, but not all, properties of the continuous
object [21,24,52,53]. See [21,53] for a more formal presentation of a link between
the continuous and the digital worlds based on non-standard analysis.

A digitization is defined broadly as a transform from the family of Euclidean
sets to the family of the digital sets. However, most of the literature deals with
digital objects defined as digitization of specific classes of geometric objects [1,2,
9,12,13,15,26,27,30–32,40–42,47,48,61–63]: for instance, the Bresenham digital
straight line segment generation algorithm [12] works only for continuous straight
line segments between two digital points. In this case, the digitization transform
is usually implicit. The fact that the digitization scheme is not explicitely defined
is also an important problem for pattern recognition: comparing two digital circle
recognition algorithm supposes that the underlying digital circles are defined
in the same way or otherwise it is like comparing apples to oranges. Other
digitization transforms are defined only for linear objects [5,6] and others still
for all objects [7].

Let us mention some classes of digitization transforms that are important:
A general digitization is a digitization that is defined for all continuous objects.
A coherent digitization transform Δ verifies the following property E ⊂ F ⇒
Δ(E) ⊂ Δ(F).

2.3 Morphological Digitizations

Let us build a narrative for the construction of a general, coherent digitization
transform Δ. For a geometric object E, how can we build its digital counterpart
Δ(E) that ressembles E? Simply considering that Δ(E) = E ∩ Z

n is not a good
idea. There are no particular reasons for E to pass through digital points and
we may end up with Δ(E) = ∅. So let us consider points that are close to E:

Δ(E) = {p ∈ Z
n : d(p,E) ≤ r} , where d is a distance and r ∈ R (1)

There are some important immediate properties that go with such a definition:
Δ(E ∪ F) = Δ(E) ∪ Δ(F) and E ⊂ F ⇒ Δ(E) ⊂ Δ(F), which is a stronger
version of the coherence property. These are fundamental properties when it
comes to digital modeling of complex objects. It defines a general, coherent
digitization transform. There are two parameters to work with: the distance
d and a thickness parameter r. Let us note that the parameter r can also be
defined as a function. See [9,32,63] for examples of digital objects defined with
a non-constant thickness. Considering the points that are close to the original
continuous object seems reasonable if we want the digital object to look like the
original. There are also theoretical reasons for such a choice [21,53].

If a point p verifies d(p,E) ≤ r then a ball Bd(r) of radius r, for the distance
d, centered on p intersects E which leads to the following formulation:

Δ(E) = {p ∈ Z
n : (Bd(r) ⊕ p) ∩ E �= ∅} (2)

How Do I Define a Digital Analytical Object? 7

This type of digitization method is part of digitization methods called morpho-
logical digitization [37,46,54,59,60] with Bd(r) as structuring element.

Classically, the distances that have been considered are the Manhattan, the
Euclidean and the Chebychev distances. An interesting set of distances well
adapted for digitization transforms is the set based on adjacency norms [63].
Every digital adjacency relationship can be associated to a norm.

Definition 1. For an integer k, 0 ≤ k < n, the k-adjacency norm [·]k is defined

as follows: ∀x ∈ R
n, [x]k = max

{
‖x‖∞,

‖x‖1
n−k

}
.

These distances are interesting because they verify the following property [63]:
Let p, q ∈ Z

n, then, p and q are k-adjacent iff [p − q]k ≤ 1. See Fig. 1 for
adjacency distance balls.

Fig. 1. 2D and 3D balls for the adjacency distances and the corresponding Flakes [63].

For morphological digitizations [37,43,46], the structuring element is not nec-
essarily a distance ball as in formula (2). One can consider any continuous object
F as structuring element and define a digitization transform of a continuous
object E by [46]:

Δ(E) =
{
p ∈ Z

n :
(
F̌ ⊕ p

) ∩ E �= ∅
}

(3)

The region
{
x ∈ R

n :
(
F̌ ⊕ x

) ∩ E �= ∅
}

is called the offset region. Formula-
tion (3) has implicitly already been used in digitizations such as the grid inter-
section digitization [43] with half-open structuring elements. This is also the
starting point for the analytical characterization of digital objects with the ana-
lytical description of the offset region. Note that, for an arbitrary structuring
element F , it is the reflection F̌ that appears in formula (3) (Fig. 2).

3 Analytical Characterization of Digital Objects

Let us first define what we understand by analytical characterization of a digital
object: a digital object is defined by a set of equations (inequalities typically).
A point belongs to the digital object iff it verifies the set of equations. The
cardinality of the set of equations should be independent of the number of digital
points of the object. The analytical characterization of digital objects has a great

8 E. Andres

Fig. 2. This figure has been proposed in [46]. (a)
{
p ∈ Z

2 : F ⊕ p �= ∅
}

(b) (F̌⊕E)∩Z
2.

The region in gray in (b) is called the offset zone.

interest in digital geometry. A digital object is defined in comprehension and
not as a voxel enumeration. Infinite digital objects can be represented. This was
also one of the reasons for trying to define digital objects based on topology
[34,38,44,45,51,56]. The key to the analytical characterization is that it allows
a characterization of digital objects with interesting topological properties.

Since Reveilles proposed the analytical characterization of digital straight
lines [52], many papers have been proposed that describe or discuss properties
of analytical digital objects. Those papers can be roughly classified into two
groups:

– Direct defined Analytical Digital Object: Papers that introduce an analytical
definition of digital objects or classes of objects, or that analytically character-
ize previously known digital objects. Those objects are defined directly in the
digital space without being explicitely associated to a digitization transform.

– Digitized Analytical Objects: papers that introduce a digitization transform
that allows an analytical characterization of digital objects.

3.1 Direct Defined Analytical Digital Objects

Let us first list some of the digital objects that have been directly analytically
defined in the digital space without an explicite reference to a digitization trans-
form. The list is of course not exhaustive.

Digital Analytical Hyperplane: The first class of digital object that has
been analytically characterized has been the digital straight 2D line [19,25]. It
was J-P. Reveilles that proposed an analytical description of a Digital Straight
Line (DSL) 0 ≤ ax − by + c < ω [52] with a thickness parameter ω that allows
a parametrization of its topology. He also made an explicit link between digital
straight lines, topology, quasi-affine transforms and arithmetics [10,23,39,52].
Many papers have been devoted to its study. Indeed, the structure of digital
straight lines is rich, with immediate links to word theory, the Stern-Brocot
tree, the Farey sequence, etc. It allows a natural extension to higher dimensions
[1,27,52] with the analytical characterization of digital hyperplanes:

How Do I Define a Digital Analytical Object? 9

H : 0 ≤ a0 +
n∑

i=1

aixi < ω. (4)

See [18,43] for a survey of digital linearity and planarity with interesting histor-
ical perspectives and useful comments and references on digital analytical lines
and hyperplanes. An important step in bringing different theoretical approaches
together, was to establish a link between the thickness of digital hyperplanes and
topology [1]: let us assume, w.l.o.g. that 0 ≤ a1 ≤ . . . ≤ an, the digital hyperplane
0 ≤ a0 +

∑n
i=1 aixi < ω is k-separating iff ω ≥ ∑n

k+1 ai. With ω =
∑n

k+1 ai the
digital hyperplane is strictly k-separating, without simple points. Papers have
been devoted to the study of different classes of digital hyperplanes such as
naive hyperplanes [1], supercover hyperplanes [3,4,7], Graceful lines and planes
[15,16], etc. An interesting sequence of papers has focused on the connectivity
of digital analytical hyperplanes [8,17,39]. The problem proved to be quite diffi-
cult when it comes to digital analytical (hyper)planes with irrational coefficients.
Several papers have dealt with topology especially in order to define a notion of
digital surface [33,34].

Digital Analytical Hyperplanes have been defined as purely analytical digital
objects. It is however quite easy to associate a digitization transform to digital
analytical hyperplanes. The most obvious way is to center a digital hyperplane
on the continuous hyperplane: for H : a0 +

∑n
i=1 aixi = 0, we define Δ(H) ={

p ∈ Z
n : ω

2 ≤ a0 +
∑n

i=1 aixi < ω
2

}
. Note that the Bresenham line [12] is such

a centered Reveilles line [52]. There is the question of orientation of the digital
hyperplane: with a definition such as 0 ≤ a0 +

∑n
i=1 aixi < ω, on which side

do we put the “’≤” and the “<”. One can easily switch side and obtain 0 <
ω−a0+

∑n
i=1(−ai)xi ≤ ω, so a choice has to be made. This question is somewhat

difficult if we want coherent digitization models, so let us focus a moment on so
called closed analytical digital hyperplanes 0 ≤ a0 +

∑n
i=1 aixi ≤ ω (with two

“≤”). Let us suppose that we have a digitization transform Δ that is defined
for hyperplanes such that, for a continuous hyperplane H : a0 +

∑n
i=1 aixi = 0,

we have Δ(H) =
{
p ∈ Z

n : ω
2 ≤ a0 +

∑n
i=1 aixi ≤ ω

2

}
. Under some conditions,

it is possible to take this as a starting point for the construction of a general,
coherent morphological digitization transform:

Definition 2. For some classes of digitization transforms Δ defined for hyper-
planes, one can extend Δ as a general and coherent morphological digitization
with a structuring element Δ(O) that is defined by:

For x ∈ R
n,Δ(O) =

⋂

∀H⊃O

Δ(H).

The idea behind this definition is basically the following: For a digitization
transform to be coherent, it has to verify the condition E ⊂ F ⇒ Δ(E) ⊂ Δ(F).
Δ(O) has to belong to the digitization of all the hyperplanes that pass through
the coordinate center O. If we consider the equality, we basically define the
digitization of a point which in this case can serve as structuring element for
the morphological digitization transform. The difficulty lies in the choice of ω

10 E. Andres

for the digitization transform: for a hyperplane H, we want Δ(H) to be equal to⋃
x∈H Δ(x) and that is of course not true for any random choice of ω. There are

classes of digital hyperplane thickness that work, namely those that correspond
to the optimal hyperplane thickness for it to be k-separating: ω is equal to
the sum of the absolute values of the n − k biggest coefficients of H. These
thicknesses correspond to the adjacency norm [.]k based digitization transforms.
It is interesting to note that, for these digitizations, the structuring element
is a polytope and therefore all the linear objects, at least, can be described
analytically as linear digital objects (with linear inequalities). The best known
of such digitization transforms is the Supercover model [3,4,7,20,22,24,43,46,
57,59]. One other thickness that works is ω =

√∑n
i=1 a2

i . The corresponding
structuring element Δ(O) is the unit hypersphere. The associated norm is the
Euclidean norm. What other thicknesses work is an interesting open question.

Andres Hypersphere: The second class of digital objects that have been
defined directly as digital objects are the so called Andres hyperpsheres [2,63]:
S =

{
x ∈ Z

n : ω1 ≤ ∑n
i=1 (xi − ci)

2
< ω2

}
where c is the center of the digital

hypersphere and
√

ω2 − √
ω1 its (Euclidean) thickness. The same method (as

for the hyperplanes) of centering the spherical shell can be used to associate a
digitization transform. The Andres hypersphere has been proposed to overcome
the limitation of the Bresenham circle [13] in particular that is only defined for
integer radius, integer coordinate center and that, at the time, did not have an
analytical characterization. There is one now [9,63]. An interesting property of
such Andres hyperspheres is that concentric Andres hyperspheres pave digital
space. This is quite useful for applications such as simulation of wave propaga-
tion [50].

nD Straight Lines: Flats in general have not been studied that much with the
notable exception of straight lines: 2D analytical lines [52], 3D analytical lines
[28,31], graceful lines [16], analytical nD lines [30]. The study of Digital Analyt-
ical Lines has gained a lot of traction in the arithmetical community [11] for its
link to word theory. It is interesting to note that I. Debled-Rennesson’s 3D line
is defined as the intersection of two orthotropic naive 3D planes (thinnest planes
without 6-connected holes) and thus is an analytically defined 26-connected
object. However, contrary to what one could think, the 3D line one would obtain
by considering naive planes and intersecting them to define a morphological dig-
itization is usually not 26-connected. The choice of the two planes among three
possible orthotropic planes depends on the orientation of the 3D line. I am not
quite sure that there exists a corresponding 3D plane thickness (and thus a
corresponding general digitization transform) that would define such digital 3D
lines. It is an interesting question and it shows that direct analytical definitions
for digital objects may lead to interesting topological properties.

How Do I Define a Digital Analytical Object? 11

Other Purely Analytically Defined Digital Objects: There are other ana-
lytically defined objects that could be considered as purely analytically defined
digital objects. Let us just mention some approaches that are particularly inter-
esting: The team around I. Debled-Rennesson proposed the notion of Blurred
analytical objects [29] with applications in noisy digital object recognition. E.
Andres, M. Rodriguez et al. proposed a notion of analytically characterized dig-
ital perpendicular bisector [8] which allowed to tackle the problem of the com-
putation of a circumcenter of several pixels and the recognition of fuzzy circles.
One could add Y. Gerard and L. Provost that proposed a notion of analytically
defined curves and surfaces, named Digital Level Layers [36]. Although based on
a morphological digitization, the objects are purely analytically defined.

3.2 Digitized Analytical Objects

In this section, we are going to take a look at digitized objects that have been
analytically characterized. An immediate example is the Bresenham Straight
line Segment [12] that has been shown to be a Reveilles straight line segment
[52]. In the same way, in [9], most notions of digital circles that have been
introduced have been analytically characterized [13,47]. An extension to higher
dimensions has been proposed in [63] with an explicit mention of Morphological
Digitizations. Let us start with morphological digitization transforms.

Supercover Digitization: One of the first analytically characterized dig-
itization model that has been proposed is the supercover digitization (also
called outer Jordan digitization [22,43]) based on the Chebychev distance d∞
[3,4,7,20,22,24,43,46,57,59]. The supercover digitization is well-known for a
long time because it has a natural geometric interpretation. The unit ball
for the distance Bd∞

(
1
2

)
is a hypercube of side one. If we denote V(p) the

voxel centered on p, Formula (2) for the Chebychev distance is the same as
{p ∈ Z

n : V(p) ∩ E �= ∅}: a point belongs to the supercover of a continuous
object E iff the corresponding voxel is cut by E. The union of all the voxels
of the supercover of a continuous object covers the continuous object, thus the
name supercover. This geometric interpretation is so natural that it has been
considered long (actually as early as the 19th century [22]) before the link to
the Chebychev distance has been made. We will not recall all the details on the
supercover model: see [24] for general properties of the digitization transform.
In [3,4,7] for the analytical characterization of the supercover digitization of m-
simplice and m-flats in dimension n. In [63], the reader will find an analytical
characterization of supercover 2D circles and 3D spheres.

Standard Digitization: The supercover digitization transform has many
interesting topological properties. In particular, a supercover digitization of a
connected object is always (n − 1)-connected and tunnel-free but not strictly
separating. When E crosses and edge or a vertex of a grid voxel then all the
grid points whose voxel share this edge or vertice belong to the digitization.

12 E. Andres

This is called a bubble [3,4,7]. The supercover of a hyperplane, for instance, is
(n−1)-connected but with possibly simple points. For theoretical [33–35] as well
as practical reasons, it is interesting to have a model without bubble. Various
methods have been proposed to solve this problem such as modifying the defini-
tion of a voxel [24] but that does not work [5,6]. There is however a way to solve
this problem [5,6]. The idea is the following: the supercover S(H) of a hyperplane
H : a0+

∑n
i=1 aixi = 0 is given by S(H) : −

∑n
i=1|ai|
2 ≤ a0+

∑n
i=1 aixi ≤

∑n
i=1|ai|
2 .

It is (n−1)-connected, tunnel-free but it might have simple points (bubbles). The
analytical hyperplane −

∑n
i=1|ai|
2 ≤ a0+

∑n
i=1 aixi <

∑n
i=1|ai|
2 is (n−1)-connected,

tunnel-free and strictly separating (without bubbles). The only difference comes
from the “≤” for the hyperplane supercover that is replaced by a “<” for the ana-
lytical hyperplane. So transforming one into the other comes down to choosing
a side on which we change a “≤” into a “<”. We define therefore an orientation
convention: A halfspace H : a0 +

∑n
i=1 aixi ≤ 0 is said to have a standard orien-

tation iff a1 > 0 or a1 = 0 and a2 > 0 or . . . if a1 = . . . = an−1 = 0 and an > 0.
Otherwise the halfspace is said to have a supercover orientation.

Since the defining structuring element for the supercover digitization trans-
form is a unit hypercube, it is easy to see that the offset zone for a supercover
linear object is a polytope defined as intersection of a finite sequence of digital
half-spaces S(E) =

{
p ∈

(⋂k
i=1 Hi

)
∩ Z

n;Hi : ai,0 +
∑n

j=1 ai,jxj ≤ 0
}

where k

is the cardinality of the set of halfspaces {Hi} defining the supercover of E. For
such a set of halfspaces, we replace each halfspace Hi : ai,0 +

∑n
j=1 ai,jxj ≤ 0

that has a standard orientation by H ′
i : ai,0 +

∑n
j=1 ai,jxj < 0 in the analytical

characterization of the digital object. If the halfspace has a supercover orienta-
tion, it is not modified. This defines the standard digitization transform St(E) of
a linear Euclidean object E. It has been shown in [14] that the standard digitiza-
tion produces (n − 1)-connected, tunnel-free and strictly separating objects. See
Figure 3 for examples of the standard digitization of points and a 3D triangle.
The standard model keeps most of the properties of the supercover model and
as such is a coherent digitization. It is not general however as it is defined only
for linear objects. There is however a caution. Contrary to the supercover digi-
tization, in general, St(E) �= ⋃

x∈E St(x). The standard digitization is defined as
a finite rewriting of the inequalities defining the supercover of a linear object. It
does not hold for an infinite sequence of inequalities.

Grid Intersection Digitization: A popular digitization scheme is called grid
intersection digitization [57]. For a continuous object E, the intersection points
of E and the grid lines (all the straight lines xi = k, k ∈ Z) are considered
and the closest grid point to these intersection points forms the digital object.
This is the same as considering a structuring element corresponding to the set
of polygons with vertices

(
0, . . . , 0,±1

2 , 0, . . . , 0,± 1
2 , 0, . . . , 0

)
. It is very similar

to the digitization with the Manhattan distance d1. While the unit ball for this
distance is a diamond shaped polytope with all the above mentioned points
as vertices. The digitization is defined for all k-dimensional objects, k > 0.

How Do I Define a Digital Analytical Object? 13

Fig. 3. Standard and Supercover digitization of points on the left and digitization of
a 3D triangle on the right.

Analytical characterization can be obtained by computing the intersection of
the object with one of the orthotropic faces of the structuring element or by
determining the analytical charcterization of the d1-distance digitization. The
Bresenham line [12] is such an object and its characterization has been given
in [52] by JP. Reveilles. In [9,63] there is the analytical characterization of d1
digital circles and spheres.

Flake Digitization [58,62]: The analytical characterization of the supercover
of a sphere S is quite complicated [63]. Most (in the geometric sense) of the offset
region corresponds however simply to a translation of the continuous sphere S.
Indeed, the outer and inner boundary of Bd∞ ⊕ S is in great part determined
by the vertices of the ball. Let us call V∞ the set of vertices of Bd∞ then V∞ ⊕
S corresponds largely to the same surface than the boundary of Bd∞ ⊕ S. If
we consider a structuring element F composed of straight line segments that
join the vertices v of Bd∞ to its reverse v̌ then F ⊕ S is (n − 1)-connected
and tunnel-free if S is big enough (details of S need to be bigger than a voxel
[58,62]). This is true, not only for the supercover model but for all structuring
elements that are polytopes, especially those corresponding to adjacency norms.
The distinctive advantage is that this digitization transform is very simple to
characterize analytically if the surface S is defined by an implicit equation f(x) =
0 such that there is a side of the surface where f(x) < 0 and a side where
f(x) > 0. Let us suppose we have a surface S defined by such an implicit equation
f(x) = 0, x ∈ R

n. Let us suppose that we have a structuring element F which is
a polytope, with central symmetry (for the sake of simplicity here). The vertices
of F form the set vi. Let us define the Flake F ′ formed by the straight lines
joining the vertices vi to its symmetric v̌i (See Fig. 1). Then (F ′ ⊕ S) ∩ Z

n is
analytically characterized by:

{

p ∈ Z
n :

n
min
i=1

(f(vi)) ≤ 0 ∧ n
max
i=1

(f(vi)) ≥ 0
}

(5)

The idea is actually very simple: as morphological digitization, the surface S
cuts a structuring element F ′ ⊕p iff there are vertices on each side of the surface

14 E. Andres

Fig. 4. Flake digitizations of the quadric 9x2 − 4y2 − 36z − 180 = 0.

defined by the implicit equation. The so-defined Flake digitization transform
(F ′ ⊕ S) ∩ Z

n is similar to (F ⊕ S) ∩ Z
n except may be on places where S

does not fit some regularity properties [62]. The flake digital object keeps the
topological properties of the original object. This is a way of defining implicit
digital objects is straightforward way with the limitation that it is defined only
for (n−1)-dimensional surfaces that are regular enough. See Fig. 4 for an example
of a implicitly defined quadric digitized with all three 3D adjacency flakes.

4 Conclusion and Perspectives

In this paper we propose a short survey on digital analytical geometry and show
what the ideas are behind the analytical characterization of digital objects. There
are two key points in digital analytical geometry that we have not addressed in
this paper due to space: transforms and object recognition. Both profit greatly of
the analytical characterizations of digital objects. For the transforms, let us just
cite the Quasi-Affine Transforms [23] among many others. For Object Recogni-
tion, having mathematical definitions of objects changes many things. Much has
not been said and many papers have been omitted in this short survey. We have
proposed several open questions along the pages of this article and many others
still remain. As concluding words, let us not forget that beyond digital analyt-
ical geometry, there are many other forms of digital geometry that still need
to be invented or explored: parametric digital geometry, non-Euclidean digital
geometry, multiscale digital geometry, etc.

References

1. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. GMIP 59(5),
302–309 (1997)

2. Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Trans. Vis.
Comp. Graphics 3(1), 75–86 (1997)

3. Andres, E., Nehlig, P., Françon, J.: Supercover of straight lines, planes and trian-
gles. In: Ahronovitz, E., Fiorio, C. (eds.) DGCI 1997. LNCS, vol. 1347. Springer,
Heidelberg (1997)

How Do I Define a Digital Analytical Object? 15

4. Andres, E., Nehlig, P., Francon, J.: Tunnel-free supercover 3D polygons and poly-
hedra. In: Eurographics 1997. Computer Graphics Forum, vol. 16, pp. C3–C13
(1997)

5. Andrès, É.: Defining discrete objects for polygonalization: the standard model. In:
Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301,
pp. 313–325. Springer, Heidelberg (2002)

6. Andres, E.: Discrete linear objects in dimension n: the standard model. Graph.
Models 65(1–3), 92–111 (2003)

7. Andres, E.: The supercover of an m-flat is a discrete analytical object. Theor.
Comput. Sci. 406(1–2), 8–14 (2008)

8. Andres, E., Largeteau-Skapin, G., Rodŕıguez, M.: Generalized perpendicular bisec-
tor and exhaustive discrete circle recognition. Graph. Models 73(6), 354–364 (2011)

9. Andres, E., Roussillon, T.: Analytical description of digital circles. In: Debled-
Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS,
vol. 6607, pp. 235–246. Springer, Heidelberg (2011)

10. Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin
arithmetical discrete planes. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B.
(eds.) DGCI 2013. LNCS, vol. 7749, pp. 107–118. Springer, Heidelberg (2013)

11. Berthé, V., Labbé, S.: An arithmetic and combinatorial approach to three-
dimensional discrete lines. In: Debled-Rennesson, I., Domenjoud, E., Kerautret,
B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 47–58. Springer, Heidelberg
(2011)

12. Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Syst. J.
4(1), 25–30 (1965)

13. Bresenham, J.: A linear algorithm for incremental digital display of circular arcs.
Commun. ACM 20(2), 100–106 (1977)

14. Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimen-
sions. Pattern Recogn. Lett. 23(6), 623–636 (2002)

15. Brimkov, V.E., Barneva, R.P.: Graceful planes and thin tunnel-free meshes. In:
Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp.
53–64. Springer, Heidelberg (1999)

16. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theor. Comput. Sci.
283(1), 151–170 (2002)

17. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput.
Sci. 319(1–3), 203–227 (2004)

18. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity - a review. Discrete
Appl. Math. 155(4), 468–495 (2007)

19. Brons, R.: Linguistic methods for the description of a straight line on a grid. CGIP
3(1), 48–62 (1974)

20. Chassery, J.M., Montanvert, A.: Géométrie discrète en imagerie. Ed. Hermès, Paris
(1987)

21. Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Insight in
discrete geometry and computational content of a discrete model of the continuum.
Pattern Recogn. 42(10), 2220–2228 (2009)

22. Jordan, C.: Remarques sur les intégrales définies. Journal de Mathématiques, 4ème
série, T.8, pp. 69–99 (1892)

23. Coeurjolly, D., Blot, V., Jacob-Da Col, M.-A.: Quasi-Affine transformation in 3-
D: theory and algorithms. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009.
LNCS, vol. 5852, pp. 68–81. Springer, Heidelberg (2009)

24. Cohen-Or, D., Kaufman, A.E.: Fundamentals of surface voxelization. CVGIP
57(6), 453–461 (1995)

16 E. Andres

25. Coven, E.M., Hedlund, G.: Sequences with minimal block growth. Math. Syst.
Theory 7(2), 138–153 (1973)

26. Dachille, F., Kaufman, A.E.: Incremental triangle voxelization. In: Proceeding
Graphics Interface, pp. 205–212. Canadian Human-Computer Communications
Society, Montréal (2000)

27. Debled-Renesson, I., Reveillès, J.P.: A new approach to digital planes. In: SPIE
Vision Geometry III, vol. 2356, Boston (1994)

28. Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets, PhD
Thesis. Ph.D. thesis, Université Louis Pasteur, Strasbourg, France (1995)

29. Debled-Rennesson, I., Remy, J., Rouyer-Degli, J.: Segmentation of discrete curves
into fuzzy segments. Elect. Notes Discrete Math. 12, 372–383 (2003)

30. Feschet, F., Reveillès, J.-P.: A generic approach for n-dimensional digital lines. In:
Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 29–40.
Springer, Heidelberg (2006)

31. Figueiredo, O., Reveillès, J.: A contribution to 3D digital lines. In: 5th DGCI, pp.
187–198, Clermont-Ferrand (1995)

32. Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: an arithmetical approach with
non-constant thickness. In: Proceeding SPIE Vision Geometry XIV, vol. 6066, pp.
1–12 (2006)

33. Francon, J.: Arithmetic planes and combinatorial manifolds. In: 5th DGCI, pp.
209–217, Clermont-Ferrand (1995)

34. Francon, J.: Discrete combinatorial surfaces. CVGIP 57(1), 20–26 (1995)
35. Francon, J.: Sur la topologie d’un plan arithmétique. Theor. Comput. Sci.

156(1&2), 159–176 (1996)
36. Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: Debled-

Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS,
vol. 6607, pp. 83–94. Springer, Heidelberg (2011)

37. Heijmans, H.J.A.M.: Morphological image operators. Academy Press, Boston
(1994)

38. Herman, G.T.: Discrete multidimensional jordan surfaces. CVGIP 54(6), 507–515
(1992)

39. Jamet, D., Toutant, J.: Minimal arithmetic thickness connecting discrete planes.
Discrete Appl. Math. 157(3), 500–509 (2009)

40. Kaufman, A.E.: Efficient algorithms for 3D scan-conversion of parametric curves,
surfaces, and volumes. In: Proceeding 14th SIGGRAPH, pp. 171–179 (1987)

41. Kaufman, A.E.: Efficient algorithms for scan-converting 3D polygons. Comput.
Graph. 12(2), 213–219 (1988)

42. Kim, C.E.: Three-dimensional digital line segments. IEEE Trans. PAMI 5(2), 231–
234 (1983)

43. Klette, R., Rosenfeld, A.: Digital straightness - a review. Discrete Appl. Math.
139(1–3), 197–230 (2004)

44. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. CVGIP
48(3), 357–393 (1989)

45. Kovalesky, V.: Finite topology and image analysis. Adv. Electron. Electron Phys.
84, 197–259 (1992)

46. Lincke, C., Wüthrich, C.A.: Surface digitizations by dilations which are tunnel-free.
Discrete Appl. Math. 125(1), 81–91 (2003)

47. McIlroy, M.D.: Best approximate circles on integer grids. ACM Trans. Graph. 2(4),
237–263 (1983)

48. McIlroy, M.D.: Getting raster ellipses right. ACM Trans. Graph. 11(3), 259–275
(1992)

How Do I Define a Digital Analytical Object? 17

49. Montanari, U.: On limit properties in digitization schemes. J. ACM 17(2), 348–360
(1970)

50. Mora, F., Ruillet, G., Andres, E., Vauzelle, R.: Pedagogic discrete visualization of
electromagnetic waves. In: Eurographics 2003, Interactive Demos and Posters, pp.
123–126 (2003)

51. Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images.
Inf. Control 51(3), 227–247 (1981)

52. Reveillès, J.P.: Calcul en Nombres Entiers et Algorithmique. Ph.D. thesis, Univer-
sité Louis Pasteur, Strasbourg, France (1991)

53. Reveillès, J., Richard, D.: Back and forth between continuous and discrete for the
working computer scientist. Ann. Math. Artif. Intell. 16, 89–152 (1996)

54. Ronse, C., Tajine, M.: Hausdorff discretization for cellular distances and its relation
to cover and supercover discretizations. J. Vis. Commun. Image Represent. 12(2),
169–200 (2001)

55. Rosenfeld, A.: Digital topology. Amer. Math. Monthly 86, 621–630 (1979)
56. Rosenfeld, A., Kong, T.Y., Wu, A.Y.: Digital surfaces. GMIP 53(4), 305–312 (1991)
57. Sankar, P.: Grid intersect quantization schemes for solid object digitization. Com-

put. Graphics Image Process. 8(1), 25–42 (1978)
58. Sekiya, F., Sugimoto, A.: On connectivity of discretized 2D explicit curve. In:

Mathematical Progress in Expressive Image Synthesis, Symposium MEIS 2014,
pp. 16–25, Japan (2014)

59. Stelldinger, P., Terzic, K.: Digitization of non-regular shapes in arbitrary dimen-
sions. Image Vision Comput. 26(10), 1338–1346 (2008)

60. Tajine, M., Ronse, C.: Topological properties of hausdorff discretization, and com-
parison to other discretization schemes. Theor. Comput. Sci. 283(1), 243–268
(2002)

61. Taubin, G.: Rasterizing algebraic curves and surfaces. IEEE Comput. Graphics
14(2), 14–22 (1994)

62. Toutant, J.-L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital sur-
faces in arbitrary dimensions. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI
2014. LNCS, vol. 8668, pp. 332–343. Springer, Heidelberg (2014)

63. Toutant, J., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres:
from morphological models to analytical characterizations and topological proper-
ties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)

Theoretical Foundations of
Combinatorial Image Analysis – Digital

Geometry and Topology

Fuzzy Connectedness Segmentation: A Brief
Presentation of the Literature

Gabor T. Herman1(B), T. Yung Kong1,2, and Krzysztof Chris Ciesielski3

1 Computer Science PhD Program, The Graduate Center,
City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

gabortherman@yahoo.com
2 Computer Science Department, Queens College, City University of New York,

65-30 Kissena Boulevard, Flushing, NY 11367, USA
ykong@cs.qc.cuny.edu

3 Department of Mathematics, West Virginia University,
Morgantown, WV 26506, USA

kcies@math.wvu.edu

Abstract. For any positive integer M , M -object fuzzy connectedness
(FC) segmentation is a methodology for finding M objects in a digital
image based on user-specified seed points and user-specified functions,
called (fuzzy) affinities, which map each pair of image points to a value in
the real interval [0, 1]. FC segmentation has been used with considerable
success on biomedical and other images. We provide a brief presentation
of the literature on the topic of FC segmentation.

Keywords: Segmentation · Digital image · Fuzzy connectedness · Fuzzy
affinity · Seed points

1 Introduction

Image segmentation is an important and challenging task for which a multitude
of different techniques have been developed; see, e.g., Sect. 1.6 of [19] and the
survey articles in Part IV of that book. Our paper deals with the segmentation
methodology known as fuzzy connectedness (or FC) segmentation, which has
been used with considerable success—see, e.g., Fig. 1—on biomedical and many
other kinds of images [1–11,13–18,21–23,25–33]. One typical example is [1], in
which FC segmentation is used to delineate nodules in computerized tomography
(CT) images of the lungs of patients. In medical imaging, FC segmentation was
first developed by Udupa and Samarasekera [32]. Earlier uses of FC segmenta-
tion in an entirely different context (geophysical data processing) are reported
in [8–11].

Much of the theory of FC segmentation has developed along two different
tracks. In one of the tracks [1,2,13–18,21,27,28,31,33] two kinds of segmenta-
tion are used: relative fuzzy connectedness (RFC) segmentation and iterative
relative fuzzy connectedness (IRFC) segmentation. The other track [3–7,22,25]
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 21–30, 2015.
DOI: 10.1007/978-3-319-26145-4 2

22 G.T. Herman et al.

uses a third kind of segmentation that is called multi object fuzzy segmentation
(MOFS). In [12] we present a general theory of FC segmentation that encom-
passes both tracks and unifies them.

2 Basic Definitions

Let V be the set of all points of a digital image (so that V is finite and nonempty),
let M be a positive integer, and let S1, . . . , SM be pairwise disjoint nonempty
subsets of V . Then FC (short for fuzzy connectedness) segmentation can be
understood as one method of identifying M subsets O1, . . . , OM of V such that
Si ⊆ Oi ⊆ Si ∪ (V \ ⋃

j Sj) for 1 ≤ i ≤ M . Each of the sets O1, . . . , OM that is
identified is called an object, and (for 1 ≤ i ≤ M) each point in the originally
specified set Si is called a seed point or simply a seed for the ith object Oi. In
many applications one of the M objects is called the background.

In a practical application, the sets S1, . . . , SM may be specified in any way
appropriate for that application. For example, to specify the seed sets that
resulted in the 4-object segmentation shown at the bottom of Fig. 1, the cre-
ator of that segmentation displayed on the computer screen the image shown at
the top of Fig. 1 and, for 1 ≤ i ≤ 4, used mouse clicks to indicate the locations
of all the points in Si. But this is not the only way to select seed points; for
example, [1] describes procedures for selecting seed points automatically in a
manner that is different for the background object and the other objects (that
are all nodules in [1]). Automatic seed selection has the potential of reducing
the time that the user needs to spend on providing input to the segmentation
process.

In addition to using the term FC segmentation to refer to the process by
which the objects O1, . . . , OM are found, we will also call the sequence of objects
O1, . . . , OM an FC segmentation or an M -object FC segmentation of the set V
of image points.

An FC segmentation is not necessarily a segmentation in the most typical
sense because it is not necessarily a partition of the set V of image points: It is
not required that the Oi be pairwise disjoint nor that their union be the whole of
V . However, FC segmentation is the only kind of segmentation we discuss here,
and we will often refer to FC segmentations as “segmentations.”

The objects Oi that are found by FC segmentation depend on user-specified
mappings called fuzzy affinities or just affinities. An affinity (on V) is a mapping
ψ : V × V → [0, 1] such that ψ(v, v) = 1 for all v ∈ V . For all u, v ∈ V , we call
the value ψ(u, v) ∈ [0, 1] the ψ-affinity value of (u, v).

An affinity on V may be regarded as an edge-weight function of the complete
digraph (with loops) on V. Affinity values are described in [32] and elsewhere as
(user-specified) measures of the “hanging togetherness” of pairs of image points.

One of the ways that RFC segmentation and IRFC segmentation differ from
MOFS is that, for any seed sets S1, . . . , SM , the RFC and IRFC segmentations
of V are determined by a single affinity ψ : V × V → [0, 1], whereas the MOFS
segmentation of V depends on M affinities ψ1, . . . , ψM (i.e., one affinity for each
of the M objects).

Fuzzy Connectedness Segmentation 23

Fig. 1. Top: A slice of a patient’s head obtained by magnetic resonance imaging (MRI).
Bottom: A 4-object MOFS of the same slice. The number 4 reflects the fact that this
FC segmentation aims at dividing up the image according to four tissue types (shown
in red, green, blue, and yellow. (Reproduced from [6]) (Color figure online)

24 G.T. Herman et al.

FC segmentation is unlikely to identify useful objects unless the affinity or
affinities we use are appropriate for our application. The important problem
of how to define appropriate affinities is discussed, e.g., in [3,7,14,15,24,25].
In MOFS each affinity ψi is quite frequently defined based on some statistical
analysis of the image values assigned to points in neighborhoods of the seed
points in Si; see, for example, [5,6,25].

Given an affinity ψ : V × V → [0, 1] on V and A,B,W ⊆ V , a W -path
from A to B of length l is any sequence p = 〈w0, . . . , wl〉 of points in W such
that w0 ∈ A and wl ∈ B; the ψ-strength of p = 〈v0, . . . , vl〉, denoted by ψ(p),
is defined by ψ(p) = min1≤k≤l ψ(vk−1, vk) if l > 0 and ψ(p) = 1 if l = 0; the
ψ-strength of connectedness of A 	= ∅ to B 	= ∅ via W is defined as

ψW (A,B) = max {ψ(p) | p is a (W ∪ A ∪ B) - path from A to B}. (1)

For a, b ∈ V , a W -path from {a} to {b} will also be called a W -path from
a to b. Similarly, we write ψX(a,B), ψX(A, b), and ψX(a, b) for ψX({a}, B),
ψX(A, {b}), and ψX({a}, {b}), respectively. Note that ψ(a, b) = ψ∅(a, b) ≤
ψX(a, b) ≤ ψV (a, b), that ψX(A,B) = 1 if A ∩ B 	= ∅, and that ψ∅(A,B) =

max
a∈A,b∈B

ψ(a, b).

We say that the seed sets S1, . . . , SM are consistent with the affinities
ψ1, . . . , ψM if ψV

i (Si, Sj) < 1, for all distinct i and j in {1, . . . , M}. In other
words, S1, . . . , SM are consistent with the affinities ψ1, . . . , ψM if, and only if,
for all distinct i and j in {1, . . . , M} and for every V -path 〈v0, . . . , vl〉 from Si

to Sj , there exists a k, 1 ≤ k ≤ l, such that ψi(vk−1, vk) < 1.

3 A Simple Multi Object Fuzzy Segmentation (MOFS)
Algorithm

The following algorithm for computing the M -object MOFS of the set V for
pairwise disjoint nonempty seed sets S1, . . . , SM ⊂ V and affinities ψ1, . . . , ψM

on V is not intended to be efficient. Rather, it is intended to be simple and
concise, so as to give readers who are new to the subject a quick (yet completely
accurate) understanding of the nature of the objects that are found by MOFS.
A much more efficient (but less easily understood) method for computing MOFS
is Algorithm 5 of [12], which is akin to Dijkstra’s shortest-path algorithm [20],
computes all of the objects simultaneously, and may be regarded as a simplified
version of the MOFS algorithm of [6, Sect. 3].

Let Ψ = 〈ψ1, . . . , ψM 〉 be any sequence of affinities on V and let S =
〈S1, . . . , SM 〉 be any sequence of M pairwise disjoint nonempty subsets of V .
Then we denote the MOFS segmentation 〈OMOFS

1 , . . . , OMOFS
M 〉 that is pro-

duced by Algorithm 1 for affinities ψ1, . . . , ψM and seed sets S1, . . . , SM by
〈OMOFS

1 (Ψ,S), . . . , OMOFS
M (Ψ,S)〉. We now proceed to give an alternative, non-

algorithmic, characterization of this segmentation (in statements 1(a) and 1(b)
below) and to state some related facts about the segmentation and Algorithm 1.

Fuzzy Connectedness Segmentation 25

Algorithm 1. MOFS Segmentation of a Nonempty Finite Set V into M
Objects
Data: M pairwise disjoint nonempty seed sets S1, . . . , SM ⊂ V ; M affinities

ψ1, . . . , ψM on V
Result: The MOFS segmentation 〈OMOFS

1 , . . . , OMOFS
M 〉 of V

1 for i ← 1 to M do Ti ← Si

2 sort A =
⋃

j ψj [V × V] \ {0} into 1 = α1 > . . . > α|A|
3 for n ← 1 to |A| do /* the main loop */

4 for i ← 1 to M do newTi ← Ti ∪ {v ∈ V \⋃j Tj | ψ
V \⋃j Tj

i (Ti, v) ≥ αn}
5 for i ← 1 to M do Ti ← newTi

6 for i ← 1 to M do OMOFS
i ← Ti

Let A =
⋃

j ψj [V × V] \ {0} and let 1 = α1 > . . . > α|A| be the sequence
obtained by sorting A into decreasing order. For 1 ≤ i ≤ M and 0 ≤ n < |A|,
let Tn

i be the value of the variable Ti at the beginning of the n + 1st iteration
of the main loop when Algorithm 1 is executed, and let T

|A|
i be the value of Ti

at the end of the |A|th iteration of the main loop (which is the value of Ti when
Algorithm 1 terminates). Then

Si ⊆ OMOFS
i (Ψ,S) ⊆ Si ∪ (V \

⋃

j
Sj)

for 1 ≤ i ≤ M . Moreover:

1. For 1 ≤ i ≤ M we have that:

(a) T 0
i = Si, and Tn

i = Tn−1
i ∪{v ∈ V \⋃

jT
n−1
j | ψ

Tn−1
i ∪(V \⋃j Tn−1

j)

i (Si, v) =
αn} for 1 ≤ n ≤ |A|.

(b) OMOFS
i (Ψ,S) = T

|A|
i .

2. {v ∈ V \ ⋃
jT

n−1
j | ψ

Tn−1
i ∪(V \⋃j Tn−1

j)

i (Si, v) > αn} = ∅ for 1 ≤ i ≤ M and
1 ≤ n ≤ |A|.

3. T n
i = Tn−1

i ∪ {v ∈ V \ ⋃
jT

n−1
j | ψ

Tk
i

i (Si, v) = αn} for 1 ≤ i ≤ M and
1 ≤ n ≤ k ≤ |A|.
Now let us assume the seed sets S = 〈S1, . . . , SM 〉 are consistent with the

affinities Ψ = 〈ψ1, . . . , ψM 〉. Then there is an arguably even more easily compre-
hended characterization of the MOFS segmentation

〈OMOFS
1 (Ψ,S), . . . , OMOFS

M (Ψ,S)〉

than the characterization that is given by statements 1(a) and 1(b) above: The
segmentation is the unique sequence of sets 〈O1, . . . , OM 〉 such that

Oi = {v ∈ V | maxj �=i ψ
Oj

j (Sj , v) ≤ ψOi
i (Si, v) 	= 0} for 1 ≤ i ≤ M. (2)

26 G.T. Herman et al.

That this is the case is stated (and proved) as part of Theorem 3.10 in [12].
The proof makes use of the concept (introduced in [12]) of a recursively optimal
path.

Let us expand this characterization. Suppose that a sequence of sets

〈O1, . . . , OM 〉

satisfies (2). Then, for 1 ≤ i ≤ M , Si ⊆ Oi and, for any v ∈ V , v ∈ Oi if, and
only if:

1. There is an (Oi∪{v})-path 〈v0, . . . , vl〉 from Si to v such that ψi(vk−1, vk) > 0
for 1 ≤ k ≤ l. (This implies that ψOi

i (Si, v) > 0.)
2. For 1 ≤ j ≤ M , the ψj-strength of any (Oj ∪ {v})-path from Sj to v is not

greater than ψOi
i (Si, v).

Furthermore, since the characterization uniquely determines the sequence

〈O1, . . . , OM 〉

it follows that the definition

σ(v) = max
1≤i≤M

ψOi
i (Si, v) (3)

assigns a value from [0, 1] to every v ∈ V . If σ(v) = 0, then ψOi
i (Si, v) = 0 and

v /∈ Oi for 1 ≤ i ≤ M . On the other hand, if σ(v) 	= 0, then there must be at
least one i such that maxj �=i ψ

Oj

j (Sj , v) ≤ ψOi
i (Si, v) = σ(v), and v ∈ Oi for all

such i. (This is a good place to point out a second difference between MOFS and
either RFC segmentation or IRFC segmentation: While in MOFS the Oi may
overlap, objects in any RFC or IRFC segmentation are pairwise disjoint.) When
representing the outcome of such a segmentation by a color image (as in the
bottom image of Fig. 1), we can associate a different pure hue with each of the
is (in the case of the bottom image of Fig. 1, there are four pure hues used: red,
green, blue, and yellow): If v ∈ Oi, then the hue associated with i is assigned
to the pixel v. In the bottom image of Fig. 1, the brightness that is assigned to
each v ∈ Oi is σ(v), which is often regarded (see, for example, [6]) as the grade
of membership of v in Oi.

4 Robustness of Fuzzy Connectedness Segmentations

In practice the seed points may be selected by the user clicking on images (as was
done to produce the 4-object MOFS shown at the bottom of Fig. 1) or in some
more automatic manner (as described, for instance, in [1]). In the first case, the
choice of the seed points is likely to be different for different users and even for
the same user at different times. Even in the second case, we have variability; the
noise in the image of an object is not deterministic and an automated process
for determining the location of the seeds may depend on the noise in the image

Fuzzy Connectedness Segmentation 27

(for example, if it involves finding local minima or maxima). It would make the
practical usefulness of FC segmentation questionable if the outcome were highly
dependent on the exact selections of the seed points. Fortunately, this has not
been found to be the case: FC segmentations are generally robust with respect
to small changes in seed sets.

When the affinities do not depend on the choice of seeds, we can establish
mathematical results that explain this robustness. In the cases of RFC and IRFC
segmentation, such results are given in [18, Sect. 2.4]. In this section we state
one such result for MOFS, which shows that it is possible to introduce a large
number of additional seed points without changing the resulting MOFS.

Let Ψ = 〈ψ1, . . . , ψM 〉 be any sequence of affinities on V and S =
〈S1, . . . , SM 〉 any sequence of M pairwise disjoint nonempty subsets of V that
are consistent with the affinities. Then, for 1 ≤ i ≤ M , we define Pi(Ψ,S) to be
the collection of all subsets P of V that satisfy both of the following conditions:

1. P ⊆ OMOFS
i (Ψ,S) \ ⋃

j �=i OMOFS
j (Ψ,S).

2. ψ
OMOFS

i (Ψ,S)
i (Si, v) ≥ ψ∅

i (v, V \ P) for every v ∈ P .

The core of OMOFS
i (Ψ,S), denoted by Pi, is defined as the union of all the

sets in Pi(Ψ,S). We observe that Pi ⊆ OMOFS
i (Ψ,S) \ ⋃

j �=i OMOFS
j (Ψ,S) for

1 ≤ i ≤ M . This implies that the cores of distinct MOFS objects are always
disjoint: Pi ∩ Pj = ∅ whenever i 	= j.

Since Si ⊆ OMOFS
i (Ψ,S) \ ⋃

j �=i OMOFS
j (Ψ,S) (which is clear when we recall

from the previous section that Si ⊆ OMOFS
i ⊆ Si ∪ (V \ ⋃

j Sj) for 1 ≤ i ≤ M),
we see that Si ∈ Pi(Ψ,S) and therefore Si ⊆ Pi for 1 ≤ i ≤ M . A little reflection
will show that it is quite possibly the case that Pi is a much larger set than Si.
Nevertheless, as the following theorem states, using the Pis instead of the Sis
as the seed sets for the objects does not change the resulting MOFS.

MOFS Robustness Theorem [12]: Let Ψ = 〈ψ1, . . . , ψM 〉 be a sequence of
affinities on V and S = 〈S1, . . . , SM 〉 a sequence of pairwise disjoint nonempty
seed sets consistent with the affinities. Let R = 〈R1, . . . , RM 〉 be such that
Si ⊆ Ri ⊆ Pi for 1 ≤ i ≤ M . Then OMOFS

i (Ψ,R) = OMOFS
i (Ψ,S) for 1 ≤ i ≤ M .

Other results regarding the robustness of MOFS with respect to changes in
seed sets (e.g., [12, Corollary 5.6]) can be deduced from this theorem.

All mathematical results the authors are aware of regarding robustness of FC
segmentations assume that affinities remain unchanged when seed sets change.
For example, there appear to be no results in the literature regarding robustness
of FC segmentations when affinities depend on statistical properties of the image
values assigned to points in neighborhoods of the seeds.

5 Unified Theory of FC Segmentations

While we have repeatedly mentioned RFC and IRFC segmentations, until now
we have discussed details only of MOFS. A unified theory that covers all three

28 G.T. Herman et al.

types of segmentations is offered in [12]: In that paper it is shown that a generally
common mathematical approach is applicable in all three cases. Moreover, the
methods and results stated for MOFS above (and some other methods and results
for MOFS) have close analogs for RFC and IRFC segmentations.

One significant fact that emerges from the unified theory of [12] is that the
IRFC segmentation for an affinity ψ and seed sets S1, . . . , SM consistent with ψ
can be found by executing the very efficient Algorithm 5 of [12] for MOFS with
ψ1 = · · · = ψM = ψ: Each object OIRFC

i of the IRFC segmentation consists just
of those points in the corresponding MOFS object OMOFS

i that do not lie in any
of the other M − 1 MOFS objects:

OIRFC
i = OMOFS

i \
⋃

j �=i
OMOFS

j . (4)

For segmentation into more than two objects, this approach (which allows the M
IRFC objects to be computed simultaneously) can compute IRFC segmentations
more quickly than commonly-used algorithms that compute these segmentations
one object at a time.

6 Conclusion

Fuzzy connectedness (FC) image segmentation, which finds objects based on
user-specified seed sets and fuzzy affinity functions, is one of the most computa-
tionally efficient segmentation methodologies and is commonly used in practical
image segmentation tasks (especially in biomedical imaging). As can be seen
from the references cited in this brief presentation, the methodology has a grow-
ing literature which covers mathematical properties of the segmentations as well
as users’ practice and experience.

References

1. Badura, P., Pietka, E.: Soft computing approach to 3D lung nodule segmentation
in CT. Comput. Biol. Med. 53, 230–243 (2014)

2. Bejar, H.H.C., Miranda, P.A.V.: Oriented relative fuzzy connectedness: theory,
algorithms, and applications in image segmentation. In: 27th SIBGRAPI Confer-
ence on Graphics, Patterns and Images, pp. 304–311. IEEE Computer Society,
Washington, DC (2014)

3. Carvalho, B.M., Garduño, E., Santos, I.O.: Skew divergence-based fuzzy segmen-
tation of rock samples. J. Phys. Conf. Ser. 490, 012010 (2014)

4. Carvalho, B.M., Gau, C.J., Herman, G.T., Kong, T.Y.: Algorithms for fuzzy seg-
mentation. Pattern Anal. Appl. 2, 73–81 (1999)

5. Carvalho, B.M., Herman, G.T., Kong, T.Y.: Simultaneous fuzzy segmentation of
multiple objects. Electron. Notes Discrete Math. 12, 3–22 (2003)

6. Carvalho, B.M., Herman, G.T., Kong, T.Y.: Simultaneous fuzzy segmentation of
multiple objects. Discrete Appl. Math. 151, 55–77 (2005)

7. Carvalho, B.M., Souza, T.S., Garduño, E.: Texture fuzzy segmentation using adap-
tive affinity functions. In: 27th ACM Symposium on Applied Computing, pp. 51–
53. ACM, New York (2012)

Fuzzy Connectedness Segmentation 29

8. Chen, L.: 3-D fuzzy digital topology and its application. Geophys. Prospect. Petrol.
24(2), 86–89 (1985). [In Chinese]

9. Chen, L.: The λ-connected segmentation algorithm and the optimal algorithm for
split-and-merge segmentation. Chin. J. Comput. 14, 321–331 (1991). [In Chinese]

10. Chen, L., Berkey, F.T., Johnson, S.A.: Application of a fuzzy object search tech-
nique to geophysical data processing. In: SPIE 2180, Nonlinear Image Processing
V, pp. 300–309. SPIE, Bellingham, WA (1994)

11. Chen, L., Cheng, H., Zhang, J.: Fuzzy subfiber and its application to seismic lithol-
ogy classification. Inform. Sci. Appl. 1, 77–95 (1994)

12. Ciesielski, K.C., Herman, G.T., Kong, T.Y.: General theory of fuzzy connectedness
segmentations. http://math.wvu.edu/∼kcies/publications.html (Submitted)

13. Ciesielski, K.C., Miranda, P.A.V., Falcão, A.X., Udupa, J.K.: Joint graph cut and
relative fuzzy connectedness image segmentation algorithm. Med. Image Anal. 17,
1046–1057 (2013)

14. Ciesielski, K.C., Udupa, J.K.: Affinity functions in fuzzy connectedness based
image segmentation I: equivalence of affinities. Comput. Vis. Image Und. 114,
146–154 (2010)

15. Ciesielski, K.C., Udupa, J.K.: Affinity functions in fuzzy connectedness based
image segmentation II: defining and recognizing truly novel affinities. Comput.
Vis. Image Und. 114, 155–166 (2010)

16. Ciesielski, K.C., Udupa, J.K.: Region-based segmentation: fuzzy connectedness,
graph cut, and other related algorithms. In: Deserno, T.M. (ed.) Biomedical Image
Processing, pp. 251–278. Springer, Berlin (2011)

17. Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda, P.A.V.: Fuzzy connected-
ness image segmentation in graph cut formulation: a linear-time algorithm and a
comparative analysis. J. Math. Imaging Vis. 44, 375–398 (2012)

18. Ciesielski, K.C., Udupa, J.K., Saha, P.K., Zhuge, Y.: Iterative relative fuzzy con-
nectedness for multiple objects, allowing multiple seeds. Comput. Vis. Image Und.
107, 160–182 (2007)

19. Deserno, T.M. (ed.): Biomedical Image Processing. Springer, Berlin (2011)
20. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.

1, 269–271 (1959)
21. Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: theory, algo-

rithms, and applications. IEEE Trans. Pattern Anal. 26, 19–29 (2004)
22. Garduño, E., Herman, G.T.: Parallel fuzzy segmentation of multiple objects. Int.

J. Imag. Syst. Tech. 18, 336–344 (2009)
23. Garduño, E., Wong-Barnum, M., Volkmann, N., Ellisman, M.H.: Segmentation of

electron tomographic data sets using fuzzy set theory principles. J. Struct. Biol.
162, 368–379 (2008)

24. Gulyás, G., Dombi, J.: Computing equivalent affinity classes in a fuzzy connected-
ness framework. Acta Cybernetica 21, 609–628 (2014)

25. Herman, G.T., Carvalho, B.M.: Multiseeded segmentation using fuzzy connected-
ness. IEEE Trans. Pattern Anal. 23, 460–474 (2001)

26. Palágyi, K., Tschirren, J., Hoffman, E.A., Sonka, M.: Quantitative analysis of pul-
monary airway tree structures. Comput. Biol. Med. 36, 974–996 (2006)

27. Saha, P.K., Udupa, J.K.: Iterative relative fuzzy connectedness and object defini-
tion: theory, algorithms, and applications in image segmentation. In: IEEE Work-
shop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2000), pp.
28–35. IEEE Computer Society, Washington, DC (2000)

http://math.wvu.edu/~kcies/publications.html

30 G.T. Herman et al.

28. Saha, P.K., Udupa, J.K.: Relative fuzzy connectedness among multiple objects:
theory, algorithms, and applications in image segmentation. Comput. Vis. Image
Und. 82, 42–56 (2001)

29. Siebra, H., Carvalho, B.M., Garduño, E.: Fuzzy clustering of color textures using
skew divergence and compact histograms: segmenting thin rock sections. J. Phys.
Conf. Ser. 574, 012116 (2015)

30. Tschirren, J., Hoffman, E.A., Mclennan, G., Sonka, M.: Intrathoracic airway trees:
segmentation and airway morphology analysis from low-dose CT scans. IEEE
Trans. Med. Imaging 24, 1529–1539 (2005)

31. Udupa, J.K., Saha, P.K., Lotufo, R.A.: Relative fuzzy connectedness and object
definition: theory, algorithms, and applications in image segmentation. IEEE
Trans. Pattern Anal. 24, 1485–1500 (2002)

32. Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory,
algorithms, and applications in image segmentation. Graph. Model. Im. Proc. 58,
246–261 (1996)

33. Zhuge, Y., Udupa, J.K., Saha, P.K.: Vectorial scale-based fuzzy connected image
segmentation. Comput. Vis. Image Und. 101, 177–193 (2006)

Equivalent Sequential and Parallel
Subiteration-Based Surface-Thinning Algorithms

Kálmán Palágyi(B), Gábor Németh, and Péter Kardos

Department of Image Processing and Computer Graphics,
University of Szeged, Szeged, Hungary

{palagyi,gnemeth,pkardos}@inf.u-szeged.hu

Abstract. Thinning is a frequently applied technique for extracting
skeletons or medial surfaces from volumetric binary objects. It is an
iterative object reduction: border points that satisfy certain topological
and geometric constraints are deleted in a thinning phase. Sequential
thinning algorithms may alter just one point at a time, while parallel
algorithms can delete a set of border points simultaneously. Two thin-
ning algorithms are said to be equivalent if they can produce the same
result for each input binary picture. This work shows that it is pos-
sible to construct subiteration-based equivalent sequential and parallel
surface-thinning algorithms. The proposed four pairs of algorithms can
be implemented directly on a conventional sequential computer or on
a parallel computing device. All of them preserve topology for (26, 6)
pictures.

Keywords: Discrete geometry · Discrete topology · Skeletons ·
Subiteration-based thinning · Equivalent thinning algorithms

1 Introduction

A digital binary picture on the digital space Z
3 is a mapping that assigns a color

of black or white to each point [6]. Thinning is an iterative object reduction
until only some skeleton-like shape features (i.e., medial curves, medial surfaces,
or topological kernels) are left [4,6,19,25]. Thinning algorithms use reduction
operators that transform binary pictures only by changing some black points
to white ones, which is referred to as deletion. Parallel thinning algorithms are
comprised of reductions that can delete a set of border points simultaneously
[4,8,26], while sequential thinning algorithms traverse the boundary of objects
and may remove just one point at a time [8,26].

Two reductions are said to be equivalent if they produce the same result
for each input picture. Similarly, a deletion rule is called equivalent if it yields
equivalent parallel and sequential reductions. One of the authors established
some sufficient conditions for equivalent deletion rules [21]. This concept can be
extended to complex algorithms composed of reductions: two surface-thinning
algorithms are called equivalent if they produce the same medial surface for each
input picture.
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 31–45, 2015.
DOI: 10.1007/978-3-319-26145-4 3

32 K. Palágyi et al.

Sequential reductions (with the same deletion rule) suffer from the drawback
that different visiting orders (raster scans) of border points may yield various
results. A deletion rule is called order-independent if it yields equivalent sequen-
tial reductions for all the possible visiting orders. In [21] one of the authors
gave necessary and sufficient conditions for order-independent deletion rules. By
extending this concept: a sequential reduction is said to be order-independent
if its deletion rule is order-independent, and a sequential surface-thinning algo-
rithm is called order-independent [22] if it is composed of order-independent
sequential reductions.

There are three major strategies for parallel thinning [4]: a fully parallel algo-
rithm applies the same parallel reduction in each iteration step; a subiteration-
based algorithm decomposes an iteration step into k ≥ 2 successive parallel
reductions according to k deletion directions, and a subset of border points
associated with the actual direction can be deleted by a parallel reduction; and
in subfield-based algorithms the digital space is partitioned into s ≥ 2 subfields
which are alternatively activated, at a given iteration step s successive paral-
lel reductions assigned to these subfields are performed, and some black points
in the active subfield can be designated for deletion. In this paper, our atten-
tion is focussed on the subiteration approach. Since there are six kinds of major
directions in 3D, 6-subiteration 3D thinning algorithms are generally proposed
[3,9,11,15,19,23,27,28]. Note that there are some 8-subiteration [16] and 12-
subiteration [10,17] 3D thinning algorithms as well.

In [20] one of the authors proved that the deletion rule of the known 2D fully
parallel thinning algorithm proposed by Manzanera et al. [14] is equivalent.
Furthermore, he also showed in [21] that a fully parallel thinning algorithm
with an equivalent deletion rule yields various subfield-based algorithms that are
equivalent to the original fully parallel one. As far as we know, no one showed
that there exists a pair of equivalent parallel and sequential 3D subiteration-
based thinning algorithms. In this paper we propose four pairs of equivalent
parallel and sequential 6-subiteration surface-thinning algorithms that use the
same deletion rules, but they apply diverse geometric constraints.

The rest of this paper is organized as follows. Section 2 gives an outline
from basic notions and results from digital topology, topology preservation, and
equivalent reductions. Then in Sect. 3 the proposed algorithms are presented. In
Sect. 4 we show that our parallel algorithms are equivalent to topology-preserving
sequential surface-thinning algorithms. Finally, we round off the paper with some
concluding remarks.

2 Basic Notions and Results

We use the fundamental concepts of digital topology as reviewed by Kong and
Rosenfeld [5,6]. Note that there are other approaches that are based on cellu-
lar/cubical complexes [7]. The most important of them uses critical kernels [2]
which constitute a generalization of minimal non-simple sets. Since the topo-
logical correctness of the thinning algorithms presented in this paper is based

Sequential and Parallel Surface-Thinning Algorithms 33

only on the concept of simple points, we can consider the traditional paradigm
of digital topology.

Consider the digital space Z3, the three frequently applied adjacency relations
on Z

3 (see Fig. 1), and a point p ∈ Z
3. Then, we denote by Nj(p) ⊂ Z

3 the set of
points that are j-adjacent to point p and let N∗

j (p) = Nj(p)\{p} (j = 6, 18, 26).

◦ • ◦
• S •
◦ • ◦

• U •
W p E

• D •

◦ • ◦
• N •
◦ • ◦

Fig. 1. The considered three adjacency relations on Z
3. The set N6(p) contains p and

the six points marked ‘U’, ‘D’, ‘N’, ‘E’, ‘S’, and ‘W’; the set N18(p) contains N6(p)
and the twelve points marked ‘•’; the set N26(p) contains N18(p) and the eight points
marked ‘◦’.

The sequence of distinct points 〈x0, x1, . . . , xn〉 is called a j-path of length n
from x0 to xn in a non-empty set of points X if each point of the sequence is in
X and xi is j-adjacent to xi−1 for each i = 1, . . . , n. Note that a single point is
a j-path of length 0. Two points are said to be j-connected in the set X if there
is a j-path in X between them. A set of points X is j-connected in the set of
points Y ⊇ X if any two points in X are j-connected in Y . A j-component of a
set of points X is a maximal j-connected subset of X.

A (26, 6) binary digital picture on Z
3 is a quadruple (Z3, 26, 6, B), where

each point in B ⊆ Z
3 is called a black point ; each point in Z

3 \ B is said to be
a white point . A black component (or object) is a 26-component of B, while a
white component is a 6-component of Z3 \B. A black point p is an interior point
if all points in N∗

6 (p) are black. A black point is said to be a border point if it is
not an interior point (i.e., it is 6-adjacent to at least one white point).

Topology preservation [5,6,12] is a major concern of thinning algorithms.
A black point is called simple point if its deletion is a topology-preserving reduc-
tion. A sequential reduction and a sequential thinning algorithm is topology-
preserving if their deletion rules delete only simple points. Various authors gave
characterizations of simple points in (26, 6) pictures [5,6,13,24]. We make use of
the following one:

Theorem 1. [13,24] A black point p is simple in picture (Z3, 26, 6, B) if and
only if all of the following conditions hold:

1. The set N∗
26(p) ∩ B contains exactly one 26-component.

34 K. Palágyi et al.

2. N∗
6 (p) \ B �= ∅.

3. Any two points in N∗
6 (p) \ B are 6-connected in the set N∗

18(p) \ B.

Theorem 1 states that the simplicity of a point p in (26, 6) pictures is a local
property (i.e., it can be decided by examining N∗

26(p)).
Existing sufficient conditions for topology-preserving parallel reductions are

generally based on (or derived from) the notion of minimal non-simple sets [5,12].
One of the authors established a new sufficient condition for arbitrary pictures
with the help of equivalent deletion rules [21]. Let us recall and rephrase his
results:

Theorem 2. Let R be a deletion rule, let (Z3, 26, 6, B) be a picture, and let
p ∈ B be a black point that can be deleted by R from that picture.
If deletion rule R deletes only simple points and the deletability of any black
point in q ∈ B \{p} by R does not depend on the ‘color’ of p, then the followings
hold:

1. The parallel reduction with deletion rule R is topology-preserving.
2. The sequential reduction with deletion rule R is order-independent and

topology-preserving.
3. The parallel and the sequential reductions with deletion rule R are equivalent.

Thinning algorithms generally classify the set of black points of the input
picture into two (disjoint) subsets: the set of interesting points (i.e., potentially
deletable points) for which the deletion rule associated with a thinning phase is
evaluated and the constraint set whose black points are not taken into consider-
ation (i.e., safe points that cannot be deleted). Since a phase of a subiteration-
based algorithm cannot delete interior points and border points that do not fall
into the actual type, these points are certainly in the constraint set.

Conventional thinning algorithms preserve some simple (border) points called
endpoints that provide relevant geometrical information with respect to the
shape of the object. Here we consider the following characterizations of surface-
endpoints.

Definition 1. [19] A black point p in picture (Z3, 26, 6, B) is a surface-endpoint
of type 1 if there is no interior point in N∗

6 (p) ∩ B (i.e., p is not 6-adjacent to
any interior point).

Definition 2. [17] A black point p in picture (Z3, 26, 6, B) is a surface-endpoint
of type 2 if at least one of the three pairs of points in N∗

6 (p) ∩B (U,D), (N,S),
and (E,W) is formed by two white points.

Definition 3. [3] A black point p in picture (Z3, 26, 6, B) is not a surface-
endpoint of type 3 if ‖N∗

26(p)∩B‖ ≥ 8, or 4 ≤ ‖N∗
26(p)∩B‖ ≤ 7 and N∗

6 (p)∩B
contains three mutually 26-adjacent points. (‖S‖ stands for the count of elements
in set S).

Sequential and Parallel Surface-Thinning Algorithms 35

Definitions 1–3 make us possible to specify three pairs of endpoint-based
surface-thinning algorithms (P-6-SI-i, S-6-SI-i) (i = 1, 2, 3), see Algorithms 1
and 2 in Sect. 3.

Some advanced thinning algorithms preserve accumulated isthmuses [1] (i.e.,
generalization of curve interior points):

Definition 4. [1] A black point p in a (26, 6) picture is a surface-isthmus of type
4 if p is a non-simple border point (i.e., Condition 1 of Theorem1 or Condition
3 of Theorem1 is violated).

Definition 4 helps us to give a pair of isthmus-based surface-thinning algo-
rithms (P-6-SI-4, S-6-SI-4), see Algorithms 1 and 2 in Sect. 3.

Note that surface-endpoints of type 4 and surface-isthmuses of type i (i =
1, 2, 3) are not defined (i.e., there is neither surface-endpoint of type 4 nor surface-
isthmuses of type i (i = 1, 2, 3)). Definitions 1–4 make us possible to give a unified
description of the proposed endpoint-based and isthmus-based surface-thinning
algorithms (see Algorithms 1 and 2 in Sect. 3).

3 Parallel and Sequential 6-Subiteration Surface-Thinning
Algorithms

In this section, four pairs of 3D parallel and sequential 6-subiteration surface-
thinning algorithms (P-6-SI-i, S-6-SI-i) are presented for (26, 6) pictures (i =
1, 2, 3, 4). All of these algorithms use the same deletion rule, but diverse pairs of
them apply different constraint sets. The proposed parallel thinning algorithms
P-6-SI-i and the sequential algorithms S-6-SI-i are given by Algorithms 1 and
2, respectively.

It is easy to see that the first three pairs of algorithms (P-6-SI-i, S-6-SI-i)
are endpoint-based (i = 1, 2, 3), and the fourth pair of algorithms (P-6-SI-4,
S-6-SI-4) is isthmus-based (see Definitions 1–4).

By comparing the parallel algorithm P-6-SI-i (see Algorithm 1) and sequen-
tial algorithm S-6-SI-i (see Algorithm 2), we can state that in the parallel case
the initial set of black points P is considered when the deletability of all the
interesting points are investigated. On the contrary, the set of black points S is
dynamically altered when a sequential reduction/subiteration is performed; the
deletability of the actual point is evaluated in a modified picture (in which some
previously visited interesting points are white).

The applied deletion rules that specify d-DELETABLE points (d = U, D,
N, E, S, W) are given by 3 × 3 × 3 matching templates depicted in Fig. 2. Note
that the six deletion rules were originally proposed by Gong and Bertrand [3] in
their endpoint-based 6-subiteration surface-thinning algorithm with respect to
surface-endpoints of type 3 (see Definition 3).

A period of six subiterations/reductions (i.e., the kernel of the repeat cycle
in Algorithms 1 and 2) is decomposed into six successive subiterations according
to the six main directions in 3D, and this period is repeated until stability is
reached (i.e., no point is deleted within the last six subiterations/reductions).

36 K. Palágyi et al.

Algorithm 1. Parallel thinning algorithm P-6-SI-i (i = 1, 2, 3, 4)
Input: set of black points B
Output: set of black points P
P = B
I = ∅
repeat

// a period of six subiterations/reductions
for each d ∈ {U, D, N, E, S, W} do

// accumulating isthmuses
I = I ∪ { p | p ∈ P is a surface-isthmus of type i }
// forming the constraint set
C = I ∪ { p | p ∈ P is not a d-border point }
C = C ∪ { p | p ∈ P is a surface-endpoint of type i }
// forming the set of interesting points
X = P \ C
// deletion
Dd = { p | p ∈ X is a d-DELETABLE point in P }
P = P \ Dd

until DU ∪ DD ∪ DN ∪ DE ∪ DS ∪ DW = ∅

Algorithm 2. Sequential thinning algorithm S-6-SI-i (i = 1, 2, 3, 4)
Input: set of black points B
Output: set of black points S
S = B
I = ∅
repeat

// a period of six subiterations/reductions
for each d ∈ {U, D, N, E, S, W} do

// accumulating isthmuses
I = I ∪ { p | p ∈ P is a surface-isthmus of type i }
// forming the constraint set
C = I ∪ { p | p ∈ S is not a d-border point }
C = C ∪ { p | p ∈ P is a surface-endpoint of type i }
// forming the set of interesting points
X = S \ C
// traversal of the elements in X
del(d) = 0
for each p ∈ X do

if p is a d-DELETABLE point in S then
// deletion
S = S \ {p}
del(d) = del(d) + 1

until del(U) + del(D) + del(N) + del(E) + del(S) + del(W) = 0

Sequential and Parallel Surface-Thinning Algorithms 37

TU

y0 w0 y1

x0 v0 x1

· · ·

w3 w1

v3 p v1

· ·

y3 w2 y2

x3 v2 x2

· · ·

TD

· · ·
x0 v0 x1

y0 w0 y1

· ·
v3 p v1

w3 w1

· · ·
x3 v2 x2

y3 w2 y2

TN

· · ·
· ·
· · ·

x3 v2 x2

v3 p v1

x0 v0 x1

y3 w2 y2

w3 w1

y0 w0 y1

TE

· x3 y3

· v2 w2

· x2 y2

· v3 w3

p

· v1 w1

· x0 y0

· v0 w0

· x1 y1

TS

y3 w2 y2

w3 w1

y0 w0 y1

x3 v2 x2

v3 p v1

x0 v0 x1

· · ·
· ·
· · ·

TW

y3 x3 ·
w2 v2 ·
y2 x2 ·

w3 v3 ·
p

w1 v1 ·

y0 x0 ·
w0 v0 ·
y1 x1 ·

Fig. 2. Matching template Td associated with d-DELETABLE points (d =
U,D,N,E,S,W). Notations: the central position marked p matches an interesting
(black) point; the position marked ‘�’ matches a (black) point in the constraint set; the
position marked ‘�’ matches a white point; if the position marked ‘vk’ coincides with a
white point, then the position marked ‘wk’ coincides with a white point (k = 0, 1, 2, 3);
if all the three positions marked ‘vk’, ‘x(k+1) mod 4’, and ‘v(k+1) mod 4’ coincide with
white points, then the position marked ‘y(k+1) mod 4’ coincides with a white point
(k = 0, 1, 2, 3); each ‘·’ (don’t care) matches either a black or a white point.

We propose the following ordered list of the deletion directions: 〈U,D,N,E,
S,W〉. Note that a subiteration-based thinning algorithm is sensitive to the
order of directions. Hence choosing another order of the deletion directions yields
another algorithm.

An interesting black point (p ∈ X) is d-DELETABLE if template Td matches
it (d = U,D,N,E,S,W). Note that the templates assigned to the deletion direc-
tion d give the condition to delete certain d-border points, and templates asso-
ciated with the last five deletion directions can be obtained by proper rotations
of the templates that give U-DELETABLE points.

In experiments the proposed pairs of equivalent algorithms (P-6-SI-i, S-6-
SI-i) were tested on objects of different shapes. Here we have room to present
four illustrative examples, see Figs. 3, 4, 5 and 6. The results of our four pairs
of algorithms can be compared to the medial surfaces produced by two existing
3D parallel surface thinning algorithms proposed by Manzanera et al. [14] and
Palágyi [18]. The numbers refer to the count of black points in the pictures.
We can state that the isthmus-based pair of algorithms (P-6-SI-4, S-6-SI-4)

38 K. Palágyi et al.

result less object points than the other five methods. The authors note that,
unfortunately, there is no known method for quantitative comparison of surface-
thinning algorithms.

4 Verification

Now we will show that the 6-subiteration parallel surface-thinning algorithm
P-6-SI-i and the sequential algorithm S-6-SI-i are equivalent and topology-
preserving (i = 1, 2, 3, 4). It will also be proved that the sequential algorithms are
order-independent. It is sufficient to show that deletion rules of these algorithms
(see Sect. 3) satisfy all conditions of Theorem2.

Since the five templates TD, TN, TE, TS, and TW assigned to d-DELETABLE
points (d = D,N,E,S,W) are rotated versions of the template TU (see Fig. 2),
it is sufficient to prove that the deletion rule associated with the first subiteration
deletes only simple points, and the deletability of a point does not depend on the
‘color’ of a deletable point. It can be carried out for the remaining five deletion
rules in the same way.

Let us state some important properties of the U-DELETABLE points:

Lemma 1. All U-DELETABLE points are simple.

It is obvious by a careful examination of the matching template TU that all
conditions of Theorem1 hold.

Lemma 2. The deletability of a point by template TU does not depend on the
‘color’ of a U-DELETABLE point.

Proof. Let us assume that the (interesting) black point p is U-DELETABLE.
Since U-DELETABLE points are given by a 3 × 3 × 3 matching template, it is
sufficient to investigate the deletability of interesting black points in N∗

26(p).
Due to the symmetries that are present in template TU (see Fig. 2), it is

sufficient to check the eight template positions marked ‘�’ in Fig. 7a. Hence it is
assumed that the U-DELETABLE point p coincides with these eight positions.
Consider the deletability of an interesting black point q ∈ N∗

26(p) with the help
of the eight corresponding configurations depicted in Figs. 7b–i.

Let us investigate all that eight cases:

– If the U-DELETABLE point p coincides with a position marked ‘�’ in Fig. 7b,
d, e, f, g, and i, then the deletability of q does not depend on the ‘color’ of p.

– If point p coincides with a position marked ‘�’ in Fig. 7c (after its deletion),
then the interesting point q is in the constraint set. Hence we arrived at a
contradiction.

– If point p coincides with a position marked ‘�’ in Fig. 7h (before its deletion),
then the interesting point p is in the constraint set. Hence we arrived at a
contradiction. ��
We are now ready to state our main theorem — as an easy consequence of

Theorem 2, Lemmas 1 and 2.

Sequential and Parallel Surface-Thinning Algorithms 39

original — 74 250

Manzanera et al. (2002) [14] — 8 726 0518—]81[)8002(iygálaP

(S-6-SI-1,P-6-SI-1) — 15 840 (S-6-SI-2,P-6-SI-2) — 2 310

(S-6-SI-3,P-6-SI-3) — 2 308 (S-6-SI-4,P-6-SI-4) — 1 856

Fig. 3. The original 45 × 45 × 45 image of a cube with two tunnels and its six medial
surfaces produced by two existing algorithms and the proposed four pairs of equivalent
6-subiteration surface-thinning algorithms.

40 K. Palágyi et al.

original — 767 233

Manzanera et al. (2002) [14] — 59 351 Palágyi (2008) [18] — 50 835

(S-6-SI-1,P-6-SI-1) — 55 243 (S-6-SI-2,P-6-SI-2) — 40 568

(S-6-SI-3,P-6-SI-3) — 32 571 (S-6-SI-4,P-6-SI-4) — 30 928

Fig. 4. The original 321×153×227 image of a bird and its six medial surfaces produced
by two existing algorithms and the proposed four pairs of equivalent 6-subiteration
surface-thinning algorithms.

Sequential and Parallel Surface-Thinning Algorithms 41

original — 596 360

Manzanera et al. (2002) [14] — 54 561 Palágyi (2008) [18] — 48 680

(S-6-SI-1,P-6-SI-1) — 58 433 (S-6-SI-2,P-6-SI-2) — 27 915

(S-6-SI-3,P-6-SI-3) — 26 033 (S-6-SI-4,P-6-SI-4) — 24 852

Fig. 5. The original 47×193×193 image of a gear and its six medial surfaces produced
by two existing algorithms and the proposed four pairs of equivalent 6-subiteration
surface-thinning algorithms.

42 K. Palágyi et al.

original — 1 244 162

Manzanera et al. (2002) [14] — 91 415 Palágyi (2008) [18] — 66 856

(S-6-SI-1,P-6-SI-1) — 97 906 (S-6-SI-2,P-6-SI-2) — 61 442

(S-6-SI-3,P-6-SI-3) — 50 679 (S-6-SI-4,P-6-SI-4) — 49 199

Fig. 6. The original 350 × 132 × 217 image of a dolphin and its six medial surfaces
produced by two existing algorithms and the proposed four pairs of equivalent 6-
subiteration surface-thinning algorithms.

Sequential and Parallel Surface-Thinning Algorithms 43

(a)

q

(b)

q

(c)

q

(d)

q

(e)

q

(f)

q

(g)

q

(h)

q

(i)

q

Fig. 7. The eight positions marked ‘�’ are checked by Lemma 2 (a), and the eight
configurations (b)–(i) are associated with these positions. Points marked ‘�’ are in the
constraint set, and points marked ‘�’ are white.

Theorem 3. The followings hold for the proposed algorithms:

1. The sequential surface-thinning algorithm S-6-SI-i is order-independent (i =
1, 2, 3, 4).

2. The sequential surface-thinning algorithm S-6-SI-i is topology-preserving for
(26, 6) pictures (i = 1, 2, 3, 4).

3. The parallel surface-thinning algorithm P-6-SI-i is topology-preserving for
(26, 6) pictures (i = 1, 2, 3, 4).

4. Algorithms S-6-SI-i and P-6-SI-i are equivalent, i.e., they produce the same
result for each input picture (i = 1, 2, 3, 4).

Note that Lemma 2 is valid for arbitrary constraint sets — not only for the
four kinds of sets that are used by algorithms (S-6-SI-i, P-6-SI-i) (i = 1, 2, 3, 4).
Other constraint sets coupled with the set of templates depicted in Fig. 2 yield
additional pairs of equivalent 6-subiteration parallel and sequential thinning
algorithms.

44 K. Palágyi et al.

It is important to emphasize that the parallel algorithm P-6-SI-3 coincides
with the 6-subiteration 3D parallel surface-thinning algorithm proposed by Gong
and Bertrand in 1990 [3]. According to Theorem 3, that existing parallel algo-
rithm is equivalent to the (order-independent) sequential algorithm S-6-SI-3
(with the same deletion rules and constraint set). In addition, the topological
correctness of an existing parallel thinning algorithm is also confirmed. Note that
Gong and Bertrand sketched a proof in [3] to show that their algorithm does
not change the topological properties of the input pictures. At that time (i.e.,
in 1990) they could not apply the very first sufficient conditions for topology-
preserving 3D parallel reductions reported by Ma in 1994 [12].

5 Conclusions

In this paper four pairs of 3D 6-subiteration sequential and parallel surface-
thinning algorithms were presented. Each of the proposed algorithm uses the
same deletion rules that are given by 3×3×3 matching templates, but different
pairs of algorithms apply diverse constraint sets. It was shown that the proposed
pairs of algorithms are equivalent (i.e., they produce the same medial surfaces
for each input picture). It was also proved that all the reported algorithms are
topology-preserving for (26, 6) pictures.

Acknowledgements. This work was supported by the grant OTKA K112998 of the
National Scientific Research Fund.

References

1. Bertrand, G., Couprie, M.: Transformations topologiques discrètes. In: Coeurjolly,
D., Montanvert, A., Chassery, J. (eds.) Géométrie Discrète et Images Numériques,
pp. 187–209. Hermès Science Publications, Paris (2007)

2. Bertrand, G., Couprie, M.: New 2D parallel thinning algorithms based on critical
kernels. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.)
IWCIA 2006. LNCS, vol. 4040, pp. 45–59. Springer, Heidelberg (2006)

3. Gong, W.X., Bertrand, G.: A simple parallel 3D thinning algorithm. In: Proceed-
ings of the 10th IEEE International Conference Pattern Recognition, ICPR 1990,
pp. 188–190 (1990)

4. Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong,
T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing,
pp. 145–179. Elsevier Science B.V., Amsterdam (1996)

5. Kong, T.Y.: On topology preservation in 2D and 3D thinning. Int. J. Pattern
Recogn. Artif Intell. 9, 813–844 (1995)

6. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput.
Vis. Graph. Image Process. 48, 357–393 (1989)

7. Kovalevsky, V.A.: Geometry of Locally Finite Spaces. Publishing House, Berlin
(2008)

8. Lam, L., Lee, S.-W., Suen, S.-W.: Thinning methodologies - a comprehensive sur-
vey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992)

Sequential and Parallel Surface-Thinning Algorithms 45

9. Lee, T., Kashyap, R.L., Chu, C.: Building skeleton models via 3D medial sur-
face/axis thinning algorithms. CVGIP: Graph. Models Image Process. 56, 462–478
(1994)

10. Lohou, C., Bertrand, G.: A 3D 12-subiteration thinning based on P-simple points.
Discrete Appl. Math. 139, 171–195 (2004)

11. Lohou, C., Bertrand, G.: A 3D 6-subiteration curve thinning algorithm based on
P-simple points. Discrete Appl. Math. 151, 198–228 (2005)

12. Ma, C.M.: On topology preservation in 3D thinning. CVGIP: Image Underst. 59,
328–339 (1994)

13. Malandain, G., Bertrand, G.: Fast characterization of 3D simple points. In: Inter-
national Conference on Pattern Recognition, ICPR 1992, pp. 232–235 (1992)

14. Manzanera, A., Bernard, T.M., Pretêux, F., Longuet, B.: n-dimensional skele-
tonization: a unified mathematical framework. J. Electron. Imaging 11, 25–37
(2002)

15. Palágyi, K., Kuba, A.: A 3D 6-subiteration thinning algorithm for extracting
medial lines. Pattern Recogn. Lett. 19, 613–627 (1998)

16. Palágyi, K., Kuba, A.: Directional 3D thinning using 8 subiterations. In: Bertrand,
G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 325–336.
Springer, Heidelberg (1999)

17. Palágyi, K., Kuba, A.: A parallel 3D 12-subiteration thinning algorithm. Graph.
Models Image Process. 61, 199–221 (1999)

18. Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theoret. Comput. Sci.
406, 119–135 (2008)

19. Palágyi, K., Németh, G., Kardos, P.: Topology preserving parallel 3D thinning
algorithms. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms.
LNCVB, pp. 165–188. Springer, Heidelberg (2012)

20. Palágyi, K.: Equivalent 2D sequential and parallel thinning algorithms. In:
Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466,
pp. 91–100. Springer, Heidelberg (2014)

21. Palágyi, K.: Equivalent sequential and parallel reductions in arbitrary binary pic-
tures. Int. J. Pattern Recogn. Artif. Intell. 28, 1460009-1–1460009-16 (2014)

22. Ranwez, V., Soille, P.: Order independent homotopic thinning for binary and grey
tone anchored skeletons. Pattern Recogn. Lett. 23, 687–702 (2002)

23. Raynal, B., Couprie, M.: Isthmus-based 6-directional parallel thinning algorithms.
In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI
2011. LNCS, vol. 6607, pp. 175–186. Springer, Heidelberg (2011)

24. Saha, P.K., Chaudhuri, B.B.: Detection of 3D simple points for topology preserving
transformations with application to thinning. IEEE Trans. Pattern Anal. Mach.
Intell. 16, 1028–1032 (1994)

25. Siddiqi, K., Pizer, S. (eds.): Medial Representations - Mathematics, Algorithms
and Applications. Computational Imaging and Vision, vol. 37. Springer, New York
(2008)

26. Suen, C.Y., Wang, P.S.P. (eds.): Thinning Methodologies for Pattern Recognition.
Series in Machine Perception and Artificial Intelligence, vol. 8. World Scientific,
Singapore (1994)

27. Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3-D pictures. Comput.
Graph. Image Process. 17, 315–331 (1981)

28. Xie, W., Thompson, P., Perucchio, R.: A topology-preserving parallel 3D thinning
algorithm for extracting the curve skeleton. Pattern Recogn. 36, 1529–1544 (2003)

Relative Convex Hull Determination
from Convex Hulls in the Plane

Petra Wiederhold(B) and Hugo Reyes

Department of Automatic Control, Centro de Investigación y de Estudios
Avanzados (CINVESTAV-IPN), Av. I.P.N. 2508,

Col. San Pedro Zacatenco, 07000 Mexico, D.F., Mexico
pwiederhold@gmail.com, hrb87@hotmail.com

Abstract. A new algorithm for the determination of the relative con-
vex hull in the plane of a simple polygon A with respect to another
simple polygon B which contains A, is proposed. The relative convex
hull is also known as geodesic convex hull, and the problem of its deter-
mination in the plane is equivalent to find the shortest curve among all
Jordan curves lying in the difference set of B and A and encircling A.
Algorithms solving this problem known from Computational Geometry
are based on the triangulation or similar decomposition of that differ-
ence set. The algorithm presented here does not use such decomposition,
but it supposes that A and B are given as ordered sequences of vertices.
The algorithm is based on convex hull calculations of A and B and of
smaller polygons and polylines, it produces the output list of vertices of
the relative convex hull from the sequence of vertices of the convex hull
of A.

Keywords: Relative convex hull · Geodesic convex hull · Shortest Jor-
dan curve · Shortest path · Minimal length polygon · Minimal perimeter
polygon

1 Introduction

The relative convex hull (RCH), also called geodesic convex hull, recently has
received increasing attention in Computational Geometry [25], in particular
related to shortest path problems which appear in a variety of applications as
in robotics, industrial manufacturing, networking, or processing of geographical
data [13,26]. It was earlier defined in the context of Digital Geometry and Topol-
ogy and their applications in Digital Image Analysis, where the RCH and related
structures based on geodesic metrics have been proposed as approximations of
digital curves and surfaces and for multi-grid convergent estimations of curve
length or surface area [1,2,7–11,17,20,22,23,27,28].

The convex hull of a set S in the Euclidean space is obtained by filling up
S with all points lying on straight line segments having end points in S. If S is
contained in another set T , to construct the RCH of S with respect to T , points

c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 46–60, 2015.
DOI: 10.1007/978-3-319-26145-4 4

Relative Convex Hull from Convex Hulls 47

lying on straight line segments with end points in S are added whenever these
segments already belong to B.

In the Euclidean plane and for sets S ⊂ T , the RCH of S with respect to
T , denoted by CHT (S), is obtained by allocating a tight thread around A but
within B, see Fig. 1(a). In this paper we study the RCH for simple polygons S,T .
In [2], the RCH was considered for the more general situation where S is a finite
point set and T is a polygonal domain. A distinct definition of RCH applies to
disjoint simple polygons S, T , then CHT (S) is the weakly simple polygon formed
by the shortest closed polygonal path without self-crossings which circumscribes
S but excludes T [26], see Fig. 1(b).

Under special conditions for the polygons S, T , S ⊂ T , the RCH coincides
with the Minimum Perimeter Polygon (MPP) of S with respect to T , also called
the Minimum Length Polygon (MLP), whose frontier is the shortest Jordan curve
among all Jordan curves which circumscribe S but are contained in T [8,22,23].
The MPP was first defined for polygons S, T which are point set unions of cell
complexes within plane mosaics modelling the digital plane where the pixels are
identified with convex not necessarily uniform tiles [18–21], see Fig. 1(c). These
polygons S, T are constructed as the Inner and Outer Jordan digitization of a
subset of the Euclidean plane which is the interior of a given Jordan curve γ. For
the digital plane modeled by the standard quadratic complex where all pixels are
grid squares of the same size, S, T are isothetic simple polygons and (T \ S) is a
union of grid squares called grid continuum, see Fig. 1(d). In this case, the length
of the frontier of the RCH is a multi-grid convergent estimator of the length of
the Jordan curve γ [8,22,23]. Several efficient MLP algorithms are known, for
example the corrected version of [6] in [11,15], but these can be applied only to
digital continua or polyominoes.

Fig. 1. (a) RCH of a set with respect to a superset, (b) RCH for two disjoint sets, (c)
MPP of a subcomplex of a mosaic, (d) MLP of a grid continuum being a digital model
of a Jordan curve.

In this paper we propose a novel algorithm for the determination of the
ordered list of all vertices of the RCH, for the general situation of given simple
plane polygons A, B such that A ⊂ B. The algorithm does not use previous
triangulation or similar decompositions. Each input polygon is given as ordered
set of its vertices. Our algorithm adopts some basic ideas of the algorithm pub-
lished in [4] but presents essential corrections and improvements. A preliminary
version of our algorithm was developed in [16].

48 P. Wiederhold and H. Reyes

2 Preliminaries

Recall that a non-empty set S ⊂ R
2 is convex if for any p, q ∈ S, the straight

line segment pq is contained in S, where pq is the set of all points r = λ1p + λ2q
such that λ1, λ2 ∈ R, λ1, λ2 ≥ 0, λ1 + λ2 = 1. The convex hull of S denoted
by CH(S), is the intersection of all convex sets which contain S. Equivalently,
CH(S) is the set of all points which belong to straight line segments with end
points in S. For basic topological notions we refer to [14], we will denote the
(topological) interior of S by int(S) and its frontier by fr(S). A non-convex set
is distinct from its convex hull via the presence of holes or cavities: Any bounded
connected component of (R2 \ S) is a hole of S. The closure of any connected
component of (CH(S) \ S) which is not a hole of S, is a cavity of S.

Fig. 2. (a) M is a hole of S, the cavities A,B are distinct although they share the
point p. The straight line segment aq is not a cover of the cavity A although it belongs
to (fr(A)\fr(S)), ap is the cover of A. (b) A polyline and its convex hull given by the
vertex sequence 〈a, b, c, d, e, f, g, h〉. (c) Right and left halfplanes determined by −−→p1p2.
(d) Points 1,2,5,6,7,9 are examples of convex vertices (right turns), points 8 and 12 are
concave vertices (left turns) of the closed polyline traced in clockwise sense.

A curve γ = {f(s) = (x(s), y(s)) ∈ R
2 : s ∈ [0, 1]} (f : [0, 1] → R

2

continuous), is closed if f(0) = f(1), simple if for any s, t ∈ [0, 1] such that
0 ≤ s < t < 1 it follows f(s) �= f(t); γ is a Jordan curve if it is simple and
closed. A Jordan curve γ separates the plane into two uniquely defined open
disjoint regions: the interior of the Jordan curve is bounded and encircled by
γ, and the exterior of the Jordan curve is not bounded [14]. A curve is named
polyline if there exists a finite sequence of points {s0, s1, s2, · · · , sk}, with 0 =
s0 < s1 < s2 < · · · < sk = 1 such that all curve segments {f(s) : si ≤ s ≤ si+1}
(i = 0, 1, · · · , k−1) are straight line segments. The points {s0, s1, s2, · · · , sk} are
named vertices whenever no three consecutive points are collinear. A polyline is
uniquely determined by the sequence of its vertices. A closed polyline corresponds
to a closed curve, a simple polyline is a simple curve. A vertex p of a polyline
γ is called extreme vertex if its x-coordinate is extreme (that is, maximal or
minimal) among the x-coordinates of all vertices of γ or, if its y-coordinate is
extreme among all y-coordinates of vertices of γ. Any extreme vertex of a polyline
γ is a vertex of the convex hull CH(γ). A simple polygon is defined as any non-
empty bounded closed set P ⊂ R

2 whose frontier forms a simple closed polyline.
Hence the frontier of a simple polygon is a Jordan curve and can be represented

Relative Convex Hull from Convex Hulls 49

by the finite cyclic sequence of its vertices. The convex hull of a simple polygon
coincides with the convex hull of the finite set of its vertices. A simple polygon
does not have holes, therefore it is non-convex if and only if it has at least one
cavity. For any non-convex simple polygon S in the plane and any cavity M of S,
define the cover of M as straight line segment of maximal length belonging to
fr(M)\S. The requirement of maximal length guarantees that the cover for each
cavity M is unique, see Fig. 2(a). For any ordered triple of points p1 = (x1, y1),
p2 = (x2, y2), p3 = (x3, y3) in the plane, its orientation is characterized by the
sign of the determinant D(p1, p2, p3) = x1y2+y1x3+x2y3−(x3y2+x2y1+x1y3).
The oriented line segment −−→p1p2 defines an oriented line which separates R

2 into
a right halfplane H1 and a left halfplane H2, see Fig. 2(c). (p1, p2, p3) forms
a right turn if p3 ∈ H1, (p1, p2, p3) forms a left turn if p3 ∈ H2. Using the
standard cartesian coordinate system in the plane, for a closed (simple) polyline
L traced in clockwise sense, see Fig. 2(d), for any three consecutive vertices
p1, p2, p3 of L we have the following: (p1, p2, p3) forms a right turn if and only if
D(p1, p2, p3) < 0; then p2 is called a convex vertex ; (p1, p2, p3) forms a left turn
if and only if D(p1, p2, p3) > 0, then p2 is called a concave vertex. p1, p2, p3 are
collinear points if and only if D(p1, p2, p3) = 0.

