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Abstract. We outline a new architecture for supporting proactive decision mak-
ing in manufacturing enterprises. We argue that event monitoring and data 
processing technologies can be coupled with decision methods effectively pro-
viding capabilities for proactive decision-making. We present the main concep-
tual blocks of the architecture and their role in the realization of the proactive 
enterprise. We illustrate how the proposed architecture supports decision-
making ahead of time on the basis of real-time observations and anticipation of 
future undesired events by presenting a practical condition-based maintenance 
scenario in the oil and gas industry. The presented approach provides the tech-
nological foundation and can be taken as a blueprint for the further develop-
ment of a reference architecture for proactive applications. 
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1 Introduction and Motivation 

The emergence of the Internet of Things paves the way for enhancing the monitoring 
capabilities of enterprises by means of extensive use of physical and virtual sensors 
generating a multitude of data. The sensing enterprise concept can influence a wide 
range of industries. For example, manufacturing companies can utilize sensors to 
enable the identification of deviations from production plans as soon as they appear; 
logistics networks can identify delays about in the delivery time in real-time through 
sensor-generated events. The main driving concept in sensing enterprises is the use of 
multi-dimensional data captured through physical and virtual sensors generating 
events and providing added value information that enhances context awareness. Con-
sequently, the large amount of data generated by sensors leads to a strong demand for 
data-driven, real-time systems capable of efficiently processing data in order to get 
meaningful insights about potential problems.  

Event monitoring and data processing accompanied with enabling real-time sys-
tems are essential for managing problems in complex, dynamic systems. Advanced 
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monitoring capabilities should provide the basis for a new level of sensing perfor-
mance that not only observes current problems, but also senses that the problem might 
appear, that is, by focusing on a proactive approach. Indeed, observing a delay is very 
useful information, but anticipating that there will be a delay is even more important 
from the business point of view. The capability to anticipate leads to the possibility to 
decide and act ahead of time, i.e., to be proactive in resolving problems before they 
appear or realizing opportunities before they become evident and be able to recover 
and support continuity. 

Proactive, event-driven decision-making has been recently introduced in the litera-
ture as a conceptual model for deciding ahead of time about the optimal action and the 
optimal time for its implementation [1]. A proactive enterprise decision support archi-
tecture should integrate different sensor data, provide large-scale and real-time 
processing of sensor data and combine historical and domain knowledge with current 
data streams in order to facilitate proactive decision-making. In this paper we focus 
on proactive decision making in the manufacturing domain where the challenges as-
sociated with the provision of decision support based on predictions become signifi-
cant, especially when dealing with maintenance where several factors should be con-
sidered such as costs of maintenance actions as a function of time, safety issues and 
degradation of equipment.  

Despite the plethora of existing works for and prognosis in maintenance, most of 
them do not examine the integration with real-time, data-processing platforms and the 
automation of decisions by providing recommendations for maintenance actions, 
while the supported level of proactivity is typically low [2], [3]. Further, there is no 
support for switching easily between available decision methods or selecting a pre-
ferred method among the available ones since decision methods may address different 
challenges in terms of the availability of data and domain knowledge.  

The integration of various decision methods in a real-time platform that would al-
low users to select appropriate methods based on the available data and the desired 
proactive decision support is the research objective for our work. Technically, the 
challenge is to develop a real-time architecture that would support the development of 
decision support applications enabling the business analyst to select decision methods 
and configure them so that they are operable for the problem at hand. In this paper we 
present such an architecture for decision making that enables the transition from sens-
ing to proactive enterprise.  

The rest of the paper is organized as follows. Section 2 discusses enabling technolo-
gies and works related to real-time architectures for enterprise decision making with an 
emphasis on supporting proactivity. Section 3 outlines the proposed architecture for 
realizing proactive enterprise decision making. Section 4 presents a scenario in which 
proactive decision making in maintenance is enabled with the proposed architecture. 
Section 5 discusses the main findings of our work and our future plans.  