3 Definition and Properties of the Relative Convex Hull

Definition 1. Let A,B ⊂ R
n be non-empty sets such that A ⊆ B. Then A is

called B-convex if any straight line segment lying in B whose both end points
belong to A, is contained in A. The relative convex hull of A with respect
to B, denoted by CHB(A), is defined as the intersection of all B-convex sets
which contain A.

It is evident that each set A is A-convex, and that if A is convex and A ⊂
B then A also is B-convex. The following properties can be derived from the
definitions of CH(A) and CHB(A):

Lemma 1. (i) A ⊂ CHB(A) ⊂ B, B is the largest B-convex set which contains
A whereas CHB(A) is the smallest such set.

(ii) CHB(A) ⊂ CH(A).
(iii) A is convex if and only if CHB(A) = CH(A) = A.
(iv) CH(A) ⊂ B if and only if CHB(A) = CH(A).
(v) If B is convex then CHB(A) = CH(A).

Proof. The definitions and constructions of CH(A) and CHB(A) imply (i) and
(ii); (iii) follows from (ii) and since A is convex if and only if CH(A) = A.
(iv) Suppose CH(A) ⊂ B. Because of (ii), only CH(A) ⊂ CHB(A) remains
to be proved. Let p ∈ CH(A) and M ⊂ B be any B-convex set containing A.
We have to prove that p ∈ M . For p ∈ A this is trivial, so assume p �∈ A.
Since CH(A) is the set of all straight line segments having end points in A, p
belongs to some straight line segment with end points a, b ∈ A. But then a, b
belong also to M ⊂ B. The segment ab is contained in CH(A) and hence, by

50 P. Wiederhold and H. Reyes

the hypothesis, to B. Since M es B-convex, p ∈ ab ⊂ M which completes the
proof of CHB(A) = CH(A). On the other hand, CHB(A) = CH(A) means
in particular that CH(A) is contained in each B-convex set which contains A,
but B is such a set, implying CH(A) ⊂ B. (v) A ⊂ B with B convex implies
CH(A) ⊂ CH(B) = B, then (iii) gives the result. �

As a corollary, it can be proved that a necessary condition for CHB(A) �=
CH(A) is that some concave vertex of B lies in the interior of a cavity of A. In
this paper we study the RCH only for simple polygons A and B in the plane,
A ⊂ B ⊂ R

2. The following properties are important for the determination of
the RCH:

Theorem 1. Let A, B be simple polygons such that A ⊂ int(B).

(i) CHB(A) exists and is a uniquely defined simple polygon.
(ii) The frontier of the polygon CHB(A) is the Jordan curve which among all

Jordan curves circumscribing A and lying in B, has the shortest length.
(iii) Each convex vertex of CHB(A) is a convex vertex of A, and each concave

vertex of CHB(A) is a concave vertex of B.

This was given by Theorem 3 from [22] and Theorem 4.6 from [23]. When the
condition is weakened to A ⊂ B then the polygon CHB(A) is simple or weakly
simple, that means, its frontier can touch itself but does not cross itself, and the
other properties are still valid [25].

Theorem 2. For simple polygons A, B such that A ⊂ B, all vertices of CH(A)
are vertices of CHB(A).

Proof. Any vertex of CH(A) belongs to A ⊂ CHB(A). To prove that any vertex
of CH(A) is a vertex of CHB(A), we apply Lemma 1(i) and the well-known
fact that any convex simple polygon is a finite intersection of halfplanes which
are determined by the straight lines generated by the polygon edges. The convex
simple polygon CH(A) has k ≥ 3 vertices a1, a2, · · · , ak, where no three consecu-
tive points are collinear, and k edges a1a2, a2a3, · · · , aka1. Supposing a clockwise
tracing of the Jordan curve fr(CH(A)), let Hi be the right halfplane of the ori-
ented straight line generated by the line segment −−−−→aiai+1 for i = 1, 2, · · · k−1, and
Hk be the right halfplane of −−→aka1. Then CH(A) = H1 ∩ H2 ∩ · · · ∩ Hk, and all
these halfplanes are pairwise distinct. For any vertex ai of CH(A), ai−1, ai, ai+1

belong to A ⊂ CHB(A) ⊂ CH(A) ⊂ Hi−1 ∩ Hi ∩ Hi+1. This implies that
ai−1, ai, ai+1 ∈ fr(CHB(A)) and that CHB(A) cannot contain elements of the
straight line generated by the segment aiai+1 but lying outside this segment. In
consequence, in particular ai is a vertex of CHB(A). Note that the argument of
our proof is independent of a discussion weather aiai+1 belongs to B or not. �

The last theorem was briefly mentioned on p. 126 of [23] without proof, and
it was stated in [4] with a wrong proof.

Relative Convex Hull from Convex Hulls 51

4 Previous Algorithms of Determining the Relative
Convex Hull for Simple Polygons in the Plane

G. Toussaint proposed in [24,25] to transform the problem of determining
CHB(A) into the problem of finding the shortest path between two vertices
of a new simple polygon which first is triangulated. That algorithm has linear
time complexity in terms of the total number k of vertices of A and B, but it
makes essential use of the triangulation of M which can be achieved by a com-
plicated process in O(k log(log(k))) time. In [22,23] several ideas for algorithms
to determine the RCH were suggested, which are based on decompositions of the
polygons such as trapezoidation or partition into pseudomonotone polygons. In
the context of digital curve analysis, some algorithms not based on triangula-
tions for calculating the MPP or MLP are known, for example [6,8,11,15,20,21],
but these algorithms solve the RCH problem only for special difference sets
(B \ int(A)) such as grid continua or polyominoes or special cell complexes.

The algorithm published in [3–5,11] starts with calculating the convex hulls
of A and B. The list of vertices of CH(A) is completed by inserting vertices
from cavities of B until the output list of all vertices of CHB(A) is obtained.
The construction of the output list follows a recursive process which searches for
intersections of cavities of A and B. Whenever such intersection is detected, a
new outer polygon O and a new inner polygon I are formed, and the problem of
finding CHO(I) is treated to obtain missing RCH vertices of CHB(A). Subse-
quently, the recursive process works in each step with smaller newly generated
outer and inner polygons and calculates their convex hulls. The author affirms
that after sufficiently many recursion steps, the base case of the recursion is
achieved where the new inner polygon is a triangle. The idea of such a recursive
process was first suggested by two theorems on the shortest path between two
vertices of a polygon and a series of drawings on pp. 122–124 in [23] where the
explanation was not detailed at all. In certain situations, the algorithm from [4]
does not produce the correct result of all vertices of CHB(A). The reason for
this lies in the geometric nature of the RCH problem for general simple polygons
A,B which was oversimplified in [4]; its recursion is theoretically not justified.
The new polygon I sometimes is not contained in O or is not a simple polygon.
For finding the missing vertices, additional regions have to be investigated in
each step. It is also possible that the process stops when I becomes convex but
is not a triangle.

5 A New Algorithm of Determining the Relative Convex
Hull for Simple Polygons in the Plane

5.1 Vertex Lists, Convex Hull Determination and Cavity Detection

The new algorithm will be explained with the help of the example shown in
Fig. 3. The input data consist of two simple polygons A, B satisfying A ⊂ B,
given as ordered sequence of vertices: A = 〈p1, p2, . . . , pn〉, B = 〈q1, q2, . . . , qm〉

52 P. Wiederhold and H. Reyes

representing the frontier of each polygon due to the clockwise tracing. We sup-
pose p1 as an extreme vertex of A, q1 extreme for B which can be achieved by a
simple pre-processing of both lists. Hence p1 is a vertex of CH(A) and hence of
CHB(A), by Theorem 2. The algorithm produces an ordered list of all vertices
of CHB(A) as output data, starting with p1 and corresponding to a clockwise
tracing of the frontier of CHB(A).

Fig. 3. Left: example of input data given by an inner polygon A and an outer polygon
B. Right: the sides of CHB(A) are marked by heavy red lines.

Our algorithm starts with determining all vertices of the convex hulls of both
A,B which are stored in the vertex lists CH(A), CH(B), respecting the clock-
wise tracing. This can be done for example by the efficient Melkman-Algorithm
[12]. As a particularity of this algorithm, the last vertex which was confirmed
as vertex of the convex hull and hence appears at the end of the output list, is
repeated in that list as first point, we eliminate this first point from the list. So
we obtain the vertex list CH(A) starting with p1 and containing a selection of
points from the list A whose original ordering and internal indices are preserved,
similarly for CH(B) starting with q1. The vertex list CH(A) is considered as ini-
tial output list of the vertices of the RCH. By subsequent steps of our algorithm,
all other RCH vertices are found and inserted into this list CH(A) at appropriate
positions. Therefore, the format of a double ended queue owned by the vertex
list CH(A) as output of the Melkman-Algorithm, cannot be preserved during
subsequent steps of our method. We apply later again the Melkman-Algorithm
[12] which produces the vertex list of the convex hull for any input vertex list
of a polyline not necessarily closed or forming a simple polygon, and it always
respects the order in the input vertex list.

In each vertex list A, B, CH(A), CH(B), we copy its first point as added
at the list end but having a new index. This permits to study all sides of each
polygon, including the line segment connecting the last vertex with the first
one, without producing errors in the indices when performing our algorithm.
For our example, this produces CH(A) = (p1, p2, p12, p13, p14, p19, p20 = p1),
CH(B) = (q1, q2, q11, q12, q14, q15, q16, q17, q20, q23, q24 = q1).

Since each point of the vertex list CH(A), besides having an CH(A)-index
i, also preserves its original index from the vertex list A, a cavity of the polygon

Relative Convex Hull from Convex Hulls 53

A is easily detected during tracing the list CH(A): When consecutive vertices
have a difference strictly mayor than 1 between their own indices, CH(A)i = pk,
CH(A)i+1 = pl, and |k − l| ≥ 2, then A has a cavity whose cover is given by
the line segment pkpl. Cavities of B can be detected in the same manner from
the list CH(B). This idea was adopted from [4]. In our example, i = 2 indicates
that p2p12 is the cover of a first cavity of A.

5.2 Processing of One Cavity

As in [4], whenever a cavity of A is found, it is considered as a new poly-
gon O determined by its vertices 〈CH(A)i = pk, pk+1, pk+2, · · · , pk+r = pl =
CH(A)i+1〉 for some r ≥ 1 which always is a simple closed polyline in counter-
clockwise order. For our example, i = 2, O = 〈p2, p3, p4, · · · , p11, pl2〉.

The next step is to construct a new polyline I whose convex hull, if it has
at least three vertices, provides vertices of B which are vertices of the RCH
and should be inserted in the list CH(A) between CH(A)i and CH(A)i+1.
Let I be the sequence starting with CH(A)i+1, CH(A)i and then contain-
ing all vertices from B, in the same order as in B, which belong to the set
(O \ CH(A)iCH(A)i+1) which is the polygon O with exception of its cover
CH(A)iCH(A)i+1. Only in the case that all those vertices selected from B are
vertices of the same cavity of B, our definition of I coincides with that of [4].
For our example, I = 〈p12, p2, q3, q4, q5, q6, q7, q8, q9, q10, q13〉 represents a closed
polyline in counter-clockwise sense, but it does not form a simple polygon, and
the curve is not completely contained in O. All points qk of I with exception of
q13 belong to the same cavity of B.

The Melkman-Algorithm [12] is applied to determine the convex hull of I.
In our example, this produces the output CH(I) = 〈q13, p12, p2, q3, q5, q6, q13〉.
After eliminating the first point which is repeated and the end points of the cover
which already belong to CH(A), we obtain the following new vertices which will
be inserted into the list CH(A): q3, q5, q6, q13. The updated list CH(A) then con-
tains vertices both from A, B: CH(A) = (p1, p2, q3, q5, q6, q13, p12, p13, p14, p19,
p20). This current list CH(A) represents two special line segments, each one con-
necting a vertex from A with a vertex from B: p2q3 and q13p12. We will use these
segments to form polylines whose convex hulls will provide eventually missing
vertices of the RCH. These polylines were not defined or used in the algorithm
of [4].

Definition 2. Let b1, b2, · · · , bk be the vertices of CH(I) which were inserted
into CH(A) at the index i due to the procedure described above in order to
generate the current list

CH(A) = (CH(A)1, CH(A)2, · · · , CH(A)i, b1, b2, · · · , bk, CH(A)i+k+1, · · ·).

Define a starting O-polygon OS by the vertex sequence starting with CH(A)i,
CH(A)i+1 and then containing all vertices which in the vertex list B are previous
to CH(A)i+1 = b1, copying them in reversed order, until the first vertex which

54 P. Wiederhold and H. Reyes

lies outside O. Let IS be the polyline starting with CH(A)i+1, CH(A)i and then
containing all vertices from the vertex list A, copying their ordering, which belong
to (O \ CH(A)ib1).

Similarly, define an ending O-polygon OE by the vertex sequence starting
with CH(A)i+k+1, CH(A)i+k = bk and then containing all vertices which in
the vertex list B are subsequent to CH(A)i+k = bk, copying their ordering,
until the first vertex which lies outside O. Let IE be the polyline starting with
CH(A)i+k+1, CH(A)i+k = bk and then containing all vertices from the vertex
list A, copying their ordering, which belong to (O \ bkCH(A)i+k+1).

By this definition, OS is generated in counter-clockwise sense whereas IS , OE

and IE are polylines traced in clockwise sense. IS , IE are used for our algorithm
whereas OS , OE are polygons only needed in its correctedness proof.

Lemma 2. All vertices of CH(I), CH(IS), CH(IE) are vertices of CHB(A).

Idea of Proof: Let O be a cavity of A with cover pq and at least one vertex of
B inside O \ pq. O is a simple polygon. Due to Theorem 1(ii), all vertices of
CHB(A) belonging to R(O) are vertices of the shortest polygonal Jordan path
which circumscribes A but lies in B. As consequence, the polygonal subpath
from p to q is the shortest path between p, q as vertices of the weakly simply
polygon O ∩ B. By Theorem 4.4 of [23] (whose validity has to be generalized
from a simple to a weakly simple polygon), this subpath is contained in CH(I).
Together with the fact that all vertices and edges of CHB(A) cannot intersect
int(A), it can be proved that each vertex of CH(I) is a vertex of CHB(A). The
polygons OS , OE , IS , IE are simple and IS ⊂ OS , IE ⊂ OE . The subpath of
fr(CHB(A)) from CH(A)i to b1 passing through certain vertices of A (if any),
is the shortest path between these vertices of the simple polygon OS ∩B, it also
belongs to fr(CHOS

(IS)). By Theorem 2, all vertices of CH(IS) are vertices of
CHB(A); similarly for IE . (End of Idea of Proof)

The Melkman-Algorithm [12] is applied for calculating the lists CH(IS),
CH(IE), which after eliminating the points which are repeated or already belong-
ing to the list CH(A), have to be inserted into the list CH(A): new points
provided by CH(IS) are inserted between CH(A)i and CH(A)i+1 = b1, new
points from CH(IE) are inserted between CH(A)i+k = bk and CH(A)i+k+1. In
our example, i = 2, CH(A)i = p2, CH(A)i+1 = b1 = q3, k = 4, CH(A)i+k =
bk = q13, CH(A)i+k+1 = p12, OS = 〈p2, q3, q2〉, IS = (q3, p2, p3) is convex and
provides the new point p3 to be inserted between p2 and q3. OE = 〈p12, q13, q14〉,
IE = (p12, q13, p11) is convex, so that only p11 has to be inserted between q13 and
p12. The new list is CH(A) = (p1, p2, p3, q3, q5, q6, q13, p11, p12, p13, p14, p19, p20).
This completes to process the cavity of A starting at the vertex with CH(A)-
index i. Note that during the whole procedure just described, this starting index
i is not changed and points are inserted only after that index. Comparing the
current list CH(A) with Fig. 3 we see that within the actual cavity, more RCH
vertices have to been detected, but the list CH(A) will guide us naturally to
discover these missing points.

Relative Convex Hull from Convex Hulls 55

5.3 Detection and Processing of Subsequent Cavities

The algorithm continues tracing the vertex list CH(A) which has been updated
by processing the cavity previously detected, increasing the CH(A)-index i and
looking for consecutive vertices whose own indices have a difference more than
1. This test is done only for consecutive vertices which both are from A, or both
from B. When two points are consecutive in CH(A) but one is from A and the
other from B, then the point from B was inserted as result of the treatment of
the special polygons OS or OE , and no more vertices of the RCH are missing
between these two points.

Whenever in the list CH(A) two consecutive points of A, CH(A)i = pk and
CH(A)i+1 = pl, such that |k − l| ≥ 2, are found, then pkpl covers some kind of
“cavity” of A and the whole “Processing of one cavity” described in the previous
section, is performed. This includes the analysis of the polygons and polylines
O, I, OS , IS , OE , IE , resulting in an updated vertex list CH(A). The same is
done when such two consecutive points of B, CH(A)i = qk and CH(A)i+1 = ql,
are detected, but then the “Processing of one cavity”is applied with the roles of
A and B interchanged (points qj instead of pj and vice versa).

In our example, the next such situation is found for i = 4 and points of
B: CH(A)4 = q3, CH(A) = q5. Following faithfully the procedure with roles
of A and B interchanged, we obtain O = 〈q3, q4, q5〉 which is a cavity of a
cavity of B with one vertex of A inside, giving I = 〈q5, q3, p5〉. I is convex and
provides only the new point p5. The special segments q3p5 and p5q5 generate
OS = 〈q3, p5, p4〉 and OE = 〈q5, p5, p6〉 which both do not contain vertices of B,

Fig. 4. The relative convex hull determined by the new algorithm implemented in
Matlab, and by the algorithm of [4], for an example developed in [16].

56 P. Wiederhold and H. Reyes

Input: Simple polygons A, B with A ⊂ B given by vertex lists A = p1, p2, . . . , pn ,
B = q1, q2, . . . , qm (clockwise traced).

Output: List of vertices of the relative hull CHB(A) stored in the actualized list
CH(A) (clockwise traced).

1: Initialize CH(A) = ∅, i = 1.
2: Determine the vertices of convex hull of A by the Melkman algorithm stored in the

list CH(A) which has s elements.
3: Eliminate the first element of CH(A).
4: Extend the lists A, B y CH(A) adding at the end a copy of the first element with

new index.
5: while i < s do
6: if a cavity is detected between CH(A)i and CH(A)i+1, then
7: if The cavity is between points of A, then
8: CAV(CH(A), i, s, A,B)
9: else

10: CAV(CH(A), i, s, B,A)
11: end if
12: end if
13: i=i+1
14: end while
15: The actualized list CH(A) contains all vertices of the relative convex hull CHB(A).

Fig. 5. Pseudocode of the new RCH algorithm (Main program).

hence IS = 〈p5, q3〉 and IE = 〈q5, p5〉 are degenerated to line segments and do
not provide more points to be inserted into the vertex list. We obtain as current
list CH(A) = (p1, p2, p3, q3, p5, q5, CH(A)7 = q6, q13, p11, p12, p13, p14, p19, p20).

The next jump in the indices is found at i = 7 again with points from B:
CH(A)7 = q6, CH(A)7 = q13. We should be careful using geometrical concepts,
the segment q6q13 covers some part of B which is neither a cavity nor a cavity of a
cavity of B. We obtain O = 〈q6, q7, q8, q9, q10, q11, q12, q13〉, I = 〈q13, q6, p8〉 which
is convex and provides only the new point p8. OS , OE are not interesting since
IS , IE degenerate to line segments and do not provide more points: CH(A) =
(p1, p2, p3, q3, p5, q5, q6, p8, q13, p11, p12, p13, p14, p19, p20). The next pair of points
to be treated is found as p14, p19, where the polylines O, I provide the new RCH
vertices q19 and q21, and then we need OS , IS to discover p15 and also OE , IE
to detect the last RCH vertex p18 which completes the correct determination of
the RCH shown in Fig. 3.

5.4 Pseudocode, Implementation, and Complexity

Figure 4 shows an example where the RCH was calculated by our algorithm
implemented in Matlab R2012a. The example was designed in [16] to contain
several interesting situations, such as a convex cavity of A with vertices of B
inside, a non-convex cavity of A with vertices of B inside, vertices of A inside

Relative Convex Hull from Convex Hulls 57

1: procedure CAV(CH(A), i, s, P1, P2)
2: Initialize local variables u = 0, v = 0, w = 0.
3: Generate the polygon O by all vertices of P1, from CH(A)i up to CH(A)i+1.
4: Form the polyline I by CH(A)i+1, CH(A)i, and all vertices of P2 inside O or

collinear with its frontier with exception of the cover CH(A)i+1CH(A)i. I has N
vertices.

5: if N > 2 then
6: Determine the list CH(I) which has S vertices.
7: Insert between CH(A)i and CH(A)i+1 the vertices of CH(I), with excep-

tion of the first point and CH(A)i, CH(A)i+1.
8: u=S-3
9: s=s+u

10: Generate the polygon OS by CH(A)i, CH(A)i+1 and all vertices of P2
previous to CH(A)i+1 up to a first point found outside O.

11: Form the polygon IS by CH(A)i+u+1, CH(A)i+u and all vertices of P1
inside OS or collinear with its frontier (with exception of the line segment
CH(A)i+u+1CH(A)i+u). IS has NS vertices.

12: if NS > 2 then
13: Determine the list CH(IS) which has S elements.
14: Insert between CH(A)i and CH(A)i+1 the elements of CH(IS) with

exception of the first one and CH(A)i+u+1 and CH(A)i+u.
15: v=S-3
16: s=s+v
17: w=u+v
18: end if
19: Generate the polygon OE by CH(A)i+w+1, CH(A)i+w and all vertices of

P2 subsequent to CH(A)i+w up to the first point found outside O.
20: Form the polygon IE by CH(A)i+w+1, CH(A)i+w and all vertices of

P1 inside OE or collinear with its frontier (with exception of the line segment
CH(A)i+w+1CH(A)i+w). IE has NE vertices.

21: if NE > 2 then
22: Determine the list CH(IE) which has S elements.
23: Insert between CH(A)i+w and CH(A)i+w+1 the elements of the list

CH(IE) with exception of the first one and CH(A)i+w and CH(A)i+w+1.
24: x=S-3
25: s=s+x
26: end if
27: i=i-1
28: end if
29: return CH(A), i, s
30: end procedure

Fig. 6. Pseudocode of the new RCH algorithm (Cavity processing procedure).

58 P. Wiederhold and H. Reyes

interesting parts of B, a part of fr(B) collinear with the frontier of a cavity
of A. In the left part of each figure, both polygons A,B are isothetic and the
difference set (B \ A) looks like a grid continuum, such that in this part we
apply our algorithm to solve the MLP problem. The figure shows that the RCH
problem, even for the MLP case, cannot be solved by the recursion of [4].

Figures 5 and 6 present a pseudocode of our algorithm which is not yet opti-
mized. To estimate the time complexity of our method, suppose that the input
polygons A and B have n and m vertices, respectively. Not only the Melkman-
Algorithm is applied and computes the convex hull of any polyline given as
ordered sequence of k vertices in linear time O(k). In several steps, our method
needs to decide whether a point belongs to the right or left halfplane of a straight
line segment, where the determinant described in Sect. 2 is used. Also it has to
be determined whether a point lies inside or outside a simple polygon given
by its vertex list. When this list corresponds to a clockwise order tracing, then
a point is inside the polygon if it belongs to the right halfplanes of all polygon
edges. Such verifications are needed in our algorithm for polygons given by small
subsets of vertices of A,B, so that their time complexity can be considered as
linear in dependance of m + n.

Up to three distinct convex hulls have to be computed for each “cavity”
intersection of A and B. A has a maximum number of �n/2
 cavities. Each
such cavity of A could have vertices of B inside. These vertices belong to the
set of concave vertices of B which could have almost m elements. This gives a
quadratic time complexity in the worst case. Another problem is the possible
existence of interleaved and interlaced cavities within other cavities. Although
our algorithm is not recursive but iterative, each cavity lying inside another
cavity, when not treated immediately, is detected later when tracing the updated
vertex list CH(A) and then treated. So, as also observed in [4], only in cases
when the “deepness” of such “stacked cavities” is bounded by some constant
and the cavities in general are “well distributed” then our algorithm can present
a nearly linear time complexity behaviour.

6 Conclusion and Future Work

This paper proposes an algorithm for the determination of the list of all ver-
tices of the relative convex hull, for the general situation of given simple plane
polygons A,B such that A ⊂ B. This algorithm does not use triangulation or
similar decompositions of the difference set between B and A as preprocessing.
The ordered input vertex sequences of A and B are processed going forward to
generate the output list of vertices of CHB(A) by inserting points iteratively
into the list of vertices of the convex hull of A.

Near future work previews to complete the formal proof of correctedness of
our algorithm and the solution of some pendent details such as the insertion of
the new vertices found from the convex hull of the polyline I into the current
vertex list CH(A) in the “correct” order, or the treatment of the presence of
collinear (non-consecutive) vertices of A or B, a situation which interestingly is
forbidden for algorithms based on triangulation [25].

Relative Convex Hull from Convex Hulls 59

Acknowledgement. The first author gratefully acknowledges support for this
research from SEP and CONACYT Mexico, grant No. CB-2011-01-166223. The authors
would like to thank very much to the reviewers for their careful study of the work, and
for their constructive criticism and helpful comments which were important to improve
the presentation of the paper.

References

1. Biswas, A., Bhowmick, P., Sarkar, M., Bhattacharya, B.B.: A linear-time combi-
natorial algorithm to find the orthogonal hull of an object on the digital plane. Inf.
Sci. 216, 176–195 (2012)

2. Ishaque, M., Toth, C.D.: Relative convex hulls in semi-dynamic arrangements.
Algorithmica 68(2), 448–482 (2014)

3. Klette, G.: A recursive algorithm for calculating the relative convex hull. In:
Proceedings of 25th International Conference on Image and Vision Computing,
New Zealand, pp. 1-7. IEEE Computer Society (2010). doi:10.1109/IVCNZ.2010.
6148857, 978-1-4244-9631-0/10

4. Klette, G.: Recursive calculation of relative convex hulls. In: Debled-Rennesson, I.,
Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp.
260–271. Springer, Heidelberg (2011)

5. Klette, G.: Recursive computation of minimum-length polygons. Comput. Vis.
Image Underst. 117, 386–392 (2012)

6. Klette, R., Kovalevsky, V., Yip, B.: On the length estimation of digital curves. In:
SPIE Proceedings of Vision Geometry VIII, vol. 3811, pp. 117–129. SPIE (1999)

7. Klette, R.: Multigrid convergence of geometric features. In: Bertrand, G., Imiya,
A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 318–338.
Springer, Heidelberg (2002)

8. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Pic-
ture Analysis. Morgan Kaufmann Publ., Elsevier, USA (2004)

9. Lantuejoul, C., Beucher, S.: On the use of the geodesic metric in image analysis.
J. Microsc. 121(1), 39–49 (1981)

10. Lantuejoul, C., Maisonneuve, F.: Geodesic methods in quantitative image analysis.
Pattern Recoglnition 17(2), 177–187 (1984)

11. Li, F., Klette, R.: Euclidean Shortest Paths, Exact or Approximate Algorithms.
Springer, London (2011)

12. Melkman, A.: On-line construction of the convex hull of a simple polyline. Inf.
Process. Lett. 25, 11–12 (1987)

13. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack,
J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Else-
vier, Amsterdam (2000)

14. Munkres, J.R.: Topology, 2nd edn. Prentice Hall, USA (2000)
15. Provençal, X., Lachaud, J.-O.: Two linear-time algorithms for computing the min-

imum length polygon of a digital contour. In: Brlek, S., Reutenauer, C., Provençal,
X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 104–117. Springer, Heidelberg (2009)

16. Reyes Becerril, H.: Versión revisada de un algoŕıtmo que determina la cubierta con-
vexa relativa de poĺıgonos simples en el plano, Master Thesis. Dept. of Automatic
Control, CINVESTAV-IPN, Mexico City, September 2013

17. Robert, L., Faugeras, O.D.: Relative 3D positioning and 3D convex hull compu-
tation from a weakly calibrated stereo pair. Image Vis. Comput. 13(3), 189–196
(1995)

http://dx.doi.org/10.1109/IVCNZ.2010.6148857
http://dx.doi.org/10.1109/IVCNZ.2010.6148857

60 P. Wiederhold and H. Reyes

18. Sklansky, J.: Recognition of convex blobs. Pattern Recognition 2, 3–10 (1970)
19. Sklansky, J.: Measuring cavity on a rectangular mosaic. IEEE Trans. Comput.

C–21(12), 1355–1364 (1972)
20. Sklansky, J., Kibler, D.F.: A theory of nonuniformly digitized binary pictures.

IEEE Trans. Syst. Man Cybern. 6(9), 637–647 (1976)
21. Sklansky, J., Chazin, R.L., Hansen, B.J.: Minimum perimeter polygons of digitized

silhouettes. IEEE Trans. Comput. 21(3), 260–268 (1972)
22. Sloboda, F., Stoer, J.: On piecewise linear approximation of planar Jordan curves.

J. Comput. Appl. Math. 55, 369–383 (1994)
23. Sloboda, F., Zatco, B., Stoer, J.: On approximation of planar one-dimensional

continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and
Computational Geometry, pp. 113–160. Springer, Singapore (1998)

24. Toussaint, G.T.: An optimal algorithm for computing the relative convex hull of
a set of points in a polygon. In: Proceedings of EURASIP, Signal Processing III:
Theories and Applications, Part 2, pp. 853–856. North-Holland (1986)

25. Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Invited
paper, Special Issue on Geometric Reasoning, Revue D’Intelligence Artificielle 3(2),
9–42 (1989)

26. Toussaint, G.T.: On separating two simple polygons by a single translation. Dis-
crete Comput. Geom. 4(1), 265–278 (1989)

27. Wiederhold, P., Villafuerte, M.: Triangulation of cross-sectional digital straights
segments and minimum length polygons for surface area estimation. In:
Wiederhold, P., Barneva, R.P. (eds.) Progress in Combinatorial Image Analysis,
pp. 79–92. Research Publishing Services, Singapore (2009)

28. Yu, L., Klette, R.: An approximative calculation of relative convex hulls for surface
area estimation of 3D digital objects. ICPR 1, 131–134 (2002)

Spatiotemporal Barcodes for Image
Sequence Analysis

Rocio Gonzalez-Diaz(B), Maria-Jose Jimenez,
and Belen Medrano

Department of Applied Mathematics (I), University of Seville,
Av. Reina Mercedes, s/n, 41012 Seville, Spain

{rogodi,majiro,belenmg}@us.es

Abstract. Taking as input a time-varying sequence of two-dimensional
(2D) binary images, we develop an algorithm for computing a spatiotem-
poral 0–barcode encoding lifetime of connected components on the image
sequence over time. This information may not coincide with the one pro-
vided by the 0–barcode encoding the 0–persistent homology, since the
latter does not respect the principle that it is not possible to move back-
wards in time. A cell complex K is computed from the given sequence,
being the cells of K classified as spatial or temporal depending on whether
they connect two consecutive frames or not. A spatiotemporal path is
defined as a sequence of edges of K forming a path such that two edges
of the path cannot connect the same two consecutive frames. In our
algorithm, for each vertex v ∈ K, a spatiotemporal path from v to the
“oldest” spatiotemporally-connected vertex is computed and the corre-
sponding spatiotemporal 0–bar is added to the spatiotemporal 0–barcode.

Keywords: Persistent homology · Barcodes · Spatiotemporal data ·
Digital image sequence analysis

1 Introduction

Persistent homology [3,5,12] and zigzag persistence [2] provides information
about lifetime of homology classes along a filtration of cell complexes. Such
a filtration might be determined by time in a set of spatiotemporal data. Our
general aim is to compute the “spatiotemporal” topological information of such
filtration, taking into account that it is not possible to move backwards in time
(which is not obvious if we use the known algorithms for computing (zigzag)
persistent homology).

In the context of mobile sensor networks, [4] is devoted to a problem related
with the one posed here: can a moving intruder avoid being detected by the
sensors? If the answer is yes, the path that describes the intruder over time is
called an evasion path. In the study of evasion paths in [4], the region covered

Author partially supported by IMUS, Junta de Andalucia under grant FQM-369,
Spanish Ministry under grant MTM2012-32706 and ESF ACAT program.

c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 61–70, 2015.
DOI: 10.1007/978-3-319-26145-4 5

62 R. Gonzalez-Diaz et al.

by sensors at time t is encoded using Rips complex. A single cell complex SR
is computed by stacking the Rips complexes R(t) for all times t. Theorem 7
of [4] proves that there is no evasion path in a given mobile sensor network
under a “homological” criterion. Using zig-zag persistent homology, an equivalent
condition is provided in [1]. Nevertheless, no general necessary and sufficient
condition for the existence of an evasion path is given. The problem is how to
capture in the cell complex SR, the idea that an intruder cannot move backwards
in time. In [6], the authors analyze time-varying coverage properties in dynamic
sensor networks by means of zigzag persistent homology. Coverage holes are
tracked in the network by using representative cycles of 1–homology classes.

In this paper, we are concerned with the treatment of time-varying sequences
of 2D binary images and the tracking of connected components over time inspired
by persistent homology methods.

An overview of the main tools used in this paper: basics of persistent homol-
ogy and AT-models are given in Sect. 2. We state the problem of computing
the “correct” topological information of spatiotemporal data encoded in a sin-
gle cell complex in Sect. 3, through two simple examples. Our method to solve
the problem in dimension 0 is then introduced in Sect. 4. Cell complexes encod-
ing spatiotemporal information of time-varying sequences of 2D binary images
is given in Sect. 5. We conclude in Sect. 6 and describe possible directions for
future work.

2 Persistent Homology Through AT-models

Roughly speaking, a cell complex K is a general topological structure by which
a space is decomposed into basic elements (cells) of different dimensions that are
glued together by their boundaries (see the definition of CW-complex in [10]). If
the cells in K are p–dimensional cubes (vertices, edges, square faces, cubes, ...)
then K is a cubical complex. The dimension of a cell σ ∈ K is denoted by dim(σ).
A cell μ ∈ K is a p–face of a cell σ ∈ K if μ lies in the boundary of σ and
p = dim(μ) < dim(σ).

A p–chain is a formal sum of p–cells in K. Since we work with coefficients
that are either 0 or 1, we can think of a p–chain as a set of p–cells, namely those
with coefficients equals to 1. In set notation, the sum of two p–chains is their
symmetric difference. The p–chains together with the addition operation form a
group denoted as Cp(K). Besides, the set {Cp(K)}p is denoted by C(K). A set
of homomorphism {fp : Cp(K) → Cp(K ′)}p is called a chain map and denoted
by f : C(K) → C(K ′). Given two p–cells σ ∈ K and σ′ ∈ K ′, we say that
σ′ ∈ f(σ) if σ′ belongs to the p–chain fp(σ) (in set notation). The boundary map
∂ : C(K) → C(K) is defined on a p–cell σ as the sum of its (p − 1)–faces. This
way, for a p–chain, c =

∑
i∈I σi, the boundary of c is the sum of the boundaries

of its cells, ∂pc =
∑

i∈I ∂pσi.
A filtration of K is an increasing sequence of cell complexes: ∅ = K0 ⊂

K1 ⊂ · · · ⊂ Kn = K. The partial ordering given by such a filtration can be
extended to a total ordering of the cells of K: {σ1, . . . , σm}, satisfying that for

Spatiotemporal Barcodes for Image Sequence Analysis 63

each i, 1 ≤ i ≤ m, the faces of σi lies in the set {σ1, . . . , σi}. Then, the map
index : K → Z is defined by index(σi) := i.

Informally, the p–th persistent homology groups [3,12] can be seen as a col-
lection of p–homology classes (representing connected components when p = 0,
holes when p = 1, cavities when p = 2, ...) that are born at or before we go
from Ki−1 to Ki and die after we go from Ki to Ki+1. A p–barcode [7] is a
graphical representation of the p–th persistent homology groups as a collection
of horizontal line segments (bars) in a plane. Axis corresponds to the indices of
the cells in K. For example, if a p–homology class was born at time i (i.e. when
σi is added) and died at time j (1 ≤ i < j ≤ m), then a bar with endpoints (i, i)
and (j, i) is added to the p–barcode.

In [8] the authors establish a correspondence between the incremental algo-
rithm for computing AT-models [9] and the one for computing persistent homol-
ogy. The first approach provides a rich algebraic information encoded by a chain
homotopy operator φ, that “connects” any p–cell to the corresponding surviving
cell.

An AT-model for a cell complex K is a quintuple (f, g, φ,K,H), where:

– K is the cell complex.
– H ⊆ K describes the homology of K, in the sense that it contains a distinct

p–cell for each p–homology class of a basis, for all p. The cells in H are called
surviving cells. The set of all the surviving p–cells together with the addition
operation form the group Cp(H) for all p.

– g : C(H) → C(K) is a chain map that maps each p–cell h in H to one
representative cycle gp(h) of the corresponding homology class [gp(h)].

– f : C(K) → C(H) is a chain map that maps each p–cell in K to a sum of
surviving cells, satisfying that if a, b ∈ Cp(K) are two homologous p–cycles
then fp(a) = fp(b).

– φ : C(K) → C(K) is a chain homotopy (see [11]). Intuitively, for a p–cell
σ, φp(σ) returns the (p + 1)–cells needed to be contracted to “bring” σ to a
surviving p–cell contained in fp(σ).

In the case of a 0–cell v ∈ K, φ0(v) will provide a path in K (a sequence of edges
of K connecting a sequence of different vertices) from the vertex v to the oldest
(i.e., with lowest index) vertex in the same connected component.

3 Stating the Problem

Our general goal is to compute spatiotemporal p–barcodes for a time-varying
sequence of nD binary images in the sense that they can represent evolution
of homology classes over time. In this paper, we focus our effort in computing
spatiotemporal 0–barcodes for time-varying sequences of 2D binary images.

In order to give some intuition about the problem we want to state, let us
consider the simple examples given in Fig. 1, in which two sequences of a few
4–connected pixels appearing, moving and disappearing over time, are shown.

64 R. Gonzalez-Diaz et al.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. Pixels appearing, moving and disappearing over time.

To encode the spatiotemporal information of the two sequences, we construct
associated cell complexes by replacing each pixel by a vertex and adding an edge
between two vertices if:

– The corresponding pixels are 4–connected (in the same frame).
– The vertices correspond to the same pixel at different times.

The resulting cell complexes K and K ′ are shown in Fig. 2.

(a) Cell complex K. (b) Cell complex K′.

Fig. 2. Cell complexes K and K′ obtained, respectively, from the sequence showed in
Fig. 1(a)–(d) and (e)–(h).

Now, to compute 0–persistent homology on these two cell complexes K and
K ′, we should select an appropriate filtration. Since we want to capture the
variation of homology classes over time, we first classify the cells of K and K ′

in spatial and temporal:

– All vertices are spatial (since vertices represent pixels).
– An edge is spatial if its endpoints represent pixels of the same frame.
– If an edge is not spatial then it is temporal.

Therefore, we have the following spatial subcomplexes of K: T1 = {1}, T2 =
{2, 3, 4, 5, 6, 7}, T4 = {9, 10, 11, 12, 13, 14}, T6 = {18}. And the following sets

Spatiotemporal Barcodes for Image Sequence Analysis 65

of temporal cells: T3 = {8}, T5 = {15, 16, 17}, T7 = {19}, where num-
bers correspond to the labels of the cells showed in Fig. 2(a). The filtration
∅ = K0 ⊂ K1 ⊂ · · · ⊂ K7 = K is obtained by interleaving the temporal
cells after the correspondent spatial subcomplexes. That is, Ki = Ki−1 ∪ Ti,
i = 1, . . . , 7.

Besides, the filtration on K ′ coincides with the filtration on K, where num-
bers now correspond to the labels of the cells showed in Fig. 2(b).

If we compute 0–persistent homology of K and K ′ using the above filtrations,
we will obtain, in both cases, that a connected component (0–homology class)
is born when cell 1 is added and survives until the end. So, in both cases, a bar
with endpoints (1, 1) and (19, 1) is added to the 0–barcode.

However, we can observe that Fig. 1(a)–(d) cannot represent a connected
component that is moving from the very beginning until the end while Fig. 1(e)–
(h) can. So we wonder if we could modify the 0–barcode of the first sequence
(Fig. 1(a)–(d)) so that it codifies the connected components that can survive
along time. The idea is to replace the bar with endpoints (1, 1) and (19, 1) by
respective bars from (1, 1) to (13, 1) and from (3, 3) to (19, 3), what will be
formally described in next section.

4 Our Method

In this section, our aim is to design an algorithm to compute the spatiotemporal
0–barcode of a cell complex K encoding spatiotemporal data.

Suppose that K is composed by a stack of (spatial) complexes and a set of
(temporal) cells such that each temporal cell connects two (consecutive) spatial
complexes. Hence, our starting point is a (spatiotemporal) filtration of K, that
is, a filtration ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K such that, for all i, 1 ≤ i ≤ n, the
set Ti = Ki \ Ki−1 is:

– a set of spatial cells if i = 1 or i is even;
– a set of temporal cells if i > 1 is odd.

A spatiotemporal path c in K is a path in K such that #(c ∩ Ti) ≤ 1, for any
i odd, 1 < i ≤ n. That is, there are not two temporal edges connecting the same
consecutive spatial complexes, which follows from the idea that it is not possible
to move backwards in time. Two vertices are spatiotemporally-connected if there
is a spatiotemporal path between them.

Algorithm 1 extends the incremental algorithm for computing AT-models
given in [9]. The eleven last lines of Algorithm 1 are original in this paper.

Although Algorithm 1 follows the same idea behind the algorithm given in [9]
(by which, for each cell σ, φ(σ) “connects” the cell σ to a surviving cell), the
computation of the map φ′ is new in this paper.

In Algorithm 1, we compute a path φ′(v) from v to a surviving cell and, if
φ′(v) is not spatiotemporal, we break it in pieces that are spatiotemporal paths.
Then, a spatiotemporal path φ′(v) is obtained from each vertex v ∈ K to the

66 R. Gonzalez-Diaz et al.

Algorithm 1. Spatiotemporal 0–barcode.
1 Input: An ordering of the cells of K extending the partial ordering imposed by

a spatiotemporal filtration.
2 Output: An AT-model for K and a spatiotemporal 0–barcode B.
3 H := ∅.
4 for i = 1 to m do
5 f(σi) := 0, φ(σi) := 0, φ′(σi) := 0.

6 for i = 1 to m do
7 if f∂(σi) = 0 then
8 f(σi) := σi, g(σi) := σi + φ∂(σi), H := H ∪ {σi}.
9 if dim(σi) = 0 then

10 Add to B a point at (i, i).

11 if f∂(σi) �= 0 then
12 Let σj ∈ f∂(σi) s t. j = max{index(μ) : μ ∈ f∂(σi)}
13 H := H \ {σj}
14 foreach x ∈ K s.t. σj ∈ f(x) do
15 f(x) := f(x) + f∂(σi), φ(x) := φ(x) + σi + φ∂(σi).

16 if dim(σi) = 1 then
17 Let v, w, v′, w′ ∈ K s.t. ∂(σi) = v + w, v′ = ∂φ′(v) + v,

w′ = ∂φ′(w) + w and index(v′) < index(w′).
18 Add to B the bar with endpoints {(index(v′), index(v′)),

(i, index(v′))} and the bar with endpoints {(index(w′), index(w′)),
(i, index(w′))}.

19 if v ∈ T� and w, w′ ∈ T�′ for some �, �′, s.t. 1 ≤ � ≤ �′ ≤ n then
20 foreach x ∈ K, x �= w, w′ s.t. ∂φ′(x) + x = w′ do
21 φ′(x) := φ′(x) + φ′(w) + σi + φ′(v).

22 φ′(w′) := φ′(w) + σi + φ′(v);
23 φ′(w) := σi + φ′(v).

“oldest” spatiotemporally-connected vertex. Regarding the spatiotemporal 0–
barcode, at time i, we elongate a bar only if dim(σi) = 1 and the connected
component that represents the bar is spatiotemporally connected to some of
the endpoints of the edge σi. Otherwise, we do not elongate the bar. This is
different from classical barcodes in which, for example, the bar corresponding
to a connected component that appear in time i and does not merge to other
connected component later, is elongated until the very end.

Proposition 1. If v is a vertex in K then, φ′(v) is a spatiotemporal path.

Proof. Let us prove the proposition by construction. At the beginning of the
algorithm, φ′(v) = 0 for every vertex v ∈ K. Suppose the algorithm is running
and we are in step i, 1 ≤ i ≤ m. Suppose that σi is an edge of K. Then,
∂(σi) = v +w being v and w two vertices of K. Besides, by induction, φ′(v) and

Spatiotemporal Barcodes for Image Sequence Analysis 67

φ′(w) are spatiotemporal paths. Then, ∂φ′(v) + v = v′ and ∂φ′(w) + w = w′ for
some vertices v′ ∈ T� and w′ ∈ T�′ being 1 ≤ �, �′ ≤ n.

We can assume that index(v′) < index(w′). The case index(v′) = index(w′)
can only occur when v′ = w′, what means that f∂(σi) = 0 (a 1-cycle is being
closed) and neither B nor φ′ are modified in this case.

Now, let cw = σ + φ′(v), cw′ = φ′(w) + σ + φ′(v) and cx = φ′(x) + φ′(w) +
σ + φ′(v), for any x ∈ K such that ∂φ′(x) + x = w′. Then, ∂(cw) = w + v′,
∂(cw′) = w′ + v′ and ∂(cx) = x + v′. We have to consider the following cases:

– If σi is spatial, then σi, v, w ∈ Tj for some j, 1 ≤ j ≤ n. We have to consider
the following cases:

• If �′ < j then φ′ is not updated.
• If �′ = j then φ′(x) ⊆ Tj for any x ∈ K s.t. ∂φ′(x)+x = w′ and, therefore,

cw, cw′ and cx are spatiotemporal paths.
– If σi is temporal, then v ∈ Tj and w ∈ Tj′ for some j
= j′, 1 ≤ j, j′ ≤ n.

• If j < j′. We consider two cases:
∗ If �′ = j′ then φ′(x) ⊆ Tj′ for any x ∈ K s.t. ∂φ′(x) + x = w′ and,

therefore, cw, cw′ and cx are spatiotemporal paths.
∗ If �′ < j′ then φ′ is not updated.

• If j′ < j then φ′ is not updated. �

Fig. 3. Top: Three simple examples of stacked cubical complexes (t being the tempo-
ral dimension). Middle: The associated spatiotemporal barcodes obtained by applying
Algorithm1. Bottom: The spatiotemporal paths of the longest-lived 0–homology classes
(in blue) (Color figure online).

68 R. Gonzalez-Diaz et al.

5 Spatiotemporal Representation of Image Sequences

In this section, we explain how to compute a spatiotemporal filtration represent-
ing a time-varying sequence of 2D binary images, inspired by the stack complexes
described in [1,4].

Consider Z
2 as the set of points with integer coordinates in 2D space R

2.
A 2D binary image is a set I = (Z2, 8, 4, B), where B ⊂ Z

2 is the foreground,
Bc = Z

2\B the background, and (8, 4) is the adjacency relation for the foreground
and background, respectively. A point p ∈ Z

2 can be interpreted as a unit closed
square (called pixel) in R

2 centered at p with edges parallel to the coordinate
axes. The set of pixels centered at the points of B together with their faces
(edges and vertices) constitute a cubical complex denoted by Q(I). A p–cell in
I can be identified by its barycentric coordinates (xσ, yσ) ∈ R

2.
Following the construction given in [4], a cubical complex in which consecu-

tive images are stacked to include a third, temporal dimension, is defined.

Definition 1. Consider a sequence of 2D binary images S = {I1, . . . , In} and
the associated (2D) cubical complexes Q(I1), . . . , Q(In). The stacked (3D) cubical
complex SQ[S] is obtained as follows. Let Q(Ii) × {i}, 1 ≤ i ≤ n, be the cubical
complex obtained by adding a third coordinate i to the barycentric coordinates of
the cells of Q(I). Initially, SQ[S] =
n

i=1(Q(Ii) × {i}). Now, if a p-cell σ with
barycentric coordinates (xσ, yσ) belongs to Q(Ii)∩Q(Ii+1) for some i, 1 ≤ i < n,
add to SQ[S] the (p + 1)–cell τ = σ × [i, i + 1]. This way, the barycentric coor-
dinates of τ are (xσ, yσ, i + 1

2).

Fig. 4. A sequence S of two 2D images, the associated 3D cubical complexes SQ[S]
and DQ[S] and the corresponding spatiotemporal 0–barcodes.

Since each cell σ ∈ SQ[S] can be identified by its barycentric coordinates
(xσ, yσ, tσ) ∈ R

3, then σ is spatial if, for some i ∈ Z, tσ = i; and it is temporal

Spatiotemporal Barcodes for Image Sequence Analysis 69

otherwise. For example, a cube τ ∈ SQ[S] is always temporal, and with respect
to its faces we find: 6 spatial vertices; 8 spatial and 4 temporal edges; and 2
spatial and 4 temporal squares.

Let us denote by Q(Ii, Ii+1) the set of temporal cells with faces in Q(Ii) and
Q(Ii+1). The spatiotemporal filtration ∅ ⊂ SQ0 ⊂ SQ1 ⊂ · · · ⊂ SQn = SQ[S]
is given by: SQi = Q(I1), if i = 1; SQi = SQi−1 ∪ Q(Ij+1), if i = 2j and j > 0;
and SQi = SQi−1 ∪ Q(Ij , Ij+1), if i = 2j + 1 and j > 0.

Figure 3 shows three simple examples of stacked cubical complexes. The asso-
ciated spatiotemporal 0–barcodes are computed using Algorithm 1. From left to
right, the first and second spatiotemporal 0–barcodes have only one long bar,
while third one has two. Notice that in this last case, the classical 0–barcode
would produce only one long bar.

Observe that we could construct the 3D cubical complex DQ[S], just con-
sidering every pixel centered at point (x, y, t) as a voxel (unit cube with faces
parallel to the coordinate planes) centered at point (x, y, t). We have the follow-
ing result:

Proposition 2. Given a sequence of 2D binary images S = {I1, . . . , In}, the
3D cubical complexes SQ[S] and DQ[S] are homotopy equivalent.

Proof. In our approach, to construct the 3D cubical complex SQ[S], we build a
cube only when two pixels in same spatial locations (i.e., with identical barycen-
tric coordinates) belong to two consecutive frames; the other approach is to con-
sider pixels as voxels (cubes) to directly obtain a 3D cubical complex DQ[S] (see
Fig. 4). To prove that SQ[S] and DQ[S] are homotopy equivalent, we describe
how to collapse one complex, DQ[S], to the other one, SQ[S]. For this aim, we
first apply the translation τ(x, y, t) = (x, y, t + 1/2) to cells in DQ[S]. Consider
a pixel (square cell) σ ∈ SQ[S] centered at (xσ, yσ, tσ) that belongs to a cube c
centered at (xσ, yσ, tσ + 1/2) in SQ[S]. Let cσ be the voxel in DQ[S] centered
at (xσ, yσ, tσ). Then clearly τ(cσ) = c ∈ SQ[S]. Now, the idea is to successively
collapse all the cells that are in τ(DQ[S]) but not in SQ[S]. First, if σ does not
belong to any cube in SQ[S] centered at (x, y, t) with t = tσ +1/2, then collapse
the square face centered at (xσ, yσ, tσ + 1) in DQ[S]. Similarly if an edge e of σ
centered at (xe, ye, tσ) does not belong to any cube in SQ[S] centered at (x, y, t)
with t = tσ + 1/2, then collapse the edge centered at (xe, ye, tσ + 1). Finally, if a
vertex v of σ with coordinates (xv, yv, tσ) does not belong to any cube in SQ[I]

Fig. 5. A sequences of collapses starting from the complex DQ[S] and ending at the
complex SQ[S]. First, 4 square faces collapse, then 12 edges collapse and finally, 9
vertices collapse.

70 R. Gonzalez-Diaz et al.

centered at (x, y, t) with t = tσ + 1/2, then collapse the vertex with coordinates
(xv, yv, tσ + 1). See Fig. 5. �

In this paper, we use the construction SQ[S] instead of DQ[S] because we
considered that, in SQ[S], the notion of spatial and temporal cells is more intu-
itive.

6 Conclusions and Future Work

In this paper, we have computed a modified 0–barcode for a temporal sequence
of 2D binary images respecting the time nature of the data. This is part of an
ongoing project to define and compute spatiotemporal p–barcodes for sequences
of nD binary images.

Acknowledgments. We want to thank the valuable suggestions and comments made
by the reviewers to improve the final version of this paper.

References

1. Adams, H., Carlsson, G.: Evasion paths in mobile sensor networks. I. J. Rob. Res.
34(1), 90–104 (2015)

2. Carlsson, G.E., de Silva, V.: Zigzag persistence. Found. Comput. Math. 10(4),
367–405 (2010)

3. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. In: FOCS 2000, pp. 454–463. IEEE Computer Society (2000)

4. de Silva, V., Ghrist, R.: Coordinate-free coverage in sensor networks with controlled
boundaries via homology. I. J. Rob. Res. 25(12), 1205–1222 (2006)

5. Edelsbrunner, H., Harer, J.: Computational Topology - An Introduction. American
Mathematical Society, Providence (2010)

6. Gamble, J., Chintakunta, H., Krim, H.: Coordinate-free quantification of coverage
in dynamic sensor networks. Sign. Proces. 114, 1–18 (2015)

7. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45,
61–75 (2008)

8. Gonzalez-Diaz, R., Ion, A., Jimenez, M.J., Poyatos, R.: Incremental-decremental
algorithm for computing AT-models and persistent homology. In: Real, P., Diaz-
Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part
I. LNCS, vol. 6854, pp. 286–293. Springer, Heidelberg (2011)

9. Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete
Appl. Math. 147(2–3), 245–263 (2005)

10. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
11. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley Co., Reading (1984)
12. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput.

Geom. 33(2), 249–274 (2005)

Characterization and Construction of Rational
Circles on the Integer Plane

Papia Mahato(B) and Partha Bhowmick

Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India

papiamahatostar@gmail.com, bhowmick@gmail.com

Abstract. Discretization of geometric primitives in the integer space
is a well-researched topic in the subject of digital geometry. In this
paper, we present some novel results related to discretization of cir-
cles on the integer plane when the center and the radius are specified
by arbitrary rational numbers. These results reveal elementary number-
theoretic properties of rational circles on the integer plane and lead to
useful characterization in terms of certain integer intervals defined by
the circle parameters. We show how it finally culminates to an efficient
algorithm for construction of rational circles using integer operations.
Related experimental results exhibit interesting similitudes between the
characteristic patterns of rational circles and those of integer circles.

Keywords: Discrete circle · Rational circle · Discrete curve · Digital
geometry · Number theory

1 Introduction

Amongst different geometric primitives on the integer plane, one of the most
important primitives is circle. As it is discretized on the integer plane by an
optimum set of integer points or pixels, which are well-connected in a partic-
ular topological model, it is referred to as discrete or digital circle. It is found
to possess interesting digital-geometric properties that are derivable by digital
calculus and elementary number theory [1,4,10,15]. These properties provide
analytical insights on the composition of a digital circle, which can be harnessed
to make out efficient solutions to many algorithmic and application-bound prob-
lems in computer graphics, image analysis, and computer vision. There exists a
multitude of work related to digital circle in these areas, some of which can be
seen in [1–5,8,9,11–13,15] and the bibliographies therein.

In this paper, we present a novel study on some of the elementary number-
theoretic properties of digital circle when its center and radius are specified by
rational numbers. To the best of our knowledge, this is the first work related to
this problem. Its motivation lies in the fact that with rational specification of
digital circle, we can design an efficient integer-based algorithm, which guaran-
tees a correct output for any input. A real specification, on the contrary, does
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 71–85, 2015.
DOI: 10.1007/978-3-319-26145-4 6

72 P. Mahato and P. Bhowmick

(a) c = (0, 0) (b) c = (1
8
, 1
4
) (c) c = (3

7
, 30
61

)

Fig. 1. Instances of three naive circles for radius ρ = 12. Notice that, in spite of fixed
integer radius, the symmetry of the circle in (a) gets lost in (b, c), as the center c moves
away from (0, 0).

not guarantee this due to finite precision of the computing environment. Based
on the proposed number-theoretic properties, we derive a simple-yet-effective
number-theoretic characterization of a digital circle in terms of certain integer
intervals defined by the circle parameters. We show how it eventually champi-
ons to an efficient integer algorithm by dint of its computational adequacy with
simple integer operations. Figure 1 shows a small set of results produced by our
algorithm, which indicate the inherent intricacies and asymmetries in digital
circles when they are specified by rational parameters.

The paper is organized as follows. In Sect. 1.1, we explain the preliminary
concepts and the theoretical framework adopted in our work. In Sect. 2, we
derive some of the number-theoretic properties of naive rational circle. In Sect. 3,
we extend the above properties to derive integer intervals and a set of useful
recurrences, which leads to an efficient algorithm for construction of the circle
using integer operations. In Sect. 4, we present some test results, which show
a strong similarity in the characteristic patterns between the family of naive
rational circles and that of naive integer circles, although the former is found to
be asymmetric opposed to the latter. We discuss few interesting open problems in
that section, which can be pursued to invent further properties of naive rational
circles.

1.1 Preliminaries

We fix here some basic definitions and metrics in 2D space, which are used in
the sequel. For further details, we refer to [10].

An integer point means a point with integer coordinates. A pixel or 2-cell,
which is perceived as a unit square on xy-plane, is thus uniquely identified by
its center, as it is an integer point. Two pixels are said to be 0-adjacent if they
share (at least) a vertex (0-cell) and 1-adjacent if they share an edge (1-cell).
A digital curve is either 0- or 1-connected on the digital plane. A 0-connected

Naive Rational Circles 73

+x−x

+y

−y

o

x = y

x = −y

1

2

3

45

6

7

8 p(i, j) ∈ Z2

δ � 1
2

q

y = j

x = i

C(ρ, c)
y = j − 1

y = j − 1
2

)b()a(

Fig. 2. (a) Eight octants defined w.r.t. o = (0, 0). (b) For each p(i, j) ∈ C1(ρ, c), there
is a point q(i, j − δ) ∈ C(ρ, c), where − 1

2
≤ δ ≤ 1

2
.

curve is a sequence of pixels such that every two consecutive pixels are 0-adjacent.
For a 1-connected curve, every two consecutive pixels in the sequence have to be
1-adjacent.

Between two points p(i, j) and p′(i′, j′), x-distance and y-distance are given
by dx(p, p′) = |i − i′| and dy(p, p′) = |j − j′| respectively. Consequently, the iso-
thetic distance between p and p′ is taken as the Minkowski norm [10], given
by d∞(p, p′) = max{dx(p, p′), dy(p, p′)}. The isothetic distance of the point
p(i, j) from a 2D curve C is given by d⊥(p, C) = min{dx(p, C), dy(p, C)}; here,
dx(p, C) = dx(p, q) if there exists a (the nearest, if there is more than one) point
q(x, j) on C, and ∞ otherwise; and dy(p, C) = dy(p, q) if there exists a point
q(i, y) on C, and ∞ otherwise.

We denote by Ot the tth octant, where 1 ≤ t ≤ 8. A simple illustration
is shown in Fig. 2a. So, t(mod 4) ∈ {0, 1} for O1, O8, O4, and O5; and t(
mod 4) ∈ {2, 3} for O2, O3, O6, and O7. Notice that |i| ≤ |j| for the former
case and |j| ≤ |i| for the latter. We define h as (absolute value of) the major
coordinate corresponding to each octant, i.e., h = |j| for the former case and
h = |i| for the latter. For a digital curve or a digital circle C, we denote by hmax

the maximum value of h over all points of C in a particular octant. So, hmax

assumes the maximum value of |j| in C if t(mod 4) ∈ {0, 1}, and the maximum
value of |i| in C if t(mod 4) ∈ {2, 3}.

2 Naive Rational Circle

A digital circle means a set of integer points obtained by discretization of a real
circle [4]. Depending on the topological model used for discretization, a digital
circle (or any digital curve, in general) can be of different types [7,15]. Our work
is focused on naive circle, which is 0-connected digital circle with minimum
number of pixels.

74 P. Mahato and P. Bhowmick

A (naive) digital circle is said to be integer circle if the corresponding real
circle has integer radius and integer center [14]. When the real circle has rational
radius and rational center, we call its discretization as naive rational circle. We
denote by C(ρ, c) the real circle and by C(ρ, c) the naive rational circle having
radius ρ ∈ Q and center c = (xc, yc) ∈ Q2, where Q represents the set of rational
numbers. We use Ct(ρ, c) and Ct(ρ, c) to denote the arcs of C(ρ, c) and of C(ρ, c)
lying in Ot, where t = 1, 2, . . . , 8.

We assume ρ = r + r1
r2

, xc = i1
i2

, yc = j1
j2

, where 0 ≤ r1
r2

, i1
i2

, j1
j2

< 1, and
r, r1, r2, i1, i2, j1, j2 are all positive integers. Note that if r1

r2
= i1

i2
= j1

j2
= 0, then

the naive rational circle just becomes a naive integer circle. We define naive
rational circle as follows.

Definition 1. A naive rational circle C(ρ, c) is the 0-connected set of integer
points obtained by discretization of C(ρ, c) such that each point has an isothetic
distance of at most 1

2 from C(ρ, c).

A naive integer circle has eight symmetric octants [4]. Hence, it can be gener-
ated by reflecting its integer points in the 1st octant to other seven octants about
the lines of symmetry. In case of a naive rational circle, this symmetry may not
be present, which makes its generation more difficult compared to generation of
an integer circle.

2.1 Number-Theoretic Properties

We introduce here some general theoretical results when a circle is specified
by real radius and real center. Hence, these results are applicable also for any
rational specification. For discretization of a real circle C(ρ, c) to the naive circle
C(ρ, c), we first derive an equation for each of the eight octants. We use these
equations to obtain the canonical representation of the complete naive circle. We
first introduce the following lemma.

Lemma 1. An integer point p(i, j) belongs to C1(ρ, c) if and only if

ρ2 − (j − yc)2 − (j − yc) − 1
4

≤ (i − xc)2 ≤ ρ2 − (j − yc)2 + (j − yc) − 1
4
. (1)

Proof. Let p(i, j) be a point of C1(ρ, c) and (i, j − δ) be the point of intersection
of the real circle C(ρ, c) with the vertical line x = i in the first octant as shown
in Fig. 2b. Then by Definition 1, we get − 1

2 ≤ δ ≤ 1
2 . Now, (i, j − δ) lies on

C1(ρ, c)

⇔ (i − xc)
2 + (j − δ − yc)

2 = ρ2

⇔ δ = (j − yc) −
√

ρ2 − (i − xc)
2

⇔ −1
2

≤ (j − yc) −
√

ρ2 − (i − xc)
2 ≤ 1

2
,

whence the condition follows. ��

Naive Rational Circles 75

Lemma 1 provides all the integer points of C(ρ, c) belonging to the first octant.
A similar result is given in [9, Eq. 2] for center and radius in the real domain. For
rational circle, we require Lemma 1 for its definiteness, which leads to several
theoretical results presented in the forthcoming sections. We first extend this
lemma to get similar equations for each of the eight octants, as stated in the
following theorem.

Theorem 1. An integer point p(i, j) belongs to Ct(ρ, c) if and only if

ρ2 − (M +
1
2
)2 ≤ m2 ≤ ρ2 − (M − 1

2
)2 (2)

where,

M =
{ |j| − σyyc if t mod 4 ∈ {0, 1}

|i| − σxxc otherwise,

m =
{ |i| − σxxc if t mod 4 ∈ {0, 1}

|j| − σyyc otherwise,

σx =
i

|i| and σy =
j

|j| .

Proof. By Lemma 1, we get the result for first octant. For each other octant, we
can show the result with appropriate substitution of σx and σy, and adding or
subtracting xc and yc from |i| and |j|, depending on the combination of i and j
considering their relative values and signs. ��

Theorem 1 can be used to decide whether a given integer point belongs to
the naive circle of a given radius and center. However, it does not lead to the
requisite conditions that can be used to design an algorithm for construction
of a naive circle. Such conditions, in particular, are certain recurrences from
where the integer points comprising the digital circle can be computed efficiently
with simple integer operations only. Hence, we extend this theorem for further
refinement, as stated shortly in Theorem 2. For proof of this theorem, we need
the following lemmas.

Lemma 2. For an octant Ot,

hmax =

⎧
⎪⎪⎨

⎪⎪⎩

r − 1 if βc ∈ (−1,−1
2]

r if βc ∈ (−1
2 , 1

2]
r + 1 if βc ∈ (12 , 3

2]
r + 2 if βc ∈ (32 , 2)

where,

βc =
{

ρ − r + σyyc if t mod 4 ∈ {0, 1}
ρ − r + σxxc otherwise.

Proof. W.l.o.g., we prove it for O1. Observe that in O1, hmax = �ρ + yc	 =
r + �(ρ − r) + yc	, which becomes r, r + 1, or r + 2, depending on whether
(ρ − r) + yc lies in (−1,− 1

2], (− 1
2 , 1

2], (12 , 3
2], or (32 , 2), respectively. ��

76 P. Mahato and P. Bhowmick

Lemma 3. An integer point (i, hmax − k)belongs to C1(ρ, c) if and only if
(i − xc)

2 lies in the interval Qk = [ρ2 − r2k − rk − 1
4 , ρ2 − r2k + rk − 1

4], where
rk = hmax − k − yc and k is a non-negative integer.

Proof. By setting j = hmax − k in Lemma 1, the point (i, hmax − k) belongs to
C1(ρ, c) if and only if (i − xc)

2 lies in the given interval. Hence the proof. ��
By Lemma 3, we get the integer points of C(ρ, c) only in the first octant,

on setting k = 0, 1, 2, To get the points of C(ρ, c) in the remaining octants,
we have to generalize the result of the above lemma, as stated in the following
theorem.

Theorem 2. An integer point (i, j) belongs to Ct(ρ, c) if and only if m2 lies in
the interval Qk = [ρ2 − (rk + 1

2)2, ρ2 − (rk − 1
2)2], where

|j| = hmax − k if t mod 4 ∈ {0, 1}
|i| = hmax − k otherwise,

rk =
{

hmax − k − σyyc if t mod 4 ∈ {0, 1}
hmax − k − σxxc otherwise,

k ≥ 0, and m follows the equation given in Theorem 1.

Proof. By Lemma 3, we get the result for O1. For each other octant, we get the
result by considering an appropriate value of rk. ��

The above theorem gives us the intervals in the domain of rationals from
where we can compute the integer points that constitute a naive circle. To sim-
plify the computation, we make further refinement of the intervals so that they
are in the integer domain. This is explained in the next section.

3 Integer Intervals and the Algorithm

By Theorem 2, we get the intervals in the domain of rationals. We obtain integer
intervals from these rational intervals using appropriate multiplication by the
denominators of the rational terms. For this, we introduce the following six
terms.

kc = 2r2i2j2 (3a)
k1 = 2r1i2j2 (3b)
k2 = 2r2i2j1 (3c)

k3 = 4r22i
2
2j1j2 (3d)

k4 = r22i
2
2j

2
2 (3e)

k5 = 2i1r2j2 (3f)

Note that the formulas given above for k2, k3, k5 are for O1 and they are gener-
alized later for other octants. The formulas of all other terms are applicable for
all octants. We use the above terms in the following lemma.

Naive Rational Circles 77

Lemma 4. An integer point (i, j) belongs to C1(ρ, c) if and only if

(rkc + k1)2 − (jkc − k2)2 − (jk2
c − k3) − k4 ≤ (ikc − k5)2 ≤

(rkc + k1)2 − (jkc − k2)2 + (jk2
c − k3) − k4. (4)

Proof. By Lemma 1 and by multiplying Eq. 1 by k2
c , we get the result. ��

Lemma 4 provides the integer intervals to find all the integer points of C(ρ, c)
lying in the first octant. We extend this lemma to get similar equations for each
of the eight octants. We introduce M1,M2,m1, and generalize the formulations
of k2, k3, k5, and use them in the subsequent theorems.

k2 =
{

2r2i2j1 if t mod 4 ∈ {0, 1}
2r2i1j2 otherwise (5a)

k3 =
{

4r22i
2
2j1j2 if t mod 4 ∈ {0, 1}

4r22j
2
2 i1i2 otherwise (5b)

k5 =
{

2i1r2j2 if t mod 4 ∈ {0, 1}
2j1r2i2 otherwise (5c)

M1 =
{ |j|kc − σyk2 if t mod 4 ∈ {0, 1}

|i|kc − σxk2 otherwise (5d)

M2 =
{ |j|k2

c − σyk3 if t mod 4 ∈ {0, 1}
|i|k2

c − σxk3 otherwise (5e)

m1 =
{ |i|kc − σxk5 if t mod 4 ∈ {0, 1}

|j|kc − σyk5 otherwise (5f)

Theorem 3. An integer point (i, j) belongs to Ct(ρ, c) if and only if

(rkc + k1)2 − M2
1 − M2 − k4 ≤ m2

1 ≤ (rkc + k1)2 − M2
1 + M2 − k4. (6)

Proof. By Lemma 4, we get the result for 1st octant. For each other octant, we
get the result with appropriate substitution of σx, σy, and the coefficients and
the related terms given in (3a), (3b), (3e), (5). ��

To get the integer points in the all the octants using only integer operations,
we need the following theorem.

Theorem 4. Let (i, j) be an integer point in Ot such that |j| = hmax − k if
t mod 4 ∈ {0, 1} and |i| = hmax − k otherwise, for k ≥ 0. Then the point (i, j)
belongs to Ct(ρ, c) if and only if m2

1 lies in the interval Ik = [uk, vk := uk+lk−1],
where uk and lk are given as follows.

uk =
{

(rkc + k1)2 − M1(k=0) − M2(k=0) − k4 ifk = 0
uk−1 + lk−1 − 1 otherwise

lk =
{

2M2(k=0) + 1 if k = 0
lk−1 − 2k2

c otherwise

(7)

78 P. Mahato and P. Bhowmick

(a) c = (0, 0) (b) c = (0, 1
4
) (c) c = (1

4
, 0)

(d) c = (1
4
, 1
2
) (e) c = (1

2
, 1
4
) (f) c = (1

2
, 1
2
)

Fig. 3. Naive circles for radius 10 with different centers.

Proof. We use Theorem 3 to derive u0 by substituting k = 0 in (5d) and (5e). By
Theorem 3 again, we get lk = vk−uk+1 = 2M2+1, which becomes 2M2(k=0)+1
when we substitute k = 0 in (5e).

To get the recurrence of uk, observe that M1 and M2 depend on |i| or |j|,
and hence on k, whereas kc, k1, k4 do not. Further, for every unit increment of
k, it follows from (3) and (5) that vk−1 − uk = −M2

1 (k−1) + M2(k−1) + M2
1 (k) +

M2(k) = 0. Hence, uk = vk−1 = uk−1 + lk−1 − 1.
To get the recurrence of lk, observe that lk = 2M2k + 1, as explained above.

Hence, lk − lk−1 = 2M2k − 2M2k−1 = 2k2
c by (5e).

All these holds for t ∈ {1, 2, . . . , 8}, and hence the proof. ��

3.1 Algorithm for Naive Circle

Naive circles with non-zero rational values of center coordinates do not follow the
property of 8-symmetry. Hence, to generate a naive circle, we need to consider
its octants one by one and have to use the recurrences given in Theorem 4. The
steps are shown in Algorithm 1.

In Algorithm 1, the for loop (Line 2) considers a particular octant in one
iteration. In each iteration, the procedure initializeParameters sets the initial
values of the necessary parameters (Line 3). Subsequently, the values of the

Naive Rational Circles 79

(a) ρ = r = 9 (b) ρ = 9 1
2

(c) ρ = 9 3
4

(d) ρ = 10 1
4

(e) ρ = 10 1
2

(f) ρ = 10 3
4

Fig. 4. Naive rational circles centered at (0, 0) with gradually increasing radius.

parameters defining an integer interval are initialized in Line 4–Line 6. The
value of the first square number in that interval is set in Line 7. After this, the
algorithm works depending on whether the octant has |i| ≤ |j| or |j| ≤ |i|. This
is determined by the condition of the if statement in Line 8.

The while loop (Line 9 or Line 24) generates the runs of the integer points
in different iterations. (A run means a sequence of points with same x- or
y-coordinate.) Inside the while loop, there is repeat-until loop (Line 10 or
Line 25) that computes the points of the k(≥ 0)th run of Ct using the inte-
ger interval Ik := [uk, vk]. For every perfect square s generated in succession,
the condition of the if statement (Line 11 or Line 26) decides whether s lies in
Ik and if so, the procedure drawPoint includes the corresponding point in C.
After generation of all the points in kth run, the parameters are updated in
Line 17–Line 22 or in Line 32–Line 37 to compute the points in (k + 1)th run.

4 Experimental Results and Conclusion

We present here some results of naive rational circles produced by Algorithm 1.
These results show the symmetry and the asymmetry of the circles when they
are specified by integer parameters and non-integer parameters. In Fig. 3, all the
circles have identical integer radius but different centers. When the center c is an

80 P. Mahato and P. Bhowmick

Fig. 5. Naive rational circles concentric at (1
5
, 2
7
), radius ρ = 1 1

8
, 2 1

8
, . . . , 30 1

8
, shown

alternately in green and yellow (Color figure online).

integer point (Fig. 3a), the circle is 8-symmetric. The 8-symmetry is destroyed
when c is not an integer point. However, if one between x- and y-coordinates
of c is integer, then the circle has a partial symmetry. For example, in Fig. 3b,
xc = 0, yc = 1

4 , and so the circle is symmetric about y-axis. Similarly in Fig. 3c,
it is symmetric about x-axis, as xc = 1

4 , yc = 0. But in Fig. 3d–f, it is asymmetric
about both the coordinate axes, since xc and yc are both non-zero.

Figure 4 shows a sequence of 6 naive rational circles for radius increasing
gradually from 9 to 103

4 . The 8-symmetry is present for all these circles, since
the center is an integer point. It may be noticed that there are common pixels
between every two consecutive circles in this sequence, since their radii differ by
1
4 or 1

2 .
When two radii differ by unity, two concentric circles are always disjoint, as

there is no common pixel between them. This is true irrespective of whether
their common center is an integer point or a non-integer point. This is clearly
depicted in the results shown in Fig. 5, which contains a set of circles concentric
at a rational center with radius increasing by unity. It forms an interesting

Naive Rational Circles 81

(a) ρ = 1, 2, . . . , 30, c = (0, 0)

(b) ρ = 1 1
4
, 2 1

4
, . . . , 30 1

4
, c = (0, 0)

(a) ρ = 1 1
4
, 2 1

4
, . . . , 30 1

4
, c = (1

3
, 2
5
)

Fig. 6. Gaps (white pixels) while covering a digital disc by concentric digital circles.

82 P. Mahato and P. Bhowmick

Fig. 7. An example showing no gaps for a set of naive rational circles concentric at
(1
5
, 2
7
), radius ρ(= r + r1

r2
) = 5

8
, 1 1

8
, 1 5

8
, 2 1

8
, 2 5

8
, . . . , 30 5

8
. Pixels are shown in green and

in yellow for odd and even values of r, respectively (Color figure online).

similitude of naive rational circles with naive integer circles, since the latter
class also exhibits the aforesaid disjoint-circle property, as shown in [3].

Another similitude between the class of naive rational circles and the class of
naive integer circles is that there are gaps in a set of circles in both the classes
when the circles have consecutive radii differing by unity1. This is depicted
through the results in Fig. 6. For the integer class, related theoretical results
on gap characterization can be seen in [3]. Figure 6a shows a result for this class,
and Fig. 6b–c shows results for the rational class. Notice that the gaps are quite
asymmetric as the center moves away from an integer point. Characterization of
the gaps for the rational class, as we can foresee, would be an interesting work
related to covering of rational discs by naive rational circles.

In Fig. 7, we have shown a set of naive rational circles, which are concentric
and having radius increasing in steps of 1

2 . The resultant set contains no gap,

1 In 2D discretization, a gap means a missing 2-cell [6]; it is also termed as absentee
in [3].

Naive Rational Circles 83

Algorithm 1. DrawNaiveCircle

Input: Radius ρ = r + r1
r2

, center c = (i1
i2

, j1
j2

)
Output: Naive circle

1 int i, j, M1, M2, m1, kc, k1, k2, k3, k4, k5, uk, vk, lk, s
2 for t ← 1 to 8 do
3 initializeParameters

4 uk ← (rkc + k1)
2 − M2

1 − M2 − k4 � Theorem 3

5 lk ← 2M2 � Theorem 4

6 vk ← uk + lk � Theorem 4

7 s ← m2
1

8 if t mod 4 ∈ {0, 1} then
9 while i ≤ j do

10 repeat
11 if uk ≤ s ≤ vk then
12 drawPoint(i, j)

13 i ← i + 1
14 m1 ← ikc − σxk5 � Equation 5f

15 s ← m2
1

16 until s > vk;
17 uk ← vk
18 lk ← lk − 2k2

c � Theorem 4

19 vk ← vk + lk � Theorem 4

20 j ← j − 1
21 m1 ← ikc − σxk5 � Equation 5f

22 s ← m2
1

23 else
24 while j ≤ i do
25 repeat
26 if uk ≤ s ≤ vk then
27 drawPoint(i, j)

28 j ← j + 1
29 m1 ← jkc − σyk5 � Equation 5f

30 s ← m2
1

31 until s > vk;
32 uk ← vk
33 lk ← lk − 2k2

c � Theorem 4

34 vk ← vk + lk � Theorem 4

35 i ← i − 1
36 m1 ← jkc − σyk5 � Equation 5f

37 s ← m2
1

and hence successfully covers the disc. A pertinent issue is, therefore, whether a
digital disc can always be covered by a set of concentric naive rational circles with
radius increasing in this manner. In particular, we have the following question:

84 P. Mahato and P. Bhowmick

Procedure initializeParameters
1 int a, b
2 if 1 ≤ t mod 8 ≤ 4 then
3 σx ← 1

4 else
5 σx ← −1

6 if 0 ≤ (t + 1) mod 8 ≤ 3 then
7 σy ← 1

8 else
9 σy ← −1

10 if t mod 4 ∈ {0, 1} then
11 a ← 2(r1j2 + σyr2j1), b ← r2j2

12 else
13 a ← 2(r1i2 + σxr2i1), b ← r2i2

14 if a ≤ −b then
15 hmax ← r − 1

16 else if −b < a ≤ b then
17 hmax ← r

18 else if b < a ≤ 3b then
19 hmax ← r + 1

20 else
21 hmax ← r + 2

22 kc ← 2r2i2j2, k1 ← 2r1i2j2, k4 ← r22i
2
2j

2
2 � Equations 3a, 3b, 3c

23 if t mod 4 ∈ {0, 1} then
24 i ← 0, j ← hmax

25 k2 ← 2r2i2j1, k3 ← 4r22i
2
2j1j2, k5 ← 2i1r2j2 � Equations 5a- 5c

26 M1 ← jkc −σyk2, M2 ← jk2
c −σyk3, m1 ← ikc −σxk5 � Equations 5d- 5f

27 else
28 i ← hmax, j ← 0
29 k2 ← 2r2i1j2, k3 ← 4r22j

2
2 i1i2, k5 ← 2j1r2i2 � Equations 5a- 5c

30 M1 ← ikc − σxk2, M2 ← ik2
c − σxk3, m1 ← jkc − σyk5 � Equations 5d- 5f

what should be the maximum step in radius increment so that a digital disc can
always be covered by a set of concentric circles in the rational class?

References

1. Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706
(1994)

2. Andres, E., Roussillon, T.: Analytical description of digital circles. In:
Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011.
LNCS, vol. 6607, pp. 235–246. Springer, Heidelberg (2011)

Naive Rational Circles 85

3. Bera, S., Bhowmick, P., Stelldinger, P., Bhattacharya, B.: On covering a digital
disc with concentric circles in Z2. Theoret. Comput. Sci. 506, 1–16 (2013)

4. Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construc-
tion of a digital circle. Discrete Appl. Math. 156(12), 2381–2399 (2008)

5. Bhowmick, P., Pal, S.: Fast circular arc segmentation based on approximate circu-
larity and cuboid graph. J. Math. Imaging Vis. 49(1), 98–122 (2014)

6. Brimkov, V.E.: Formulas for the number of (n − 2)-gaps of binary objects in arbi-
trary dimension. Discrete Appl. Math. 157(3), 452–463 (2009)

7. Brimkov, V.E., Barneva, R.P., Brimkov, B.: Connected distance-based rasteriza-
tion of objects in arbitrary dimension. Graph. Models 73(6), 323–334 (2011)

8. Fiorio, C., Jamet, D., Toutant, J.-L.: Discrete circles: An arithmetical approach
with non-constant thickness. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.),
Vision Geometry XIV, Electronic Imaging, vol. 6066, pp. 60660C. SPIE, San Jose
(CA), USA (2006)

9. Fiorio, C., Toutant, J.-L.: Arithmetic discrete hyperspheres and separatingness.
In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp.
425–436. Springer, Heidelberg (2006)

10. Klette, R., Rosenfeld, R.: A: Digital Geometry: Geometric Methods for Digital
Picture Analysis. Morgan Kaufmann, San Francisco (2004)

11. Nagy, B.: An algorithm to find the number of the digitizations of discs with a fixed
radius. Electron. Notes Discrete Math. 20, 607–622 (2005)

12. Pal, S., Bhowmick, P.: Determining digital circularity using integer intervals. J.
Math. Imag. Vis. 42(1), 1–24 (2012)

13. Pham, S.: Digital circles with non-lattice point centers. Vis. Comput. 9(1), 1–24
(1992)

14. Pitteway, M.L.V.: Integer circles, etc.–some further thoughts. Comput. Graph.
Image Process. 3, 262–265 (1974)

15. Toutant, J.-L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres:
from morphological models to analytical characterizations and topological proper-
ties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)

On the Connectivity and Smoothness
of Discrete Spherical Circles

Ranita Biswas1(B), Partha Bhowmick1, and Valentin E. Brimkov2

1 Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India

biswas.ranita@gmail.com
2 Mathematics Department, SUNY Buffalo State,
1300 Elmwood Avenue, Buffalo, NY 14222, USA

Abstract. A discrete spherical circle is a topologically well-connected
3D circle in the integer space, which belongs to a discrete sphere as
well as a discrete plane. It is one of the most important 3D geometric
primitives, but has not possibly yet been studied up to its merit. This
paper is a maiden exposition of some of its elementary properties, which
indicates a sense of its profound theoretical prospects in the framework
of digital geometry. We have shown how different types of discretization
can lead to forbidden and admissible classes, when one attempts to define
the discretization of a spherical circle in terms of intersection between
a discrete sphere and a discrete plane. Several fundamental theoretical
results have been presented, the algorithm for construction of discrete
spherical circles has been discussed, and some test results have been
furnished to demonstrate its practicality and usefulness.

Keywords: 3D discrete circle · Discrete sphere · Spherical circle ·
Digital geometry

1 Introduction

The literature of digital geometry as of now contains a rich collection of work
related to different discrete-geometric primitives and general surfaces [24,27].
Among these, although a multitude of work can be found on characterization
and modeling of planes, hyperplanes, spheres, and hyperspheres, no perceiv-
able progress is noticed on discrete 3D circles and related problems. In this
paper, we initiate the study on characterization and modeling of discrete 3D
circles, extending the knowledge gathered from the recent developments in dis-
crete spheres and discrete planes. This study unfolds the interplay of spheres
and planes in the discrete domain, and indicates the scope of ample research
issues related to modeling of 3D circles in the paradigm of digital geometry.

We first make it clear that in the context of our work, by discretization of
a curve (3D circle in our case) or of a surface (sphere or plane in our case), we

V.E. Brimkov—On leave from the Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Sofia, Bulgaria.

c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 86–100, 2015.
DOI: 10.1007/978-3-319-26145-4 7

On the Connectivity and Smoothness of Discrete Spherical Circles 87

mean rasterization or voxelation whereby the real object is approximated by a
set of voxels (unit cubes), subject to certain topological constraints. The notion
owes its origin to the early stage of computer graphics and geometric modeling
[9,17,21,23].

In any model of discretization, the connectivity of a digital curve/surface is
defined in an appropriate topology, and assuring the connectivity has a para-
mount role. Computer-aided geometric modeling of curves and surfaces is often
based on the offset of a curve/surface Γ so that the locus of points lies within a
given distance τ from Γ (see, e.g., [4,5,22] and the bibliography therein). Results
from algebraic geometry, such as Grobner basis computation [3,18], are used as
the mathematical foundation for this kind of modeling. The topological prop-
erties of the voxel set induced by the integer points lying within the enclosure
defined by the offset are usually not taken into consideration. Some recent works
related to digital conics [19,20] indicate about the exceptions (in 2D).

1.1 Motivation

Although a multitude of works have been carried out on generation and analy-
sis of discrete circles and other curves in 2D, discrete surfaces in 3D, and on
representation schemes for 3D curves, very little research has been done on dis-
cretization of circles or curves in 3D space. Only in recent time, the idea of
offset discretization scheme for generation of discrete circles in arbitrary dimen-
sion has been proposed in [6,7]. Real circles specified by their center, radius, and
containing plane can be discretized in this manner using a hypersphere as the
structuring element.

In view of the above, we have picked up the problem of discrete spherical
circle to study its characteristics in different topological models and to design
efficient algorithms for its construction. We mention here that, contrary to the
recent work in [8], which is focused to construction of only geodesic circles on
a discrete sphere, in this paper we have generalized the concept to discrete
spherical circles. A discrete spherical circle C is a/the shortest 0-path of voxels
satisfying the following conditions:

1. Each voxel of C is at most τ distance away from the real circle defined by the
intersection of a given pair of a real sphere and a real plane (not necessarily
geodesic). Here, τ is the maximum between the thickness of the discrete sphere
and that of the discrete plane.1

2. Each voxel of C belongs to the discretization of the real sphere and to the
discretization of the real plane, considered in an appropriate topological model
of the sphere-plane pair.

1.2 Definitions and Terminologies

In this section, we fix some basic notions and notations to be used in the sequel.
For more details, we refer to [24]. Some other notions will be defined in the
subsequent sections.
1 The meaning of thickness of some discretization is discussed in Sect. 2.

88 R. Biswas et al.

A voxel (also called a 3-cell) is a unit cube determined by the integer grid
and fully identified by its center which is a point of Z

3. A discrete (or digital)
object is a finite set of voxels. The supercover of a set M ⊆ R

3 is the set S(M)
of all voxels that are intersected by M .

Two voxels are said to be 0-adjacent if they share a vertex (0-cell), 1-adjacent
if they share an edge (1-cell), and 2-adjacent if they share a face (2-cell). Thus,
two distinct voxels, p1(i1, j1, k1) and p2(i2, j2, k2) are 1-adjacent if and only if
|i1 − i2| + |j1 − j2| + |k1 − k2| � 2 and max{|i1 − i2|, |j1 − j2|, |k1 − k2|} = 1; 2-
adjacent if and only if |i1−i2|+|j1−j2|+|k1−k2| = 1; and 0-adjacent if and only if
|i1−i2| = |j1−j2| = |k1−k2| = 1. Clearly, 0-adjacent (1-adjacent) voxels are not
considered as adjacent while considering 1-adjacency (2-adjacency). Note that
the 0-, 1-, and 2-adjacencies, as adopted in this paper, correspond respectively
to the classical 26-, 18-, and 6-neighborhood notations used in [16].

For k = 0, 1, or 2, a k-path in a discrete object A links elements through
j-facets, where j � k. More precisely, it is a sequence of discrete points from A
such that every two consecutive points are k-adjacent. A is called k-connected if
there is a k-path connecting any two points of A. A k-component is a maximal
k-connected subset of A.

Let D be a subset of a discrete object A. If A � D is not k-connected, then
the set D is said to be k-separating in A. Let D be a k-separating digital object
in A such that A�D has exactly two k-components. A k-simple cell (or k-simple
point) of D (with respect to A) is a 3-cell c such that D�{c} is still k-separating
in A. A k-separating digital object in A is k-minimal (or k-irreducible) if it does
not contain any k-simple cell (with respect to A). If a digital object D is not 2-
separating in a digital object A, then D has tunnels; otherwise, it is tunnel-free2.

We define x-distance and y-distance between two (real or integer) points,
p(i, j) and p′(i′, j′), as dx(p, p′) = |i − i′| and dy(p, p′) = |j − j′|, respectively. In
R

3 or in Z
3, we have also z-distance, given by dz(p, p′) = |k − k′|, for p(i, j, k)

and p′(i′, j′, k′). Using these inter-point distances, we define the respective x-, y-,
and z-distances between a point p(i, j, k) and a surface S as follows. Let dx(p, S)
denote the x-distance between a point p(i, j, k) and a surface S. If there exists
a point p′(x′, y′, z′) in S such that (y′, z′) = (j, k), then dx(p, S) = dx(p, p′);
otherwise, dx(p, S) = ∞. The other two distances, i.e., dy(p, S) and dz(p, S), are
defined in a similar way; note that the metric dz(p, S) is not defined in 2D.

The above metrics are used to define the isothetic distance between two
points, or between a point and a curve, or between a point and a surface.
Between two points, p1(i1, j1) and p2(i2, j2), the isothetic distance is taken
as the Minkowski norm [24], given by d∞(p1, p2) = max{dx(p1, p2), dy(p1,
p2)}. Between a 2D point p(i, j) and a curve C, it is d⊥(p, C) = min{dx(p, C),
dy(p, C)}, where dx(p, C) and dy(p, C) are defined similar to dx(p, S) and dy(p, S)
respectively. Between a 3D point p(i, j, k) and a surface S, it is given by
d⊥(p, S) = min{dx(p, S), dy(p, S), dz(p, S)}.

2 For formal definitions and details on tunnels and gaps in discrete objects, we refer
to [14]. In what follows, gap-free means 0-gap-free, since a 0-gap-free surface is also
1- and 2-gap-free.

On the Connectivity and Smoothness of Discrete Spherical Circles 89

2 Discrete Spheres, Types, Ordering

Sphere discretization in the integer space is a well-studied research problem and
several types of discretization can be found in the current literature [1,2,10,15,
20,25,26,28]. Considering the commonly used topological properties like tunnel-
freeness, gap-freeness, tiling, and surface connectivity, we summarize here the
different types of discrete spheres in this section. Their descriptions are given in
increasing order of thickness, which is defined as the supremum of the distances of
the constituent voxels of the discrete sphere from the corresponding real sphere.
Figure 1 shows examples of four types of discrete hemispheres for r = 9.

Naive Sphere. Naive sphere is the irreducible tunnel-free sphere. In other words,
it is the thinnest possible discrete sphere that separates the interior from the
exterior. For computing the naive sphere with a real value of the radius r, there
is no definite algorithm till date. For an integer value of r, a closed form has
recently been reported in [8]. It is given by

Sn(r) =

⎧
⎨

⎩

(i, j, k) ∈ Z
3 : r2 − max{|i|, |j|, |k|} � s < r2 + max{|i|, |j|, |k|}

∧
((

s �= r2 + max{|i|, |j|, |k|} − 1
)

∨ (mid{|i|, |j|, |k|} �= max{|i|, |j|, |k|})

)
⎫
⎬

⎭
(1)

Fig. 1. Four different types of discrete hemispheres of radius 9. They are ordered here
from (a) to (d) by increasing thickness. Naive voxels are shown gray, and the other
voxels are shown blue. Notice that (c) optimum is not a subset of (d) standard (Color
figure online).

90 R. Biswas et al.

where s = i2 + j2 +k2. As discussed and proved in [8], Eq. 1 conforms to the fact
that each point p included in Sn(r) maintains an isothetic distance of (strictly)
less than 1

2 from the real sphere S(r), which in turn implies that the Euclidean
distance of p from S(r) is less than 1

2 . The set Sn(r) is also devoid of any sim-
ple voxels, and hence guarantees the topological property of 2-separableness or
tunnel-freeness. There always exists a 1-path entirely contained in Sn(r) between
any two points on Sn(r).

Arithmetic Sphere. Arithmetic sphere is thicker than naive sphere. Properties
and algorithm for construction of arithmetic sphere can be seen in [2]. The
arithmetic sphere of radius r is given by

Sa(r) =
{

(i, j, k) ∈ Z
3 :

(
r − 1

2

)2 � i2 + j2 + k2 <
(
r + 1

2

)2
}

. (2)

The Euclidean distance of each voxel of Sa(r) from S(r) is bounded from
above by 1

2 , but the upper bound of its isothetic distance can be greater than
1
2 . Therefore, Sn(r) is a subset of Sa(r). An arithmetic sphere maintains the
property of tiling the space without any gap when the radius is increased in
unit steps. Clearly, this type of sphere is not irreducible but has the property of
2-separableness due to being superset of Sn(r). Similar to Sn(r), between any
two points on Sa(r), there always exists a 1-path lying entirely on Sa(r).

Standard Sphere. Standard sphere is the irreducible gap-free sphere and thicker
than arithmetic sphere. For radius r, it is given by

Ss(r) =
{
(i, j, k) ∈ Z

3 : (C0(i, j, k) ∩ Sin(r) �= ∅) ∧ (C0(i, j, k) ∩ Sex(r) �= ∅)
}

(3)
where C0(i, j, k) denotes the set of eight 0-cells for the 3-cell corresponding to
(i, j, k), and Sin(r) and Sex(r) denote the interior and the exterior of S(r), respec-
tively.

It may be observed that as the radius r of the sphere is integer, none of the
0-cells can lie on the surface of S(r). This directly implies that the supercover
Sc(r) of S(r) is identical with Ss(r). Each point on Ss(r) maintains an Euclidean
distance of strictly less than

√
3
2 from S(r), since its corresponding 3-cell is inter-

sected by S(r). Further, Ss(r) is the minimum set that guarantees gap-freeness
of the discrete sphere surface. This is necessary in an application where any gap
cannot be allowed on the surface. Between any two points on Ss(r), there always
exists a 2-path lying entirely on Ss(r).

Offset Sphere. The impact of offset digitization on the connectivity and sepa-
rability of 3- or higher-dimensional curves and surfaces has been discussed in
[11,12]. In this work, we extend the concept proposed in [12] for 3D spheres. We
first introduce the definition of an offset sphere; given an integer radius r, the
τ -offset3 sphere is given by

So(r, τ) =
{
(i, j, k) ∈ Z

3 : (r − τ)2 � i2 + j2 + k2 � (r + τ)2
}

. (4)
3 The term offset is equivalent to thickness in the context of our work.

On the Connectivity and Smoothness of Discrete Spherical Circles 91

Setting τ to different values produces different types of discrete spheres.
In particular, we have the following theorem.

Theorem 1 (Offset sphere). Given a real radius r, the offset sphere So(r, τ)
is 2-gap-free, 1-gap-free, or 0-gap-free for τ = 1

2 ,
1√
2
, or

√
3
2 , respectively.

Proof. As shown in [12], for any 3D real surface, τ �
√
3−k
2 (where, 0 � k � 2)

produces a discrete surface that has no k-gap. In other words,
√
3−k
2 is the

minimum value of τ to achieve k-gap-free discretization of any arbitrary 3D
surface. For k = 2, 1, 0, we get the respective k-gap-free spheres with the values
of τ as 1

2 , 1√
2
, or

√
3
2 .
�

Note that these offset values are sufficient to guarantee the required separa-
bleness property of a discrete surface, but for a specific nature of the surface,
such as sphere in our case, a smaller offset value may produce the desired sepa-
rableness. We briefly compare here the properties of different offset spheres with
the other discrete spheres mentioned earlier. We first introduce the following two
lemmas.

Lemma 1. For any real radius r, we have

Sn(r) ⊆ Sa(r) ⊆ So(r, 1
2) ⊆ So(r, 1√

2
).

Proof. As already mentioned, both Sn(r) and Sa(r) maintain the topological
property of tunnel-freeness. The former is thinnest, but the latter is not, where-
fore Sn(r) ⊆ Sa(r). By Theorem 1, So(r, 1

2) is tunnel-free and the Euclidean
distance of each of its voxels from S(r) is within 1

2 , inclusive. But for Sa(r), as
evident from Eq. 2, the Euclidean distance of each voxel from S(r) lies in the
half-open interval [r − 1

2 , r + 1
2). So, Sa(r) is a subset of So(r, 1

2). Finally, it is
easy to see that So(r, 1

2) ⊆ So(r, 1√
2
), which completes the proof.
�

Lemma 2. For any real radius r, we have

Ss(r) ⊆ Sc(r) ⊆ So(r,
√
3
2).

Proof. Each of Ss(r), Sc(r), and So(r,
√
3
2) has 0-separating property. Among

these, Ss(r) is irreducible and hence thinnest. Between the other two, Sc(r)
contains all voxels intersected by S(r), whereas So(r,

√
3
2) may contain some

additional voxels (not intersected by S(r)). This leads to their relation.
�
Note that So(r, 1√

2
) is a special discrete sphere, which is guaranteed to be 1-

gap-free. In the context of our work, it is the sole type of sphere that 1-separates
the interior and the exterior, but does not 0-separate them. However, it may not
be a subset of Ss(r). See, for example, the result for r = 9 in Fig. 1. We have the
following fact.

92 R. Biswas et al.

Fact 1. Although So(r, 1√
2
) is not a subset of Ss(r), its thickness does not exceed

that of Ss(r), since the Euclidean distance of voxels in Ss(r), which close its 0-
gaps, would be more than 1√

2
from S(r).

Thus we have the following theorem.

Theorem 2. (Sphere ordering). For a given real or integer radius r, the
discrete spheres under different models of sphere discretization can be ordered by
non-decreasing thickness as follows.

〈
Sn(r), Sa(r), So(r, 1

2), So(r, 1√
2
), Ss(r), Sc(r), So(r,

√
3
2)

〉

Proof. Lemmas 1, 2, and Fact 1 indicate that the thickness of the different models
follows the chain of inequalities

τ(Sn(r)) � τ(Sa(r)) � 1
2 � 1√

2
� τ(Ss(r)) � τ(Sc(r)) �

√
3
2 ,

and hence the ordering.
�
The above theorem holds for radius and center in the real space. For integer

specification, we have the following fact.

Fact 2. When the center and the radius are in the integer space, Sa(r) =
So(r, 1

2) and Ss(r) = Sc(r).

We show in the forthcoming section that out of all the above seven types
of discrete spheres, So(r, 1√

2
) is the thinnest possible sphere that guarantees

the connectivity of the discretized set corresponding to any circle (or a curve,
in general) lying on S(r). Hence, for brevity, we refer an offset discretization
with τ = 1√

2
as optimum discretization, and in particular, So(r, 1√

2
) as optimum

sphere, in this sequel.

3 Discrete Spherical Circles

Any 3D real circle is given by the intersection of a real sphere and a real plane.
As different kinds of discrete planes have been studied in detail over the last two
decades (see [13]), an effective approach towards finding the discretization of a
real circle is to consider the intersection of the voxels sets obtained by discretiza-
tion of its corresponding real sphere and real plane. To form this intersection set,
the type of discretization has to be chosen appropriately based on the desired
type of connectivity of the discrete circle and the proximity of each of its voxels
from the real sphere and the real plane. In this section, we analyze the different
possibilities.

As shown in [8], the set of voxels of a naive sphere intersected by a real geo-
desic plane always contains a geodesic cycle, which is a 1-connected closed path.

On the Connectivity and Smoothness of Discrete Spherical Circles 93

(a) naive-optimum (b) naive-supercover

Fig. 2. Discrete spherical circles with the sphere r = 12, c = o and the plane 72x +
78y − 94z = 0. (a) Maximum distance from the real plane = 0.662959, maximum
distance from the real sphere = 0.424163. (b) Maximum distance from the real plane
= 0.832225, maximum distance from the real sphere = 0.424163.

The underlying idea is as follows. Given Sn(r) with integer radius and integer cen-
ter (which is o(0, 0, 0), w.l.o.g.) and any two points s and t on it, we get the super-
cover Pc(s, t, o) of the real geodesic plane, P(s, t, o), that passes through s, t, o. The
intersection set I(Sn(r), Pc(s, t, o)) := Sn(r) ∩ Pc(s, t, o) contains a 1-connected
path from s to t and another 1-connected path from t to s, and the concatenation
of these two paths gives the cycle. A simple mapping from the 1-connections in
this cycle to 0-connections produces a 0-connected geodesic circle as a subset of
I(Sn(r), Pc(s, t, o)). In this geodesic circle, although the isothetic distance of each
voxel from S(r) is less than 1

2 , the Euclidean distance from P(s, t, o) can be as high
as

√
3
2 . The latter upper bound is relatively high and makes the path jagged w.r.t.

the real geodesic plane.
In order to make the circle smoother w.r.t. the intersection plane without

compromising with its distance from the real sphere, we consider a different
discretization combination of the sphere and its intersection plane.4 It is worth
mentioning here at this point that it is one of the main objectives of the work
proposed in this paper. Further, opposed to the work proposed in [8] where only
geodesic circles have been considered, we consider here a circle resulted from
the intersection of a sphere and an arbitrary plane. Figure 2 shows a comparison
between an instance of a geodesic circle in I(Sn(r), Po(s, t, o, 1√

2
)) and of another

in I(Sn(r), Pc(s, t, o)). Here, Po(s, t, o, 1√
2
) denotes the discrete plane obtained by

offset digitization of P(s, t, o) with the offset τ = 1√
2
. Notice that the maximum

distance of the constituent voxels of the circle from the real plane indicates that
the former is relatively smoother than the latter.

4 While the meaning of smoothness of discrete curve is perhaps intuitively clear, this
will be formally defined and discussed in Sect. 3.2.

94 R. Biswas et al.

3.1 Discretization Classes

As put in Sect. 2, we have seven discretization models of a real sphere, which
follow a thickness ordering given in Theorem 2. A thicker discretization admits
a better connectivity of a discrete circle—or any curve, in general—lying on the
discrete sphere, but at the cost of a higher deviation from the real sphere. A
thinner discretization, on the contrary, can enforce a restricted deviation, but
is prone to disconnectedness. Hence, to strike a balance, we address here the
issue of optimum thickness. Also, while defining the discretization for a circle on
a real sphere, we need to consider the discretization model of the intersection
plane. Just like sphere discretization, we get seven possible models of plane
discretization, which, when taken together with sphere discretization, gives us
7 × 7 = 49 combination pairs. Out of these 49 pairs, some do not guarantee
construction of (0-connected) discrete spherical circles on the concerned discrete
sphere, while the rest do. We thus get two unique classes of discretization pairs:

1. Admissible Class (AC): Guarantees the construction of discrete spherical cir-
cles from the intersection of a discrete sphere and a discrete plane.

2. Forbidden Class (FC): Intersection of a discrete sphere and a discrete plane
may not produce a discrete spherical circle.

The following theorem explicates the members of the above two classes.

Theorem 3. (Sphere-plane class). If a sphere and its intersection plane are
both discretized to thinner than τ = 1√

2
(optimum discretization), then the cor-

responding discretization pair belongs to the forbidden class; otherwise, the pair
belongs to the admissible class.

Proof. As shown in [12, Theorem 11], an offset τ � 1√
2

for the discretization of
any 3D curve γ guarantees its 0-connectedness in Z

3. Here the curve γ is a circle
resulted from the intersection of a sphere and a plane in R

3. Hence, optimum
discretization of this circle is always 0-connected in Z

3. In order to ensure that
this discrete circle belongs to both the discrete sphere and the discrete plane,
we have to choose a discretization pair from the admissible class. For this, the
intersection set (IS) between the discrete sphere (DS) and the discrete plane (DP)
must be 0-connected. We show that this is ensured only if one discretization is
at least 2-separating (i.e., 2-gap-free), and the other at least 1-separating (i.e.,
1-gap-free).

The ordering of the seven discretization models in Theorem2 indicates that
if both DS and DP are thinner than optimum discretization, then both are
at most 2-separating in Z

3, and so, IS is also at most 2-separating in both.
However, IS may not be connected. Figure 3(a) and (b) shows such counterex-
amples. To circumvent this problem, if, w.l.o.g., the sphere is subject to optimum
discretization, then by Theorem1, it becomes 1-separating. As a result, its inter-
section with DP—whatsoever be its discretization—becomes 1-separating (i.e.
1-gap-free) in DP. There may exist 0-gaps although, which do not make IS dis-
connected. The rationale is as follows.

On the Connectivity and Smoothness of Discrete Spherical Circles 95

evian-citemhtira)b(evian-evian)a(

y

x
z

evian-dradnats)d(evian-mumitpo)c(

Fig. 3. Sphere-plane intersection sets in (a, b) forbidden class and (c, d) admissible
class. Sphere: r = 9, c = o; plane: x + 2y + 3z + 1 = 0.

If there is a 0-gap in IS, then the two parts A and B formed by exclusion of
IS from DP are 0-connected. So, there exist two voxels a ∈ A and b ∈ B, which
are 0-adjacent. As DP is at least naive, i.e., a tunnel-free discrete surface, there
exist two other voxels p and q on DP, both of which are 1-adjacent to a and 2-
adjacent to b, and at least 0-adjacent to each other. The voxels p and q belong to
IS; for, otherwise they form 1- or 2-gaps in DP—a contradiction. Therefore, IS is
1-gap-free in at least one of DS and DP, or equivalently, IS is 0-connected.
�

By Theorems 1 and 2, optimum sphere is the thinnest model of a discrete
sphere with 1-separability, and naive sphere is the thinnest with 2-separability.
Similar properties hold also for a discrete plane. When we construct a discrete
spherical circle, it belongs to IS, and hence to both DS and DP. To ensure
its smoothness, we should make DS and DP as thin as possible. To ensure its
connectedness in simultaneity, by Theorem 3, either DS or DP should be no
thinner than optimum discretization. In other words, naive discretization of the
sphere demands optimum discretization of the plane, and vice versa. If DS is
naive, then the circle is smoothest w.r.t. the sphere; and if DP is naive, then it
is smoothest w.r.t. the plane.

96 R. Biswas et al.

3.2 Smoothness of Spherical Circles

We define the smoothness tuple of a discrete spherical circle as ς := 〈ςs, ςp〉,
where ςs and ςp denote the respective supremum of distances of all voxels of DS
and the supremum of distances of all voxels of DP from their corresponding real
counterparts. Based on this tuple, we define its smoothness as the average of the
two suprema, given by ς̄ = 1

2 (ςs + ςp).
Observe that for any given 3D real circle C, although there is a unique

plane containing C, there are infinitely many real spheres on which C lies. After
choosing the sphere, whatsoever discretization is used, we cannot achieve a dis-
crete spherical circle which is better than the one we get by naive-optimum
(or optimum-naive) pair of sphere-plane discretization, in terms of smoothness.
More formally, we have the following theorem.

Theorem 4 (Smoothness). Let C be any 3D circle defined by the intersec-
tion of a given sphere-plane combination. Let, for the discrete spherical cir-
cle obtained by any discretization D of C, the resultant smoothness tuple be
ς(D) := 〈ς(D)

s , ς
(D)
p 〉. Let, for the discrete spherical circle obtained by the naive-

optimum discretization of C, the tuple be ς(opt) := 〈ς(opt)s , ς
(opt)
p 〉. Then,

ς̄(opt) = min
D

{
ς̄(D)

}
<

√
2+1
4 .

Proof. By Theorem 3, either the discrete sphere or the discrete plane should be
no thinner than the one obtained by optimum discretization. So, with optimum
discretization of the plane, in order to minimize the smoothness, naive sphere
is the only option, as it is thinnest with ςs < 1

2 (Sect. 2 and Theorem 2). By
[12, Theorem 11], ςp � 1√

2
for optimum discretization of plane. As a result, the

smoothness is ς̄ = 1
2 (ςs + ςp) <

√
2+1
4 .
�

Using this smoothness metric, for the results shown in Fig. 2, smoothness
of naive-optimum result is 0.543561 (<

√
2+1
4 = 0.603553) and smoothness of

naive-supercover result is 0.628194 (> 0.603553).

3.3 Algorithm for Discrete Spherical Circle

Opposed to the recent work in [8], we are not restricting the spherical circles to
only geodesic circles. For any real plane intersecting a given real sphere, there
may exist voxels in the intersection set of the corresponding discrete plane and
the discrete sphere, which are far from the concerned real circle, as shown in
Fig. 4. In that case, the shortest 0-path in the intersection set may not produce
the correct discrete circle. Therefore, we consider only the circular set, which is
defined as follows. Let S and P be a real sphere and a real plane, and let C be
the real circle given by their intersection. Let (D1,D2) be a discretization pair
from the admissible class, which produces D1(S) and D2(P) as the respective
discretizations of S and P. Let, w.l.o.g., D1 produce a thicker discretization

On the Connectivity and Smoothness of Discrete Spherical Circles 97

evian-dradnats)b(evian-mumitpo)a(

y

x
z

Fig. 4. Circular sets, resulted from the last two intersection sets shown in Fig. 3. Each
green voxel belongs to the circular set. Each gray voxel belongs to the intersection set
but not to the circular set (Color figure online).

compared to D2. Then the circular set comprises the voxels of D1(C) that belong
to D1(S) ∩ D2(P), and hence given by C = D1(C) ∩ D1(S) ∩ D2(P).

The above definition implies that if the thicker discretization is optimum, then
the circular set will be a subset of the optimum discretization of the real circle; if
the thicker one is standard, then the circular set will be a subset of the standard
discretization of the real circle; and so on. Examples are shown in Fig. 4.

The following theorem ensures that we always get a 0-connected discrete
spherical circle from the circular set.

Theorem 5 (Circular Set). The circular set for any discretization pair in the
admissible class always has at least one 0-connected discrete spherical circle.

Proof. By Theorem 3, D1 is at least optimum discretization. Assume that D2 is
thinnest (i.e., naive) discretization. We have a 3-step proof as follows.
Step 1: D1(C) contains all the voxels with at most 1√

2
distance away from C,

and hence C = D1(C) ∩ D2(P).
Step 2: D1(C) is (at least 0-)connected and hence 1-separates D1(P) [12, The-
orem 11]. As D2(·) ⊆ D1(·) by Theorem 2, D1(C) 1-separates D2(P) too. This
implies that C := D1(C) ∩ D2(P) 1-separates D2(P).
Step 3: As C 1-separates D2(P), it contains a cycle that 1-separates D2(P).

As each voxel in C satisfies the requirement needed to be a part of the discrete
spherical circle, the proof follows optimum-naive combination of (D1,D2). When
D1 is thicker than optimum or D2 is thicker than naive, the resultant intersection
is thicker, thus completing the proof for the admissible class.
�

From the circular set, the discrete spherical circle is computed by the pro-
cedure of prioritized-BFS, as explained in [8]. This will ensure that we get the
correct discretization of the real circle as a 0-path, as shown in Fig. 5. The steps
are as follows.

98 R. Biswas et al.

evian-dradnats)b(evian-mumitpo)a(

y

x
z

Fig. 5. Discrete spherical circles (green) obtained as cycles (0-paths) from the circular
sets shown in Fig. 4. Gray voxels belong to the circular set but not to the discrete
spherical circle (Color figure online).

1. Generate intersection set from the specific discretization pair of sphere and
plane from the admissible class.

2. From the intersection set, find the circular set consisting of those voxels that
are intersected by the real circle.

3. Generate an adjacency list of the voxels in the circular set.
4. Run prioritized-BFS to get 0-connected shortest paths.

4 Results and Discussion

Figures 4 and 5 contain the step-by-step results obtained by our algorithm to
finally get a discrete spherical circle for a typical sphere-plane combination. From
the result shown in Fig. 6, it is evident that the intersection set of the discrete
sphere and the discrete plane in the admissible class may contain many voxels
that are far from the corresponding real circle if the plane is almost tangential to
the sphere. Even in that case, our consideration of circular set ensures a proper
discrete spherical circle which is any one among the shortest paths from the
circular set, maintaining the properties of a discrete spherical circle as stated in
Sect. 1.1.

The discrete spherical circle generated as a cycle from the circular set need
not be symmetric in any sense. However, this may be considered as a future
scope of work where the 48-symmetric property of discrete sphere as explained
in [8] can be utilized to compute a better discrete spherical circle. A discrete 3D
circle can alternatively be produced as a 0-connected shortest path lying in the
supercover of the real circle defined by the intersection of a real plane with a
real sphere. Whether this would be better or worse in terms of smoothness can
be studied in line with the proposed work. The issues of other metrics, one being
‘smoothness’ as explained in Sect. 3.2, may also be explored to chalk out further
scopes of improvement.

On the Connectivity and Smoothness of Discrete Spherical Circles 99

(a) Circular set (CS) (b) Discrete spherical circle (DSC)

y

x
z

Fig. 6. DSC for optimum sphere (r = 17, c = o) and naive plane z + 16 = 0. (a) Green
voxels comprise the CS; gray voxels belong to the intersection set but not to CS. (b)
Green voxels comprise the DSC; gray voxels belong to the CS but not to the DSC
(Color figure online).

References

1. Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE Trans. Visual
Comput. Graphics 3(1), 75–86 (1997)

2. Andres, E.: Discrete circles, rings and spheres. Comput. Graphics 18(5), 695–706
(1994)

3. Anton, F.: Voronoi diagrams of semi-algebraic sets. Ph.D. thesis, University of
British Columbia, Vancouver, British Columbia, Canada (2004)

4. Anton, F., Emiris, I.Z., Mourrain, B., Teillaud, M.: The offset to an algebraic curve
and an application to conics. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá,
A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol.
3480, pp. 683–696. Springer, Heidelberg (2005)

5. Arrondo, E., Sendra, J., Sendra, J.: Genus formula for generalized offset curves. J.
Pure Appl. Algebr. 136(3), 199–209 (1999)

6. Aveneau, L., Andres, E., Mora, F.: Expressing discrete geometry using the confor-
mal model. In: AGACSE (2012). http://hal.archives-ouvertes.fr/hal-00865103

7. Aveneau, L., Fuchs, L., Andres, E.: Digital geometry from a geometric algebra
perspective. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS,
vol. 8668, pp. 358–369. Springer, Heidelberg (2014)

8. Biswas, R., Bhowmick, P.: On finding spherical geodesic paths and circles in Z
3.

In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668,
pp. 396–409. Springer, Heidelberg (2014)

9. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J.
4(1), 25–30 (1965)

10. Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points
in a hyperball. Theor. Comput. Sci. 406(1–2), 24–30 (2008)

11. Brimkov, V.E., Barneva, R.P., Brimkov, B.: Minimal offsets that guarantee maxi-
mal or minimal connectivity of digital curves in nD. In: Brlek, S., Reutenauer, C.,
Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 337–349. Springer,
Heidelberg (2009)

12. Brimkov, V.E., Barneva, R.P., Brimkov, B.: Connected distance-based rasteriza-
tion of objects in arbitrary dimension. Graph. Models 73, 323–334 (2011)

http://hal.archives-ouvertes.fr/hal-00865103

100 R. Biswas et al.

13. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity–a review. Discrete
Appl. Math. 155(4), 468–495 (2007)

14. Brimkov, V.: Formulas for the number of (n−2)-gaps of binary objects in arbitrary
dimension. Discrete Appl. Math. 157(3), 452–463 (2009)

15. Chamizo, F., Cristobal, E.: The sphere problem and the L-functions. Acta Math.
Hungar. 135(1–2), 97–115 (2012)

16. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graphics
Model. Image Process. 57(6), 453–461 (1995)

17. Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE
Comput. Graph. Appl. 17(6), 80–87 (1997)

18. Cox, D., Little, J., OShea, D.: Using Algebraic Geometry. Springer, New York
(2005)

19. Debled-Rennesson, I., Domenjoud, E., Jamet, D.: Arithmetic discrete parabolas.
In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A.,
Meenakshisundaram, G., Pascucci, V., et al. (eds.) ISVC 2006. LNCS, vol. 4292,
pp. 480–489. Springer, Heidelberg (2006)

20. Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: an arithmetical approach with
non-constant thickness. In: Vision Geometry XIV, Electronic Imaging, SPIE, vol.
6066, pp. 60660C.1–60660C.12 (2006)

21. Gouraud, H.: Continuous shading of curved surfaces. IEEE Trans. Comput. 20(6),
623–629 (1971)

22. Hoffmann, C., Vermeer, P.: Eliminating extraneous solutions for the sparse resul-
tant and the mixed volume. J. Symbolic Geom. Appl. 1(1), 47–66 (1991)

23. Kaufman, A.: Efficient algorithms for 3d scan-conversion of parametric curves,
surfaces, and volumes. SIGGRAPH Comput. Graph. 21(4), 171–179 (1987)

24. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

25. Maehara, H.: On a sphere that passes through n lattice points. European J. Com-
bin. 31(2), 617–621 (2010)

26. Montani, C., Scopigno, R.: Spheres-to-voxels conversion. In: Graphics Gems. Aca-
demic Press, pp. 327–334 (1990)

27. Mukhopadhyay, J., Das, P.P., Chattopadhyay, S., Bhowmick, P., Chatterji, B.N.:
Digital Geometry in Image Processing. Chapman & Hall/CRC, Boca Ration, UK
(2013)

28. Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres:
From morphological models to analytical characterizations and topological prop-
erties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)

Optimal Consensus Set for nD Fixed
Width Annulus Fitting

Rita Zrour(B), Gaelle Largeteau-Skapin, and Eric Andres

Laboratoire XLIM, SIC, UMR CNRS 7252, Université de Poitiers, BP 30179,
86962 Futuroscope Chasseneuil, France

{rita.zrour,gaelle.largeteau.skapin,eric.andres}@univ-poitiers.fr

Abstract. This paper presents a method for fitting a nD fixed width
spherical shell to a given set of nD points in an image in the presence
of noise by maximizing the number of inliers, namely the consensus set.
We present an algorithm, that provides the optimal solution(s) within a
time complexity O(Nn+1 log N) for dimension n, N being the number
of points. Our algorithm guarantees optimal solution(s) and has lower
complexity than previous known methods.

1 Introduction

Shape fitting is a general problem that is of very practical nature, namely extract-
ing features from data with a high level of noise. This problem has been widely
addressed in very different fields spanning from computer graphics and image
processing to data mining in large dimensional databases [2]. In this paper we
are looking into the problem of optimal fitting an nD annulus of fixed width in
an image in the presence of outliers. The set of points which fits a model is called
a consensus set. Note that an annulus in higher dimensions is sometimes referred
to as n-sphere shell. We preferred to use the common denomination annulus for
all dimensions.

This paper aims at finding the optimal consensus set (maximal number of
inliers) inside a fixed width nD annulus, where the center and the radius are
unknowns. Most annuli fitting methods try to minimize the thickness of the fit-
ted annuli [1,5,17]. In our case, we are interested in digital circles and spheres and
more specifically Andres digital circles and hyperspheres [3] or k-Flake digital
circles-spheres [18]. In those cases, the thickness is directly linked with topolog-
ical properties. The most common fitting methods are based on variants of the
RANdom Sample Consensus (RANSAC) algorithm [8], which is a robust para-
meter estimation algorithm widely used in the field of computer vision. However
RANSAC is inherently probabilistic in its approach and does not guarantee any
optimality. In this paper we are looking for (all the) optimal solutions in order
to generate base solutions to which we can compare and validate other, non
exact, methods. It is also a problem when looking for multiple fittings in the
same image.

In [4,20], brute force algorithms were proposed to compute the optimal con-
sensus set respectively for Andres digital circles [3] (defined as digital points
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 101–114, 2015.
DOI: 10.1007/978-3-319-26145-4 8

102 R. Zrour et al.

inside a classical annulus of fixed width) and 0-Flake digital circles [18] (8-
connected circles) with a time complexity of O(N4) where N is the number
of points. A new method was proposed in [11] for fitting 0-Flake digital circles
that has a complexity O(N3 log N). Our main contribution in this article is the
extension of the fitting problem proposed in [20] to nD and reformulating it
using a space transformation similar to the one proposed by [6] which was used
in [11]. However the major difference with [6] is that the width is fixed and the
parameter we want to maximize is the number of inliers.

The simpler problem of fitting circles and spheres is a largely studied problem.
Most common approaches are based on least squares [15] or adapted Hough
Transforms [10]. Those are however not adapted for annulus fitting. The circle
fitting method proposed by O’Rourke et al. [13,16] that transforms a circle
separation problem into a plane separability problem, is also not well suited
because the fixed width of the digital circles translates into non fixed vertical
widths for the planes. In this case, the problem is complicated (See [14] for some
ideas on how to handle this difficulty). For annuli detection, various approaches
have been proposed. Most of these methods are probabilistic approaches that
minimize the width of the annuli. Among these algorithms, some consider that no
noise is present in the image, and concentrate only on the problem of recognition
instead of the fitting problem [1,5,17]. However noise in real world is omnipresent
in the input and so many algorithms dealing with outliers have been proposed
[7,9,12]; in these algorithms, the number of outliers is usually predefined [9,12]
which is not always realistic.

The idea of the 2D algorithm is the following: given a set S, we consider all
the annuli that have two specific points of S on the border of the annulus. All
the annuli centers with those two points on the border are then located on a
straight line. This straight line is taken as a parametric axis. We then determine
when a point of S enters and leaves the annulus while the center moves along
the axis. This allows us to compute the intervals where the number of inliers
is maximized. By considering all the combinations of points, we are able to
compute the exhaustive set of all optimal consensus sets in O(N3 log N). See
[19] for a similar approach for line and plane fitting. The nD algorithm works in
a similar way than the 2D algorithm [20]. However, we show that the annulus
can de defined by n specific points that are all on the external border. This
characterization allows to greatly simplify both the proof of the characterization
of annuli and the computation of the parametric axis defined by annuli centers.
The final algorithm has an O(Nn+1 log N) time complexity and leads to the
exact optimal solutions for the problem of fixed width annulus fitting.

The paper is organized as follows: in Sect. 2 we expose the problem of annulus
fitting and present some properties of the annuli with fixed width. Section 3
presents the dual space we use and provide the algorithm for finding the optimal
nD annuli. Section 4 presents some 2D and 3D experiments. Finally Sect. 5 states
some conclusion and perspectives.

Optimal Consensus Set for nD Fixed Width Annulus Fitting 103

2 Annulus Fitting

A nD annulus A(C, R, ω) of width ω and radius R centered at C(c1, c2, ..., cn),
is defined by the set of points in R

n satisfying two inequalities:

A(C, R, ω) =

{

(p1, p2, ..., pn) ∈ R
n : R2 ≤

n∑

i=1

(pi − ci)2 ≤ (R + ω)2
}

(1)

where C(c1, c2, ..., cn) ∈ R
n and R, ω ∈ R

+.
Using the above annulus model, our fitting problem is then described as

follows: given a finite set S = {Pi, i ∈ [1, N],∈ R
n} of N nD points we would

like to find the parameters (center and radius) of an annulus A of given width ω
that contains the maximum number of points in S. Points Pi ∈ S ∩ A in nD are
called inliers; otherwise they are called outliers. We also say that the annulus A
covers the set S∩A. We denote Bi(C, R) (respectively Be(C, R+ω)) the internal
(resp. external) border of the annulus A(C, R, ω), i.e. the set of points located
at distance R (resp. R + ω) from C.

2.1 Annulus Characterization

Our approach is focused on inlier sets, also called consensus sets. Since S is finite,
the number of different consensus sets for the annulus is finite as well although
too big to consider them all. However, as we are looking for the biggest consensus
set(s), only the annuli that contain a minimum number of n+1 points, uniquely
defining an annuli, are considered. For all the different consensus sets C, with
at least n + 1 points from a given set S, we are going compute the size of each
one. The center and radius are actually a side result of this search. We present
in this section some characterization of nD annuli that will allow us to explore
all those concensus sets and further on to build an optimal fitting algorithm for
annuli.

2.2 nD Annular Characterizations

In [20], we proposed a brute force algorithm for fitting fixed width annuli in
2D. We showed that if an optimal solution exists then there exists an equivalent
optimal solution (with the same set of inliers) having three points on the border
(internal and/or external). Testing all the configurations of three points and
counting the inliers leads therefore to all the possible optimal solutions. This
brute force method leads however to an O(N4) complexity for N the number of
points to fit. Its extension to nD is straight forward and needs n + 1 points to
be on the border (either internal or external), but it also leads to an O(Nn+2)
complexity.

In this article we need only n points instead of n+1 points in nD; however the
restriction is that the n points must be on the external border of the annulus. The
last point is found in O(N log N) using a dual space, which will be presented in

104 R. Zrour et al.

Sect. 3.1. Using such a dual space, the algorithm has an overall time complexity
of O(Nn+1 log N). Note that we are looking for the exact optimal solutions, this
complexity is, so far, the best to our knowledge to solve this problem.

The following theorem states that given an annulus A of width ω covering a
set of points S, with |S| ≥ n, there exists at least one other annulus A′ of same
width, that also covers S with at least n points of S on its external border Be.

Theorem 1. Let S be a finite set of N(N ≥ n) points in R
n. Let A = (C, R, ω)

be an annulus covering S. Then it exists A′ = (C ′, R′, ω) covering S such that:

∃! Q1, Q2, ..., Qn ∈ S ∩ Be(C ′, R′ + ω).

Proof. Let S be a finite set of N (N ≥ n) points in R
n. Let A = (C, R, ω) be an

annulus that covers S. The theorem proof is given as follows:

A. If the internal radius of the annulus is 0, the problem is reduced to the
problem of a hyper-sphere of fixed radius. The hypersphere can either be
translated towards the closest point of S if there are no point on the external

Fig. 1. Case A of the proof in 2D: (a) While decreasing the radius of the annulus
(colored black) to reach a first point Q1 we may arrive to an internal radius of 0
(annulus in red) without any point on Be, in this case a translation is needed as shown
in (b) to reach a point Q1 on Be. (c) While Decreasing the radius of the annulus
(colored black) by moving the center along axis C2Q1 to reach a second point Q2, we
may arrive to an internal radius of 0 and no point Q2 on Be (annulus in red), in this
case a rotation is done as shown in (d) until reaching a second point Q2 on Be (Color
figure online).

Fig. 2. Case B of the proof in 2D: (a) Decreasing the radius until reaching a point Q1

on Be. (b) Decreasing the radius by moving the center along axis CQ1 until reaching
a second point Q2.

Optimal Consensus Set for nD Fixed Width Annulus Fitting 105

Fig. 3. Case A of the proof in 3D: (a) While decreasing the radius it may lead to an
internal radius of 0 without any point on Be; in this case a translation is needed as
shown in (b) to reach a point Q1 on Be. (c) Decreasing the radius while maintaining
Q1 on the border until reaching an internal radius of 0; in this case a rotation is needed
as shown in (d) in order to reach a point Q2 on Be.

Fig. 4. Case B of the proof in 3D: (a) Decreasing the radius until reaching a first point
Q1 on Be. (b) Decreasing the radius while maintaining Q1 on the border until reaching
a second point Q2. (c) Case B of the proof in 3D: moving the center along the bisector
of Q1Q2 until reaching a third point Q3.

border already (Figs. 1a,b and 3a,b) either it can be rotated around the axis
formed by the already known points until reaching another point (Figs. 1c,d
and 3c,d). This last step is done until n points lie on Be.

B. If the internal radius is greater than 0, the building process consists in
decreasing the radius while keeping the width fixed until reaching the points
on the external border Be:
– If there is no point on the border, the radius is decreased while the center

is fixed until reaching a point on Be (Figs. 2a and 4a).
– If there is one point Q1 on the border, the radius is decreased while the

center moves along the straight line CQ1 towards Q1 (which keep Q1 on
Be) until reaching a second point on Be (Figs. 2b, and 4b).

– If there are already k > 1 points on Be then, we consider the barycenter B
of those k points. We can now consider the straight line Δ passing through
B and C. By moving the center of the annulus along Δ towards B we can
reduce the radius of Be while keeping these k points on Be (Fig. 4c). It
should be noted that these steps are repeated until reaching n points on
Be or having an annulus with width 0 which leads to case A.

106 R. Zrour et al.

3 Fitting Algorithm

Let us define an equivalence class of all the annuli that cover the same consensus
set. We suppose that there are more than n points in the image, otherwise
all the points can be covered and the problem is somewhat trivial. The annulus
characterization in Theorem 1 ensures that the optimal consensus set has always
at least n points. It also shows that we can always find a representative of the
equivalent class with n points of S on the outer border. Let us find now, among
the representatives of the equivalent classes of consensus sets with at least n
points, the annulus that cover(s) the maximum number of points of S.
The idea behind our fitting method is inspired by [6] where the authors maximize
the width of an empty annulus in 2D. In [6], the authors look for the biggest
empty annulus in a dual space based on the distance to the center. For each
couple of points (Q1, Q2), the possible positions for the center of a 2D annulus
passing through Q1 and Q2 is the bisector of both points which then forms the
abscissa axis of the dual space. Each other point is associated to a curve that
represents its distance to the possible centers. Using this specific space, they find
when each point enters or leaves the annulus. A sorting of these intervals leads to
the maximal empty annulus passing through Q1 and Q2. A comparison among
all the possible couples of points leads to the general result. In [6], the authors
do not represent an annulus in their parameter space but only circles and the
width ω of the annulus is maximized.

Our purpose in this work is different since, in our problem, we tried to max-
imize the number of inliers inside an annulus with fixed width, so we have two
concentric circles with a fixed distance ω between them. Moreover, we have
adapted this method to nD. As we will see, their idea of taking the axes where
the possible centers of the annuli are located can be adapted to our case. We first
describe the dual space (Sect. 3.1) and then explain how we obtain the optimal
consensus set(s) (Sect. 3.2).

3.1 Dual Space and Annulus Fitting in nD

According to Theorem 1, in nD, an annulus has at least n unique critical points
Q1, .., Qn located on its external border. Such an annulus has necessarily its
center on a straight line, denoted Δ, that passes through the barycenter B of
the points Q1, .., Qn and that is orthogonal to the hyperplane H (of dimension
n − 1) induced by those same points (see Fig. 5a for an example in 2D).

Let us define a 2D dual space as follows:

– The origin Odual(0, 0) corresponds to the barycenter B of the points Q1, .., Qn.
– The abscissa X axis represents the possible locations of the center (it is a

representative of Δ): a center C is associated to Cdual(dist(C, B), 0) (Fig. 5b).
– The ordinate Y axis represents the euclidean distance: each point T (t1, ...tn)

in the original nD space is associated in the dual space with a curve that
represents the distance between T and every point of Δ.

Optimal Consensus Set for nD Fixed Width Annulus Fitting 107

Fig. 5. (a) The 2D annulus having Q1 and Q2 as border point has its centers on the
bisector Δ of the line segment Q1Q2. (b) All annuli for which Q1 and Q2 are on Be

correspond to the set of all the vertical line segments of length ω having one of its
endpoints on L0

Q and the other on L1
Q.

Fig. 6. 2D example: the point T represented in the dual space by the curve LT intersects
the curve L0

Q at σ0
T and the curve L1

Q at σ1
T . The point T is thus inlier to the annulus

having Q1 and Q2 on its external border between σ0
T and σ1

T and becomes outlier
otherwise. The point T is outlier to the annulus centered at C(−1, 0) and inlier to the
one centered at C(1, 0).

In this dual space, the points Qi, i ∈ [1, n] are all represented by the same curve
L0
Q since they are all equidistant from each point of Δ (Fig. 5b). We consider that

all the points Qi, i ∈ [1, n] are on the external border of the annulus, therefore L0
Q

represents the external radius (Re) variation with respect to the center position.
An annulus of width ω passing through the points Qi, i ∈ [1, n] is represented by a
vertical segment of length ω having one of its endpoints on L0

Q. The X coordinate
of the segment corresponds to the annulus center coordinate on Δ.

The translation of L0
Q by (0,−ω) is denoted by L1

Q which represents the
internal radius variation with respect to the center position.

In the dual space, an annulus A of center C(c′, 0) with points Qi, i ∈ [1, n]
on its external border corresponds to the vertical line segment [L0

Q(c′), L1
Q(c′)]

of length ω.
For every point T in the image, it is possible to see if it is inlier or outlier to

an annulus of width ω centered on C and having the n points Qi on its external
border by examining its associated curve LT . The point T is inlier if, in the dual
space, LT intersects the vertical segment [L0

Q(c′), L1
Q(c′)] with c′ = dist(C, B)

since in this case it is between L0
Q(c′) = Re and L1

Q(c′) = Ri (Fig. 6).

108 R. Zrour et al.

Fig. 7. 2D example: six points p = Q1, q = Q2, r, u, v, and t in the primal space and
their corresponding curves. The maximum number of inliers for an annulus having p
and q on Be is reached when the center has an x-value around 3.

3.2 Finding the Largest Consensus Set in a Strip for a Given
(Q1,Q2,...,Qn)

In order to know the number of inliers within any annulus defined by n points
Q1... Qn, we check for every point T in the image, the intersections σ0

T and σ1
T

of LT with the strip boundaries L0
Q and L1

Q. This check is important since any
annulus corresponding to a vertical segment between the two intersections σ0

T

and σ1
T in the strip always contains T as an inlier; outside this interval, T is

always an outlier (Fig. 6).
When checking the intersections of every LT with L0

Q and L1
Q, we use two

values f i
T for i = 0, 1, which is set to 1 if LT enters the strip from Li

Q, and −1
if LT leaves the strip from Li

Q. Once the intersections σi
T , and the associated

values f i
T for i = 0, 1 are calculated, we sort all the intersections in increasing

order. As for determining the location(s) of the maximum number of inliers, a
function F (x) is used; initially we set F (x) = n for every x, since we already
know that Q1,...Qn are inliers. Then the value f i

r is added to F (x) following the
sorted order. By looking for the maximum value of F (x), we obtain the center
location(s) in the dual space corresponding to the maximum optimal consensus
set(s). Figure 7 shows an example in 2D of this algorithm; the annulus in the
primal space having p = Q1 and q = Q2 on its external border is optimal in
terms of inliers at a center around 3 between σ0

v and σ1
t when all the dual curves

are inside L0
Q and L1

Q (i.e. when all the points are inliers).
This procedure is repeated for all the combination of n points in the image

until finding the right center(s) of the annulus (annuli) having n points on Be

that maximizes the number of inliers. Since a sorting of complexity O(N log N)
of the intersection is needed and since the algorithm is repeated for every couple
of n points, the final complexity is O(Nn+1 log N).

Optimal Consensus Set for nD Fixed Width Annulus Fitting 109

3.3 Algorithm

Algorithm 1 gives an example of the nD annulus fitting algorithm. The inputs
are a set S of nD points and a width ω. Output is a set V of centers and radius
of the best annuli.

Algorithm 1. nD Annulus Fitting
input : A set S of N grid points and a width ω
output: A list V of centers and radius of the best fitted annuli

1 begin
2 initialize Max = 0;
3 foreach n-uplet ∈ S do
4 compute the barycenter of the n-uplet;
5 initialize the array AR[k] for k = 1, . . . , 2N + 2;
6 set j = 0;
7 foreach T ∈ S do
8 calculate σi

T for i = 0, 1;
9 if σ0

T < σ1
T then

10 set f0
T = 1, f1

T = −1;

11 else
12 set f0

T = −1, f1
T = 1;

13 set the pair (σi
T , f i

T), for i = 0, 1, in AR[2j + i];
14 j = j + 1;

15 sort the pair elements (σk, fk) for k = 1, . . . , 2j in AR with the values
σk as keys;

16 initialize F = 0;
17 for k = 1, . . . , 2j do
18 F = F + fk;
19 if F > Max then
20 set Max = F , Erase V and set it to the interval [σk, σk+1];

21 [σk, σk+1] if F = Max then
22 add the interval [σk, σk+1] to V;

23 return V;

3.4 Degenerate Cases

There are degenerate cases that must be treated carefully when examining the
number of inliers and outliers. They can be summarized as follows:

– Invalid radius: L1
Q represents the internal border of the annulus; when it is

negative the annulus is not valid. An example of such invalid radius is seen in
Fig. 8a, in this figure T becomes inlier at σ1

T and at σ0
T ′ instead of σ0

T since at
σ0
T the radius is negative.

110 R. Zrour et al.

Fig. 8. Degenerate cases: (a) The value of L1
Q is negative between the two vertical

dashed lines; the point T is inlier between σ1
T and σ0

T ′. (b) T is always outlier. (c) T is
always inlier.

Fig. 9. Degenerate cases: (a) T is inlier before σ1
T and after σ2

T . (b) T is inlier before
σ0
T . (c) T is inlier before σ1

T and between σ2
T and σ0

T .

– Intersection of LT with L0
Q and L1

Q: When both L0
Q and L1

Q are each inter-
sected once we have the regular case explained in the Algorithm 1. The degen-
erate cases occur when one of the two curves is not intersected or when it is
intersected twice. These cases can be explained as follows:
• LT and L0

Q have no common point: in this case the intersection of LT

with L1
Q must be verified. If L1

Q is not intersected, we must check if LT

is between the two curves, in this case T is always inlier, otherwise T is
always outlier (Fig. 8b). If L1

Q is intersected once, LT is inside the two
curves and T is always inlier (Fig. 8c). If L1

Q is intersected twice, this means
that LT is between the two curves and thus the point T is inlier before the
first intersection σ1

T of LT and after the second intersection σ2
T as seen in

Fig. 9a.
• LT has one intersection σ0

T with L0
Q : If LT has no intersection with L1

Q, and
LT is inside the two curves before the intersection σ0

T , then T is inlier before
the intersection σ0

T and becomes outlier after this intersection (Fig. 9b);
otherwise T is outlier before the intersection σ0

T and becomes inlier after
this intersection.
If LT has two intersections with L1

Q, then we have two cases: T is inlier
before the intersection σ1

T and between σ2
T and σ0

T and becomes outlier

Optimal Consensus Set for nD Fixed Width Annulus Fitting 111

otherwise (Fig. 9c) or T is inlier between the two intersections σ0
T and σ1

T

and after the intersection σ2
T and is outlier otherwise.

4 Experiments

This section presents the 2D and 3D experiments.

4.1 Example for a 2D Real Image

We tested our method on a real test image, as shown in Fig. 10a, whose size is
140 × 69. Before applying our method, edge detection and mathematical mor-
phological filtering have been performed on the image; the number of points in
the image after this preprocessing is 646 points. Our method is then applied to
fit an annulus to the set of points. Figure 10b shows the optimal consensus set,
which includes 291 inliers. The width of the annulus is fixed to 3.

4.2 Example on 2D Noisy Images

We then applied our method for 2D noisy digital Andres circles (points for
Andres circles and noise are generated randomly for 2D as well as for 3D exper-
iments) as shown in Figs. 11a, b and 12a. For each of these set of points, an

Table 1. The number of points and the optimal consensus set size.

Figures Number of points Center R width Opt. cons. set size

Fig. 10b 646 (104.992,31.017) 28.163 3 291

Fig. 11a 225 (40.871,41) 19.522 1 113

Fig. 11b 65 (31.109,31.109) 14.425 1 65

Fig. 12a 1127 (51,51.008) 26.992 6 1120

Fig. 12b 56 (0.878,1.244,1.976) 1.916 3 51

Fig. 13a 109 (-4,-4,-4) 2.742 1 90

Fig. 13b 151 (0,0,0) 6 3 116

Fig. 10. An original image in (a) and its optimal consensus set colored red in (b) (Color
figure online).

112 R. Zrour et al.

Fig. 11. (a) Annulus fitting for a noisy digital Andres circle of width 1. (b) Annulus
fitting for a digital Andres circle of width 1.

Fig. 12. (a) Annulus fitting for a noisy digital Andres circle of width 6. (b) Annulus
fitting for noisy 3D data; a width w = 3 is used.

Fig. 13. (a) Annulus fitting for noisy 3D data; a width w = 1 is used. (b) Annulus
fitting for noisy 3D data; a width w = 3 is used.

Optimal Consensus Set for nD Fixed Width Annulus Fitting 113

annulus of width ω = 1, ω = 1 and ω = 6 is used respectively. Table 1 show the
number of points, the optimal consensus set size as well as the center position
and the radius R of the inner circle obtained after the fitting.

4.3 3D Noisy Images

We applied our method for 3D noisy digital Andres spheres as shown in Figs. 12a,
13a and b. For each of these set of points, an annulus of width ω = 3, ω = 1
and ω = 3 is used respectively. The last three lines of Table 1 shows the number
of points, the optimal consensus set size as well as the center position and the
radius R of the inner sphere obtained after the fitting.

5 Conclusion and Perspectives

In this paper we have proposed a new approach for fitting nD annulus to a
set of points while fixing the width of the annulus. The main advantage of our
approach is that it guarantees optimal and exhaustive results from the point of
view of the optimal (maximal) consensus set: we are guaranteed to fit an annulus
with the least amount of outliers. We are also guaranteed to find all the optimal
consensus sets. One of the future works concerns conic fitting such as ellipse,
parabola and hyperbola. We also plan to implement a fast 2D/3D algorithm for
fitting annulus; such algorithm does not guarantee optimality but guarantees
local maximality of inliers in the sense of the set inclusion and thus has a lower
time complexity. We also plan to adapt the nD characterization of annulus for
k − Flake digital hyperspheres [18] as an extension of [4,11].

Acknowledgments. The authors express their thanks to Mr. Pierre Boulenguez, who
contributed in the implementation of a part of the 3D Fitting. The work for this paper
was partly financed by Egide, franco-Japanese PHC Sakura project no 27608XJ and
by the Poitou Charentes region project no 11/RPC-R-051.

References

1. Agarwal, P., Har-Peled, S., Varadarajan, K.: Approximating extent measures of
points. J. ACM 51(4), 606–635 (2004)

2. Agarwal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace cluster-
ing of high dimensional data for data mining applications. In: Proceeding SIGMOD
998 International Conference on Management of data. pp. 94–105 (1998)

3. Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Trans. Visual
Comput. Graphics 3, 75–86 (1997)

4. Andres, E., Largeteau-Skapin, G., Zrour, R., Sugimoto, A., Kenmochi, Y.: Optimal
consensus set and preimage of 4-connected circles in a noisy environment. In: 21st
International Conference on Pattern Recognition (ICPR 2012), pp. 3774–3777.
IEEE Xplore (2012)

114 R. Zrour et al.

5. De Berg, M., Bose, P., Bremner, D., Ramaswami, S., Ramaswami, G., Wilfong,
G.: Computing constrained minimum-width annuli of point sets. In: Rau-Chaplin,
A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp.
392–401. Springer, Heidelberg (1997)

6. Dı́az-Báñez, J.M., Hurtado, F., Meijer, H., Rappaport, D., Sellares, T.: The largest
empty annulus problem. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra,
A.G. (eds.) ICCS-ComputSci 2002, Part III. LNCS, vol. 2331, pp. 46–54. Springer,
Heidelberg (2002)

7. Dunagan, J., Vempala, S.: Optimal outlier removal in high-dimensional spaces. J.
Comput. Sys. Sci. 68(2), 335–373 (2004)

8. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Commun. ACM
24, 381–395 (1981)

9. Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM J. Comput. 33(2),
269–285 (2004)

10. Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators.
Commun. ACM 18(2), 120–122 (1975)

11. Largeteau-Skapin, G., Zrour, R., Andres, E.: O(n3logn) time complexity for the
optimal consensus set computation for 4-connected digital circles. In: Gonzalez-
Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp.
241–252. Springer, Heidelberg (2013)

12. Matousek, J.: On enclosing k points by a circle. Inf. Process. Lett. 53(4), 217–221
(1995)

13. O’Rourke, J., Kosaraju, S., Megiddo, N.: Computing circular separability. Discrete
Comput. Geom. 1, 105–113 (1986)

14. Phan, M.S., Kenmochi, Y., Sugimoto, A., Talbot, H., Andres, E., Zrour, R.: Effi-
cient robust digital annulus fitting with bounded error. In: Gonzalez-Diaz, R.,
Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 253–264.
Springer, Heidelberg (2013)

15. Robinson, S.M.: Fitting spheres by the method of least squares. Commun. ACM
4(11), 491 (1961). http://doi.acm.org/10.1145/366813.366824

16. Roussillon, T., Tougne, L., Sivignon, I.: On three constrained versions of the digital
circular arc recognition problem. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.)
DGCI 2009. LNCS, vol. 5810, pp. 34–45. Springer, Heidelberg (2009)

17. Smid, M., Janardan, R.: On the width and roundness of a set of points in the
plane. Int. J. Comput. Geom. 9(1), 97–108 (1999)

18. Toutant, J., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres:
from morphological models to analytical characterizations and topological proper-
ties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)

19. Zrour, R., Kenmochi, Y., Talbot, H., Buzer, L., Hamam, Y., Shimizu, I., Sugimoto,
A.: Optimal consensus set for digital line and plane fitting. Int. J. Imaging Syst.
Technol. 21(1), 45–57 (2011)

20. Zrour, R., Largeteau-Skapin, G., Andres, E.: Optimal consensus set for annulus
fitting. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.)
DGCI 2011. LNCS, vol. 6607, pp. 358–368. Springer, Heidelberg (2011)

http://doi.acm.org/10.1145/366813.366824

Number of Shortest Paths in Triangular Grid
for 1- and 2-Neighborhoods

Mousumi Dutt1(B), Arindam Biswas2, and Benedek Nagy3,4

1 Department of Computer Science and Engineering,
International Institute of Information Technology, Naya Raipur, India

duttmousumi@gmail.com
2 Department of Information Technology,

Indian Institute of Engineering Science and Technology, Shibpur, India
barindam@gmail.com

3 Department of Computer Science, Faculty of Informatics,
University of Debrecen, Debrecen, Hungary

nbenedek.inf@gmail.com
4 Department of Mathematics, Faculty of Arts and Sciences,

Eastern Mediterranean University, Mersin-10, Famagusta, North Cyprus, Turkey

Abstract. This paper presents a novel formulation to determine the
number of shortest paths between two points in triangular grid in 2D
digital space. Three types of neighborhood relations are used on the
triangular grid. Here, we present the solution of the above mentioned
problem for two neighborhoods—1-neighborhood and 2-neighborhood.
To solve the stated problem we need the coordinate triplets of the two
points. This problem has theoretical aspects and practical importance.

Keywords: Triangular grid · Digital distances · Shortest paths ·
Combinatorics

1 Introduction

Digital geometry works on discrete space, i.e., points can have only integer coor-
dinates. In digital geometry, two basic neighborhood relations are defined in the
square grid [19]—cityblock and chessboard. The cityblock motion allows hori-
zontal and vertical movements only, while at the chessboard motion the diagonal
directions are also permitted. So, based on these motions, in this grid we have
two kinds of distances. In [12,18], there is a short summary of examination of
the square grid. Each coordinate of a point in square grid is independent of the
other. Generalizing the concepts to n dimensions, n independent coordinates are
used. In the n dimensional cubic grid, the structure of the nodes is isomorphic
to the structure of the n dimensional cubes. The field called ‘Geometry of Num-
bers’ works on these grids [1,8,9,11]. The concept of ‘lattice’ and ‘array’ were
used which have about the same meaning with ‘grid’, which we are using.

In digital geometry, hexagonal and triangular grids are also analyzed. There
is a connection among the cubic, hexagonal and triangular grids [10,13,17,20],
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 115–124, 2015.
DOI: 10.1007/978-3-319-26145-4 9

116 M. Dutt et al.

and thus, coordinate systems with 3 coordinates are opt for these grids (see
Fig. 1(left)). In this paper, the problem is formulated based on triangular grid,
which has three neighborhoods. The three kinds of neighborhood criteria of
the triangular grid can be found in [4], where thinning algorithms are shown
in the three basic grids. The three coordinates used in triangular grid are not
independent [14]. The digital distances of two points based on a neighborhood
relation gives the length of a shortest path connecting the two points where in
each step the path moves to next neighborhood point (given a neighborhood
type). Weighted distance in triangular grid is discussed in [16], where three
weights are used to define a distance function.

Shortest path is not unique in discrete space. Between two points there may
exist more than one shortest path. The recursive formulation for the number of
cityblock, chessboard, and octagonal shortest paths between two points in 2D
digital plane was proposed in [3]. In [2], the number of minimal paths in a digital
image between every pair of points with respect to a particular neighborhood
relation is presented, where the image is considered as matrix and hence the
algorithm contains matrix operations. Determination of shortest isothetic path
(cityblock) between two points inside a digital object for a given grid size, is pre-
sented in [6,7]. Since a shortest isothetic path is not unique, finding the number
of shortest isothetic paths between two points is essential. The corresponding
problem is presented in [5]. Here, in this paper, we will discuss the number of
shortest paths in triangular grid for 1- and 2-neighborhoods.

2 Preliminaries

In this section, we will discuss some definitions, that are required to understand
the paper. Three types of neighborhood are used in triangular grid [4] as shown
in Fig. 1(left). Each pixel of the triangular grid is a triangle and it is termed
as a point of the grid. There are two orientations of the used triangles: there
are triangles of shape � and there are triangles of shape �. There are three
1-neighbors, nine 2-neighbors (the 1-neighbors, and six more 2-neighbors), and
twelve 3-neighbors (nine 2-neighbors, and three more 3-neighbors) w.r.t. each
triangle. These relations are reflexive (i.e., the pixel marked with dark triangle
is a 1-, 2-, and 3-neighbor of itself). In addition, all 1-neighbors of a pixel are
its 2-neighbors and all 2-neighbors are 3-neighbors, as well (i.e., increasing and
inclusion properties).

Three coordinate values are required to represent the triangles (and the term
point is also used for the pixels). One point in triangular grid is selected as
origin whose coordinate values are (0, 0, 0). The three lines passing through the
center of the origin triangle, which are orthogonal to its sides, are considered as
three coordinate axes x, y, and z (see Fig. 1(right)). The coordinate values of a
triangle can be determined from another triangle by considering the movement
which must be parallel to one of the axes. If the step is in the direction of an
axis, then the respective coordinate value is increased by 1, while in case when
the step is in the opposite direction to an axis, the respective coordinate value is

Number of Shortest Paths in Triangular Grid 117

Fig. 1. Types of neighbors in triangular grid (left). The coordinate values and lanes
in triangular grid (right).

decreased by 1. In this way, every triangle gets a unique coordinate triplet [15].
Since triangular grid is in 2-dimensional plane, the three coordinate values are
dependent on each other. A point is termed as even (of shape �) when the sum
of the coordinate values is zero. When the corresponding sum is one, the point
is termed as odd (of shape �).

The two grid points p and q of the triangular grid are m-neighbours (m =
1, 2, 3), if the following two conditions hold:

1. |p(i) − q(i)| � 1 for i = 1, 2, 3, and
2. |p(1) − q(1)| + |p(2) − q(2)| + |p(3) − q(3)| � m.

When for some value of m, the second condition holds equality, it is termed as
strict m-neighbors.

The points having the same value as x, y, or z-coordinate, form a lane. Each
lane is orthogonal to one of the coordinate axes. For the points of a lane a
coordinate value is fixed. The other two values change by +1/−1 moving to
neighbor points on the lane. If two points share a coordinate value, then they
are in a common lane (according to this shared coordinate value). If there is
no coordinate value that is shared by the two points, then the points can be
connected by two lanes having angle 2

3π between them.
For technical purpose we name the sextants of the grid by terms direct and

indirect sextants: a point (i, j, k) is in a direct sextant of the grid, if it has
exactly 1 positive coordinate value and 2 negative coordinate values. A point is
in an indirect sextant if it has two positive coordinate values (the third one is
a negative value, necessarily, in this case). In this case, the grid consists of the
three lanes through the origin and six pairwise disjoint sextants. Each sextant

118 M. Dutt et al.

is bordered by two lanes (actually, only half parts of the lanes contain neighbor
points of some of the points of the sextant).

It may happen that q is not origin. If q is an even point, let us say, (x, y, z)
with x+ y + z = 0, then a translation by vector (−x,−y,−z) translates the grid
in such a way, that every point (i, j, k) is mapped to (i−x, j −y, k −z) [15]. It is
also possible that q is an odd triangle. Any odd point q′ with coordinates (x, y, z)
(x+y + z = 1) can be transformed to the origin by mirroring [15], and the point
p′ with coordinates (i, j, k) is transformed to p by the same transformation, e.g.,
assigning for any point (i, j, k) the point (x− i, y − j, z −k). This transformation
is also isometric, it keeps the structure of the grid. Thus further, it is enough to
consider the number of shortest paths from the origin, i.e., we assume that q has
coordinate triplet (0, 0, 0).

3 Formulation for Number of Shortest Paths

The number of shortest paths between two points (say, p and q) in triangular
grid depends on the neighborhood used on the path. Let q be the origin having
coordinate triplet (0, 0, 0) and p be any other point in the grid having coor-
dinate triplet (i, j, k). Three lanes passes through q as shown in Fig. 1(right).
Let fr(i, j, k) be the number of shortest paths from q to p in r-neighborhood
It may happen that we need the number of shortest paths where one of the
points (between p and q) is not the origin. In this scenario, we can translate the
origin to q and calculate the number of shortest paths.

From the symmetry of triangular grid, it can be said that fr(i, j, k) =
fr(i, k, j) = fr(j, i, k) = fr(j, k, i) = fr(k, j, i) = fr(k, i, j). It is to be noted that
in each sextant two values of the coordinate triplets have similar sign—either
positive or negative, whereas the other one has opposite sign, which is called
the prime coordinate. The other two, having the same sign, are called secondary
coordinates. Consider the top-most sextant in Fig. 1(right), where i � 0 and
k � 0 but j � 0. Thus, j is the prime coordinate and i and k are secondary
coordinates. A sextant can also be named by its prime coordinate, therefore the
mentioned sextant is called j-indirect sextant. The value of the prime coordi-
nate can never be less than (by the absolute values of the coordinates) any
of the secondary coordinates. To determine the number of shortest paths in
1-neighborhood, we need only secondary coordinates, as we will see.

The formulations for the number of shortest paths in 1-neighborhood and
2-neighborhood are discussed in the following sections (Sects. 3.1, 3.2).

3.1 Number of Shortest Paths Based on 1-Neighborhood

Let f1(i, j, k) be the number of shortest paths from (i, j, k) to (0, 0, 0) considering
1-neighborhood in triangular grid. The number of shortest paths from p to q can
be defined as follows.

f1(i, j, k) =
(|a| + |b|

|a|
)

,
where a, b � 0 or a, b � 0,
a ∈ {i, j, k} and b ∈ {i, j, k} \ {a} (1)

Number of Shortest Paths in Triangular Grid 119

Fig. 2. Number of shortest paths (shown inside circles) in 1-neighborhood.

The number of shortest paths in 1-neighborhood for different coordinate
triplets are shown in Fig. 2. It is to be noted that if p lies in any of the three
lanes which intersect at q, then there will be only one shortest path between p
and q in 1-neighborhood (see Fig. 2).

3.2 Number of Shortest Paths Based on 2-Neighborhood

Let f2(i, j, k) be the number of shortest paths between two points p and q in
2-neighborhood. The calculation of number of shortest paths in 2-neighborhood
is dependent on the same in 1-neighborhood. Then, f2(i, j, k) can be defined as
follows.

f2(i, j, k) = f1(i, j, k) × α,
α = 1, when i + j + k = 0;
α = max(|i|, |j|, |k|), when i × j × k � 0;
α = max(|i|, |j|, |k|) + 1, when i × j × k < 0.

(2)

120 M. Dutt et al.

Fig. 3. Number of shortest paths in 2-neighborhood.

that is, the f2(i, j, k) remains same as f1(i, j, k) for even points and it is multi-
plied by the largest absolute value of the coordinates for odd points of the lanes
containing the origin and for odd points of the direct sextants, and the sum of
the absolute values of the secondary coordinates is used as coefficients for odd
points of the indirect sextants (see also Fig. 3).

4 Proof of Correctness

Proof for 1-neighborhood: For 1-neighborhood, the proof goes by induction
for the even and also for the odd points for both, points of the lanes and points
of the (direct and indirect) sextants. Let us start by the lanes. It is clear that a
shortest path from the origin q to any point having coordinates (i, j, 0) or (0, j, k)
with j > 0 consists of |i|+ j or j + |k| steps, respectively. Moreover, there is only
one shortest path in these cases, stepping one by one, neighbor to neighbor on
the given lane. Applying Eq. 1 for these cases we got

(|i|
0

)
= 1 (or

(|i|
|i|

)
, or

(
j
0

)
,

Number of Shortest Paths in Triangular Grid 121

or equivalently,
(
j
j

)
= 1) and

(|k|
0

)
= 1 (or

(|k|
|k|

)
, or

(
j
0

)
, or equivalently,

(
j
j

)
= 1),

respectively. Thus, by symmetry, the formula is proven for the points of all the
lanes containing the origin.

Now, let us consider the direct sextants, we show the proof for the j-direct
sextant, but by symmetry it holds for the other direct sextants as well. We use
an induction based on the sum of absolute values of the secondary coordinates
w.r.t. a sextant. Now, let us consider an even point (i, j, k) such that it is inside
the j-direct sextant, i.e., j > 0 and i, k < 0. Then in a shortest path from q one
may arrive to the point (i, j, k) from (i, j, k + 1) or from (i + 1, j, k). There are
no other possibilities. Therefore, f1(i, j, k) = f1(i, j, k + 1) + f1(i + 1, j, k) =
(|i|+|k|−1

|i|
)
+

(|i|+|k|−1
|i|−1

)
=

(|i|+|k|
|i|

)
. Notice that both points (i, j, k+1), (i+1, j, k)

are odd.
Now, let us consider an odd point such that j > 0 and i, k < 0. Then, in a

shortest path from q, the last step must be from the even point (i, j − 1, k) to
the point (i, j, k), and thus, f1(i, j, k) = f1(i, j − 1, k).

Observe, that by using the already proven values for the lanes having a
coordinate value 0, actually, the binomial coefficients and the Pascal’s triangle
are obtained, in a way that every value is repeated from an even point to an odd
point right below.

Now, let us consider odd points in the j-indirect sextant where j < 0 and
i, k > 0. The proof for the points of the lanes bordering the j-indirect sextant is
already given. Now, let us consider the odd points of this sextant. In a shortest
path from q one may arrive to the point (i, j, k) (i+j+k = 1) from (i, j, k−1) or
from (i−1, j, k). There are no other possibilities. Therefore f1(i, j, k) = f1(i, j, k−
1) + f1(i − 1, j, k). Notice that both points (i, j, k − 1), (i − 1, j, k) are even. If
we consider even points in the j-indirect sextant, then in a shortest path from
q, the last step must go from the odd point (i, j − 1, k) to the point (i, j, k), and
thus, f1(i, j, k) = f1(i, j−1, k). The proof is also inductive here and the binomial
coefficients are obtained in a quite similar manner as at the j-direct sextant.

Proof for 2-neighborhood: Similarly, we will prove for 2-neighborhood first
for even and odd points on the lanes containing the origin, and then for points
in the j-direct and j-indirect sextants. By symmetry, proof for other sextants is
immediately follows.

By using 2-neighborhood, in a shortest path from q to an even point only
steps changing two of the coordinate values are used (they are the so-called strict
2-steps). From q to an odd point exactly one 1-step is used, all the other steps
in a shortest path are strict 2-steps (see, e.g., [14]).

Let us start by the even points in lanes. It is clear that a shortest path from
the origin q to any point having coordinates (i, j, 0) = (−j, j, 0) or (0, j, k) =
(0, j,−j) with j > 0 consists of exactly j steps, respectively. Moreover, there
is only one shortest path in these cases, stepping one by one, strict 2-neighbor
to strict 2-neighbor on the given lane. Applying Eq. 2 for these cases we got(|i|
0

)
= 1 and

(|k|
0

)
= 1, respectively, i.e. the same value as for 1-neighborhood.

Now consider an odd point in lanes containing the origin. Let it have the
coordinates (i, j, 0) or (0, j, k) with j > 0, i.e., it is (1 − j, j, 0) or (0, j, 1 − j). In

122 M. Dutt et al.

a shortest path from the origin to the point (1 − j, j, 0) the last step could be
either from (1 − j, j − 1, 0) or from (2 − j, j − 1, 0). Similarly, to (0, j, 1 − j) one
can arrive from the points (0, j − 1, 1 − j) or (0, j − 1, 2 − j) in a shortest path,
there is no other choice. Thus, the number of shortest paths from q to these
odd points can be written as, f2(0, j, k) = f2(0, j − 1, k) + f2(0, j − 1, k + 1) or
f2(i, j, 0) = f2(i, j − 1, 0) + f2(i + 1, j − 1, 0), respectively. Here, the first terms
are belonging to shortest paths for an even point and the second terms are
belonging to the shortest paths for an odd point which will expand in similarly.
By induction using Eq. 2, f2(0, j, k) = f1(0, j − 1, k)+ f1(0, j − 1, k +1)× (j − 1)
and f2(i, j, 0) = f1(i, j − 1, 0) + f1(i − 1, j − 1, 0) × (j − 1), respectively. Thus,
f2(0, j, k) =

(
0+|k|

|k|
)
+

(
0+|k|−1

|k|−1

)×(j−1) or f2(i, j, 0) =
(|i|−1+0

|i|−1

)
+

(|i|−1+0
|i|−1

)×(j−1),
i.e., f2(0, j, k) = 1+1×(j−1) or f2(i, j, 0) = 1+1×(j−1). Hence, f2(0, j, k) = j
and f2(i, j, 0) = j. Thus, by symmetry, the formula is proven for the points of
the lanes containing the origin.

Let us consider the shortest paths from q to an even point (i, j, k) in
j-direct sextant (j > 0). Since only strict 2-steps, i.e., even points are used
in these shortest paths, there are exactly to points that can precede (i, j, k) in a
shortest path: they are (i, j − 1, k + 1) and (i + 1, j − 1, k). Thus, the number of
shortest paths can be written as f2(i, j, k) = f2(i, j −1, k+1)+f2(i+1, j −1, k).
The two terms represent the formula for two even points. Thus, f2(i, j, k) =
f1(i, j − 1, k + 1) + f1(i + 1, j − 1, k), i.e., f2(i, j, k) =

(|i|+|k|−1
|i|

)
+

(|i|−1+|k|
|i|−1

)
=

(|i|+|k|
|i|

)
= f1(i, j, k).

In a shortest path from q one may arrive to the odd point (i, j, k) from
(i, j − 1, k + 1) or (i, j − 1, k) or (i + 1, j − 1, k), when (i, j, k) is an odd point
in j-direct sextant. Subsequently, f2(i, j, k) = f2(i, j − 1, k + 1) + f2(i + 1, j −
1, k) + f2(i, j − 1, k). The first two terms referring values for odd points and
the third term does for an even point. Using Eq. 2, f2(i, j, k) = f1(i, j − 1, k +
1) × (j − 1) + f1(i + 1, j − 1, k) × (j − 1) + f1(i, j − 1, k). Therefore, f2(i, j, k) =
(j −1)×

((|i|+|k|−1
|i|

)
+

(|i|−1+|k|
|i|−1

))
+f1(i, j −1, k) = (j −1)×(|i|+|k|

|i|
)
+

(|i|+|k|
|i|

)
=

j × (|i|+|k|
|i|

)
= j × f1(i, j, k). This is the formula that we wanted to proof in this

case.
Let us consider a shortest path from q to an even point (i, j, k) in j-indirect

sextant (j < 0). Their number can be written as f2(i, j, k) = f2(i − 1, j + 1, k) +
f2(i, j + 1, k − 1) since one reach point (i, j, k) only from points (i − 1, j + 1, k)
and (i, j + 1, k − 1) in a shortest path from the origin. The two terms represent
values corresponding to two even points. Thus, f2(i, j, k) = f1(i − 1, j + 1, k) +
f1(i, j + 1, k − 1), i.e., f2(i, j, k) =

(
i−1+k
i−1

)
+

(
i+k−1

k

)
=

(
i+k
i

)
= f1(i, j, k).

Let us consider the last case. When (i, j, k) is an odd point in j-indirect
sextant, then, in a shortest path, one may reach (i, j, k) from exactly one of the
following points: (i − 1, j, k), (i, j, k − 1), (i − 1, j + 1, k) and (i, j + 1, k − 1).
Consequently, f2(i, j, k) = f2(i − 1, j, k) + f2(i, j, k − 1) + f2(i − 1, j + 1, k) +
f2(i, j +1, k − 1). The first two terms are values for even points and the last two
terms are vales for odd points. Using Eq. 2, f2(i, j, k) = f1(i−1, j, k)+f1(i, j, k−
1) + f1(i − 1, j + 1, k) × (i − 1 + k) + f1(i, j + 1, k − 1) × (i + k − 1). Therefore,

Number of Shortest Paths in Triangular Grid 123

f2(i, j, k) =
(
i−1+k
i−1

)
+

(
i+k−1

i

)
+

(
i−1+k
i−1

)×(i−1+k)+
(
i+k−1

i

)×(i+k−1). Thus,

f2(i, j, k) =
(
i+k
i

)
+(i+k−1)×

((
i−1+k
i−1

)
+

(
i+k−1

i

))
=

(
i+k
i

)
+(i+k−1)×(

i+k
i

)
=

(
i+k
i

)× (i+ k − 1+1) = f1(i, j, k)× (i+ k). For odd points in j-indirect sextant,
i+j+k = 1 and |j|+1 = i+k, since j < 0. Hence, f2(i, j, k) = f1(i, j, k)×(|j|+1).

The proof for other sextants, i.e., i-direct sextant, i-indirect sextant, k-direct
sextant, and k-indirect sextant, can be done similarly.

5 Conclusions

Digital distances have various application in several research areas, specially in
image processing. Many studies have already been proposed on it. The usage of
non-traditional grids can have several advantages based on their better symmet-
ric properties (e.g., they have more symmetry axes) than the traditional (square,
cubic) grids. The three types of basic neighborhood relations give more flexibil-
ity in triangular grid compared to square and hexagonal grid. The number of
shortest paths based on 1- and 2-neighborhoods in triangular grid is presented
in this paper. Theoretical background, such as the formulation of the problem
and proof of correctness are elaborated. In future, we can extend the problem
by finding number of shortest paths based on 3-neighborhood.

References

1. Crawley, P., Dilworth, R.P.: Algebraic Theory of Lattices. Prentice-Hall Inc., Engle-
wood Cliffs (1973)

2. Das, P.P.: An algorithm for computing the number of the minimal paths in digital
images. Pattern Recogn. Lett. 9(2), 107–116 (1989)

3. Das, P.P.: Counting minimal paths in digital geometry. Pattern Recogn. Lett.
12(10), 595–603 (1991)

4. Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal and triangular
arrays. Commun. ACM 15(3), 827–837 (1972)

5. Dutt, M., Biswas, A., Bhattacharya, B.B.: Enumeration of shortest isothetic paths
inside a digital object. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybinski, H.,
Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 105–115. Springer, Heidelberg
(2015)

6. Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: On finding shortest iso-
thetic path inside a digital object. In: Barneva, R.P., Brimkov, V.E., Aggarwal,
J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 1–15. Springer, Heidelberg (2012)

7. Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: On finding a shortest
isothetic path and its monotonicity inside a digital object. Annals of Mathematics
and Artificial Intelligence (2014) (in press)

8. Gruber, P.M.: Geometry of numbers. In: Gruber, P.M., Wills, J.M. (eds.) Hand-
book of Convex Geometry, vol. B, pp. 739–763. Elsevier, Amsterdam (1993)

9. Gruber, P.M., Lekkerkerker, C.G.: Geometry of Numbers. North-Holland Math-
ematical Library, vol. 37, 2nd edn. North-Holland Publishing Co., Amsterdam
(1987)

124 M. Dutt et al.

10. Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image
Process. 4(9), 1213–1221 (1995)

11. Lekkerkerker, C.G.: Geometry of numbers. Bibliotheca Mathematica, vol. VIII.
Wolters-Noordhoff Publishing, Groningen, North-Holland Publishing Co., Ams-
terdam, London (1969)

12. Melter, R.: A survey of digital metrics. Contemp. Math. 119, 95–106 (1991)
13. Nagy, B.: A family of triangular grids in digital geometry. In: Proceedings of the

3rd International Symposium on Image and Signal Processing and Analysis, ISPA
2003, vol. 1, pp. 101–106. Italy, Rome (2003)

14. Nagy, B.: Shortest path in triangular grids with neighbourhood sequences. J. Com-
put. Inf. Technol. 11, 111–122 (2003)

15. Nagy, B.: Isometric transformations of the dual of the hexagonal lattice. In: Pro-
ceedings of the 6th International Symposium on Image and Signal Processing and
Analysis, ISPA 2009. pp. 432–437. IEEE, Salzburg, Austria (2009)

16. Nagy, B.: Weighted distances on a triangular grid. In: Barneva, R.P., Brimkov,
V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 37–50. Springer, Heidel-
berg (2014)

17. Nagy, B.: Generalized triangular grids in digital geometry. Acta Mathematica
Academiae Paedagogicae Nýıregyháziensis. 20, 63–78 (2004)

18. Rosenfeld, A., Melter, R.A.: Digital geometry. Math. Intelligencer 11(3), 69–72
(1989)

19. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recogn.
1, 33–61 (1968)

20. Wüthrich, C.A., Stucki, P.: An algorithmic comparison between square- and
hexagonal-based grids. CVGIP: Graphical Models Image Process. 53, 324–339
(1991)

Construction of 3D Orthogonal Convex Hull
of a Digital Object

Nilanjana Karmakar(B) and Arindam Biswas

Department of Information Technology,
Indian Institute of Engineering Science and Technology, Shibpur, India

{nilanjana.nk,barindam}@gmail.com

Abstract. Orthogonal convex hull of a digital object in 3D domain is
defined as the minimum volume orthogonal polyhedron enclosing the
object such that its intersection with an axis-parallel face plane is either
empty or a collection of projection-disjoint convex polygons. A novel
and efficient algorithm for construction of 3D orthogonal convex hull of a
digital object is proposed. The algorithm is based on orthogonally slicing
the object into slab polygons followed by connecting all possible slab
polygons on a slicing plane and finding their 2D orthogonal convex hulls.
The regions belonging to the 2D orthogonal convex hulls are replaced
by the corresponding UGCs (unit grid cubes) and the exterior UGC-
faces are merged to give the 3D orthogonal convex hull. The algorithm
operates in integer domain and executes in time linear in the number
of voxels on the object surface. The algorithm operates in exactly two
passes irrespective of the object size or grid resolution. Experimentation
with a wide range of objects has provided accurate results, some of which
are presented here to demonstrate the effectiveness of the algorithm.

Keywords: 3D orthogonal convex hull · Orthogonal slicing · 3D orthog-
onal outer cover · 3D concavity · 2D orthogonal convex hull

1 Introduction

Determination of the convex hull of a digital object has been a well-studied
problem in the domain of computational geometry. Convex hull finds its use in
a wide range of applications including shape analysis, visual pattern matching,
intersection and collision detection, robot motion planning, obstacle detection,
etc. The standard algorithms in 2-dimensions include Gift wrapping or Jarvis
march [8] which executes in O(nh), and Graham scan [7], Quickhull [5], and
other divide-and-conquer approaches [14] each of which executes in O(n log n)
time, where n is the number of points or vertices on the object surface, and h
is the number of vertices of the convex hull. Compared to the 2D convex hull
in the general domain, the 2D orthogonal convex hull construction requires less
time at the same grid resolution [2].

Construction of 3D convex hull in the general domain has been attempted
since the Gift wrapping algorithm has been extended to 3-dimensions, thereby
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 125–142, 2015.
DOI: 10.1007/978-3-319-26145-4 10

126 N. Karmakar and A. Biswas

replacing the edge-by-edge approach by a facet-by-facet approach [8,14]. A sug-
gested improvement on the Gift wrapping algorithm [16] takes care of numerical
computations and emphasizes on the topological condition that the boundary
of the 3D convex hull should be isomorphic to a sphere. Variations of Quickhull
[1,3] have been extended to the 3-dimensions by incrementally inserting points
to the convex hull, as in the 2D case. A divide-and-conquer approach adopted in
[13] is characterized by merging of two non-intersecting convex hulls as the pro-
cedure progresses. Both Quickhull and the divide-and-conquer approach execute
in O(n log n) time. Other techniques based on Quickhull, Voronoi diagram, etc.
and executing on GPU and PRAM architectures have been reported [4,6,15].
But there exists a sharp distinction among the two sets of techniques as the lat-
ter shifts from the standard CPU architecture to the fast and parallel processing
GPU.

A novel and efficient algorithm for the construction of 3D orthogonal convex
hull is reported. To the best of our knowledge, no work regarding construction
of 3D orthogonal convex hull has been reported in literature. In [1], as also in
many other works, the digital object is provided as a set of points in 3D space.
As our algorithm accepts the input digital object as a triangulated data set, the
space requirement is less than most other algorithms. Unlike [1], our algorithm
does not follow an incremental approach. Rather, the orthogonal convex hull is
determined in exactly two passes of the algorithm irrespective of the object size or
the grid resolution. The algorithm executes in general CPU-based architecture.

2 Definitions and Preliminaries

The theoretical foundation in the context of this work is given below in brief. A
digital object A is defined as a finite subset of Z3, with all its constituent points
(i.e., voxels) having integer coordinates and connected in 26-neighborhood. Each
voxel is equivalent to a 3-cell [12] centered at the concerned integer point (Fig. 1
(Left)). In the current work, the digital object A is considered as a triangulated
data set where each vertex of a triangle is an object voxel.

2.1 Digital Grid

The orthogonal cover of A is obtained w.r.t. a digital grid in 3D digital space. A
digital grid G consists of three orthogonal sets of equi-spaced grid lines, Gyz, Gzx,
and Gxy, where Gyz = {lx(j ± ag, k ± bg) | a ∈ Z, b ∈ Z}. Similarly, Gzx and Gxy

can be represented in terms of ly and lz for a grid size g ∈ Z
+. Here, lx(j, k) =

{(x, j, k) : x ∈ R}, ly(i, k) = {(i, y, k) : y ∈ R}, and lz(i, j) = {(i, j, z) : z ∈ R}
denote the grid lines (Fig. 1(Left)) along x-, y-, and z-axes respectively, where
i, j, and k are integer multiples of g. The three orthogonal lines lx(j, k), ly(i, k),
and lz(i, j) intersect at the point (i, j, k) ∈ Z

3, which is called a grid point; a shift
of (±0.5g,±0.5g,±0.5g) with respect to a grid point designates a grid vertex,
and a pair of adjacent grid vertices defines a grid edge [12] (Fig. 1(Left)).

A grid, as defined above, is characterized by several elements (Fig. 1(Left)).
A unit grid cube (UGC) is a (closed) cube of length g whose vertices are grid

3D Orthogonal Convex Hull of a Digital Object 127

Fig. 1. Left: α-adjacent 3-cells for g = 2. Right: Possible ways of forming a convex
polygon out of three projection-disjoint convex polygons (Color figure online).

vertices, edges constituted by grid edges, and faces constituted by grid faces.
Each face of a UGC lies on a face plane (henceforth referred as a UGC-face),
which is parallel to one of three coordinate planes. Clearly, each face plane,
containing coplanar UGC-faces, is at a distance of integer multiple of g from its
parallel coordinate plane. A UGC-face, fk, has two adjacent UGCs, U1 and U2,
such that fk = U1 ∩ U2. The interior of a UGC is the open cubical region lying
strictly inside the UGC. A smaller (larger) value of g implies a denser (sparser)
grid. For g = 1, the grid G essentially corresponds to Z

3. As each grid point p
is equivalent to a 3-cell cp centered at p for g = 1, each face of cp is a grid face
lying on a face plane, which is parallel to a coordinate plane. A UGC consists of
g × g × g voxels and each UGC-face consists of g × g voxels.

2.2 3D Orthogonal Convex Hull

An orthogonal polyhedron is a 3D polytope with all its vertices as grid vertices, all
its edges made of grid edges, and all its faces lying on face planes [11]. Each face
of an orthogonal polyhedron is an isothetic polygon whose alternate edges are
orthogonal and constituted by grid edges of G. An orthogonal convex polyhedron
is an orthogonal polyhedron whose intersection with a face plane parallel to any
coordinate plane is either empty or a collection of projection-disjoint orthogonal
convex polygons. The 3D orthogonal convex hull of a digital object A, denoted
by 3OH(A), is the minimum volume orthogonal polyhedron such that

i. each point p ∈ A lies inside 3OH(A) and
ii. intersection of 3OH(A) with a face plane parallel to any coordinate plane

is either empty or a collection of projection-disjoint orthogonal convex poly-
gons.

Here, collection of projection-disjoint convex polygons defines a collection of
orthogonal convex polygons (also known as “hv-convex” polygons in literature)
whose intersection with every orthogonal line is either empty or a line segment
[17]. Henceforth, the term “convex polygon” would refer to “orthogonal convex
polygon”.

128 N. Karmakar and A. Biswas

Fig. 2. A digital object, its 3D orthogonal outer cover, and its 3D orthogonal convex
hull (Color figure online).

A minimal collection convex hull of a collection of polygons is defined as
“the minimal area convex collection of disjoint polygons containing the given
collection” [17]. The term “projection-disjoint” is used in conformance with the
concept of minimal collection convex hull of a collection of polygons. If the inter-
section of a given collection of orthogonal convex polygons with an orthogonal
line is either empty or a line segment, then an attempt to construct a “minimal
area convex polygon containing the given collection” [17] results in a convex
polygon which is not unique. In Fig. 1(Right), three possible ways of forming
a minimal area convex polygon out of three such polygons f1, f2, and f3 are
displayed. In such cases, the concept of projection-disjoint convex polygons pro-
duces a unique collection of orthogonal convex polygons, i.e., the collection of
f1, f2, and f3 without the red dotted lines joining them.

3 Proposed Work

Given a 3D digital object A in the form of a triangulated data set, the construc-
tion of the 3D orthogonal convex hull is presented in this section. In Fig. 2(c),
3D orthogonal convex hull 3OH(A) of a digital object A (Fig. 2(a)) is shown
as regions appended to the 3D orthogonal outer cover PG(A) in Fig. 2(b). The
process involves orthogonal slicing of A with slicing planes parallel to yz-, zx-,
and xy-planes, followed by the construction of the 2D orthogonal convex hull
[2] of all the slab polygons on each slicing plane Πi. Since on each edge of the
triangulated surface exactly two triangles are incident, the set of triangles repre-
senting A truly captures the peripheral topology of the object. The triangulation
contains neither degenerate triangles nor holes. The interiors of two triangles do
not intersect. In this case, it is not necessary to represent the object as a set of
object points. The object is imposed on a 3D background grid which is repre-
sented as a set of unit grid cubes (UGCs) (Sect. 2.1), each of grid size g. If a
UGC Uk completely contains or is intersected by a triangle Tabc(va, vb, vc), then
Uk is considered as object-occupied.

Let Π = {Π1,Π2, ...,Πn} be a set of slicing planes (coinciding with face
planes) separated by g and parallel to the zx-plane (or yz- or xy-plane) such

3D Orthogonal Convex Hull of a Digital Object 129

Fig. 3. Slab St of height g, bounded on top by slab polygon t lying on Πi and in the
bottom by b, the projection of t on Πi−1 (Color figure online).

that it extends upto the length of the 3D orthogonal outer cover PG(A) in a
direction perpendicular to the zx-plane. A UGC-face fk on Πi is considered as
object-occupied if the adjacent UGC below fk is object-occupied. The boundary
of the object intersected by Πi is traversed orthogonally such that the object
always lies left. Thus, a slab polygon on Πi is obtained [9]. Let t be a slab polygon
on Πi and b be the projection of t on Πi−1. A slab St is defined as the section of
PG(A) of height g intercepted between Πi and Πi−1 and bounded horizontally
on top and bottom by t and b respectively (Fig. 3). Since b is the projection of
t, their shapes are identical, that is, t does not vary from Πi to Πi−1. Hence the
slab St can be conveniently represented by the slab polygon t.

If more than one slab polygon exists on a single slicing plane, then we mini-
mally connect each pair of such polygons which are not projection-disjoint by a
half-edge and its twin. The x and y ranges of each such slab polygon are stored
in two indexed lists Lx and Ly by a single traversal of the slab polygons. A stack
is used to find the overlapping slab polygons along each of x- and y-axes. Repe-
tition of the process on Lx and Ly alternately for a finite number of times gives
a connected slab polygon or more than one projection-disjoint slab polygons
on a single slicing plane. Let F be a set of one or more 2D isothetic polygons
representing a connected slab polygon. In Fig. 4(a), F is initially represented by
{f1, f2, f3, f4} and then connected minimally to form F = f1 ∪ f2 ∪ f3 ∪ f4. The
2D orthogonal convex hull OH(F) of the slab polygons on Πi is determined as
stated in [2]. OH(F) is defined as the smallest area orthogonal polygon such
that (i) each point p ∈ F lies inside OH(F) and (ii) intersection of OH(F) with
any horizontal or vertical line is either empty or exactly one line segment. To
construct OH(F) the concavities in F are resolved by applying a set of reduction
rules to derive the edges of the orthogonal hull that maintain the property of
orthogonal convexity (Fig. 4(b)).

130 N. Karmakar and A. Biswas

Fig. 4. Joining of coplanar slab polygons, which are not projection-disjoint, is shown
here. In Lx and Ly, the indices corresponding to the maximum and minimum values
of the x- and y-coordinates of each polygon are marked by polygon ids. (a) Each
pair of slab polygons in {f1, f2, f3, f4} are minimally connected by a half-edge and its
twin to form the connected polygon F . (b) Resolving the concavities in F yields the
2D orthogonal convex hull OH(F) (Color figure online).

Likewise, the construction of the 3D orthogonal convex hull 3OH(A) also
requires a method of addressing the concavities in A. “Concavity” in 3-
dimensions and its related terminology are explained next. A grid vertex in
the 3D domain may be shared by at most eight UGCs. Depending on the object
occupancy of these UGCs, the grid vertices may be classified into different types
where each type is represented by a 3-tuple defined as (# incident UGCs, #
incident edges, # incident faces) w.r.t. the grid vertex. In Fig. 5(Left), some
instances of the possible concave vertices of types (3, 3, 3), (4, 4, 4), (4, 6, 6),
(5, 3, 3), (6, 2, 2), and (7, 3, 3) are shown. It is to be noted that only those concave
vertices that do not form an intersecting polyhedron (pseudo-polyhedron) are
considered here.

3.1 Concavity in Three Dimensions

During the traversal of t (Fig. 5(Right)), if two consecutive concave vertices are
encountered, then it implies a concavity in t. Since t represents the slab St, two
consecutive concave vertices in t also represents a concavity or concave region
in St. Hence, in this case, the concavity consists of two consecutive concave
vertices in each of t and b. In Fig. 5(Right)(a), the concave vertices in t and b are
marked in red. If t lies on slicing plane Πi and b on Πi−1, then this concavity
is referred to as a concavity on Πi. The minimum volume polyhedron that is
plugged into a concave region to resolve the concavity is defined as a polyhedral

3D Orthogonal Convex Hull of a Digital Object 131

Fig. 5. Left: Types of concave vertex (that do not belong to intersecting polyhedron).
Right: (a) A concavity on slab St containing two consecutive concave vertices (red)
in each of the slab polygons t and b. The concave region contains a pair of parallel
concavity faces. (b) The concavity in St is resolved by plugging in a polyhedral block
which contains three open faces (Color figure online).

Fig. 6. Types of concavity: Type 1 where (a) three faces of the concavity are open and
(b) two faces are open and one face is partially open, and Type 2 where (c) two faces,
and (d) one face of the concavity is open (Color figure online).

block, henceforth referred to as a block (Fig. 5(Right)(b)). For simplicity, the
polyhedral block is shown as a tetrahedron in Fig. 5(Right)(b). Here, t and b are
horizontal faces. The faces of the block, Bc, that coincide with vertical faces of St

are called concavity faces. If two concavity faces are parallel to each other, then
they are referred to as parallel concavity faces. The concavity in Fig. 5(Right)
contains three concavity faces out of which two are parallel to each other. Each

132 N. Karmakar and A. Biswas

face of the block that does not coincide with a face of St is defined as open face.
Henceforth, the open faces of a block will also be referred to as open faces of the
concave region. In Fig. 5(Right), the block has three open faces.

The concavities may be classified into two types, Type 1 and Type 2, as shown
in Fig. 6. Type 1 (Fig. 6(a, b)) has a pair of parallel open faces and Type 2 (Fig. 6
(c, d)) has no parallel open faces. For simplicity, the concave vertices involved in
the concavities in Fig. 6 are only of types (3, 3, 3), (4, 4, 4), and (7, 3, 3). Based
on the object occupancy of the UGCs the concavities in A may be considered
as the concavities in the 3D orthogonal outer cover PG(A) for sufficiently small
grid sizes [10,11]. It is to be noted that for larger grid sizes a concavity in A may
not be accurately represented by a concavity in PG(A).

3.2 Finding 3D Orthogonal Convex Hull

Let a concavity in the slab polygon t be resolved by appending the polygon fc
to t (Fig. 5(Right)(b)). Hence, the concavity in the slab St should be resolved
by plugging in the block, Bc, which consists of the UGC(s) corresponding to fc.
The polygon fc is an open face of Bc. Bc may contain three, two, or one open
face(s), as mentioned in Fig. 6.