2 Enabling Technologies and Related Work 

In the context of the sensing enterprise, physical and virtual sensing devices such as 
sensors, actuators and controllers can detect state changes of objects or conditions and 
create events, which can then be processed by a system or service. From the point of 
view of communication, the use of a web-service communication paradigm allows 
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sensors to be easily integrated into a complex architecture. To this end, the Service-
Oriented Architecture (SOA) paradigm strongly contributes to the development of 
monitoring and control infrastructures, enabling interconnectivity at an object level. 
Moreover, the Event Driven Architecture (EDA) provides an architectural computing 
paradigm that has the ability to react to changes by processing events [4], [5]. EDA 
can complement SOA because services can be activated by triggers fired on incoming 
events[6], [7]. Building on EDA, proactive event-driven computing is a new paradigm 
where a decision is neither made due to explicit requests nor as a response to events, 
but is triggered by real-time predictions of an event. Therefore, the decisions are taken 
under time constraints and require the exploitation of large amounts of historical and 
streaming data [6-8]. 

In the manufacturing domain, sensors have the capability of measuring a multitude 
of parameters frequently and collecting plenty of data. Analysis of Big Data, both 
historical and real-time, can facilitate predictions on the basis of which proactive 
maintenance decision making can be performed. The e-maintenance concept can sig-
nificantly address these challenges [9-11]. DYNAMITE ‘Dynamic Decisions in 
Maintenance’ research project has examined e-maintenance [12], [13]. It developed 
the TELMA ‘TELeMAintenance platform’ which provides intelligent agents directly 
implemented at the shopfloor level into the PLCs and decision-making services in 
front of the degraded situation process performance, including assessment of the de-
graded process performance, prognostic of the future situation and decision to be 
taken to control the process in its optimal performance state. The WelCOM project 
developed an e-maintenance architecture exploiting the following key relevant tech-
nological factors: web-based maintenance services, wireless sensing and identification 
technologies, data and services integration and interoperability, as well as mobile and 
contextualized computing [14]. Within such a framework, the authors proposed a 
layered e-maintenance architecture, leveraging upon the strengths of smart and wire-
less components in order to upgrade the maintenance-services from the low level of 
operations to the higher levels of planning and decision making. For an overview of 
other e-maintenance platforms, both from academia and industry, please refer to [12], 
[13], [15], [16] and [17]. 

E-maintenance can be leveraged with EDA and proactive event-driven computing 
in order to enable proactive decision making about optimal maintenance actions and 
the optimal time for their implementation. To do this, e-maintenance should be ex-
tended in order to handle real-time, data-driven predictions and coupling them with 
domain knowledge and decision methods.  Several decision methods, ranging from 
operational research to machine learning and statistical ones, have been proposed in 
the literature in support of proactive maintenance decision making. Nevertheless, 
decision methods have not been integrated in e-maintenance platforms yet and are 
rarely validated in an industrial environment. 

3 A Conceptual Architecture for Decision Making  
in the Proactive Manufacturing Enterprise 

In this section we outline the proposed architecture for proactive enterprise decision-
making, its main conceptual blocks as well as the main functionality implemented by 
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each block. The role of the architecture depicted in Figure 1 is two-fold. Configura-
tion role: to allow business analysts create decision method instances addressing an-
ticipated problems and configure them by adding, removing or changing possible 
mitigating actions as well as other domain knowledge required by the underlying 
decision methods. Domain knowledge can include the list of alternative actions, their 
costs, their delays (corresponding to the time period from its implementation until it 
starts taking effect), the time-to-undesired event after their implementation as well as 
the next planned maintenance. Processing role: to support decision-making ahead of 
time on the basis of real-time observations and anticipation of future undesired events, 
by coupling decision methods to a real-time processing environment. The proposed 
architecture consists of a user interaction and a real-time processing layer, along with 
a data layer which houses a relational database engine where all information needed 
by the two other layers is stored and retrieved. 
 