The following features are observed in a concavity in a slab St.

i. A concavity in St is viewed as a concave slab polygon t and/or as a col-
lection of coplanar slab polygons (not necessarily convex) along a direction
perpendicular to t, such that the polygons are not projection-disjoint.
W.l.o.g. a concavity Cx,y refers to a concavity along yz-plane. Cx,y is viewed
as a collection of coplanar slab polygons that are not projection-disjoint
along zx-plane (Fig. 7(b)).

ii. Along a coordinate plane exactly two categories of concavities exist in St.
Cx,z and Cx,y are concavities along the yz-plane, Cy,z and Cy,x along the
zx-plane, and Cz,y and Cz,x along the xy-plane (Fig. 7).

3.2.1 Induced Concavities
The introduction of Bc in St may induce a new concavity. A concavity is char-
acterized by a pair of parallel concavity faces separated by a distance of integer
multiple of g which defines the concave region. A concavity is induced when a
concavity face is introduced such that it is parallel to an existing concavity face.

A Type 1 concavity C1 contains a pair of parallel open faces, say, f1 and f2,
as shown in Fig. 8(a). Let f1 lies on the slicing plane Πi parallel to the zx-plane.
If a block Bc is used to address this concavity, then f1 and f2 are two parallel
open faces of Bc. f1 and f2 are introduced simultaneously and none of them
lies between two existing concavity faces. Let there exists a polytope face f4 on
some slicing plane Πl parallel to the zx-plane such that its projection on Πl−1

is the concavity face f3. Let f1 and the projection of f3 on Πi have a non-empty
intersection. Then f1 induces a new concavity C ′

1 with f3 where the concave
region lies between f1 and f3. On the other hand, a Type 2 concavity C2 does
not contain parallel open faces. In Fig. 8(b), an open face f1 of C2 is parallel

3D Orthogonal Convex Hull of a Digital Object 133

Fig. 7. Two categories of possible concavities w.r.t. a slab along each coordinate plane.
(a) Cx,z concavity, induces Cy,z and Cz,y along yz-plane, (b) Cx,y concavity, induces
Cy,z and Cz,y along yz-plane, (c) Cy,z concavity, induces Cx,z and Cz,x along zx-plane,
(d) Cy,x concavity, induces Cx,z and Cz,x along zx-plane, (e) Cz,y concavity, induces
Cx,y and Cy,x along xy-plane, and (f) Cz,x concavity, induces Cx,y and Cy,x along
xy-plane.

Fig. 8. Induced concavities: (a) Addressing a Type 1 concavity C1 induces a concavity
C′

1 and (b) addressing a Type 2 concavity C2 does not induce any new concavity (Color
figure online).

to one of its concavity faces f2. It is evident that f1 is introduced between two
concavity faces f2 and f3. Earlier f2 and f3 had defined a concavity. The same
concavity is now defined by f1 and f3. Hence, no new concavity is induced. This
implies that resolving a Type 1 concavity induces a new concavity but resolving
a Type 2 concavity does not induce new concavity.

W.r.t. a slab St, a concavity Cx,y (Cx,z) is viewed as a concave slab polygon
along the yz-plane and as a set of slab polygons which are not projection-disjoint
along the zx-plane (xy-plane) (Fig. 7(a) and (b)). In this case, two of the open

134 N. Karmakar and A. Biswas

faces must be parallel to the yz-plane. Such a face may act as a concavity face
only for a Cy,z or a Cz,y concavity (Fig. 7(c) and (e)). Hence, addressing the
concavities Cx,y and Cx,z while traversing slab polygons along yz-plane may
induce concavities Cy,z and Cz,y. Concavity Cx,y (Cx,z), as shown in Fig. 7, is
not detected along the xy-plane (zx-plane). Along the zx-plane (xy-plane) Cy,z

and Cz,y are induced and resolved simultaneously, as evident later from Fig. 9(c)
and (d). Hence, addressing Cx,y and Cx,z along zx- and xy-planes induces no
concavity. Such properties are true for concavities Cy,x and Cy,z (Fig. 7(c) and
(d)), and Cz,x and Cz,y (Fig. 7(e) and (f)) along the corresponding coordinate
planes, as summarized in tabular form in Fig. 7.

3.2.2 Two Passes of the Algorithm
Since addressing a concavity may induce a new concavity as stated in Sect. 3.2.1,
a second pass of the algorithm may be required in order to deal with the induced
concavities, if any. W.r.t. a slicing plane Πi parallel to a given coordinate plane,
the algorithm is applicable if it performs at least one of the operations – con-
necting at least one pair of slab polygons which are not projection-disjoint, or
resolving at least one concavity.

Let us consider that PG(A), intersected by the given slicing plane Πi, is
subjected to the algorithm along the coordinate planes in the given order of yz-,
zx-, and xy-planes.

Pass 1, Step yz-plane: Let the set of slab polygons on the slicing plane Πi be
denoted as F = {f1, f2, ..., fr}. The method addresses concavities Cx,z, Cx,y,
Cy,x, and Cz,x which already existed on PG(A) (Fig. 7(a), (b), (d), and (f)).
Addressing Cy,x and Cz,x induces no concavity along the yz-plane (Sect. 3.2.1).
Addressing Cx,z and Cx,y induces Cy,z and Cz,y such that the block describing
the concave region of Cy,z or Cz,y is not intersected by Πi, as shown in Fig. 9(c)
and (d) (Sect. 3.2.1). In this case, concavities Cy,z and Cz,y are not identified
along the yz-plane (Fig. 9(a)). But in some cases, Cy,z or Cz,y may get resolved
while addressing Cy,x or Cz,x w.r.t. one or more slicing planes along the yz-plane.
In Fig. 9(b), Cz,y gets resolved while addressing Cz,x w.r.t. slicing planes Πi and
Πi+1. No concavity is induced in the process. Thus, only concavities Cy,z and
Cz,y (both originally present in PG(A) and induced here) are carried over to the
next step.

Pass 1, Step zx-plane: Once the yz-plane is exhausted, PG(A) is subjected to the
algorithm along the zx-plane. The concavities Cy,z and Cz,y which are originally
present in PG(A) and those which are induced in the last step are carried over
to this step. The recently induced Cy,z and Cz,y (Fig. 9(c) and (d)), in turn,
induces concavities which do not belong to Πi. Therefore, in this step Cy,z and
Cz,y will refer to the original ones (Fig. 9(a)). When Cy,z is addressed along
the zx-plane, Cx,z and Cz,x may be induced (Fig. 9(e)). Removal of Cz,y does
not induce any concavity along the zx-plane, as mentioned in Sect. 3.2.1. Hence,
induced concavities Cx,z and Cz,x are carried over to the next step.

3D Orthogonal Convex Hull of a Digital Object 135

Fig. 9. (a) Concavities Cy,z and Cz,y are not identified along the yz-plane. (b) Cz,y gets
resolved while addressing Cz,x w.r.t. Πi and Πi+1 along yz-plane. (c, d) Addressing
Cx,z and Cx,y in Step yz-plane induces Cy,z and Cz,y, (e) addressing Cy,z in Step zx-
plane induces Cx,z and Cz,x, and (f) addressing Cz,x in Step xy-plane induces Cy,x

and Cx,y (Color figure online).

Pass 1, Step xy-plane: As Cx,z is addressed in this step along the xy-plane, no
concavity is induced. As the remaining concavity Cz,x is addressed along the
xy-plane, concavities Cx,y and Cy,x are induced (Fig. 9(f)).

Thus, at the end of the first pass of the algorithm, induced concavities Cx,y

and Cy,x are left to be resolved w.r.t. the slicing plane Πi. Let the set of UGCs
P represents PG(A). When PG(A) is subjected to the algorithm along yz-, zx-,
and xy-planes, the UGCs comprising the blocks that resolve the concavities are
appended to P . Thus, PG(A) is modified. Orthogonal slicing of PG(A) may give
rise to a new set of slab polygons fr+1, fr+2, ..., fn on the slicing plane Πi. In
the next pass, all the slab polygons f1, f2, ..., fr, fr+1, ..., fn are connected and
the resultant concavities are addressed. Let the second pass of the algorithm be
started with the yz-plane just as the first pass.

Pass 2, Step yz-plane: Cx,y and Cy,x are the only concavities present in this step
w.r.t. Πi. Addressing Cy,x does not induce any concavity along the yz-plane

136 N. Karmakar and A. Biswas

(Sect. 3.2.1). Addressing Cx,y induces concavities Cy,z and Cz,y (Fig. 9(d)) but
the blocks describing these concavities in any further step are not intersected by
Πi. Hence, no induced concavity is carried over to the next step w.r.t. to Πi.

Pass 2, Step zx-plane and Step xy-plane: Since no induced concavity is carried
over to Steps zx and xy from the previous Step yz-plane of the second pass, no
concavity is required to be resolved in these two steps.

Therefore, all the concavities in Πi are resolved by applying the proposed
algorithm in at most four steps along the coordinate planes in the order of yz-,
zx-, xy-, and yz-planes, i.e., order starting and ending with the same coordinate
plane. In other words, all the concavities on Πi are resolved within the first pass
and the first step of the second pass of the algorithm; hence the last two steps
of the second pass are redundant w.r.t. Πi. These two steps may be useful for
some other slicing plane. Intuitively, the concavities on any other slicing plane
Πj parallel to zx- or xy-plane can also be addressed in the above process where
the steps may be taken in a different order (say, zx, xy, yz, zx or xy, zx, yz,
xy, etc.). The set of convex and projection-disjoint slab polygons formed from
f1, f2, ..., fr, fr+1, ..., fn represents the final 2D orthogonal convex hull on Πi

that contributes in the construction of 3OH(A). At the end of each step the 3D
orthogonal outer cover PG(A) is modified by appending the concavity resolving
UGCs to P . The orthogonal polyhedron representing the modified PG(A) is the
3D orthogonal convex hull 3OH(A) of the digital object A.

A single pass of the proposed algorithm consists of three steps along yz-, zx-,
and xy-planes and the concavities w.r.t. a slicing plane are resolved in at most
four steps. Hence, it is evident that two passes of the algorithm are required to
construct 3OH(A). As mentioned in Sect. 3.2.1, resolving a concavity C1 may
induce another concavity C2 if C1 is a Type 1 concavity. Hence, if a Type 2
concavity is encountered in any step of the process, then the construction of 2D
orthogonal convex hull on a slicing plane may even be completed in less than
four steps, i.e., in a single pass of the algorithm. Thus, all the concavities of
PG(A) will be addressed if the proposed algorithm is executed along the full
cycle of yz-, zx-, and xy-planes at most twice.

It is to be noted that the resultant 3D orthogonal convex hull is independent
of the order of application of the algorithm. But the intermediate modifications
of PG(A) may vary with the order. According to Fig. 7, concavities belonging
to exactly two categories are resolved along each coordinate plane and concavi-
ties of two specific categories are induced in the process. Hence, the concavities
addressed and induced in each step are pre-defined. But the concavities carried
over to each step may vary with the order. Since the initial and final steps are
parallel to the same coordinate plane and the slicing plane Πi in question is also
parallel to the same coordinate plane, the process leads to the same result for
any order of the steps.

3.3 Algorithm

Given an object A in the form of triangulated data set, its 3D orthogonal convex
hull 3OH(A) is constructed by the two-pass algorithm presented in Fig. 10. A is

3D Orthogonal Convex Hull of a Digital Object 137

Fig. 10. Brief outline of the proposed algorithm.

sliced orthogonally by a set of slicing planes Πj = {Πj1,Πj2, ...,Πjn} parallel to
each of the coordinate planes yz, zx, and xy (Steps 4 and 5) in a method similar
to that stated in [9]. One or more slab polygons may exist on a slicing plane Πjk,
where 1 ≤ k ≤ n. The slab polygons on Πjk which are not projection-disjoint
are minimally connected by a half-edge and its twin using their maximum and
minimum coordinate values along the x- and y-axes (Steps 7–9). Each connected
slab polygon K[i] is subjected to a procedure for finding its 2D orthogonal con-
vex hull H[i] which is based on the algorithm stated in [2] (Step 13). The region
R[i] intercepted between K[i] and H[i] and its corresponding set of UGCs C[i]
are determined in Steps 14 and 15. The process is repeated exactly once for each
slicing plane parallel to each of the three coordinate planes (Steps 3–18). W.r.t.
each slicing plane Πjk, the set of UGCs C[i] corresponding to R[i] are accumu-
lated as U (Step 16) and their exterior UGC-faces are merged to construct the
orthogonal polyhedron UM (Step 19). Finally, the 3D orthogonal convex hull
3OH(A) is reported as the orthogonal polyhedron formed by merging PG(A)
and UM (Step 20).

138 N. Karmakar and A. Biswas

3.4 Time Complexity

Let n be the number of voxels on the object surface connected in 26-
neighborhood. Since the object is triangulated, n refers to the total number
of voxels that approximate all the triangles representing the object surface. A
UGC is a cube of length g which contributes a maximum of five faces to the
cover. Therefore, the number of UGCs on the object surface containing object
voxels is O(n/g) in the worst case, which implies that the number of UGC-faces
on the object surface is given by O(n/g). As the area of a UGC-face is g2, the
object occupancy of a UGC is determined in O(g2) time.

W.r.t. each slicing plane, orthogonal slicing involves traversal of the grid
vertices on the slicing plane exactly once. Therefore, considering all the slicing
planes, the UGCs on the object surface are traversed exactly once. This traversal
requires O(n/g) time. Since object-occupancy of a UGC-face is checked in O(g2)
time, the direction of traversal at each grid vertex is determined in O(g2) time.
Hence, the orthogonal slicing along all the coordinate planes is completed in
O(n/g) × O(g2) = O(ng) time.

For all the slicing planes, finding the slab polygons which are not projection-
disjoint requires a single traversal of all the slab polygons in O(n/g) time. The
stack operations and indexed list operations are done in constant time. The
slab polygons are traversed once more along with the introduced half-edges to
retrieve the connected slab polygon, which requires O(n/g) time. Hence, the slab
polygons which are not projection-disjoint are minimally connected in O(n/g)+
O(1) + O(1) + O(n/g) = O(n/g) time.

Let there be k number of slicing planes along a given coordinate plane. The
time complexity for traversing a connected slab polygon is O((n/k)/g)×O(g2) =
O(ng/k), where the number of grid vertices traversed is bounded by O((n/k)/g)
and object-occupancy at each vertex is checked in O(g2) time. Time required for
detection and removal of concavity is given by (O(n/kg) − 4).O(1) = O(n/kg).
Therefore, the total time complexity for finding the 2D orthogonal convex hull
of a connected slab polygon is given by O(ng/k) + O(n/kg) = O(ng/k) time.
The process is repeated for k slicing planes which gives a collective complexity
of O(ng). The process is repeated to determine the 2D orthogonal convex hull
on each slicing plane parallel to each of the three coordinate planes.

Therefore, the total time complexity for a single pass of the algorithm is
given by O(ng) + O(n/g) + O(ng) = O(ng). Exterior UGC-faces of the set of
UGCs which are used to resolve concavities are merged by a traversal of the
UGC-faces exactly once in O(n/g) time. Thus, the total time complexity for
finding the 3D orthogonal convex hull 3OH(A) of the given object A is given by
(O(ng) × 2) + O(n/g) = O(ng).

4 Experimental Results and Conclusion

The proposed algorithm has been implemented in C in Linux Fedora Release 7,
Dual Intel Xeon Processor 2.8 GHz, 800 MHz FSB. The experimental results in

3D Orthogonal Convex Hull of a Digital Object 139

Fig. 11. 3D orthogonal convex hull for Spider, Hand, and Fish for different grid sizes.
The regions added to the 3D orthogonal outer cover to construct the 3D orthogonal
hull are shown in green color (Color figure online).

Table 1. CPU time of construction of 3D orthogonal convex hull of different digital
objects.

Object CPU time (in secs.)

g = 2 g = 4 g = 6

Spider 0.297 0.083 0.053

Hand 0.253 0.101 0.082

Fish 0.119 0.045 0.036

Fig. 11 for different objects like Spider, Hand, and Fish display the 3D orthog-
onal convex hull for various grid sizes. The regions added to the outer cover to
construct the 3D orthogonal hull are shown in green color. The CPU time of hull
construction increases with decrease in the grid size for different digital objects
as shown in Table 1.

Acknowledgement. A part of this research is funded by CSIR, Govt. of India
under SRF (File No. 08/03(0091)/2012-EMR-1) and Sponsored project (Scheme No.
22(0568)/12/EMR-II).

140 N. Karmakar and A. Biswas

References

1. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex
hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

2. Biswas, A., Bhowmick, P., Sarkar, M., Bhattacharya, B.B.: A linear-time combi-
natorial algorithm to find the orthogonal hull of an object on the digital plane. Inf.
Sci. 216, 176–195 (2012)

3. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational
geometry, II. Discrete Comput. Geom. 4(1), 387–421 (1989)

4. Dehne, F., Deng, X., Dymond, P., Fabri, A., Khokhar, A.A.: A randomized parallel
3D convex hull algorithm for coarse grained multicomputers. In: Proceedings of the
Seventh Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
1995, pp. 27–33. ACM, New York (1995)

5. Eddy, W.F.: A new convex hull algorithm for planar sets. ACM Trans. Math.
Softw. 3(4), 398–403 (1977)

6. Gao, M., Cao, T.T., Tan, T.S., Huang, Z.: gHull: A three-dimensional convex hull
algorithm for graphics hardware. In: Symposium on Interactive 3D Graphics and
Games, I3D 2011, pp. 204–204. ACM, New York (2011)

7. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite
planar set. Inf. Process. Lett. 1(4), 132–133 (1972)

8. Jarvis, R.: On the identification of the convex hull of a finite set of points in the
plane. Inf. Process. Lett. 2(1), 18–21 (1973)

9. Karmakar, N., Biswas, A., Bhowmick, P.: Fast slicing of orthogonal covers using
DCEL. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012.
LNCS, vol. 7655, pp. 16–30. Springer, Heidelberg (2012)

10. Karmakar, N., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of 3D
orthogonal cover of a digital object. In: Aggarwal, J.K., Barneva, R.P., Brimkov,
V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636,
pp. 70–83. Springer, Heidelberg (2011)

11. Karmakar, N., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: A combinator-
ial algorithm to construct 3D isothetic covers. Int. J. Comput. Math. 90(8),
1571–1606 (2013)

12. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

13. Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three
dimensions. Commun. ACM 20(2), 87–93 (1977)

14. Preparata, F.P., Shamos, M.I.: Computational Geometry–An Introduction, 3rd
edn. Springer, New York (1985)

15. Stein, A., Geva, E., El-Sana, J.: Applications of geometry processing: CudaHull:
fast parallel 3D convex hull on the GPU. Comput. Graph. 36(4), 265–271 (2012)

16. Sugihara, K.: Robust gift wrapping for the three-dimensional convex hull. J. Com-
put. Syst. Sci. 49(2), 391–407 (1994)

17. Wood, D.: An Isothetic View of Computational Geometry. University of
Waterloo, Computer Science Department (1984)

3D Orthogonal Convex Hull of a Digital Object 141

Appendix

If more than one slab polygon exists on a single slicing plane, then we minimally
connect each pair of such polygons which are not projection-disjoint by a half-
edge and its twin. The procedure is demonstrated in Fig. 12. Let f1, f2, f3, and

Fig. 12. Connecting coplanar slab polygons which are not projection-disjoint. In Lx

and Ly, the start and end indices of the x and y ranges of each polygon are marked by
polygon id. (a) As slab polygons f3 and f4 are not projection-disjoint, f4 is minimally
connected with f3 by a half-edge and its twin. (b) New f3 is minimally connected with
f2. (c) Finally f1 is appended to the new f3 to form the current polygon f3. In each
step, Lx and Ly are updated to reflect the changes in x- and y-ranges of the polygons.
(d) Resolving the concavities in f3 yields the 2D orthogonal convex hull OH(f3) (Color
figure online).

142 N. Karmakar and A. Biswas

f4 be four coplanar slab polygons. Two lists Lx and Ly are maintained where
the start and end of x and y ranges of each slab polygon are marked by the slab
polygon id. For example, the start and end indices of f3 are populated with ‘3’
in Lx and Ly. Initially only f3 and f4 are not projection-disjoint. Lx is traversed
and f3 and f4 are identified using a stack. f4 is connected to f3 (Fig. 12(a))
by a half-edge and its twin between vertices v1 and v2. Lx and Ly are updated
to reflect the new polygon f3 thus formed. A traversal of Ly reveals that the
new polygon f3 is no more projection-disjoint with f2. f3 and f2 are connected
to form the new polygon f3 as shown in Fig. 12(b). The changes are reflected
in Ly and Lx. Lx is traversed again and f1 is appended to f3 (Fig. 12(c)). The
procedure is continued by traversing Lx and Ly alternately until we have a single
slab polygon or more than one projection-disjoint slab polygons. The connected
slab polygon f3 is retrieved by traversing the original polygons in the given order,
i.e., f1, f2, f3, and f4, connected by the introduced edges such that at each of
the vertices v1, v2, v3, v4, v5, and v6 the direction of traversal is selected keeping
the object to the left, as shown by the arrows in Fig. 12(c). Thereafter, the 2D
orthogonal convex hull of f3 is constructed as stated in [2] (Fig. 12(d)).

Efficient Dominant Point Detection Based
on Discrete Curve Structure

Phuc Ngo1,2, Hayat Nasser1,2, and Isabelle Debled-Rennesson1,2(B)

1 Université de Lorraine, LORIA, UMR 7503, F-54506 Vandoeuvre-lès-Nancy, France
2 CNRS, LORIA, UMR 7503, F-54506 Vandoeuvre-lès-Nancy, France

{hoai-diem-phuc.ngo,hayat.nasser,isabelle.debled-rennesson}@loria.fr

Abstract. In this paper, we investigate the problem of dominant point
detection on digital curves which consists in finding points with local
maximum curvature. Thanks to previous studies of the decomposition of
curves into sequence of discrete structures [5–7], namely maximal blurred
segments of width ν [13], an initial algorithm has been proposed in [14]
to detect dominant points. However, an heuristic strategy is used to iden-
tify the dominant points. We now propose a modified algorithm without
heuristics but a simple measure of angle. In addition, an application
of polygonal simplification is as well proposed to reduce the number of
detected dominant points by associating a weight to each of them. The
experimental results demonstrate the efficiency and robustness of the
proposed method.

Keywords: Dominant point · Polygonal simplification · Discrete struc-
ture

1 Introduction

Dominant points of discrete curves are identified by Attneave [2] as the local
maximum curvature points on a curve. Such points content a rich information
which is sufficient to characterize this curve. They play a critical role in curve
approximation, image matching and in other domains of computer vision. Many
works have been conducted regarding the dominant point detection [1,3,4,8–
12,14,17–20] and surveys are presented in [1,12,14]. Several problems have been
identified in the different approaches: time computation, number of parameters,
selection of starting point, bad results with noisy curves, . . .

Nguyen et al. proposed in [14] a new sequential method issued from theo-
retical results of discrete geometry, it only requires to set one parameter, it is
invariant to the choice of the starting point and it naturally works with general
curves: possibly being noisy or disconnected. It relies on the geometrical structure
of the studied curve, in particular the decomposition of the curve into maximal
blurred segments for a given width [6,13]. However at the end of the proposed
method, the choice of dominant points is done with an heuristic strategy.

In this paper, an improvement of this dominant point detection algorithm
is proposed with an efficient choice of dominant points by considering a simple
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 143–156, 2015.
DOI: 10.1007/978-3-319-26145-4 11

144 P. Ngo et al.

measure of angle. Furthermore, an algorithm of polygonal simplification is also
proposed to reduce the number of detected dominant points while preserving
the principal angular deviations in the discrete curve of the shape border.

The paper is organized as follows: in Sect. 2, we recall results of discrete
geometry used in this paper to analyze a curve. Then, in Sect. 3, we describe the
previous dominant point detection algorithm [14] and propose improvements.
In Sect. 4, we present experimental results, comparisons with previous methods
and an application to polygonal simplification.

2 Decomposition of a Curve into Maximal Blurred
Segments

We recall hereafter several notions concerning discrete lines [15], blurred seg-
ments [5] and maximal blurred segments [13] which are used throughout the
paper.

Definition 1. A discrete line D(a, b, μ, ω), with a main vector (b, a), a lower
bound μ and an arithmetic thickness ω (with a, b, μ and ω being integer such that
gcd(a, b) = 1) is the set of integer points (x, y) verifying μ ≤ ax − by < μ + ω.
Such a line is denoted by D(a, b, μ, ω).

Let us consider Sf as a sequence of integer points.

Definition 2. A discrete line D(a, b, μ, ω) is said to be bounding for Sf if all
points of Sf belong to D.

Definition 3. A bounding discrete line D(a, b, μ, ω) of Sf is said to be optimal
if the value ω−1

max(|a|,|b|) is minimal, i.e. if its vertical (or horizontal) distance is
equal to the vertical (or horizontal) thickness of the convex hull of Sf .

This definition is illustrated in Fig. 1 and leads to the definition of the blurred
segments.

vertical distance

y

xconvex hull

Fig. 1. D(2, 7, −8, 11), the optimal bounding line of the set of points (vertical distance
= 10

7
= 1.42).

Definition 4. A set Sf is a blurred segment of width ν if its optimal bound-
ing line has a vertical or horizontal distance less than or equal to ν i.e. if

ω−1
max(|a|,|b|) ≤ ν.

Efficient Dominant Point Detection Based on Discrete Curve Structure 145

The notion of maximal blurred segment was introduced in [13]. Let C be a
discrete curve and Ci,j a sequence of points of C indexed from i to j. Let us
suppose that the predicate “Ci,j is a blurred segment of width ν” is denoted by
BS(i, j, ν).

Definition 5. Ci,j is called a maximal blurred segment of width ν and
noted MBS(i, j, ν) iff BS(i, j, ν), ¬BS(i, j + 1, ν) and ¬BS(i − 1, j, ν).

An incremental algorithm was proposed in [13] to determine the sequence of
all maximal blurred segments of width ν of a discrete curve C. The main idea
is to maintain a blurred segment when a point is added (or removed) to (from)
it. The two following important properties were proved.

Property 1. Let MBSν(C) be the sequence of width ν maximal blurred seg-
ments of the curve C. Then,
MBSν(C) = {MBS(B0, E0, ν), MBS(B1, E1, ν),. . . , MBS(Bm−1, Em−1, ν)}
and satisfies B0 < B1 < . . . < Bm−1. So we have: E0 < E1 < . . . < Em−1 (see
Fig. 2).

Property 2. Let L(k), R(k) be the functions which respectively return the
indexes of the left and right extremities of the maximal blurred segments on
the left and right sides of the point Ck in a discrete curve C. So, for each index
k such that Ei−1 < k ≤ Ei, we have L(k) = Bi, and, for each k such that
Bi ≤ k < Bi+1, we have R(k) = Ei.

Fig. 2. A sequence of width 1.4 maximal blurred segments of the curve with grey
pixels (each red box bounds the pixels of a maximal blurred segment of width 1.4).
The indexes of the begin (Bi) and end (Ei) points of the four first maximal blurred
segments are indicated (B0 = 0 and E0 = 15, B1 = 5 and E1 = 17, . . .). The points
with blue frame are points in the common zone – intersecting zone – defined by these
four first maximal blurred segments (Color figure online).

For a given width ν, the sequence of the maximal blurred segments of a curve
C entirely determines the structure of C. It can be considered as an extension
to thick curves of the notion of tangential cover introduced by Feschet and

146 P. Ngo et al.

Tougne in [7] and used to obtain curvature profile or fast polygon approxima-
tion [8]. In [14], a method for dominant point detection, constructed from the
sequence of maximal blurred segments, was given. In the next section, we propose
an improvement of this method which implies new applications.

3 Dominant Point Detection

The sequence of maximal blurred segments of a curve provides important infor-
mation about the geometrical structure of the studied curve. The width of the
maximal blurred segments permits to work in different scales and to consider
the noise eventually present in a curve C.

In [2], Attneave defined a dominant point (corner point) on a curve as a point
of local maximum curvature. In this way, the method proposed in [14] uses a
notion of region of support (ROS) of a point in a curve.

Definition 6. Width ν maximal left and right blurred segments of a point con-
stitute its region of support (ROS). The angle between them is called the ROS
angle of this point.

The method first chooses a width ν and computes MBSν(C), the sequence of
maximal blurred segments of C. The main idea of the method is that dominant
points of C are localised in the common zones of successive maximal blurred
segments of C (see Fig. 2). Hereafter, we recall the properties and the heuristic
strategy used in [14]. We show that problems can occur and propose a solution.

3.1 Heuristic Strategy of Method [14]

Let us now consider the common zone of more than 2 successive maximal blurred
segments.

Proposition 1. The smallest common zone of successive width ν maximal blurred
segments, of which slopes are either increasing or decreasing, contains a candidate
as dominant point.

Property 3. A maximal blurred segment contains at most 2 dominant points.

Based on the previous propositions and properties, the algorithm proposed
by Nguyen et al. in [14] consists in finding the smallest common zone induced
by successive maximal burred segments of width ν which have either increasing
or decreasing slopes. It is stated that such a zone contains the candidates of
dominant point, since the points in this zone have the smallest ROS angle. By
an heuristic strategy, the dominant point is identified as the middle point of this
zone.

This heuristic is very effective, but sometimes leads to a non optimal solution
for the polygonal simplification problem, as shown in the next section.

Efficient Dominant Point Detection Based on Discrete Curve Structure 147

Fig. 3. Interest regions (common zones) obtained with the sequence of width 1.4 max-
imal blurred segments of the curve with grey pixels (Color figure online).

148 P. Ngo et al.

3.2 New Dominant Point Detection Algorithm

In this section, we present a modified algorithm of [14] for detecting the dominant
points of discrete curves with high accuracy.

Since the purpose of dominant point detection is to detect significant points
with curvature extreme, we propose a new decision-making strategy of dominant
point in common zones. For this, we use a simple measure, as a pseudo-curvature,
estimated for each point located in the interest regions. In particular, we consider
the k-cosine measure [16] adapted to the decomposition into width ν blurred
segments of the input curve. More precisely, it is the angle between the considered
point and the two left and right extremities of the left and right maximal blurred
segments, involved in the localisation of the studied common zone and passing
through the point. Obviously, the smaller angle, the greater curvature and thus
the higher dominant character of the point. Accordingly, the dominant point is
identified as the point, in the common zone, having a local minimum measure
of angle.

The modified algorithm is given in Algorithm1. It is similar to the one in [14]
except for the selection of dominant points as described above. Moreover we sim-
plify the process because we don’t need to decompose the slopes of the maximal
blurred segments located in the common zones into monotone sequences. Indeed,
the angle computation permits to well localize the dominant point in each com-
mon zone.

Algorithm 1: Dominant point detection.
Input : C discrete curve of n points, ν width of the segmentation
Output: D set of dominant points
begin1

Build MBSν = {MBS(Bi, Ei, ν)}m−1
i=0 ;2

n = |C|; m = |MBSν | ;3

q = 0; p = 1; D = ∅ ;4

while p < m do5

while Eq > Bp do p + +;6

D = D ∪ min{Angle(CBq , Ci, CEp−1) | i ∈ [[Bp−1, Eq]]} ;7

q = p − 1 ;8

end9

Particularly, in this algorithm, each common zone is computed by Line 6,
where q is the index of the first maximal blurred segment involved in the common
zone and p−1 is the index of the last. The points in the common zone are points
Ci for i ∈ [[Bp−1, Eq]].

Moreover, at Line 7, the function Angle calculates, for each point in the
common zone, the angle between the point and its two extremities, then in
a common zone, the dominant point is the point with local minimum angle.
Afterwards, the next common zone is computed by considering the last segment

Efficient Dominant Point Detection Based on Discrete Curve Structure 149

(index p − 1) of the previous zone as the first one (index q) of the next common
zone. This process permits to detect the points of the curve through which a
maximum number of maximal blurred segments is passing (see Fig. 3).

If the curve C is not closed, the first and the last points of C are dominant
points and they must be added to D.

The algorithm is illustrated in Fig. 3; a curve C is analysed by the algorithm,
the sequence MBS1.4(C) is computed and 12 maximal blurred segments (named
s0 to s11 in the figure) are obtained. Their localisation in the curve is indicated by
one star (∗) for each point belonging to the considered maximal blurred segment.
Four common zones (dark pixels on the curve) are detected by the algorithm:
C14 to C15, C22 to C26, C49 to C52 and C59 to C62. The pink boxes in the figure
permit to count the number of maximal blurred segments passing through each
point of common zones. The angles are calculated by considering the starting
point of the first maximal blurred segment involved in the common zone and
the end point of the last involved maximal blurred segment. The Table 1 shows
the angles at each point of common zones and permits to deduce the dominant
points (minimal values are in bold in the table and the corresponding points
are in red in Fig. 3). In the common zone 4, the selected dominant point is not
located at the middle of the common zone.

Table 1. Angles at each point of common zones (see Fig. 3).

Common Zone Points Angle

Common Zone 1 BS0 and ES3 C14 162.9

C15 159

Common Zone 2 BS3 and ES5 C22 155.6

C23 157.6

C24 152

C25 153.6

C26 154.9

Common Zone 3 BS5 and ES9 C49 158.6

C50 157.4

C51 156

C52 154.3

Common Zone 4 BS9 and ES11 C59 155.7

C60 150.5

C61 155.3

C62 160.2

The complexity of the proposed algorithm is the same as the one in [14],
which depends on the complexity to decompose a curve of n points into maxi-
mal blurred segments. We can use the technique proposed in [6] to obtain the
tangential cover (corresponding to the sequence of maximal blurred segments
for a given width) and the complexity of this method is in O(n log n).

150 P. Ngo et al.

4 Evaluation Results and Applications

We now present some experimental results of dominant point detection using the
proposed method, and evaluate by widely used error criteria [17,18] described
in Sect. 4.1. Using these criteria, in Sect. 4.2 we show the improvement results
of the modified algorithm regarding the original of Nguyen [14]. Afterwards, in
Sect. 4.3, we present an application in polygonal simplification with detected
dominant points. The results are then compared with other popular methods in
Sect. 4.4.

4.1 Evaluation Criteria

In order to assess the effectiveness of the proposed method, we consider the
following five evaluation criteria:

1. Number of dominant points (nDP).
2. Compression ratio (CR) is defined as the ratio between number of curve points

and number of detected dominant points. The larger CR, the more effective
data simplification.

CR =
n

nDP

3. Integral sum of square errors (ISSE) is the sum of squared distances of
the curve points from approximating polygon. The smaller ISSE, the bet-
ter description of the shape by the approximating polygon.

ISSE =
n∑

i=1

d2i

where di is distance from ith curve point to approximating polygon.
4. Maximum error (L∞) is the maximum distance of the curve points from

approximating polygon. The smaller L∞, the better fitness of polygonal
approximation.

L∞ = max{di}n
i=1

5. Figure of merit (FOM) is estimated as ratio between CR and ISSE. FOM
a compromise between the low approximation error and the benefit of high
data reduction.

FOM =
CR

ISSE

4.2 Effectiveness Compared to Nguyen’s Algorithm

In this section, we present the experimental results of the modified algorithm
(see Sect. 3.2) and compare them with Nguyen’s algorithm [14]. The experiments
are carried out on the data with and without noise. For each input curve, a fixed
width ν = 1.5 of maximal blurred segments is used for both algorithms, the
results are shown in Fig. 4 and Table 2. It can be seen that selecting the middle
point of common zone is not always a relevant strategy, in particular in the
high-pass zones.

Efficient Dominant Point Detection Based on Discrete Curve Structure 151

(a) (b)

(c) (d)

Fig. 4. Improved results with respect to Nguyen [14] (see also Table 2). The effective-
ness of the modified algorithm is more significant in the highly derivative zones of the
shape as highlighted by the black boxes. Green (resp. red) points are dominant points
detected by Nguyen’s (resp. modified) algorithm. Lines in green (resp. red) denote the
polygonal approximation from detected dominant points. Blue points are candidates
of dominant points in the interest regions (Color figure online).

Table 2. Comparison with Nguyen’s method [14] on Fig. 4 using significant measures
described in Sect. 4.1.

Curve Method nDP CR ISSE L∞ FOM

(a) n = 536 Nguyen 68 7.882 149.15 1 0.0523

Ours 68 7.882 125.763 1 0.0627

(b) n = 722 Nguyen 105 6.876 202.809 1 0.0339

Ours 105 6.876 166.74 1 0.0412

(c) n = 404 Nguyen 20 20.2 236.806 3.536 0.0853

Ours 20 20.2 150.314 1.539 0.1344

(d) n = 252 Nguyen 43 5.86 68.896 1 0.0851

Ours 43 5.86 57.582 1 0.1018

152 P. Ngo et al.

4.3 Application in Polygonal Simplification

The goal of finding the dominant points is to have an approximate description of
the input curve, called polygonal simplification or approximating polygon. On the
one hand, due to the nature of the maximal blurred segment sequence defined
on a discrete curve, we observe that the common zones – contain candidates
of dominant points – may be close to each others. On the other hand, using
the algorithm proposed in Sect. 3.2, the dominant point is selected according to
its angle with the extremities of maximal segments. As a consequence, detected
dominant points are sometimes redundant or stay very near, which is presumably
undesirable in particular for polygonal simplification. More precisely, this leads
to an overmuch dominant points and thus the polygon induced by such points
is not an optimal solution of curve simplification. Therefore, we can eliminate
certain dominant points to achieve a high compression of approximating polygon
of the input curve. To this end, we associate to each detected dominant point a
weight indicating/describing its importance with respect to the approximating
polygon of the curve. Such a weight must: (1) be related to some error criteria
of approximating polygon, and (2) not induce costly computation.

From Sect. 4.1, the criterion ISSE describes the distortions caused by the
approximated polygon of a curve. More precisely, ISSE allows to evaluate how
much the approximated polygon is similar to the curve, thus smaller ISSE means
better descriptive of the curve by the polygon. This error evaluation is suitable
to our criterion of weight associated to dominant points since: (1) we would like
to eliminate points that less affect the possible error (i.e. less ISSE), and (2) in
particular the ISSE can be calculated locally by using their two neighbouring
dominant points. Indeed, the value of ISSE between the approximated polygon
and the curve before and after deleting a dominant point differs only at the part
related to the point, in particular its two neighbours as illustrated in Fig. 5. The
ISSE induced by the two neighbours of a dominant point thus characterizes the
important of the point; the greater ISSE, the more important the point.

Still in Fig. 5, we remark that dominant point may have a small ISSE, how-
ever regarding its neighbours, in particular the angular relationship, it is more
important than the others. In other words, this angle with the neighbours plays
an important role in the decision of suppressing a dominant point. This leads to a
consideration of weight associated to each dominant point detected that not only
involves ISSE but also the angle to its two neighbours. In particular, this weight
is determined by the ratio of ISSE and angle, i.e., ISSE/angle. Then, fixing
a desired number m of dominant points on the approximated polygon, roughly
speaking, the process of polygonal simplification is performed by removing one
by one the dominant points of small weight until reaching m.

In the next section, we test the proposed method and compare it to the other
polygonal simplification techniques based on dominant points extraction.

4.4 Comparison with Other Methods

The experiments are first carried out on three benchmarks: chromosome, leaf and
semicircle shown in Figs. 6, 7 and 8 respectively. Table 3 compares the proposed

Efficient Dominant Point Detection Based on Discrete Curve Structure 153

Fig. 5. Illustration of calculating the weights associated to detected dominant points.
In grey (resp. red) are points (resp. dominant points) of the curves. The continuous
black line connecting the dominant points denotes the approximated polygon, while
dashed lines are perpendicular distances from points on the curve to the polygon, the
sum of these distances defines the ISSE. Considering the point A in blue (resp. B in
green) frame, deleting this point leads to a local modification in the approximated
polygon, and thus ISSE induced by blue (resp. green) dashed lines. One remarks that
ISSE of the point in blue frame is smaller than the green, however according to the
neighbours – in angle – it is more important than the green one. Therefore, the weight
associated to each dominant point involves both ISSE and angle criteria, in particular
ISSE
angle

. Then, the weight of A and B are 1.27 and 0.86, respectively (Color figure online).

method with other popular algorithms such as: Masood [11], Marji [9,10] and
Teh [19], on the benchmarks by the evaluation criteria described in Sect. 4.1.
Overall the experiments, the proposed method presents an improvement more
than of 38% on FOM, and has a better approximation error in ISSE and L∞.

Figure 9 shows polygonal approximation results of the other proposed digital
curves with noise. The results demonstrate the effectiveness and robustness of
the proposed method on noisy data. Note that the experiments are performed
by using Algorithm 1 (see Sect. 3.2 with a process of polygonal simplification as
described in Sect. 4.3).

(a) Ours, ν=0.7 (b) Masood[11] (c) Marji [9] (d) Teh[19]

Fig. 6. Dominant points of the chromosome curve.

154 P. Ngo et al.

Table 3. Results of the proposed method and of the other methods.

Curve Method nDP CR ISSE L∞ FOM

Chromosome n = 60 Ours, ν = 0.7 14 4.286 5.116 0.8 0.838

Masood [11] 12 5 7.76 0.88 0.65

Marji [9] 12 5 8.03 0.895 0.623

Teh [19] 15 4 7.2 0.74 0.556

Leaf n = 120 Ours, ν = 0.7 23 5.218 9.065 0.671 0.576

Masood [11] 23 5.217 10.61 0.74 0.49

Marji [10] 22 5.45 13.21 0.78 0.413

Teh [19] 29 4.14 14.96 0.99 0.277

Semicircle n = 102 Ours, ν = 0.7 23 4.435 7.639 0.724 0.581

Masood [11] 22 4.64 8.61 0.72 0.54

Marji [10] 26 3.92 9.01 0.74 0.435

Teh [19] 22 4.64 20.61 1 0.225

(a) Ours, ν=0.7 (b) Masood[11] (c) Marji [10] (d) Teh[19]

Fig. 7. Dominant points of the leaf curve.

(a) Ours, ν=0.7 (b) Masood[11] (c) Marji [10] (d) Teh[19]

Fig. 8. Dominant points of the semicircle curve.

Efficient Dominant Point Detection Based on Discrete Curve Structure 155

Fig. 9. Polygonal simplification results (in red) on noisy data using width parameter
ν = 1.5, and a reduction of 10 % of dominant points detected by Algorithm 1 (Color
figure online).

5 Conclusion and Future Work

We present in this paper a dominant point detection algorithm, improvement of
a previous algorithm which uses an heuristic strategy. This algorithm relies on
the structure of the discrete curve and the width, parameter of the algorithm,
permits to work on data with or without noise. For a given width, our method
associates to each detected dominant point a weight which permits to evaluate
the importance of the dominant point in the structure of the studied curve. We
then deduce a method to reduce the number of dominant points and to obtain
the smallest possible error according to a given number of dominant points.

The proposed method opens numerous perspective of future work, for exam-
ple the study of the method behaviour in a multiscale approach to automatically
detect the more appropriate width for dominant point selection.

References

1. Aguilera-Aguilera, E.J., Poyato, Á.C., Madrid-Cuevas, F.J., Carnicer, R.M.: The
computation of polygonal approximations for 2D contours based on a concavity
tree. J. Vis. Comm. Image Represent. 25(8), 1905–1917 (2014)

156 P. Ngo et al.

2. Attneave, E.: Some informational aspects of visual perception. Psychol. Rev. 61(3),
183–193 (1954)

3. Backes, A.R., Bruno, O.M.: Polygonal approximation of digital planar curves
through vertex betweenness. Inf. Sci. 222, 795–804 (2013)

4. Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves
using relaxed straightness properties. IEEE Trans. Pattern Anal. Mach. Intell.
29(9), 1590–1602 (2007)

5. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments
decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)

6. Faure, A., Buzer, L., Feschet, F.: Tangential cover for thick digital curves. Pattern
Recogn. 42(10), 2279–2287 (2009)

7. Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete
curve: application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L.
(eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)

8. Feschet, F.: Fast guaranteed polygonal approximations of closed digital curves. In:
Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp.
910–919. Springer, Heidelberg (2005)

9. Marji, M., Siy, P.: A new algorithm for dominant points detection and polygoniza-
tion of digital curves. Pattern Recogn. 36(10), 2239–2251 (2003)

10. Marji, M., Siy, P.: Polygonal representation of digital planar curves through dom-
inant point detection - nonparametric algorithm. Pattern Recogn. 37(11), 2113–
2130 (2004)

11. Masood, A.: Dominant point detection by reverse polygonization of digital curves.
Image Vis. Comput. 26(5), 702–715 (2008)

12. Masood, A.: Optimized polygonal approximation by dominant point deletion. Pat-
tern Recogn. 41(1), 227–239 (2008)

13. Nguyen, T.P., Debled-Rennesson, I.: Curvature Estimation in Noisy Curves. In:
Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673,
pp. 474–481. Springer, Heidelberg (2007)

14. Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant
point detection. Pattern Recogn. 44(1), 32–44 (2011)

15. Reveillès, J.P.: Géométrie discrète, calculs en nombre entiersgorithmique, thèse
d’état. Université Louis Pasteur, Strasbourg (1991)

16. Rosenfeld, A., Johnston, E.: Angle detection on digital curves. IEEE Trans. Com-
put. 22, 875–878 (1973)

17. Rosin, P.L.: Techniques for assessing polygonal approximations of curves. IEEE
Trans. Pattern Anal. Mach. Intell. 19(6), 659–666 (1997)

18. Sarkar, D.: A simple algorithm for detection of significant vertices for polygonal
approximation of chain-coded curves. Pattern Recogn. Lett. 14(12), 959–964 (1993)

19. Teh, C., Chin, R.: On the detection of dominant points on the digital curves. IEEE
Trans. Pattern Anal. Mach. Intell. 2, 859–872 (1989)

20. Wang, B., Brown, D., Zhang, X., Li, H., Gao, Y., Cao, J.: Polygonal approximation
using integer particle swarm optimization. Inf. Sci. 278, 311–326 (2014)

Thoughts on 3D Digital Subplane Recognition
and Minimum-Maximum of a Bilinear

Congruence Sequence

Eric Andres(B), Dimitri Ouattara, Gaelle Largeteau-Skapin, and Rita Zrour

Laboratoire XLIM, SIC, UMR CNRS 7252, Université de Poitiers, BP 30179,
86962 Futuroscope Chasseneuil, France

{eric.andres,jean.ouattara,gaelle.largeteau.skapin,
rita.zrour}@univ-poitiers.fr

Abstract. In this paper we take first steps in addressing the 3D Digital
Subplane Recognition Problem. Let us consider a digital plane P : 0 ≤
ax + by − cz + d < c (w.l.o.g. 0 ≤ a ≤ b ≤ c) and a finite subplane S of
P defined as the points (x, y, z) of P such that (x, y) ∈ [x0, x1] × [y0, y1].
The Digital Subplane Recognition Problem consists in determining the
characteristics of the subplane S in less than linear (in the number of
voxels) complexity. We discuss approaches based on remainder values{

ax+by+d
c

}
, (x, y) ∈ [x0, x1] × [y0, y1] of the subplane. This corresponds

to a bilinear congruence sequence. We show that one can determine if
the sequence contains a value ε in logarithmic time. An algorithm to
determine the minimum and maximum of such a bilinear congruence
sequence is also proposed. This is linked to leaning points of the subplane
with remainder order conservation properties. The proposed algorithm
has a complexity in, if m = x1−x0 < n = y1−y0, O(m log (min(a, c − a))
or O(n log (min(b, c − b)) otherwise.

Keywords: Digital planes · Digital subplane recognition problem ·
Congruence sequence

1 Introduction

Since J-P. Reveilles, among other previous authors [4,5], proposed an analytical
description of a Digital Straight Line (DSL) 0 ≤ ax − by + c < ω [14], many
papers have been devoted to its study. Indeed, the structure of DSL is rich, with
immediate links to word theory, the Stern-Brocot tree, the Farey sequence, etc.
See [10] for an historical perspective. The natural extension to higher dimensions
has opened new venues for arithmeticians [2].

Lately, the problem of characterizing a Digital Straight Segment (DSS), seg-
ment of a DSL with known characteristics, has gained some traction [11,13,15,16].
This problem is linked to multiscale shape analysis [11,15,19]. When considering
geometrical features at multiple scales, it is important to be able to recompute the
new, scaled, characteristics as rapidly as possible. In this paper we are interested
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 157–171, 2015.
DOI: 10.1007/978-3-319-26145-4 12

158 E. Andres et al.

in the extension of this problem to dimension three: the Digital Subplane (DSP)
Recognition Problem. Check the following papers for a general approach on Dig-
ital Plane Recognition [3,6,7,9,12]. In Sect. 2, we propose a recall on 2D results
and the unsolved problems in 3D. Right now, minimal characteristics of a subplane
are chosen as representative of the equivalence class formed by all the character-
istics that fit the Digital SubPlane (DSP) [3,6,9]. In particular, we conjecture the
existence of a class of Digital SubPlanes characteristics for which the remainder
order property is respected. This means that by searching for the minimum and
maximum of the remainders on a DSP, we can identify leaning points easily which
would lead to the characteristics (a leaning point is a point of extremum remainder
in the DSP that allows to compute its characteristics). In Sect. 3, we propose an
algorithm for computing the minimum and maximum of a simple bilinear congru-
ence sequence corresponding to the remainders of a DSP. This represents a first
step towards solving a particular subclass of the general problem of characteriza-
tion of a Digital Plane Subsegment Recognition Problem. We conclude in Sect. 4.

2 Recalls on the 2D Problem and State of the 3D
Problem

2.1 Recalls of the 2D Digital Straight Subsegment Recognition
Problem

An 8-connected Digital Straight Line (DSL) in the first octant, is defined by
analytical inequalities 0 ≤ ax−by+c < c, with 0 ≤ a ≤ b and ω = b, gcd(a, b) =
1, a, b, c ∈ Z

3. There is a unique DSL with a given set of characteristics but there
are an infinite number of finite Digital Straight Lines that contain a same, finite
connected, Digital Straight Segment (DSS). All these DSL containing a DSS form
an equivalence class. There is therefore a question of the unique characterization
of a DSS. If one simply takes the known characteristics of a DSL containing a
DSS, then we may end up with different characteristics for the DSS and have the
problem of comparing them. There is a unique DSL among the class that has
a minimal parameter b [6]. The parameters (a, b, c), with minimal parameter b
among all the DSL containing a same DSS, are chosen as characteristics for the
DSS. These characteristics are called minimal characteristics of the DSS. The
DSS can then be fully characterized by those parameters and two points A and
B corresponding to the end points of the segment. These parameters happen
also to be those that are given by the analytical recognition algorithm proposed
by I. Debled-Renesson [6].

The problem of the characterization of a Digital Straight Subsegment con-
tained in a known DSL is different from the regular recognition problem of a
DSS since we already know that all the points of the subsegment belong to a
known DSL. Various approaches have been proposed [11,15,16] such as consid-
ering the Stern-Brocot tree or the Farey fans. These methods are logarithmic
in the coefficients of the input slope or the length of the segment. The main
problem with these methods is that they do not offer an obvious extension to

Thoughts on 3D Digital Subplane Recognition 159

higher dimensions. In [13], the authors have proposed an alternative algorithm
based on the remainder values. For a DSL D(a, b, c) of characteristics (a, b, c),
if a point (x, y) belongs to the DSL, then the remainder ax − by + c is equal
to

{
ax+c

b

}
(where

{
n
m

}
stands for n mod m). The integer R(a,b,c) =

{
ax+c

b

}

is called a remainder in x as remainder of a Euclidean division where
⌊

ax+c
b

⌋

is the ordinate of the point of abcissa x belonging to the DSL. The remainders
define a simple congruence sequence noted R(a,b,c). One of the main results that
we showed is that for a DSL of characteristics (a, b, c) and a DSS of minimal
characteristics (α, β, γ) defined on x ∈ [u, v], the remainder order is conserved
on the DSS [13]:

∀x, x′ ∈ [u, v], |x − x′| ≤ b : Ra,b,c (x) < Ra,b,c (x′) ⇒ Rα,β,γ (x) ≤ Rα,β,γ (x′)

This has some direct consequences such as the fact that the minimal and maximal
values of the DSL remainders on the subsegment are leaning points. By comput-
ing a third minimal or maximal remainder, it allows to determine the minimal
characteristics of the subsegment. Furthermore, the computation of these mini-
mal and maximal values of the congruence sequence can be done in logarithmic
time with a simple characteristic substitution and sequence reduction scheme
(DSL collapse) akin to Euclid’s Algorithm. The method is faster than previous
ones [11,15,16] and offers a possible extension to higher dimensions. It is this
extension we start exploring in the present paper.

2.2 State of the 3D Problem

This paper is interested in the exploration of the Digital SubPlane (DSP) Recog-
nition (characterization) Problem in dimension three. The paper is meant as a
first step as there are some significant differences with the problem in dimension
two and, as we will see, many questions that remain open and that require future
investigations. First of all, Digital Plane (DP) recognition problems in 3D can
be way more difficult than in 2D. For instance, decomposing a 2D closed curve
into a minimal number of 2D DSS can be performed in linear time [8] while
the equivalent problem in 3D is NP-hard [17]. The preimage of a 2D DSS is a
polygon of a maximum of four vertices while there is no limit to the number
of vertices for the preimage polytope of a DSP in 3D [3]. There are also some
similarities: as in 2D, a finite connected digital subplane belongs to an infinite
number of digital planes containing the DSP (and thus defining an equivalence
class). There exists a unique DP of characteristics (a, b, c, d) such that c is mini-
mal among the characteristics in the equivalence class. This is called the minimal
characteristics of a DSP. The DSP Recognition algorithms provide the minimal
characterictics [3,6,7,9,12]. For the problem that interests us, the problem of
characterizing a plane subsegment of a known Digital Plane in dimension three,
the Stern-Brocot exploration approach followed by Said and lachaud [11,15] and
the Farey fan walk approach followed by Sivignon [16] are not easily extended
to dimension three, while our remainder approach seems more appropriate [13].

160 E. Andres et al.

The extension of the 2D remainder sequence to 3D is straightforward and con-
stitutes the starting point of this investigation. Let us consider a digital plane
(DP) P(a, b, c, d) =

{
(x, y, z) ∈ Z

3; 0 ≤ ax + by − cz + d < c
}

of known char-
acteristics (a, b, c, d), with, w.l.o.g. gcd(a, b, c) = 1 and 0 ≤ a ≤ b ≤ c. For
all the points of the DP, one can define a simple bilinear congruence sequence
Ra,b,c,d(x, y) = ax + by − cz + d =

{
ax+by+d

c

}
[1,14].

One could think that the 2D remainder properties extend naturally to 3D,
but they do not, at least not always. The 2D remainder order conservation
property (recalled in the previous subsection) is not verified anymore in 3D
(see the conclusion of [13] for an example). It is verified quite often but not
systematically. The consequences are immediate: there are leaning points of the
DP that may not be leaning point anymore in the DSP and vice-versa. It means
also that the minimum and maximum remainder value on a DSP remainder
sequence are not necessarily leaning points for the minimal characteristics of the
DSP. However, it seems that there always exists characteristics for the DSP such
that the minimum and maximum remainder are leaning points. Let us express
this in the form of a conjecture:

Conjecture 1. Let us consider a DP P = D(a, b, c, d), with gcd(a, b, c) = 1 and
0 ≤ a ≤ b ≤ c and a finite DSP of P defined on (x, y) ∈ [x0, x1] × [y0, y1],
then there exists characteristics (α, β, γ, δ) such that the points among those
with the minimum and maximum values of the bilinear remainder sequence
R(a,b,c,d)(x, y) on [x0, x1] × [y0, y1] are leaning points of the DSP for the charac-
teristics (α, β, γ, δ).

Actually, what that means is that the minimal characteristics for a DSP may
not be the only choice as DP equivalence class characteristics’ representative.
While the remainder conservation property is not always verified for minimal
characteristics, it seems that there are actually always characteristics (sometimes
not minimal) that have this property. This needs to be looked upon more closely
before we state it as a conjecture or simply prove it, but it opens the way
to a subclass of DSP characteristics with some very interesting properties. On
the opposite, the remainder conservation property seems to be the norm. For
instance, when we consider a DSP with minimal characteristics, most DP that
contain this DSP seems to verify the conservation property but not necessarily
all. Are there always DP that do not verify this property and always some that
do? How are those groups characterized? They represent after all the very same
voxels so what makes them behave differently?

So, why considering characteristics that are not necessarily minimal? First of
all, this may lead to characterization algorithms that are sublinear in the DSP
number of voxels (for the Digital Subplane Recognition Problem). The insight
in the characteristics classes may lead to new and better general understanding
of Digital Planes. In this paper, we provide the first algorithm with sublin-
ear complexity to determine the minimum and maximum of a simple bilinear
congruence sequence (DSP remainder sequence) and provide some thoughts on
particular classes of Digital Plane collapses.

Thoughts on 3D Digital Subplane Recognition 161

After some notations, we will present in Sect. 3 some extensions of the results
presented in [13] on linear congruence sequences. We show that one can deter-
mine in logarithmic time if a bilinear congruence sequence contains a given value
ε. We provide an algorithm to compute the minimum and maximum of a bilin-
ear congruence sequence. We conclude in Sect. 4 and give some clues on the
computation of DSP characteristics and future work.

3 Finding the Minimum and Maximum of a Simple
Bilinear Congruence Sequence

We are looking for the minimum and maximum of a bilinear congruence sequence{
ax+by+d

c

}
for (x, y) ∈ [x0, x1] × [y0, y1]. We suppose that gcd(a, b, c) = 1 and

that 0 ≤ a ≤ b ≤ c. After the presentation of some notations, we will dis-
cuss properties of linear congruence sequences and especially linear congruence
sequence collapses that preserve minimum or maximum values. This leads to a
first algorithm for the search of a minimum and maximum in a bilinear con-
gruence sequence. We will end this section with some thoughts on digital plane
collapses in order to obtain even better complexities.

3.1 Notations

A Digital Plane (DP for short) P (a, b, c, d) of integer characteristics (a, b, c, d)
is the set of digital points (x, y, z) ∈ Z

3 such that 0 ≤ ax + by − cz + d <
max (|a| , |b| , |c|) with gcd (a, b, c) = 1. This digital plane is 18-connected and
called a naive digital plane [3]. The value d is sometimes called the translation
constant. In this paper, without loss of generality, we assume that 0 ≤ a ≤ b ≤ c.
In this case, we have one and only one point, denoted PD(x, y), in P with abscissa
x and ordinate y. The z-coordinate is then z =

⌊
ax+by+d

c

⌋
.

A Digital SubPlane (DSP for short) S (P, x0, x1, y0, y1) associated to the
DP P = P (a, b, c, d) is the subset of P with points of abscissa and ordinate in
[x0, x1] × [y0, y1]. A DSP is a finite 18-connected subset of a DP.

We will use the notation
{

n
m

}
for n mod m [14]. In 3D, the remainder at

abscissa and ordinate (x, y) is the value Ra,b,c,d (x, y) = ax + by − cz + d. For

a point of the DP, we have Ra,b,c,d (x, y) =
{

ax+by+d
c

}
. The bilinear remainder

sequence Ra,b,c,d (x0, x1, y0, y1) is a set of remainders Ra,b,c,d (x, y) for (x, y) ∈
[x0, x1] × [y0, y1]. In 2D, the remainder for a DSL of characteristics (a, b, c) is
the value Ra,b,c (x) =

{
ax+c

b

}
at abscissa x. The linear remainder sequence

Ra,b,c (u, v) corresponds to the values Ra,b,c (x) for u ≤ x ≤ v.
Let us first note that Ra,b,c,d (x, y) = Ra,c,d+by(x) = Rb,c,d+ax(y). The sim-

pliest way of looking at a bilinear congruence sequences is to look at them as
sequences of linear congruence sequences. The results presented here are slight
extensions of properties already presented in [13] for sequences of type Ra,b,0(x)
with parameter c = 0. Here we are looking at the same properties for Ra,b,c(x).
As we will see, the extensions are pretty straightforward.

162 E. Andres et al.

3.2 Linear Sequence Collapse

Let us look at collapsed linear congruence sequences to Ra,b,c(u, v) ={{
ax+c

b

}
: u ≤ x ≤ v

}
that preserve the minimum and maximum values of the

sequence. We suppose that 0 ≤ b and gcd(a, b) = 1. Let us remark that the
sequence of remainders Ra,b,c(x) corresponds to a naive DSL of slope a

b in the
first octant. When one looks at such a sequence as a DSL, one can see that the
minimal values and maximal values are located at specific places on the DSL.
Let us call a span, a set of pixels with same ordinate. The remainders between 0
and a − 1 are located at the beginning of a complete span while the remainders
between b − a and b − 1 are located at the end of a complete span. Let us note
as well that, in Fig. 1, the first span on the bottom left is not complete and the
upper top span neither.

Fig. 1. DSS of characteristics (51, 131, 71), 0 ≤ x ≤ 13. Minimum remainders are at
the beginning of a span while maximum remainders are at the end of a span. Three
steps are needed in this case to determine the minimum and maximum.

The following proposition states that the span start and end remainders form
linear congruence sequences as well:

Proposition 1. Let us consider the remainder subsequence ζ = Ra,b,c(u, v),
with 0 ≤ a ≤ b and gcd (a, b) = 1.

– if
⌊

au+c
b

⌋
=

⌊
av+c

b

⌋
then min(ζ) =

{
au+c

b

}
and max(ζ) =

{
av+c

b

}
;

– otherwise min(ζ) ∈ ζ ′ where ζ ′ = R{−b
a },a,c

(
1 +

⌊
a(u−1)+c

b

⌋
,
⌊

av+c
b

⌋)
;

Thoughts on 3D Digital Subplane Recognition 163

– and max(ζ) ∈ ζ ′′ where ζ ′′ = b − a + R{−b
a },a,c

(
1 +

⌊
au+c

b

⌋
,
⌊

a(v+1)+c
b

⌋)
.

Proof. In [13] a similar result has been presented but with c = 0. We have
therefore simply to prove that the result stands with c �= 0. For the first line,⌊

au+c
b

⌋
=

⌊
av+c

b

⌋
corresponds to the ordinate of the points of abscissa u and v.

If the ordinates are equal, both points are on the same span and the minimum
is located at abscissa u and the maximum at abscissa v regardless if the span is
complete or not.

Let m = min(ζ). Now, let us consider the Bezout coefficient (α, β) of (a, b)
such that aα − bβ = 1. It is easy to see that Ra,b,c (u, v) =
Ra,b,0

(
u − {

cα
b

}
, v − {

cα
b

})
[13]. We know already that if m ∈ Ra,b,0

(
u − {

cα
b

}
, v − {

cα
b

})
then m ∈ R{−b

a },a,0

(

1 +
⌊

a(u−{ cα
b }−1)

b

⌋

,

⌊
a(v−{ cα

b })
b

⌋)

[13]. It is now easy to see that this is the same as m ∈ R{−b
a },a,c(

1 +
⌊

a(u−1)+c
b

⌋
,
⌊

av+c
b

⌋)
. The same goes for the maximum. ��

Proposition 1 means that we can build two linear congruence sequences that
maintain the minimum and maximum values respectively. Although the maxi-
mum value is only conserved indirectly via an accumulator value. The interest-
ing aspect is that we replace a sequence of (v − u) values by a sequence with(⌊

av+c
b

⌋ −
⌊

a(u−1)+c
b

⌋
− 1

)
values. However if the slope is close to 1, the num-

ber of points is equal to the number of spans and we do not gain much by
replacing one sequence by the other. This is solved by performing the following
substitution:

Lemma 1. Let us consider the remainder subsequence ζ = Ra,b,c(u, v), with
0 ≤ a ≤ b and gcd (a, b) = 1. Let us suppose that 2a > b then:

min(ζ) ∈ ζ ′ and max(ζ) ∈ ζ ′ where ζ ′ = Rb−a,b,c(−v,−u)

The proof is similar to the one that can be found in [13]. With Lemma 1,
we transform a sequence with a spans into a sequence with b − a spans and a
DSS of slope a

b > 1
2 into a DSS of slope b−a

b < 1
2 . The spans are bigger and the

computation time is reduced.

Lemma 2. Ra,b,c(u, v) = Ra,b,{ c
b}(u, v)

This result is obvious since the remainder sequence has a periodicity of b.
This lemma can help if c is big compared to b.

Right now we have supposed that for a DSL characteristics (a, b, c), we have
gcd(a, b) = 1. This is reasonable since the DSL of characteristics (a, b, c), for
g = gcd(a, b) > 1, is the same than the DSL of characteristics

(
a
g , b

g ,
⌊

c
g

⌋)
.

However, if we are simply looking at the remainder sequence for gcd(a, b) > 1,

164 E. Andres et al.

the values in the sequence are different although related to the remainder values
obtained by dividing the characteristics by the gcd, as the following lemma shows
(note that the Algorithm 1 works even if the GCD is not equal to one):

Lemma 3. Let us consider a DSL of characteristics (a, b, c) such that gcd(a, b) =
g > 1, then: Ra,b,c(u, v) =

{
c
g

}
+ gR a

g , b
g ,c(u, v)

Algorithm 1. ComputeMinMax2D (In: a, b, c, u, v. Out: mini,maxi) - -
a, b, c: characteristics of the DSL; u, v: interval of definition of the DSS;
mini, maxi: minimal, maximal remainder).
begin

minifound ← False; maxifound ← False; cumul ← 0 ;
(* (u′, v′) min sequence interval and (u′′, v′′) max sequence interval *)
u′ ← u ; v′ ← v ; u′′ ← u ; v′′ ← v ;
while not (minifound and maxifound) do

if 2a > b then
(* Dealing with longer spans reduce computation time *)
(a, b, c, u′, v′, u′′, v′′) ← (b − a, b, c, −v′, −u′, −v′′, −u′′) ;

(a′, b′) ← ({−b
a

}
, a
)

;
c′ =

{
c
b′
}

;
if not(minifound) then

yu ←
⌊

au′+c
b

⌋
; yv ←

⌊
av′+c

b

⌋
;

if yu = yv (* only one span *) then

mini ←
{

au′+c
b

}
;

minifound ← True ; (* We have our minimal remainder *)

else
(u′, v′) ← (1 + �(a′(u′ − 1) + c′)/b′� , �(a′v′ + c′)/b′�);

if not(maxifound) then

yu ←
⌊

au′′+c
b

⌋
; yv ←

⌊
av′′+c

b

⌋
;

if yu = yv (* only one span *) then

maxi ← cumul +
{

au′′+c
b

}
;

maxifound ← True ; (* We have our maximal remainder *)

else
(u′′, v′′) ← (1 + �(a′u′′ + c′)/b′� , �(a′(v′′ + 1) + c′)/b′�);

(a, b, c) ← (a′, b′, c′);

We now have all we need for a complete 2D algorithm: see Algorithm 1 for
the search of the minimum in a 2D sequence. This algorithm is an extension of
the one proposed in [13] as it computes the minimum and the maximum at the
same time. Note however that we do not check if the value 0 or b − 1 belong

Thoughts on 3D Digital Subplane Recognition 165

to the sequence for algorithm ComputeMinMax2D parameters (a, b, c, u, v). In
3D, there is an overall check for the presence of those values in the complete
bilinear sequence. If the reader wants to use the algorithm ComputeMinMax2D
to solve 2D cases, he may add these checks although it is not necessary. It
requires to compute the Bezout coefficients and thus it adds the complexity of
this computation to the general case and substitutes it to the complexity of the
algorithm (equivalent to the complexity of the Euclidean algorithm).

Example: Figure 1 shows an example of simple linear congruence collapse. The
DSS is defined by 0 ≤ 31x − 151y + 71 < 151 with 0 ≤ x ≤ 13. The first step
transforms the DSS characteristics in

({−151
31

}
, 31, 71

)
= (22, 51, 20). The trans-

lation constant is
{

71
51

}
= 20 (Lemma 2). We have now two sequences: the one that

contains the minimum values and the one with the maximum values. The mini-
mum sequence is defined on the interval

[
1 +

⌊
31(0−1)+20

151

⌋
,
⌊
31·13+20

151

⌋]
= [1, 5].

The formula 1+
⌊

a(u−1)+c
b

⌋
ensures that the span considered is the first complete

span. The first value in the minimum sequence will be 42 and not 71. The max-
imum sequence is defined on the interval

[
1 +

⌊
a·0+20
151

⌋
,
⌊
31(13+1)+20

151

⌋]
= [1, 5]

with accumulation value 131 − 51 = 80. Note that the interval for the minimum
sequence and the maximum sequence are not necessarily identical as can be seen
in the last step. The second step is similar to the first but applied on the minimum
and maximum sequence: the DSS 0 ≤ 22x − 51y + 20 < 51 is collapsed into the
DSS 0 ≤ 15x − 22y + 20 < 22 with both intervals 2 ≤ x ≤ 3, and accumula-
tion value 80 + 51 − 22 = 109. The third step corresponds to an inversion on the
sequence: since 15 · 2 > 22, the DSS is transformed into 7x − 22y + 20 < 7, with
intervals −3 ≤ x ≤ −2. The accumulation value does not change. As can be seen
in the figure, the values are now, for both minimum and maximum sequence, on
a same span, and the minimum is given by the first value in the span piece while
the maximum value is given by the last value in the span piece.

3.3 Efficient Search for a Given Value in a Bilinear Congruence
Sequence

We have now almost all we need for a first 3D algorithm. There is however a
last problem that we are going to address. Let us consider a bilinear congruence
sequence ζ = Ra,b,c,d (x0, x1, y0, y1). We know that the minimum value in ζ
cannot be smaller than 0 and the maximum not greater than c − 1. So, by
providing an efficient method that determines if a given value ε belongs to the
sequence (in our case ε = 0 or ε = c − 1), we will not have to search further for
a minimum or a maximum. Of course, one can check row by row or column by
column but one can actually do better than that using the following theorems
(see Fig. 2 for an example):

Theorem 1. Let us consider the bilinear congruence sequence ζ =
Ra,b,c,d (x0, x1, y0, y1) and a value ε, with 0 ≤ ε < c. Let us suppose that
gcd(a, c) = 1 and (α, β) their Bezout coefficients verifying aα − cβ = 1.

166 E. Andres et al.

Let us define the sequence xε(y), y ∈ [y0, y1] of the smallest abscissa greater or
equal to x0 with remainder Ra,b,c,d(x, y) = ε. Then:

xε is given by the sequence x0 + R−bα,c,α(ε−d−ax0) (y0, y1).

Proof. Let us consider a DSP defined by 0 ≤ ax + by − cz + d < c with (x, y) ∈
[x0, x1] × [y0, y1]. Let us suppose that gcd(a, c) = 1 and (α, β) their Bezout
coefficients verifying aα− cβ = 1. First, let us note that 0 ≤ ax+ by − cz +d < c
with (x, y) ∈ [x0, x1] × [y0, y1] is equivalent to 0 ≤ ax′ + by − cz + d + ax0 < c
with (x′, y) ∈ [0, x1 − x0] × [y0, y1] and x′ = x − x0. For a given ordinate, we
are searching for the abscissa x′ greater or equal to 0 with a remainder equal
to ε. For a given ordinate y, the abscissa x′(y) with remainder Ra,b,c,d(x′, y) =
ax′ + by − cz + d + ax0 = ε verifies ax′ − cz = ε − d − by − ax0. With the Bezout
coefficients (α, β), we have (α(ε−d−by−ax0)+kc)a−(β(ε−d−by−ax0)+ka)c =
ε−d− by −ax0, k ∈ Z. This means that x′ ∈ {(ε − d − by − ax0)α + kc : k ∈ Z}.
The smallest abscissa x = x′ + x0, greater or equal to x0 with remainder equal
to ε is then given by x0 +

{
−bαy+α(ε−d−ax0)

c

}
. ��

9

2

14

7

0

12

14

7

0

12

5

17

0

12

5

17

10

3

5

17

10

3

15

8

10

3

15

8

1

13

15

8

1

13

6

18

1

13

6

18

11

4

6

18

11

4

16

9

11

4

16

9

2

14

16

9

2

14

7

0

2

14

7

0

12

5

7

0

12

5

17

10

12

5

17

10

3

15

17

10

3

15

8

1

3

15

8

1

13

6

8

1

13

6

18

11

13

6

18

11

4

16

18

11

4

16

9

2

4

16

9

2

14

7

9

2

14

7

0

12

14

7

0

12

5

17

Fig. 2. Bilinear Congruence Sequence
{

4x+12y+4
17

}
on [3, 15]× [0, 5]. The blue rectangle

shows the DSP subsequence. In Pink, the values ε = 0 with abscissa greater than
x0 = 3. In Dark Blue, the values 0 with abscissa smaller than x0 = 3 (Colour figure
online).

In Theorem 1, we have supposed that gcd(a, c) = 1 which is not necessarily
the case. Let us now examine what happens when gcd(a, c) = g > 1.

Theorem 2. Let us consider the bilinear congruence sequence ζ = Ra,b,c,d

(x0, x1, y0, y1) and a value ε, with 0 ≤ ε < c. Let us suppose that gcd(a, c) =
g > 1. Let us suppose that (α, β) are the Bezout coefficients for (b, g) such that
bα − gβ = 1. Then, the bilinear congruence sequence ζ contains the value ε iff
the sequence R a

g ,{ b
g }, c

g ,
d+b·yi−e

g

(
x0, x1, 0,

⌊
y1−yi

g

⌋)
with yi = y0+

{
α(e−d−by0)

g

}
,

contains the value 0.

Proof. Let us consider the bilinear congruence sequence ζ = Ra,b,c,d (x0, x1, y0, y1)
and a value ε, with 0 ≤ ε < c. Let us suppose that gcd(a, c) = g > 1. Let us

Thoughts on 3D Digital Subplane Recognition 167

suppose that (α, β) are the Bezout coefficients for (b, g) such that bα − gβ = 1.
Of course, here, gcd(b, g) = 1 or otherwise we would not have gcd(a, b, c) = 1.
It is easy to see that Ra,b,c,d (x0, x1, y0, y1) for y ∈ [0, y1 − y0] is the same as
Ra,b,c,d+by0 (x0, x1, 0, y1 − y0). We know that ax + by′ − cz + d + by0 = ε, with

y′ = y − y0, is only possible if
{

by′+d+by0−ε
g

}
= 0. The smallest value y′ ≥ 0 ver-

ifying this is given by y′ =
{

α(ε−d−by0)
g

}
. Let us denote yi = y0 +

{
α(ε−d−by0)

g

}
.

The ordinate yi is the first ordinate between y0 and y1 for which the sequence ζ
may contain ε. The other ordinates where we may find ε are then all the yi + kg

for k ∈
[
0,

⌊
y1−yi

g

⌋]
. Now we need to replace y by gy′′ in order to have steps of 1

on the ordinates. We also need to start with the ordinate 0 as yi is not necessar-
ily divisible by g. It is easy to see that ζ = Ra,b,c,d+byi

(x0, x1, 0, y1 − yi). Since
the value ε can only be found on the lines with ordinate yi + kg, it is easy to see
that ε can be found in ζ iff it can be found in Ra,bg,c,d+byi

(
x0, x1, 0,

⌊
y1−yi

g

⌋)
. If

we denote (a′, c′) = (a/g, c/g) then we have a′gx + bgy − c′gz + d + byi = ε if
a′gx + bgy − c′gz + d + byi − ε = 0 or a′x + by − c′z + d+byi−ε

g = 0 (note that
d + byi − ε is divisible by g). Here, if b is bigger than c, then it is easy to see that
it can be replaced by

{
b
c

}
. ��

Theorem 3. Deciding if a value belongs to a bilinear congruence sequence can
be decided in logarithmic time.

The proof is obvious. With Theorems 1 and 2, we exhibit linear congruence
sequences. We can search for its minimum with Algorithm 1. If the minimum is
smaller or equal to x1 −x0 then the sequence ζ contains the value ε. This search
for the values 0 or c − 1 can thus be done in logarithmic time.

3.4 First Algorithm for the Minimum and Maximum Search in a
Bilinear Congruence Sequence

Let us consider a bilinear congruence sequence ζ = Ra,b,c,d (x0, x1, y0, y1). The
previous section let us check if the values 0 or c − 1 belong to ζ. If both val-
ues are in ζ then the search is over. Otherwise, let us consider the smallest
of the intervals n = x1 − x0 and m = y1 − y0. W.l.o.g., let us consider that
we have m < n. The first 3D algorithm consists simply in applying algorithm
ComputeMinMax2D(a,c,d + ay), for y ∈ [y0, y1]. We keep the minimum and
maximum over all these 2D sequences.

Proposition 2. Let us consider a bilinear congruence sequence ζ = Ra,b,c,d

(x0, x1, y0, y1) with n = x1 − x0 < m = y1 − y0. The complexity of the search for
the minimum and maximum value in ζ is bounded by O (n · log (min(a, c − a))).

The proposition is a direct consequence of the complexity of the 2D
algorithm [13]. Figure 3 shows an example. As one can see, the collapse line
by line does not produce a rectangle on (x, y). Also, one can see that the final
minimum or maximum values do not necessarily form a connected final set. The
problem comes from the sequences of the values (u, v) over the different lines.

168 E. Andres et al.

Fig. 3. Bilinear Congruence Sequence
{

161x+191y+7
331

}
on [0, 7] × [0, 4].

4 Discussion, Conclusion and Perspectives

In this paper we were interested in the Digital SubPlane (DSP) Recognition
Problem. We tried to extend our remainder approach for the recognition of
straight line segments to the recognition of subplanes. The extension is not
immediate. In particular, the remainder order property that is verified in 2D
is not always verified in 3D. As a consequence, a point may be a Leaning Point
for the Digital Plane but not for the Digital SubPlane and vice-versa. There
seems however to be classes of subplanes for which the remainder order prop-
erty are conserved. The characterization of this subclass is an open question. It
could represent an interesting candidate as representative of the equivalent class
of Digital Planes containing a SubPlane. From this starting point, we proposed
an extension of the search of a minimum and maximum of a linear congru-
ence sequence to the third dimension. We showed in particular that one can
determine if a given value belongs to a bilinear congruence sequence in logarith-
mic time. The minimum and maximum value in a bilinear congruence sequence{

ax+by+d
c

}
, (x, y) ∈ [x0, x1]× [y0, y1] can be found, if m = x1−x0 < n = y1−y0,

in O(m log (min(a, c − a)) or O(n log (min(b, c − b)) otherwise.

Thoughts on 3D Digital Subplane Recognition 169

This paper is only a very first step in the investigation of the SubPlane Recog-
nition Problem. As already discussed, we would like to prove that there are always
subplanes that verify the remainder order property, namely, for a Digital Plane
of characteristics (a, b, c, d) and a SubPlane of characteristics (α, β, γ, δ) defined
on [x0, x1] × [y0, y1] ∀(x, y) and (x′, y′) ∈ [x0, x1] × [y0, y1], : Ra,b,c,d (x, y) <
Ra,b,c (x′, y′) ⇒ Rα,β,γ,δ (x, y) ≤ Rα,β,γ,δ (x′, y′). The question comes actually
down to a construction problem. Starting from the Digital Plane, it is possible
to erode it in such a way that we obtain a sequence of SubPlanes that verify the
remainder order property and vice-versa?

The algorithm for the search of a minimum and a maximum in a bilinear
congruence sequence searches for the minimum and maximum line by line (or
column by column). This is possible because a line of a bilinear congruence
sequence is simply a linear congruence sequence. One could try to improve this
by alternatively searching for a minimum in a line or a column. This corresponds
to a form of 3D digital plane collapse (see [18] for other forms of plane collapses).
See Fig. 4 when this is performed on an infinite Digital Plane and Fig. 5 where
it is performed on a Digital SubPlane. Again, one can see that the collapse
on a DSP does not preserve a simple shape. One would be able to achieve a
logarithmic search for the minimum and maximum if one is able to characterize
the shape of the collapsed DSP (See Fig. 5).

Fig. 4. Plane collapses.

170 E. Andres et al.

Fig. 5. DSP of characteristics (31, 71, 191, 1) on [0, 8] × [0, 8]. Two successive collapses
are shown, a first vertical and then an horizontal one.

There are however possibilities of improvement in terms of complexity. Firstly,
one can see that the shape after one collapse (see Figs. 3 and 5) is not defined on
a rectangle anymore but the sides that are not parallel to an axis form actually
a Digital Straight Line (when projected on 2D). Another possible improvement
could be done by repetitively searching for specific values in the bilinear congru-
ence sequence: looking for values 0, 1, .. when a value is found in the sequence
it corresponds then to the minimum. The complexity is then c times a log. This
works best when the size of the DSP is important compared to the character-
istics values. A finer study needs to be conducted to check when doing one is
more efficient than the other, or mixing both.

References

1. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical
Models Image Process. 59(5), 302–309 (1997)

2. Berthé, V., Labbé, S.: An Arithmetic and combinatorial approach to three-
dimensional discrete lines. In: Debled-Rennesson, I., Domenjoud, E., Kerautret,
B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 47–58. Springer, Heidelberg
(2011)

3. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity - a review. Discrete
Appl. Math. 155(4), 468–495 (2007)

4. Brons, R.: Linguistic methods for the description of a straight line on a grid.
Comput. Graphics Image Process. 3(1), 48–62 (1974)

5. Coven, E.M., Hedlund, G.: Sequences with minimal block growth. Math. Syst.
Theory 7(2), 138–153 (1973)

6. Debled-Rennesson, I., Reveilles, J.P.: A linear algorithm for segmentation of digital
curves. IJPRAI 09(04), 635–662 (1995)

7. Dexet, M., Andres, E.: A generalized preimage for the digital analytical hyperplane
recognition. Discrete Appl. Math. 157(3), 476–489 (2009)

8. Feschet, F., Tougne, L.: On the min DSS problem of closed discrete curves. Discrete
Appl. Math. 151(1–3), 138–153 (2005)

Thoughts on 3D Digital Subplane Recognition 171

9. Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane
recognition algorithm. Discrete Appl. Math. 151(1–3), 169–183 (2005)

10. Klette, R., Rosenfeld, A.: Digital straightness - a review. Discrete Appl. Math.
139(1–3), 197–230 (2004)

11. Lachaud, J.O., Said, M.: Two efficient algorithms for computing the characteristics
of a subsegment of a digital straight line. Discrete Appl. Math. 161(15), 2293–2315
(2013)

12. Largeteau-Skapin, G., Debled-Rennesson, I.: Outils arithmétiques pour la
géométrie discrète. In: Géométrie discrète et images numériques, pp. 59–74. Traité
IC2 - Traitement du signal et de l’image, Hermès - Lavoisier (2007)

13. Ouattara, J.D., Andres, E., Largeteau-Skapin, G., Zrour, R., Tapsoba,
T.M.: Remainder approach for the computation of digital straight line
subsegment characteristics. Discrete Appl. Math. 183, 90–101 (2015).
http://dx.doi.org/10.1016/j.dam.2014.06.006

14. Reveillès, J.P.: Calcul en Nombres Entiers et Algorithmique. Ph.D. thesis, Univer-
sité Louis Pasteur, Strasbourg, France (1991)

15. Said, M., Lachaud, J.-O., Feschet, F.: Multiscale discrete geometry. In: Brlek, S.,
Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 118–131.
Springer, Heidelberg (2009)

16. Sivignon, I.: Walking in the Farey fan to compute the characteristics of a discrete
straight line subsegment. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.)
DGCI 2013. LNCS, vol. 7749, pp. 23–34. Springer, Heidelberg (2013)

17. Sivignon, I., Coeurjolly, D.: Minimal decomposition of a digital surface into digital
plane segments Is NP-hard. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI
2006. LNCS, vol. 4245, pp. 674–685. Springer, Heidelberg (2006)

18. Fernique, T.: Generation and recognition of digital planes using multi-dimensional
continued fractions. Pattern Recogn. 10(42), 2229–2238 (2009)

19. Vacavant, A., Roussillon, T., Kerautret, B., Lachaud, J.O.: A combined multi-
scale/irregular algorithm for the vectorization of noisy digital contours. Comput.
Vis. Image Underst. 117(4), 438–450 (2013)

http://dx.doi.org/10.1016/j.dam.2014.06.006

Construction of Sandwich Cover
of Digital Objects

Apurba Sarkar1(B) and Mousumi Dutt2

1 Department of Computer Science and Technology,
Indian Institute of Engineering Science and Technology, Shibpur, India

as.besu@gmail.com
2 Department of Computer Science and Engineering,

International Institute of Information Technology, Naya-Raipur, India
duttmousumi@gmail.com

Abstract. An algorithm to construct a minimum vertex cover of a dig-
ital object from its inner and outer isothetic covers such that it lies
within the annular region bounded by its outer and inner isothetic cov-
ers is presented here which has O(n

g
log(n/g)) time complexity, where n

being the number of pixels on the contour of the digital object and g is
the grid size. After constructing inner and outer covers [2,3], a combina-
torial technique is used to construct a sandwich cover. Sandwich cover
reduces the storage complexity of the given digital object as it contains
less number of vertices compared to inner or outer isothetic cover while
preserving the shape of the object. Sandwich cover can be used as shape
descriptor by generating several metrics on it.

Keywords: Isothetic covers · Sandwich cover · Shape analysis · Shape
descriptor · Combinatorial technique

1 Introduction

Finding tightest possible covers both inner and outer of a digital object has
diverse applications in many areas of computer science such as shape analysis,
document image analysis, computer vision, VLSI layout design, robot motion
planning, grasping object by robot [5,7], inner and outer approximation of poly-
topes [1], computing minimum area safety zone [8], and rough sets. The covers
can also be used to extract shape based features for shape analysis. Shape based
features can then be used to design OCR systems [9]. Shape analysis on the
other hand can be used for road-sign detection [6]. These covers are of impor-
tance in the sense that they preserve the shape of the digital object and they
are less complex than the actual object. Few works on finding optimal covers in
different grid have been found in the literature. Sloboda et al. presented a work
that deals with boundary approximation of objects in [11]. There is a work by
Sklansky [10] that deals with minimum-perimeter polygons of digitised silhou-
ettes. An algorithm to find the inner and outer isothetic cover has been proposed

c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 172–184, 2015.
DOI: 10.1007/978-3-319-26145-4 13

Construction of Sandwich Cover of Digital Objects 173

in [2,3] which utilises combinatorial properties and relative arrangements of the
digital object and the underlying grid lines. The algorithm proposed there could
also control the relative error of the polygonal cover by varying the grid size.
B. Das et al. [4] proposed a combinatorial algorithm to find the optimal covers
of digital object in triangular grid. Although, these polygonal covers give an
approximation about the shape of the digital object, for some applications a
mere rough approximation about the shape of the object may be enough.

(a) (b) (c)

Fig. 1. (a) A digital object, its inner (blue), outer (black), and sandwich (red) covers
are shown for g = 4 (b) and g = 8 (c) (Color figure online)

The algorithm presented in this paper computes a rough cover (henceforth
called sandwich cover) that lies within the annular region bounded by the inner
and outer isothetic cover of the given digital object1 and the resulting cover
has minimum number of vertices. The algorithm can also be applied to find the
minimum vertex isothetic polygon, given one isothetic polygon inside another
isothetic polygon. Figure 1 shows an object with its inner (blue), outer (black),
and sandwich (red) covers for grid size g = 4 and g = 8.

The rest of the paper is organized as follows. All the required definitions and
preliminaries are presented in Sect. 2. The construction of outer isothetic cover
(OIC) and inner isothetic cover (IIC) are explained in brief in Sects. 2.1 and 2.2
respectively. The method for deriving a sandwich cover is presented in Sect. 3.
Estimation of running time of the proposed algorithm is explained in Sect. 3.3.
Section 4 presents the experimental results with analysis and the conclusion is
presented in Sect. 5.

2 Definitions and Preliminaries

This section contains some definitions required to understand the paper. In
Sects. 2.1 and 2.2, the construction of outer and inner isothetic covers are dis-
cussed in brief which are given in details in [2,3].

1 It is to be noted that the construction of these two covers are given in [2,3].

174 A. Sarkar and M. Dutt

Definition 1 (k-connectedness). Two points p and q are said to be k-connected
(k = 4 or 8) in a set S if and only if there exists a sequence p = 〈p0, p1, . . . , pn =
q〉 ⊆ S such that pi ∈ Nk(pi−1) for 1 � i � n. The 4-neighborhood of a
point (x, y) is given by N4(x, y) = {(x′, y′) : |x − x′| + |y − y′| = 1} and its
8-neighborhood by N8(x, y) = {(x′, y′) : max(|x − x′|, |y − y′|) = 1}.
Definition 2 (Digital grid). A digital grid is given by G := (H,V), where H and
V represent the respective sets of (equi-spaced) horizontal grid lines and vertical
grid lines. A grid size, g is defined as the distance between two consecutive hori-
zontal/vertical grid line. A grid point is the point of intersection of a horizontal
and a vertical grid line. A unit grid block (UGB) is the smallest square having
its four vertices as four grid points and edges as grid edges.

Definition 3 (Digital object). A digital object (henceforth referred as an object)
is a finite subset of Z2, which consists of one or more k-connected components.

Definition 4 (Isothetic polygon). An isothetic polygon P is a simple polygon
(i.e., with nonintersecting sides) of finite size in Z

2 whose alternate sides are
subsets of the members of H and V. The polygon P , hence given by a finite
set of UGBs, is represented by the (ordered) sequence of its vertices, which are
grid points. The border BP of P is the set of points belonging to its sides. The
interior of P is the set of points in the union of its constituting UGBs excluding
the border of P .

An isothetic cover has two type of vertices 90◦ (type 1) and 270◦ (type 3).

Definition 5 (Outer isothetic cover). The outer (isothetic) cover (OIC), denoted
by P (S), is a set of outer polygons and (outer) hole polygons, such that the region,
given by the union of the outer polygons minus the union of the interiors of the hole
polygons, contains a UGB if and only if it has object occupancy (i.e., has a non-
empty intersection with S).

Definition 6 (Inner isothetic cover). The inner (isothetic) cover (IIC), denoted
by P (S), is a set of inner polygons and (inner) hole polygons, such that the
region, given by the union of the inner polygons minus the union of the interiors
of the hole polygons, contains a UGB if and only if it is a subset of S.

Definition 7 (Sandwich cover). The sandwich (isothetic) cover (SC) is defined
to be the minimum vertex simple isothetic polygon that lies completely within the
annular region bounded by inner isothetic cover (IIC) and outer isothetic cover
(OIC).

Definition 8 (Convexity and Concavity). An edge of P defined by two consecu-
tive vertices of type 1 is termed as a convex edge, as it gives rise to a convexity.
Similarly, an edge defined by two consecutive type 3 vertices gives rise to a con-
cavity, and hence termed as a concave edge.

The line segment, along a concavity, contained within the annular region
defined by the OIC and the IIC, is called the concavity line segment (shown in
red in Fig. 4(b)). Similarly, the portion of the line, along a convexity, within the
annular region, is called the convexity line segment (shown in violet in Fig. 4(a)).

Construction of Sandwich Cover of Digital Objects 175

2.1 Deriving the Outer Isothetic Cover (OIC)

The outer isothetic cover is the minimum area isothetic polygon Ain that covers
a digital object A registered with the grid, G. The algorithm presented in [2,3]
constructs an isothetic cover by computing ordered list of vertices of Ain using
a combinatorial classification (type) of the grid points lying on/inside/outside
the object boundary. The class or type of a grid point p in G is determined by
checking object occupancy of four neighboring cells of size g × g incident at p.
If i (i ∈ [0 . . . 4]) is the number of UGBs fully/partially occupied by the object
incident at p then type of p is determined to be Ci as shown in Fig. 2.

Q1Q2

Q4

Q2 Q1

Q4

Q1

Q3

(a) (b) (c) (d)

Q3

Q1

Q3 Q4

Q2

Q3

Q2

Q4

Fig. 2. Different vertex types for outer isothetic cover

The significance of a class is as follows. (i) C0: p is not a vertex, since none
of Qi’s has object containment; (ii) C1: Qi is a 90◦ vertex of Ain (Fig. 2(a));
(iii) C2: (a) if two adjacent UGB has object containment, then p is an edge
point (Fig. 2(c)); (b) if diagonally opposite cells contain object, then p is a 270◦

vertex of Ain (Fig. 2(d)); (iv) C3: p is classified as a 270◦ vertex (Fig. 2(b)); (v)
C4: p is not a vertex of Ain and lies inside Ain.

To obtain the cover an anticlockwise traversal is made around the boundary
of object and the start point of this traversal is determined to be the first 90◦

vertex found in the row wise scan of the grid points. Let vi be the current vertex
and vi−1 be the previous vertex in Ain, also let di−1 be the direction of vi−1 and
ti be the type of vi, then the next direction of traversal from vi is obtained by
the formula di = (di−1 + ti) mod 4. Where di ∈ [0, 3] indicating the direction
along right, top, left and downward respectively. The next grid point of traversal
will be the point along di. This procedure continues until it reaches the start
point thereby finding the outer isothetic cover.

2.2 Deriving the Inner Isothetic Cover (IIC)

The inner isothetic cover, A′
in, is the maximum-area orthogonal polygon that

inscribes the digital object A, registered with the background grid G. Derivation
of inner isothetic cover follows the same procedure as the outer isothetic cover,
except the consideration of the grid point, q. The classification of the grid point
q in this case is based on the full occupancy of UGBs incident at q as shown
in Fig. 3. The algorithm in [2,3] constructs the inner isothetic cover using these
classification of vertices.