 
Fig. 1. Proactive Decision Making Architecture 

The user interaction layer occupies the top level of the architecture and includes a 
web-based application that supports the configuration of the architecture, by allowing 
business analysts to select the most appropriate decision method for mitigating predicted 
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undesired events, on the basis of functional and non-functional requirements, as well as 
to embed domain knowledge with the aim to define and configure the various parame-
ters of the decision method instances. Examples of decision methods incorporated in the 
aforementioned decision configurator dashboard include Markov Decision Process 
(MDP) [1] and Cost Optimization [18], while more details are provided in [3]. Decision 
method instances are specific instances of decision methods, corresponding to specific 
equipment or other subject of a predicted undesired event. As can be seen in Figure 1, 
another functionality exposed by the decision configurator to the business analyst is 
related to the visualization of feedback received by the recipients of the recommenda-
tion with respect to the implementation of the recommended actions. This feedback 
aims to support business analysts in the process of refining the recommendation genera-
tion process on the basis of such feedback. 

The real-time processing layer fulfills the processing role of the proposed proac-
tive decision making architecture and is based on the Observe, Orient, Decide, Act 
(OODA) model of situational awareness [19]. This model sees decision-making occur-
ring in a recurring cycle of unfolding interaction with the environment, oriented via cues 
inherent in tradition, experience and analysis. These cues inform hypotheses about the 
current and emerging situation that, in turn, drive actions that test hypotheses. The real-
time processing layer deals with the continuous processing of sensor data by applying 
OODA principles and subsequent sending of notifications/recommendations to relevant 
people or systems. The sensor data are collected from sensors and they are injected into 
the real-time processing layer, where they are handled by the OODA information-
processing pipeline as follows:  

 (Observe) The sensing service, deals with data acquisition, transformation (in-
cluding cleaning) and publishing. It is responsible for sensing relevant sources 
and transforming data in a format useful for further analysis. The sensing ser-
vice is followed by the data enrichment service that enables semantic enrich-
ment of real-time streams (events) with background knowledge. 

 (Orient) The orient phase includes services for anticipation management, which 
enable the generation of real-time, data-driven predictions of future undesired 
events through the predictive analytics service. Predictions are triggered on the 
basis of unusual situations discovered on the basis of complex enriched events 
identified by the Complex Event Processing (CEP) service.  

 (Decide) The decide phase includes services enabling anticipation-driven deci-
sion-making, in the sense that the predictions of undesired events generated by 
the services of the Orient phase are taken into account. More specifically, based 
on a “prediction” event, which predicts the probability distribution for the oc-
currence of a future undesired event as a function of time, the context-aware de-
cision management service generates proactive recommendations of actions that 
mitigate or eliminate this event along with the recommended activation time. 
The recommended actions and action activation times are calculated by enact-
ing the decision method instances that are defined and configured through the 
decision configurator. The generated proactive recommendations are further 
propagated within the OODA information-processing pipeline through the pub-
lish recommendation event service, until they reach the relevant enterprise  
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stakeholders. Prediction parameters and contextual elements needed by the  
context-aware decision making service are made available by auxiliary services 
responsible for extracting (i) prediction parameters from received prediction 
events and (ii) contextual parameters that are important for the enterprise deci-
sion problems considered, from enriched sensed data carrying out contextual in-
formation, respectively. 

 (Act) The act phase includes the business improvement analyzer, a component 
which deals with the visualization of anticipation-driven recommendations, the 
monitoring of their success, as well as the definition and monitoring of KPIs 
and corresponding adaptation of the whole OODA cycle, closing the feedback 
loop and leading to the continual proactive business optimization. 

The real-time processing layer of the architecture has been implemented as a Storm1 
topology. Storm is a distributed data processing system whose processing is based on 
elements organised in a topology and called spouts and bolts. Spouts, which are the 
entry points into the real-time processing layer, poll relevant data sources such as sen-
sors and distribute the data further in the topology. Bolts, which are the processing ele-
ments, implement the OODA information-processing services described above. Bolts 
are interconnected with an internal pub/sub mechanism and communicate through mes-
sages called tuples. The Decision Configurator Dashboard of the User Interaction Layer 
has been implemented as a Python web-application developed using the web2py2 
framework. Web2py is an open-source web framework (released under the LGPL ver-
sion 3 license) for agile development of secure database-driven web applications, writ-
ten also in Python. Finally, the Data layer of the architecture includes a Database Ab-
straction Layer (DAL) that generates SQL statements, transparently to the developer, for 
many databases engines such as SQLite, MySQL, PostgreSQL, MSSQL, FireBird, 
Oracle, IBM DB2, Informix and Ingres. 