176 A. Sarkar and M. Dutt

Q1Q2 Q1 Q1

Q3

(a) (b) (c) (d)

Q3

Q1 Q2

Q4

Q2

Q3 Q4 Q3 Q4

Q2

Q4

Fig. 3. Different vertex types of inner isothetic cover

3 Deriving a Sandwich Cover (SC)

In order to obtain sandwich cover with minimum number of vertices, SC cannot
move into the region bounded by the concavity line segment and the OIC and it
cannot move into the region bordered by the convexity line segment and the IIC.
If SC moves beyond the concavity line segment, it will introduce extra vertices
because SC has to traverse back to the line of concavity as it must be inside
the annular region bounded by the OIC and the IIC. Same is true if SC moves
inside the region bounded by a convexity line segment and IIC, new vertices
will be introduced. The objective of the algorithm is to minimize the number
of vertices, which can be achieved when there are less number of changes in
direction during the traversal. Thus the traversal is made along concavity or
convexity line segment.

The algorithm maintains four lists Lout, Lin, Lx, and Ly which are explained
below. Lout contains list of all vertices (Types 1 and 3) of the outer cover in anti-
clockwise order. This list is constructed during the construction of outer cover.
Lin contains list of all the vertices (Types 1 and 3) of the inner cover in anti-
clockwise order. Lin is constructed during the construction of inner cover. The
lists Lx and Ly are global and contain vertices (Type 1 and 3) and edge points
(Type 2) from both inner and outer cover. List Lx is lexicographically sorted in
a non-decreasing order w.r.t. x (primary key) and y (secondary key), and Ly is
lexicographically sorted in a non-decreasing order w.r.t. y (primary key) and x
(secondary key). Lists Lx and Ly are used to determine concavity and convexity
lines. For all the vertices present in these lists, following information are stored;
coordinates of the point, type (1 or 2 or 3), outgoing direction, information about
whether it belongs to inner cover or outer cover, information about whether it
lies on a concavity (convexity) line segment (boolean), direction of the concavity
(convexity) (if present).

3.1 Determining Concavity and Convexity Line Segments

It should be mentioned here that the algorithm requires the concavity line seg-
ment due to the outer cover and the convexity line segment due to the inner
cover. To determine concavity line segment, the list Lout is traversed. During

Construction of Sandwich Cover of Digital Objects 177

(a) (b)

Fig. 4. (a) Convexity line segment (in red) and (b) Concavity line segment (in violet)
(Color figure online)

the traversal if two or more Type 3 vertices are encountered it implies the pres-
ence of a concavity. To determine the concavity line two consecutive Type 3
vertices are considered at a time. The concave edge incident at two type 3 ver-
tices are extended and the immediate next vertices along the direction of edge
are found out and they are the end points of the concavity line formed by the
concave edge. The end points are determined by consulting Lx or Ly and their
appropriate fields (presence on concavity line segment and its direction) are set.
For example, if the concave edge is vertical then Ly is consulted and if the con-
cave edge is horizontal then Lx is consulted. The same procedure is followed
to determine the convexity line segment except that traversal is made along
inner cover and two or more consecutive Type 1 vertices are considered. It is to
be noted that direction of concavity (convexity) line is set to be the direction
associated with the first vertex of a concave (convex) edge. The concavity and
convexity lines are shown in Fig. 4.

3.2 Obtaining Sandwich Cover

From top-left vertex of inner isothetic cover, an anticlockwise traversal is made
to obtain sandwich cover. It is to be noted that the top-left point of IIC always
lies on the convexity line segment. Let v0 be a point on the sandwich cover.
When the traversal reaches v0, it checks three immediate next vertices along
its front (vf), left (vl), and right (vr) direction, which may lie either on IIC or
OIC. The three vertices mentioned above are found out by searching in Lx or Ly

depending on the direction of vf , vl, vr w.r.t. v0. The next direction of traversal
is determined based on the following three simple rules.

– R1: If v0 is on the concavity or convexity line segment, the traversal pro-
ceeds along that line in anticlockwise manner. The corresponding segment
ends either on IIC or OIC. The traversal continues from that end point in
anticlockwise manner. For example, as shown in Fig. 5(a), from v0 it proceeds
along the convexity line segment since v0 is on a convexity line defined by the
convex edge v0v1.

178 A. Sarkar and M. Dutt

– R2: Let v0, v1, v2 be three consecutive type 1 or type 3 vertices, producing two
consecutive convexity and concavity line segments. Thus, v1 belongs to either
two consecutive convexity or concavity line segments. Between the two con-
vexity line segments, which intersects the OIC, the traversal starts from that
intersection points. Between the two concavity line segments, which intersects
the IIC, the traversal starts from that intersection points. If both the con-
vexity or concavity line segments intersect OIC or IIC respectively, then the
point that encountered last is considered (anticlockwise direction). As shown
in Fig. 5(b), as the traversal proceeds from v0 along the convexity line and
reaches v1, it finds that there is another convexity line that passes through
v1. The new convexity line hits the inner cover and the old one hits the outer
cover, so the traversal proceeds along the old one (one that hits outer cover).

– R3: If the point lies on either inner or outer cover, it follows the direction of
the cover on which it lies and proceeds in such a manner that least number
of changes in direction occur.
As shown in Fig. 5(c), when the traversal reaches outer cover at v1, it follows
the direction of outer cover to reach v2 and v2 being on the inner cover, the
traversal proceeds along the direction of inner cover to reach v3. The traversal
continues this way until it eventually finds a concavity/convexity line segment.

(a) (b) (c)

v0

v1

v2

v3

v0

v1 v2

v3

v4

v0

v1
v2

v3
v4

v5

Fig. 5. Illustration of Rules (a) R1, (b) R2, and (c) R3

The traversal continues according to the rules till it reaches the start point
where it concludes producing the sandwich cover. An outline of the algorithm in
pseudo-code is given below.

Construction of Sandwich Cover of Digital Objects 179

Algorithm Outline
1. construct OIC (Sect. 2.1)
2. construct IIC (Sect. 2.2)
3. determine concavity and convexity line segments (Sect. 3.1)
4. vs = start point (top left point of IIC)
5. vc = vs;
6. do
7. check three immediate next vertices of vc
8. apply the appropriate rule (R1, R2, or R3)
9. vd = next vertex in the direction according to rule
10. update vc i.e., vc = vd
11. while(vc �= vs);

In steps 1 and 2, the OIC and the IIC are constructed, thereof the correspond-
ing lists Lout, Lin, Lx, and Ly are obtained. Using these lists, the concavity and
convexity line segments are determined in Step 3. The start vertex, vs, is assigned
the top left point of IIC in Step 4 and the current vertex, vc, is updated (Step
5). Step 7 determines which rule to be applied and the rule is applied in Step 8
and the next vertex vd is determined in Step 9. The loop (Steps 6 through 11)
continues until the traversal reaches vs.

v0

v1

v2

v3

v4 v5

v6 v7

v8

v9

v′
0

v′
2

v′
9

v′
7

v10

v11

R1

R1

R1

R2

R3

v12

v′
4

R3
v′′
4

Fig. 6. Demonstration of the algorithm (Color figure online)

Figure 6 gives a brief demonstration of the algorithm. Outer isothetic cover
(OIC), inner isothetic cover (IIC), and sandwich cover (SC) are shown in black,
blue, and red respectively. Sandwich cover is obtained by starting an anticlock-
wise traversal at v0 (top left point of IIC) and making progress from there on
following the rules. Since vertex v0 is on a convexity line segment defined by
the convex edge v12v0, it proceeds along that line obeying the rules R1. At v′

0

the traversal finds that it is on a convexity line segment defined by the convex
edge v1v2. So, the traversal follows the direction of convexity line to reach v′

2

180 A. Sarkar and M. Dutt

(a) (b)

Fig. 7. Plots of grid size versus number of vertices on OIC, IIC and SC for the object
(a) Plane and (b) Horse

as mentioned in rule R1. v′
2 being on the inner cover it proceeds following the

direction of v2 to reach v3. Point v3 is on the convexity line defined by v3v4.
So, it follows that line and reaches v4 to meet another convexity line defined by
v4v5. Since convexity line defined by v4v5 hits inner cover and the convexity line
defined by v3v4 hits outer cover, the traversal proceeds along line defined by v3v4
obeying rule R2 to reach v′

4. The point v′
4 being on the outer cover proceeds

along the direction associated with v′
4 (rule R3) to reach v′′

4 . The point v′′
4 lies

on the convexity line of v6v7. So rule R1 takes the traversal to v′
7 and it being

on the convexity line v8v9 rule R1 again takes the traversal to v′
9. Now v′

9 is on
the outer cover so the traversal follows the direction of v′

9 to reach v10 obeying
R3. From v10 the traversal obeys the rule R3 to reach v11. The point v11 is on
the convexity line defined by v12v0 so it obeys the rule R1 and meets the start
point v0 and the algorithm concludes producing the sandwich cover as shown in
Fig. 6 in red.

3.3 Time Complexity

The algorithm to derive sandwich cover consists of four steps. To estimate
the running time of the algorithm, let n be the number pixels that consti-
tute the boundary of the digital object and also let g be the grid size. O(n/g)
be the number of grid points on the contour of the digital object. This needs
O(g)̇O(n/g) = O(n) time, since the intersection of each grid edge with the digital
object is checked in O(g) time, and the number of grid points visited is bounded
by O(n/g). In Step 1 outer isothetic cover is constructed and it requires O(n/g)
time [2,3]. In Step 2 inner isothetic cover is constructed and its construction also
takes O(n/g) time. In Step 3, concavity and convexity lines are determined and
the determination of these lines require searching in the lists Lx and Ly. The
number of vertices in Lx and Ly each is O(n/g) and lists are sorted so searching
requires O(log(n/g)) and the number of such search is bounded by O(n/g). So,
the total running time of Step 3 is bounded by O(ng log(n/g)). Steps 4 and 5
require constant time. Checking three vertices (Step 7) requires searching in Lx

and/or Ly which consumes O(3 log(n/g) ∼= O(log n/g)) time. As the number of

Construction of Sandwich Cover of Digital Objects 181

g = 4 and #OIC= 173, #IIC= 160, #SC= 58 g = 8 and #OIC= 73, #IIC= 82, #SC= 28

g = 4 and #OIC= 156, #IIC= 170, #SC= 56 g = 8 and #OIC= 80, #IIC= 72, #SC= 20

g = 4 and #OIC= 120, #IIC= 108, #SC= 44 g = 8 and #OIC= 70, #IIC= 54, #SC= 20

g = 4 and #OIC= 270, #IIC= 306, #SC= 104 g = 8 and #OIC= 126, #IIC= 148, #SC= 44

Fig. 8. Sandwich covers for four digital objects for two grid sizes, g = 4 and g = 8,
along with the number of vertices of OIC, IIC, and SC

182 A. Sarkar and M. Dutt

g = 4 and #OIC= 152, #IIC= 158, #SC= 66 g = 8 and #OIC= 80, #IIC= 54, #SC= 22

g = 4 and #OIC= 110, #IIC= 120, #SC= 42 g = 8 and #OIC= 54, #IIC= 60, #SC= 24

g = 4 and #OIC= 84, #IIC= 86, #SC= 38 g = 8 and #OIC= 30, #IIC= 36, #SC= 12

Fig. 9. Sandwich covers for three digital objects for two grid sizes, g = 4 and g = 8,
along with the number of vertices of OIC, IIC, and SC

Construction of Sandwich Cover of Digital Objects 183

vertices on the sandwich cover is bounded by O(n/g), the loop, Steps 6 to 11,
requires O(ng × log(n/g)) time. So, in effect the running time of the proposed
algorithm to construct the sandwich cover of a digital object is bounded by
O(n/g) + O(n/g) + O(ng log(n/g)) + O(ng log(n/g)) ∼= O(ng log(n/g)).

4 Experimental Results and Analysis

The proposed algorithm is implemented in C in Ubuntu 12.04, 64-bit, kernel
version 3.5.0-43-generic, the processor being Intel i5-3570, 3.4 GHz FSB. Four
instances of sandwich covers for four different objects or two grid sizes, g = 4
and g = 8, along with the number of vertices of OIC, IIC, and SC, are shown in
Fig. 8 and for three others in Fig. 9. As evident from the results, the number of
vertices is significantly reduced at the same time they preserve the shape of the
original object. It may be noted that the gain w.r.t. the reduction in the number
of vertices for complex objects (‘butterfly’ in Fig. 8) is more than the simpler
object (‘rook’ in Fig. 9). The plots in Fig. 7 show that the number of vertices for
the sandwich cover for all the objects are noticeably smaller at lower grid sizes,
however the difference decreases at higher grid sizes.

5 Conclusions

A combinatorial technique to construct sandwich cover is presented in this paper.
The running time of the algorithm is O(ng log(n/g)), where n is the number of
points on the perimeter of the digital object. Although the algorithm is used
to construct sandwich cover from outer and inner isothetic cover in this paper,
it can also be applied to construct minimum vertex isothetic polygon that lies
inside the annular region defined by given two non intersecting simple isothetic
polygon with one completely inside the other. The produced sandwich cover is
not unique in the sense that there could be more than one sandwich cover with
the same minimum number of vertices. In general the sandwich cover preserve
the shape of the object but if the inner cover of the object has a curvature with
a narrow neck (less than unit grid size) then the existence of the curvature in the
produced sandwich cover may not be captured. This problem has applications
in shape analysis of digital objects. Several metrics can be developed to use
sandwich cover as shape descriptor of digital objects and can also be applied for
shape classification.

References

1. Bemporad, A., Filippi, C., Torrisi, F.: Inner and outer approximations of polytopes
using boxes. Comput. Geom. Theory Appl. 27, 151–178 (2004)

2. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: on finding a tight isothetic
polygonal shape covering a 2D object. In: Kalviainen, H., Parkkinen, J., Kaarna,
A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 930–939. Springer, Heidelberg (2005)

184 A. Sarkar and M. Dutt

3. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of isothetic covers of
a digital object: a combinatorial approach. J. Vis. Comun. Image Represent. 21(4),
295–310 (2010)

4. Das, B., Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: A combinatorial
technique for construction of triangular covers of digital objects. In: Barneva, R.P.,
Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 76–90. Springer,
Heidelberg (2014)

5. Kamon, Y., Flash, T., Edelman, S.: Learning to grasp using visual information. In:
Proceedings of the IEEE International Conference on Robotics and Automation,
pp. 2470–2476 (1995)

6. Khan, J.F., Bhuiyan, S.M.A., Adhami, R.R.: Image segmentation and shape analy-
sis for road-sign detection. IEEE Trans. Intell. Transp. Syst. 12(1), 83–96 (2011)

7. Morales, A., Sanz, P., del Pobil, A.: Vision-based computation of three-finger
grasps on unknown planar objects. In: IEEE International Conference on Intel-
ligent Robots and Systems, pp. 1711–1716 (2002)

8. Nandy, S., Bhattacharya, B., Barrera, A.: Safety zone problem. J. Algorithms 37,
538–569 (2000)

9. Naser, M.A., Hasnat, M., Latif, T., Nizamuddin, S., Islam, T.: Analysis and repre-
sentation of character images for extracting shape based features towards building
an OCR for bangla script. In: International Conference on Digital Image Process-
ing, pp. 330–334 (2009)

10. Sklansky, J.: Minimum-perimeter polygons of digitized silhouettes. IEEE Trans.
Comput. 21(3), 1355–1364 (1972)

11. Sloboda, F., Zatko, B.: On boundary approximation. In: Proceedings of the Sixth
International Conference on Computer Analysis of Images and Patterns, CAIP
1995, pp. 488–495 (1995)

Theoretical Foundations of
Combinatorial Image Analysis –

Grammars and Other Formal Tools

Picture Array Generation Using Pure 2D
Context-Free Grammar Rules

K.G. Subramanian1(B), M. Geethalakshmi2, N. Gnanamalar David3,
and Atulya K. Nagar1

1 Department of Mathematics and Computer Science, Faculty of Science,
Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK

kgsmani1948@yahoo.com
2 Department of Mathematics, Queen Mary’s College, Chennai 600004, India

3 Department of Mathematics, Madras Christian College, Chennai 600059, India

Abstract. Pure two-dimensional context-free grammar (P2DCFG) is
a simple but effective non-isometric 2D grammar model to generate pic-
ture arrays. This 2D grammar uses only one kind of symbol as in a pure
string grammar and rewrites in parallel all the symbols in a column or
row by a set of context-free type rules. P2DCFG and a variant called
(l/u)P2DCFG, which was recently introduced motivated by the “left-
most” rewriting mode in string context-free grammars, have been investi-
gated for different properties. In this paper we introduce another variant
of P2DCFG that corresponds to “rightmost” rewriting in string context-
free grammars. The resulting grammar is called (r/d)P2DCFG and
rewrites in parallel all the symbols only in the rightmost column or the
lowermost row of a picture array by a set of context-free type rules. Unlike
the case of string context-free grammars, the picture language families of
P2DCFG and the two variants (l/u)P2DCFG and (r/d)P2DCFG are
mutually incomparable, although they are not disjoint. We also exam-
ine the effect of regulating the rewriting in a (r/d)P2DCFG by suit-
ably adapting two well-known control mechanisms in string grammars,
namely, control words and matrix control.

1 Introduction

A variety of two-dimensional (2D) picture array generating grammars [5,9–
11,18,19] have been introduced and investigated by researchers, motivated by
problems in different areas such as pattern generation and recognition, image
description and analysis and others. These 2D grammars have been mainly
developed based on the concepts and techniques of the well-investigated string
grammar theory. They are basically of two varieties, namely, isometric array
grammars in which geometric shape of the re-written portion of the array is
preserved while non-isometric array grammars can alter the geometric shape.
Here we consider a 2D picture grammar of the latter variety, called a pure 2D
context-free grammar (P2DCFG) introduced in [17]. This 2D grammar repre-
sents a simple yet expressive non-isometric language generator of rectangular

c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 187–201, 2015.
DOI: 10.1007/978-3-319-26145-4 14

188 K.G. Subramanian et al.

picture arrays, involving only terminal symbols as in a pure string grammar [7]
and using tables of context-free (CF) type rules. All the symbols in a column
or a row of a rectangular array are re-written in parallel by CF type rules in a
P2DCFG and in order to maintain the rectangular form of the array, all the
symbols rewritten are replaced by strings of equal length. A P2DCFG allows
rewriting any column or any row of a picture array by the rules of an applicable
column rule table or row rule table respectively. In [1,2,16], further properties
of this 2D grammar model are investigated.

Motivated by the notion of leftmost derivation [14] in a context-free string
grammar in which only leftmost nonterminal in a sentential form of a derivation
is rewritten, a variant of P2DCFG, referred to as (l/u)P2DCFG was intro-
duced in [6]. This variant considers a “leftmost rewriting mode” in terms of
P2DCFG in the sense that only the leftmost column or the uppermost row
of a rectangular picture array is rewritten in a derivation step. In the case of
context-free string grammars, the notion of a rightmost derivation is also known
[14] in which only the rightmost nonterminal in a sentential form of a derivation
is rewritten. We recall that for an ordinary derivation of a terminal word in a
context-free string grammar, there is an equivalent leftmost as well as rightmost
derivation of the word. On the other hand, it has been shown in [6] that the
picture language classes of P2DCFG (which correspond to “ordinary derivation
mode”) and (l/u)P2DCFG (which correspond to “leftmost derivation mode”)
are incomparable. Here we investigate another variant of P2DCFG by consid-
ering a “rightmost rewriting mode” in terms of P2DCFG in the sense that only
the rightmost column or the lowermost row of a rectangular picture array is
rewritten in a derivation step, with all the symbols being rewritten by “equal
length” rules. We denote the resulting class of 2D grammars by (r/d)P2DCFG
and the corresponding language class by (r/d)P2DCFL.

We show that this variant of (r/d)P2DCFL is also incomparable with both
the picture language classes of P2DCFG and (l/u)P2DCFG. The effect of
regulating the picture generation by controlling the application of rules with
a regular control set on the labels of the tables of rules has been studied in
[1,2,6,16,17] for the classes of P2DCFL and (l/u)P2DCFL. Besides examining
the effect of this kind of a control on (r/d)P2DCFG, we also consider matrix
type of control on the tables of rules for all the three classes, namely, P2DCFL
and the two variants, (l/u)P2DCFL and (r/d)P2DCFL.

2 Preliminaries

For notions related to formal language theory we refer to [13,14] and for array
grammars and two-dimensional languages we refer to [5].

Given a finite alphabet Σ, a word or a string w is a sequence of symbols
from Σ. The set of all words over Σ, including the empty word λ with no
symbols, is denoted by Σ∗. The length of a word w is denoted by |w|. For any
word w = a1a2 . . . an, we denote by tw, the word w = a1a2 . . . an (n ≥ 1)

Picture Array Generation Using Pure 2D Context-Free Grammar Rules 189

written vertically. For example, if w = acbb over {a, b, c}, then tw =

a
c
b
b

. A two-

dimensional m × n array (also called a picture array or a picture) p over an
alphabet Σ is a rectangular array with m rows and n columns and is of the form

p =

p(1, 1) · · · p(1, n)
...

. . .
...

p(m, 1) · · · p(m, n)

where each pixel p(i, j) ∈ Σ, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The uppermost row of p
is considered as the first row and the leftmost column as the first column of p.
Likewise, The lowermost row of p is the last row and the rightmost column, the
last column of p. We denote the number of rows and the number of columns of p,
respectively, by |p|row and |p|col and call the pair (|p|row, |p|col) as the size of p.
The set of all rectangular arrays over Σ is denoted by Σ∗∗, which includes the
empty array λ. Σ++ = Σ∗∗ − {λ}. A picture language is a subset of Σ∗∗.

We now recall a pure 2D context-free grammar introduced in [16,17].

Definition 1. A pure 2D context-free grammar (P2DCFG) is a 4-tuple

G = (Σ,P1, P2, Γ)

where

(i) Σ is a finite alphabet of symbols;
(ii) P1 is a finite set of column rule tables ci, 1 ≤ i ≤ m, for some m ≥ 1, where

each ci is a finite set of context-free rules of the form a → u, a ∈ Σ, u ∈ Σ∗

having the property that for any two rules a → u, b → v in ci, we have
|u| = |v| i.e. the words u and v have equal length;

(iii) P2 is a finite set of row rule tables rj , 1 ≤ j ≤ n, for some n ≥ 1, where
each rj is a finite set of rules of the form c → tx, c ∈ Σ, x ∈ Σ∗ such that
for any two rules c → tx, d → ty in rj, we have |x| = |y|;

(iv) Γ ⊆ Σ∗∗ − {λ} is a finite set of axiom arrays.

A derivation in a P2DCFG G is defined as follows: Let p, q ∈ Σ∗∗. A picture
q is derived in G from a picture p, denoted by p ⇒ q, either (i) by rewriting in
parallel all the symbols in a column of p, each symbol by a rule in some column
rule table or (ii) rewriting in parallel all the symbols in a row of p, each symbol
by a rule in some row rule table. All the rules used to rewrite a column (or row)
are taken from the same table.

The picture language generated by G is the set of picture arrays L(G) =
{M ∈ Σ∗∗| M0 ⇒∗ M for some M0 ∈ Γ}. The family of picture languages
generated by P2DCFGs is denoted by P2DCFL.

190 K.G. Subramanian et al.

Example 1. Consider the P2DCFG G1 = (Σ,P1, P2, {M0}) where Σ = {a, b, d},
P1 = {c}, P2 = {r}, where c = {a → bab, d → ada, e → aea}, r =
{

d → d
a

, a → a
b

}

, and M0 =
a d a
b a b
a e a

.

G1 generates a picture language L1 consisting of picture arrays p of size (m, 2n+
1), m ≥ 3, n ≥ 1 with p(1, j) = p(1, j + n + 1) = p(m, j) = p(m, j + n + 1) = a,
for 1 ≤ j ≤ n; p(1, n+1) = d; p(m, n+1) = e; p(i, n+1) = a, for 2 ≤ i ≤ m−1;
p(i, j) = b, otherwise. We note that a derivation in G1, starting from the axiom
array M0, generates a picture array of the form

a · · · a d a · · · a
b · · · b a b · · · b

· · · · · ·
· · · · · ·

b · · · b a b · · · b
a · · · a e a · · · a

since the column rule table is applicable to only the “middle” column tda · · · ae,
rewriting in parallel all the symbols d and a in that column, thereby adding the
symbol a to the left and right of d as well as e, while adding the symbol b to
the left and right of every a in that column. Likewise, the row rule table r is
applicable to only the uppermost row and adds a row of the form b · · · bab · · · b
below it. Also note that the application of the column rule table c can take
place independent of the row rule table r and hence the number of rows and the
number of columns in the generated picture arrays of L1 need not be related
by any proportion. On the otherhand, due to the nature of rules in the column
table c, every generated picture array has an equal number of columns to the
left and right of the middle column t(da . . . ae). A member of L1 is shown in
Fig. 1(a) and on interpreting the symbol b as blank, the corresponding picture
representing the letter I is shown in Fig. 1(b).

a a a d a a a
b b b a b b b
b b b a b b b
b b b a b b b
b b b a b b b
a a a e a a a

a a a d a a a
a
a
a
a

a a a e a a a

Fig. 1. (a) (on the left) A picture array in the language L1 (b) (on the right) The
interpreted picture representing letter I.

We now recall (l/u) mode of derivation in a P2DCFG introduced and inves-
tigated in [6].

Definition 2. Let G = (Σ,P1, P2, Γ) be a P2DCFG with the components as
in Definition 1. A picture array M2 is derived from M1 in G with (l/u) mode
of derivation, denoted by M1 ⇒(l/u) M2, by rewriting all the symbols and only

Picture Array Generation Using Pure 2D Context-Free Grammar Rules 191

these symbols, either in the leftmost column or in the uppermost row of M1 using
respectively, the column rule tables or the row rule tables. All the rules used to
rewrite a column (or row) are taken from the same table.

The picture language generated is defined as in the case of a P2DCFG
but using ⇒(l/u) derivations. The family of picture languages generated by
P2DCFGs under ⇒(l/u) derivations is denoted by (l/u)P2DCFL. For conve-
nience, we write (l/u)P2DCFG to refer to P2DCFG with ⇒(l/u) derivations.

We illustrate with an example.

Example 2. Consider an (l/u)P2DCFG G2 = (Σ,P1, P2, {M0}) where Σ =

{a, b}, P1 = {c}, P2 = {r} with c = {a → ab, d → da}, r =
{

a → a
a

, b → b
b

}

,

and M0 =
a b
d a

.

G2 generates a picture language L2 consisting of arrays p of size (m, n), m ≥ 2,
n ≥ 2 with p(m, 1) = d; p(m, j) = a, for 2 ≤ j ≤ n; p(i, 1) = a, for 1 ≤ i ≤ m−1;
p(i, j) = b, otherwise. A member of L2 is shown in Fig. 2. A member of L2 is
shown in Fig. 2(a) and on interpreting the symbol b as blank, the corresponding
picture representing the letter L is shown in Fig. 2(b).

a b b b b b
a b b b b b
a b b b b b
a b b b b b
d a a a a a

a
a
a
a
d a a a a a

Fig. 2. (a) (on the left) A picture array in the language L2 (b) (on the right) The
interpreted picture representing letter L.

3 Pure 2D Context-Free Grammar with (r/d) Mode
of Derivations

We now introduce another variant of a P2DCFG. The leftmost and rightmost
derivation modes in a context-free grammar (CFG) in string language theory,
are well-known [13,14], especially in the context of the study of parsers. It is also
known that these derivation modes are equivalent to the “ordinary” derivations
in a CFG in the sense of generating the same language class. Motivated to
consider a corresponding notion of “leftmost kind” of derivation in pure 2D
context-free grammars, the (l/u)P2DCFG with an (l/u) mode of derivation
was introduced in [6]. Here we consider the dual idea of rewriting the rightmost
column of a picture array by a column rule table or the lowermost row by a
row rule table. This corresponds to the “rightmost kind” of derivation mode in
a string CFG. The interesting aspect is that this results in a picture language
family which neither contains nor is contained in P2DCFL or (l/u)P2DCFL.

192 K.G. Subramanian et al.

Definition 3. Let G = (Σ,P1, P2, Γ) be a P2DCFG with the components as in
Definition 1. An (r/d) mode of derivation of a picture array M2 from M1 in G,
denoted by ⇒(r/d), is a derivation in G such that only the rightmost column or the
lowermost row of M1 is rewritten using respectively, the column rule tables or the
row rule tables, to yield M2. The generated picture language is defined as in the
case of a P2DCFG but with ⇒(r/d) derivations. The family of picture languages
generated by P2DCFGs under ⇒(r/d) derivations is denoted by (r/d)P2DCFL.
For convenience, we write (r/d)P2DCFG to refer to P2DCFG with ⇒(r/d)

derivations.

We illustrate with an example.

a b b b b a
b b b b b a
b b b b b a
b b b b b a
a a a a a b

Fig. 3. A picture array in the language L3

Example 3. Consider an (r/d)P2DCFG G3 = (Σ,P1, P2, {M0}) where Σ =

{a, b}, P1 = {c}, P2 = {r} with c = {a → ba, b → ab}, r =
{

a → b
a

, b → a
b

}

,

and M0 =
a a
a b

.

G3 generates a picture language L3 consisting of arrays p of size (m, n), m ≥ 2,
n ≥ 2 with p(1, 1) = a; p(m, n) = b; p(m, j) = a, for 1 ≤ j ≤ n−1; p(i, n) = a, for
1 ≤ i ≤ m−1; p(i, j) = b, otherwise. A member of L3 is shown in Fig. 3. A sample
derivation in (r/d)P2DCFG G3 starting from the axiom array M0 and using
the tables c, r, c, c in this order is shown in Fig. 4. The application of the column
rule table c rewrites all symbols in the rightmost column in parallel and likewise,
the application of the row rule table r rewrites all symbols in the lowermost row.
We note that the application of a column table or a row table is independent of
each other as in a P2DCFG and so cannot maintain any proportion between
the number of columns and the number of rows in any generated picture array.

M0 =
a a
a b

⇒(r/d)
a b a
a a b

⇒(r/d)

a b a
b b a
a a b

⇒(r/d)

a b b a
b b b a
a a a b

⇒(r/d)

a b b b a
b b b b a
a a a a b

Fig. 4. A sample derivation under (r/d) mode in Example 3

We now compare the generative power of (r/d)P2DCFL with (l/u)P2DCFL
and P2DCFL.

Picture Array Generation Using Pure 2D Context-Free Grammar Rules 193

Theorem 1. Each pair of the three families of P2DCFL, (l/u)P2DCFL and
(r/d)P2DCFL is incomparable but not disjoint, when the alphabet contains at
least two symbols. All the three families coincide if we restrict to only a unary
alphabet.

Proof. The non-trivial picture language LRECT of all rectangular picture arrays
over {a, b} belongs to all the three families of P2DCFL, (l/u)P2DCFL and
(r/d)P2DCFL. In fact the corresponding P2DCFG needs to have only two
tables

c = {a → aa, a → ab, b → ba, b → bb}, r =
{

a → a
a

, a → a
b
, b → b

a
, b → b

b

}

and axiom pictures a, b, for all the three modes of derivations in the P2DCFG.
This shows that the three families are mutually not disjoint.

The incomparability of the families P2DCFL and (l/u)P2DCFL has been
established in [6]. The picture language L3 in Example 3 which belongs to
(r/d)P2DCFL cannot be generated by any P2DCFG since every column in
the picture arrays of L3 involves the two symbols a, b only and so in order to
generate the picture arrays of L3 starting from an axiom array, we have to spec-
ify column rules for both a, b. In the (r/d) mode of derivation, the rightmost
column will require a column rule that will rewrite b into a · · · ab and a into
b · · · ba. But then the table with these rules can be applied to any other column
in a P2DCFG, resulting in picture arrays not in the language L3.

On the other hand the picture language L1 in Example 1 belongs to P2DCFL
but it cannot be generated by any (r/d)P2DCFG as there is an unique middle
column in every picture array of L1 and to the left and right of this middle column
there are an equal number of identical columns. Since only the rightmost column
can be rewritten in an (r/d)P2DCFG, it is not possible to maintain this feature
of “equal number of identical columns” if rightmost column rewriting is done.
We also note that the picture generated in any intermediate step also belongs
to the language which prevents the use of any other symbol other than a and b.
This proves the incomparability of the families P2DCFL and (r/d)P2DCFL.

Again, the picture language L3 in Example 3, which belongs to (r/d)
P2DCFL, cannot be generated by any (l/u)P2DCFG, since the leftmost col-
umn of every picture array in L3 has the symbol a in the first row as well as
the last row. The former will require a rule of the form a → ab · · · b while the
latter will require a rule of the form a → a · · · ab. But then the presence of these
two rules in a column table gives a non-deterministic choice for rewriting a in
the leftmost column in (l/u)mode of derivation, resulting in picture arrays not
in the language L3.

On the other hand, consider the picture language L′
3 consisting of picture

arrays p of size (m, n), m ≥ 2, n ≥ 2, with p(1, 1) = b; p(m, n) = a; p(1, j) = a,
for 2 ≤ j ≤ n; p(i, 1) = a, for 2 ≤ i ≤ m; p(i, j) = b, otherwise. L′

3 can be

generated a (l/u)P2DCFG with axiom array M0 =
b a
a a

and column table c and

194 K.G. Subramanian et al.

row table r given by

c = {a → ab, b → ba}, r =
{

a → a
b
, b → b

a

}

A member of L′
3 is shown in Fig. 5. It can be seen that L′

3 cannot be gener-
ated by any (r/d)P2DCFG. This proves the incomparability of the families
(l/u)P2DCFL and (r/d)P2DCFL.

In the case of a unary alphabet with a single symbol, say, a, the column
rules and the row rules can use only a and hence rewriting any column (or row)
is equivalent to rewriting the leftmost or the rightmost column (or row) of a
picture array. This shows that all the three families coincide in this case. �	

b a a a a a
a b b b b b
a b b b b b
a b b b b b
a b b b b a

Fig. 5. A picture array in the language L′
3.

Remark 1. In [2] (Proposition 3.14), the uniform membership problem (ump) for
the class of P2DCFG with unary alphabet, namely, “does the picture p belong
to the language L(G) generated by the P2DCFG G, given p as well as G as
input?”, is shown to be in class P. As a consequence of the fact that in the case of
an unary alphabet, rewriting any column (respectively row) of a picture array is
equivalent to rewriting the leftmost or the rightmost column (respectively row),
this result on ump holds for the classes of (l/u)P2DCFG and (r/d)P2DCFG.

4 Regulating Rewriting in (r/d)P2DCFG
with Control Words

Based on the concept of regulating the rewriting in string and array grammars
[3,4,14,15] with different control mechanisms, as for example, grammars with
control languages and matrix grammars, a P2DCFG with a control language
on the labels of the column rule and row rule tables has been introduced in
[17] and certain properties have been obtained. Further results on the effect of
control have been established in [1,2,16]. This study on control language has
been extended in [6] to the class (l/u)P2DCFG. Here we obtain corresponding
results for the class (r/d)P2DCFG.

A (r/d)P2DCFG with a control language is Gc = (G,Lab, C) where G = (Σ,
P1, P2, Γ) is a (r/d)P2DCFG, Lab is a set of labels of the tables of G, with each
table in P1∪P2 being assigned a distinct label and C ⊆ Lab∗ is a string language.
The words in Lab∗ are called control words of G. Derivations M1 ⇒w M2 in Gc

are done as in G in (r/d) mode except that if w ∈ Lab∗ and w = l1l2 . . . lm,

Picture Array Generation Using Pure 2D Context-Free Grammar Rules 195

then the tables of rules with labels l1, l2, . . ., and lm are successively applied
starting with the picture array M1 to finally yield the picture array M2, which
is collected in the language if M1 is an axiom array. If any of the labels in a
control word is such that the corresponding table of rules cannot be applied to
the picture array on hand, the derivation is discarded and it does not yield any
array. The picture array language generated by Gc consists of all picture arrays
obtained from axiom arrays of G with the derivations controlled as described
above. We denote the family of picture languages generated by (r/d)P2DCFGs
with a regular control language by (R)(r/d)P2DCFL and with a context-free
control language by (CF)(l/u)P2DCFG.

Theorem 2. (r/d)P2DCFL ⊂ (R)(r/d)P2DCFL ⊂ (CF)(r/d)P2DCFL.

Proof. The inclusions follow by noting that a (r/d)P2DCFG is a (R)(r/d)
P2DCFG on setting the regular control language as Lab∗ where Lab is the
set of labels of the tables of the (r/d)P2DCFG and the well-known fact [14]
that the class of regular string languages is included in the class of context-free
languages.

The proper inclusion in (r/d)P2DCFL ⊂ (R)(r/d)P2DCFL can be seen by
considering a picture language L4 consisting of only square sized arrays p of the
language L3 given in the Example 3. This picture language can be generated
by the (r/d)P2DCFG G3 in Example 3 with a regular control language (cr)∗.
But by definition, the application of the column rule and row rule tables are
independent in a (r/d)P2DCFG and hence no (r/d)P2DCFG can generate L4

which consists of square sized arrays.
The proper inclusion of (R)(r/d)P2DCFL in (CF)(r/d)P2DCFL can be

shown by considering a picture language L5 consisting of picture arrays p as
in Example 1 but of sizes (n + 2, 2n + 1), n ≥ 1. The (CF)(r/d)P2DCFG
Gc = (G5, Lab, C) generates L5, where G5 = (Σ,P1, P2, {M0}), Σ = {a, b, d},
P1 = {c1, c2, c3}, P2 = {r} with

c1 = {d → ad, a → ba}, c2 = {d → da, a → ab}, c3 = {a → aa, b → bb},

r =
{

d → a
d

, a → b
a

}

,

M0 =
a d
b a
a d

and Lab = {c1, c2, c3, r} with c1, c2, c3, r themselves being consid-

ered as the labels of the corresponding tables. The CF control language is
C = {(c1r)nc2c

n
3 | n ≥ 0}. The grammar G5 generates the picture arrays of

L5, in the (r/d) derivation mode according to the control words of C. Starting

from the axiom array M0 =
a d
b a
a d

the rightmost column of M0 is rewritten using

the column rule table c1 and this is immediately followed by the row rule table r
which rewrites once, all the symbols in the lowermost row. This can be repeated

196 K.G. Subramanian et al.

n times (for some n ≥ 0). Then the column rule table c2 is applied once, followed
by the application of the column rule table c3, the same number of times as c1
followed by r was done, thus yielding a picture array in L5. But L5 cannot be
generated by any (r/d)P2DCFG with regular control. In fact if a generation
of a picture array p ∈ L5 makes use of a regular control, then there will be no
information available on the number of columns generated once the derivation
“crosses” the middle column (made of one d as the first symbol and another d
as the last symbol with all other symbols in the column being a’s). Hence the
columns to the left and right of this middle column cannot be generated in equal
number. �	
The notion of a control symbol or control character was considered in [2] while
dealing with (R)P2DCFG. The idea is that In a (R)P2DCFG, the alpha-
bet may contain some symbols called control symbols [2] which might not be
ultimately involved in the picture arrays of the language generated. A picture
language Ld was considered in [2] given by Ld = {p ∈ {a, b}++| |p|col =
|p|row, p(i, j) = a, for i = j, p(i, j) = b for i �= j}. It was shown in [2], that
at least two control symbols are required to generate Ld using (R)P2DCFG.
In [6], it was proved that Ld can be generated with a single control character
using (R)(l/u)P2DCFG. We show here that an analogous result holds in the
case of (R)(r/d)P2DCFG.

Lemma 1. The language Ld can be generated by an (R)(r/d)P2DCFG using
a single control character. Also, Ld is not in (r/d)P2DCFL.

Proof. Consider the (R)(r/d)P2DCFG with the (r/d)P2DCFG given by

({a, b, e}, {c}, {r}, {a b
b a

}) where

c = {a → ea, b → bb}, r =
{

a → b
a

, e → a
b
, b → b

b

}

,

and control language (cr)∗ generates Ld. The idea in the generation of the picture
arrays of Ld is that the symbol e in the alphabet acts as the control character. An
application of the column table c produces e to the left of the only a in the last
row and when this is followed by the application of the row table r (according
to the control word), the symbol e “disappears”, yielding an array in Ld. It can
be seen that Ld cannot be generated by any (r/d)P2DCFG. �	
In [2, p. 1730], a picture language L2d given by L2d = {p ∈ {a, b}++| |p|col =
|p|row, p(i, j) = b, for i = j and i = j − 1, p(i, j) = a otherwise} was shown
to be generated by a (R)P2DCFG making use of four ([2] mentions three
but the grammar actually involves four) control characters. We note that L2d

can be generated by a (R)(r/d)P2DCFG Gc
2d with three control characters.

In fact the grammar is essentially as given in [2] with a slight modifica-
tion. For completeness we give this grammar here. The P2DCFG in Gc

2d is
({a, b, b1, b2, e}, P1, P2, {M0}), P1 = {c}, P2 = {r1, r2} with

c = {a → aa, b2 → b2e}, r1 = {a → a, b1 → b, b2 → b},

Picture Array Generation Using Pure 2D Context-Free Grammar Rules 197

r2 =
{

a → a
a

, b1 → b
a

, b2 → b
b1

, e → a
b2

}

,

M0 =
b a
b1 b2

and the regular control language (cr2)∗r1. We can likewise construct

a (R)(l/u)P2DCFG to generate L2d. Also, in [2, p. 1728], it was shown that the
family (R)P2DCFL has nonempty intersection with the class LOC [5] of local
picture languages whose pictures are defined by means of tiles i.e. square pictures
of size (2, 2) and another class of picture languages, which we call here as PL,
defined by a class of picture grammars referred to as Pru̇ša grammars [2]. This
is done in [2] by showing that L2d is in all the three families P2DCFL, LOC
and PL. As a consequence of these remarks, we have the following Theorem 3.

Theorem 3. All the three families (R)P2DCFL, (R)(l/u)P2DCFL and
(R)(r/d)P2DCFL have non-empty intersection with the picture language fami-
lies LOC and PL.

5 Matrix Control on P2DCFG

In another type of regulating the use of rules in derivations, known as matrix
control, a pre-specified finite sequence of rules is applied constituting a single
step of derivation in the grammar [3,14]. Here we consider this kind of control
in P2DCFG and the two variants (l/u)P2DCFG and (r/d)P2DCFG.

Definition 4. A matrix P2DCFG is a 3-tuple Gm = (G,Lab,M) where G =
(Σ,P1, P2, Γ) is a P2DCFG, Lab is a set of labels of the tables of G, with each
table in P1 ∪P2 being assigned a distinct label and M is a finite set of sequences,
called matrices, of the form m = [l1, · · · , ln], n ≥ 1, where li ∈ Lab, for all
1 ≤ i ≤ n.

Derivations in a matrix P2DCFG are defined as in a P2DCFG except that
a single derivation step is done by the application of the tables of rules of a
matrix m in M , in the order in which the labels of the tables are given in m.
The family of picture languages generated by matrix P2DCFG is denoted by
MP2DCFL.

We illustrate with an example.

Example 4. Consider the picture language L′
1 consisting of arrays belonging to

the picture language L1 in Example 1 but of size (n + 2, 2n + 1), n ≥ 1. Note
that the arrays in L′

1 maintain a proportion and hence L′
1 cannot be generated

by any P2DCFG since the column tables and row tables can be independently
applied in a P2DCFG. But L′

1 is generated by the matrix P2DCFG G′
m1 =

(G1, Lab,M) where G1 is as in Example 1. In fact the column table c and the

row table r in G1 are c = {a → bab, d → ada, e → aea}, r =
{

d → d
a

, a → a
b

}

,

198 K.G. Subramanian et al.

and the axiom array is M0 =
a d a
b a b
a e a

. The label set Lab = {c, r} and the set M

consists of the only matrix m = [c, r].
Note that in a derivation in G′

m that starts with the axiom array, an applica-
tion of the matrix m amounts to rewriting by the rules of the table c followed by
the rules of r to constitute one step of derivation yielding an array of size (4, 5)

given by

a a d a a
b b a b b
b b a b b
a a d a a

. The process can be repeated any number of times yielding

the arrays of L1.

Analogous to matrix P2DCFG, we can define matrix (l/u)P2DCFG and
matrix (r/d)P2DCFG as in Definition 4, except that we replace P2DCFG by
(l/u)P2DCFG or (r/d)P2DCFG. We denote the resulting families of picture
languages by M(l/u)P2DCFL and M(r/d)P2DCFL.

We illustrate matrix (r/d)P2DCFG by an example.

Example 5. Consider the picture language L′
3 consisting of arrays belonging

to the picture language L3 in Example 3 but of size (n, n), n ≥ 2. The lan-
guage L′

3 cannot be generated by any (r/d)P2DCFG since the arrays in L′
3

maintain a proportion. But L′
3 is generated by the matrix (r/d)P2DCFG

G′
m3 = (G3, Lab,M) where G3 is as in Example 3. In fact the column table

c and the row table r in G3 are c = {a → ba, b → ab}, r =
{

a → b
a

, b → a
b

}

,

and M0 =
a a
a b

. The label set Lab = {c, r} and the set M consists of the only

matrix m = [c, r].
Starting from the axiom array, one step of derivation on applying the matrix

m yields the array
a b a
b b a
a a b

. On repeating the process, we obtain the arrays of L′
3.

Lemma 2. (i) P2DCFL ⊂ MP2DCFL
(ii) (l/u)P2DCFL ⊂ M(l/u)P2DCFL
(iii) (r/d)P2DCFL ⊂ M(r/d)P2DCFL

Proof. The proper inclusions in (i) and (iii) are a consequence of the Examples 4
and 5, while the inclusions are straightforward, noting that every table t of rules
in a P2DCFG can be considered as a matrix m = {t}. The statement (ii) can
be similarly shown.

Theorem 4. (i) P2DCFL ⊂ MP2DCFL ⊂ (R)P2DCFL
(ii) (l/u)P2DCFL ⊂ M(l/u)P2DCFL ⊂ (R)(l/u)P2DCFL
(iii) (r/d)P2DCFL ⊂ M(r/d)P2DCFL ⊂ (R)(r/d)P2DCFL

Picture Array Generation Using Pure 2D Context-Free Grammar Rules 199

Proof. The inclusions and proper inclusions in the first half of the statements
(i), (ii) and (iii) follow from Lemma 2. We prove the second half of (i) and
(iii). The second half of (ii) can be similarly shown. For every matrix of the
form m = [l1, · · · , ln] in a given matrix P2DCFG Gm, where li, 1 ≤ i ≤ n,
are the labels of the tables of rules, we associate a word w = l1 · · · ln. If
w1, · · · , wp are the words obtained in this way from the matrix P2DCFG Gm,
then we form a (R)P2DCFG where the P2DCFG is the same as the one in the
matrix P2DCFG but the set of control words is {w1, · · · , wp}∗. It can be seen
that the (R)P2DCFG constructed generates the picture language generated
by Gm. This proves the inclusion MP2DCFL ⊆ (R)P2DCFL. The inclusion
M(r/d)P2DCFL ⊆ (R)(r/d)P2DCFL is similar.

a a a b b d b b a a a
a a a b b d b b a a a
a a a b b d b b a a a
a a a b b d b b a a a
a a a b b d b b a a a

Fig. 6. A picture array in the language La,b

For the proper inclusion MP2DCFL ⊂ (R)P2DCFL, we consider the pic-
ture language La,b generated by the P2DCFG ({a, b, d}, {c1, c2}, {r}, {d}) where

c1 = {d → adb}, c2 = {d → bda}, r =
{

d → d
d
, a → a

a
, b → b

b

}

with a regular control language {(c1r)m(c2r)n|m, n ≥ 1}. We note that this
regular language can be expressed as (c1r)+(c2r)+ in terms of the Kleene-plus
operation [13] in string languages. The picture arrays generated are of size (m+n,
2m + 2n + 1), m, n ≥ 1. A member of this language is shown in Fig. 6. We note
that the first m columns are made of only a, the next n columns are made of only
b and there is a middle column made of only d while to the right of this middle
column, there are n columns made of only b followed by m columns only made
of a. On the other hand no matrix P2DCFG can handle this feature. In fact, if
there is a matrix with a column table that produces the columns of a and also
a column table that produces the columns of b, then picture arrays which are
not in the desired form will be generated. Likewise, if there are two independent
matrices with one having a column table that produces the columns of a and
another matrix having a column table that produces the columns of b, any of
them can be applied again yielding pictures not in the language.

For the proper inclusion M(r/d)P2DCFL ⊂ (R)P2DCFL, we consider
a similar picture language generated in the (r/d) mode, by the P2DCFG
({a, b, d}, {c1, c2}, {r}, {d}) where

c1 = {d → ad}, c2 = {d → bd}, r =
{

d → d
d
, a → a

a
, b → b

b

}

200 K.G. Subramanian et al.

with a regular control language {(c1r)m(c2r)n|m, n ≥ 1. It can be seen that
matrix P2DCFG in (r/d) mode cannot generate this language.

6 Concluding Remarks

Another variant of P2DCFG [16,17] rewriting only the rightmost column or the
lowermost row of a picture array is considered and properties of the resulting
family (r/d)P2DCFL of picture languages are obtained. We can also consider
and examine other variants of P2DCFG having a mixed mode of derivation,
as for example, rewriting the leftmost column along with the lowermost row or
the rightmost column along with the uppermost row. In [2], membership prob-
lem and the effect of substitution rules of the form a → b have been elaborately
explored for the class P2DCFL. These questions and other properties remain to
be investigated in the (l/u)P2DCFG as well as (r/d)P2DCFG. Also we note
that grammars are relevant to the problem of generation of fractals, as certain
kind of Lindenmayer system (also called, L system) [8,12], which uses context-
free grammar (CFG) type of rules, has been used to generate fractals but the
application of the CFG type of rules is done in parallel. The question of gen-
eration of fractals by the Pure 2D CF grammar models is a possible problem
of investigation and we believe that this might require a different approach of
applying the tables of rules of this 2D grammar.

Acknowledgements. The authors are grateful to the referees for their very useful
comments which helped improve the presentation of the paper.

References

1. Bersani, M.M., Frigeri, A., Cherubini, A.: On some classes of 2D languages and
their relations. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev,
K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 222–234.
Springer, Heidelberg (2011)

2. Bersani, M.M., Frigeri, A., Cherubini, A.: Expressiveness and complexity of regular
pure two-dimensional context-free languages. Int. J. Comput. Math. 90, 1708–1733
(2013)

3. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Heidelberg (1989)

4. Freund, R.: Control mechanisms on #-context-free array grammars. In: Păun,
Gh. (ed.) Mathematical Aspects of Natural and Formal Languages, pp. 97–137.
World Scientific Publishing, Singapore (1994)

5. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer,
Heidelberg (1997)

6. Křivka, Z., Mart́ın-Vide, C., Meduna, A., Subramanian, K.G.: A variant of pure
two-dimensional context-free grammars generating picture languages. In: Barneva,
R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 123–133.
Springer, Heidelberg (2014)

Picture Array Generation Using Pure 2D Context-Free Grammar Rules 201

7. Maurer, H.A., Salomaa, A., Wood, D.: Pure grammars. Inform. Control 44, 47–72
(1980)

8. Mishra, J.: Classification of linear fractals through L-system. In: Proceedings of
the International Conferences Emerging Trends in Engineering and Technology,
pp. 1–5 (2008)

9. Nakamura, A.: Picture languages. In: Davis, L.S. (ed.) Foundations of Image
Understanding. International Series in Engineering and Computer Science, pp.
127–155. Kluwer Academic Publishers, Norwell (2001)

10. Rosenfeld, A.: Picture Languages. Academic Press, Reading (1979)
11. Rosenfeld, A., Siromoney, R.: Picture languages - a survey. Lang. Des. 1, 229–245

(1993)
12. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L-Systems. Academic

Press, New York (1980)
13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages (3 Volumes).

Springer, Berlin (1997)
14. Salomaa, A.: Formal Languages. Academic Press, Reading (1973)
15. Siromoney, R., Subramanian, K.G., Rangarajan, K.: Control on kolam arrays.

Inform. Control 32, 272–275 (1976)
16. Subramanian, K.G., Ali, R.M., Geethalakshmi, M., Nagar, A.K.: Pure 2D picture

grammars and languages. Discrete Appl. Math. 157(16), 3401–3411 (2009)
17. Subramanian, K.G., Nagar, A.K., Geethalakshmi, M.: Pure 2D picture grammars

(P2DPG) and P2DPG with regular control. In: Brimkov, V.E., Barneva, R.P.,
Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 330–341. Springer,
Heidelberg (2008)

18. Subramanian, K.G., Rangarajan, K., Mukund, M. (eds.): Formal Models, Lan-
guages and Applications. Series in Machine Perception and Artificial Intelligence,
vol. 66. World Scientific, Singapore (2006)

19. Wang, P.S.-P. (ed.): Array Grammars, Patterns and Recognizers. Series in Com-
puter Science, vol. 18. World Scientific, Singapore (1989)

Scanning Pictures the Boustrophedon Way

Henning Fernau1, Meenakshi Paramasivan1(B), Markus L. Schmid1,
and D. Gnanaraj Thomas2

1 Fachbereich 4 – Abteilung Informatik, Universität Trier, 54286 Trier, Germany
{Fernau,Paramasivan,MSchmid}@uni-trier.de

2 Department of Mathematics, Madras Christian College, Chennai 600059, India
dgthomasmcc@yahoo.com

Abstract. We are introducing and discussing finite automata working
on rectangular-shaped arrays (i.e., pictures) in a boustrophedon read-
ing mode. We prove close relationships with the well-established class of
regular matrix (picture) languages. We derive several combinatorial, alge-
braic and decidability results for the corresponding class of picture lan-
guages. For instance, we show pumping and interchange lemmas for our
picture language class. We also explain similarities and differences to the
status of decidability questions for classical finite string automata. For
instance, the non-emptiness problem for our picture-processing automa-
ton model(s) turns out to be NP-complete. Finally, we sketch possible
applications to character recognition.

1 Introduction

Syntactic considerations of digital images have a tradition of about five decades.
They should (somehow) reflect methods applied to picture processing. However,
one of the basic methods of scanning pictures in practice have not been thoroughly
investigated fromamore theoretical point of view: that of using space-filling curves.
Here, we start such an investigation with what can be considered as the most
simple way of defining space-filling curves: scanning line after line of an image,
alternating the direction of movement every time when the image boundary is
encountered (more information on the use of space-filling curves in connection
with image processing or picture languages can be found in [12,14,20,23]).

We consider finite automata that work this way. We show that they are
(essentially) equivalent to regular matrix languages (RMLs) as introduced in a
sequence of papers of Rani Siromoney and her co-authors already in the early
1970s. These two-dimensional picture languages have connection with generation
of kolam patterns [17,24]. Possibly surprisingly enough, we also present quite a
number of new results for this class of picture languages, including a discussion
of natural decidability questions lacking so far.

2 Our Model and Some Examples

2.1 General Definitions

In this section, we briefly recall the standard definitions and notations regarding
one- and two-dimensional words and languages.
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 202–216, 2015.
DOI: 10.1007/978-3-319-26145-4 15

Scanning Pictures the Boustrophedon Way 203

Let N := {1, 2, 3, . . .} be the set of natural numbers. For a finite alphabet Σ,
a string or word (over Σ) is a finite sequence of symbols from Σ, and ε stands
for the empty string. The notation Σ+ denotes the set of all nonempty strings
over Σ, and Σ∗ := Σ+ ∪ {ε}. For the concatenation of two strings w1, w2 we
write w1 ·w2 or simply w1w2. We say that a string v ∈ Σ∗ is a factor of a string
w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that w = u1 ·v ·u2. If u1 or u2 is the empty
string, then v is a prefix (or a suffix, respectively) of w. The notation |w| stands
for the length of a string w.

A two-dimensional word (also called a picture, a matrix or an array) over Σ
is a tuple

W := ((a1,1, a1,2, . . . , a1,n), (a2,1, a2,2, . . . , a2,n), . . . , (am,1, am,2, . . . , am,n)),

where m,n ∈ N and, for every i, 1 ≤ i ≤ m, and j, 1 ≤ j ≤ n, ai,j ∈ Σ. We
define the number of columns (or width) and number of rows (or height) of W
by |W |c := n and |W |r := m, respectively. For the sake of convenience, we also
denote W by [ai,j]m,n or by a matrix in a more pictorial form. If we want to refer
to the jth symbol in row i of the picture W , then we use W [i, j] = ai,j . By Σ++,
we denote the set of all (non-empty) pictures over Σ. Every subset L ⊆ Σ++ is
a picture language. L′ = Σ++ − L is the complement of the picture language L.

Let W := [ai,j]m,n and W ′ := [bi,j]m′,n′ be two non-empty pictures over Σ.
The column concatenation of W and W ′, denoted by W � W ′, is undefined if
m �= m′ and is the picture

a1,1 a1,2 ... a1,n b1,1 b1,2 ... b1,n′
a2,1 a2,2 ... a2,n b2,1 b2,2 ... b2,n′

...
...

. . .
...

...
...

. . .
...

am,1 am,2 ... am,n bm′,1 bm′,2 ... bm′,n′

otherwise. The row concatenation of W and W ′, denoted by W �W ′, is undefined
if n �= n′ and is the picture

a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n

...
...

. . .
...

am,1 am,2 ... am,n

b1,1 b1,2 ... b1,n′
b2,1 b2,2 ... b2,n′

...
...

. . .
...

bm′,1 bm′,2 ... bm′,n′

otherwise. In order to denote that, e. g., U�V is undefined, we also write U�V =
undef.

Example 1. Let

W1 :=
a b a
b c a
a b b

, W2 :=
b c
b a
c a

and W3 := a b c
c b b .

Then W1 � W2 = W1 � W3 = undef, but

W1 � W2 =
a b a b c
b c a b a
a b b c a

and W1 � W3 =
a b a
b c a
a b b
a b c
c b b

.

204 H. Fernau et al.

For a picture W and k, k′ ∈ N, by W k we denote the k-fold column-concatenation
of W , by Wk we denote the k-fold row-concatenation of W , and W k

k′ = (W k)k′ .

2.2 Boustrophedon Finite Automata

We now give the main definition of this paper, introducing a new automaton
model for picture processing.

Definition 1. A boustrophedon finite automaton, or BFA for short, can be
specified as a 7-tuple M = (Q,Σ,R, s, F,#,�), where Q is a finite set of states,
Σ is an input alphabet, R ⊆ Q × (Σ ∪ {#}) × Q is a finite set of rules. A rule
(q, a, p) ∈ R is usually written as qa → p. The special symbol # /∈ Σ indicates
the border of the rectangular picture that is processed, s ∈ Q is the initial state,
F is the set of final states.

We are now going to discuss the notions of configurations, valid configura-
tions and an according configuration transition to formalize the work of BFAs,
based on snapshots of their work.

Let � be a new symbol indicating an erased position and let Σ+ := Σ ∪
{#,�}. Then CM := Q × Σ++

+ × N is the set of configurations of M .
A configuration (p,A, μ) ∈ CM is valid if 1 ≤ μ ≤ |A|r and, for every i,

1 ≤ i ≤ μ − 1, the ith row equals # �
|A|c−2 #, for every j, μ + 1 ≤ j ≤ |A|r,

the jth row equals #w#, w ∈ Σ|A|c−2, and, for some ν, 0 ≤ ν ≤ |A|c − 2,
w ∈ Σ|A|c−ν−2, the μth row equals # �

ν w#, if μ is odd and #w �
ν #, if μ is

even. Notice that valid configurations model the idea of observable snapshots of
the work of the BFA.

If (p,A, μ) and (q,A′, μ) are two valid configurations such that A and A′ are
identical but for one position (i, j), where A′[i, j] = � while A[i, j] ∈ Σ, then
(p,A, μ) �M (q,A′, μ) if pA[i, j] → q ∈ R. If (p,A, μ) and (q,A, μ + 1) are two
valid configurations, then (p,A, μ) �M (q,A, μ + 1) if the μth row contains only
and � symbols, and if p# → q ∈ R. The reflexive transitive closure of the
relation �M is denoted by �∗

M .
The BFA M is deterministic, or a BDFA for short, if for all p ∈ Q and

a ∈ Σ ∪ {#}, there is at most one q ∈ Q with pa → q ∈ R.
The language L(M) accepted by M is then the set of all m × n pictures A

over Σ such that

(s,#m � A � #m, 1) �∗
M (f,#m � �

n
m � #m,m)

for some f ∈ F .

Note that the automaton works on a picture with a first and last column of
only # symbols, but only the part in between these border columns is accepted.
In other words, the computation starts with scanning the left uppermost corner
of the picture and then working through the picture row-by-row, as the ox turns,
i.e., the boustrophedon way, until the last entry of the last row is scanned. The
following illustrates how a BFA scans some input picture and how a picture of a

Scanning Pictures the Boustrophedon Way 205

valid configuration looks like; it can be seen that the sequence of � only indicates
how far the input has been processed:

Notice that since rules of the form p# → q need not be present in R, so that
in some natural sense the classical regular string languages are a special case of
BFA languages.

Example 2. The set of tokens L of all sizes and of all proportions is accepted
by the BFA M = (Q,Σ,R, s, F,#,�), where Q = {s, s1, s2, s3, s4}, Σ = {x, ·},
R = {sx → s1, s1· → s1, s1# → s2, s1# → s4, s2· → s2, s2x → s3, s3# →
s, s3# → s4, s4x → s4}, and F = {s4}.

A sample token of L accepted by M is

x · · ·
x · · ·
x · · ·
x · · ·
x x x x

We now recall the notion of two-dimensional right-linear grammars (2RLG)
as given in [7]. The original definition of a 2RLG (under the name of a regular
matrix grammar (RMG)) and the properties of the corresponding class of picture
languages called RML can be found in [8,15,16,21].

Definition 2. A two-dimensional right-linear grammar (2RLG) is defined by a
7-tuple G = (Vh, Vv, ΣI , Σ, S,Rh, Rv), where:

– Vh is a finite set of horizontal nonterminals;
– Vv is a finite set of vertical nonterminals;
– ΣI ⊆ Vv is a finite set of intermediates;
– Σ is a finite set of terminals;
– S ∈ Vh is a starting symbol;
– Rh is a finite set of horizontal rules of the form V → AV ′ or V → A, where

V , V ′ ∈ Vh and A ∈ ΣI ;
– Rv is a finite set of vertical rules of the form W → aW ′ or W → a, where

W,W ′ ∈ Vv and a ∈ Σ.

There are two phases of derivation of the 2RLG. In the first phase, a horizon-
tal string of intermediate symbols is generated by means of the string grammar
Gh = (Vh, ΣI , S,Rh), denoted by H(G). In the second phase, treating each inter-
mediate as a start symbol, the vertical generation of the actual picture is done
in parallel, by applying a finite set of right-linear rules Rv. In order to produce
a rectangular-shaped picture, the rules of Rv must be applied in parallel; also
this means that the rules of the form Vi → ai are all applied in every column

206 H. Fernau et al.

simultaneously to finish the picture with the generation of its last row. These
grammars make sure that the columns can grow only in downward direction.

We note that our model is closely connected with 2RLG, as we will show
more precisely in the following. The formalization of 2RLG that we chose is
closer to our model than the original one due to Siromoney and her co-authors.

3 Characterization Results

Clearly,BFAs are a special formof 4-NFA(4-waynondeterministic finite automata,
see [7]), and it is known that for these 2-dimensional automata, the deterministic
variant is weaker regarding its descriptive capacity compared to the nondetermin-
istic one. Hence, and also because of the practical relevance of the deterministic
model, the following result is interesting.

Theorem 1. BDFAs and BFAs describe the same class of picture languages.

Proof. Apply the well-known subset construction. This works out as our BFAs
are syntactically the same as classical finite automata, only the interpretation of
their processing is different. 	

Next, we examine the question whether the boustrophedon processing mode
of our automata is essential. To this end, let us consider yet another interpreta-
tion of finite automata, this time termed returning finite automata, or RFA for
short. Syntactically, they are identical to BFA, so they can be again described
by a 7-tuple M = (Q,Σ,R, s, F,#,�). However, they always process rows from
left to right. Formally, this means that we can carry over all parts of the defin-
ition of BFA apart from the notion of a valid configuration, which needs to be
slightly modified. Now, a configuration (p,A, μ) ∈ CM is valid if 1 ≤ μ ≤ |A|r
and, for every i, 1 ≤ i ≤ μ − 1, the ith row equals # �

|A|c−2 #, for every j,
μ + 1 ≤ j ≤ |A|r, the jth row equals #w#, w ∈ Σ|A|c−2, and, for some ν,
0 ≤ ν ≤ |A|c − 2, w ∈ Σ|A|c−ν−2, the μth row equals # �

ν w#.

Theorem 2. BFAs and RFAs describe the same class of picture languages.

Proof. We first show how an RFA can simulate a BFA. The basic idea can be
summarised as follows. On the first row, which is scanned from left to right by
both automata, the RFA simulates the BFA one to one. Assume that the BFA,
while moving on to the second row, changes into a state q, scans the row from
right to left and enters a state p when the beginning of this row is reached. In
order to simulate this behaviour, the RFA stores its current state q in the finite
state control and guesses the state p. It then scans the second row from left
to right (starting in state p) by applying the transitions of the BFA in reverse
direction. When the end of the row is reached, the computation only proceeds if
the RFA is in state q. This procedure is then repeated.

More formally, the states of the RFA are like BFA states or triples thereof.
These triples simulate the processing of even rows and are like (�, q, r), where q
is the actual state, r is the state that the RFA should reach after finishing the

Scanning Pictures the Boustrophedon Way 207

current even row at the right border and � is the state in which the RFA starts
simulating the current row (left border). The formal definition is as follows.

Let M = (Q,Σ,R, s, F,#,�) be some BFA. Then, the equivalent RFA M ′ =
(Q′, Σ,R′, s, F ′,#,�) is defined by Q′ = Q ∪ (Q × Q × Q),

R′ = {pa → q | pa → q ∈ R, a ∈ Σ}
∪ {(�, q, r)a → (�, p, r) | pa → q ∈ R, �, r ∈ Q, a ∈ Σ}
∪ {p# → (�, �, q) | p# → q ∈ R, � ∈ Q}
∪ {(�, r, r)# → q | �# → q ∈ R, r ∈ Q} ,

and F ′ = F ∪ {(�, q, q) | � ∈ F, q ∈ Q}. The formal (induction) proof of the
correctness of the construction is left to the reader.

The converse direction, simulating RFAs with BFAs, can be seen in a similar
way. 	

We can likewise define finite automata that read all rows in a right-to-left
fashion. A similar construction as in the previous theorem shows (again) that this
model is equivalent to BFAs. All conversions between the different FA models
for picture processing are at worst quadratic. This also shows that the direction
of the rotation mentioned in the next theorem does not matter.

Theorem 3. A picture language can be described by a BFA if and only if its
image, rotated by 90 degrees, is in RML.

Proof. We provide two simulations to show the claim.
Let G = (Vh, Vv, ΣI , Σ, S,Rh, Rv), be a 2-dimensional right-linear grammar.

The rotation can be interpreted as H(G) describing the leftmost column of the
picture, while the second phase of G then means to generate all rows, starting
from the intermediate string from H(G). We are going to construct an equivalent
RFA M = (Q,Σ,R, s, F,#,�), which is sufficient for giving a BFA thanks to
Theorem 2. Let Q = (Vh ∪ {f}) × (Vv ∪ {f}) ∪ {s}, where f /∈ Vh ∪ Vv, and
F = {(f, f)}. Let R contain the following rules:

– sa → (S′, A′), if S → AS′ ∈ Rh and A → aA′ ∈ Rv,
– sa → (f,A′), if S → A ∈ Rh and A → aA′ ∈ Rv,
– (X,A)a → (X,A′), if X ∈ Vh ∪ {f} and A → aA′ ∈ Rv,
– (X,A)a → (X, f), if A → a ∈ Rv, X ∈ Vh,
– (X, f)# → (X ′, A), if X → AX ′ ∈ Rh,
– (X, f)# → (f,A), if X → A ∈ Rh,
– (f,A)a → (f, f), if A → a ∈ Rv.

The idea of the construction is that the generation of columns of G is performed
in the second component of the state pairs, whereas the first component corre-
sponds to the generation of the axiom (i.e., the first row of the pictures generated
by G). The crucial difference is that the first symbol of the axiom (which in the
case of RFA is the first column instead of the first row) is generated and then the
first row is generated before the second letter of the axiom is generated in the
next row. Hence, the two phases of the picture construction of G is dovetailed.

208 H. Fernau et al.

The converse is seen as follows. Let M = (Q,Σ,R, s, F,#,�) be some RFA.
We construct an equivalent 2-dimensional right-linear grammar G = (Vh, Vv, ΣI ,
Σ, S,Rh, Rv) (generating the rotated picture) with Vh = Q ∪ {S}, ΣI = Q × Q,
and rules

– S → (s, r)r ∈ Rh for all r ∈ Q,
– q → (q, r)r ∈ Rh for all q, r ∈ Q,
– q → ε for all q ∈ Q,
– (p, r) → (q, r)a ∈ Rv for all pa → q ∈ R, r ∈ Q,
– (p, q) → ε ∈ Rv for all p# → q ∈ R.

The astute reader will have noticed that we took the freedom to incorporate
erasing productions for convenience, but these can be avoided by using standard
formal language constructions. This concludes the proof. 	

Due to Theorem 3, we can inherit several properties for the class of picture
languages described by BFAs. For instance, the class is not closed under rotation
by 90 degrees, also known as quarter turns, see [16]. On the positive side, RML
(and hence BFA picture languages) are closed under Boolean operations. More
precisely, it was shown in [16] that RML (and hence BFA picture languages) are
closed under union. We supplement this by the following two results.

Theorem 4. BFA picture languages are closed under complementation.

Proof. First, let us recall from Theorem 1 that BDFA and BFA describe the
same class of picture languages. Let M = (Q,Σ,R, s, F,#,�) be some BDFA.
Without loss of generality, we assume that M is complete. Then we can construct
a BDFA M by state complementation, i.e., M = (Q,Σ,R, s,Q − F,#,�). On
some input picture A ∈ Σ++, M reaches the same state as M and, furthermore,
since both M and M are deterministic, there exists exactly one state q ∈ Q that
can be reached by M and M on input A. This directly implies that A ∈ L(M) if
and only if A /∈ L(M); thus, L(M) = L(M). Hence BFA picture languages are
closed under complementation. 	

Notice that the previous theorem has become easy because we have a deter-
ministic model for BFAs, in contrast to what has been established for RML
before. De Morgan’s law now immediately yields:

Corollary 1. BFA picture languages are closed under intersection.

Conversely, the results we derive in the following for BFAs can be immediately
read as results for RML, as well.

4 Pumping and Interchange Lemmas

Since in the pictures of an RML, the first row as well as the columns are generated
by regular grammars, there are two ways to apply the pumping lemma for regular

Scanning Pictures the Boustrophedon Way 209

languages: we can pump the first row, which results in repetitions of a column-
factor of the picture, or we can pump each column individually, which will only
lead to a rectangular shaped picture if the pumping exponents are, in a sense,
well-chosen. Hence, we can conclude a horizontal and a vertical pumping lemma
for RML (see [9]) and, due to Theorem 3, these pumping lemmas carry over to
BFA languages:

Lemma 1. Let M be a BFA. Then there exists an n ∈ N, such that, for every
W ∈ L(M) with |W |r ≥ n, W = X � Y � Z, |X � Y |r ≤ n, |Y |r ≥ 1 and, for
every k ≥ 0, X � Yk � Z ∈ L(M).

Lemma 2. Let M be a BFA and let W ∈ L(M) with |W |r = m. Then there
exist n, r1, r2, . . . , rm ∈ N, such that, for every W ∈ L(M) with |W |c ≥ n,

W = (x1 � y1 � z1) � (x2 � y2 � z2) � . . . � (xm � ym � zm) ,

|xi � yi|c ≤ n, |yi|c ≥ 1, 1 ≤ i ≤ m, and, for every k ≥ 1,

W = (x1 � y
(k t1)
1 � z1) � (x2 � y

(k t2)
2 � z2) � . . . � (xm � y(k tm)

m � zm) ∈ L(M) ,

where ti = lcm(r1,r2,...,rm)
ri

, 1 ≤ i ≤ m.

Lemma 1 is straightforward and in order to see that Lemma2 holds, it is
sufficient to note that n is the maximum of all the pumping lemma constants for
the individual rows (recall that each row is generated by an individual regular
grammar) and the ri are the lengths of the factors that are pumped. Obviously,
not every way of pumping the rows results in a rectangular shaped picture, so
we can only pump by multiples of the ti.

While the vertical pumping lemma has the nice property that a whole row-
factor can be pumped, in the horizontal pumping lemma we can only pump
factors of each individual row, that are independent from each other. As a result,
this lemma does not guarantee the possibility of pumping by 0, i.e., removing
a factor, which, for classical regular languages, often constitutes a particularly
elegant way of showing the non-regularity of a language.

However, it can be shown that also for BFA there exists a horizontal pump-
ing lemma that pumps whole column-factors (which then also translates into a
vertical pumping lemma for RML that pumps whole row-factors).

Lemma 3. Let M be a BFA and let m ∈ N. Then there exists an n ∈ N, such
that, for every W ∈ L(M) with |W |r ≤ m and |W |c ≥ n, W = X � Y � Z,
|X � Y |c ≤ n, |Y |c ≥ 1 and, for every k ≥ 0, X � Y k

� Z ∈ L(M).

Proof. Let Q be the set of states of M , let q0 be the start state and let n =
|Q|m + 1. Furthermore, let W ∈ L(M) with |W |r = m (the case |W |r < m can
be handled analogously) and |W |c = n′ ≥ n. Since M accepts W , there is an
accepting computation (p1,W1,m1) �∗

M (pk,Wk,mk) for W , i.e., (p1,W1,m1) =
(s,#m � A � #m, 1) and (pk,Wk,mk) = (f,#m � �

n′
m � #m,m). We can now

consider the extended configurations (pi,W
′
i ,mi), where W ′

i is like Wi with the

210 H. Fernau et al.

only difference that each � symbol is replaced by the state that has been entered
by producing this occurrence of �. Since W has m rows, the maximum number of
different columns in W ′

k is |Q|m and since W has at least n = |Q|m +1 columns,
we can conclude that W ′

k = X ′
�α′

�Y ′
�α′

�Z ′, where |α′|c = 1. Furthermore,
|X ′

� α′
� Y ′|c ≤ n and |α′

� Y ′|c ≥ 1. Now let W = X � α � Y � α � Z,
where |X|c = |X ′|c, |Y |c = |Y ′|c and |Z|c = |Z ′|c. By definition of BFA, for
every i ≥ 0, M accepts X � (α � Y)i

� α � Z. 	

We wish to point out that in a similar way, we can also prove a row and a

column interchange lemma (the only difference is that the number n has to be
chosen large enough to enforce repeating pairs of states):

Lemma 4. Let M be a BFA. Then there exists an n ∈ N, such that, for every
W ∈ L(M) with |W |r ≥ n, there exists a factorisation W = V1�X�V2�Y �V3,
|X|c ≥ 1, |Y |c ≥ 1, such that V1 � Y � V2 � X � V3 ∈ L(M).

Lemma 5. Let M be a BFA and let m ∈ N. Then there exists an n ∈ N,
such that, for every W ∈ L(M) with |W |r ≤ m and |W |c ≥ n, there exists
a factorisation W = V1 � X � V2 � Y � V3, |X|c ≥ 1, |Y |c ≥ 1, such that
V1 � Y � V2 � X � V3 ∈ L(M).

5 Complexity Results

Only few complexity results have been obtained so far for RML. The only refer-
ence that we could find was an unpublished manuscript of Dassow [2] that also
merely classified the decidability versus undecidability status of several decision
problems. Here, we give the exact complexity status of the basic decidability
questions for RML, formulated in terms of BFA.

We will only look into classical formal language questions, which are:

– Universal membership: Given a B(D)FA M and a picture A (as input of some
algorithm), is A accepted by M?

– Non-emptiness: Given a B(D)FA M , is there some picture A accepted by M?
– Inequivalence: Given two B(D)FAs M1 and M2, do both automata accept the

same set of pictures?

Also, we shortly discuss the issue of minimization in the context of BDFAs. Our
complexity considerations will be concerned with standard complexity classes, like
(N)L, i.e., (non-)deterministic logarithmic space, (N)P, i.e., (non-)deterministic
polynomial time, and PSPACE, i.e., polynomial space. All hardness reductions
that we sketch are implementable in deterministic logarithmic space.

Theorem 5. The universal membership problem for BFAs is NL-complete.

Proof. As universal membership is NL-hard for NFAs (working on strings), NL-
hardness is clear. As a configuration of a BFA can be specified (basically) by the
state and a pointer into the input picture, membership in NL is obvious for this
problem, as well. 	

Scanning Pictures the Boustrophedon Way 211

By a similar argument applied to deterministic devices, we conclude:

Corollary 2. The universal membership problem for BDFAs is L-complete.

We now turn to the problem of deciding whether or not a given B(D)FA
accepts a non-empty language. Interestingly, membership in NP is not that easy
to derive as it is usually the case.

Theorem 6. The non-emptiness problem for B(D)FAs is NP-complete, even
for unary input alphabets.

Proof. We reduce from the well-known NP-complete intersection emptiness prob-
lem for finite automata with a one-letter input alphabet, see [10]. The idea is to
run each of the input automata A1, . . . , Am in one line. We can assume that all
state alphabets are disjoint. All transition rules of each Ai are also transition
rules of the BFA M we are going to construct. For each final state fi of Ai,
we introduce a rule fi# → si+1, where si+1 is the initial state of Ai+1. The
set Fm of final states of Am is the set of final states of M . The intersection
L(A1) ∩ · · · ∩ L(Am) is non-empty if and only if some word ak is accepted by all
these automata, which means that the picture ak

m is accepted by M .
Conversely, let M = (Q,Σ,R, s, F,#,�) be some B(D)FA. Given q0, qf ∈ Q,

we first associate to M the (string-processing) NFA A[q0, qf] with state set Q,
initial state q0, the (only) final state qf and (unary) input alphabet {a}, as well
as with a transition pa → q if and only if there is some x ∈ Σ (notice that
x �= #) such that px → q ∈ R. Our nondeterministic algorithm for deciding
whether or not L(M) �= ∅ now works as follows:

– First, it guesses 2r ≤ 2|Q| states q10 , q
1
f , q20 , q

2
f , . . . , qr

0, q
r
f and verifies the fol-

lowing properties:
• q10 = s and qr

f ∈ F ;
• for each j = 1, . . . , r − 1: qj

f# → qj+1
0 ∈ R.

If these tests are passed, the computation continues (otherwise, it simply
aborts).

– Call (as a black box) the NP algorithm that decides the non-emptiness of inter-
section for finite automata with unary input alphabet with the r automata
A[qj

0, q
j
f], 1 ≤ j ≤ r, as input.

– Output that L(M) �= ∅ if and only if
⋂r

j=1 L(A[qj
0, q

j
f]) �= ∅.

The construction is correct, as by the pumping lemmas we know that any n-state
BFA M either accepts a picture with at most n rows and at most nn columns,
or it does not accept any picture at all. Hence, it is sufficient to guess at most
2n states as indicated. 	

Theorem 7. The inequivalence problem for BDFAs is NP-complete.

Proof. The hardness immediately transfers from Theorem 6. As the BDFA pic-
ture languages are closed under Boolean operations (and the constructions can be
carried out in polynomial time), given two BDFAs M1 and M2, we can construct

212 H. Fernau et al.

a BDFA M such that the picture language accepted by M is the symmetric dif-
ference of the picture languages of M1 and M2; hence, M1 and M2 are equivalent
if and only if the picture language of M is empty. 	

From what is known about the string language case, we immediately infer:

Corollary 3. The inequivalence problem for BFAs is PSPACE-complete.

Let us finally comment shortly about minimization. Here, the question is,
given a BDFA A, to find a BDFA A∗ that has as few states as possible but
describes the same pictures as A does. Notice that this problem can be solved in
polynomial time for DFAs accepting words. It might be tempting to use this well-
known algorithm and apply it to a given BDFA A. In fact, this would result, in
general, in a smaller automaton A′ that is also picture-equivalent to A. However,
in general A∗ and A′ can differ significantly.

Let us explain the problems with this approach with a simple example. Con-
sider the (string) language

L = {a385}+#{a385}+#{a385}+ .

The smallest DFA accepting this language has 1159 states. The pictures that are
accepted by this automaton (as a BDFA) are pictures of three rows, where each
row has a number of a’s that is a multiple of 385. However, as the length of rows
have to synchronize, it is sufficient to make sure that at least one row has the right
length, so that L′ = {a385}+#{a}+#{a}+ would be another string language,
whose minimal state deterministic finite automaton has only 388 states, that
accepts the same picture language. As 385 = 5 ∗ 7 ∗ 11, we can even see that the
minimal DFA for

L′′ = {a5}+#{a7}+#{a11}+ ,

which has 26 states, again accepts the same picture language when interpreted
as a BDFA. Still, it remains unclear to us if this is the minimal deterministic
automaton for the picture language in question. Even more, we do not see a
general efficient methodology how to obtain minimal-state BDFAs. The only
method that we can propose is brute-force, cycling through all smaller BDFAs
and then testing for equivalence. This can be easily implemented in polynomial
space, so that we can conclude (in terms of a decision problem).

Proposition 1. The question to determine whether a given BFA is minimal-
state can be solved in polynomial space.

Notice that we could state this (even) for nondeterministic devices, but as
indicated above, we do not know anything better for deterministic ones, either.
Basically the same results could be stated for RFAs, as well (also for this type
of automata, we could consider a deterministic variant). Especially, our (bad)
example carries over, as the input alphabet is a singleton set.

Scanning Pictures the Boustrophedon Way 213

6 Possible Applications to Character Recognition

Character recognition has always been the testbed application for picture process-
ing methods. We refer to [4,13] and the literature quoted therein. In this regard, we
are now going to discuss the recognition of some classes of characters, also (some-
times) showing the limitations of our approach, making use of the pumping lemmas
that we have shown above.

For example, consider the set K of all L tokens of all sizes with fixed propor-
tion i.e., the ratio between the two arms of L being 1. The three members of K
are as follows:

x ·
x x

,
x · ·
x · ·
x x x

,
x · · ·
x · · ·
x · · ·
x x x x

.

We claim that K is not accepted by any BFA. Suppose there exists a BFA to
accept K. Then by Lemma 1 there exists an n ∈ N, such that, for every W ∈ K
with |W |r ≥ n, W = X � Y � Z, |X � Y |r ≤ n, |Y |r ≥ 1 and, for every k ≥ 0,
X � Yk � Z ∈ K. But, unfortunately, for many values of k we get L tokens with
unequal arms which are not members of K which gives a contradiction to our
assumption.

On the other hand, as pointed out by Example 2, if we do not require the
ratio between the two arms to be fixed, then the corresponding set of pictures
can be recognised by a BFA. Similarly, the characters A (if given in the form
), E, F, H, I, P (if given in the form), T, U (if given in the form) can be

recognised by BFA, if we do not require fixed proportions. In particular, this
means that are valid characters as well. Note that the character I
plays a special role: this set of characters can only be recognised by a BFA if it
is given in the form {·k1

n � xn � ·k2
n | k1 ≤ k, k2 ≤ k, and n ∈ N} for some fixed

constant k ∈ N (i.e., a BFA is not able to recognise the set of all vertical lines).
However, if we insist on fixed proportions, then it can be easily shown that the

character classes mentioned above cannot be recognised by BFAs. For example, if
the length of an arm of a character (or the distance between two parallel arms)
is only allowed to grow in proportion to the length of another arm, then the
vertical or horizontal pumping lemma shows that this class of characters cannot
be recognised by a BFA.

More generally, even single diagonal lines cannot be detected by BFA, which
excludes several classes of characters from the class of BFA languages, e. g., A,
K, M, N, X. We shall prove this claim more formally, by applying the vertical
interchange lemma.

Let L be the set of pictures of diagonal lines from the upper-left corner to
the lower-right corner, i.e.,

214 H. Fernau et al.

If L can be recognised by a BFA, then, according to Lemma 4, there is a picture
W ∈ L with W = V1 � X � V2 � Y � V3, |X|c ≥ 1, |Y |c ≥ 1, and W ′ =
V1 � Y � V2 � X � V3 ∈ L(M). The following illustrates how this leads to a
contradiction:

W = =

V1

X

V2

Y

V3

, W ′ = .

V1

Y

V2

X

V3

We chose L to only contain square pictures with a diagonal connecting the
upper-left corner with the lower-right one for presentational reasons. In the same
way, it can be shown that the set of single continuous diagonal lines cannot be
recognised by BFA.

7 Discussions

Scanning pictures line by line ‘as the ox turns’ is for sure not a new invention
in image processing. We have tried to derive a formal model that does mirror
this strategy. On the one hand, we have shown that this formal model is pretty
stable, as it has various characterizations, and it is even linked to RML, one of
the earliest formal models of picture processing. On the other hand, there are
quite some natural operations under which we would hope such a model to be
closed, as, for example, quarter turns.

There are more powerful models than ours that have been proposed for pic-
ture processing, like 4-way NFAs or OTAs, see [7]. These have better closure
properties, but also much weaker decidability results; for instance, the empti-
ness problem for such devices is undecidable.

However, OTAs are related to our model in the sense that they process a
picture diagonal by diagonal, whereas our model process it row by row. The
additional power seems to come from the fact that during a computation, OTAs
label positions of the pictures by states and this labelling depends not only on the
current symbol, but also on the state labels of the upper and left neighbours (i.e.,
OTAs are special versions of cellular automata). This means that information
can be passed from top to bottom in every single column, whereas BFA can only
accumulate information of a whole row. Notice that, when we remove this option
from the way OTAs work, we arrive at a model that is possibly even closer to
ours, the only difference being the way images are scanned. Clearly, diagonal
scans can (now) detect diagonal lines, but now there is no way to detect vertical
or horizontal ones, as would be the case for RML or BFA.

Conversely, we have seen that diagonals cannot be detected by neither RML
nor BFA. Possibly, a more thorough study of different scanning schemes from the
point of view of the (typical) classes of images that can be accepted would lead
to new insights telling how images should be scanned by computers in practice.

Scanning Pictures the Boustrophedon Way 215

The complexity status of variants of the membership problem for NFAs and
DFAs is well understood. As we have seen, by the very definition of the work
of BFAs and BDFAs, these results immediately transfer to this type of picture
processing automata, as well. We have made this explicit above for the uniform
membership problem, but the same observation also holds for the fixed mem-
bership problem. This should also enable practical implementations in future
works. However, several other interesting problems appear to be much harder
for picture automata, compared to their string-processing counterparts. Whether
dimensionality is the core problem is still a matter of investigation.

It might be interesting to enhance the power of the automata that scan
images. As we have seen, many interesting decidability questions are already
pretty hard for finite automata; however, if we now extend our basic models, for
example, from finite automata to weak forms of counter automata, we might be
able to stay within the same complexity classes for these decision problems, while
significantly increasing the usefulness of these models. For instance, we can use
counters or linear-type grammars to recognize X-shaped letters (or diagonals).

The easiest way to deal with this might be to think about processing pictures
with automata using two or more heads in a synchronized fashion, as already
proposed in [5]. From a formal language point of view, using two heads, scanning
row by row from left to right and right to left in parallel corresponds to even-
linear languages as introduced in [1] and further generalized in [3,6,18,22]. We
also mention bio-inspired models of computation that are closely linked to these
language classes, as discussed in [11].

We are currently investigating the relationships of BFA languages with other
types of picture languages introduced in the literature. We are determining the
exact complexity status of the state minimization problem, as well. Also, learn-
ability issues might be of interest, as only very few results are known about
learning picture languages, see [19] as one example.

References

1. Amar, V., Putzolu, G.: On a family of linear grammars. Inf. Cont. 7, 283–291
(1964). (Now Information and Computation)

2. Dassow, J.: Grammatical picture generation (2007). http://theo.cs.uni-magdeburg.
de/lehre06w/picgen/grampicgen-text1.pdf

3. Fernau, H.: Even linear simple matrix languages: formal language properties and
grammatical inference. Theor. Comput. Sci. 289, 425–489 (2002)

4. Fernau, H., Freund, R.: Bounded parallelism in array grammars used for character
recognition. In: Perner, P., Wang, P., Rosenfeld, A. (eds.) SSPR 1996. LNCS, vol.
1121, pp. 40–49. Springer, Heidelberg (1996)

5. Fernau, H., Freund, R., Holzer, M.: Character recognition with k-head finite array
automata. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds.) SPR 1998 and
SSPR 1998. LNCS, vol. 1451, pp. 282–291. Springer, Heidelberg (1998)

6. Fernau, H., Sempere, J.M.: Permutations and control sets for learning non-regular
language families. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp.
75–88. Springer, Heidelberg (2000)

http://theo.cs.uni-magdeburg.de/lehre06w/picgen/grampicgen-text1.pdf
http://theo.cs.uni-magdeburg.de/lehre06w/picgen/grampicgen-text1.pdf

216 H. Fernau et al.

7. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–267. Springer,
Berlin (1997)

8. Krithivasan, K., Siromoney, R.: Array automata and operations on array languages.
Int. J. Comput. Math. 4(A), 3–30 (1974)

9. Krithivasan, K., Siromoney, R.: Characterizations of regular and context-free
matrices. Int. J. Comput. Math. 4(A), 229–245 (1974)

10. Lange, K.J., Rossmanith, P.: The emptiness problem for intersections of regular
languages. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp.
346–354. Springer, Heidelberg (1992)

11. Nagy, B.: On a hierarchy of 5′ → 3′ sensing Watson-Crick finite automata lan-
guages. J. Logic Comput. 23(4), 855–872 (2013)

12. Niedermeier, R., Reinhardt, K., Sanders, P.: Towards optimal locality in mesh-
indexings. Discrete Appl. Math. 117, 211–237 (2002)

13. Fernau, H., Freund, R., Holzer, M.: Regulated array grammars of finite index. In:
Păun, G., Salomaa, A. (eds.) Grammatical Models of Multi-Agent Systems, pp.
157–181 (Part I) and 284–296 (Part II). Gordon and Breach, London (1999)

14. Sagan, H.: Space-Filling Curves. Springer, Heidelberg (1994)
15. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and

picture languages. Comput. Graph. Image Process. 1, 284–307 (1972)
16. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewrit-

ing rules. Inf. Control 22(5), 447–470 (1973). (Now Information and Computation)
17. Siromoney, G., Siromoney, R., Krithivasan, K.: Array grammars and kolam. Com-

put. Graph. Image Process. 3, 63–82 (1974)
18. Siromoney, R.: On equal matrix languages. Inf. Control 14, 133–151 (1969). (Now

Information and Computation)
19. Siromoney, R., Mathew, L., Subramanian, K.G., Dare, V.R.: Learning of recog-

nizable picture languages. In: Nakamura, A., Nivat, M., Saoudi, A., Wang, P.S.P.,
Inoue, K. (eds.) ICPIA 1992. LNCS, vol. 654, pp. 247–259. Springer, Heidelberg
(1992)

20. Siromoney, R., Subramanian, K.G.: Space-filling curves and infinite graphs. In:
Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153,
pp. 380–391. Springer, Heidelberg (1983)

21. Subramanian, K.G., Revathi, L., Siromoney, R.: Siromoney array grammars and
applications. Int. J. Pattern Recogn. Artif. Intell. 3, 333–351 (1989)

22. Takada, Y.: Learning even equal matrix languages based on control sets. In:
Nakamura, A., Nivat, M., Saoudi, A., Wang, P.S.P., Inoue, K. (eds.) ICPIA 1992.
LNCS, vol. 654, pp. 274–289. Springer, Heidelberg (1992)

23. Witten, I.H., Wyvill, B.: On the generation and use of space-filling curves. Softw.
Pract. Experience 13, 519–525 (1983)

24. Yanagisawa, K., Nagata, S.: Fundamental study on design system of kolam pattern.
Forma 22, 31–46 (2007)

Accepting H Iso-Array System

V. Masilamani1, D.K. Sheena Christy2(B), D.G. Thomas3, A.K. Nagar4,
and T. Robinson3

1 Department of Computer Science and Engineering,
IIITD&M Kanchipuram, Chennai 600 036, India

masila@iiitdm.ac.in
2 Department of Mathematics, SRM University, Kattankulathur 603 203, India

sheena.lesley@gmail.com
3 Department of Mathematics, Madras Christian College, Chennai 600 059, India

dgthomasmcc@yahoo.com, robin.mcc@gmail.com
4 Department of Mathematics and Computer Science,

Liverpool Hope University, Liverpool, UK
nagara@hope.ac.uk

Abstract. In this paper, we introduce the notion of accepting H iso-
array system which is defined by a finite set of permitting iso-arrays as a
counter part of the well investigated accepting splicing systems defined
by Mitrana et al. (2010). We compare the generative power of this system
with that of some existing models such as controlled sequential pasting
system, regular iso-array grammar, context-free iso-array grammar and
study some properties of accepting H iso-array systems.

Keywords: DNA computing · Splicing system · iso-picture languages ·
Kolam patterns

1 Introduction

In the syntactic approach of pattern recognition and image analysis, there have
been several studies on theoretical models in the last few decades for generating
or recognizing two dimensional objects, pictures and picture languages [2].

Motivated by the study of recognizable rectangular picture languages using
rectangular tiles [2], a new concept of recognizability has been introduced and
studied for a class of picture languages called iso-picture languages through iso-
triangular tiling systems (ITS) [5].