4 Envisaged Scenario  

In this section we present a practical application of the proposed architecture for 
proactive event-driven decision-making, in the oil and gas industry. We describe the 
practical role and use of the proposed architecture focusing on how it can support 
decision-making ahead of time on the basis of real-time observations and real-time 
data-driven predictions of future undesired events, through an indicative scenario of 
proactive Condition-Based Maintenance (CBM). The practical application is illu-
strated through a decision configurator dashboard that receives prediction events and 
enables the embodiment of domain knowledge given by an expert in order to provide 
recommendations for the proactive enterprise. 

CBM in the oil and gas industry employs various monitoring means to detect dete-
rioration and failure in some critical drilling equipment. Equipment failure situations 
can be forecasted based on observations of events related to this equipment or the 
surrounding environment; e.g monitoring engine temperature indicators, monitoring 
electric indicators (measuring change in the engine’s electric properties) and perform-
                                                           
1 https://storm.apache.org 
2 http://web2py.com/books/default/reference/29/web2py 
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ing oil analysis [20]. In reality, several different patterns will imply various failure 
distributions. In this scenario, we focus on the gearbox drilling equipment and consid-
er as indicators the rotation speed of the drilling machine’s main shaft in Rounds Per 
Minute (RPM), along with the lube oil temperature of the drilling machine’s gearbox 
[21]. 

The OODA model - on which the real-time processing layer of the proposed archi-
tecture is based - deals first with real-time smart sensing of RPM and lube oil tempera-
ture of the drilling machine’s gearbox (Observe). In the Orient phase, a prognostic mod-
el is developed in order to estimate Remaining Useful Life (RUL) and the probability 
distribution of the occurrence of a gearbox breakdown. This prognostic model is trig-
gered by detecting in real-time abnormal friction losses on the basis of observed data. 
The friction losses detection deals with complex patterns of oil temperature and RPM 
events characterized by an abnormal oil temperature rise (10% above normal) measured 
over 30% of the drilling period when drilling RPM exceeds a threshold. This pattern, 
learned at the offline phase, is a strong indication that a gearbox equipment failure starts 
to occur. Decide phase deals with online provision of proactive recommendations of 
maintenance actions (take the equipment down for full maintenance, perform lubrica-
tion of metal parts, shift drilling to lower pressure mode) and suggested activation time 
that maximize the utility for the manufacturing enterprise. Finally, the Act phase defines 
and monitors related KPIs such as downtime and cost. 

The decision configurator dashboard addresses the Decide phase and enables the 
expert to insert domain knowledge that is needed for the provision of recommenda-
tions as it is included in the user interaction layer of the proposed architecture. The 
Decide phase receives a prediction event from the Orient phase and utilizes domain 
knowledge to provide optimal solutions for maintenance. We have selected MDP 
method as the most suitable for the current scenario as it is a method that can provide 
recommendations about the optimal action and the optimal time of applying it and 
therefore, it covers the user requirements [22]. The user is able to create a new deci-
sion making instance for the use of MDP method in order to provide recommenda-
tions based on the gearbox breakdown prediction. Then, the user inserts the list of 
actions (take the equipment down for full maintenance, perform lubrication of metal 
parts, shift drilling to lower pressure mode) accompanied with the cost as a function 
of time for each action, the delay of the action (corresponding to the time period from 
its implementation until it starts taking effect) and the time-to-breakdown after the 
implementation of each action. Moreover, the user specifies the time of next planned 
maintenance.  