Iso-arrays are made up of isosceles right angled triangles and an iso-picture is
a picture, formed by catenating iso-arrays of same size [5,6]. By making use of iso-
picture languages, one can generate variety of picture languages that cannot be
generated by earlier models available in the literature [2]. The hexagonal picture
languages, rectangular picture languages, languages of rhombuses and triangles
are some of the examples of iso-picture languages. One application of the study
of iso-picture languages is its use in the generation of interesting kolam patterns
[7]. Another application of this study is the use of tiling patterns to decorate
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 217–231, 2015.
DOI: 10.1007/978-3-319-26145-4 16

218 V. Masilamani et al.

and cover floors and walls. Iso-pictures generation has application in computer
graphics. The isosceles triangles used in iso-picture generation are the primitive
elements in image synthesis in computer graphics. Hence it is appropriate to
think of image synthesis (generation) model using triangle primitives. On the
other hand, if the image synthesized has the triangles as primitives then to
recognize objects that are present in the image, a recognizing system is required.
In this paper, image accepting / recognizing models using isosceles triangles as
primitives are proposed. To enable parallel processing for image accepting or
recognition bio-inspired parallel computing models have been studied in this
paper.

Bio-inspired computing is a field devoted to tackling complex problems using
computational methods modeled after designed principles encountered in nature.
One of the topics covered in bio-inspired computing is DNA computing [11,12].
There has been a lot of interest in the study of formal language theory applied
to DNA computing. A specific model of DNA recombination is the splicing oper-
ation which consists of “cutting” DNA sequences and then “pasting” the frag-
ments, under the action of restriction enzymes and ligases. The H system was
introduced by Head [3] for generating string languages. V. Mitrana et al. [10]
proposed a novel view of splicing systems and defined the concept of an accepting
splicing system for words. Two ways of iterating the splicing operation in the gen-
erating case and the computational power of generating splicing systems defined
by these operations were investigated. Arroyo et al. [1] introduced the general-
ization of accepting splicing system with permitting and forbidding words and
studied the computational power of the variants of accepting splicing systems.
In [8] the notion of accepting H-array splicing system and the computational
power of this system has been proposed and studied.

A simple and effective parallel splicing on iso-arrays has been introduced
[9] to generate iso-array languages. Splicing rules that involve tiles of isosceles
right angled triangles are considered. Two iso-arrays are spliced in four directions
namely horizontal, vertical, right and left. Some closure properties of H-iso-array
systems under language theoretic operations – union, concatenation; geometric
operation – reflection about the base line and rotation by 90◦, 180◦ and 270◦ are
considered. The class of array languages accepted by these systems have been
compared with the classes of array languages generated by existing models and
considered a variant of accepting H-array system with permitting and forbidding
arrays.

The present paper introduces the notion of accepting H iso-array system
which is defined by a finite set of permitting iso-arrays as a counter part of the
well investigated accepting splicing systems for words defined by Mitrana et al.
[10]. We compare the generative powers of the accepting H-iso-array system with
that of a sequential generating model called controlled sequential pasting system
and generative powers of other existing models of two dimensional iso-array
grammars, namely regular iso-array grammars, context-free iso-array grammars
and iso-array local systems.

Accepting H Iso-Array System 219

2 Basic Definitions

In this section we recall the basic notions of iso-picture language [5].

Definition 1. Let

The sides of each tile in ΣI are of length 1√
2
, 1, 1√

2
. An iso-array is an arrange-

ment of isosceles right angled triangles of tiles from the set ΣI .
A U -iso-array of size m is formed exclusively by m number of tiles on

side S2 and it is denoted by Um. It will have m2 tiles in total (including the m
number of A tiles on S2). Similarly D-iso-array, L-iso-array and R-iso-array are
formed exclusively by B-tile, C-tile and D-tile on side S2 respectively.

Example 1. The following are the iso-arrays of size three.

S1
S1

S1

S2

S2

S2

S1

S2S3

S3

S3

S3

L3
R3D3U3

A A A
A A

A

B B
B

B B B

B B
B

A A
A

C

C
C

C

C
C

D
D

D

C

C
D

D

D
D

D

C

D

Fig. 1. iso-arrays of size three.

Definition 2. Iso-arrays of same-size can be catenated using the following four
types of catenations of iso-arrays.
(i) Horizontal Catenation (©−):
The only possible catenation is U©− D.
(ii) Vertical Catenation (©|):
L©| R is the only possible catenation of iso-arrays.
(iii) Right Catenation (©/):
The following catenations are possible under right catenation:
D©/ U , R©/ U , D©/ L, R©/ L.
(iv) Left Catenation (©\):
The following catenations are possible under left catenation:
U©\ D, U©\ L, L©\ R, R©\ D.
The catenation can be defined between any two gluable iso-arrays of same size.

Example 2. The horizontal catenation of U and D-iso-arrays of size 3 is shown
in Fig. 2.

220 V. Masilamani et al.

C
B

A
B

A

A
B

A

B
A

B

CD

A

B

D

B

A
U D =

U

D

Fig. 2. Horizontal catenation of U and D-iso-arrays of size 3.

Definition 3. Let ΣI be the finite alphabet of tiles A,B,C and D. An iso-
picture of size (n,m), (n,m ≥ 1) over ΣI is a picture formed by catenating
n-iso-arrays of size m. The number of tiles in any iso-picture of size (n,m) is
nm2.

Any two iso-pictures of sizes (n1,m) and (n2,m), n1, n2,m ≥ 1 can be cate-
nated using the rules of catenation of iso-arrays, provided the sides of iso-pictures
are gluable. The set of all iso-pictures over ΣI is denoted by Σ∗∗

I . An iso-picture
language L over ΣI is a subset of Σ∗∗

I .

The following definitions enumerate the basic concepts of iso-array splicing
rules and the main notion of H iso-array systems [13].

Definition 4. Let # and $ be two special symbols not in ΣI .
The splicing rule α1#α2$α3#α4 over ΣI is called the

(i) horizontal splicing rule if α1 = Um or Λ, α2 = Dm or Λ, α3 = Um or Λ and
α4 = Dm or Λ
(ii) vertical splicing rule if α1 = Lm or Λ, α2 = Rm or Λ, α3 = Lm or Λ and
α4 = Rm or Λ
(iii) right splicing rule
(a) α1 = Dm or Λ, α2 = Um or Λ, α3 = Dm or Λ and α4 = Um or Λ (or)
(b) α1 = Rm or Λ, α2 = Um or Λ, α3 = Rm or Λ and α4 = Um or Λ (or)
(c) α1 = Dm or Λ, α2 = Lm or Λ, α3 = Dm or Λ and α4 = Lm or Λ (or)
(d) α1 = Rm or Λ, α2 = Lm or Λ, α3 = Rm or Λ and α4 = Lm or Λ
(iv) left splicing rule if
(a) α1 = Um or Λ, α2 = Dm or Λ, α3 = Um or Λ and α4 = Dm or Λ (or)
(b) α1 = Um or Λ, α2 = Lm or Λ, α3 = Um or Λ and α4 = Lm or Λ (or)
(c) α1 = Lm or Λ, α2 = Rm or Λ, α3 = Lm or Λ and α4 = Rm or Λ (or)
(d) α1 = Rm or Λ, α2 = Dm or Λ, α3 = Rm or Λ and α4 = Dm or Λ.

The set of all horizontal, vertical, left and right splicing rules over ΣI are
denoted by R©− , R©| , R©\ , R©/ respectively.

Definition 5. An H iso-array scheme is a tuple σ = (ΣI , R©− , R©| , R©/ , R©\)
where ΣI is an alphabet, R©− is a finite set of horizontal splicing rules. Similarly,
R©| , R©/ , R©\ are finite sets of vertical, right and left splicing rules.

Accepting H Iso-Array System 221

An H iso-array system is defined by S = (σ,E) where E is finite subset of
Σ∗∗

I . We define σ(L) as

σ(L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p ∈ Σ∗∗
I

/
(p1, p2)

©−→ p (or)

(p1, p2)
©|→ p (or)

(p1, p2)
©/→ p (or)

(p1, p2)
©\→ p

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

for some p1, p2 ∈ L.
σ∗(L) is defined iteratively as follows:
σ0(L) = L, σi+1(L) = σi(L) ∪ σ(σi(L)), for i ≥ 0

σ∗(L) =
∞⋃

i=0

σi(L).

The family of iso-picture languages generated by these splicing systems is
denoted by FHIA.

Example 3. Horizontal and Vertical Splicing Rule:

Let

and E = {w} where w =

Let p1 = w and p2 = w and the splicing rules are

Then (p1, p2)
©−
� p3 and (p1, p2)

©|
� p4 where a member generated by the

system is given in Fig. 3.

3 Accepting H Iso-Array System

In this section we introduce the notion of accepting H Iso-array system with
two methods of iterated splicing namely uniform and non-uniform methods. We
study the generative power of this system and compare with that of well-known
systems such as controlled sequential pasting system, regular iso-array grammar
(RIAG) and context free iso-array grammar (CFIAG).

222 V. Masilamani et al.

p3 =

B

A

A

B

B

C

C

C

A

D

D

D

A

A

A

B

B

B

C

C

C

D

D

D

A

A

A

B

B

B

C

C

C

D

D

D

A

B

C

B

A

CD D

B

A

CD

and p4 =

B

A

A

B

B

C

C

C

A

D

D

D

A

A

A

B

B

B

C

C

C

D

D

D

C

C

C

A

A

A

B

B

B

D

D

D

A

A

A

B

B

B

C

C

C

D

D

D

Fig. 3. A generated member of FHIA by using vertical (p3) and horizontal (p4) splicing
rule.

Definition 6. An accepting H iso-array system (AHIAS) is a pair Γ = (S, P)
where S = (σ,E) is a H iso-array system and P is a finite subset of Σ∗∗

I . Let
w ∈ Σ∗∗

I . We define the uniform method (usual way) of the iterated array splicing
of Γ as follows:
σ0(E,w) = {w},
σi+1(E,w) = σi(E,w) ∪ σ(σi(E,w) ∪ E), i ≥ 0
σ∗(E,w) =

⋃∞
i=0 σi(E,w).

The language accepted by an accepting H iso-array system Γ is L(Γ) = {w ∈
Σ∗∗

I |σ∗(E,w) ∩ P 	= φ}.
The class of languages accepted by accepting H iso-array system is denoted

by L(AHIAS).
Let Γ = (S, P) be an accepting H iso-array system and w ∈ Σ∗∗

I . The non-
uniform variant of iterated splicing of Γ is defined as follows.
τ0(E,w) = {w};
τ i+1(E,w) = τ i(E,w) ∪ σ(τ i(E,w), E), i ≥ 0,
τ∗(E,w) = ∪∞

i=0τ
i(E,w).

An iso-array w ∈ Σ∗∗
I is said to be accepted by Γ in non-uniform way if

τ∗(E,w) ∩ P 	= φ.
The language accepted by Γ in non-uniform way is Ln(Γ) = {w ∈ Σ∗∗

I |τ∗(E,
w) ∩ P 	= φ}.

The class of all languages accepted by AHIAS in non-uniform way is denoted
by Ln(AHIAS).

Example 4. Let Γ = (S, P) be an uniform variant of AHIAS with S = (σ,E)
where σ = (ΣI , R©− , R©| , R©/ , R©\)

Here and

Accepting H Iso-Array System 223

P = {p} where

σ0(E,w) = {w}
σ1(E,w) = σ0(E,w) ∪ σ(σ0(E,w) ∪ E)

Clearly σ1(E,w) ∩ P 	= φ. Hence w is accepted by Γ . The language accepted by
this AHIAS is L1 = {u ∈ Σ∗∗

I /u = pn©| qn, r©| sn, rn©| s, pn©| s, n ≥ 1} where

We now recall the definition of controlled sequential pasting systems (CSPS)
[4] to compare the generative power of AHIAS with that of CSPS.

Definition 7. A controlled sequential pasting system (CSPS) is a 5-tuple
(ΣI , I, P, C, t0) where ΣI is a finite nonempty set of isosceles right angled tri-
angular tiles, I is the finite set of edge labels of tiles in ΣI . P is a finite set of
tables {T1, T2, . . . , Tk}, and each Ti, i = 1, 2, . . . , k is one of left, right, up, down,
leftup, leftdown, rightup or rightdown table consisting, respectively, of a finite
set of left, right, up, down, leftup, leftdown, rightup or rightdown rules only. The
rules of the tables are applied in parallel to the respective edges of the pattern
derived. C is a control language over P and t0 ∈ Σ++

I is the axiom.
Suppose ti ⇒

w
ti+1 denotes the derivation of the pattern ti+1 being generated

from ti in one step by applying the control word w ∈ C. A pattern tj is generated
from t0 by applying the control word w = w1, w2 . . . wj ∈ C where wi ∈ C(1 ≤
i ≤ j) if there exists a sequence of derivations t0 ⇒

w1
t1 ⇒

w2
t2 ⇒

w3
· · · ⇒

wj

tj and is

denoted by t0
∗⇒
w

tj .

224 V. Masilamani et al.

The set of all patterns generated by the system is denoted by

T (S) =
{

tj ∈ Σ∗∗
I : t0

∗⇒
c
tj/j ≥ 0, c ∈ C

}
.

The control language C may be either regular, context-free, or context-sensitive,
in which case we attach the corresponding name to the control. The class of all
languages generated by CSPS is denoted by L(CSPS).

Example 5. Let us consider the language L2 to be the set of all staircases of fixed
proposition with tiles A, B, C and D. The following sequential pasting system
S = (ΣI , I, P, C, t0) generates the set of all staircases of fixed proposition using
a regular control.

Here ΣI =

I = {a1, a2, a3, . . . , d1, d2, d3}, t0 =

P = {R1, R2, Ru1 , Ru2 , U}
R1 = {(b1, a1)}, R2 = {(a3, b3)}
Ru1 = {(d1, b3)}, Ru2 = {(a3, c1)}
U = {(c3, d3)}
C = {Ru1(R1R2R1Ru2URu1)

n/n ≥ 1}
A sample derivation is shown in Fig. 4.

D
t2

A AB C

D

D
B

B BA A
C

D
B

t1t0

A AB C

D

D
B

B

Fig. 4. Staircase

Theorem 1. The classes L(AHIAS) and L(CSPS) are incomparable.

Proof. To prove that L(CSPS)-L(AHIAS) 	= φ, let us consider the language L2

given in Example 5, L2 cannot be accepted by any AHIAS. In fact, considering
various possibilities of splicing rules in an AHIAS to obtain members of L2 alone
we observe that the staircases of unequal proportions are also accepted by the
system eventhough P may be finite and E is finite. Hence we cannot find any
finite P ⊆ Σ∗∗

I such that σ∗(A,w) ∩ P 	= φ. Hence L2 	∈ L(AHIAS).
To Prove L(AHIAS)-L(CSPS) 	= φ, consider the language L1 accepted

by the AHIAS, Γ as shown in Example 4. But it cannot be generated by any

Accepting H Iso-Array System 225

CSPS since we cannot find any regular control pattern of pasting system for the
language L1. Hence the classes L(AHIAS) and L(CSPS) are incomparable.
�

We now review the notions of regular iso-array grammar and context free
iso-array grammar [6].

Definition 8. A regular iso-array grammar (RIAG) is a structure G = (N,T,

P, S) where are finite

sets of symbols called nonterminals and terminals; N ∩T = φ. S ∈ N is the start
symbol or the axiom.
P consists of rules of the following forms:

Similar rules can be given for the other tiles

The regular iso-array language (RIAL) generated by G is defined by {W |S ⇒∗
G

W,W is a finite connected array over T} and is denoted by L(G).

Definition 9. A context-free iso-array Grammar (CFIAG) is a structure G =
(N,T, P, S) where

are finite nonempty sets of symbols called nonterminals and terminals, N∩T = φ.
S ∈ N is the start symbol or the axiom. P consists of rules of the form α → β,
where α and β are finite connected arrays of one or more triangular tiles over

and satisfy the following conditions:

1. The shapes of α and β are identical.
2. α contains exactly one nonterminal and possibly one or more #’s.
3. Terminals in α are not rewritten.
4. The application of the rule α → β preserves the connectedness of the host

array (that is, the application of the rule to a connected array results in a
connected array).

226 V. Masilamani et al.

The rule α → β is applicable to a finite connected array γ over N ∪ T∪
if α is a subarray of γ and in a direct derivation step,

one of the occurrences of α is replaced by β, yielding a finite connected array δ.
We write γ ⇒G δ. The reflexive transitive closure of ⇒G is denoted by ⇒∗

G.
The context free iso-array language (CFIAL) generated by G is defined by

{δ : S ⇒∗
G δ, δ is a finite connected array over T} and is denoted by L(G).

The class of all languages generated by RIAG and CFIAG are denoted by
L(RIAG) and L(CFIAG).

Theorem 2. The classes L(AHIAS) and L(RIAG) are incomparable.

Proof. To prove that L(RIAG)-L(AHIAS) 	= φ, consider the language L3, the
set of all hexagons of all sizes. It is proved that L3 is generated by RIAG [6]. But
it cannot be accepted by any AHIAS, as we cannot find any finite P , a subset
of Σ∗∗

I such that σ∗(E,w) ∩ P 	= φ with w being of very large size.
To prove that L(AHIAS)-L(RIAG) 	= φ, let us consider L4, the set of

all triangles of all sizes with tiles and . It cannot be generated by

any regular iso-array grammar as the junction in cannot be

handled by the regular iso-array grammar [5]. The language L4 can be accepted
by the following uniform variant of AHIAS Γ = (S, P) with S = (σ,E) where

σ = (ΣI , R©− , R©| , R©/ , R©\), E = {Λ} and

Here

�
Theorem 3. The class L(AHIAS) and the L(CFIAG) are incomparable.

Proof. To prove that L(CFIAG)-L(AHIAS) 	= φ, consider the language L5 is
the set of all digitized right angled triangles of all sizes. L5, generated by the
following CFIAG:
G = (N,T, P, S) where

P consists of the following rules:

Accepting H Iso-Array System 227

A member of L5(G) is shown below

But L5(G) cannot be accepted by any AHIAS, as there is no finite P , a subset
of Σ∗∗

I such that σ∗(E,w) ∩ P 	= φ, for w ∈ L5(G).
To prove that L(AHIAS)-L(CFIAG) 	= φ, let us consider the language

L1 considered in Example 4. It cannot be generated by any CFIAG but it can
accepted by a AHIAS. Hence the classes L(AHIAS) and L(CFIAG) are incom-
parable.
�
Definition 10. Let p be an iso-picture of size (n,m). We denote by Bn′,m′(p),
the set of all subiso-pictures of p of size (n′,m′), where n′ ≤ n,m′ ≤ m.

Let p be an iso-picture over ΣI . Then p̂ is an iso-picture obtained by sur-

rounding p with special boundary symbols .

An iso-picture language L ⊆ Σ∗∗
I is called local if there exists a finite set θ

of iso-arrays of size 2 over such that

L = {p ∈ Σ∗∗
I /B1,2(p̂) ⊆ θ} and is denoted by L(θ).

The family of local iso-picture languages will be denoted by ILOC.

228 V. Masilamani et al.

Theorem 4. The classes L(AHIAS) and ILOC are incomparable but not dis-
joint.

Proof. To prove ILOC-L(AHIAS) 	= φ. let us consider the language L6 as the
set of all iso-picture language of rhombuses, where the elements (tiles) along the

two diagonals are represented by the tiles and and elements in the
remaining positions are represented by tiles and , a member of which
is shown below.

The language L6 is local [5]. But L6 cannot be accepted by any AHIAS in
uniform way, as it is not possible to fix a finite P such that σ∗(E,w) ∩ P 	= φ,
where w ∈ L6.

To prove L(AHIAS)-ILOC 	= φ, let L7 be the iso-picture language of rhom-
buses of size (2,m), m ≥ 1 over It is shown that L7 is not
local [5]. But the language L7 can be accepted by the uniform variant of AHIAS,
Γ = (S, P) where S = (σ,E), σ = (ΣI , R©− , R©| , R©/ , R©\) with E = {Λ},

To show that L(AHIAS) ∩ ILOC 	= φ, let L8 be the iso-picture language of
parallelograms of sizes (2,m), m ≥ 1 over the tiles and . One member
of L8 is shown below.

Accepting H Iso-Array System 229

L8 is in ILOC [5]. L8 can be accepted by the AHIAS Γ = (S, P) where
S = (σ,E) with σ = (ΣI , R©− , R©| , R©/ , R©\) where , E = {Λ}.
P = {p}
R©| = R©− = φ

�
Notation:

with n times x along the vertical
(column) direction.

with n times x along the horizontal (row)

direction.

with n times x along the right direction.

with n times x along the left direction.

If , then |X|©− is the number of

A tiles catenated along a horizontal direction to be 3, |X|©| is the number of B
tiles catenated along a vertical direction to be 3.

If then |Y |©/ is the number of A1 tiles catenated

along the right direction to be 3, |Y |©\ is the number of B2 tiles catenated along
the left direction to be 3.

230 V. Masilamani et al.

Theorem 5. Let Γ be an AHIAS with R©− = R©\ = R©/ = φ. There exists a
positive integer
1 such that if p ∈ L(Γ) with |p|©| >
1 then p ©| y ©| p ∈ L(Γ)
for any y ∈ Σ∗∗

I with |y|©− = |p|©− .

Proof. Let Γ = (S, P) be an AHIAS with S = (σ,E) where σ = (ΣI , R©| , R©− ,
R©\ , R©/), E an initial language, P is a finite subset of Σ∗∗

I and R©| 	= φ,
R©− = R©\ = R©/ = φ. Let
1 = max{|x|©| /x ∈ P}. Let us assume that
p ∈ L(Γ) and |p|©| >
1. Then p ∈ L(Γ) − P .

We prove that for any iso-array y ∈ Σ∗∗
I with |y|©− = |p|©− , p ©| y ©| p ∈

L(Γ). In order to prove the statement, we show that (σi
R©| (E, p) − {p}) ⊆

σi
R©| (E, p ©| y ©| p) for i ≥ 1, by induction hypothesis on i. The result is

true for i = 1. Assume that an iso-array s ∈ (σi+1
R©| (E, p)−{p}) for i ≥ 1, then by

induction hypothesis, s ∈ σi+1
R©| (E, p ©| y ©| p), as if s is obtained from a pair of

iso-arrays (p, x) or (x, p) for x 	= p, then s can also be obtained from a distinct
pair of iso-arrays (p ©| y ©| p, x) or (x, p ©| y ©| p) by applying the same splicing
rules which have been applied for the iso-array (p, x) or (x, p).

Similarly, if z is obtained from a pair of iso-arrays (p, p) then s an also be
obtained from a pair of iso-arrays (p ©| y ©| p, p ©| y ©| p). Hence it completes
the proof of the statement.
�

Similar to the Theorem5, we have

Theorem 6. Let Γ be an AHIAS with

(i) R©| = R©\ = R©/ = φ, there exists a positive integer
2 such that if p ∈ L(Γ)
with |p|©− >
2, then p ©− y ©− p ∈ L(Γ) for any y ∈ Σ∗∗

I with |y|©| = |p|©| .
(ii) R©| = R©| = R©\ = φ, there exists a positive integer
3 such that if p ∈ L(Γ)

with |p|©/ >
3, then p ©/ y ©/ p ∈ L(Γ) for any y ∈ Σ∗∗
I with |y|©/ = |p|©/ .

Similar results hold good for the languages accepted by AHIAS in non-
uniform way. In otherwords we have:

Theorem 7. Let Γ be an AHIAS with

(i) R©− = R©\ = R©/ = φ, there exists an integer k1 > 0 such that if w ∈
Ln(Γ) with |w|©− ≥ k1 then either w ©| y ∈ Ln(Γ) (or) y ©| w ∈ Ln(Γ)
for y ∈ Σ∗∗

I with |y|©− = |w|©− .
(ii) R©| = R©\ = R©/ = φ, there exists an integer k2 > 0 such that if w ∈

Ln(Γ) with |w|©| ≥ k2 then either w ©− y ∈ Ln(Γ) (or) y ©− w ∈ Ln(Γ)
for y ∈ Σ∗∗

I with |y|©| = |w|©| .
(iii) R©| = R©− = R©\ = φ, there exists an integer k3 > 0 such that if w ∈

Ln(Γ) with |w| ≥ k3 then either w ©\ y ∈ Ln(Γ) (or) y ©\ w ∈ Ln(Γ) for
y ∈ Σ∗∗

I with |y|©\ = |w|©\ .

Theorem 8. Ln(AHIAS) ⊂ L(AHIAS).

Proof. Proof of the inclusion is omitted.
For the strict inclusion, we consider the language L1 from Example 4. But

the language L1 cannot be accepted by any non-uniform variant of AHIAS, since
we cannot find any finite P , a subset of Σ∗∗

I and also by Theorem 7.
�

Accepting H Iso-Array System 231

References

1. Arroyo, F., Castellanos, J., Dassow, J., Mitrana, V., Sanchez-Couso, J.R.: Accept-
ing splicing systems with permitting and forbidding words. Acta Inform. 50, 1–14
(2013)

2. Gimmarresi, D., Restivo, A.: Two-dimensional languages. In: Salomaa, A.,
Rozenberg, G. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer,
Heidelberg (1997)

3. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviours. Bull. Math. Biol. 49, 735–759 (1987)

4. Kalyani, T., Sasikala, K., Dare, V.R., Robinson, T.: Controlled sequential pasting
systems. In: Thangavel, P. (ed.) Algorithms and Artificial Systems, pp. 137–151.
Allied Publisher (2003)

5. Kalyani, T., Dare, V.R., Thomas, D.G.: Local and recognizable iso picture lan-
guages. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP
2004. LNCS, vol. 3316, pp. 738–743. Springer, Heidelberg (2004)

6. Kalyani, T., Dare, V.R., Thomas, D.G., Robinson, T.: Iso-array acceptors and
learning. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.)
ICGI 2006. LNCS (LNAI), vol. 4201, pp. 327–339. Springer, Heidelberg (2006)

7. Kalyani, T., Dare, V.R., Thomas, D.G.: Iso-array grammars and picture languages.
Int. J. Math. Sci. 6, 369–384 (2007)

8. Masilamani, V., Sheena Christy, D.K., Thomas, D.G., Nagar, A.K., Thamburaj,
R.: Accepting H-array splicing systems. In: Proceedings of Ninth International
Conference on Bio-Inspired Computing : Theories and Applications, Communica-
tions in Computer and Information Science, vol. 472, pp. 313–317 (2014)

9. Masilamani, V., Sheena Christy, D.K., Thomas, D.G., Kalyani, T.: Parallel splicing
on iso-arrays. In: Proceedings of Fifth International Conference on Bio-Inspired
Computing: Theories and Applications, pp. 1535–1542 (2010)

10. Mitrana, V., Petre, I., Rogojin, V.: Accepting splicing systems. Theor. Comput.
Sci. 411, 2414–2422 (2010)

11. Paun, G., Rozenberg, G., Salomaa, A.: Computing by splicing. Theor. Comput.
Sci. 168, 321–336 (1996)

12. Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Para-
digms. Springer, Berlin (1998)

13. Sheena Christy, D.K., Masilamani, V., Thomas, D.G.: Iso-array splicing grammar
system. In: Bansal, J.C., Singh, P.K., Deep, K., Pant, M., Nagar, A.K. (eds.) Pro-
ceedings of Seventh International Conference on Bio-Inspired Computing: The-
ories and Applications (BIC-TA 2012). AISC, vol. 201, pp. 157–167. Springer,
Heidelberg (2012)

Construction of Perfect Auto-correlation
Arrays and Zero Cross-correlation Arrays

from Discrete Projections

Benjamin Cavy1 and Imants Svalbe2(B)

1 Polytech Nantes, University of Nantes, Nantes, France
2 Department of Physics and Astronomy, Monash University, Melbourne, Australia

imants.svalbe@monash.edu

Abstract. This paper presents a new method by which sets of discrete
1D projections can be used to construct large families of 2D discrete
arrays. These compact arrays have targeted, specific periodic correlation
values that span the full range between perfect auto-correlation to zero
cross-correlation. The array size is variable and the array elements can
be binary or contain grey integer values. Arrays with these properties
are useful for digital signal synchronisation, communications and water-
marking. We show that multiple copies of zero cross-correlation arrays
can be co-located without interference and that the presence of individ-
ual arrays is able to be determined independently. The arrays with per-
fect periodic auto-correlation also have high aperiodic auto-correlation
and optimally low cross-correlation, making them well-suited for use as
digital watermarks.

Keywords: Discrete radon projection · Perfect auto-correlation · Zero-
cross-correlation · Ghost images

1 Introduction

Considerable theoretical and practical effort is invested in constructing large fam-
ilies of discrete arrays that have strong auto-correlation and low cross-correlation
properties. These arrays have important applications in signal processing for
precise data synchronisation, in computer science for digital watermarking and
secure, robust communication over encrypted channels and in physics to min-
imise the energy of finite discrete lattice structures [1].

Ideally, these arrays are composed of signed, unitary elements, usually as
entries of ±1, or the roots of unity over complex numbers or quaternions. The
optimum periodic auto-correlation of these arrays is perfect, yielding a peak
value of N for an N element array when aligned and zero at each of all other
N − 1 alignments. The cross-correlation between members of a family of arrays
should also be as close to zero as possible. We show here, for the first time,
that it is possible to create families of 2D functions A, B, C, . . . whose periodic

c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 232–243, 2015.
DOI: 10.1007/978-3-319-26145-4 17

Perfect Auto-correlation Arrays from Discrete Projections 233

cross-correlations are perfect, i.e. A∗B, A∗C, B ∗C, . . . = 0 across all elements
of a 2D array.

Construction of these arrays is based on ghost functions [2,6,8]. Ghost func-
tions are signed elements placed on an array in such a way that their intensity
values sum to zero under periodic or aperiodic projection for a predetermined
number of discrete view angles.

Section 2 presents the theoretical basis to construct, by discrete projection,
non-zero 2D functions A and B where the cross-correlation A ∗ B = 0. Section 3
uses a result from prior work on ghost functions, [13], that showed how multiple
copies of A, as A′, A′′, A′′′. . . , and B as B′, B′′, B′′′. . . , can be nested within
the same 2D array and still retain the property that (A′ +A′′ +A′′′)∗ (B′ +B′′ +
B′′′) = 0. Section 4 extends this approach to construct multiple functions A, B,
C. . . , such that A ∗ B ∗ C · · · = 0. The construction of p × p arrays with perfect
auto-correlation is a corollary of this result. Section 5 presents some perfect auto-
correlation results and gives an example application of these arrays as digital
watermarks. Section 6 presents a summary of our findings and outlines areas for
future work.

2 Theory

Our approach is motivated by the result found in the 1998 PhD work of Olivier
Phillipé, who proved that the process of discrete projection [5] preserves ape-
riodic auto-correlation: the projection at discrete angle p : q of the 2D auto-
correlation of any data is the same as the auto-correlation of the 1D projection
of that data at the angle p : q.

The 1D projection of a 2D image or function is defined in (1). The 1D array
projpiqi(b) stores the summed image values that are projected into discrete bins,
where the bins are labelled by the integer b. For each b, the sum of f(k, l) is
taken along the line inside f(k, l) where b = −kqi + lpi.

The cross correlation of two functions is defined in (2). There Cfg(r,s) is
the sum of the inner product of f and g displaced by relative integer coor-
dinates (r, s). When f = g, the cross-correlation defined in (2) becomes the
auto-correlation.

projpi,qi(b) =
+∞∑

k=−∞

+∞∑

l=−∞
f(k, l)Δ(b − kqi + lpi) (1)

Cf,g(r, s) =
+∞∑

k=−∞

+∞∑

l=−∞
f(k, l).g(k − r, l − s) (2)

The property of preserving correlations under projection is in turn a con-
sequence of the central slice theorem which underlies all direct (non-iterative)
methods of tomographic reconstruction.

234 B. Cavy and I. Svalbe

The Fourier transform of each 1D projected view of an object forms a 1D slice
of the 2D Fourier transform of the object itself. This applies for real sampled
projection data [7] as well as for the large variety of discrete projection methods:
examples of the latter are given in [4,9].

The correlation (and convolution) property shown by Phillipé then follows
directly, as g ∗ h = Fg · Fh, where ‘∗’ denotes the convolution or correlation
operation, F is the discrete Fourier transform, ‘.’ is the scalar product and g
and f are 1D, 2D or nD discrete functions.

Here we choose to use the Finite Radon Transform (FRT) [9] to compute
discrete projections. The FRT sums array elements that lie on parallel straight
lines, under the assumption of periodic (i.e. wrapped) boundary conditions, over
a fixed set of discrete angles. The array size is restricted to be square in 2D (or
a cube in 3D) with sides of prime length.

Any p × p block of discrete data, I(x, y), can be represented by its FRT,
R(t, m). R(t, m) is comprised of p + 1 1D projections at discrete angle m, 0 ≤
m ≤ p, with each projected ray having an offset index, t, 0 ≤ t < p. Angle m
corresponds to the discrete vector m : 1, i.e. m steps across for each step down
on a 2D grid. There is a unique mapping of the p + 1 angles m : 1 onto the set
of p + 1 directed vectors xm : ym through the Farey/Haros series fractions [12],
when the vectors xm, ym are ordered by increasing vector length (x2

m + y2
m).

The set of FRT projections can be inverted to recover, exactly, I(x, y) from
R(t, m). The FRT has the useful property that the p elements of each 1D pro-
jection tile all elements of the 2D p × p image space exactly once, for each of
the p + 1 projected views. The Fourier transform (FFT) of each FRT projec-
tion is thus a periodic 1D projection of the 2D Fourier transform of the image.
This exact tiling property means that the FFT can also be replaced by other
mappings such as the number theoretic transform [3].

2.1 Construction of Zero Cross-correlation Arrays

Consider two p × p images, A and B. Let C = A ∗ B be the p × p periodic 2D
cross-correlation of A and B; we want to construct 2D arrays, A and B, so that
C = 0.

Proof. Let A(m), B(m) and C(m) be the FRT projection of image A, B and C
(respectively) at discrete angle m. Given C = 0, the 2D/1D correlation property
[5] requires that

C(m) = A(m) ∗ B(m) = 0 (3)

for all m, 0 ≤ m ≤ p.
This condition is satisfied if:
A has zero projected sums at half the (p + 1) angles, e.g., A(m) = 0 for

0 ≤ m < (p + 1)/2

and
B has zero projected sums at the other half of the angles, e.g. B(m) = 0 for
(p + 1)/2 ≤ m ≤ p. �

Perfect Auto-correlation Arrays from Discrete Projections 235

As correlation operations are linear, then for D = A + B, with A × B = 0
D ∗ A = (A + B) ∗ A = A ∗ A + A ∗ B = A ∗ A and similarly D ∗ B = B ∗ B. We
will use this property in Sect. 3.

A ghost image is comprised of +1 and −1 valued pixels on an otherwise zero
background. Each +1 pixel is positioned to line up with one −1 pixel to give a
zero projected sum along pre-selected directions. A minimal ghost is a ghost that
uses N(+1) and N(−1) pixels to produce zero-projected sums for N directions.
The auto-correlation for a minimal ghost has a peak value of 2N .

The peak-to side-lobe ratio (PSL) and merit factor (M) are used to measure
the quality of correlations. PSL quantifies the correlation peak relative to the
largest off-peak magnitude. M is defined as the square of the peak correlation
value divided by the sum of the squared off-peak values. The values for PSL and
M should be as high as possible for strong auto-correlation functions and be as
low as possible for cross-correlations between distinct or orthogonal functions.

Methods to construct periodic minimal ghosts that have N zero -sum pro-
jected views were presented in [10,11]. The cross-correlation between p×p mini-
mal ghosts in N = (p+1)/2 directions shown in [13] have values ranging between
−2 to +2, giving a PSL = (p + 1)/2. For 1 < N ≤ (p + 1)/2, we can show that
M = 2N/(4N − 3), so that for these cases, M > 0.5.

In Sect. 5 we construct examples of ‘perfect’ zero-mean pxp ‘binary’ or grey
arrays where the periodic auto-correlation has PSL = M = p2 − 1 and where
the periodic cross-correlation between arrays can be optimally low (0 or ±p).

2.2 Example of Zero-correlation Arrays

Figure 1 shows two 19 × 19 arrays, A and B, each being a ghost designed to
have zero-sums at 10 distinct angles; their auto-correlations, A ∗ A and B ∗ B
are also shown. Their cross-correlation C = A ∗ B, as expected, is exactly zero.
The auto-correlations have peaks of 20 and off-peak absolute values ≤2, with
M = 0.541.

The symmetry of A (here even) and B (here odd) always appears as oppo-
sites (At = A, Bt = −B, where t denotes the transpose). Each disjoint angle
set includes as members the four-fold symmetric angles, m,−m, m′, −m′, where
−m = p−m and m′ is the inverse of m, mm′ = 1 mod(p). By choice, the arrays
A and B are generated using different starting locations, to ensure there is no
spatial overlap of any of the +1 or −1 points between A and B (i.e. A.B = 0).

3 Multiple Copies of A and B

Copies of N zero-sum direction ghosts can be constructed through the Fourier
transform of a minimal periodic ghost array with N zero-sums [13]. The FFT of
the FRT maps each discrete angle m to its complementary angle −1/m = −m′

(the 1D slice in Fourier space is perpendicular to the 1D slice in real space). The
location of each matching positive and negative value in the Fourier transformed
array must form zero-sums at angles −m′ from each original zero-sum angle m.

236 B. Cavy and I. Svalbe

Fig. 1. (a) A is a 19 × 19 array I(x, y) with 10 entries of +1 and 10 entries of −1 that
has projections with zero-sums along 10 discrete directions. (b) Array B has the same
properties as array A, but with zero sums in the 10 FRT directions that are disjoint
from those for A, making A ∗ B = 0. For images (a) and (b), black = −1, grey = 0,
white = +1 values. (c) and (d) are the auto-correlations for A and B. (e) and (f) are
the FRT R(t,m) of A and B. Grey rows in (e) and (f) are discrete angles with zero-sum
projected views. Note that the 10 zero-sum angles (shown as grey) for (e) and the 10
zero sum angles for (f) are complementary.

Perfect Auto-correlation Arrays from Discrete Projections 237

Assigning a +1 and −1 to the location at any distinct matching signed values
in the FFT array constructs copies of a new ghost, each with N zero-sums. The
number of ghost copies that are made varies with the number of distinct values
in the 2D FFT of the original ghost (more copies are possible for ghosts with a
smaller number of zero-sum angles).

For the case N = (p + 1)/2, [13] showed that the distribution of the values
of the Fourier transform of these ghosts corresponds to the (p − 1)/2 unique
positive and (p − 1)/2 negative values of sin(2πi/p) (with zero being the sole
remaining distinct value). That means (p − 1)/2 new distinct ghost copies can
be generated from the original ghost. All (p − 1)/2 ghost copies can be inserted
into the same p × p array without overlap of any of their +1 or −1 points.

3.1 Example of Multiple Co-residents Ghosts

Multiple, non-overlapping copies of each minimal ghost can be made using the
method outlined in Sect. 3.

These copies can be added into the same image space without changing any
of their zero-sum projection properties.

Figure 2a shows the array AP , formed by pooling the (19 − 1)/2 = 9 ghosts
built from ghost A of Fig. 1a, into a 19 × 19 array. The array AP retains zero-
sums in 10 directions. Figure 2b shows the compound ghost BP , formed by
adding together the 9 minimal ghost copies of the ghost B (Fig. 1b). The ghost
BP also has 10 zero sum projections, but along those directions in which ghost
AP is not zero. The auto-correlation peak for AP ∗ AP (and BP ∗ BP) then
becomes (p + 1)(p − 1)/2 = (p2 − 1)/2. The off-peak values do however increase,
because of the larger density of non-zero points means that more intersections
will occur for more off-peak translations.

For the example shown in Fig. 2, auto-correlations AP ∗ AP and BP ∗ BP
have a relatively strong peak correlation value of 180 = 9 × 20, but a relatively
poor merit factor of 0.082. However the cross-correlation of the pooled ghosts,
AP ∗BP , is exactly zero everywhere, as these pooled ghosts still have zero-sums
at disjoint sets of angles (as did A and B).

Because the initial ghosts A and B are spatially distinct, we can also pool
the copies of ghosts made from AP and BP . The array DP19 = AP + BP ,
shown in Fig. 3a, contains 9 copies from A and 9 copies made from B. Each
individual ghost copy contained in array AP or BP can be retrieved by periodic
correlation with DP19. Using array DP19 to test the cross-correlation of any
ghost member from AP with any ghost member from BP still results in zero;
DP19∗AP = AP ∗AP , DP19∗A = A∗A; the same applies when correlating DP19

with BP and B. The auto-correlation DP19∗DP19 has peak value 360 = 192−1,
with side lobes between +87 and −89 and a merit factor M = 0.178, being the
sum of the auto-correlation M values for AP ∗ AP and BP ∗ BP .

Figure 3b shows the equivalent of the array DP19 in Fig. 3a, but now for a
373 × 373 array, which has a total of 374 distinct FRT projection angles. Here
the zero-sums for each individual ghost A and B sum to zero under projection
for two sets of 187 (= 374/2) disjoint angles.

238 B. Cavy and I. Svalbe

Fig. 2. Compound 19 × 19 ghost arrays (a) AP and (b) BP contain 9 copies of A
and 9 copies of B respectively. Each array retains zero-sum projections at 10 angles.
Black = −1, grey = 0, white = +1 values. (c) and (d) are the FRT R(t,m) of AP and
BP respectively. Grey rows in (c) and (d) are discrete angles with zero-sum projected
views. Note the zero-sum angles for (c) and (d) are complementary.

Now each single ghost A and B has a peak auto-correlation value of 374, but
with the same side lobe values as before, ±2, ±1 or 0. Each of the 186 members
of the family AP copied from ghost A has zero cross-correlation with each of the
186 members of the family BP copied from ghost B. The equivalent array DP373

in Fig. 3b contains 186 copies of A and 186 copies of B. The auto-correlation
DP373 ∗ DP373 has peak value 139, 128 = 3732 − 1, with sides lobes between
+10, 713 and −10, 623 and a merit factor of 0.008.

4 Zero Cross-correlation Between Multiple Functions

Splitting the fixed set of p + 1 view angles for p × p arrays into more than two
disjoint sets is also possible, for example to construct arrays where A∗B∗C∗D =
0, as shown in Fig. 4.

Perfect Auto-correlation Arrays from Discrete Projections 239

(a) (b)

Fig. 3. (a) 19 × 19 array DP19 contains 9 copies of ghost A and 9 copies of ghost B.
The single remaining zero-valued element is at the top left corner. (b) The equivalent
array DP373 of size 373 × 373 contains 186 copies of an even ghost and 186 copies of
an odd ghost, both ghosts have zero-sums over 187 disjoint discrete directions. Black
= −1, grey = 0, white = +1 values.

Fig. 4. (a)–(d) Four 19 × 19 arrays A, B, C and D. Each array has zero-sum discrete
projections at 5 disjoint angles, black = −1, grey = 0, white = +1. (e) Array E =
A+B +C +D, black = −1, grey = 0, white = +1. (f) Cross correlation AB = A ∗B,
black = −1, grey = 0, white = +1. (g) Cross-correlation ABC = A ∗ B ∗ C has grey
values that range from −7 (shown as black) through zero (shown as mid-grey) to +7
(shown as white). Periodic cross-correlation ABCD = ABC ∗ D, by design, is exactly
everywhere zero (image not shown). (h) The periodic auto-correlation E∗E, peak = 40,
side lobes +6 to −5, M = 0.755.

240 B. Cavy and I. Svalbe

Using the FFT to generate copies of a zero-sum ghost provides a choice in
fixing the sign of each ghost copy, as +1 and −1 can equally well be assigned
as −1 and +1 at each FFT threshold value. We have found that random or a
more strategic shuffling of the sign assignments for different threshold levels can
significantly improve the auto-correlation PSL values for AP ∗ AP , BP ∗ BP
and DP19 ∗ DP19.

For example, shuffling the signs of the ghost copies that make up the com-
posite array DP19 in Fig. 3a increased the merit factor for DP19 ∗ DP19 from
0.178 to 360 = 192 − 1, as shown in Fig. 5a. The latter result corresponds to the
auto-correlation from a perfect array. This result leads to a simple method to
construct perfect arrays for arbitrary p × p grids.

5 Synthesis of Perfect Auto-correlation Arrays

A perfect p × p array has, by [5], p + 1 1D projections, each of which must have
a perfect 1D auto-correlation. Making p − 1 copies of an N = 1 ghost for each
of the p + 1 directions (with half the projections having reversed signs) gives a
peak of (p + 1).(p − 1) = p2 − 1, with a constant value of −1 at all other grid
locations. A 373 × 373 perfect array generated using this method is shown in
Fig. 5b. These perfect arrays have the same origins as those built from Gauss
sums and quadratic residues [1].

(a) (b)

Fig. 5. Changing the signs chosen for individual elements of a compound ghost can
improve the auto-correlation of the compound array. Shuffling the signs of the ghost
elements of Fig. 3a gives the 19×19 array (a), which has perfect auto-correlation. Using
the same construction methods, the array shown in Fig. 3b can be converted to produce
(b) a 373 × 373 perfect array.

Synthesizing a 2D function from its 1D projected views means we can choose
(at random) which (p + 1)/2 of the p + 1 angles have their signs reversed.

Perfect Auto-correlation Arrays from Discrete Projections 241

Fig. 6. An 11 × 11 grey array with perfect periodic auto-correlation.

(a) (b)

Fig. 7. (a) The 256×256 ‘cameraman’ test image, with the array of Fig. 6 encoded as an
additive watermark. The array was inserted in an 11 × 11 patch of the Fourier domain
phase of the original data. (b) Image of the differences between the integer-quantised
encoded and original data.

This means the family of these p×p perfect arrays has of order (p+1)!/((p+1)/2)!
distinct members. Further details on the methods used to construct binary and
grey perfect arrays can be found in [14].

Example perfect arrays A and B made by this method have a cross-correlation
that is minimised when the angle sets for A and B and maximally different.
Under these conditions, A and B exhibit a zero cross-correlation peak and a
symmetric distribution of off-peak values equal to either +p or −p which is the
lowest possible cross-correlation value for arrays that each have maximal or per-
fect auto-correlation. The periodic auto-correlation of these p×p arrays has peak
value p2 −1, with a uniform off-peak value of −1. At optimal shift, the aperiodic
auto-correlation of these arrays has a merit factor M of around 3.

Figure 6 shows an example 11× 11 array of grey integer values that has
perfect periodic auto-correlation and has a merit factor of 3.859 for aperiodic

242 B. Cavy and I. Svalbe

auto-correlation. The compact size and strong correlation property of this array
makes it highly suited for digital watermarking applications.

A scaled version of this array was used to perturb the phase angles over an
11 × 11 patch of the DFT of a 256 × 256 8-bit test image (cameraman). The
resulting encoded image is visually indistinct from the original (psnr of 50.811).
The quantised spatial domain image differences with respect to the original data
range from −2 to +2, as shown in Fig. 7. The watermark is easily recovered by
cross-correlation of the encoding array with the Fourier phase domain of the
encoded data. The correlation peak to background ratio is robust to scaling of
the image size >40% and to rotational misalignment of the image up to 1 degree.

6 Conclusions

Construction of arrays with zero cross-correlation have previously been contrived
by summing pairs of correlations with complementary off-peak signs, i.e. arrays
A and B made so that A ∗ A + B ∗ B = 0.

Here we have, we believe for the first time, designed arrays with strong cor-
relation properties where, directly, A ∗ B = 0.

Multiple copies of these arrays can be interlaced without overlap or loss of
their strong correlation properties. This may make them suitable for use as ‘selec-
tive switches’ in digital watermarking and communication applications. A single
compound watermark could be used to control access to shared data for multiple
authorised users.

Using discrete projected views to design arrays with strong correlation prop-
erties is a new approach. It complements the current technique of folding 1D
rows or columns to construct or ‘inflate’ larger 2D arrays from known 1D exam-
ples [1]. Our discrete projection approach can be applied to the construction of
3D arrays, based on ghosts that have zero-sums onto directed planes.

Extending our result to arrays with non-prime dimensions and unequal lengths
would be less restrictive. We have shown it is possible to use our 1D projection
method to construct arrays of general size N ×M with aperiodic auto-correlation
merit factors above 3. At present, each family of p × p perfect arrays, for prime p
where modulus(p, 4) = 3, is comprised of exactly p distinct members. Each of the
p × (p − 1)/2 cross-correlations between these family members is optimal, with
periodic cross-correlation values being ≤ p. It would be desirable to be able to
build large families of M × N arrays with strong auto-correlation and where the
cross-correlation between each family member is optimally or near-optimally low.

Acknowledgements. The authors thank Andrew Tirkel for sharing his expertise on
sequences and the generation of perfect auto-correlation arrays. BC acknowledges sup-
port from Polytech Nantes and the School of Physics and Astronomy, Monash Univer-
sity as hosts for his internship.

Perfect Auto-correlation Arrays from Discrete Projections 243

References

1. Blake, S., Hall, T., Tirkel, A.: Arrays over roots of unity with perfect auto-
correlation and good ZCZ cross correlation. Adv. Math. Commun. 7(3), 231–242
(2013)

2. Brunetti, S., Dulio, P., Peri, C.: Discrete tomography determination of bounded
sets in Z

n. Discrete Appl. Math. 83, 20–30 (2015)
3. Chandra, S., Svalbe, I.: Exact image representation via a number-theoretic radon

transform. IET Comput. Vision 8(4), 338–346 (2014)
4. Grigoryan, A.: Method of paired transforms for reconstruction of images from

projections: discrete model. IEEE Trans. Image Process. 12(9), 985–994 (2003)
5. Guédon, J.: The Mojette Transform: Theory and Applications. ISTE, Wiley (2009,

Chapter 3, section 322)
6. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications.

Birkhauser, Boston (2007)
7. Kak, A., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM,

Philadelphia (2001)
8. Louis, A.K.: Ghosts in tomography: the null space of the radon transform. Math.

Meth. Appl. Sci. 3, 1–10 (1981)
9. Matúš, F., Flusser, J.: Image representation via a finite radon transform. IEEE

T-PAMI 15(10), 996–1006 (1993)
10. Svalbe, I., Normand, N.: Properties of minimal ghosts. In: Debled-Rennesson, I.,

Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp.
417–428. Springer, Heidelberg (2011)

11. Svalbe, I., Normand, N., Nazareth, N., Chandra, S.: On constructing minimal
ghosts. In: DICTA 2010, Sydney, Australia, December 2010. http://dx.doi.org/10.
1109/DICTA.2010.56

12. Svalbe, I.: Sampling properties of the discrete radon transform. Discrete Appl.
Math. 139, 265–281 (2004)

13. Svalbe, I.: Near-perfect correlation functions based on zero-sum digital projec-
tions. In: DICTA 2011, Noosa, Queensland, Australia, pp. 627–632, December 2011.
http://dx.doi.org/10.1109/DICTA.2011.111

14. Tirkel, A., Cavy, B., Svalbe, I.: Families of multi-dimensional arrays with optimal
correlations between all members. Electron. Lett. 51, 1167–1168 (2015)

http://dx.doi.org/10.1109/DICTA.2010.56
http://dx.doi.org/10.1109/DICTA.2010.56
http://dx.doi.org/10.1109/DICTA.2011.111

From Theory to Applications

Character Segmentation of Hindi Unconstrained
Handwritten Words

Soumen Bag1(B) and Ankit Krishna2

1 Department of Computer Science and Engineering, ISM Dhanbad, Dhanbad, India
bagsoumen@gmail.com

2 Department of Computer Science and Engineering, IIIT Bhubaneswar,
Bhubaneshwar, India

ankitkrishna.id@gmail.com

Abstract. The proper character level segmentation of printed or hand-
written text is an important preprocessing step for optical character
recognition (OCR). It is noticed that the languages having cursive nature
in writing make the segmentation problem much more complicated. Hindi
is one of the well known language in India having this cursive nature in
writing style. The main challenge in handwritten character segmenta-
tion is to handle the inherent variability in the writing style of different
individuals. In this paper, we present an efficient character segmentation
method for handwritten Hindi words. Segmentation is performed on the
basis of some structural patterns observed in the writing style of this
language. The proposed method can cope with high variations in writing
style and skewed header lines as input. The method has been tested on
our own database for both printed and handwritten words. The average
success rate is 96.93 %. The method yields fairly good results for this
database comparing with other existing methods. We foresee that the
proposed character segmenattion technique can be used as a part of an
OCR system for cursive handwritten Hindi language.

Keywords: Character segmentation · Handwritten word · Header line
detection · Hindi language · Lower modifier · Upper modifier · Structural
approach · OCR

1 Introduction

In last two decades several works have been done in the computer recognition of
handwritten words. But few of us believe that a computer will ever be able to
read humans’ handwriting as good as human. Even so, it does not hurt to try to
develop technology which can approach the recognition ability of humans. Solv-
ing the character segmentation problem is one of the keys to putting character
recognition technology to practical use.

Character segmentation is an operation that seeks to decompose an image
of a sequence of characters into subimages of individual symbols [7] as shown in

c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 247–260, 2015.
DOI: 10.1007/978-3-319-26145-4 18

248 S. Bag and A. Krishna

(Fig. 1). It is one of the decision processes in a system for optical character recog-
nition (OCR). The performance of character segmentation techniques depend on
the quality of the scanned document because due to poor quality scanning and
ink bleeding, it generally happens that the neighboring characters in the scanned
image touch each other. Character segmentation is a major challenge for such
degraded documents [14].

A wide variety of line, word, and character segmentation methods for printed
documents of Indian languages are reported in the literature [12]. But segmen-
tation of cursive handwriting still remains one of the most challenging problems
in the area of handwritten character recognition. Bangla and Hindi are the two
very popular Indian languages having this cursive property in writing style.
Some of the prior works on Bangla handwritten character segmentation include
in [4,6,8,13,16]. But evidence of works on Hindi character segmentation are just
a few in number [5,9]. In this paper, we present a novel technique for segmen-
tation of unconstrained handwritten Hindi words which is highly efficient over
the other existing methodologies in literature. The key features of our proposed
method are summarized as follows:

– Extensive use of the structural properties of characters in the segmentation
process.

– Efficient to handle inputs with highly skewed header lines.
– Covers many different handwriting styles written by different individuals and

gives correct output for them.

Fig. 1. Segmentation of handwritten Hindi words.

The rest of the paper is organized as follows. Section 2 describes the char-
acteristics of Hindi language. Section 3 presents the proposed methodology for
accurate segmentation of handwritten Hindi words. Experimental results and
related discussions are reported in Sect. 4. The concluding notes are given in
Sect. 5.

2 Properties of Hindi Language

Devanagari is the script for writing Hindi language. It consists of 14 vowels
and 33 consonants. A sample set of basic Hindi alphabets is shown in Fig. 2(a).

Character Segmentation of Hindi Unconstrained Handwritten Words 249

The writing style is from left to right. There is no concept of lower or upper case
alphabets as in English language [2]. Half form characters in Hindi increases the
language complexity for recognition. The half characters may touch with full
characters to make the characters called conjuncts or compound (see Fig.2(b)).
In each conjunct character, the right part is a full consonant, and the left part
is always a half consonant. When two or more characters are combined to form
a word, the horizontal lines touch each other and generate a header line called
shirorekha. The vowels modifiers can be placed at the left, right (or both), top, or
bottom of the consonant. The vowels above the header line are called ascenders
or upper modifiers and vowels below the consonants are called descenders or
lower modifiers.

(a) Sample images of Hindi Basic characters.

(b) Sample images of Hindi con-
junct characters.

Fig. 2. Hindi alphabet set.

3 Proposed Methodology

The proposed method has three phases. A preliminary segmentation process
extracts the header line and delineates the upper-strip from the rest in phase 1.
This yields vertically separated middle zone and bottom zone components that
may be conjuncts, touching characters, characters with lower modifier attached
to it, shadow characters, or a combination of these. In phase 2, statistical infor-
mation about these intermediate individual components is collected and the seg-
mentation of upper modifier is performed. In phase 3, this statistical information

250 S. Bag and A. Krishna

is used again to select the components on which further segmentation needs to
be attempted. This separates the lower modifiers from the middle zone compo-
nents. This segmentation methodology is performed in the following hierarchical
order as shown in Fig. 3.

1. Scan the handwritten Hindi words needed to be segmented and perform the
binarization using an adaptive-cum-interpolative method as described in [3].
It is noticed that binarization plays an important role in character segmen-
tation. In this method, a multiscale framework is added to adaptive version
of Otsu’s method [11] to handle noises in different scales. To convert Otsus
method to an adaptive model, instead of computing the global threshold value
for the whole image, it computes the local threshold value for each pixel by
observing the intensity behavior of its neighbor pixels.

2. Detect the header line and remove it completely.
3. Segment the upper modifiers left in the upper zone, if any, and make appro-

priate joining if required.
4. Identify the middle zone components containing any lower modifiers and seg-

ment these lower modifiers if required.
5. Finally, the segmented result is presented for further recognition process.

Input
handwritten

Hindi text

Header line
detected and the

components in the
middle zone

separated

Find Upper
modifiers, if any, in
the region above

the header line and
make appropriate
joining if required

Find lower
modifiers,

if any

Final result with each
and every component

segmented

Fig. 3. System architecture of the proposed method.

3.1 Detection and Removal of Header Lines

Figure 4 outlines the proposed method for detecting and removing the header
lines even if they are skewed in nature. The following steps discuss the method
in detail.

1. Perform thinning of binarized handwritten Hindi words to get single pixel
thin skeletons using Huang’s method [10].

2. Find the start row, end row, start column, and end column for the span of a
word.

Character Segmentation of Hindi Unconstrained Handwritten Words 251

3. Get the horizontal density of number of object pixels for each row in the upper
half of the word height, i.e., from ‘start row’ to ‘(start row+end row)/2’.

4. Find the highest density row (marked as ‘record’) from the above list and
consider to be the approximate header line row.

5. Divide the entire word width into stripes. The number of stripes is equal to
((2×width)/lower height) of the input word, where width = (end column-
start column) and lower height = (end row-record).

6. Find the row having highest density of object pixel for each stripe by scan-
ning from ‘start row’ to ‘record’+7. This threshold value is set as per the
experimental analysis.

7. Find the difference between ‘record’ and the local maximum row (from step 6)
for each stripe and accordingly shift the entire stripe upwards or downwards
based on the sign of the difference.

Start

Find global max
density row

Divide the word
width into stripes

Find local max
density row in each
stripe and align the
stripes according to

global max row

Remove the
header line

End

Fig. 4. Flowchart for header line detection and removal.

252 S. Bag and A. Krishna

8. Finally, remove the row ‘record’ and appropriate number of rows above and
below of it (according to the pen width of the input word) to get rid of the
header line.

After removal of header line, we calculate the vertical density of object pixels
for each column. We identify the columns having zero count for the above vertical
density and use them as breakdown columns to separate the components at these
positions.

Start

Pick each component from left

to right by some component

labeling algorithm.

Single touching or

double touching?

Any next

modifier?

Is it also

Single

touching?

YES

Calculate the column,

three columns before the

touching point column

NO

Single

Touching

Is there

touching

point

nearer?

YES

NO

NO Joiningby

Extrapolation

YES

Lies over some

component in

middle zone or

blank space?
Connect it to

component just right

to it in middle zone

Over some

component

Blank

space

End

Double

Touching

Find the

middle column

Lies over some

component in

middle zone or

blank space?

Calculate the width of

components on both

sides of that column in

middle zone

Calculate the widths left

on both sides of that

column in the middle

zone component

Over some

component

Blank

space

Join the modifier

with the lesser

width component

If left width is less, join the

modifier with the component

left to the underlying

component in middle zone,

else, otherwise.

Fig. 5. Flowchart for upper modifier segmentation.

3.2 Segmentation of Upper Modifiers

To deal with upper modifiers separately, we extract it out one by one using
Rosenfeld and Kak component labeling algorithm [15]. Figure 5 outlines the pro-
posed technique for upper modifier segmentation. The steps are as follows:

Character Segmentation of Hindi Unconstrained Handwritten Words 253

1. The upper modifiers in Hindi language can be classified into two classes. This
classification is done based on the number of times they touch the header
line at different positions as shown in Fig. 6. They touch either once or
twice as per the characteristics of writing style.

2. If it is a single touch, then check the class of the next modifier (if there is
any) in the sequence from left to right. If there is no next modifier or the
next modifier is not a single touching modifier then go to step 3. But if it is
a single touching modifier, then check whether the touching points of present
and next modifiers are nearer to each other or not. If they are not, then go to
step 3. Otherwise, join them by applying the extrapolation method used in [1]
and then move to the next step. All different possibilities of upper modifier
are shown in Fig. 7.

3. Find the column which is four columns preceding from the touching point
(see Fig. 8). If this column lies over blank space in middle zone then connect
it to the component in the middle zone which is just right to the above
calculated column. If it lies over some component in the middle zone then
simply represent it separately.

4. If it is double touching, then find the middle column for the column span of
the upper modifier. In Fig. 9, the middle column is marked by red line and
the column span of the upper modifier is marked by green lines. If the middle
column lies over some component in the middle zone (see Fig. 9(a)), then
calculate the width on left (Wl) and right (Wr) sides of that column in the
middle zone of that component. If Wl is less than Wr then join the modifier
with the component in the middle zone which is just left to the underlying
component in the middle zone. Otherwise, join it with the component in the
middle zone which is just right to the underlying component in the middle
zone.

5. If the middle column lies over blank space in the middle zone as shown in
Fig. 9(b), then calculate the width of the components on both sides (Cl and
Cr) of that column in the middle zone. If Cl is less than Cr then join the
modifier with the component of width Cl; otherwise, join the modifier with
the component of width Cr.

(a) (b)

Fig. 6. (a) Single touching upper modifiers. (b) Double touching upper modifiers. Red
circle indicates the touching point (Color figure online).

254 S. Bag and A. Krishna

(a) (b) (c) (d)

Fig. 7. (a)No next modifier. (b)Next modifier is not a single touching modifier.
(c)Next modifier is single touching but touching points are not nearer to each other.
(d)Next modifier is single touching and touching points are nearer to each other. Red
circle indicates the touching point (Color figure online).

(a) (b)

Fig. 8. Calculated column (marked in red) lies over (a) blank space in middle zone;
(b) some component in middle zone (Color figure online).

(a) (b)

Wl Wr Cl Cr

Fig. 9. Middle column (in red) lies over (a) some component in middle zone; (b) blank
space in middle zone (Color figure online).

3.3 Segmentation of Lower Modifiers

The proposed method for lower modifier segmentation are shown in Fig. 11. At
first, the components containing the lower modifiers are identified. Thereafter,
they are classified into three classes as given below.

– Middle bar characters
– Right bar characters
– No bar characters

Character Segmentation of Hindi Unconstrained Handwritten Words 255

1 2 3
4 5 6
7 8 9

Fig. 10. 3 × 3 grid for lower modifier detection.

The steps to determine the classes are:

1. Divide the entire component into 3×3 grid as shown in Fig. 10.
2. Consider block 3 and 6 and check whether more than 90 % of their rows

contain object pixels or not. If so, then the component is a right bar character.
3. Consider block 2 and 5 and perform similar check over their rows. If it is

satisfied, then it is a middle bar character.
4. If none of the cases are satisfied, then it is a no bar character.

Fig. 11. Flowchart for lower modifier segmentation.

After the final classification, if it is a right bar character then block 9 is
considered and if it is a middle bar character then block 8 is considered in the
grid. Thereafter, the density of object pixels in each row in the considered block is

256 S. Bag and A. Krishna

calculated. Then, moving from top to bottom in that block, the first row at which
the density increases all of a sudden is found. This row is omitted to segment
the lower modifier from its middle zone component. The no bar characters can
be dealt exceptionally.

4 Experimental Results and Discussion

This section presents the experimental results and related discussion of our pro-
posed method.

4.1 Experimental Dataset

Our dataset consists of about 12750 Hindi word samples among which 1200 sam-
ples are printed and 11550 samples are handwritten. The handwritten samples
are collected from 30 different writers used 10 different types of pens with vary-
ing pen width. The samples are scanned at 300 dpi using HP Office Jet 5610
scanner. The implementation has been done on MATLAB (R2010a).

4.2 Character Segmentation Results

Detection of Header Lines: The experimental results are shown in Fig. 12(a).
In this figure, the left and right column shows the input samples and the cor-
responding outputs after the completion of phase 1. It is shown that there is
a white single width straight line detected as the header line for each of the
inputs. This represents the required row to be removed. Now, we can remove the
appropriate number of rows above and below of the obtained row according to
the pen width of the written text so as to completely get rid of the header line.

Segmentation of Upper Modifiers: The experimental results are shown in
Fig. 12(b). The left and right column in the figure shows the inputs and the
corresponding outputs after the completion of phase 2. We can observe that
all the upper modifiers along with their middle zone counterpart get totally
separated from the rest and are represented individually. For the upper modifiers
with their counterparts in the middle zone, appropriate joining has been done
and also the extrapolation has been performed if required.

Segmentation of Lower Modifiers: Finally, the lower modifiers are seg-
mented in the last phase of the proposed method. The experimental results
are shown in Fig. 12(c). The left and right column in the figure shows the inputs
and the corresponding outputs after the completion of third phase. It is observed
that all the lower modifiers are detected and segmented from their middle zone
component character correctly.

For the above all test cases, we consider the input samples having the short-
comings mentioned earlier to show the efficacy of our proposed method.

Character Segmentation of Hindi Unconstrained Handwritten Words 257

(a) Header line detection and removal.

(b) Segmentation of upper modifiers.

(c) Segmentation of lower modifiers.

Fig. 12. Experimental results of different phases for handwritten Hindi words.

258 S. Bag and A. Krishna

Table 1. Header line detection accuracy.

Method Total no. of words No. of header lines Accuracy

detected correctly

Hanmandlu and Agrawal 12750 6739 52.85%

1200 (printed) 1168 97.33%

11550 (handwritten) 5571 48.23%

Bansal and Sinha 12750 4022 31.55%

1200 (printed) 1168 94.85%

11550 (handwritten) 2854 24.7%

Proposed 12750 12614 98.93%

1200 (printed) 1200 100%

11550 (handwritten) 11414 98.82%

Table 2. Upper modifier segmentation accuracy.

Method Total no. of words Total no. of No. of upper modifiers Accuracy

upper modifiers segmented correctly

Hanmandlu and

Agrawal

12750 3693 2977 80.61%

1200 (printed) 704 640 90.9%

11550 (handwritten) 2989 2337 78.18%

Bansal and

Sinha

12750 3693 1648 44.62%

1200 (printed) 704 520 73.86%

11550 (handwritten) 2989 1128 37.73%

Proposed 12750 3693 3558 96.34%

1200 (printed) 704 704 100%

11550 (handwritten) 2984 2854 95.45%

4.3 Comparison with Other Methods

We compared our results with two existing methods of Bansal–Sinha [5] and
Hanmandlu–Agrawal [9]. As the datasets used in these two methods were not
available, so to perform the comparative analysis in same platform we prepared
our own dataset with reasonable size as discussed in Sect. 4.1. We implemented
the other two methods and tested all these methods on our own dataset. Our
main objective was to make this comparative analysis unbiased. The accuracy
of header line detection, upper modifier segmentation, and lower modifier seg-
mentation are shown in Tables 1, 2, and 3 respectively. We observe that the
performance of header line detection is much better than the other two existing
methods. This is because of the efficiency of our proposed method to handle
large variety of writing styles and skewed header lines as input data. Also for
upper and lower modifier segmentation, our algorithm has shown an acceptable
improvement in accuracy over the other two existing methods. The overall suc-
cess rate of our proposed method is 96.93 % which is much better than Bansal–
Sinha (48.58 %) and Hanmandlu–Agrawal (72.8 %) methods. During the mea-
suring of accuracy rate, we treated over and under segmentation as an incorrect

Character Segmentation of Hindi Unconstrained Handwritten Words 259

Table 3. Lower modifier segmentation accuracy.

Method Total no. of words Total no. of lower No. of lower modifiers Accuracy

modifiers segmented correctly

Hanmandlu and

Agrawal

12750 3080 2616 84.94%

1200 (printed) 376 320 85.1%

11550 (handwritten) 2704 2296 84.91%

Bansal and Sinha 12750 3080 2143 69.58%

1200 (printed) 376 336 89.36%

11550 (handwritten) 2704 1807 66.83%

Proposed 12750 3080 2942 95.52%

1200 (printed) 376 360 95.74%

11550 (handwritten) 2704 2582 95.49%

segmentation. This work can be extended later on to make a more generalized
method for lower modifier segmentation in case of no bar characters and the
segmentation of two characters touch in upper, middle, or lower region. Many a
times shadow characters also occur in handwritten text when one totally inde-
pendent component occurs under some other component. They can also be dealt
with in future.

We have also done a comparison in between the above said methods and our
proposed method w.r.t. computational time. We used our own test datasets for
this experimental analysis. It is noticed that our proposed method is computa-
tionally efficient than the other two methods for both the printed and handwrit-
ten images.

5 Concluding Remarks

In this paper, we have proposed a character segmentation method based on
structure shape of Hindi language. The proposed method has performed signifi-
cantly well at each level of segmentation to handle large scale shape variation in
writing style of Hindi language. The proposed method is tested on handwritten
Hindi word images and the results are very promising with an average accuracy
rate of 96.93 %. But this method is not performing well for few particular cases
as stated earlier. In future, we shall extend our work to improve the accuracy of
segmenattion and to make it applicable to character recognition for handwritten
Hindi OCR system.

References

1. Bag, S., Harit, G.: Skeletonizing character images using a modified medial axis-
based strategy. Int. J. Pattern Recognit. Artif. Intell. 25, 1035–1054 (2011)

2. Bag, S., Harit, G.: A survey on optical character recognition for Bangla and
Devanagari scripts. Sadhana 38, 133–168 (2013)

260 S. Bag and A. Krishna

3. Bag, S., Bhowmick, P., Behera, P., Harit, G.: Robust binarization of degraded
documents using adaptive-cum-interpolative thresholding in a multi-scale frame-
work. In: International Conference on Image Information Processing, pp. 1–6. IEEE
Press, New York (2011)

4. Bag, S., Bhowmick, P., Harit, G., Biswas, A.: Character segmentation of handwrit-
ten Bangla text by vertex characterization of isothetic covers. In: National Confer-
ence on Computer Vision, Pattern Recognition, Image Processing and Graphics,
pp. 21–24. IEEE Press, New York (2011)

5. Bansal, V., Sinha, R.M.K.: Segmentation of touching and fused Devanagari char-
acters. Pattern Recognit. 35, 875–893 (2002)

6. Bishnu, A., Chaudhuri, B.B.: Segmentation of Bangla handwritten text into char-
acters by recursive contour Following. In: International Conference on Document
Analysis and Recognition, pp. 236–239. IEEE Press, New York (1999)

7. Casey, R.G., Lecolinet, E.: A survey of methods and strategies in character seg-
mentation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 690–706 (1996)

8. Garain, U., Chaudhuri, B.B.: Segmentation of touching characters in printed Dev-
nagari and Bangla scripts using fuzzy multifactorial analysis. IEEE Trans. Syst.
Man Cybern. Part C 32, 449–459 (2002)

9. Hanmandlu, M., Agrawal, P.: A structural approach for segmentation of handwrit-
ten Hindi text. In: International Conference on Cognition and Recognition, pp.
589–597 (2005)

10. Huang, L., Wan, G., Liu, C.: An improved parallel thinning algorithm. In: Inter-
national Conference on Document Analysis and Recognition, pp. 780–783. IEEE
Press, New York (2003)

11. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans.
Syst. Man Cybern. 9, 62–66 (1979)

12. Pal, U., Chaudhuri, B.B.: Indian script character recognition: a survey. Pattern
Recognit. 37, 1887–1899 (2004)

13. Pal, U., Datta, S.: Segmentation of Bangla unconstrained handwritten text. In:
International Conference on Document Analysis and Recognition, pp. 1128–1132.
IEEE Press, New York (2003)

14. Pal, U., Jayadevan, R., Sharma, N.: Handwritten recognition in Indian regional
scripts: a survey. ACM Trans. Asian Lang. Inf. Process. 11(1), 1–35 (2012)

15. Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn., vols. 1 and 2.
Academic Press, New York (1982)

16. Sarkar, R., Das, N., Basu, S., Kundu, M., Nasipuri, M., Basu, D.K.: A two-stage
approach for segmentation of handwritten Bangla word images. In: International
Conference on Frontiers in Handwriting Recognition, pp. 403–408. CENPARMI,
Canada (2008)

Retinal Blood Vessel Segmentation and
Bifurcation Point Detection

Tapash Dutta1, Nilanjan Dutta1,
and Oishila Bandyopadhyay2(B)

1 Department of Information Technology, Indian Institute of Engineering Science and
Technology, Howrah, India

2 Advanced Computing and Microelectronics Unit, Indian Statistical Institute,
Kolkata, India

oishila@gmail.com

Abstract. The analysis of retinal blood vessel structure plays an impor-
tant role in diagnosis of different diseases. Automated extraction of vas-
cular network and identification of bifurcation points can be an impor-
tant part of computer assisted analysis of retinal vascular disorders. In
this paper, we propose an efficient method of automatic blood vessel
extraction and bifurcation point detection from retinal images. The pro-
posed method introduces the novel concept of relaxed digital arc for the
removal of optic disc region to improve the correctness of the results.
Experimental results show the effectiveness of the proposed method. We
re-validate the quality of the proposed blood vessel segmentation app-
roach by comparing the segmentation accuracy with existing approaches.
The efficiency of bifurcation point detection process is evaluated by com-
paring manual bifurcation point count with the findings of the proposed
approach.

Keywords: Bifurcation points · Optic disc · Retinal blood vessel ·
Digital arc

1 Introduction

Retinal vessel segmentation is an important part of computer aided diagnosis
of ophthalmic disorders. Blood vessels and optic disc are the two major com-
ponents of retinal image analysis. The study of blood vessel morphology can
be used as an important indicator for diagnosis of many diseases like diabetes,
hypertension, arteriosclerosis, and glaucoma. Identification of bifurcation points
in retinal vascular network is essential for prediction of any ophthalmic disorder
or use of retinal structure for registration and biometric authentication.

Image segmentation and edge detection play an important role in med-
ical image processing. Advanced edge detection algorithms based on scan line
processing and linking of edge points using graph strategy can efficiently detect
the edges of the complex images [22,23]. In the last few decades several
researchers have worked on retinal blood vessel extraction. Reviews of different
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 261–275, 2015.
DOI: 10.1007/978-3-319-26145-4 19

262 T. Dutta et al.

blood vessel extraction algorithms are discussed by Fraz et al. [8]. The segmen-
tation methods of retinal blood vessel can be classified into two main groups
based on scanning and tracking [4]. In tracking based methods, vessel struc-
ture segmentation and image feature extraction are performed simultaneously
in a single pass. Pixel scanning based segmentation methods extract the image
feature point by contrast enhancement operations followed by different thresh-
olding and filtering techniques. In many approaches, matched filter is used for
contrast enhancement [3,13]. In some papers, extraction of blood vessel from
dark background is performed by local entropy based thresholding methods [13].
Adaptive histogram equalization is also used for contrast enhancement of retina
images [6]. Optic disc is an important part of retinal images. Many researchers
have developed algorithms for segmentation of optic disc region [14]. In retinal
images, vascular bifurcation and crossover junctions are special regions where a
single blood vessel splits into two new sub-vessels, or two blood vessels cross each
other. Iqbal et al. have used neural network based approach for vascular feature
extraction [11]. These vascular features are used for disease diagnosis in medical
applications [2] and personal identification in biometric applications [20].

In this paper, we propose an efficient method for extraction of vascular net-
work from retinal images and identification of potential bifurcation points in the
vascular network. The proposed method integrates adaptive histogram equal-
ization and matched filter with a novel histogram based segmentation approach
for segmentation of vascular network. Global histogram equalization is applied
to segment the optic disc region from the retinal image. The novel concept of
relaxed digital arc is introduced to remove the optic disc region from vascular
network. The segmented vascular network is then used to identify the possible
bifurcation points. We have applied the neighborhood pixel masking to identify
the bifurcation points and filter the wrong detection. Quality of segmentation
is evaluated by comparing the average segmentation accuracy value obtained
in the proposed approach against other segmentation approaches. The fundus
camera images available in DRIVE database are used for testing the proposed
method.

2 Related Definitions

The optic disc segmentation process proposed in this work has utilized the novel
concept of relaxed digital arc. A few definitions related to this process are given
below:

Chain Code: It is used to encode a direction around the border between pixels.
If G(m, n) is a grid point, then the grid point (m′, n′) is a neighbor of G, provided
that max(|m − m′|, |n − n′|) = 1. The chain code [9] of G with respect to its
neighbor grid point in G1 can have a value in 0, 1, 2, ..., 7 as shown in Fig. 1(a).

Digital Curve (DC): A DC C is an ordered sequence of grid points (re-
presentable by chain codes) such that each point (excepting the first one) in C
is a neighbor of its predecessor in the sequence [21] (see Fig. 1(b)).

Retinal Blood Vessel Segmentation and Bifurcation Point Detection 263

Digital Circle: The properties of a digital circle can be defined as follows [1,18]:

(a) Chain code changes in same traversal direction.
(b) Pixels may form few digital straight line segments (DSS) with single chain

code.
(c) Difference in chain code for consecutive pixels will never exceed unity.

A digital circle can be divided into eight octants. Each octant in a circle repre-
sents a circular arc (as shown in Fig. 1(c)). Hence each circular arc is a part of
the digital circle and maintain the properties mentioned above.

Relaxed Digital Arc (RDA): In this work, we introduce the novel concept
of relaxed digital circular arc which relaxes the third property of digital arc. So
properties of RDA are as follows:

(a) Chain code changes in same traversal direction.
(b) Pixels may form few digital straight line segments with single chain code.
(c) Difference in chain code for consecutive pixels will never exceed 2.

Figure 1(d) and (e) show the digital arc (AB) and relaxed digital arc (CD)
respectively with S1 and S2 represent the straight and the curved region of the arc.

0

123

4

5 6 7

x

y Octant 1

O
ctant2

O
ctant3

Octant4Oct
ant

5

O
ct
an
t6

Oc
ta
nt
7

Oc
tan

t 8

0

A
B

S1
S2 C

D

S1
S2

(a) (b) (c) (d) (e)

Fig. 1. (a) Chain code, (b) Digital curve, (c) Digital circle, (d) Digital arc, (e) Relaxed
digital arc.

3 Proposed Method

The proposed method consists of several phases. Figure 2 shows different phases
of the proposed approach. In the initial phase, the input retina image under-
goes preprocessing to prepare the image for vessel extraction (Fig. 2(b) and (c)).
Vessel extraction and bifurcation point detection has different phases. The pre-
processed image passes through matched filtering, and thresholding process for
segmentation of retinal vascular network (Fig. 2(d),(e), and (f)). Finally, the
segmented retinal vascular network undergoes optic disc removal, thinning and
masking for detection of potential bifurcation points (Fig. 2(g), (h), and (i)).

264 T. Dutta et al.

(a) (b) (c) (d) (e)

(f)

(g)

(h)(i)

Preprocessing

SegmentationBifurcation Point Detection

Fig. 2. Proposed Method (a) Input retina image, (b) Adaptive histogram equalization
on green channel, (c) Contrast enhancement, (d) Matched filter output, (e) Threshold
and noise removal, (f) Morphological thinning, (g) Optic disc region extraction from
(b), (h) Optic disc removal from (f), (i) Bifurcation points identified (marked with red
points) (Colour figure online).

3.1 Preprocessing

In the preprocessing phase, colour channel selection, adaptive histogram equal-
ization, and contrast enhancement are performed to process the input retinal
image for blood vessel segmentation.

3.1.1 Colour Channel Selection
Retina image taken by Fundus camera appears with brighter optic disc region,
reddish retina surface and dark vascular network. Segmentation of vascular net-
work from Fundus retina image requires blood vessels to be more prominent.
Hence, we have extracted green component of the input RGB retinal image
(Fundus images from DRIVE database) and used it for the proposed segmenta-
tion and bifurcation point detection approach. Figure 3 shows that green channel
retina image (Fig. 3(c)) exhibits greatest contrast between background, vessels,
and other foreground objects.

3.1.2 Adaptive Histogram Equalization
The fundus images are often non-uniformly illuminated and they exhibit poor
contrast between the background and the blood vessels. The objective here is
to enhance the contrast so that vessels can be identified with greater accuracy.
Contrast limited adaptive histogram equalization (CLAHE) method [6] has been
used with a window size 9× 9 to enhance the contrast of the image (as shown in
Fig. 4(b)). CLAHE method partitions the image into contextual regions and then

Retinal Blood Vessel Segmentation and Bifurcation Point Detection 265

(a) (b) (c) (d)

Fig. 3. RGB Component (a) DRIVE Database Image #02, (b) Red Component, (c)
Green Component, (d) Blue Component (Colour figure online).

applies histogram equalization to each partition. This results in even distribution
of gray values and increases visibility of the low contrast features present in
the image.

3.1.3 Contrast Enhancement
To enhance the contrast further, morphological bottom hat transformation [7]
is applied on the histogram equalized image. The bottom-hat transformation
is used to extract valleys such as dark lines and dark spots. In the proposed
method, the bottom hat transformed image (Fig. 5(b)) is subtracted from the
adaptive histogram equalized image to generate retina image with more promi-
nent vascular network (Fig. 5(c)).

Intensity in gray scale

N
um

be
r

of
pi

xe
ls

Intensity in gray scale

N
um

be
r

of
pi

xe
ls

)b()a(

Fig. 4. Adaptive Histogram Equalization (a) Histogram of green channel component
(Fig. 3(c)), (b) Histogram after applying contrast limited adaptive histogram equaliza-
tion (Colour figure online).

4 Extraction of Retinal Vascular Network

Segmentation of retinal blood vessel consists of different phases like matched
filtering, thresholding, connected component analysis and removal of outer
boundary.

4.1 Linear Segment Detection Using Matched Filter

Matched filter [4] is used to detect piece-wise linear segments of blood vessels in
retinal images. As the blood vessels have very low contrast, a two-dimensional

266 T. Dutta et al.

(a) (b) (c) (d)

Fig. 5. Contrast Enhancement (a) Adaptive histogram equalized Image, (b) Bottom-
hat applied on (a), (c) Contrast enhanced image with prominent vessels, (d) Matched
filter output.

matched filter kernel is designed to apply to the retinal image in order to enhance
the contrast between blood vessel and background (as shown in Fig. 5(c)). Such
a kernel can be expressed as

f(x, y) = −exp
−x2

2σ2 , for |y| <= L/2 (1)

where σ = spread of the intensity profile and L=length of the vessel segment
assumed to be a straight line and have a fixed orientation. Here, we have used
multi scale matched filtering and the value of σ has been varied in the range 0
to 0.1 with each interval having value of 0.01. As the result shows (Fig. 5(d)),
use of multi-scale matched filter enhances the contrast between vessels and the
background significantly.

4.2 Threshold Computation from Intensity Distribution

Histogram of an image represents the distribution of image pixels among different
intensity levels. The histogram of image I with G intensity levels, is defined as
the discrete function H(rk) = nk where rk is the k-th intensity bin in the interval
[0,G] and nk is the number of pixels in the intensity bin rk [10].

In this paper, we propose a histogram based thresholding approach to extract
the vessels from the matched filtered retinal image. After matched filtering, reti-
nal images appear with dark background and white vessel part. The histogram
of such gray scale image has maximum number of pixels belonging to the dark
background region with lower intensity values and fewer pixels belong to maxi-
mum intensity level 255 white pixels. So we compute the pixel number difference
between every i-th and (i+1)-th intensity bin. The difference in number of pixels
among neighboring bins can be represented as

Δdi = |di − di+1| for 0 ≤ i ≤ 255 (2)

As the intensity bin with the histogram peak represents the intensity of the
background region pixels, we analyze the intensity region between the histogram
peak (index) and the maximum intensity level (index1) for selection of threshold

Retinal Blood Vessel Segmentation and Bifurcation Point Detection 267

intensity (as shown in Fig. 6(a)). In retinal images, it is noticed that Δdmin = 0
for many high value intensity bins. So the threshold value is computed in a
iterative process by comparing every bin count against the mean value (avg) of
Δdmax and Δdmin and replacing the maximum bin index (index1) with index
of the mean value (avg). The process terminates when three successive mean
value index remain unchanged (see Procedure threshold()). Figure 6(a) shows
the histogram of matched filtered retinal image. Figure 6(b) shows the retinal
image generated after thresholding of matched filtered image (Fig. 5(d)).

Procedure threshold(Imggray)

1. (count[], bin[]) ← generate hist(Imggray)
/*Computes pixel-count for each intensity bin of the gray image*/

2. m ← max(count[])
3. n ← sizeof(count[])
4. index ← find index(count[],m)

/* Computes the index of the value in the given array*/
5. pos[1], pos[2], pos[3], k ← 0
6. index1 ← n − 1
7. Repeat
8. j ← 0
9. for each i in index to index1
10. j ← j + 1
11. Δd(j) ← |(count(i) − count(i + 1)|
12. loop
13. Δdmax ← max(Δd)
14. Δdmin ← min(Δd)
15. avg ← �(Δdmax + Δdmin)/2�
16. for each i in index1 down to index
17. if(avg > count(i))
18. index1 ← i
19. end
20. loop
21. pos(k) ← index1
22. k ← k + 1
23. Until((pos(1) = pos(2))&(pos(2) = pos(3)))
24. ithr ← bin(pos(1))
25. return ithr

4.3 Connected Component Analysis

Connected component analysis is performed on thresholded image with 8-
connected objects. Pixels of the image are grouped in different labels depending
on their connectivity. Pixels belonging to background region are labeled with 0.

268 T. Dutta et al.

Intensity in gray scale

N
um

be
r
of

pi
xe
ls

index index1
ithr

avg

index=Bin width with maximum pixel count
index1=Maximum bin index
avg=Avarage of the Δdmax and Δdmin

ithr=Threshold intensity

)b()a(

Fig. 6. (a) Histogram of Fig. 5(d), (b) Thresholded image.

The proposed method counts the number of pixels in each label to differenti-
ate between vessels and unwanted noise. In the thresholded retinal image, the
component with maximum number of pixels represents the image background.
As vessels are also connected components, they appear as the components with
relatively fewer pixels. Some components with very few pixels are identified as
noise or unwanted elements. The proposed method has eliminated the compo-
nents with fewer pixel count (fewer than 150) to remove the noise and generate
the segmented vascular network (Fig. 7(a)).

4.4 Removal of the Outer Boundary

Canny edge detection is used to detect the outer boundary (see Fig. 7(b)) of the
segmented retinal image. The boundary image is dialated and subtracted from
the segmented vascular network to remove the outer boundary of the segmented
retinal image (as shown in Fig. 7(c)).

(a) (b) (c)

Fig. 7. Outer Boundary Removal (a) Image after noise removal of Fig. 6(b), (b) Outer
Boundary of (a), (c) Outer boundary removed from (b).

5 Bifurcation Point Detection

Segmented blood vessel image is used to detect the bifurcation points. The pro-
posed approach detects the candidate bifurcation points by applying 3× 3 mask
on the thinned segmented vascular network. Removal of optic disc region helps to
improve the effectiveness of the proposed bifurcation point identification process.
Finally, the small length sub-vessel filtering is performed to identify the potential
bifurcation points.

Retinal Blood Vessel Segmentation and Bifurcation Point Detection 269

5.1 Thinning

The proposed method have used single pixel wide vessel network for correct
identification of bifurcation points. Morphological thinning is applied on the
segmented vascular network of retinal image before using it for bifurcation point
detection (Fig. 8(b)). The thinned single pixel based vascular network appears
with the spurious pixels. These spurious pixels are removed from the thinned
vascular network by applying a 3× 3 neighborhood filter window (as shown in
Fig. 8(c)).

A

B

C
R

P1 P2 P3

P4Pi,jP8

P7 P6 P5

(a) (b) (c)

Fig. 8. Thining (a) Thinned vascular Network, (b) Probable bifurcation points detected
by 3× 3 masking on (a), (c) 3× 3 mask pixel combination on marked region ‘A’ of (b).

5.2 Candidate Bifurcation Points Detection

The thick vessels appear in retinal image bifurcate into thin sub-vessels. Detec-
tion of these bifurcation points is important for disease diagnosis and biometric
authentication using retinal images. In some images, crossover points among
neighboring vessels may also appear as false bifurcation points. So the main
challenge in bifurcation point detection is to identify the potential bifurcation
points from the group of candidate bifurcation points recognized in the seg-
mented vascular network. The proposed method has applied a 3 × 3 mask [11]
to detect the probable bifurcation points appear in the segmented vascular net-
work. If a pixel represents a candidate bifurcation point, then considering a 3×3
mask over that pixel, at least three pixels withtin the mask will represent ves-
sel pixel (with intensity 1). So, a pixel Pi qualifies to be a bifurcation point if
b(Pi) = 1

2

∑8
i=1 |Pi − Pi+1| has the value 3.

Applying this property we have identified the candidate bifurcation points
(as shown in Fig. 8(b)) on the vascular network. Analysis of the bifurcation
points identified by 3 × 3 mask shows that many points are identified falsely
as bifurcation points in the optic disc region of the vascular network as this
region has many overlapping vessels. Some bifurcation points have very small
sub-vessel length. In some cases, some vessel crossover points are also detected
as bifurcation points. Such false bifurcation points are filtered in three phases.

270 T. Dutta et al.

5.3 Optic Disk Removal

In the proposed method, several false bifurcation points are identified in the
optic disc region of the vascular network. Those false points can be removed
by removing the optic disc region from the segmented vascular network. The
proposed method has removed the optic disc region from the contrast enhanced
retina image (Fig. 9(a)) by applying intensity thresholding based segmentation,
noise removal and relaxed digital arc based circular mask generation.

5.3.1 Segmentation
As the optic disc region is the maximum illuminated area in the retinal image,
segmentation of optic disc can be done by intensity thresholding. For intensity
thresholding, we have applied global histogram equalization on the green com-
ponent of the RGB image. Global histogram equalization exhibits the most lucid
illumination at optic disc region. So its complement generates the darkest region
at optic disc area. Exploiting this fact, the brighter image is subtracted from its
complement, to obtain a part of the optic disk (Fig. 9(a)).

5.3.1.1 Noise Removal. After the extraction of optic disc part by intensity
thresholding, noise removal process using connected component analysis and
length filtering is applied to filter the noise part present in the thresholded optic
disc image. To improve the quality of the segmented optic disc portion, region
filling is done to fill the thin black region appearing in the segmented optic disc
(Fig. 9(b)).

(a) (b)

Fig. 9. Optic disc segmentation (a) Segmented optic disc, (b) Optic disc after noise
removal.

5.3.1.2 Circular mask generation. The contour of the segmented optic disc is
analyzed to generate the circular mask to cover the optic disc region in the
vascular network. We utilize the properties of digital arc [18,19] and digital
circle [1] to generate the circular mask covering the optic disc contour.

Chain code analysis of digital arc: Analysis of digital arc chain code shows that
a circular arc can have straight component and curved component. The straight

Retinal Blood Vessel Segmentation and Bifurcation Point Detection 271

component can have only two chain consecutive codes with one single occurrence
and one multiple occurrence (with runs differ in length by at most unity) [19].
At the beginning of the curved region, the chain code with multiple occurrence,
appears in single runs and break the straightness. Appearance of a new chain
code indicates the start of a new octant. Figure 1(d) shows the segment of a
digital arc ‘AB’ with ‘S1’ and ‘S2’ represent the straight component and curved
region respectively.

In the proposed method, we analyze the chain code of the optic disc contour
and identify the length of different relaxed digital arcs (with consecutive chain
code atmost differs by 2). Figure 10(a) shows the relax digital arcs (RDA) iden-
tified in the optic disk contour. The RDA with maximum length is considered
as the octant of the circular mask (arc S9 in Fig. 10(a)).

S1

S2
S3

S4
S5
S6

S7
S8

S9

S10
S11

S12S13

S14

S15S16

S17

S18
S19

S20
S21
S22

S1

S2
S3

S4
S5
S6

S7
S8

S9

S10
S11

S12S13

S14

S15S16

S17

S18
S19

S20
S21
S22

C(x, y)

r

(a) (b) (c) (d)

Fig. 10. Optic disc removal (a) RDAs identified in optic disc contour, (b) Optic disc
contour with circular mask, (c) Optic disc encircled in retina image, (d) Vascular
network after optic disc removal.

The proposed circular mask generation process includes following steps:

(a) Identify the RDA with maximum length (arcmax) from the optic disc con-
tour.

(b) Compute the radius of the arcmax (considering arcmax as octant of the
proposed circular mask).

(c) If the chain code pattern of arcmax follows clockwise direction (07/06/
76/../10 for left to right traversal of the image, like S1, S9 in Fig. 10(a)),
computes the center of the circular mask using arcmax end-point positions,
and radius of the arcmax.

(d) If the chain code pattern of arcmax follows counter-clockwise direction (like
S2, S4 in Fig. 10(a)), computes the center of the circular mask in the opposite
side of the RDA center (using arcmax end-point positions, and radius of
the arcmax), as couter-clockwise chain code pattern indicates distortion in
segmented optic disc contour.

Finally, this circular mask is used to cover the optic disc region in the retinal
vascular network. Figure 10(b) and (c) shows the circular mask and Fig. 10(d)
shows the vascular network after removal of optic disc region.

272 T. Dutta et al.

5.4 Small Length Sub-vessel Filtering using 5 × 5 Mask

Few bifurcation points detected by 3 × 3 mask have very small length (one
pixel) sub-vessels (point ‘B’ of Fig. 8(b)). These points cannot be considered
as potential bifurcation points. We have applied a 5 × 5 mask to filter such
bifurcation points. A 5 × 5 mask can be considered as a 3 × 3 mask with a
one pixel thick outer layer on it. The pixels in the outer layer are the nearest
neighbors of the pixels in the inner 3 × 3 mask. The corner pixels in the 3 × 3
mask have 5 neighboring pixels (e.g. pixel P1 has P10, P11, P12, P25 and P24
as neighbors) in the outer layer and the intermediate pixels of the 3 × 3 mask
have 3 nearest neighbor pixels (e.g. P4 has P15, P16 and P17 as neighbors)
in the outer layer (Fig. 11(a)). For each probable bifurcation point identified by
the 3 × 3 mask, the proposed method has checked the the pixel values of the
outer layer of 5 × 5 mask. If for each white boundary pixel in the 3 × 3 mask,
one neighboring white pixel appears in the outer layer of the 5 × 5 mask, the
bifurcation point is considered as the potential bifurcation point. Figure 11(a)
shows the pixel distribution of a potential bifurcation point (point ‘A’ of 8(b))
and Fig. 11(b) shows the pixel distribution of a false bifurcation point with very
small sub-vessel length (point ‘B’ of Fig. 8(b)).

Fig. 11. Bifurcation Point Detection (a) 5×5 mask pixel combination on marked region
‘A’ of Fig. 8(b), (b) 5 × 5 mask pixel combination on marked region ‘B’ of Fig. 8(b),
(c) Potential bifurcation points after applying 5 × 5 mask and bifurcation point pair
filtering, (d) crossover point, (e) false detection of bifurcation point pair.

5.5 False Bifurcation Point Pair Filtering

In many situations, a single crossover point is wrongly detected as a pair of
bifurcation points (point ‘CP’ of Fig. 11(e)) [2]. Such false detection is identi-
fied by checking the distance of the nearest bifurcation point for each probable
bifurcation point. If the distance is much smaller (less than 3 pixels), those
two bifurcation points are removed. Figure 11(c) shows the potential bifurcation
points detected after filtering.

Retinal Blood Vessel Segmentation and Bifurcation Point Detection 273

Table 1. Vessel Segmentation and Bifurcation Point Detection Accuracy.

Sl No. Accuracy
(%)

Manual
Count

Algorithm
Count

1 95.13 70 71
2 94.32 65 61
3 93.08 72 89
4 95.83 50 48
5 95.73 39 48
6 95.05 57 55
7 94.67 57 54
8 94.80 22 25
9 95.92 42 38
10 95.47 60 55

Sl No. Accuracy
(%)

Manual
Count

Algorithm
Count

11 94.77 53 60
12 95.69 48 52
13 94.84 60 58
14 95.26 71 63
15 94.12 38 33
16 95.32 85 79
17 95.21 67 59
18 95.48 52 47
19 95.41 76 65
20 95.55 62 57

Table 2. Comparison of accuracy for Blood Vessel extraction using different
approaches.

Serial No. Algorithm Average Accuracy

1 Marin [15] 94.52

2 Chaudhuri [3] 87.73

3 Jiang and Mojon [12] 89.11

4 Mendonca [17] 94.63

5 Martinez-Perez [16] 93.44

6 Chinsdikici and Aydin [5] 92.93

7 Staal [24] 94.41

8 Proposed Method 95.26

6 Experimental Results

The proposed vessel extraction algorithm is tested using the images of the
DRIVE database. In order to quantify the accuracy of vessel extraction using
proposed method, we have compared the outcome of the proposed method with
respective manually segmented test images available in the DRIVE database.
The accuracy is checked using the Confusion Matrix [15]. Considering true-
positive (TP), true-negative (TN), false-positive (FP) and false-negative (FN)
segmented vessels, the accuracy can be represented as Ac = TP+TN

TP+TN+FP+FN .
The proposed method shows 95.26 % accuracy in vessel segmentation using test
images from DRIVE database (shown in Table 1). The accuracy of bifurcation
point detection part is evaluated by counting the number of bifurcation points
detected manually from the segmented image and those detected using the pro-
posed method. Table 1 also shows the variation in point detection.

In this table, serial number represents DRIVE database test image number,
accuracy represents vessel segmentation accuracy, and count represents bifurca-
tion point count.

We have compared the average performance of the proposed approach with
other existing retinal blood vessel segmentation algorithms (using same images of

274 T. Dutta et al.

DRIVE database) listed in Table 2. It reveals that the proposed method exhibits
better accuracy than existing approaches.

7 Conclusion

In this paper we propose an efficient method for fully automated blood vessel
extraction. We have used adaptive histogram equalization, multi-scale matched
filtering and an automated thresholding scheme that shows the vessel segmen-
tation accuracy of 95.26 %. The concept of digital arc is utilized to generate
the circular mask for optic disc removal from the segmented vascular network.
We have identified the potential bifurcation points by applying 3 × 3 and 5 × 5
mask on the segmented vascular network. Performance analysis of the experi-
mental findings shows satisfactory results. This work can be extended in future
for disease diagnosis and biometric authentication based on retinal images.

Acknowledgements. Authors would like to acknowledge Department of Science &
Technology, Government of India, for financial support vide ref. no. SR/WOS-A/ET-
1022/2014 under Woman Scientist Scheme to carry out this work. We also acknowl-
edge the use of DRIVE database (http://www.isi.uu.nl/Research/Databases/DRIVE/
download.php) images for implementation and testing of the proposed approach.

References

1. Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construc-
tion of a digital circle. Discrete Appl. Math. 156, 2381–2399 (2008)

2. Bhuiyan, A., Nath, B., Ramamohanarao, K.: Detection and classification of bifur-
cation and branch points on retinal vascular network. In: Proceedings of Digital
Image Computing Techniques and Applications (DICTA), pp. 1–8 (2012)

3. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of
blood vessels in retinal images using two-dimensional matched filters. IEEE Trans.
Med. Imaging 3, 263–269 (1989)

4. Chutatape, O., Zheng, L., Krishnan, S.M.: Retinal blood vessel detection and track-
ing by matched gaussian and kalman filters. In: Proceedings of Engineering in
Medicine and Biology Society, pp. 3144–3149 (1998)

5. Cinsdikici, M., Aydin, D.: Detection of blood vessels in ophthalmoscope images
using MF/ant (matched filter/ant colony) algorithm. ELSEVIER Trans. Med.
Imaging 2, 85–96 (2009)

6. Fazli, S., Samadi, S., Nadirkhanlou, P.: A novel retinal vessel segmentation based
on local adaptive histogram equalization. In: Proceedings of Machine Vision and
Image Processing (MVIP), pp. 131–135 (2013)

7. Fraz, M.M., Javed, M.Y., Basit, A.: Evaluation of retinal vessel segmentation
methodologies based on combination of vessel centerlines and morphological
processing. In: Proceedings of Emerging Technologies (ICET), pp. 232–236 (2008)

8. Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A., Owen, C.,
Barman, S.: Blood vessel segmentation methodologies in retinal images a survey.
Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

http://www.isi.uu.nl/Research/Databases/DRIVE/download.php
http://www.isi.uu.nl/Research/Databases/DRIVE/download.php

Retinal Blood Vessel Segmentation and Bifurcation Point Detection 275

9. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans.
Electron. Comput. EC–10(2), 260–268 (1961)

10. Gonzalez, R., Woods, R.E.: Digital image processing (2008)
11. Iqbal, M.I., Aibinu, A.M., Nilsson1, M., Tijani, I.B., Salami, M.J.E.: Detection

of vascular intersection in retina fundus image using modified cross point number
and neural network technique. In: Proceedings of Computer and Communication
Engineering, pp. 241–246 (2008)

12. Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multi-
threshold probing with application to vessel detection in retinal images. IEEE
Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)

13. Kuri, S.K., Patankar, S.S., Kulkarni, J.V.: Optimized MFR & automated local
entropy thresholding for retinal blood vessel extraction. In: Proceedings of Electri-
cal and Computer Engineering (ICECE), pp. 141–144 (2012)

14. Lu, S.: Accurate and efficient optic disc detection and segmentation by a circular
transformation. IEEE Trans. Med. Imaging 30(12), 2126–2133 (2011)

15. Marn, D., Aquino, A., Arias, M.E.G., Bravo, J.M.: A new supervised method
for blood vessel segmentation in retinal images by using gray-level and moment
invariants-based features. IEEE Trans. Med. Imaging 1, 146–158 (2011)

16. Martinez-Perez, M., Highes, A., Stanton, A., Thorn, S., Chapman, N., Bharath,
A., Parker, K.: Retinal vascular tree morphology: a semi-automatic quantification.
IEEE Trans. Biomed. Eng. 8, 912–917 (2006)

17. Mendonca, A., Campilho, A.: Segmentation of retinal blood vessels by combining
the detection of centerlines and morphological reconstruction. IEEE Trans. Med.
Imaging 9, 1200–1230 (2006)

18. Pal, S., Bhowmick, P.: Estimation of discrete curvature based on chain-code pair-
ing and digital straightness. In: Proceedings of IEEE International Conference on
Image Processing, pp. 1097–1100 (2009)

19. Pal, S., Dutta, R., Bhowmick, P.: Circular arc segmentation by curvature estima-
tion and geometric validation. World Sci. Int. J. Image Graph. 12, 1250024-1–
1250024-24 (2012)

20. Patwari, M.B., Manza, R.R., Rajput, Y.M., Saswade, M., Despande, N.: Personal
identification algorithm based on retinal blood vessels bifurcation. In: Proceedings
of Intelligent Computing Applications (ICICA), pp. 203–207 (2014)

21. Rosenfeld, A.: Digital straight line segments. IEEE Trans. Comput. 12, 1264–1269
(1974)

22. Sappa, A.D.: Unsupervised contour closure algorithm for range image edge-based
segmentation. IEEE Trans. Image Process. 15(2), 377–384 (2006)

23. Sappa, A.D., Devy, M.: Fast range image segmentation by an edge detection strat-
egy. In: Proceedings of IEEE International Conference on 3D Digital Imaging and
Modeling, pp. 292–299 (2001)

24. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-
based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging
4, 501–509 (2004)

Reconstruction of Bicolored Images

Alain Billionnet1, Fethi Jarray1,3, Ghassen Tlig1,3(B),
and Ezzeddine Zagrouba2

1 Cedric-CNAM, 292 Rue St-Martin, Paris, France
2 Higher Institute of Computer Science, Tunis, Tunisia

3 Higher Institute of Computer Science, Medenine, Tunisia
alain.billionnet@ensiie.fr, fethi jarray@yahoo.fr,

ghassen.tlik@gmail.com, ezzeddine.zagrouba@fsm.rnu.tn

Abstract. In this paper, we present an integer programming approach
to estimating a discrete bi-colored image from its two-color horizontal
and vertical projections. The two-color projections basically refer to the
number of pixels per column having colors c1 and c2, and likewise for
each row as well. The aim of the integer programming approach is to
minimize the number of conflict pixels, i.e. the number of pixels that
have color c1 as well as c2. Since the problem is NP-complete, we give
a survey of the literature and we propose a new integer programming
formulation of this problem.

Keywords: Discrete tomography · Reconstruction bicolored images ·
Integer programming

1 Introduction

Discrete tomography deals with the reconstruction of discrete objects from lim-
ited number of projections. The projections are quantitative information about
the elements of the object that lie on discrete lines parallel to a given set of
directions.. Discrete tomography is applicable in many interesting areas such as
non-destructive testing, scheduling [7,18], image processing, electron microscopy
and radio tomographic imaging.

The first results in the area of discrete tomography were shown independently,
in 1957, by Ryser [22] and Gale [15] about the reconstruction of binary matrices
from the row sums and column sums. Ryser also provided a polynomial time
algorithm for reconstructing binary matrix from two projections. Later, many
features about the structural proprieties of the matrices to reconstruct were
studied. An overview of the main results in this field are collected in [16,17].

In this paper, we examine a new formulation to reconstruct bicolored images
from orthogonal projections. In Sect. 2, we introduce some definitions and pre-
liminary results. In Sect. 3, we present a short survey of the main approaches
about the reconstruction of bicolored images. In Sect. 4, we provide an integer
programming formulation. In Sect. 5, we discuss the numerical results.

c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 276–283, 2015.
DOI: 10.1007/978-3-319-26145-4 20

Reconstruction of Bicolored Images 277

2 Definitions and Preliminary Results

We consider a black and white image A of size m× n. A can be considered as a
binary matrix, A = [ai,j], where the black color is replaced by (1) and the white
color is replaced by (0). Let hi =

∑n
j=1 ai,j be the number of black cells on row

i and vj =
∑m

i=1 ai,j is the number of black cells on column j. We denote by
H = (h1, . . . , hm) ∈ N

m and V = (v1, . . . , vn) ∈ N
n the row and column sums

of A. For example, the binary image in Fig. 1 has the horizontal and vertical
projections H = (2, 4, 5, 1, 5, 4, 5), and V = (2, 4, 4, 2, 5, 4, 5). The class of all
binary images having the horizontal projection H and the vertical projection V
is denoted by BM(H,V).

Fig. 1. A binary image and the equivalent binary matrix with horizontal projection
H = (2, 4, 5, 1, 5, 4, 5) and vertical projection V = (2, 4, 4, 2, 5, 4, 5).

The reconstruction of a black and white image or a binary matrix is stated
as follows:

Reconstruction Binary Image: RBI(H,V)
Given: H = (h1, . . . , hm) ∈ N

m and V = (v1, . . . , vn) ∈ N
n.

Goal: Construct an m × n binary image that satisfies H and V ,
i.e., row i has exactly hi black cells and column j has exactly vi
black cells.

RBI(H,V) is solved in polynomial time [22] but the reconstruction is not
unique and the reconstruction under additional geometrical constraints is studied
in [1,9,13,21]. The most considered constraints are convexity and connectedness
[1,5,11,12,23].

Definition 1. Given a colored image A = [ai,j] of size m × n. The horizontal
projection of color c is the vector Hc = (hc

1, . . . , h
c
m) ∈ N

m where: hc
i = |{j :

ai,j = c}|. The vertical projection of color c is the vector V c = (vc1, . . . , v
c
n) ∈ N

n,
for c ∈ C where vcj = |{i : ai,j = c}|.

278 A. Billionnet et al.

3 Reconstruction of Bicolored Images

In this paper, we are mainly concerned with the problem of reconstructing bicol-
ored images (c = 2). We suppose that a cell can be empty, colored by c1 or colored
by c2 (see Fig. 2). The associated decision problem can be defined as:

Reconstruction Bicolored Image: RBCI(H,V)
Given: Two orthogonal projection for color c1 and c2, H =
(Hc1 ,Hc2) and V = (V c1 , V c2).
Goal: Construct an m × n bicolored image that satisfies the row
and column sums H and V.

Fig. 2. Bicolored image with its projections H = (Hc1 , Hc2) and V = (V c1 , V c2).

The class of bicolored images having the horizontal projection H =
(Hc1 ,Hc2), and vertical projection V = (V c1 , V c2) will be denoted by
BCM(H,V). The reconstruction of bicolored images from their horizontal and
vertical projections for each color is NP-complete [14]. Several solvable cases
in polynomial time have been studied [2,6,8,10]. In the following, we describe
shortly three approximation algorithms from previous works to solve the recon-
struction bicolored image, RBCI(H,V).

Algorithm 1 is a Lagrangean approach published in [19]. Jarray [19] presents a
binary quadratic formulation to build an m × n bicolored images with smooth-
ness proprieties. The objective function minimizes the number of overlapping
between colors c1 and c2. The constraints ensure that the image solution respects
the orthogonal projections of colors c1 and c2. Using a Lagrangian relaxation

Reconstruction of Bicolored Images 279

1

s t

Row nodes Column nodes

2

2

c1

c2

c3

c4

hi

2

3

3

3

1

2

2

2

2

3

3 123vj

r1

r2

r3

r4

Fig. 3. Reconstruction binary problem RBI(H,V) and the associated max-flow prob-
lem, where H = (2, 2, 2, 3) and V = (3, 2, 3, 1).

method, Jarray [19] shows that the problems RBCI(H,V) can be decomposed
into two subproblems of reconstructing binary image where each subproblem is
equivalent to a min-cost max-flow problem in a bipartite graph.

Algorithm 2 is an heuristic algorithm published in [3,4]. This method approx-
imates the bicolored image in two steps. In the first step, Ryser’s algorithm is
used [22] to compute a solution for each color c1 and c2 without regarding the
overlapping colors. In the second step, the above solutions are merged in unique
image, which may have a conflict between colors. For each pixel having a con-
flict the method searches a convenient switching components that removes the
conflicts without changing the projections.

Algorithm 3 is an iterative algorithm published in [20]. Jarray and Tlig [20]
propose an approximation based on a max-flow technique. Firstly, an associated
max-flow problem is used to compute an initial solution for color c1 (see Fig. 3).
Then, a solution for color c2 is computed by solving the associated min-cost max
flow problem where the cost is the solution of color c1 obtained in the previous
iteration (see Fig. 3). Subsequently, the solution in the previous iteration is used
as a cost to determine a solution to solving the associated min-cost max flow
problem. This procedure is repeated until the conflict between the solutions of
color c1 and c2 is resolved or becomes constant.

4 Integer Programming Formulation

Our contribution in this paper is to reconstruct bicolored image by integer pro-
gramming technique. We introduce for each cell (i, j) two binary variables xi,j

and yi,j such that xi,j = 1 if the cell (i, j) is colored by color c1 and yi,j = 1 if
the cell (i, j) is colored by color c2. If xi,j = yi,j = 0 then the cell (i, j) is said
to be empty or uncolored. We call a conflict cell (i, j) a cell colored by both c1
and c2, i.e., xi,j = yi,j = 1.

280 A. Billionnet et al.

Definition 2. Let X and Y be two m×n binary matrices. We define the conflict
between X and Y as conf(X,Y) =

∑m
i=1

∑n
j=1 xi,j yi,j, i.e., the number of cells

sharing value 1 on both X and Y .

The reconstruction of a solution of RBCI(H,V) can be expressed by the
following integer programming P

P

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑m

i=1

∑n
j=1 xi,jyi,j

s.t.∑n
j=1 xi,j = hc1

i i = 1, . . . ,m; (1.a)
∑m

i=1 xi,j = vc1j j = 1, . . . , n; (1.b)
∑n

j=1 yi,j = hc2
i i = 1, . . . ,m; (2.a)

∑m
i=1 yi,j = vc2j j = 1, . . . , n; (2.b)

xi,j , yi,j ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n;

The constraints ensure that the solution of P satisfies the orthogonal projec-
tions of color c1 and c2. The objective function minimizes the number of conflicts
between X and Y .

Definition 3. Let X and Y be two binary matrices, S = X ⊕ Y is a bicolored
image such that the cell (i, j) has the color c1 (resp. c2) if xi,j = 1 (resp. yi,j = 1).

For example,
(
1 0
0 1

)

⊕
(
0 1
1 0

)

=
(
c1 c2
c2 c1

)

.

Let X and Y two m × n binary matrices satisfying respectively (Hc1 , V c1)
and (Hc2 , V c2) with null intersection. The combination of X and Y , S = X⊕Y ,
gives a bicolored image satisfying the orthogonal projections and the exclusivity
condition, where each color is associated with the 1’s of one matrix. Even if it
is easy to get X and Y independently, it is very hard to get X and Y without
conflicts.

The program P can be easily linearized by replacing the quadratic terms
xijyi,j by the variables zij and by adding the linearization constraints (4.a, 4.b,
4.c and 4.d) to ensure the equivalence between linear program LP and integer
program P . We get the following equivalent integer linear program LP :

LP

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑m

i=1

∑n
j=1 zi,j

s.t.
(1.a), (1.b), (2.a), (2.b)
zi,j ≤ xi,j i = 1, . . . ,m; j = 1, . . . , n (4.a)
zi,j ≤ yi,j i = 1, . . . ,m; j = 1, . . . , n (4.b)
zi,j ≥ xi,j + yi,j − 1 i = 1, . . . ,m; j = 1, . . . , n (4.c)
zi,j ≥ 0 i = 1, . . . ,m; j = 1, . . . , n (4.d)
xi,j , yi,j ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n;

Program LP can be directly injected in an IP solver such as Cplex.

Reconstruction of Bicolored Images 281

Table 1. Numerical comparisons of the reconstruction of small size.

Image % colored Program P Algorithm 1 Algorithm 2 Algorithm 3

%c1 %c2 %Conf Time %Conf Time %Conf Time %Conf Time

20× 20 34.17 32.01 0 0.08 0 0.79 0 0.06 0 0.00

40× 40 33.18 33.59 0 0.19 0.11 2.13 0 0.14 0 0.00

60× 60 33.54 32.93 0 0.29 0.12 4.58 0 0.53 0 0.02

80× 80 33.14 33.39 0 0.74 1.27 8.72 0 0.85 0 0.04

100× 100 33.53 33.16 0 2.44 2.95 15.26 0 0.96 0 0.08

Table 2. Numerical comparisons of the reconstruction of average size.

Image % colored Program P Algorithm 1 Algorithm 2 Algorithm 3

%c1 %c2 %Conf Time %Conf Time %Conf Time %Conf Time

120× 120 33.51 33.22 0 6.17 4.05 25.53 0 3.64 0 0.10

140× 140 33.41 33.18 0 11.23 4.67 41.18 0 10.31 0 0.18

160× 160 33.24 33.36 0 30.73 5.28 64.09 0 23.23 0 0.21

180× 180 33.21 33.47 0 66.02 5.73 96.10 0 41.68 0 0.28

200× 200 33.28 33.43 0 109.21 6.02 139.38 0 66.08 0 0.35

220× 220 33.43 33.24 0 148.78 6.32 196.63 0 85.68 0 0.42

240× 240 33.31 33.34 0 190.77 6.61 270.71 0 133.43 0 0.49

260× 260 33.36 33.38 0 262.26 6.94 365.15 0 168.21 0 0.58

280× 280 33.41 33.25 0 371.49 7.28 483.38 0 213.48 0 0.74

300× 300 33.35 33.32 0 438.87 7.69 631.23 0 295.25 0 1.01

Table 3. Numerical comparisons of the reconstruction of large size.

Image % colored Program P Algorithm 1 Algorithm 2 Algorithm 3

%c1 %c2 %Conf Time %Conf Time %Conf Time %Conf Time

320 × 320 33.31 33.33 0 536.66 8.11 814.94 0 345.07 0 1.10

340 × 340 33.41 33.29 0 777.85 8.59 1042.77 0 428.43 0 1.14

360 × 360 33.31 33.31 0 929.28 9.10 1323.94 0 501.57 0 1.22

380 × 380 33.31 33.32 0 1353.30 9.69 1668.05 0 612.82 0 1.35

400 × 400 33.34 33.37 0 1510.99 10.37 2091.19 0 777.47 0 1.83

420 × 420 33.41 33.28 0 2279.72 11.12 2612.95 0 954.69 0 2.59

440 × 440 33.34 33.31 0 2718.20 12.00 3259.38 0 1135.71 0 2.87

460 × 460 33.38 33.26 0 3305.12 13.00 4064.08 0 1336.62 0 3.42

480 × 480 33.34 33.33 0 4295.35 14.21 5071.09 0 1593.43 0 4.01

500 × 500 33.33 33.31 0 4884.58 15.07 6343.67 0 1828.30 0 5.02

5 Numerical Results

In this section, we compare the linear integer program P with the Lagrangean
approach [19]), say Algorithm 1, the heuristic algorithm [3], say Algorithm 2,
and the iterative algorithm [20], say Algorithm 3. We use a large set of random

282 A. Billionnet et al.

bicolored images with size varying from 10 × 10 to 500 × 500. We compare the
reconstruction methods from the running CPU time and the number of conflicts.

The results of the computational experiments are summarized in Tables 1,
2 and 3. In these tables, the first column contains the size of the image. The
second column displays the ratio of the number of cells colored by color (c1 and
c2), in the original image. The subcolumn labeled Conf contains the ratio of
the number of conflicts provided by each method. The subcolumn labeled time
contains the running CPU Time (in seconds) required by each method. We have
used three classes of image: small size (see Table 1), average size (see Table 2)
and large size (see Table 3).

The first main observation is that Algorithm 3 is the fastest one and it solves
the problem in few seconds and the CPU grows slightly in function of the size.

The second observation is that the Lagrangian relaxation, Algorithm 1, can-
not solve the problem to the optimality whereas the other approaches get a zero
conflicts. Moreover, the CPU is largely high compared to that of Algorithm 2
and Algorithm 3.

The third observation is that the IP approach get an optimal solution with
a zero conflict since it is an exact approach. However it needs about the double
of CPU consumed by Algorithm 2. However, the IP approach can support the
integration of new constraints which is not evident in Algorithm 2 and Algorithm
3, since the min-cost max flow problem may not be useful with other constraints.

6 Conclusion

In this paper, we have proposed an exact integer programming formulation to
reconstruct bicolored images from their orthogonal projections. Since the objec-
tive function is quadratic, we have used the linearization techniques and injected
the equivalent program to CPLEX solver. The numerical results show that the IP
finds the optimal solution for large size images. The CPU time can be decreased
by deeply analyze the polyhedron of IP and adding more valid cuts. As a future
work, we plan to try other generation methods to verify how performances change
in the analyzed algorithms.

References

1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: The reconstruction of polyomi-
noes from their orthogonal projections. Theor. Comput. Sci. 155, 321–347 (1996)

2. Barcucci, E., Brocchi, S.: Solving multicolor discrete tomography problems by using
prior knowledge. Fundamenta Informaticae 125, 1–16 (2013)

3. Barcucci, E., Brocchi, S., Frosini, A.: Solving the two color problem: an heuristic
algorithm. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N.,
Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 298–310. Springer,
Heidelberg (2011)

4. Brocchi, S.: The three color problem solver (2014). http://www.researchand
technology.net/discretetomography/3colorproblem/3colorsolver.html

http://www.researchandtechnology.net/discretetomography/3colorproblem/3colorsolver.html
http://www.researchandtechnology.net/discretetomography/3colorproblem/3colorsolver.html

Reconstruction of Bicolored Images 283

5. Billionnet, A., Jarray, F., Tlig, G., Zagrouba, E.: Reconstructing convex matrices
by integer programming approaches. J. Math. Model. Algor. 12, 329–343 (2013)

6. Brocchi, S., Frosini, A., Rinaldi, S.: A reconstruction algorithm for a subclass of
instances of the 2-color problem. Theor. Comput. Sci. 412, 4795–4804 (2011)

7. Costa, M.C., Jarray, F., Picouleau, C.: An acyclic days-off scheduling problem.
4’OR: Q. J. Oper. Res. 4(1), 73–85 (2006)

8. Costa, M.C., de Werra, D., Picouleau, C., Schindl, D.: A solvable case of image
reconstruction in discrete tomography. Discrete Appl. Math. 148, 240–245 (2005)

9. Costa, M.C., Jarray, F., Picouleau, C.: Reconstruction of binary matrices under
adjacency constraints. Electron. Notes Discrete Math. 20, 281–297 (2005)

10. Costa, M.C., de Werra, D., Picouleau, C.: Using graphs for some discrete tomog-
raphy problems. Discrete Appl. Math. 154, 35–46 (2006)

11. Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal
projection. Inf. Process. Lett. 69, 283–289 (1999)

12. Dahl, G., Fatberg, T.: Optimization and reconstruction of hv-convex (0,1)-
matrices. Electron. Notes Discrete Math. 12, 58–69 (2003)

13. Del Lungo, A., Frosini, A., Nivat, M., Vuillon, L.: Discrete tomography: recon-
struction under periodicity constraints. In: Widmayer, P., Eidenbenz, S., Triguero,
F., Morales, R., Conejo, R., Hennessy, M. (eds.) CALP 2002. LNCS, vol. 2380, pp.
38–56. Springer, Heidelberg (2002)

14. Dürr, C., Guiñez, F., Matamala, M.: Reconstructing 3-colored grids from horizontal
and vertical projections Is NP-hard. In: Fiat, A., Sanders, P. (eds.) ESA 2009.
LNCS, vol. 5757, pp. 776–787. Springer, Heidelberg (2009)

15. Gale, D.: A theorem on flows in networks. Pac. J. Math. 7(2), 1073–1082 (1957)
16. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations. Algorithms and

Applications. Birkhäuser, Boston (1999)
17. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications.

Birkhäuser, Boston (2007)
18. Jarray, F.: A 4-day or a 3-day workweeks scheduling problem with a given workforce

size. APJOR: Asian-Pac. J. Oper. Res. 26(5), 1–12 (2009)
19. Jarray, F.: A Lagrangian approach to reconstruct bicolored images from discrete

orthogonal projections. Pure Math. Appl. 20, 17–25 (2009)
20. Jarray, F., Tlig, G.: Approximating bicolored images from discrete projections.

In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva,
E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 311–320. Springer, Heidelberg (2011)

21. Picouleau, C., Brunetti, S., Frosini, A.: Reconstructing a binary matrix under
timetabling constraints. Electron. Notes Discrete Math. 20, 99–112 (2005)

22. Ryser, H.R.: Combinatorial properties of matrices of zeros and ones. Canad. J.
Math. 9, 371–377 (1957)

23. Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projec-
tions. Inf. Process. Lett. 77, 225–229 (2001)

Combinatorial Exemplar-Based Image Inpainting

Veepin Kumar(B), Jayanta Mukherjee,
and Shyamal Kumar Das Mandal

Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
jay@cse.iitkgp.ernet.in, {veepinkmr,sdasmandal}@cet.iitkgp.ernet.in

Abstract. We formulate image inpainting as a metric labeling problem.
We solve this metric labeling problem via a combinatorial approximation
approach. Results show the effectiveness of our method compared to
other recent methods.

Keywords: Inpainting · Image restoration · Exemplar · Metric labeling ·
Combinatorial approximation

1 Introduction

The process of removing any object from an image, and filling it such that it
looks like an original image, is known as image inpainting. It also includes filling
damaged portions of an image. The inpainting techniques, developed so far, can
be broadly classified into structure and texture based. Structure based techniques
[1,9] only use local information available at the boundary between source and
target region. In these techniques, the geometric structures, like level lines, edges,
etc., are extended or extrapolated to fill in the gap of the target region (called
‘hole’ in this work). The computation usually involves solving partial differential
equations or employing variational methods. These techniques give good results
when used to inpaint non-textured and smaller regions. However, the inpainted
region also gets blurred.

Texture based techniques [4,5] perform relatively better for inpainting tex-
tured and large regions. In this case, the objective is set to find the most similar
exemplar patches from the source region, iteratively, to fill the target region.
The approach suffers from the fact that it may fail to synthesize a geometry, if
there is no example of a target patch in the image.

Most of the exemplar based methods do not check for visual coherency of the
patches filled in target region with its neighbors. They do not consider whether
the filled patch is visually consistent with its surroundings, or it is very different.
There have been some combinatorial approaches to solve this difficulty [6,8,11].
The results produced by these techniques are visually better than traditional
structure and texture based techniques.

The present work is an improvement over our previous work [7]. In [7], we
modified the Criminisi’s [4] technique to produce better linear structures. Then,
we presented this modified exemplar based image inpainting as a metric labeling
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 284–298, 2015.
DOI: 10.1007/978-3-319-26145-4 21

Combinatorial Exemplar-Based Image Inpainting 285

problem. This metric labeling problem is formulated as the linear programming
relaxation of an integer program. This linear programming relaxation is then
solved using primal-dual approximation technique [2]. However, the technique
suffers from the fact that we can not use its minimum to get the best inpainted
image. A user needs to select the visually pleasant image out of a set of candidate
images near local optimum point.

In this paper, we first propose a modification to the techniques in [4,7] by
improving the quality of inpainiting of linear structures. We call it ‘LInear struc-
ture retaining Modified Exemplar based inPainting’ (LIMEP). After this, we
propose a COMbinatorial Exemplar based inPainting (COMEP) technique. We
first apply LIMEP on the image to be inpainted, then we apply COMEP on this
image. As in [7], in this case also, the problem is formulated as a metric label-
ing problem. However, we have used a combinatorial approximation approach to
solve this metric labeling problem. We observe that at every iteration the algo-
rithm provides a better quality inpainted image (as determined by technique
in [10]). Convergence of the algorithm is also guaranteed. The present work is
different from the work in [7] in following ways.

• We do not use linear programming based approach, and solve for the max-flow
of an augmented graph for performing the task as it was reported in [7].

• We modify the neighborhood criteria for neighboring patches, which ensures
better visual consistency inside the hole.

• We use a quality measure [10] for the inpainted images to proceed in the direc-
tion of generating good inpainted images. This ensures that results obtained
at the end is better than any of the intermediate processed image.

The present approach is simple in conceptualization. It produces better results
as compared to those obtained by previous techniques [4,7,8], and gives promis-
ing future directions. In the next section we describe our modification to the
techniques in [4,7]. After this, we present the proposed combinatorial image
inpainting technique. We present typical results of the proposed technique and
discuss them in Sect. 4. Conclusions highlighting future research directions that
may come out of this work, are drawn in Sect. 5.

2 LIMEP

We have an original image OI as shown in Fig. 1. We want to remove a portion
of this image, say Φ and reconstruct it. We call Φ as target region and remaining
portion Ω = OI − Φ as source region. In exemplar based approaches, we select
a patch along the boundary of source and target region, as shown in Fig. 1. We
call this patch as target patch. Target patch is selected according to its priority.
Then, we find the patch from the source region which is most similar to this target
patch. We call this patch as source patch. This procedure is repeated with all the
target patches, according to their priority, till whole target region is covered. At
the end we get the inpainted image.

286 V. Kumar et al.

Fig. 1. (a) Diagram showing source region, target region, target patch, and two source
patches similar to this target patch. (b) Diagram showing the four connected neighbor
patches corresponding to a source patch (Color figure online).

In this work, we modify the exemplar based inpainting technique [4,7] to
propagate linear structures in a better way. We give priority to target patches as
introduced by us in [7]. This modified priority ‘P̃ (p)’ for each patch, centered at
pixel p, is given by:

P̃ (p) = C(p)D(p)E(p). (1)

where C(p) is called the confidence term, D(p) is called the data term, and E(p)
edge length term. The confidence term corresponds to the number of known
pixels in the target patch, the data term corresponds to the measure of the edges
at the center pixel of the target patch, and the edge length term corresponds to
the number of pixels which are part of an edge in the target patch. They are
given as below.

C(p) =

∑

q∈ψp∩(I−Ω)

C(q)

| ψp | ,D(p) =
| �I⊥

p .np |
α

,E(p) =

∑

q∈ψp∩(I−Ω)

I(q)

| ψp | . (2)

where | ψp | is the area of the target patch denoted by ψp, α is the normalization
factor, np is an orthogonal unit vector to the fill front and ⊥ denotes the orthog-
onal operator. For initialization, the confidence i.e. C value of each pixel in the
known region of the image is taken to be 1 and that in the unknown region is
taken to be 0. I(q) denotes the intensity gradient at any point q and is given as
below.

I(q) = | Ix(q) | + | Iy(q) | . (3)

In the above equations, Ix and Iy are, respectively, intensity gradients in x and
y directions.

For each target patch, denoted by ψi centered at pixel p, we find two source
patches, which are most similar to it. We denote these source patches by ψi1 and

Combinatorial Exemplar-Based Image Inpainting 287

ψi2. The similarity measure is given by the sum of absolute differences between
already known pixels of the target patch and the source patch, as given below.

Ψi1 = argmin
Ψim∈Ω

d(Ψim, Ψi). (4)

Ψi2 = argmin
Ψin∈(Ω−Ψi1)

d(Ψin, Ψi). (5)

where d(Ψim, Ψi) denotes the sum of absolute differences between already known
pixels of the two patches Ψim and Ψi. It is given as.

d(Ψim, Ψi) =
w×w∑

k=1

| Ψi(k) − Ψim(k) | . (6)

where w × w is the patch size. Note that this absolute patch difference is the
sum of differences between RGB components.

We fill the unknown part of the target patch ψi from the corresponding parts
of the two source patches ψi1 and ψi2. We call the resulting patches as filled
patches, and denote them by ψ̂i1 and ψ̂i2, respectively. We check which filled
patch, of the two, has maximum number of points belonging to edges, in any of
the two directions, horizontal and vertical directions. We accept this filled patch
for inpainting the image. We call this filled patch as inpainted patch, and denote
it by ψ̂i. This ensures that linear structures are retained and propagated better.
Mathematically, this operation is given below.

ψ̂i =

{
ψ̂i1, if nx1 ≥ {ny1, nx2, ny2} or ny1 ≥ {nx1, nx2, ny2}
ψ̂i2, otherwise.

(7)

where nx1, ny1, nx2 and ny2 are the number of pixels which are part of an edge of
the filled patches ψ̂i1 and ψ̂i2 in horizontal and vertical directions, respectively.
We use following central differences gradient operator for detecting the edge:

Lx = [−1/2 0 1/2] (8)
LY = [−1/2 0 1/2]′ (9)

where, LX is the gradient operator in horizontal direction and LY is the gradient
operator in vertical direction and ′ denotes the transpose operator.

After filling the target region with the inpainted patch, we again determine
the priority of resulting target patches at the boundary between source and target
regions. Then, we select the patch with highest priority again to fill it via the
same procedure as explained above. We repeat this procedure till no target patch
is left to get the final inpainted image.

The proposed modification is based on the fact that edges are perceptually
very important in an image. Results demonstrate the effectiveness of our tech-
nique in propagating linear structures.

288 V. Kumar et al.

Fig. 2. Diagram showing three patch sets containing (from left to right) target patches,
best exemplar patches and second best matching patches.

3 COMEP

In this section we describe our proposed COMEP technique. We have an image
OI with a region to be inpainted denoted by Φ, as discussed in the previous
section. We apply the LIMEP algorithm to this image. For each target patch Ψi,
we find first two exemplars Ψi1, Ψi2 which are most similar to Ψi, as discussed in
previous section. Thus, we construct three patch sets as shown in Fig. 2, namely
the set of target patches, the set of best exemplar patches and the set of second
best exemplar patches. We denote them by τ , S1 and S2, respectively. Now,
our goal is to decide which patch from sets S1 and S2 should come at the
corresponding position in set τ . Note that some patches from set S2 are more
preferred to come at corresponding positions of set τ , if they result in larger edges
in the resulting filled patches, as discussed in the previous section. We do not
need to make decision for these patches. Thus, we pose the inpainting problem
as a metric labeling problem [3]. Here patches Ψi in target region correspond
to objects, and the best two exemplars Ψim, (m = 1, 2.) correspond to its two
candidate labels. We refer to them as label patches. Whenever we assign a label
patch to a target patch, we incur a cost. This cost has two components - self cost
and neighbor cost. The self cost gives a measure of the similarity of the label
patch with the assigned target patch. The neighbor cost gives a measure of the
similarity of the assigned label patch with the neighboring target patches. We
have considered four connected neighborhood. Distance between the centers of
two neighboring patches is w, where w×w is the patch size as shown in Fig. 1(b).

We denote the total cost of assigning a label patch Ψim to a target patch Ψi

as TΨi,Ψim
, and is given below.

TΨi,Ψim
= Sψi,ψim

+ Nψiψj
. (10)

where, Sψi,ψim
denotes the cost of assigning label patch ψim to target patch ψi.

It is given by the sum of absolute differences of already filled pixels of the two
patches ψi and ψim. Nψiψj

denotes the neighborhood cost of assigning label
patch ψim to target patch ψi. It is given by the sum of absolute differences of the

Combinatorial Exemplar-Based Image Inpainting 289

already filled pixels of the two patches ψim and ψj , for all the four connected
neighbor patches ψj . Thus, total cost becomes:

TΨi,Ψim
=

w×w∑

k=1

| Ψi(k) − Ψim(k) | +λ
∑

ψj∈Nψim

w×w∑

k=1

| ψi(k) − ψj(k) | . (11)

where, λ is a constant which determines the weightage between self cost and
neighbor cost towards the total cost. We have taken λ = 1. Now, our objective is
to produce a good inpainted image by minimizing this cost for each label patch.
The computational steps of the algorithm are given below:

1. Assign the best exemplar patch i.e. label patch to each target patch (we refer
to the currently applied label patch as the active label patch).

2. Calculate the costs of assignment of a label patch to a target patch for both
the label patches of all the target patches.

3. Compare the costs of both the label patches for each target patch. For this
comparison, the target patches are selected based on their priority according
to Eq. (1).

4. If a node, say ψp, at which cost of assignment of label patch ψp2 is less than
that of label patch ψp1, then its label patch ψp1 is replaced with label patch
ψp2. The cost of assignment of a label patch to a target patch is calculated
according to Eq. (11). In order to maintain visual consistency among filled
patches, the patches with filling priority (refer to Eq. (1)) greater than the
patch ψp are assigned label ψp2. Thus, such patches are filled with second best
exemplar patch. Now, the priorities of patches corresponding to boundary
pixels of the target region which includes the patch ψp get changed due to
the assignment of the label patch ψp2. So, we again run the base inpainting
algorithm (LIMEP) to the remaining target region and calculate ‘first two
best matching exemplars for each patch to be filled’.

5. At the end of step 4, we get a new inpainted image. We check the quality of
this image by the technique “BRISQUE” as proposed in [10]. If the quality
is less than the quality of previous image, then we discard step 4 for patch
ψp, and move on to the next target patch. In this technique, distortions in the
image are quantified by using the scene statistics of locally normalized lumi-
nance coefficients and products of locally normalized luminance coefficients.
These coefficients are used to derive the underlying features which are then
fed to a support vector machine regressor. The support vector machine regres-
sor takes the feature vector as input and gives the quality score as output.
Mathematically, the operation is given by:

f(x) = wT φ(x) + b (12)

where, f(x) corresponds to the quality score, φ(x) is the feature vector and
w, b are the parameters of the support vector machine regressor. The details
are available in [10]1.

1 A software release of the technique reported in [10] is available online: http://live.
ece.utexas.edu/research/quality/BRISQUE release.zip.

http://live.ece.utexas.edu/research/quality/BRISQUE_ release.zip
http://live.ece.utexas.edu/research/quality/BRISQUE_ release.zip

290 V. Kumar et al.

We keep on repeating steps 1 to 5 for the remaining target region till whole
target region is covered. A short block diagram description of COMEP is given
in Fig. 3.

Fig. 3. Block diagram description of COMEP technique.

3.1 Convergence of the Algorithm

We apply LIMEP to the given image and obtain two source patches for each
target patch. Thus, we get three patch sets- target patch set (τ), source patch
set 1 (S1) and source patch set 2 (S2). Let total number of elements in each
set be n. Let the ith element in the set τ, S1, S2 be denoted as τ(i), S1(i), S2(i)
respectively. Note that the elements of τ are sorted in decreasing order according
to their priority. i.e. τ(1) corresponds to the target patch with maximum priority,
τ(2) corresponds to the target patch with second maximum priority and so on.
For any i, let the cost of assigning S1(i) and S2(i) to τ(i) be denoted by C1(i)
and C2(i) respectively.

The convergence of algorithm can be described in following points:

1. In COMEP, we first assign S1(i) to each τ(i) for i = 1 to n. Then, starting
with the first element of τ we calculate the costs of assigning S1(i) and
S2(i) to τ(i), compare the two costs, till we get an element τ(p) for which
C2(p) < C1(p).

Combinatorial Exemplar-Based Image Inpainting 291

2. Then, we assign S2(i) to τ(i) for i = 1 to p. We apply LIMEP to the remaining
target region i.e. target region without patches corresponding to the elements
τ(i) for i = 1 to p. We get a new inpainted image. Say this time we get target
patch set as τ ′(i) and source patch sets as S1′(i) and S2′(i). Let the total
number of elements in each set be m.

3. Now, we check the quality of this new inpainted image with the previous one
by using the technique in [10]. If the quality of this inpainted image is more
than the previous one, then we apply steps 1 and 2 to the remaining target
region with patch sets τ ′(i), S1′(i) and S2′(i).

4. If the quality is less, then we discard the changes made so far. Thus, we
again have patch sets τ , S1 and S2. We move on to next element τ(p+1) and
continue processing for searching the next target patch whose cost for labeling
second best exemplar patch is lower. The algorithm stops when whole target
region is covered.

4 Results and Discussion

In this section, we show how the proposed LIMEP and COMEP methods perform
in the task on image inpainting. We have applied our algorithm for following two
purposes:

1. To remove objects from images.
2. To fill scratches in images.

While presenting the results, we compare them with the results obtained by the
techniques reported in [4]2, [8]3 and [7]. The technique in [7] was developed by
using the technique in [4] while the proposed technique is developed by taking
ideas from both [4,7]. We have taken results obtained by technique in [8] for
comparison purpose only. Number of iterations required depends upon image
size, size of object to be removed, and the patch size. We have taken patches
of size 9 × 9. All experiments were performed on MATLAB R2013a, core i3
processor with 8 GB RAM under Windows 7 64 bit.

We discuss the results for object removal first, and after this we present the
results for scratch removal.

4.1 Removal of Objects from Images

In an image, we create a white colored mask around the object to be removed
as shown in Figs. 4, 6, 7 and 8. The white region becomes the target region, and
rest of the image becomes the source region. We applied our algorithm to such
original images with mask. We also applied the techniques in [4,7,8]. We present
the output of all these techniques side by side in Figs. 4, 5, 6, 7 and 8 for the
purpose of visual comparison. In Fig. 5, zoomed versions of inpainted regions

2 The technique reported in [4] was implemented by us.
3 We are thankful to Mr. Yunqiang Liu for providing code for the paper [8].

292 V. Kumar et al.

of the set of images of Fig. 4 are shown for better visualization. From Fig. 5,
we observe that the techniques in [4,7,8] did not construct the wooden stick
properly, while the proposed LIMEP technique constructed the wooden stick,
but it is thin. The COMEP technique produced the wooden stick properly. In
Figs. 6 and 7, we observe that the our results are better than the results produced
by techniques in [4,8], while the final inpainted image obtained from the COMEP
technique is comparable to the manually selected visually best inpainted image
produced by the primal-dual optimization based inpainting technique [7]. As
COMEP does not require any manual intervention for stopping iteration, it is
more preferred to [7].

Fig. 4. (a) Original Image. (b) Original Image with mask. (c) Result of [4]. (d) Result
of [8]. (e) Result of modified exemplar based inpainting. (f) Result of inpainting via
primal-dual optimization [7]. (g) Result of LIMEP (h) Result of COMEP.

From Fig. 8, we observe that the inpainted images produced by both the
LIMEP and COMEP techniques are better than those produced by techniques
reported in [4,8]. But, the result obtained by the technique reported in [7] is
much better than the image produced by COMEP technique. The failure of our
algorithm in this case (Fig. 8) is probably due to the limitation of the quality
metric [10] in expressing quality score to the sub-images.

In Table 1 we present the quality score [10] of the inpainted images obtained
by the techniques under comparisons. Figure 9 gives the plot of quality score
versus the number of iterations, as the COMEP algorithm proceeds, for the four
images of Figs. 4, 6, 7 and 8. We observe that the quality score increases as the
algorithm proceeds. Note that at iteration 1 the quality score of the inpainted
image is the score obtained by the LIMEP technique.

Combinatorial Exemplar-Based Image Inpainting 293

Fig. 5. Zoomed versions of inpainted regions of Fig. 4(c)–(h) for clarity.

Fig. 6. (a) Original Image. (b) Original Image with mask. (c) Result of [4]. (d) Result
of [8]. (e) Result of modified exemplar based inpainting. (f) Result of inpainting via
primal-dual optimization [7]. (g) Result of LIMEP (h) Result of COMEP.

294 V. Kumar et al.

Fig. 7. (a) Original Image. (b) Original Image with mask. (c) Result of [4]. (d) Result
of [8]. (e) Result of modified exemplar based inpainting. (f) Result of inpainting via
primal-dual optimization [7]. (g) Result of LIMEP (h) Result of COMEP.

Fig. 8. (a) Original Image. (b) Original Image with mask. (c) Result of [4]. (d) Result
of [8]. (e) Result of modified exemplar based inpainting. (f) Result of inpainting via
primal-dual optimization [7]. (g) Result of LIMEP (h) Result of COMEP.

Combinatorial Exemplar-Based Image Inpainting 295

Table 1. Object removal results.

Image in figure number
1 2 3 4

M
et

h
o
d Criminisi’s [4] 20.85 17.43 19.80 19.26

Liu’s [8] 19.95 18.16 18.61 19.74
Modified exemplar based [7] 21.20 18.00 20.09 20.16

Primal-dual [7] 22.23 20.34 22.58 23.05
LIMEP 21.25 19.40 20.29 20.48
COMEP 23.68 20.58 22.16 23.23

Fig. 9. Diagram showing plot of quality score versus number of iterations for the four
images of Figs. 4, 6, 7 and 8 respectively.

4.2 Removal of Scratches from Images

We adapt the above technique to remove scratches from images to get back the
original image. Here, the scratch is represented by white color as shown in Fig. 9.
Scratch is the target region, and rest of the image becomes the source region.
The same algorithm is applied as explained in Sects. 2 and 3. It is observed that
the proposed techniques gave better results than techniques in [4,7,8], while in
a few cases results (refer to Table 2) of technique in [8] are better. In Table 2
we present the quality score of the inpainted images obtained by our technique,
and the techniques in [4,7,8]. As scratches are small in size, the visually good

296 V. Kumar et al.

Fig. 10. (a) Original Image with mask. (b) Result of [4]. (c) Result of [8]. (d) Result
of modified exemplar based inpainting [7]. (e) Result of inpainting via primal-dual
optimization [7]. (f) Result of LIMEP. (g) Result of COMEP.

Combinatorial Exemplar-Based Image Inpainting 297

Table 2. Scratch removal results

inpainted image should be very similar to the original image. Thus, peak signal
to noise (PSNR) ratio is also a good measure of quality of the reconstructed
images in this case. In Table 2 we present the PSNR values also for the purpose
of comparison. We observe that in terms of PSNR values, the technique in [8]
gave best results, while the COMEP technique ranks second.

5 Conclusion and Future Scope of Work

We have proposed a new combinatorial image inpainting technique for remov-
ing objects from images. The results have been found to be better than those
obtained by the techniques in [4,7,8]. In future we would like to develop a good
quality measure for the inpainted images. We would like to extend our technique
for handling more labels.

References

1. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Pro-
ceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Co. (2000)

2. Chandra, S., Jayadeva, Mehra, A.: Numerical Optimization with Applications.
Alpha Science International, Oxford (2009)

3. Chekuri, C., Khanna, S., Naor, J.S., Zosin, L.: Approximation algorithms for the
metric labeling problem via a new linear programming formulation. In: Proceedings
of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 109–
118. Society for Industrial and Applied Mathematics (2001)

4. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-
based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

5. Efros, A.A., Leung, T.K.: Texture synthesis by Non-parametric sampling. In: Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision 1999,
pp. 1033–1038. IEEE (1999)

6. Komodakis, N., Tziritas, G.: Image completion using efficient belief propagation
via priority scheduling and dynamic pruning. IEEE Trans. Image Process. 16,
2649–2661 (2007)

7. Kumar, V., Mukhopadhyay, J., Mandal, S.K.D.: Modified Exemplar-Based Image
Inpainting via Primal-Dual Optimization. In: Kryszkiewicz, M., Bandyopadhyay, S.,
Rybinski, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 116–125. Springer,
Heidelberg (2015)

298 V. Kumar et al.

8. Liu, Y., Caselles, V.: Exemplar-based image inpainting using multiscale graph cuts.
IEEE Trans. Image Process. 22, 1699–1711 (2013)

9. Masnou, S.: Disocclusion: a variational approach using level lines. IEEE Trans.
Image Process. 11(2), 68–76 (1981)

10. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in
the spatial domain. IEEE Trans. Image Process. 21, 4695–4708 (2012)

11. Wexler, Y., Shechtman, E., Irani, M.: Space-time completion of video. IEEE Trans.
Pattern Anal. Mach. Intell. 29, 463–476 (2007)

Incremental Updating of 3D Topological
Maps to Describe Videos

Guillaume Damiand1(B), Sylvain Brandel1, and Donatello Conte2

1 Université de Lyon, CNRS, LIRIS, UMR 5205, 69622 Villeurbanne, France
{guillaume.damiand,sylvain.brandel}@liris.cnrs.fr

2 Université François-Rabelais de Tours, LI EA 6300, 37200 Tours, France
donatello.conte@univ-tours.fr

Abstract. A topological map is an efficient mathematical model for
representing an image subdivision where all cells and adjacency relations
between elements are represented. It has been proved to be a very good
tool for video processing when video is seen as a 3D image. However
the construction of a topological map for representing a video needs the
availability of the complete image sequence. In this paper we propose a
procedure for online updating a topological map in order to build it as
the video is produced, allowing to use it in real time.

Keywords: 3D topological maps · Video processing · Combinatorial
maps

1 Introduction

Many works have studied models representing partitions of an image. Topolo-
gical data structures describe images as a set of elements and their adjacency
relations. The most famous example is the Region Adjacency Graph (RAG) [19]
which represents each region by a vertex, and where neighboring regions are
connected by an edge. But the RAG suffers from several drawbacks as it does
not represent multiple adjacency or makes no differences between enclosure and
adjacency relations. Topological maps [2] have been used to solve these issues. A
topological map is a mathematical model that represents an image subdivision.
It aims to allow the use of topological and geometrical features of the subdivision
in image processing. This kind of features have been used effectively for image
segmentation [7] and more recently for video denoising [3].

Approaches for processing and understanding video data are mostly based
by statistical representations; they can be broadly divided in two categories:
some methods represent videos in a classical way that is an images sequence in
which each image is represented by its pixels [11,12], other methods represent
videos based on “mid-level” vision, that is using some features to represent and
to analyze data [20]. In the last category, motion features, moving objects and
trajectories are widely used as representation of video data [13,15]. Structural
representation is rarely used for representing videos. In fact, if video metadata
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 299–310, 2015.
DOI: 10.1007/978-3-319-26145-4 22

300 G. Damiand et al.

are stably represented by structured data [9,10,17], structural representation of
video content is still an open problem [16], and to the best of our knowledge
graph representation was used only for coding videos and not for processing or
understanding them.

In our approach a video is seen as a 3D image: a temporal sequence of 2D
images is considered as a 3D image in which each voxel is considered as a tem-
poral pixel, described by three coordinates (x, y, t), (x, y) being the spatial coor-
dinates and t being the temporal coordinate. The 3D image is thus represented
by a topological map. Then, topological features are proved to be very useful for
video analysis and processing [3].

However the main problem in representing a video as a topological map is that
for building this kind of data structure the complete video sequence has to be
available (to represent it as a 3D image). Therefore algorithms using topological
map are not available for real time processing.

The aim of this paper is to propose a method for online updating a topological
map as the images of the sequence are produced. We propose two algorithms.
The first one allows to remove k slices from the beginning of a given topological
map. The second one allows to add k slices after the end of a given topological
map. Combining these two operations allows to move a slicing window through
a whole video.

The remainder of the paper is organized as follows: in Sect. 2 we introduce
preliminary notions on topological maps that will be used afterwards. Section 3
describes the proposed operations by giving the algorithms and illustrating them
on examples. In Sect. 4, some results show the complexity of our operations in
the context of objects detection for video surveillance applications. Lastly, we
conclude and give some perspectives in Sect. 5.

2 Preliminary Notions

A 3D topological map is an extension of a combinatorial map used to represent a
3D image partition. Therefore we first recall the notions on combinatorial maps
and then we introduce notions on topological maps that are used in this work.

A combinatorial map is a mathematical model of representation of a space
subdivision in any dimension. This is done using abstract elements, called darts,
and applications defined on these darts, called βi. The formal definition [6,14]
is the following:

Definition 1 (Combinatorial Map). Let n ≥ 0. An n dimensional combina-
torial map (or n-map) is an algebra C = (D,β1, . . . , βn) where:

1. D is a finite set of darts;
2. β1 is a permutation on D;
3. ∀i, 2 ≤ i ≤ n, βi is an involution on D;
4. ∀i, 1 ≤ i ≤ n − 2, ∀j, i + 2 ≤ j ≤ n, βi ◦ βj is an involution.

Incremental Updating of 3D Topological Maps to Describe Videos 301

When two darts are linked with βi, we say that they are i-sewed. An n-map
represents each cell of the space subdivision implicitly by a set of darts. Moreover,
adjacency and incidence relation between these cells are encoded through βi

operators (see [6,14] for more details).
A 3D topological map is a mathematical model which represents a 3D labeled

image. This is a specialization of a 3-map in order to take into account the specific
properties of a 3D image regarding any possible 3D subdivision. We can see in
Fig. 1 an example of a 3D topological map.

R1 R2

R3

R0

(a) (b)

(c)

2

R0

R R R31

(d)

Fig. 1. Example of a 3D topological map. (a) A 3D labeled image. (b) The minimal
3-map. (c) The intervoxel matrix. (d) The region enclosure tree.

A 3D topological map is composed of three parts (see [4] for details):

– a minimal 3-map representing the topology of the image (Fig. 1(b));
– an intervoxel matrix used to retrieve geometrical information associated to

the 3-map. The intervoxel matrix is called the embedding of the combinatorial
map (Fig. 1(c));

– an enclosure tree of regions (Fig. 1(d)).

The 3-map (Fig. 1(b)) represents each region of the image by describing its
surfaces. There is always one external surface, and possibly some internal sur-
faces, one for each cavity in the region. These surfaces are described in the 3-map
through their minimal form (minimal in number of cells, i.e. we cannot remove
any cell without changing the topology of the 3-map). This minimality gives
interesting properties to the 3-map that will be useful in algorithms:

302 G. Damiand et al.

– each face of the 3-map describes exactly a maximal contact surface between
two regions;

– each edge of the 3-map describes exactly a maximal contact curve between
several faces.

A last interesting property of the 3-map is to capture the topology of each
region. We can thus compute for example Euler characteristics or Betti number
of regions and use these characteristics in image and video processing algorithms,
as done for example in [3].

The intervoxel matrix is the embedding of the 3-map describing the geometry
of the regions in the image (Fig. 1(c)). Each cell of the map is associated with
intervoxel elements representing geometrical information of the cell. A face in
the combinatorial map is embedded by a set of surfels separating voxels of the
two incident regions. The edges, which are the border of faces, are associated
to sets of linels. The vertices, which are the border of edges, are embedded by
pointels.

The enclosure tree of regions (Fig. 1(d)) represents the enclosure relations.
Each region in the topological map is associated to a node in the enclosure tree.
The nodes are linked together by the enclosure relation (a region Ri is enclosed
in Rj if Ri is completely surrounded by region Rj [5]). To link this tree with
the 3-map, each dart d of the map knows its belonging region (called region(d)).
Each region R knows one of its dart called representative dart (called rep(R)).

A 3D topological map can directly represent a 2D video simply by considering
the temporal sequence of 2D images as a 3D image: each voxel corresponds to a
temporal pixel, described by three coordinates (x, y, t), (x, y) being the spatial
coordinates and t being the temporal coordinate.

3 Incremental Updating of 3D Topological Maps

In order to incrementally update a 3D topological map, we introduce in this
paper two operations. The first one, given in Algorithm 1, allows to remove the
k first slices of a given topological map. The second one, given in Algorithm 2,
allows to add k slices after a given topological map. Combining these two oper-
ations allows to move a slicing window through a whole video.

3.1 Remove Slices

Algorithm 1 presents the method allowing to remove the first k slices of a given
topological map T.

– The first step consists here to split in surfels the surfaces of all the regions
intersecting the slices to remove. We use for that the split operation defined
in [8]. The test if a region is intersected by the cutting plane is achieved
thanks to the minimum and maximum voxel of the region (computed during
the extraction of the 3D topological map).

Incremental Updating of 3D Topological Maps to Describe Videos 303

Algorithm 1. Remove slices at the beginning of a 3D topological map
Input: T: A 3D topological map;

k: A number of slices.
Result: T is modified to remove its k first slices.

foreach region R in T do
if the minimum z value in R ≤ k and the maximum z value in R ≥ k − 1
then

split the surface of R in surfels;

Create faces F to describe the cutting plane;
2-sewn darts of F with darts of T;
foreach dart d in T do

if the z value of the triplet of d < k then
remove the face containing d;

Simplify T;
Recompute the region enclosure tree;

– In the second step, all the faces describing the cutting plane are created, and
then 2-sewn to darts around them in the existing 3-map. To retrieve the pair
of darts to 2-sew, we use the geometry associated with each dart: two darts
must be 2-sewn if they represent the same linel in reverse orientation.

– The third step consists in removing all the faces having one dart belonging
to the first k slices. Thanks to the two previous steps, we are sure that these
faces totally belong to the slices to remove.

– The last step consists in simplifying the combinatorial map in order to retrieve
the minimality property and to recompute the region enclosure tree. We use
for that the same algorithms that the ones used for the 3D topological map
extraction [4].

We can prove that this algorithm produces the 3D topological map describ-
ing the initial 3D image where we have removed its k first slices. Thus this
proves directly the consistency of the operation: the modified 3D topological
map represents the topology of the updated 3D image.

The remove slices operation is illustrated in Fig. 3. In this example, we con-
sider a 2D topological map since it is really hard to visualize drawings of 3D
topological maps, but things are similar in both dimensions by replacing voxels
by pixels and face by edge. We consider the initial 2D topological map depicted
in Fig. 2(b) where we want to remove the three first slices (thus k = 3). In the
first step of Algorithm 1, the borders of the two regions R1 and R2 are split in
linels since some of their pixels belong to the three first slices. We obtain the
2-map shown in Fig. 3(a).

The second step inserts all the red edges in Fig. 3(a) which are new edges
describing the cutting plane. These edges are sewn with their neighbor exist-
ing edges in the 2-map (illustrated by blue arcs in Fig. 3(b)). The next step (not
drawn) consists in removing all the green edges from the 2-map. Indeed, all these

304 G. Damiand et al.

R0

R1

R2

R4

R5
R6

R3

0 7
x

0

12

y

(a)

21

22

3

2

1

4

9

6

5

7

8

10

11

12

13

15

14

1720
19

16
18

R0

(b)

R3

R0

R4

R1 R2

R5 R6

(c)

Fig. 2. Example of a 2D topological map. (a) A labeled image. (b) The minimal 2-map.
(c) The region enclosure tree.

R0

(a)

R0

(b)

R0

(c)

Fig. 3. Illustration of the removing of the three first slices of the 2D topological map
depicted in Fig. 2(b). (a) The 2-map obtained after the split in linels of the borders of
regions R1 and R2. (b) The 2-map obtained after the insertion of edges describing the
cutting plane (in red). Then all the green edges are removed since they belong to the
removed slices. (c) The final topological map obtained after the simplification of the
previous 2-map (Colour figure online).

edges belong to the first three slices. The last step of the algorithm simplifies
the map. For that, each degree two vertex is removed. This produces the com-
binatorial map shown in Fig. 3(c) which is the 2D topological map of the image
obtained from the initial labeled image (given in Fig. 2(a)) where the three first
slices were removed.

Figure 4 illustrates the three possible configurations of a region around the
cutting plane. In these three cases, the surface of the region must be split in

Incremental Updating of 3D Topological Maps to Describe Videos 305

1 a b 2
3
c
4R2 R3

R4

R3

R2

R1

0

3

Fig. 4. Illustration of the three possible configurations of a region around the cutting
plane y = 3. R1 and R2 are cut by the plane, i.e. they have pixels before and after it.
R3 touches the plane and have all its pixels after it. R4 touches the plane and have all
its pixels before it.

surfels in order to be correctly 2-sewn with the new faces describing the cutting
plane. Other regions are either totally smaller or greater than the cutting plane.
Smaller regions are totally removed by the cutting, while greater ones are totally
kept. In both cases, there is no need to subdivide their faces. The example of
region R4 illustrates the −1 used in Algorithm 1. Indeed in such a case, the
maximal z value of the region is equal to the value of the plane minus 1, and
such a region must have its border split in linels to be correctly sewn with the
new edges.

The right part of Fig. 4 illustrates the method used to 2-sew correctly the
new edges describing the cutting plane with the existing edges. The principle
consists in turning around the vertex to sew until finding an existing dart. For
dart a, we found dart 1. For dart b, we found dart 2 (because here we 2-sew the
extremity of dart b and not their origin). For the origin of dart c we found dart
3 and for its extremity we found dart 4. Note that the 2-sew process is done for
one dart per edge since at each step we 2-sew a dart and its β3.

3.2 Add Slices

In order to add slices at the end of a 3D topological map T, the first step of
Algorithm 2 consists in splitting the external surface of T in surfels. This step
allows the identification of the new slices with the external boundary of T. Indeed,
only faces having the same topology can be identified in combinatorial maps (the
two faces must be isomorphic i.e. they must be composed by the same number
of darts), and it is simpler to split in surfels the external faces to identify instead
of searching to modify each pair of faces in order to have the same topology.

In the second step, we compute the topological map T′ describing the slices
to add. During this computation, we do not simplify the external surface of T′.
Thus the external boundary of T′ is composed by faces describing surfels.

This allows to directly identify in the third step the right faces of T with the
left faces of T′. Retrieving the faces to identify is done by using the geometry of
the faces: both faces must have the same geometry but with reverse orientation.
Testing if two faces have the same geometry is done by iterating simultaneously

306 G. Damiand et al.

through the two cycles of darts, in reverse direction, while comparing the coor-
dinates of the pairs of pointels associated with darts of the first face and darts
of the second face.

Then it is enough to merge regions having same labels by removing the face
separating them (step four) and to simplify the resulting 3-map (step five) in
order to obtain the topological map describing the initial partition added with
the k new slices.

Algorithm 2. Add slices at the end of a 3D topological map
Input: T: A 3D topological map;

I′: A 3D image containing k slices.
Result: T is modified to add the slices in I′ at its end.

foreach face f of the infinite region of T do
split f in surfels;

T′← compute the topological map of I′ without simplifying its external surface;
Identify the right surfels of T with the left surfels of T′;
foreach face f to the left of T′ do

if f separates two regions with the same label then
remove f ;

Simplify T;

As for the remove slices operation, we can prove that this algorithm produces
the 3D topological map describing the initial 3D image where we have added
the k new slices. Thus this proves directly the consistency of the operation: the
modified 3D topological map represents the topology of the updated 3D image.

The add slices operation is illustrated in Fig. 5, once again in 2D in order to
simplify the visualisation of combinatorial maps. The topological map depicted
in Fig. 3(c) is considered where we want to add the three slices described by the
2D labeled image shown in Fig. 5(b). The first step of the algorithm consists in
splitting the infinite face of the topological map to modify. We obtain the 2-map
shown in Fig. 5(a). In the second step, the topological map of the new slices is
computed while keeping its infinite face subdivided in linels (see Fig. 5(c)).

Now it is possible to identify the bottom linels of Fig. 5(a) and the top linels
of Fig. 5(c). Note that during these identifications, the darts of the two identi-
fied parts belonging to the infinite regions are removed. Figure 6(a) shows the
obtained 2-map. During the next step, all the adjacent regions having the same
label are merged by removing the edges separating them. Now it is enough to
simplify the map in order to obtain the topological map representing the initial
labeled image added by the new slices (shown in Fig. 6(b)).

Note that allowing these two operations to deal with k slices is an optimiza-
tion comparing to the application of k successive operations for 1 slice. Indeed,
each operation make some splits of existing cells following by some merges in

Incremental Updating of 3D Topological Maps to Describe Videos 307

R0

(a)

R3R7
R8

R00 7

13

15

(b)

R0

(c)

Fig. 5. Illustration of the adding of three new slices at the end of the 2D topological map
depicted in Fig. 3(c). (a) The combinatorial map obtained from the initial topological
map after the split of its infinite region in linels. (b) The labeled image corresponding
to the three new slices. (c) Its corresponding topological map, having its external face
subdivided.

R0

(a)

R0

(b)

Fig. 6. Illustration of the adding of three new slices (cont). (a) The 2-map obtained
after the identification of the bottom linels of Fig. 5(a) and the top linels of Fig. 5(c).
(b) The final 2D topological map obtained after the merging of regions with same labels
and the simplification step.

order to retrieve the minimality property. Dealing with k slices allows to make
only one split and one merge instead of k splits and k merges.

The add slices and the remove slices operations can directly be combined
in order to propose a sliding window method which allows to iterate through
all the frames of a given video. It is enough to call remove slices(1) then
add slices(1). However, in this case, we can avoid the simplification step and

308 G. Damiand et al.

the region enclosure tree computation at the end of the remove slices algorithm
which will be done only once at the end of the add slices operation.

Lastly, note that both proposed algorithms can be improved by avoiding
some useless splits. For example for the add slice operation, we can only split in
surfels the bottom boundary of the initial topological map and not all the infinite
face. For the remove slice, we can split in surfels only the part of the concerned
regions belonging to the removed slices instead of its entire boundaries. These
optimizations will improve the speed of the operations since less cells will be split
and then simplified, but the algorithm will become more complex since they are
more different cases to consider.

4 Experiments

We have developed both operations add slices and remove slices in 3DTopo
Map [1], a software allowing to compute a 3D topological map from a 3D image.

We used the PETS 2010 Dataset [18] which is a well known database con-
taining video sequences of moving people, used for the performance evaluation
of tracking and surveillance systems. We use the video of detection masks: white
pixels correspond to moving objects and black pixels to background (see Fig. 7).

From this database, we extracted a first 3D topological map containing 65
slices, where each slice corresponds to a frame in the video stream, and each
frame has 768 × 576 pixels. We evaluated the time required by the three oper-
ations add slices, remove slices and add and remove slices for different k
(number of slices to add and/or to remove) starting from 1 and going to 64.

Results are shown in Fig. 8. We can first verify that the time processing
for add slices and add and remove slices operations is linear regarding the
number of added slices. More interestingly, we can see that the time of the
remove slices operation decreases linearly regarding the number of removed
slices. This can be explained by the number of darts of the obtained 3-map
which is smaller after having removed a bigger number of slices.

Fig. 7. An image extracted from a video detection masks from the PETS 2010 database
(768 × 576 pixels).

Incremental Updating of 3D Topological Maps to Describe Videos 309

Fig. 8. Times evaluation (in seconds) of remove slices, add slices and
add and remove slices operations for k ∈ {1, 2, 4, 8, 16, 32, 64} for an initial video
sequence containing 65 slices. Each slice corresponds to a frame in the video stream.
The resolution of each frame is 768 × 576 pixels.

5 Conclusion

In this paper, we have presented two operations defined on 3D topological maps.
The first operation allows to remove the k first slices of an existing topological
map. The second operation allows to add new slices at the end of an existing
topological map. By combining these two operations, it is possible to define a
sliding window method which allows to iterate through all the frames of a given
video.

Now we are working on the use of the new proposed operations in order to
define efficient video processing. Our first goal is to update our previous denoising
algorithm [3] in order to benefit from the sliding window method. This will allow
us to improve the method by combining all the information coming from the
different superposed windows. Moreover this will allow us to consider streamed
videos.

Another future work is the optimization of our method in order to be able
to propose real time processes. For that, we have started to integrate some par-
allelism in our algorithm. Indeed, several parts can be made in parallel, leading
to speed up our method. A second possible optimization is to modify the two
algorithms in order to avoid to split faces in surfels. Indeed, this step takes an
important time and requires to simplify the map at the end of the algorithms.
Modifying this step will give more complex but more efficient algorithms. With
these two optimizations we are confident to obtain a method allowing to achieve
real-time performance.

Lastly, we plan to propose other video processing algorithms based on 3D
topological map and the new sliding window method. Following our first previous
results [3], we think that integrating some topological information provided by
the 3D topological map can improve several existing video processing algorithms.

310 G. Damiand et al.

Acknowledgment. This work has been partially supported by the French National
Agency (ANR), project SoLStiCe ANR-13-BS02-0002-01.

References

1. 3DTopoMap: Topological 3d image processing software. http://liris.cnrs.fr/
guillaume.damiand/carte-topo3D.php?lang=en

2. Bertrand, Y., Damiand, G., Fiorio, C.: Topological map: minimal encoding of 3D
segmented images. In: Proceedings of International Workshop on Graph-Based
Representations in Pattern Recognition, pp. 64–73, Ischia, Italy, May 2001

3. Conte, D., Damiand, G.: Remove noise in video with 3D topological maps. In:
Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014.
LNCS, vol. 8621, pp. 213–222. Springer, Heidelberg (2014)

4. Damiand, G.: Topological model for 3d image representation: definition and incre-
mental extraction algorithm. Comput. Vis. Image Underst. 109(3), 260–289 (2008)

5. Dupas, A., Damiand, G.: First results for 3D image segmentation with topologi-
cal map. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008.
LNCS, vol. 4992, pp. 507–518. Springer, Heidelberg (2008)

6. Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A. K. Peters/CRC Press, Boca Raton
(2014)

7. Damiand, G., Resch, P.: Split and merge algorithms defined on topological maps
for 3D image segmentation. Graph. Models 65(1–3), 149–167 (2003)

8. Dupas, A.: Opérations et Algorithmes pour la Segmentation Topologique d’Images
3D. Thèse de doctorat, Université de Poitiers, Novembre 2009

9. Gonno, Y., Nishio, F., Haraoka, K., Yamagishi, Y.: Metadata structuring of audio-
visual data streams on MPEG-2 system. In: Metastructures, August 1998

10. Hunter, J., Armstrong, L.: A comparison of schemas for video metadata represen-
tation. Comput. Netw. 31(1116), 1431–1451 (1999)

11. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood
Cliffs (1989)

12. Koprinska, I., Carrato, S.: Temporal video segmentation: asurvey. Signal Process.:
Image Commun. 16, 477–500 (2001)

13. Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing tech-
niques for traffic applications. Image Vis. Comput. 21, 359–381 (2003)

14. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. Int. J. Comput. Geom. Appl. 4(3), 275–324 (1994)

15. Li, X., Zheng, Y.: Patch-based video processing: a variational bayesian approach.
IEEE Trans. Circ. Syst. Video Technol. 19(1), 27–40 (2009)

16. Maugey, T., Ortega, A., Frossard, P.: Graph-based representation and coding of
multiview geometry. In: Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1325–1329 (2013)

17. Ngo, C.W., Ma, Y.F., Zhang, H.J.: Video summarization and scene detection by
graph modeling. IEEE Trans. Circ. Syst. Video Technol. 15, 296–305 (2005)

18. Pets 2001 dataset. http://www.cvg.rdg.ac.uk/pets2001/
19. Rosenfeld, A.: Adjacency in digital pictures. Inf. Control 26(1), 24–33 (1974)
20. Wang, J., Adelson, E.: Representing moving images with layers. IEEE Trans. Image

Process. 3(5), 625–638 (1994)

http://liris.cnrs.fr/guillaume.damiand/carte-topo3D.php?lang=en
http://liris.cnrs.fr/guillaume.damiand/carte-topo3D.php?lang=en
http://www.cvg.rdg.ac.uk/pets2001/

Parallel Strip Segment Recognition
and Application to Metallic Tubular

Object Measure

Nicolas Aubry1,2, Bertrand Kerautret1,2(B), Isabelle Debled-Rennesson1,2,
and Philippe Even1,2

1 Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-nancy 54506, France
2 CNRS, LORIA, UMR 7503, Vandoeuvre-lès-nancy 54506, France

{nicolas.aubry,bertrand.kerautret,isabelle.debled-rennesson,
philippe.even}@loria.fr

Abstract. The segmentation or the geometric analysis of specular object
is known as a difficult problem in the computer vision domain. It is
also true for the problem of line detection where the specular reflection
implies numerous false positive line detection or missing lines located on
the dark parts of the object. This limitation reduces its potential use for
concrete industrial applications where metallic objects are frequent. In
this work, we propose to overcome this limitation by proposing a new
strategy which is not based on the image gradient as usually, but exploits
the image intensity profile defined inside a parallel strip primitive. Asso-
ciated to a digital straight segment recognition algorithm robust to noise,
we demonstrate the efficiency of our proposed method with a real indus-
trial application.

1 Introduction

The detection or recognition of digital straight segment is always an active
research topic where application domains are numerous. As is apparent from
the thousand demonstration archive pages of the famous LSD method [15] pub-
lished on the IPOL journal, the interest of such detection is always meaningful.

Even if recent advances were proposed in the last years, the line segment
detection shows always some limits towards object presenting specular reflection.
Such physical properties that arise naturally on various shiny materials like
plastic or metallic objects, are source of well known difficulties that potentially
impact the robustness of other computer vision algorithms. For instance, in the
problem of Shape From Shading [12], the specular reflections can dramatically
degrade the 3D reconstruction quality. In the image segmentation domain, the
specularities are also a source of difficulty since they are at the origin of much
more high intensity variations than diffuse reflections. Such difficulties often
appear in industrial applications where objects of interest are directly composed
of metallic parts.

N. Aubry—This work was supported by the French National Agence of Research
and Technology (ANRT).

c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 311–322, 2015.
DOI: 10.1007/978-3-319-26145-4 23

312 N. Aubry et al.

(a) source (b) LSD [15] (c) EDLine [3]
(d) Edge detection

(Roberts)

(e) Edge detection

(Marr-Hildreth)

(f) source (g) LSD [15] (h) EDLine [3]
(i) Edge detection

(Roberts)

(j) Edge detection

(Marr-Hildreth)

(k) Interactive detec-

tion [13]
(n) BSG detection [18]

Fig. 1. Experiments of various algorithms for line extraction on source images (a, f).
Results of LSD and EDLine algorithms are given in (b, c, g, h). Classic edge detection
(from the IPOL online implementation [16]) are given in images (d, e, i, j) and semi
automatic algorithms [13,18] were also applied on images (k, l, m, n) with manual
markers (resp. resulting lines) represented in blue (resp. red) color (Color figure online).

The Fig. 1 shows an example of industrial application where the objective is
to extract the bounding lines of the main tubular object in order to measure its
orientation and the length of its straight segments. The LSD method [15] was
first experimented on these examples. Based on Gestalt theory and Helmholtz
principle, this method has the advantage to not require the tune of any sensible
parameters. In the same spirit, the Edge Drawing Line (EDLine) method was also
applied on the same images with the author implementation [3]. The experiments
were first applied on a configuration where the production engine is presenting
numerous metallic pieces and constitutes a difficult and challenging configuration
(source image (a)). The second configuration (source image (f)) is in a relative
more ideal configuration where the metallic parts of the engine are hidden. As
shown on images (b, c) of Fig. 1, these methods produce numerous disconnected
segments and false positive parts near specularity. Even on simpler configuration
of image (f), the many false positive detections can distort the measures of the
tube angle (images (g, h)). Such detections are not convenient to perform simple
and robust tube geometric measure for default identification. In complement
to the application of these advanced methods, we also apply more elementary
contour detection algorithms that confirm that the gradient produced by the
specularity are the cause of the numerous false positive line detection. Interactive
method based on Hough transform like the one proposed by Even and Malavaud
[13] is not efficient to reliably identify the tube with some segments attracted
towards specularity and some other ones not always attracted to the tube border

Parallel Strip Segment Recognition and Application 313

R0 R1 R2 R3

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

Im
ag

e
in

te
ns

ity

Index of the pixel in the profile line segment

intensity profile of segment R0

intensity profile of segment R1

intensity profile of segment R2

intensity profile of segment R3

(a) (b) (c)

Fig. 2. Illustration of the low evolution of the intensity profiles near the interest area
(highlighted in red in image (a)). Our method will exploit the low variation of the
intensity profile along the segment Rk. Such variations are visible on image (b) inside
the vertical red lines and on the 3D elevation map (c) with the interest area drawn in
red (Color figure online).

(see images (k, m) of Fig. 1). A more recent semi automatic method [18] also
fails to identify the border of the tube mainly due to the specularities which
generate numerous potential candidate contours making wrong the recognition
process (images (l, n)).

To overcome the remaining problem dealing with the missing or too numerous
gradient information, the contribution of this work is to propose a new strategy
by exploiting an intensity profile associated to a parallel strip segment primi-
tive. Following this idea, the recognition process will no more use any gradient
information but will be based on the matching of intensity profiles. To illustrate
this idea, we have plotted on Fig. 2 the different intensity profiles (image (b)) of
four different segments R1, R2, R3 and R4 (image (a)). On image (b) we can
clearly see that the different intensity profiles closely match inside the predefined
interest area (denoted later Ik and highlighted in red on the images (a, b, c)).
Such area corresponds, in this example, to the cross section of a metallic tubular
object that we want to recognize. The low variations of the intensity profiles on
this interest area are also visible on the 3D elevation map (image (c)).

The paper is organized as follows: in the next section, we present the main
steps of the new method to recognize a parallel strip from the intensity profiles
selection with the help of a digital straight segment recognition robust to noise.
Then, in Sect. 3, we propose to exploit this new approach for a concrete industrial
application where the object of interest is a metallic specular tube which has to
be identified and measured.

2 Recognition of Parallel Strip Segment from Intensity
Profiles

Since the proposed method is in the continuity of a previous line detection algo-
rithm [18], we recall in the following section the different steps of the algorithm
with its main primitive of blurred segment.

314 N. Aubry et al.

2.1 Previous Work on Digital Straight Segment Recognition

The recognition of a digital straight segment is a classic primitive in the field of
discrete geometry which is often used to extract geometric information, like for
instance to curvature estimation [17] or to polygonalize a digital contour from its
dominant points [5,20]. In order to be robust to noise, the definition of blurred
segment [6,11] was proposed to handle non perfect digitization. An example of
blurred segment recognition is illustrated on image (a) of Fig. 3. The different
points are added incrementally to the primitive until its thickness is not larger
than a maximal value. On the example of image (a), starting from point A, 10
points were accepted by the blurred segment illustrated in step (1), 10 more
points were also added in step (2) and finally in step (3). The point C can no
more be added to the blurred segment since the new thickness will exceed its
maximal value.

(1) (2) (3)
AA A

B C

P1

P2

P1

P2

(a) (b) (c)

Fig. 3. Illustration of previous works on straight segment recognition, with an exam-
ple of blurred segment recognition (a), the first step of scanning image pixel for line
recognition in gray level [18] (b) and the main limits of this approach (c) (Color figure
online).

Initially defined for the recognition of digital straight segment from digital
contours or from binary images, we have proposed its extension in order to
be able to process gray scale images [18]. The main idea of such algorithm is
illustrated on image (b) of Fig. 3 showing the image scanning process designed
to find candidate points to be added to the primitive of the blurred segment. Such
initial scanning segment given by the two points P1 and P2 should be defined
manually by the user. The selection of candidate is obtained by using the local
maxima of the gradient values and by filtering its gradient direction to prune
false candidate due to noise. Even if the proposed algorithm is very fast and
suitable to extract segment on shape boundary with single gradient values, it
shows some limitations on objects presenting numerous gradient information. As
shown in image (c), there exists numerous candidate points with high gradient
values (illustrated in green) which are not associated to the same single line.
As a consequence, the blurred segment recognition (illustrated in blue) gives
a resulting segment with a wrong direction in comparison to the real linear
structure oriented horizontally.

Parallel Strip Segment Recognition and Application 315

2.2 New Approach with Intensity Profile Matching

As presented in the introduction, our main idea relies on the exploitation of
the matching of intensity profiles located inside a parallel strip. It is suitable
both to diffuse reflectance objects presenting low intensity variations and also
to specular/metallic tubular objects. This characteristic is physically due to
the specular reflection which presents low intensity variations in the main axis
direction of the metallic object.

B

A

R0

Rk

I0

Ik

ds

Fig. 4. Example of discrete parallel segments defined as research segments Rk (Color
figure online)

Main Strategy. To apply the segment recognition, we follow the same first
steps of the preceding method described in the previous section. In particular,
a directional scan is defined in the image starting from two initial points A and
B defined manually by the user. Such couple of points provides an initial digi-
tal straight segment. This first direction can be defined approximately since we
follow several incremental steps in order to refine the final direction. It allows
us to generate the other segment in its normal direction which will be the sup-
port of the line recognition. Such supports defined later as research segment Rk

are illustrated on Fig. 4. Note that contrary to previous work, we integrate a
parameter dswhich corresponds to the distance between two consecutive scans.
It helps to balance the precision of the segment recognition with the speed of
the algorithm according to the industrial application needs. Then, we analyze
each of the segment in order to extract candidate points for the digital straight
segment recognition algorithm. As in the previous approach we also exploit the
same blurred segment primitive [11] in order to be robust to noise. In particular
we use the Alpha-Thick segment from the DGtal library framework [1].

The strategy to refine the first manual direction given by the points A and B
is also applied in the proposed method. More precisely, we redefine the previous
directional scanners in the direction of the first detected blurred segments from
the previous candidates.

Selection of Candidates from Intensity Profiles. Contrary to the previous
method [18] where the candidate selection was based on the image gradient,
we propose here another strategy which relies on the comparison of intensity
profiles. In the following, we will use these definitions:

316 N. Aubry et al.

– Research Segment Rk: is defined as a digital segment with two predefined
initial points A and B for the first research segment R0. The other research
segments Rk are obtained by translation in the normal direction −→n of R0

with a given distance ds. Equivalently, each points Pi of R0 are translated
into Rk by the vector: k ∗ds−→n . Note that the parameter dscould be easily set
by the user according to awaited recognition precision.

– Interest Area Ii,j
k : represents a sub sequence of connected pixels of the

research segment Rk starting from index i to j. Such sequence corresponds to
the area that is going to be analyzed.

– Intensity profile Pk: a sequence of pixel values of an interest area Ik (i.e.
values given between 0 and 255). In the following, P l

k will denote the value of
lth element of the kth profile.

In a first step, we manually initialize an interest area I0 on the first research
segment R0 near the object of interest as illustrated in red on Fig. 4. This inter-
est area will produce an intensity reference profile P0 of the object that we try to
detect. More generally, a reference intensity profile is denoted as Pr. Our objec-
tive is to find for each research segment Rk its own interest area Ik according
to a reference profile Pr. For this purpose, the interest area Ii,j

k is incrementally
moved from a number of pixels equals to the pixel length of Rk − j + i. For each
position the mean squared error (denoted Er) is computed between the intensity
profile Pk associated to the current interest area Ik and the reference intensity
profile Pr. More formally, if we consider a reference interest area In,m

r , then the
mean squared error Er of an area of interest Ii,j

k is given by:

Er(Ii,j
k) =

1
j − i

j∑

l=i

(P l
k − Pn+l−i

r)2 (1)

Such an error computation is illustrated on Fig. 5. For each research segment
Rk, the mean squared error is computed for each candidate Ii,j

k (image (a)).
Then, from the global plot values, all the candidates with a minimal error (images
(b, c)) are retained for the recognition of the parallel strip primitive described
in the next section.

2.3 Algorithm

The proposed algorithm relies on the set of research segment Rk (generated from
the first segment R0) for which we have to compute the interest area Ik which
best matches the reference profile of the Ir.

The general algorithm exploits several primitive or functions:

– mse(ref , seg): computes from Eq. refEqMSE, the mean squared error between
the two profiles of the interest area In,m

ref and Ii,j
seg.

– findCandidate(ref , seg): finds the interest area Ii,j
seg on the segment seg

which best match the reference interest area In,m
ref . It exploits the previous

mse method.

Parallel Strip Segment Recognition and Application 317

Fig. 5. Illustration of the selection process of the area of interest Ii,j
k (image (a)). The

plots of graphic (c) show the different mean squared errors obtained for each point of
a research segment Rk according to the reference area I0 illustrated on the image (b).

– extendBlurredSegment(p): extends the current blurred segment with the
point p. It is used to apply the incremental recognition algorithm.

– recognizeBlurredSegment(Seg, StepReference): recognizes the two longest
blurred segments from the set of research segments Rk. Each blurred segment
is recognized from the extremity points of each Rk by exploiting the previous
primitives.

The general algorithm is based on the previous methods. Moreover it applies
a refinement of the initial direction given by the user in order to be robust
towards the first direction. The process follows these different main steps:

1© The function recognizeBlurredSegment is applied from the initial list of
Rk.

2© The new direction is used to define a new list of research segment R′
k. The

new direction is defined from the detected blurred segments. More precisely,
this direction is given from the direction vector of the detected blurred seg-
ments.

3© The function findCandidate() is called with reference given by the initial
I0,i
n order to obtain the new reference interest area I ′

0. By this way it will
allow to find on this new segment the best area associated to the initial area.

4© From these new research segments a new recognition is applied again on the
new research segments R′

k.

Here, we exploit a static interest area of reference Ik defined manually. It is
fixed for all the parallel strip recognition process. However, to prevent gradual
change of the profile, we can define a dynamic variant where the reference I0

is updated by using the previous matching interest area Ir matching. Such a
strategy was evaluated and presents the ability to be robust to profile change.
However it shows that the reference tends to deviate towards the initial interest
area. We choose another strategy by changing the reference only when p matches
are achieved. By this way, the algorithm is able to deal with moderate intensity
variations and avoids the deviations of previous solution.

318 N. Aubry et al.

Algorithm 1. findCandidate function
input : Rr //Reference research segment

Ri //Research segment where interest area must be found

//We define In,m
i with n = 0 and m = Size of the areas of interest

(nf,mf) ← (0, 0)
min ← a large number

while m < of the size of the Ri do
mse ← MSE(Rr, Ri)

if mse < min then
min ← mse
(nf,mf) ← (n,m)

//We define In,m
i with n = n + 1 and m = m + 1

//We define for Ri his area of interest Inf,mf
i

Algorithm 2. recognizeBlurredSegment function
input : Seg //Set of Rk

stepReference //Rr change after stepReference iterations
output: blurredSegmentL //Blurred segment that represents an edge

blurredSegmentR //Blurred segment that represents the other edge of
the tube

Rr ← Seg[0]

for i ← 0 to Seg.size do
findCandidates(Rr, Ri)

// We try to extend the blurredSegmentL with the first point
// of the area of interest In,m

i

blurredSegmentL ← extendBlurredSegment(P1)

// We try to extend the blurredSegmentL with the last point
// of the area of interest of In,m

i

blurredSegmentR ← extendBlurredSegment(P2)

if P1 and P2 was accepted then
lastAccepted ← Ri

//We change the reference modulo stepReference time
if ((i mod stepReference) = 0) and (P1 and P2 was accepted) then

Rr ← Ri

else
Rr ← lastAccepted

3 Application to Metallic Tube Measuring

In relation to the new proposed method, we focus on the problem of the geomet-
ric measure on metallic tubular objects (information about the orientation and
length of straight parts) taken in an industrial environment with real time con-

Parallel Strip Segment Recognition and Application 319

straints. Such tubular objects represented on Fig. 6(a) are difficult to segment as
shown in images (b–h) where six recent segmentation algorithms were applied
and failed to segment precisely the metallic tube.

Related to these specularity problems, Chang et al. [7] proposed an original
approach to estimate the pose of 3D tubular objects. In their work, they propose
to exploit the scene image in order to apply a rendering of the piece from the
tubular shape model which is supposed to be known. Then from the rendering
image, they can search the region matching the initial piece and estimate the
initial pose. Such an original work is however not adapted to our main objective
to measure shape quality from geometric information since it is only defined to
recover position of rigid object without any measure of deformation.

Since this segmentation task on such objects remains a challenge in the com-
puter imagery domain, we follow another strategy by using the new proposed
method in order to directly extract the geometric information and exploiting the
nature of specular object.

Fig. 6. Experiments of six recent segmentation algorithms on a specular tube (image
(a)). Segmentation markers are highlighted in red on images (b, c, e, g) and the seg-
mentation results are represented in blue color on images (b, c, d, f, g, h) (Colour figure
online).

Even if the proposed approach needs the set of an initial segment across the
object of interest (I0), we can suppose that it is always available, even approx-
imately, since from the considered industrial application, the main geometric
model of the tube is supposed to be known. In the experiments of Fig. 7, we
have manually put them with different degrees of precision in order to mea-
sure the robustness of the approach. The few parameters of the algorithm were

320 N. Aubry et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7. Results of parallel strip recognition on various images (a, d, g, j). The results
obtained after the initialization steps (second row) are given on the third row.

set to 10 for the ds parameter and to 5 for the maximal width value of the
blurred segment parameter (in order to handle some small amount of noise in
the recognition process). Different results are presented on the Fig. 7 where var-
ious initializations were applied from the two initial points A and B. All the
detections were performed in live after the initialization and present fine preci-
sion permitting to identify the location and orientation of the different tubular
parts given in different configurations.

In order to show the robustness according to the position of the interest area,
we have voluntarily initialized this area between the tube and the background.

Parallel Strip Segment Recognition and Application 321

(a) (b)

(c) (d)

Fig. 8. Measure of robustness on noisy image with coarse initialization of interest area
outside the tube (image (a)). Other experiment to the segment recognition on other
type of images containing linear structures (b, c, d).

As it can be shown on the image of Fig. 8 the tubular direction and position is
well recovered. Note that the robustness to noise is also visible since this image
was taken in low light conditions. Finally, other experiments are presented with
others types of image containing linear structures. The different detections well
fit the real features associated to road border and center (see images (b, c, d)).