The cost of each action can be either fixed (e.g. 1000 euros) or variable as a func-
tion of time (e.g. 800 euros / day due to production loss).The duration of the delay for 
each action increases in proportion to the complexity of the action (e.g. full mainten-
ance requires a longer delay in comparison to lubrication). The time-to-breakdown 
after the implementation of each action is related to the extent of the maintenance 
action. For example, full maintenance transforms the equipment to good-as-new, 
while lower pressure and lubrication are actions for imperfect maintenance [1], [23]. 
Finally, the time of next planned maintenance corresponds to the end of decision 
epoch parameter of MDP. So, a recommendation about a maintenance action should 
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belong to the time period between now and the end of decision epoch in order to be 
valid [1]. This means that, since any defective part of equipment will be identified 
during the planned maintenance, the predicted gearbox breakdown will not be valid 
anymore after that time. 

The business added value of proactive event-driven decision-making in this scenario 
is huge. With a typical day rate for a modern oil rig being around USD 500 000, reduc-
ing undesired downtime, with its associated high cost (one hour of saved downtime is 
typically worth USD 20 000) is of outmost importance in the oil drilling industry. 
Therefore, we expect that the proposed architecture, which supports the provision of 
proactive recommendations about optimal decisions on the basis of utility, cost and 
other factors, will allow enterprises in the oil and gas industry to gain a strong competi-
tive advantage based on reduced downtimes and optimized performance. 

5 Conclusions and Future Work 

We outlined a visionary approach for a new architecture supporting proactive decision 
making in enterprises. The main novelty of our approach lays on the integration of 
state-of-the-art decision methods into an event-driven real time environment which 
can handle big data generated by a multitude of enterprise sensors. Although the con-
cept of proactive decision-making in not completely new, there are still many chal-
lenges associated with its application in large scale, big data-based enterprise envi-
ronments. A major challenge is the treatment of anticipation as a first class citizen: 
supporting the whole life-cycle of the anticipation, from sensing and generating antic-
ipations till validating the reactions based on them, through the Observe-Orient-
Decide-Act loop. 

Our work has several implications for both practitioners and researchers. Practi-
tioners need to design and implement physical (such as smart sensors and actuators, 
location-aware sensors, cyber-physical systems) and virtual sensors (such as agents in 
customer transaction and relationship systems) in virtually every aspect of their enter-
prise that has an impact on the end result. Moreover, practitioners should be ready to 
select and apply decision methods that will leverage business performance through 
the proactive realization of actions in anticipation of predicated enterprise challenges 
and opportunities. There is a need for new business methodologies that will enable 
recognition of possible opportunities for application decision methods in the enter-
prise environment, design of actions for responding to such situations as well as 
benchmarks for comparison real performance measurements and identified KPI’s. 

Researchers will be able to build on top of the proposed real-time platform new al-
gorithms to model the data that overcome the deficiency of traditional analytic me-
thods by fixing the granularity (resolution) of the analytic problem ahead of time. 
Additionally, new methods for semantic enrichment of the data with the background 
knowledge from ontologies describing the data domain and its contextual environ-
ment will improve the capabilities of the platform to react intelligently. Finally, new 
situational awareness methods for inferring users’ situational state and approaches to 
model situational probabilistic influences on user needs as well as new data-driven 
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and knowledge-based recommender algorithms based on streaming data can be re-
searched so that business users are provided with the most relevant support based on 
rich landscape of sensed data. 

Regarding future work, we aim to follow a multi-aspect approach for validating the 
main blocks of the proposed architecture which are currently under development in the 
ProaSense project. We will pursue validation in diverse enterprise settings with different 
technical constraints and user requirements so that the impact is leveraged. Validation 
will be performed on a technical level, covering system-related metrics such as perfor-
mance, and on a business level, covering the benefits for end-users from the leveraged 
business decisions. Specifically for the maintenance perspective, validation will be fo-
cused based on performance in terms of decreased maintenance costs, decreased equip-
ment deterioration and better quality of products that are leaving the assembly line. On 
the other hand, domain experts will validate the results based on factors which are usual-
ly hard to measure such as increase in safety, decrease of environmental impact and the 
accessibility and adaptability of the system in order to support the needs and expectations 
of beneficiaries. Validation of the approach will be performed in the context of the ongo-
ing EU project ProaSense (http://www.proasense.eu/) in two main use cases: proactive 
manufacturing in the area of production of lighting equipment, and proactive maintenance 
within the oil and gas sector. 
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