4 Conclusion and Future Work

We proposed a new and original approach to detect parallel strip segment.
Instead of basing the detection on image gradient, the intensity profile allows
us to be able to detect linear structure even on specular objects. Associated to
this work, we have proposed a real industrial application with the recognition
of metallic tubular shape. As future work, we planed to extend this same idea
to automatically detect all the straight segments of an image in a stand-alone
algorithm.

322 N. Aubry et al.

References

1. DGtal: Digital Geometry tools and algorithms library. http://libdgtal.org
2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC super-

pixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34(11), 2274–2282 (2012)

3. Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with
a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011).
http://ceng.anadolu.edu.tr/CV/EDLines/demo.aspx

4. Alvarez, L., Baumela, L., Márquez-Neila, P., Henŕıquez, P.: A real time morpho-
logical snakes algorithm. Image Process. Line 2, 1–7 (2012)

5. Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves
using relaxed straightness properties. IEEE Trans. Pattern Anal. Mach. Intell.
29(9), 1590–1602 (2007)

6. Buzer, L.: A simple algorithm for digital line recognition in the general case. Pat-
tern Recogn. 40(6), 1675–1684 (2007)

7. Chang, J., Raskar, R., Agrawal, A.: 3D pose estimation and segmentation using
specular cues. In: CVPR 2009, pp. 1706–1713 (2009)

8. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: a new image seg-
mentation framework extending graph cuts, random walker and optimal spanning
forest. In: IEEE 12th International Conference on Computer Vision, pp. 731–738.
IEEE (2009)

9. Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning
forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K.
(eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011)

10. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological
hierarchies on edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand,
R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 86–97. Springer, Heidelberg (2013)

11. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments
decomposition of noisy shapes in linear times. Comput. Graphics 30, 30–36 (2006)

12. Durou, J.D., Falcone, M., Sagona, M.: Numerical methods for shape-from-shading:
a new survey with benchmarks. Comput. Vis. Image Underst. 109(1), 22–43 (2008)

13. Even, P., Malavaud, A.: Semi-automated edge segment specification for an inter-
active modelling system of robot environments. Int. Arch. Photogramm. Remote
Sens. 33(B5), 222–229 (2000)

14. Getreuer, P.: Chan-Vese segmentation. Image Process. Line 2, 214–224 (2012)
15. Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line

segment detector. Image Process. Line 2, 35–55 (2012)
16. Haldo, S., Juan, C.: A review of classic edge detectors. Image Process. Line 5,

90–123 (2015). doi:10.5201/ipol.2015.35
17. Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours

by approximate global optimization. Pattern Recogn. 42(10), 2265–2278 (2009)
18. Kerautret, B., Even, P.: Blurred segments in gray level images for interactive line

extraction. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852,
pp. 176–186. Springer, Heidelberg (2009)

19. Naegel, B., Passat, N.: Interactive segmentation based on component-trees. Image
Process. Line 4, 89–97 (2014)

20. Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant
point detection. Pattern Recogn. 44(1), 32–44 (2011)

http://libdgtal.org
http://ceng.anadolu.edu.tr/CV/EDLines/demo.aspx
http://dx.doi.org/10.5201/ipol.2015.35

Analysis and Performance Evaluation
of ICA-Based Architectures for Face Recognition

Anu Singha, Mrinal Kanti Bhowmik(B),
Prasenjit Dhar, and Anjan Kumar Ghosh

Department of Computer Science and Engineering,
Tripura University (A Central University), Suryamaninagar 799022, India

{anusingh5012,prasenjitdhar.cse}@gmail.com,
mkb cse@yahoo.co.in, anjn@ieee.org

Abstract. Prediction of the best ICA architecture for face recognition
systems is somewhat complicated. This paper shows how the recognition
performance of both architectures depends on the nature of feature vec-
tors rather than several criteria such as different databases, number of
subjects, and number of principle components. The investigation finds
that Architecture-II yields the better performance than Architecture-I
based on face feature vectors. The experiments are done on different face
datasets like FERET, ORL, CVL, and YALE.

Keywords: ICA · Architecture-I · Architecture-II · Performance eval-
uation · Analysis

1 Introduction

In image analysis and understanding, face recognition have been a challenging
and quite attractive key area of research. It is usually used in security sys-
tems and can be compared to other biometrics such as eye iris recognitions
or fingerprint. The recognition task has been done by selecting proper sub-
space projection to get facial features followed by classification in the space
of compressed features. There are varieties of techniques employed for select-
ing subspace projection which projects consider face images as the points in
high-dimensional spaces and reduce the dimension to find a more meaningful
description. The central issue is how to determine and define image appearance
in a high-dimensional image space to a low-dimensional subspace. The most
noticeable method in this category is Principle Component Analysis (PCA) [14],
which is concerned only second-order dependencies between variables. For past
one and half decades, a generalized method of PCA, Independent Component
Analysis (ICA) has received spacious notice. ICA technique is a relatively new
invention which has been mainly used to Blind Signal Separation (BSS), though
it has been successfully applied to the face recognition problem too [5]. ICA
is concerned with high-order dependencies between variables in addition to the

c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 323–336, 2015.
DOI: 10.1007/978-3-319-26145-4 24

324 A. Singha et al.

second order. PCA makes the data uncorrelated while ICA makes the data uncor-
related as well as unit variance i.e. as independent as possible. There are at least
two benefits for face recognition using ICA: first, the high order dependencies
among data may contain more information that is useful for face recognition
than the second-order statistic representations. Secondly, ICA finds the direc-
tions such that the projection of the data into those directions has maximally
“non-Gaussian”distributions.

2 Literature Review

The literature review of ICA on the subject is very contradictory. Bartlett et al.
[1] were among the first to apply ICA to face identification task. They have used
the Infomax algorithm [9] to employ ICA and recommended two ICA based
architectures. Both architectures were evaluated on a subset of the FERET
database along with PCA, and claims that the two ICA based architectures
were equally powerful and both outperformed the PCA. Liu and Wechsler [11]
also used FERET database to study the comparative assessment of ICA per-
formance through Comon [4] ICA algorithm, and claims ICA outperform PCA.
Guo et al. [8] also present the process of facial expression recognition based on
ICA model. Their experimental results have shown that ICA is a more effec-
tive facial expression recognition method than that based on PCA and 2DPCA.
Kishor et al. [10] proposed a new face recognition technique based on Indepen-
dent Component Analysis of GaborJet (GaborJet-ICA). They transformed this
GaborJet feature vector into the basis space of PCA, and prove that the differ-
ence in performance is insignificant between GaborJet-ICA and GaborJet-PCA.
While other researchers reported differently. Socolinsky et al. [15] has reported
that ICA performs better in case of visible images, and PCA performs better
in case of infrared images. Draper et al. [6] again tested ICA architectures and
PCA on the FERET database to come out from these conflicting results. The
analysis has shown that ICA architecture-II provides the best results, followed by
PCA with L1 or Mahalanobis distance metrics. Recommends the FastICA algo-
rithm for ICA architecture-II, although the difference between FastICA and Info-
max is not large. In recognizing facial actions, the recommendation is reversed:
found the best result using Infomax to implement ICA architecture-I. Jian Yang
et al. [18] also re-evaluated ICA architectures and PCA on the FERET, ORL, AR
face databases, and claims as similar to Drapper et al. [6]. They construct two
PCA baseline algorithms to re-evaluate ICA-based architectures, but observed
no significant performance difference between ICA-I (II) and PCA-I (II).

The performance analyses of the two ICA architectures depended on the
property of “intra feature correlation”and “inter feature correlation”of the fea-
ture vector of face images. The term “intra feature correlation”refers to the
relationship of a feature vector with itself, and the term “inter feature correla-
tion”refers to the relationship of a feature vector with other feature vectors. The
relationship within the intra feature vectors should be very strong i.e. variance
is one, and the relationship between the inter feature vectors should be poor i.e.

ICA-Based Architectures for Face Recognition 325

uncorrelated. The poor inter feature relationship decreases the correlation value
making it more independent (as a contribution part) which gives better accuracy
rate in classification of face images in a small dataset. From the several literature
reviews, it has also been observed that many authors evaluated ICA according to
some criteria, for example image pre-processing, ICA pre-processing steps, effect
of different ICA algorithms, distance metrics, different types of images, and so
on. As a consequence, it has been complicated to predict the best ICA architec-
tures for a particular domain. So an analysis is carried out on feature vectors
based on the correlation coefficient property, and it is found that Architecture-II
is more potential than Architecture-I for performance analysis of face feature
vectors.

3 Independent Component Analysis (ICA) and Its Two
Architectures

Basically ICA is a method for extracting statistically independent components
from a mixture of them [3]. The performance of ICA varies on the databases, the
number of images, and the number of subspace dimensions reduced. Typically,
the performance depends even more on the two ICA-based architectures of face
representations namely Architecture-I and Architecture-II.

3.1 Architecture-I: Statistically Independent Basis Faces

In this architecture, ICA can be represented to treat face images as random
variables and pixels are trials for the variables [2]. The approach illustrated in
Fig. 1. Organizes each face image in the database as a lengthy vector with size
of dimensions in the image, into a matrix X where each row vector is a different
image. It makes sense to talk about independence of images. The ICA algorithms
learn the weight matrix W, which is then projected onto the input images X to
produce the independent basis images in the rows of S.

To illustrate the mathematical basis for Architecture-I, the following steps
have been described. In the first step, form an image data matrix XN×M =
[x1, x2, ..., xN]T of a given set of N training samples x1, x2, ..., xN in RM . Then
center the data matrix X in a trail space RM by subtracting the mean vector
µI from each trail, and get the centered matrix X̄N×M . In step 3, whiten the
centered data matrix using PCA elements Um×m and VN×m, and obtain the
whitening matrix as

HN×m = V U− 1
2 (1)

Where U is the diagonal matrix of m largest positive eigenvalues, and V is
a matrix of orthonormal eigenvectors of corresponding m largest positive eigen-
values. PCA enhances the performance of ICA by throwing away small-negative
eigenvalues before whitening, and reduce computational complexity by minimiz-
ing pair-wise dependencies. So the data matrix X̄ can be whitened using the
transformation

326 A. Singha et al.

Fig. 1. Block diagram of finding statistically independent basis images.

X̃m×M = HT X̄ (2)

The main purpose of whitening is to make its components as uncorrelated
and unit variances, such that E{X̃X̃T } = I [9]. Fourth, process the ICA on
X̃ whitened matrix to generate a square learned weight matrix W I

m×m by a
given ICA algorithm. As a fifth step, produce the space SI with m independent
basis images in its rows by projecting weight matrix onto the centered whitened
matrix as

SI
m×M = W IX̃ (3)

At last, the compressed representation of images i.e. feature vectors space
Xf of face image matrix X is given by

Xf
N×m = X̄(SI)T (4)

Each row of Xf that represents the feature vectors, is used to represent the
image matrix X for recognition purposes.

3.2 Architecture-II: Statistically Independent Coefficients

According to ICA definition, the coefficient matrix should be orthogonal. But in
practice, it might be non-orthogonal. Apart from FastICA, many ICA algorithms
such as Infomax, Comons give results in a non-orthogonal coefficient matrix [19].
So the basis images obtained in Architecture-I are statistically independent,
but the coefficient matrix that represents input face images in the subspace
defined by the basis face images is not statistically independent. Conversely, in
Architecture-II, ICA is used to find a set of statistically independent coefficients
to represent a face image and the resulting basis images may be statistically
dependent. So the input face data matrix X is transposed from Architecture-I
i.e. the pixels are variables and the images are trails [2], as shown in Fig. 2.

ICA-Based Architectures for Face Recognition 327

Fig. 2. Block diagram of finding statistically independent coefficients.

Now, each row of the learned weight coefficient matrix W is the basis images,
and the statistically independent coefficients that comprise the input images are
recovered in the columns of S. It makes sense to talk about independence of
pixels.

The illustration of the mathematical basis for Architecture-II is roughly anal-
ogous to Architecture-I except (i) starting image data matrix will be in the form
of transpose of XN×M , say YM×N = [y1, y2, ..., yN], (ii) Architecture-I centering
the data matrix by removing the mean of each image, and Architecture-II cen-
tering the data matrix by removing the mean image of all image samples. In this
architecture, the independent coefficients are recovered in the columns of SII as

SII
m×M = W IIHT (5)

Each column of Y f that represents the feature vectors is given by

Y f
m×N = SII Ȳ (6)

4 System Overview

Figure 3 shows a block diagram of a generic human face analysis model for
ICA. In image pre-processing stage, the database face images are manually
cropped, resized, and finally the histogram equalization for image enhancement is
processed. In the second stage, the two most important pre-processing steps that
are centering and whitening to simplify and minimize the complexity of the prob-
lem for the actual ICA algorithms are carried out. While PCA is used to reduce
the dimensions. Then the ICA algorithms for maximizing non-gaussianity as a
measure of statistical independence are applied. In the fourth stage, the feature
vectors of all the database images are extracted by projecting onto independent
source outputs of ICA algorithms. At last, classification of the extracted features
has been done using support vector machines, and the accuracy estimated.

328 A. Singha et al.

Fig. 3. Block diagram of ICA based feature extraction and classification.

5 Analysis

The analysis has been done in two steps. First, a statistical estimation has been
carried out on the feature vectors, and secondly, a performance evaluation over
the several databases has been conceded against different factors.

5.1 Numerical Analysis of Feature Vectors of Both Architectures

Table 1 represents some column feature vectors (FV 1 to FV 4) of dimension
15×1 taken from both architectures. In the case of intra feature vector analysis,
it has been observed that the variations between the values of the feature vector
(say, FV 1 column vector itself) of Architecture-I are very large than the varia-
tions of Architecture-II. Similarly it is tough to measure the correlation property
of the intra feature vector analysis. Therefore, in Table 2, the values of correla-
tion coefficient of intra and inter feature vectors are reported. In Table 2, rows 1,
5, 8, 10 show the correlation coefficient values of intra feature vectors from both
architectures which give us the variance values of 1 indicating a very strong rela-
tionships. In the case of inter feature vector analysis, it has also been observed the
similar variations (like values within the intra feature vectors) between the val-
ues of the feature vectors (FV1-FV2, FV1-FV3, FV1-FV4, FV2-FV3, FV2-FV4,
FV3-FV4) from both architectures. For example, the data have been plotted
between the feature vector of 1 and 4 in Fig. 4. Although the values between
the feature vectors of Architecture-I contain large variation which is shown in
Fig. 4a indicating that the points are scattered along the regression line and
closer except one single point which indicates a stronger correlation. In Fig. 4b,
some points are close enough towards regression line while rest of data points
scattered in a wider band from regression line. The correlation coefficient value of
0.010 in Fig. 4b is showing a very weaker positive correlations in Architecture-II,
where value of 0.074 in Fig. 4a is showing a comparably stronger positive rela-
tionship in case of Architecture-I. Other comparative inter correlation coefficient
results between the feature vectors listed in Table 2. From rows 2, 3, 4, 6, 7, 9
it has been noticed that the correlation coefficient values of Architecture-II are
less than Architecture-I. In case of Architecture-II, some coefficient values (row

ICA-Based Architectures for Face Recognition 329

Table 1. Some (feature vectors) from both architectures. FV indicates Feature Vectors.

Architecture-I Architecture-II

FV 1 FV 2 FV 3 FV 4 FV 1 FV 2 FV 3 FV 4

373.926 313.148 855.538 827.955 0.297 0.119 0.340 0.121

280.486 −14.316 253.632 −19.910 0.174 −0.521 −0.133 0.088

38.602 55.394 6.900 75.637 0.0687 −0.145 −0.0202 −0.151

−246.216 −301.438 250.502 −12.590 −1.180 −0.919 0.173 −0.885

−119.288 −50.0679 −96.324 −81.723 −1.224 −0.813 0.714 1.332

−568.983 −471.674 −332.363 −355.828 −0.950 −0.780 1.177 1.211

269.229 397.313 147.475 33.0255 0.116 −0.350 0.945 0.0500

−456.105 −440.801 361.348 386.277 −3.387 −4.0462 0.1225 −0.506

−192.065 −43.943 −184.124 47.544 0.424 −0.140 0.219 0.558

194.332 134.580 7.094 128.992 −0.173 0.0621 −0.980 −0.550

110.288 51.262 −39.467 −152.434 0.551 −0.438 −1.160 −2.915

−100.337 −130.741 017.498 −59.829 0.571 −0.594 0.676 0.350

−600.982 −727.88 −262.249 −245.191 −0.358 0.370 1.860 2.397

243.287 32.925 −405.614 −536.619 −0.274 0.654 0.350 −0.0311

66.1689 10.324 −14.044 −20.276 0.232 −0.264 −0.892 −0.300

Table 2. Comparisons of the one feature vector with other feature vectors correspond-
ing to Table 1

Sl. No. FV FV Correlation Correlation coefficient Correlation coefficient

type value (R2) of Architecture-I value (R2) of Architecture-II

1 FV 1 FV 1 intra 1 1

2 FV 1 FV 2 inter 0.908 0.684

3 FV 1 FV 3 inter 0.101 0.035

4 FV 1 FV 4 inter 0.074 0.010

5 FV 2 FV 2 intra 1 1

6 FV 2 FV 3 inter 0.113 0.002

7 FV 2 FV 4 inter 0.111 0.031

8 FV 3 FV 3 intra 1 1

9 FV 3 FV 4 inter 0.865 0.673

10 FV 4 FV 4 intra 1 1

4 and 6) of inter feature vectors are close to zero (0.010 and 0.002 respectively).
Therefore, it has been found that Architecture-II has a better independedness
property through correlation coefficient than Architecture-I which may lead bet-
ter classification performance.

330 A. Singha et al.

(a) (b)

Fig. 4. Correlation between two feature vectors [1 and 4] from (a) Architecture-I, (b)
Architecture-II.

5.2 Performance Analysis of ICA Architectures

In this section, the experiments of ICA based two architectures are performed
using four face databases: the FERET, ORL, CVL, and YALE databases. From
these databases, experiments have done in frontal faces with different expres-
sions, and illuminations.

Database Organization: The FERET [13] has total five probe sets of frontal
(pose angle of zero degree) images namely fa, fb, ba, bj, bk. The number of
subjects of “f” series does not match with the subjects of “b”series. So, for
experiment analysis only “b”series has been taken where each of the 200 subjects
has 3 images belonging to probe sets ba, bj, bk respectively. Probe set ba consists
of 200 images of 200 subjects, and also set bj, bk consists of 200 images of 200
subjects each. The ORL database [17] consists of 10 different images of each of
40 distinct subjects. For experiments, only 3 frontal position images have been
taken from each of the 40 subjects of varying lighting and facial expressions, and
these 3 images are put to the manual sets namely set 1, set 2, set 3 backed by the
idea to keep same number of images of each subject and same number of sets from
several databases for the comparative study. Another face database called FRI
CVL [16] consists of 7 different images of 114 number of unique people consists
of 108 male and 6 female. The images were taken at different conditions: profile
left/right, 45 degrees left/right, frontal, frontal smile, and frontal smile with
teeth. As for comparative study, 3 frontal images are taken to the manual sets:
set 1 consists of frontal smile images, set 2 consists of frontal smile with teeth,
and set 3 consists of only frontal images. In the same way, the Yale database [7]
is also prepared.

The purpose of the experiments is to compare the performance of two ICA
based architectures for face recognition. To observe the recognition performance,
3 training sample set has been prepared and the recognition rate of each samples
averaged. All these training samples are shows in Table 3. In training sample 1,

ICA-Based Architectures for Face Recognition 331

Table 3. Image sets used for training and testing.

Training sample Condition Description of sets

Training set Testing set

Sample 1 Set 1 and Set 2 Set 3 Set 1 Frontal regular facial
expression. In FERET
database, set 1 is indicated
by ba

Sample 2 Set 2 and Set 3 Set 1 Set 2 Alternative facial expression to
set 1. In FERET database,
set 2 is indicated by bj

Sample 3 Set 3 and Set 1 Set 2 Set 3 This also contains frontal
image taken under different
lighting. In FERET
database, set 3 is indicated
by bj

the set 1/ba and set 2/bj are used for training purpose, and set 3/bk has been
used for testing purpose. Similarly in training sample 2, the set 2/bj and set 3/bk
are used for training purpose, and set 1/ba has been used for testing purpose.
In training sample 3, the set 3/bk and set 1/ba are used for training purpose,
and set 2/bj has been used for testing purpose.

Experiments: In the experiments, the face portion of each original image is
manually cropped and resized to an image of 60 × 70 resolutions using bilinear
interpolation. The resulting image is then pre-processed using histogram equal-
ization method. Figure 5 shows some sample images after pre-processing.

(a) (b)

(c) (d)

Fig. 5. Sample images of one subject from the (a) FERET (b) ORL (c) CVL (d) YALE
databases.

Based on the first investigation, the assumption is that Architecture-II will
produce better result than Architecture-I. In this correspondence, there are three

332 A. Singha et al.

(a) (b)

Fig. 6. Recognition rate (Average) of architecture I against number of (Principle Com-
ponents (PCs)) over ((a) FERET, CVL (b) ORL, YALE) databases.

experimental analyses have been done. Experiment 1 concerned on keeping same
number of subjects and same number of independent components for each data-
base, where experiment 2 is involved in keeping different number of subjects and
same number of independent components. Liu [12] has shown that the selection
of number of principle components has a significant effect on the performance of
ICA based face recognition. In this regards, the third experiment has been drawn
which is based on keeping different number of subjects along with different num-
ber of independent components (or principle components) for each database. So
an analysis has conceded to find a number of independent components (ICs)
for each database which maximizes the performances of ICA architectures. In
selection of ICs approach, the numbers of principle components (PCs) vary from
30 to 80 with an interval of 5 in case of FERET and CVL database, and from
15 to 50 with an interval of 5 for ORL and YALE database. Hold the different
ranges of PCs for the databases because number of subjects is not equal for all
databases. Figure 6 shows the average recognition rates of Architecture-I versus
the variation of the PCs. Finally an optimal number of PCs 55, 80, 30, 25 for
FERET, CVL, ORL, and YALE databases respectively is chosen. These optimal
PCs have been carried out in case of Architecture-II also.

The estimation of a weight matrix is prepared through the FastICA algo-
rithm with the contrast function G(u) = − exp(u

2

2). After feature extraction,
SVM multi-classification strategy has been taken. For training support vector
machines, polynomial kernel with degree 1 is used and 10-fold cross validation
has been done to select proper parameters for kernel function.

Analysis and Observation

1. Experiment 1: Same number of subjects and same number of ICs: In this
experiment, numbers of 20 subjects are taken from each database i.e. FERET,
ORL, CVL, and YALE. From these 20 subjects, a total of 60 face images
has been collected for each database. So, each set of training samples con-
sists of 40 training images and 20 testing images. For each face images 15

ICA-Based Architectures for Face Recognition 333

features are extracted for recognition task. Table 4 lists the recognition rate
of each training sample sets and two architectures over four databases. Aver-
age recognition rate of two architectures is also listed in this table. Table 4
shows us that Architecture-II significantly outperforms the Architecture-I in
all three training samples no matter what database is used by Architecture-I.
Also, in terms of the average recognition rate holding the same situation, but
in CVL database the performance of Architecture-I is slightly better than
other databases although less than Architecture-II with difference of accu-
racy between two architectures is 20 %. FERET and ORL giving us almost
similar results with difference of accuracy between two architectures are
38.33 % and 35 % where YALE database with highest difference of 40 %. All
these results are giving contradictory verdict with Bartlett et al. [1] where
they had concluded that two ICA representations were equally powerful for
face recognition. This analysis is consistent with Draper et al. [6] where con-
cluded that Architecture-II is better than Architecture-I. At this instant,
a question is: what are the causes that make notable distinction between
the architectures performance? First reason is the architectural representa-
tion where Architecture-I centering the data matrix by removing the mean
of each image, and Architecture-II centering the data matrix by removing
the mean image of all training samples. Secondly, nature of the feature vec-
tors of both architectures i.e. compactness of the feature values such that
low compact features will enhance result than high compact features. It is
clearly observed that for all four databases Architecture-II perform better
than Architecture-I, no matter which databases are used.

Table 4. Keeping same number of subjects and same number of independent compo-
nents from several databases.

Databases FERET ORL CVL YALE

Methods ICA I ICA II ICA I ICA II ICA I ICA II ICA I ICA II

Training sample 1 50 75 40 75 55 80 50 45

Training sample 2 35 80 35 65 55 80 30 85

Training sample 3 45 90 50 90 55 65 20 90

Average 43.33 81.66 41.66 76.66 55 75 33.33 73.33

2. Experiment 2: Different number of subjects and same number of ICs: To
verify whether the conclusion of experiment 1 depends on the varying num-
ber of subjects, the tested two architectures by taking different number of
subjects for each database. In this experiment, numbers of 180 subjects and
total of 540 face images are taken from FERET database, 103 subjects and
total of 309 face images from CVL database, 28 subjects and total of 84 face
images from YALE database, 27 subjects and total of 81 face images from
ORL database are taken respectively. So, each set of training samples con-
sists of 360, 206, 56, and 54 training images respectively for FERET, CVL,

334 A. Singha et al.

YALE, ORL databases and 180, 103, 28, 27 testing images respectively for
FERET, CVL, YALE, ORL databases. Like experiment 1, 15 features for
each face images from all the databases are extracted. Table 5 lists the recog-
nition rate and average recognition rate of each training sample set and two
architectures over four databases. As similar with experiment 1, Table 5 also
shows us that Architecture-II notably outperforms the Architecture-I in all
three training samples no issue of how many images are intended for the
experiment. But the recognition rate is become somehow lesser as compare
to first experiment which has been more highlighting in FERET database.
The explanation behind this the number of features is fewer as compared to
the number of images. In terms of the average recognition rate, ORL and
CVL database giving almost similar recognition rate with difference of accu-
racy between two architectures are 22.22 % and 23.31 %. The YALE database
giving good recognition rate in case of Architecture-II but highest difference
of accuracy along with Architecture-I, is 45.23 %. It seems that the perfor-
mance varying when different number of subjects is considered, but it does
not affect performance of the Architecture-II against Architecture-I.

Table 5. Keeping different number of subjects and same number of independent com-
ponents from several databases.

Databases FERET ORL CVL YALE

Methods ICA I ICA II ICA I ICA II ICA I ICA II ICA I ICA II

Training sample 1 14.44 41.67 48.15 70.37 41.75 67.96 39.29 39.29

Training sample 2 21.11 49.44 40.74 59.26 48.54 77.67 21.43 85.71

Training sample 3 17.78 43.33 48.15 74.07 47.57 62.14 10.71 82.14

Average 17.78 44.81 45.68 67.9 45.95 69.26 23.81 69.04

3. Experiment 3: Different number of subjects and different number of ICs:
The choice of an optimum number of principle components has a signifi-
cant effect on the recognition rate of ICA architectures. The number of ICs
which maximizes the performances of ICA architectures is 55, 80, 30, and
25 for database FERET, CVL, ORL, and YALE respectively as shows in
Fig. 6. So, this experiment is basically based on the different number of ICs
along with different number of subjects for each database. The collection
of number of subjects is analogous to previous analysis i.e. experiment 2.
Table 6 lists the recognition rate and average recognition rate of each train-
ing sample set and two architectures over four databases. Although optimum
number of PCs effects the recognition rate of ICA architectures as compared
to previous experiment, this experiment also notify that the Architecture-II
superior than the Architecture-I. The average recognition performances of
experiment 2 and 3 are somehow reduced as compared to first experiment
except few cases. So the number of subjects or images could also effect in
the performances.

ICA-Based Architectures for Face Recognition 335

Table 6. Keeping different number of subjects and different number of independent
components from several databases.

Databases FERET ORL CVL YALE

Methods ICA I ICA II ICA I ICA II ICA I ICA II ICA I ICA II

Training sample 1 26.67 56.11 44.44 77.78 54.37 79.61 39.29 50

Training sample 2 17.22 72.78 44.44 66.67 51.46 85.71 21.43 85.71

Training sample 3 25.00 66.11 59.26 88.89 52.43 78.57 10.71 78.57

Average 22.96 65 49.38 77.78 52.75 81.30 23.81 71.42

In a word, the strong and weakly compact correlations between feature vec-
tors of two architectures clearly define which architecture is better than the
other. There is no effect of different databases, number of subjects, and number
of principle components in the performances of both architectures against one
another.

6 Conclusion

Evaluation between ICA architectures is difficult since there are lot of considera-
tions must be taken into account such as differences in representation of architec-
tures, database complication, optimum parameters selection for ICA processing
and classification etc. This paper is to investigate the relationship of the feature
vectors, and experiments based on several factors. As a conclusion, it has been
seen that Architecture-II is outperforms than Architecture-I. In this process, it
has been possible to verify the results of similar claims with few researchers and
diverse views in case of other researchers.

Acknowledgments. The work presented here is being conducted in the Biometrics
Laboratory and Bio-Medical Infrared Image Processing Laboratory of Department
of Computer Science and Engineering of Tripura University (A Central University),
Tripura, Suryamaninagar-799022. The research work was supported by the Grant No.
12(2)/2011-ESD, Dated 29/03/2011 from the DeitY, MCIT, Government of India and
also supported by the Grant No. BT/533/NE/-TBP/2013, Dated 03/03/2014 from
the Department of Biotechnology (DBT), Government of India. The authors would
like to thank Prof. Barin Kumar De, Department of Physics, Tripura University (A
Central University) and Dr. Debotosh Bhattacharjee, Associate Professor, Department
of Computer Science and Engineering, Jadavpur University for their kind support to
carry out this research work.

References

1. Bartlett, M.S., Lades, H.M., Sejnowski, T.J.: Independent component representa-
tions for face recognition. In: Proceedings of the SPIE Symposium on Electronic
Imaging: Science and Technology; Conference on Human Vision and Electronic
Imaging III, San Jose, California (1998)

336 A. Singha et al.

2. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent
component analysis. IEEE Trans. Neural Netw. 13, 1450–1464 (2002)

3. Bell, A., Sejnowski, T.: An information maximization approach to blind separation
and blind deconvolution. J. Neural Comput. 37, 1129–1159 (2007)

4. Comon, P.: Independent component analysis: a new concept? Signal Process. 36,
287–314 (1994)

5. Deniz, O., Castrillon, M., Hernandez, M.: Face recognition using independent com-
ponent analysis and support vector machines. Pattern Recogn. Lett. 24, 2153–2157
(2001)

6. Draper, B.A., Baek, K., Bartlett, M.S., Beveridge, J. R.: Recognizing faces with
PCA and ICA. Comput. Vis. Image Underst. 91, 115–137 (2003)

7. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumi-
nation cone models for face recognition under variable lighting and pose. IEEE
Trans. PAMI 23, 643–660 (2001)

8. Guo, X., Zhang, X., Deng, C., Wei, J.: Facial expression recognition based on
independent component analysis. J. Multimedia 8, 402–409 (2013)

9. Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applica-
tions. Neural Netw. 13, 411–430 (2000)

10. Kinage, K.S., Bhirud, S.G.: Face recognition using independent component analy-
sis of GaborJet (GaborJet-ICA). In: IEEE International Colloquium on Signal
Processing and Its Applications (CSPA), Malacca City, pp. 1–6 (2010)

11. Liu, C., Wechsler, H.: Comparative assessment of independent component analysis
(ICA) for face recognition. In: International Conference on Audio and Video Based
Biometric Person Authentication, Washington (1999)

12. Liu, C.: Enhanced independent component analysis and its application to content
based face image retrieval. IEEE Trans. Syst. Man Cybern. B Cybern. 34, 1117–
1127 (2004)

13. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and
evaluation procedure for face-recognition algorithms. Image Vision Comput. 16,
295–306 (1998)

14. Sirovich, L., Kirby, M.: Low-dimensional procedure for characterization of human
faces. J. Opt. Soc. Am. A 4(3), 519–524 (1987)

15. Socolinsky, D.A., Selinger, A.: A comparative analysis of face recognition perfor-
mance with visible and thermal infrared imagery. In: Proceedings of the Interna-
tional Conference on Pattern Recognition, Quebec City (2002)

16. Solina, F., Peer, P., Batagelj, B., Juvan, S., Kovac, J.: Color-based face detection in
the “15 seconds of fame” art installation. In: Mirage 2003, Conference on Computer
Vision/Computer Graphics Collaboration for Model-based Imaging, Rendering,
Image Analysis and Graphical Special Effects, pp. 38–47. INRIA Rocquencourt,
France, Wilfried Philips, Rocquencourt, INRIA (2003)

17. The AT&T face database. http://www.uk.research.att.com/facedatabase.html
18. Yang, J., Zhang, D., Jing-Yu, Y.: Constructing PCA baseline algorithms to reevalu-

ate ICA-based face-recognition performance. IEEE Trans. Syst. Man Cybern.-Part
B Cybern. 37, 1015–1021 (2007)

19. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.: Face recognition: a litera-
ture survey. Technical report, University of Maryland, College Park, MD (2002).
Technical report, Global Grid Forum (2002)

http://www.uk.research.att.com/facedatabase.html

Optimization of Low-Dose Tomography
via Binary Sensing Matrices

Theeda Prasad1(B), P.U. Praveen Kumar1, C.S. Sastry1, and P.V. Jampana2

1 Department of Mathematics,
Indian Institute of Technology Hyderabad, Telangana, India

{ma13p1004,csastry}@iith.ac.in, praveen577302@gmail.com
2 Department of Chemical Engineering,

Indian Institute of Technology Hyderabad, Telangana, India
pjampana@iith.ac.in

Abstract. X-ray computed tomography (CT) is one of the most widely
used imaging modalities for diagnostic tasks in the clinical application.
As X-ray dosage given to the patient has potential to induce undesirable
clinical consequences, there is a need for reduction in dosage while main-
taining good quality in reconstruction. The present work attempts to
address low-dose tomography via an optimization method. In particular,
we formulate the reconstruction problem in the form of a matrix sys-
tem involving a binary matrix. We then recover the image deploying the
ideas from the emerging field of compressed sensing (CS). Further, we
study empirically the radial and angular sampling parameters that result
in a binary matrix possessing sparse recovery parameters. The experi-
mental results show that the performance of the proposed binary matrix
with reconstruction using TV minimization by Augmented Lagrangian
and ALternating direction ALgorithms (TVAL3) gives comparably bet-
ter results than Wavelet based Orthogonal Matching Pursuit (WOMP)
and the Least Squares solution.

Keywords: Discrete tomography · Compressive sensing · WOMP ·
Binary sensing matrix · TVAL3

1 Introduction

Computed Tomography (CT) is a technique for reconstructing the cross-section
of an object from measurements that are essentially the line integrals of it. The
general image reconstruction in CT is a mathematical process that generates an
image from X-ray projection data acquired at different angles around the object.
As X-rays are harmful to human bodies, the basic objective in CT in medical use
is to obtain high quality images from projection data with as little of radiation
dosage as possible [11,19]. This objective was realized in several frameworks
([19,26] and references therein). There is, however, another dimension to the
CT reconstruction provided by the notion of sparsity, which is not yet exploited
properly. The emerging theoretical developments, by the name of compressive
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 337–351, 2015.
DOI: 10.1007/978-3-319-26145-4 25

338 T. Prasad et al.

sensing (CS) have potential in exploiting inherent sparsity in CT images, and
resulting in low-dose and stable reconstruction methods.

In the recent CS based CT reconstruction methods [5,26], the property of CT
images being sparse in transform domains such as wavelets, frames was used and
reconstruction based on convex optimization was proposed. Unlike the existing
methods, the present work, however, aims at analyzing the structure of the
underlying matrix. The underlying matrix is binary (with elements being equal
to 0 or 1) and we demonstrate empirically that the row restricted matrix satisfies
sparse recovery properties. As a result, one may be able to determine the data
acquisition geometry (i.e., a particular and restricted set of projection samples)
for low-dose reconstruction. We believe that this analysis helps in providing
theoretical guarantees for faithful CT image reconstruction.

The current work is an attempt towards giving a handle on the data acqui-
sition geometry for low-dose reconstruction in sparsity framework. The paper
is organized as follows: Sects. 2, 3 and 4 give an account of related work, brief
introductions to CT imaging and basics of the compressive sensing respectively.
The proposed reconstruction method via binary sensing matrix is presented in
Sect. 5. The experimental results are discussed in Sect. 6. Finally, Sect. 7 gives
the concluding remarks.

2 Related Work

In the current literature, CS based techniques are employed to perform CT
image reconstruction from incomplete datasets. CS theory allows a sparse signal
to be accurately reconstructed from samples far less than what is required by
the Shannon/Nyquist sampling theorem [20,21]. The key to the success of CS is
the sparsity of a signal under study. In general, an object is not sparse and often
times a sparsifying transform can be used to convert it into a domain in which
the signal has a sparse representation. One common sparsifying transform is the
discrete gradient transform (DGT) whose coefficients can be summed up to form
the so-called total variation (TV).

Inspired by CS theory, various TV minimization algorithms were suggested
to solve the few-view, limited-angle, and interior problems. For example, Chen
et al. proposed a prior image constrained compressed sensing (PICCS) algorithm
for dynamic CT application [6]. Yu and Wang proved that a piecewise constant
interior region of interest (ROI) can be uniquely reconstructed by a TV mini-
mizing technique [23,24]. Xu et al. extended this CS based interior tomography
formulation into a Statistical Iterative Reconstruction (SIR) framework [22].
Ritschl et al. proposed an improved TV method within the Adaptive Steep-
est Descent-Projection Onto Convex Sets (ASD-POCS) framework for clinical
applications [18].

As stated already, current work, however, attempts to study the structure of
underlying Radon transform matrix and its compliance with the sparse recovery
properties. The study helps one answer the question “what is the data-acquisition
geometry such that the sparse recovery properties are satisfied for faithful low-
dose reconstruction”.

Optimization of Low-Dose Tomography ViaBinary Sensing Matrices 339

Although these TV-based algorithms are successful in a number of cases, the
power of the TV minimization constraint is still limited. First, the TV constraint
is a global requirement, which can not directly reflect structures of an object.
Second, the DGT operation can not distinguish true structures and image noise.
Consequently, images reconstructed with the TV constraint may lose some fine
features and generate a blocky appearance in incomplete and noisy cases. In
order to overcome the above limitations, in this paper, we employ TV minimiza-
tion by Augmented Lagrangian and ALternating direction ALgorithms (TVAL3)
for reconstruction of tomographic image. This method gives better reconstruc-
tion results compared to the state-of-the-art TV minimization methods. We also
observe that TVAL3 works well for limited number of rays that are acquired
from the CT scanner and the reconstructed image is free from streak artifacts
(caused due to scatter) which is generally observed [14] in the reconstructed
image using traditional filtered backprojection.

3 Introduction to Computed Tomography

The parallel-beam CT scanning system uses an array of equally spaced uni-
directional sources of focused X-ray beams. The basic principle of CT
measurement [12] is shown in Fig. 1. The X-ray source, together with primary
collimators, provides a fine beam of radiation (ideally an infinitesimally narrow
ray) that passes through the object, the intensity of the beam is then measured
by a detector. The integral attenuation for each ray position τ is given as:

R(τ) = −
∫ rp

r=0

μ(τ, r)dr = log
Im

I0
, (1)

where Im is the intensity measured by the detector and is dependent on the initial
ray intensity I0 (i.e. Im = I0 exp(− ∫ rp

r=0
μ(r)dr)), and r is the radial distance

along the ray from the source at r = 0, limited by the radial distance rp of the
projection plane.

The whole measuring arrangement, including the frame enabling the men-
tioned linear movement, can be rotated as seen in the Fig. 1. This way, we may
obtain a projection for any angle θ of the measurement coordinates (τ, r) with
respect to the object coordinates (x, y). It is also possible to obtain the projec-
tions for a continuum of θ, so that Eq. (1) can be rewritten as

R(τ, θ) =
∫ xmax

xmin

∫ ymax

ymin

μ(x, y)δ(x cos θ + y sin θ − τ)dxdy, (2)

where the δ-function selects the ray point set, the limits of x and y are given by
the object size. Equation (2) is called Radon transform, in the continuous-space
formulation, obviously, the task of reconstruction of the original image μ(x, y)
from its projection representation R(τ, θ) is the problem of finding the inverse
Radon transform.

340 T. Prasad et al.

Fig. 1. Principle of measurement of projections basic rectangular arrangement ([12])

To reconstruct CT image, two major categories of methods exist, namely
Analytical Reconstruction and Iterative Reconstruction. Methods based on Fil-
tered Backprojection (FBP) are one type of analytical reconstruction. This
method is currently used in clinical CT scanners because of its computational
efficiency and numerical stability [17]. Despite being computationally expensive,
iterative reconstruction methods have potential for low-dose reconstruction [25].
One of the commonly known methods is Algebraic Reconstruction Technique
(ART) which is iterative in nature. There are different variants of ART [13], viz.
Simultaneous Algebraic Reconstruction Technique (SART) [1], Multiplicative
Algebraic Reconstruction Technique (MART) [2], etc.

4 Compressive Sensing

Compressed sensing is a signal processing technique for efficiently acquiring and
reconstructing a signal, by finding solutions to under-determined linear systems
[8]. Consider a full rank matrix A ∈ R

m×n with m < n then the linear system
of equations y = Ax where y ∈ R

m and x ∈ R
n has infinitely many solutions.

Among all, the solution with specific property J(x) may be obtained from the
following optimization problem:

(PJ) : min
x

J(x) subject to y = Ax.

Optimization of Low-Dose Tomography ViaBinary Sensing Matrices 341

Considering J(x) as ‖x‖2, one obtains the following pseudo-inverse solution:

x̂ = A†y,

where A† = AT (AAT)−1. This solution is unique as the function ‖x‖2 is strictly
convex, and is not in general sparse.

Definition 1. A vector x ∈ R
n is k-sparse if it has k non-zero co-ordinates.

i.e., ‖x‖0 := |{i|xi �= 0}| = k < n.

By considering J(x) as ‖x‖0, one may obtain sparse solution from

(P0) : min
x

‖x‖0 subject to y = Ax.

The (P0) problem is a non-convex optimization problem and finding a solution
to it is NP-hard. Since (P0) problem is intractable, several approaches [10] were
proposed to approximate (P0) based on greedy and convex relaxation methods.
Among all greedy methods, Orthogonal Matching Pursuit (OMP) is the most
popular.

With ‖x‖1 in place of ‖x‖0, the convex relaxation problem can be posed as

(P1) : min
x

‖x‖1 subject to y = Ax.

The ‖ ·‖1 norm in (P1) tends to provide sparse solution. One way of establishing
equivalence between both the problems is through coherence parameter which
is defined as follows:

Definition 2. The mutual coherence μA of a matrix A is the largest absolute
inner-product between different normalized columns of A. i.e.,

μA = max
1≤i,j≤m,i �=j

|aT
i aj |

‖ai‖‖aj‖ , where ai is the ith column of A.

For any matrix A of order m×n, the mutual coherence is bounded by
√

n−m
m(n−1) ≤

μA ≤ 1. The lower bound on mutual coherence μA is called Welch bound. The
following Theorem1 [9] relates the equivalence between P0 and P1 problems via
mutual coherence.

Theorem 1. Let A be an m × n matrix and let 0 �= x ∈ R
n be a solution of

(P0) satisfying

‖x‖0 <
1
2
(1 + (μ(A))−1).

Then x is the unique solution of (P0) and (P1).

The Restricted Isometry Property (RIP) is another sufficient condition that
ensures the equivalence between P0 and P1 problems.

342 T. Prasad et al.

Definition 3. An m × n matrix A is said to satisfy the Restricted Isometry
Property (RIP) of order k with constant δk ∈ (0, 1) if

(1 − δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 ∀x ∈ R
n with ‖x‖0 ≤ k. (3)

Theorem 2. [4] Suppose an m × n matrix A satisfies RIP of order 2k with
constant

δ2k <
√

2 − 1,

then P0 and P1 have same k-sparse solution if P0 has a k-sparse solution.

5 CS in CT: Proposed Method

In this section, we discuss the structure of underlying Radon matrix and an
empirical analysis of its compliance with RIP, followed by a convex optimization
technique for CT image reconstruction.

5.1 Radon Transform via Binary Matrices

Consider a ray, corresponding to some view θi and radial parameter τj (Fig. 1).
In discrete setting, the Radon measurement may be rewritten as

R(θi, τj) =
∑

l

Ii,j(l)pl, (4)

where Ii,j(l) =

{
1 if (θi, τj) ray hits lth pixel
0 else.

In formulating (4), we consider nearest neighbour interpolation of pixels that
fall in the path of the ray. The number pl stands for the pixel value of lth pixel.

The above equation may rewritten as

R(θi, τj) = [Ii,j(1) . . . Ii,j(N)][p1 . . . pN]T , (5)

where N is related to the size of the image. For all θi and τj , proceeding this
way, one obtains a matrix system

y = Ax, (6)

where y contains Radon measurements (i.e. R(θi, τj)) in vector form. Accord-
ingly, A is a binary matrix (whose elements are Ii,j(l)) and x is the vector whose
elements pl. The size of A is dictated by the number of radial and angular sam-
pling parameters and the size of the image to be reconstructed. Suppose A is
the matrix corresponding to full set of measurements y, and RA the row restric-
tion of A corresponding to the restricted measurement set Ry (here R may be
treated as a restriction matrix). In low-dose CT, as we deal with a small set
of projection samples, the system in (6) becomes under-determined, admitting
thereby infinitely many solutions in general. The inherent sparsity present in CT
images (as detailed in Table 1) makes CS a natural choice [17] for recovering the
underlying image.

Optimization of Low-Dose Tomography ViaBinary Sensing Matrices 343

Table 1. (%) Measure of natural sparsity in standard Shepp-Logan Phantom image.
Here ‖x‖0,ε = |{i|xi > ε}| and W represents wavelet transform matrix based on
‘db8’ [7].

Threshold value (ε) xε in Spatial domain xWε in Wavelet domain

(i.e. xε =
‖x‖0,ε

N2 × 100) (i.e. xWε =
‖Wx‖0,ε

N2 × 100)

10−1 41.68 11.39

10−2 41.82 11.81

10−4 41.82 11.81

5.2 On the RIP Compliance of Radon Matrix

In view of tomographic image possessing natural sparsity, the RIP concept is
potentially useful in designing the data acquisition mechanism. This is because
the sensing matrix provided by the projection set may be designed so that δ2k

is minimized, where k is the expected sparsity of tomographic image, which
determines the number of measurements to be used for faithful recovery. As
the row restricted binary sensing matrix (RA) is not known to satisfy RIP, we
obtain k numerically, such that δ2k <

√
2 − 1 (as in Theorem 2), by looking at

the distribution of the quantity:

σk(α) = ‖RAα‖22, for α ∈ S
n−1, ‖α‖0 ≤ k, (7)

where Sn−1 is unit sphere in R
n. From the values of σk, we estimate δk as detailed

below:
For each k, we considered 1000 vectors, α ∈ S

n−1, such that ‖α‖0 ≤ k. Here
n is related to the size of the image to be reconstructed. From the values of
σ{k,max} and σ{k,min}, we estimate δk from

δk = max{1 − σ{k,min}, σ{k,max} − 1}. (8)

We estimated the values of δk for different sparsity (k) levels and for four differ-
ent down-sampling factors (i.e., for different row restriction matrices R generated
with uniform distribution). We observed that k = 21, δ2k <

√
2 − 1 holds for

a matrix of size 2048 × 4096, 1365 × 4096, 1024 × 4096. This observation jus-
tifies that the binary sensing matrix provided by the Radon transform appears
to possess sparse recovery properties, albeit for low sparsity levels (i.e., k is
small). Though the natural sparsity of CT images (Table 1) does not appear
to match the k values obtained by our RIP analysis, however, in simulations
it was observed that the reconstruction was of good quality even for lower val-
ues of k. Since each row of binary matrix corresponds to a pair of angular and
radial parameters, the resulting set of rows provides a kind of handle on the data
acquisition geometry for faithful reconstruction. To the best of our knowledge,
verifying the RIP-compliance of the matrix of Radon Transform analytically is
an open problem.

344 T. Prasad et al.

5.3 Reconstruction via an Optimization Method

Motivated by the empirical analysis connecting sparsity level in image to be
reconstructed and the number of measurements needed, one may consider the
following optimization technique for recovering x.

min
x

‖x‖TV , subject to y = Ax. (9)

where the TV norm of x is defined as

‖x‖TV = ‖∇x‖1 =
∑

a,b

√
(xa,b − xa−1,b)2 + (xa,b − xa,b−1)2.

6 Experimental Results

We carried out experiments to reconstruct the tomographic image (Shepp-Logan)
by using binary sensing matrix (measurement matrix) and the measurement vec-
tor (projection data). To begin with, we focused on the construction of binary
sensing matrix. For constructing it, we considered the following radial and angu-
lar sampling [16].

Radial Sampling
tm = δr(p − (n/2)), (10)

where p = {0, 1, · · · , n − 1}, δr is the length of detector.

Angular Sampling

θl =
q + 0.5

n
π, (11)

where q = {0, 1, · · · , n−1}. As explained in Sect. 5, we obtained A with following
property:

A ∈ {0, 1}n×n with entries Ai,j =

{
1 for j ∈ Gi

0 for j /∈ Gi

the matrix whose entries in the ith row correspond to the detector (sensor)
locations for the ith measurement. And Gi ⊂ {1, · · · , n} corresponds to the set
of all detector locations selected for the i-th measurement.

We conducted experiments for R (row restriction matrix) of several sizes,
viz. 4096 × 4096, 2048 × 4096, 1365 × 4096 and 1024 × 4096, obtained as row
submatrices of full Radon matrix via uniform distribution (i.e. the correspond-
ing number of measurements are 4096, 2048, 1365 and 1024 respectively). Using
solvers viz., WOMP [20], TVAL3 [15] and standard Least Squares, we recon-
structed the tomographic image. The algorithms were numerically implemented
in the MatLab environment on a machine having 4.0 GB RAM and processor
speed of 2.6 GHz. Figure 2 is the standard Shepp-Logan phantom image which

Optimization of Low-Dose Tomography ViaBinary Sensing Matrices 345

Fig. 2. Standard Shepp-Logan Phantom image.

(a) (b) (c) (d)

Fig. 3. Reconstruction of CT image using Total-Variation Augmented Lagrangian
Method with measurement matrix of 4 different sizes: (a) 4096 × 4096 (b) 2048 × 4096
(c) 1365 × 4096 (d) 1024 × 4096.

(a) (b) (c) (d)

Fig. 4. Reconstruction of CT image using Least Squares with measurement matrix of
4 different sizes: (a) 4096 × 4096 (b) 2048 × 4096 (c) 1365 × 4096 (d) 1024 × 4096.

(a) (b) (c) (d)

Fig. 5. Reconstruction of CT image using WOMP with measurement matrix of 4 dif-
ferent sizes: (a) 4096 × 4096 (b) 2048 × 4096 (c) 1365 × 4096 (d) 1024 × 4096.

346 T. Prasad et al.

Table 2. Performance evaluation of reconstructed tomographic image using solvers
viz. TVAL3, Least Squares and WOMP for different dimension of the binary sensing
matrix.

Solvers Dim. of Binary MSE PSNR SSIM Comp.

Sensing Matrix (dB) Time (secs)

Total Variation
Augmented Lagrangian
(TVAL3) [15]

4096 × 4096 8.775e-4 30.57 0.9795 7.5676

2048 × 4096 1.977e-3 27.04 0.9552 3.8765

1365 × 4096 4.112e-3 23.86 0.9060 2.3527

1024 × 4096 5.521e-3 22.58 0.8724 1.9151

Least Squares 4096 × 4096 1.677e-6 57.75 0.9997 24.4377

2048 × 4096 4.607e-3 23.37 0.8634 5.9497

1365 × 4096 1.458e-2 18.36 0.7732 3.1495

1024 × 4096 2.245e-2 16.48 0.7028 2.3498

Wavelet based Orthogonal
Matching
Pursuit(WOMP)

4096 × 4096 3.545e-6 54.50 0.9995 3364.82

2048 × 4096 0.0068 21.69 0.7830 2234.57

1365 × 4096 0.0425 13.72 0.4646 565.73

1024 × 4096 0.0615 12.11 0.3810 167.04

is used for comparison purpose. From Figs. 3, 4 and 5 one can visually observe
that TVAL3 gives comparably better reconstruction results than standard Least
Squares and WOMP based solvers.

In order to evaluate quantitatively the accuracy of reconstruction results, we
computed Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR)
to measure the similarity between the ground truth and the reconstructed tomo-
graphic image. MSE is widely used to evaluate image quality, and is defined as

MSE =

∑m
i=1

∑n
j=1(xi,j − x̂i,j)2

m × n
, (12)

where xi,j is the pixel value of ground truth image and x̂i,j is the pixel value of
reconstructed image.

The corresponding PSNR value is computed as:

PSNR = 10 ∗ log10
(max(x))2

MSE
. (13)

Table 2 reports MSE and PSNR errors along with the execution time needed by
each of the solvers. The structural similarity (SSIM) index is highly effective way
of measuring the structural similarity between two images [21]. Suppose ρ and

Optimization of Low-Dose Tomography ViaBinary Sensing Matrices 347

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(a)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(b)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(c)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(d)

Fig. 6. Comparison of pixel-intensity profiles of ground truth phantom image (contin-
uous line) with reconstructed images (dashed line) using TVAL3 with different dimen-
sion of binary sensing matrices: (a) 4096 × 4096 (b) 2048 × 4096 (c) 1365 × 4096
(d) 1024 × 4096.

t are local image patches taken from the same location of two images that are
being compared. The local SSIM index measures three similarities of the image
patches: the similarity of luminance l(ρ, t), the similarity of contrast c(ρ, t), and
the similarity of structures s(ρ, t). The local SSIM [21] is defined as

S(ρ, t) = l(ρ, t) · c(ρ, t) · s(ρ, t),

S(ρ, t) =
(

2μρμt + C1

μ2
ρ + μ2

t + C1

)(
2σρσt + C2

σ2
ρ + σ2

t + C2

)(
2σρt + C3

σρσt + C3

)

, (14)

where μρ and μt are local means, σρ and σt are local standard deviations, and
σρt is cross-correlation after removing their means. C1, C2 and C3 are stabilizers.
The SSIM score of the entire image is then computed by pooling the SSIM map,
i.e. by simply averaging the SSIM map. SSIM is highly effective for measuring
image quality. Higher SSIM value indicates better image quality.

To better compare the reconstruction results, we plotted the horizontal inten-
sity profile for the chosen row index (here 32nd row was selected). The continuous
line corresponds to ground truth image and the dashed line (- - -) corresponds
to reconstructed image with different measurement matrices. Figures 6, 7 and 8
are the line intensity profiles of TVAL3, Least Squares and WOMP respectively.

348 T. Prasad et al.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(a)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(b)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(c)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(d)

Fig. 7. Comparison of pixel-intensity profiles of ground truth phantom image (contin-
uous line) with reconstructed images (dashed line) using Least Squares with different
dimension of binary sensing matrices: (a) 4096 × 4096 (b) 2048 × 4096 (c) 1365 × 4096
(d) 1024 × 4096.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(a)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(b)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(c)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Pixel Position

In
te

ns
ity

(d)

Fig. 8. Comparison of pixel-intensity profiles of ground truth phantom image (contin-
uous line) with reconstructed images (dashed line) using WOMP with different dimen-
sion of binary sensing matrices: (a) 4096 × 4096 (b) 2048 × 4096 (c) 1365 × 4096
(d) 1024 × 4096.

Optimization of Low-Dose Tomography ViaBinary Sensing Matrices 349

7 Conclusions

In the present work, we have formulated the problem of reconstruction of low-
dose tomography in terms of a matrix system involving a binary matrix. With
a view to gaining handle on the data acquisition geometry, we have verified
empirically the compliance of the associated binary matrix with sparse recovery
properties. Our experimental results have demonstrated that the binary matrix
as given by the data acquisition system satisfies RIP for lower sparsity levels.
The reconstructions carried out by three different solvers indicate that TVAL3
gives relatively the reconstruction of better quality. The analytical justification
of sparse recovery properties of the matrix of Radon transform, nevertheless, is
important in proving the efficacy of CS based ideas in CT. Our future efforts
shall attempt to address this issue.

Acknowledgments. One of the authors (CSS) is thankful to CSIR (No. 25(219)/13/
EMR-II), Govt. of India, for its support.

A Appendix: Wavelet Based Orthogonal Matching
Pursuit (WOMP)

The conventional form of orthogonal matching pursuit proposed by Troop et al.
[12] is a greedy method which builds up the support set of the reconstructed
sparse vector iteratively by adding one index to the current support set at each
iteration. The input parameters for the conventional OMP algorithm are the
measurement matrix (binary matrix) and the measurement vector. Here, we
modified the existing OMP algorithm by incorporating the sparsifying trans-
form (i.e. wavelet transform) to further sparsify the binary matrix. We call the
modified algorithm as WOMP, which is given below:

Algorithm

Input Parameters: measurement matrix A, wavelet matrix W, measurement
vector b, and the error threshold ε0 Initialization: Initialize k = 0, and set

– The initial solution (Wx)0 = 0.
– The initial residual r0 = b − (AWT)(Wx)0 = b.
– The initial solution support S0 = Support{(Wx)0} = φ

Main Iteration: Increment k by 1 and perform the following steps:

– Sweep: Compute the errors ε(j) = minzj
‖(ajw

T
j)zj − rk−1‖22 for all j using

the optimal choice z∗
j = (aT

j wT
j)T rk−1/‖ajw

T
j ‖22.

– Update Support : Find a minimizer, j0 of ε(j) : ∀j /∈ Sk−1, ε(j0) � ε(j),
and update Sk = Sk−1 ∪ {j0}.

– Update Provisional Solution : Compute (Wx)k, the minimizer of ‖(AWT)
(Wx) − b‖22 subject to Support{(Wx)} = Sk

– Update Residual : Compute rk = b − (AWT)(Wx)k.
– Stopping Rule : If ‖rk‖2 < ε0, stop. Otherwise, apply another iteration.

Output: The WOMP solution is (Wx)k obtained after k iterations.

350 T. Prasad et al.

References

1. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique
(SART): a superior implementation of the ART algorithm. Ultrason. Imaging 6(1),
81–94 (1984)

2. Badea, C., Gordon, R.: Experiments with the nonlinear and chaotic behaviour of
the multiplicative algebraic reconstruction technique (MART) algorithm for com-
puted tomography. Phy. Med. Biol. 49(8), 1455–1474 (2004)

3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York (2004)

4. Candes, E.J.: The restricted isometry property and its implications for compressed
sensing. C. R. Math. 346, 589–592 (2008)

5. Candes, E.J., Romberg, J.: Practical signal recovery from random projections. In:
Proceedings of the SPIE Conference on Wavelet Applications in Signal and Image
Processing XI, vol. 5914 (2005)

6. Chen, G.H., Tang, J., Leng, S.: Prior image constrained compressed sensing
(PICCS): a method to accurately reconstruct dynamic CT images from highly
undersampled projection data sets. Med. Phys. 35(2), 660–663 (2008)

7. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Math-
ematics, Philadelphia (1992)

8. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306
(2006)

9. Elad, M. (ed.): Sparse and Redundant Representations: from Theory to Applica-
tions in Signal Processing. Springer, New York (2010)

10. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing.
Birkhauser, Basel (2013)

11. Frush, D.P., Donnelly, L.F., Rosen, N.S.: Computed tomography and radiation
risks: what pediatric health care providers should know. Pediatrics 112, 951–957
(2003)

12. Jan, J.: Medical Image Processing, Reconstruction and Restoration: Concepts and
Methods. CRC Press, Boca Raton (2005)

13. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. Society
for Industrial and Applied Mathematics, Philadelphia (2001)

14. Kudo, H., Suzuki, T., Rashed, E.A.: Image reconstruction for sparse-view CT and
interior CT - introduction to compressed sensing and differentiated backprojection.
Quant. Imaging Med. Surg. 3(3), 147–161 (2013)

15. Li, C., Yin, W., Jiang, H., Zhang, Y.: An efficient augmented Lagrangian method
with applications to total variation minimization. Comput. Optim. Appl. 56(3),
507–530 (2013)

16. Natterer, F.: The Mathematics of Computerized Tomography. Society for Indus-
trial and Applied Mathematics, Philadelphia (2001)

17. Pan, X.C., Sidky, E.Y., Vannier, M.: Why do commercial CT scanners still employ
traditional, filtered back-projection for image reconstruction? Inverse Prob. 25(12),
1230009 (2009)

18. Ritschl, L., Bergner, F., Fleischmann, C., Kachelrieß, M.: Improved total variation-
based CT image reconstruction applied to clinical data. Phys. Med. Biol. 56(6),
1545–1561 (2011)

19. Sastry, C.S., Das, P.C.: Wavelet based multilevel backprojection algorithm for par-
allel and fan beam scanning geometries. Int. J. Wavelets Multiresolut. Inf. Process.
4(3), 523–545 (2006)

Optimization of Low-Dose Tomography ViaBinary Sensing Matrices 351

20. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthog-
onal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Proc. 13(4), 600–
612 (2004)

22. Xu, Q., Mou, X., Wang, G., Sieren, J., Hoffman, E., Yu, H.: Statistical interior
tomography. IEEE Trans. Med. Imaging 30(5), 1116–1128 (2011)

23. Yu, H.Y., Wang, G.: Compressed sensing based interior tomography. Phys. Med.
Biol. 54(9), 2791–2805 (2009)

24. Yu, H.Y., Yang, J.S., Jiang, M., Wang, G.: Supplemental analysis on compressed
sensing based interior tomography. Phys. Med. Biol. 54(18), N425–N432 (2009)

25. Zhang, H., Huang, J., Ma, J., Bian, Z., Feng, Q., Lu, H., Liang, Z., Chen, W.:
Iterative reconstruction for X-ray computed tomography using prior-image induced
nonlocal regularization. IEEE Trans. Biomed. Eng. 61(9), 2367–2378 (2014)

26. Zhou, W., Cai, J.-F., Gao, H.: Adaptive tight frame based medical image recon-
struction: a proof-of-concept study for computed tomography. Inverse Prob. 29,
125006 (2013)

Knot Detection from Accumulation
Map by Polar Scan

Adrien Krähenbühl1,2(B), Bertrand Kerautret1,2, and Fabien Feschet3

1 Université de Lorraine, LORIA, UMR 7503, 54506 Vandoeuvre-lè-Nancy, France
{adrien.krahenbuhl,bertrand.kerautret}@loria.fr

2 CNRS, LORIA, UMR 7503, 54506 Vandoeuvre-lès-Nancy, France
3 IGCNC - EA 7282, Université Clermont Auvergne, Université d’Auvergne,

63000 Clermont-Ferrand, France
fabien.feschet@u-auvergne.fr

Abstract. This paper proposes to improve the approach presented in
Krähenbühl et al. [11] to build automatic methods for the wood knot
detection from X-Ray CT scanner images. The major drawbacks of the
previous method mostly depends on the variety of the distribution of
knots and their geometric shapes. Our aim is to extend the robustness by
performing the accumulation process of Z-Motion differently and by sup-
pressing the whorl distribution constraint. This is achieved both through
a polar Z-Motion accumulation and an aggregation process of connected
components related to maxima localization in the accumulation space.
The experimental results are in favor of an increase in the robustness
while being more sensitive to small and isolated knots. This opens the
way to a method fully independent of wood species.

Keywords: Wood knots · X-Ray CT scanners · Accumulation map

1 Introduction

The knots are the part of a tree branch located inside the trunk. They are the
larger objects of the trunk structure, originating in the pith and growing toward
the bark. The knots are largely studied in agronomic research in order to precisely
model the global tree growth [3,5,13,15]. Moreover, informations about knots
interest the sawmills with the objective to predict the plank quality. Agronomic
researchers and sawmills both use X-Ray CT scanners to obtain images of the
internal structure of trunks (see samples in Fig. 1). The major issue consists in
precisely segmenting knots in these acquisitions. Unfortunately, the presence of
wet sapwood, wood part where the sap passes through, with the same density
as knots, is a major problem.

Various approaches were proposed to address this segmentation problem. For
instance, Aguilera et al. [2] propose to segment knots helped by active contours
and Wells et al. [16] use morphological operators. More recently, Johannson
et al. [6] proposed a knot segmentation method based on a sub-sampling of orig-
inal image in concentric surfaces on which they detect knot sections as ellipses.
c© Springer International Publishing Switzerland 2015
R.P. Barneva et al. (Eds.): IWCIA 2015, LNCS 9448, pp. 352–362, 2015.
DOI: 10.1007/978-3-319-26145-4 26

Knot Detection from Accumulation Map by Polar Scan 353

Fig. 1. Original scanned slices of the four wood species used for experimentations. For
each species, a slice from the bottom part (on the left) and the top part (on the right)
of the tree. All these trunks have a wet sapwood (light grey ring near from the bark).
We can see the various knot aspects depending on the species (Color figure online).

All these works are efficient in the context of dry sapwood. The last seems to
be adapted to wet sapwood but lacks in implementation details do not allow to
reproduce results.

From our side, we have proposed an approach to identify knot areas around
each knot, based on the Z-Motion notion [10] (see Sect. 2.2). This approach was
adapted to trees containing a whorl distribution of knots. From on this detection,
we are able to apply an individual segmentation for each knot in its supporting
area [11]. However, the knot areas detection step suffered from some limitations.
It is mainly adapted to big knots and cannot avoid the possible presence of
two knots in a same detected knot area leading to confusions in the precise
characterization of knots. Moreover, isolated knots are rarely identified and thus
are missed in the detection process. It must also be added that the original
method lacks robustness in some wood species where the whorl distribution of
knots is not evident.

We propose in this paper, a new approach to detect knot areas around each
individual knot. It combines the Z-Motion with a polar consideration of the tree
centered in the pith. Knot areas are then detected from the local maxima of
Z-Motion accumulation, by using a connected component merging. This new
method allows to easily count the number of knots and to locate them with
an high precision. All knots can be identified without size or whorl distribution
constraint. Moreover, this method is easy to implement with few parameters

354 A. Krähenbühl et al.

Fig. 2. Generation of a Z-Motion accumulation image. The pith location (in red) allows
to accumulate the Z-Motion of each angular sector of each slice on a disc centered on
the pith of rmax radius (the yellow circle and line) (Color figure online).

which are directly linked to physical properties of wood. Our implementation is
based on the IPOL demonstration engine and can be tested on-line [7].

The remainder of this paper is organized in two parts. The next section
presents the new method with theoretical points and implementation details.
Then, the last section is devoted to the comparisons between the previous and the
new approach with visualizations of located knots in the initial tree coordinate
system (Fig. 2).

2 Method

The method proposed in this paper locates knot areas from 3D density images
in merely three steps:

1. pith computing;
2. generation of the Z-Motion accumulation map;
3. supporting knot areas identification.

2.1 Pith Computing

The pith computing step must provide the trunk pith coordinates for each slice.
For that, we use the detection pith algorithm proposed by Boukadida et al. [4]

Knot Detection from Accumulation Map by Polar Scan 355

Fig. 3. Difference between valid and invalid slices due to an inclined tree cut.

which was already put to good use in a previous work [11]. This algorithm pro-
vides two informations: the interval of valid slices and the pith location for each
valid slice. Indeed, the original image contains some empty slices or slices con-
taining a partial trunk section due to the tree cut (see Fig. 3). In the remainder
of this paper, I will denote the original image restricted to the subset of valid
slices. The pith coordinates for a slice Sk of I will be denoted pk = (xk, yk).

More precisely, the pith detection is based on a Hough transform applied
on each slice from the higher contours detected by a Sobel filter. It assumes
that the higher contours are located on the annual tree rings concentric to the
pith. Moreover, these steps are applied on the complete first slice then iteratively
in a sub-window on the next slices, centered on the found pith location of the
previous slice. More details about the method implementation are available in [4]
with a link to the ImageJ plugin proposed by authors.

2.2 Generation of the Z-Motion Accumulation Image

This second step uses the Z-Motion notion that we introduced in [10]. The Z-
Motion allows to identify the presence of knots by considering them as the biggest
objects in motion inside the tree. The Z-Motion can be computed for each pixel
(x, y) of a slice Sk as the absolute difference between two consecutive slices:

Zk(x, y) = |Sk(x, y) − Sk−1(x, y)|

To generate the Z-Motion accumulation image, we consider the division of
each slice Sk into a set of angular sectors Ωa centered on the pith and restricted
to a radius rmax. The number of angular sectors Ωa is a parameter denoted w.

From this division, we build the accumulation image A where each row cor-
responds to a slice of I and each column corresponds to an angular sector. The
value of A in (k, a) is computed by summing the Z-Motion values inside the Ωa

sector in the Sk slice helped by the following formula:

A(k, a) =
∑

(x,y)∈Sk∩Ωa

Zk(x, y) > zmin

356 A. Krähenbühl et al.

The zmin parameter allows to not consider the low Z-Motion values induced
by other structures than knots. The details of this step are given in Algorithm 1
with the two main parameters rMax and zMin.

Algorithm 1. Computing of the Z-Motion accumulation image
(accImage, A) according to all angular sectors of each slice.
Input : image // The 3D wood trunk image (I)

pith // Pith with the 2D coordinates of each slice
rMax // Maximum radius of analysis around the pith
nbAngularSectors // Angular resolution (in sector number) (w)
zMin // Minimum Z-Motion considered (zmin)

Ouput : accImage // Z-Motion accumulation image (A) with a size
// of nbAngularSectors×image.depth pixels

1 foreach slice in image do
2 k = index of slice

3 c = pith[k]
4 foreach p in slice do
5 r = dist(p,c) // Euclidean distance between p and c coordinates
6 if r < rMax then
7 a = �orientation of −→cp × nbAngularSectors

2π
� // Angular sector index

8 zMotion = abs(slice[p.x][p.y] - image[k-1][p.x][p.y])
9 if zMotion > zMin then

10 accImage[k][a] += zMotion - zMin

2.3 Generation of Knot Supporting Areas

As previously described in the introduction, our method is based on the Z-
Motion accumulation in a polar space and on the detection of the support area
of each knot. However, since the precise geometric distribution of knots depends
on wood species, the approach must deal with arbitrary knot distributions. It
must also be noted that the Z-Motion can occur around knots and does not
only correspond to knots. However, maximums of Z-Motion accumulation indeed
correspond to knots. To correctly extract the supporting area of each knot, the
Z-Motion accumulation image is binarized through a thresholding process of
parameter tbin. In the binary image, knots are preserved by definition. The
position of each accumulation maximum indicates the knot locations. Hence,
computing the supporting area of each knot consists in an aggregation process of
connected components around those maximums. Therefore, the areas are linked
to the connected components of the binary image and each supporting area can
potentially contain several connected components.

Our process can be summarized as follows. After the connected component
detection, we iteratively merge the detected connected components in the order
of the ascending Z-Motion maximums. To avoid ambiguous merging, we also

Knot Detection from Accumulation Map by Polar Scan 357

Fig. 4. Example of connecting component merging to define knot areas as a set of
connected components, from a sub-image of Spruce. Image a represents the binarized
image of the Z-Motion accumulation image. Image b shows the two connected com-
ponents corresponding to an accumulation peak. In c the blue circle represents the
distance dmax around the last component. In d, the last component is merged to the
nearest supporting area, the green one (Color figure online).

Algorithm 2. Detection of the supporting areas.
Input : imageAcc // The 2D Z-Motion accumulation image

tBin // Threshold value to binarize imageAcc

dMax // Maximum distance between two connected
// components of the same supporting area

Ouput : supportingAreaList // List with the supporting area of each knot
Variable: thImage // Binarized version of imageAcc using tBin

ccList // List of connected components of thImage

ccProcessedList // List of processed connected components
sortedPixels // List of sorted imageAcc pixels

1 supportingAreaList = emptyList()

2 ccProcessedList = emptyList()

3 Compute thImage as the binarized image of imageAcc using tBin as threshold
4 Compute ccList as the list of connected components of thImage

5 Sort all pixels of imageAcc in decreasing order into sortedPixels

6 while ccProcessedList.size() != ccList.size() do
7 p = sortedPixels.popFirst()

8 cc = connected component containing p

9 if cc not in ccProcessedList then
10 ccProcessedList.append(cc)

11 Identify ccMin as the nearest component of cc in supportingAreaList

12 d = minDist(cc, ccMin)

13 if d < dMax then
14 Merge cc to ccMin into supportingAreaList

15 else
16 Insert cc into supportingAreaList

358 A. Krähenbühl et al.

introduce one parameter: the maximum distance dmax between two distinct con-
nected components belonging to the same knot. Each new considered connected
component is merged with the nearest supporting area if the distance is lower
than dmax. Otherwise, this component belongs to the support area of a new
knot (see Fig. 4). The distance computation relative to dmax is done by a dis-
tance transform based on a Fast Marching Method [14]. Finally, we obtain a set
of supporting areas (Φp). The resulting Algorithm 2 is given with the two main
parameters tBin and dMax, respectively corresponding to tbin and dmax.

Fig. 5. Comparison between previous and new knots areas drawn on four initial slices,
for a Spruce in the first row and a Douglas in the second row.

3 Experimentations

In order to compare the knot areas obtained with the previous method and the
new one, we defined a common knot area description. We chosen the extremal
coordinates of a supporting area Φ as the bounding box from (Φ.kmin, Φ.amin)
to (Φ.kmax, Φ.amax). In this way, we obtain a definition of knot areas equivalent
to the one in [10].

In Fig. 6, we can visually compare the knot areas obtained by the two
approaches and represented on the Z-Motion accumulation image. The com-
parison is done on the 8 samples presented in Fig. 1. The knot areas obtained
by the previous approach were defined in two steps: first the slice intervals (the
red lines) then the angular intervals in each slice interval (colored lines perpen-
dicular to the red ones). On the right, each supporting area detected by the new
method is represented by a colored bounding box drawn on top of its detected
connected components.

Knot Detection from Accumulation Map by Polar Scan 359

Fig. 6. Comparisons between the previous method [10] (on the left) and the proposed
method (on the right) by considering 2 samples of 4 tree species.

360 A. Krähenbühl et al.

Fig. 7. 3D visual comparisons of locations and dimensions of knot areas inside the
original trunk system. We see the knots areas obtained by the previous method (on
the left) and by the proposed method (on the right).

Knot Detection from Accumulation Map by Polar Scan 361

Figure 5 focuses on two slices of the Spruce and Douglas samples (top parts).
We see that the new knot areas are well estimate and more precise than with
the previous method. On the bottom right slice, we can see a knot area detected
by the new method previously not detected. On the top left and right, we can
some previous knot areas without the presence of knot. This is due to a wide
whorl with a small gap between the knot that not appear on this slice. Globally,
all the new knot areas are smaller and more precise around each knot.

The previous knot areas were generated and exported by TKDetection [8]
(release 3.0) with the default parameters proposed in [11]. The supporting areas
and the corresponding new knot areas were generated by a C++-based imple-
mentation [7] using the DGtal library [1]. The illustrations on the right of Fig. 6
use the parameters w = 500, zmin = 200, tbin = 100 and dmax = 20. The com-
puting of rmax parameter is detailed in [11]. It corresponds to the lower euclidian
distance from the pith to the bark by following 20 directions around the pith on
each slice. The bark limit is located in each of these directions as the first pixel
from the pith with a value corresponding to the air density.

Figure 7 visualize the same knot areas than in Fig. 6 in the trunk coordinate
system. Colors are identical to a direct matching of the knot locations around
the pith.

The new approach corrects two major defects from the previous one:

1. it allows to identify all knots, even the small and/or isolated ones ;
2. it clearly detects more precise areas.

The results show that the proposed approach is robust to specificities of
images and, consequently, to tree species.

4 Conclusion

The method proposed in this paper was designed to increase the robustness of the
knot detection, especially for small and isolated knots, and to remove the whorl
distribution constraint. The first experiments have shown that both goals have
been reached. Moreover, the method is easy to implement, and some parameters
can be fixed depending on wood species. Automatic determination of those para-
meters will be the subject of future works. Since the detected supporting areas
of knots are compatible with the segmentation methods given in [9,11,12], the
presented algorithm can serve as input of those segmentation algorithms leading
to a complete characterization of detected knots. It must also be noted that our
supporting areas of the knots are more precise than the original algorithm due
to the merging process of close connected components. As an extension of this
work, we will also decompose the trunks into concentric volumetric sets to obtain
several accumulation locations from the pith to the bark. This should provide a
way to estimate the 3D main orientations of a knot by defining a procedure to
follow this knot through concentric volumes.

362 A. Krähenbühl et al.

References

1. DGtal: Digital Geometry tools and algorithms library. http://libdgtal.org
2. Aguilera, C., Sanchez, R., Baradit, E.: Detection of knots using x-ray tomographies

and deformable contours with simulated annealing. Wood Res. 53, 57–66 (2008)
3. Baño, V., Arriaga, F., Guaita, M.: Determination of the influence of size and

position of knots on load capacity and stress distribution in timber beams of pinus
sylvestris using finite element model. Biosyst. Eng. 114(3), 214–222 (2013)

4. Boukadida, H., Longuetaud, F., Colin, F., Freyburger, C., Constant, T., Leban,
J.M., Mothe, F.: Pithextract: a robust algorithm for pith detection in computer
tomography images of wood - application to 125 logs from 17 tree species. Comput.
Electron. Agric. 85, 90–98 (2012)

5. Funck, J., Zhong, Y., Butler, D., Brunner, C., Forrer, J.: Image segmentation
algorithms applied to wood defect detection. Comput. Electron. Agric. 41(1–3),
157–179 (2003). developments in Image Processing and Scanning of Wood

6. Johansson, E., Johansson, D., Skog, J., Fredriksson, M.: Automated knot detection
for high speed computed tomography on pinus sylvestris l. and picea abies (l.) karst.
using ellipse fitting in concentric surfaces. Comput. Electron. Agric. 96, 238–245
(2013)

7. Kerautret, B.: Knot detection from accumulation map by polar scan:
Online demonstration (2015). http://ipol-geometry.loria.fr/kerautre/ipol demo/
KnotDetectIPOLDemo/

8. Krähenbühl, A.: TKDetection (2012). https://github.com/akrah/TKDetection/
9. Krähenbühl, A., Kerautret, B., Debled-Rennesson, I.: Knot segmentation in noisy

3D images of wood. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.)
DGCI 2013. LNCS, vol. 7749, pp. 383–394. Springer, Heidelberg (2013)

10. Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Longuetaud, F., Mothe, F.:
Knot detection in X-Ray CT images of wood. In: Bebis, G., Boyle, R., Parvin, B.,
Koracin,D., Fowlkes,C.,Wang, S.,Choi,M.-H.,Mantler, S., Schulze, J.,Acevedo,D.,
Mueller, K., Papka, M. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 209–218.
Springer, Heidelberg (2012)

11. Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Mothe, F., Longuetaud, F.:
Knot segmentation in 3D CT images of wet wood. Pattern Recognit. 1, 1–17 (2014)

12. Krähenbühl, A., Roussel, J.R., Kerautret, B., Debled-Rennesson, I., Mothe, F.,
Longuetaud, F.: Segmentation robuste de nœuds partir de coupes tangentielles
issues d’images tomographiques de bois. In: Actes de la conférence RFIA 2014,
June 2014

13. Moberg, L.: Models of internal knot properties for picea abies. For. Ecol. Manage.
147(2–3), 123–138 (2001)

14. Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1998)
15. Todoroki, C., Lowell, E., Dykstra, D.: Automated knot detection with visual post-

processing of douglas-fir veneer images. Comput. Electron. Agric. 70(1), 163–171
(2010)

16. Wells, P., Som, S., Davis, J.: Automated feature extraction from tomographic
images of wood. In: Image Computing: Techniques and Applications (DICTA),
pp. 56–62. No. 1, Melbourne, Australie, December 1991

http://libdgtal.org
http://ipol-geometry.loria.fr/ kerautre/ipol_demo/KnotDetectIPOLDemo/
http://ipol-geometry.loria.fr/ kerautre/ipol_demo/KnotDetectIPOLDemo/
https://github.com/akrah/TKDetection/

Author Index

Andres, Eric 3, 101, 157
Aubry, Nicolas 311

Bag, Soumen 247
Bandyopadhyay, Oishila 261
Bhowmick, Partha 71, 86
Bhowmik, Mrinal Kanti 323
Billionnet, Alain 276
Biswas, Arindam 115, 125
Biswas, Ranita 86
Brandel, Sylvain 299
Brimkov, Valentin E. 86

Cavy, Benjamin 232
Christy, D.K. Sheena 217
Ciesielski, Krzysztof Chris 21
Conte, Donatello 299

Damiand, Guillaume 299
David, N. Gnanamalar 187
Debled-Rennesson, Isabelle 143, 311
Dhar, Prasenjit 323
Dutt, Mousumi 115, 172
Dutta, Nilanjan 261
Dutta, Tapash 261

Even, Philippe 311

Fernau, Henning 202
Feschet, Fabien 352

Geethalakshmi, M. 187
Ghosh, Anjan Kumar 323
Gonzalez-Diaz, Rocio 61

Herman, Gabor T. 21

Jampana, P.V. 337
Jarray, Fethi 276
Jimenez, Maria-Jose 61

Kardos, Péter 31
Karmakar, Nilanjana 125

Kerautret, Bertrand 311, 352
Kong, T. Yung 21
Krähenbühl, Adrien 352
Krishna, Ankit 247
Kumar, P.U. Praveen 337
Kumar, Veepin 284

Largeteau-Skapin, Gaelle 101, 157

Mahato, Papia 71
Mandal, Shyamal Kumar Das 284
Masilamani, V. 217
Medrano, Belen 61
Mukherjee, Jayanta 284

Nagar, Atulya K. 187, 217
Nagy, Benedek 115
Nasser, Hayat 143
Németh, Gábor 31
Ngo, Phuc 143

Ouattara, Dimitri 157

Palágyi, Kálmán 31
Paramasivan, Meenakshi 202
Prasad, Theeda 337

Reyes, Hugo 46
Robinson, T. 217

Sarkar, Apurba 172
Sastry, C.S. 337
Schmid, Markus L. 202
Singha, Anu 323
Subramanian, K.G. 187
Svalbe, Imants 232

Thomas, D. Gnanaraj 202, 217
Tlig, Ghassen 276

Wiederhold, Petra 46

Zagrouba, Ezzeddine 276
Zrour, Rita 101, 157

	Preface
	Organization
	Contents
	Invited Talk
	Digital Analytical Geometry: How Do I Define a Digital Analytical Object?
	1 Introduction
	2 Digitization
	2.1 Notations
	2.2 General Remarks on Digitizations
	2.3 Morphological Digitizations

	3 Analytical Characterization of Digital Objects
	3.1 Direct Defined Analytical Digital Objects
	3.2 Digitized Analytical Objects

	4 Conclusion and Perspectives
	References

	Theoretical Foundations of Combinatorial Image Analysis -- Digital Geometry and Topology
	Fuzzy Connectedness Segmentation: A Brief Presentation of the Literature
	1 Introduction
	2 Basic Definitions
	3 A Simple Multi Object Fuzzy Segmentation (MOFS) Algorithm
	4 Robustness of Fuzzy Connectedness Segmentations
	5 Unified Theory of FC Segmentations
	6 Conclusion
	References

	Equivalent Sequential and Parallel Subiteration-Based Surface-Thinning Algorithms
	1 Introduction
	2 Basic Notions and Results
	3 Parallel and Sequential 6-Subiteration Surface-Thinning Algorithms
	4 Verification
	5 Conclusions
	References

	Relative Convex Hull Determination from Convex Hulls in the Plane
	1 Introduction
	2 Preliminaries
	3 Definition and Properties of the Relative Convex Hull
	4 Previous Algorithms of Determining the Relative Convex Hull for Simple Polygons in the Plane
	5 A New Algorithm of Determining the Relative Convex Hull for Simple Polygons in the Plane
	5.1 Vertex Lists, Convex Hull Determination and Cavity Detection
	5.2 Processing of One Cavity
	5.3 Detection and Processing of Subsequent Cavities
	5.4 Pseudocode, Implementation, and Complexity

	6 Conclusion and Future Work
	References

	Spatiotemporal Barcodes for Image Sequence Analysis
	1 Introduction
	2 Persistent Homology Through AT-models
	3 Stating the Problem
	4 Our Method
	5 Spatiotemporal Representation of Image Sequences
	6 Conclusions and Future Work
	References

	Characterization and Construction of Rational Circles on the Integer Plane
	1 Introduction
	1.1 Preliminaries

	2 Naive Rational Circle
	2.1 Number-Theoretic Properties

	3 Integer Intervals and the Algorithm
	3.1 Algorithm for Naive Circle

	4 Experimental Results and Conclusion
	References

	On the Connectivity and Smoothness of Discrete Spherical Circles
	1 Introduction
	1.1 Motivation
	1.2 Definitions and Terminologies

	2 Discrete Spheres, Types, Ordering
	3 Discrete Spherical Circles
	3.1 Discretization Classes
	3.2 Smoothness of Spherical Circles
	3.3 Algorithm for Discrete Spherical Circle

	4 Results and Discussion
	References

	Optimal Consensus Set for nD Fixed Width Annulus Fitting
	1 Introduction
	2 Annulus Fitting
	2.1 Annulus Characterization
	2.2 nD Annular Characterizations

	3 Fitting Algorithm
	3.1 Dual Space and Annulus Fitting in nD
	3.2 Finding the Largest Consensus Set in a Strip for a Given (Q1,Q2,...,Qn)
	3.3 Algorithm
	3.4 Degenerate Cases

	4 Experiments
	4.1 Example for a 2D Real Image
	4.2 Example on 2D Noisy Images
	4.3 3D Noisy Images

	5 Conclusion and Perspectives
	References

	Number of Shortest Paths in Triangular Grid for 1- and 2-Neighborhoods
	1 Introduction
	2 Preliminaries
	3 Formulation for Number of Shortest Paths
	3.1 Number of Shortest Paths Based on 1-Neighborhood
	3.2 Number of Shortest Paths Based on 2-Neighborhood

	4 Proof of Correctness
	5 Conclusions
	References

	Construction of 3D Orthogonal Convex Hull of a Digital Object
	1 Introduction
	2 Definitions and Preliminaries
	2.1 Digital Grid
	2.2 3D Orthogonal Convex Hull

	3 Proposed Work
	3.1 Concavity in Three Dimensions
	3.2 Finding 3D Orthogonal Convex Hull
	3.3 Algorithm
	3.4 Time Complexity

	4 Experimental Results and Conclusion
	References

	Efficient Dominant Point Detection Based on Discrete Curve Structure
	1 Introduction
	2 Decomposition of a Curve into Maximal Blurred Segments
	3 Dominant Point Detection
	3.1 Heuristic Strategy of Method
	3.2 New Dominant Point Detection Algorithm

	4 Evaluation Results and Applications
	4.1 Evaluation Criteria
	4.2 Effectiveness Compared to Nguyen's Algorithm
	4.3 Application in Polygonal Simplification
	4.4 Comparison with Other Methods

	5 Conclusion and Future Work
	References

	Thoughts on 3D Digital Subplane Recognition and Minimum-Maximum of a Bilinear Congruence Sequence
	1 Introduction
	2 Recalls on the 2D Problem and State of the 3D Problem
	2.1 Recalls of the 2D Digital Straight Subsegment Recognition Problem
	2.2 State of the 3D Problem

	3 Finding the Minimum and Maximum of a Simple Bilinear Congruence Sequence
	3.1 Notations
	3.2 Linear Sequence Collapse
	3.3 Efficient Search for a Given Value in a Bilinear Congruence Sequence
	3.4 First Algorithm for the Minimum and Maximum Search in a Bilinear Congruence Sequence

	4 Discussion, Conclusion and Perspectives
	References

	Construction of Sandwich Cover of Digital Objects
	1 Introduction
	2 Definitions and Preliminaries
	2.1 Deriving the Outer Isothetic Cover (OIC)
	2.2 Deriving the Inner Isothetic Cover (IIC)

	3 Deriving a Sandwich Cover (SC)
	3.1 Determining Concavity and Convexity Line Segments
	3.2 Obtaining Sandwich Cover
	3.3 Time Complexity

	4 Experimental Results and Analysis
	5 Conclusions
	References

	Theoretical Foundations of Combinatorial Image Analysis -- Grammars and Other Formal Tools
	Picture Array Generation Using Pure 2D Context-Free Grammar Rules
	1 Introduction
	2 Preliminaries
	3 Pure 2D Context-Free Grammar with (r/d) Mode of Derivations
	4 Regulating Rewriting in (r/d)P2DCFG with Control Words
	5 Matrix Control on P2DCFG
	6 Concluding Remarks
	References

	Scanning Pictures the Boustrophedon Way
	1 Introduction
	2 Our Model and Some Examples
	2.1 General Definitions
	2.2 Boustrophedon Finite Automata

	3 Characterization Results
	4 Pumping and Interchange Lemmas
	5 Complexity Results
	6 Possible Applications to Character Recognition
	7 Discussions
	References

	Accepting H Iso-Array System
	1 Introduction
	2 Basic Definitions
	3 Accepting H Iso-Array System
	References

	Construction of Perfect Auto-correlation Arrays and Zero Cross-correlation Arrays from Discrete Projections
	1 Introduction
	2 Theory
	2.1 Construction of Zero Cross-correlation Arrays
	2.2 Example of Zero-correlation Arrays

	3 Multiple Copies of A and B
	3.1 Example of Multiple Co-residents Ghosts

	4 Zero Cross-correlation Between Multiple Functions
	5 Synthesis of Perfect Auto-correlation Arrays
	6 Conclusions
	References

	From Theory to Applications
	Character Segmentation of Hindi Unconstrained Handwritten Words
	1 Introduction
	2 Properties of Hindi Language
	3 Proposed Methodology
	3.1 Detection and Removal of Header Lines
	3.2 Segmentation of Upper Modifiers
	3.3 Segmentation of Lower Modifiers

	4 Experimental Results and Discussion
	4.1 Experimental Dataset
	4.2 Character Segmentation Results
	4.3 Comparison with Other Methods

	5 Concluding Remarks
	References

	Retinal Blood Vessel Segmentation and Bifurcation Point Detection
	1 Introduction
	2 Related Definitions
	3 Proposed Method
	3.1 Preprocessing

	4 Extraction of Retinal Vascular Network
	4.1 Linear Segment Detection Using Matched Filter
	4.2 Threshold Computation from Intensity Distribution
	4.3 Connected Component Analysis
	4.4 Removal of the Outer Boundary

	5 Bifurcation Point Detection
	5.1 Thinning
	5.2 Candidate Bifurcation Points Detection
	5.3 Optic Disk Removal
	5.4 Small Length Sub-vessel Filtering using 55 Mask
	5.5 False Bifurcation Point Pair Filtering

	6 Experimental Results
	7 Conclusion
	References

	Reconstruction of Bicolored Images
	1 Introduction
	2 Definitions and Preliminary Results
	3 Reconstruction of Bicolored Images
	4 Integer Programming Formulation
	5 Numerical Results
	6 Conclusion
	References

	Combinatorial Exemplar-Based Image Inpainting
	1 Introduction
	2 LIMEP
	3 COMEP
	3.1 Convergence of the Algorithm

	4 Results and Discussion
	4.1 Removal of Objects from Images
	4.2 Removal of Scratches from Images

	5 Conclusion and Future Scope of Work
	References

	Incremental Updating of 3D Topological Maps to Describe Videos
	1 Introduction
	2 Preliminary Notions
	3 Incremental Updating of 3D Topological Maps
	3.1 Remove Slices
	3.2 Add Slices

	4 Experiments
	5 Conclusion
	References

	Parallel Strip Segment Recognition and Application to Metallic Tubular Object Measure
	1 Introduction
	2 Recognition of Parallel Strip Segment from Intensity Profiles
	2.1 Previous Work on Digital Straight Segment Recognition
	2.2 New Approach with Intensity Profile Matching
	2.3 Algorithm

	3 Application to Metallic Tube Measuring
	4 Conclusion and Future Work
	References

	Analysis and Performance Evaluation of ICA-Based Architectures for Face Recognition
	1 Introduction
	2 Literature Review
	3 Independent Component Analysis (ICA) and Its Two Architectures
	3.1 Architecture-I: Statistically Independent Basis Faces
	3.2 Architecture-II: Statistically Independent Coefficients

	4 System Overview
	5 Analysis
	5.1 Numerical Analysis of Feature Vectors of Both Architectures
	5.2 Performance Analysis of ICA Architectures

	6 Conclusion
	References

	Optimization of Low-Dose Tomography via Binary Sensing Matrices
	1 Introduction
	2 Related Work
	3 Introduction to Computed Tomography
	4 Compressive Sensing
	5 CS in CT: Proposed Method
	5.1 Radon Transform via Binary Matrices
	5.2 On the RIP Compliance of Radon Matrix
	5.3 Reconstruction via an Optimization Method

	6 Experimental Results
	7 Conclusions
	A Appendix: Wavelet Based Orthogonal Matching Pursuit (WOMP)
	References

	Knot Detection from Accumulation Map by Polar Scan
	1 Introduction
	2 Method
	2.1 Pith Computing
	2.2 Generation of the Z-Motion Accumulation Image
	2.3 Generation of Knot Supporting Areas

	3 Experimentations
	4 Conclusion
	References

	Author Index

