Adaptation Mechanisms for Role-Based
Software Systems

Martin Weifibach®)

Chair of Computer Networks, Institute for Systems Architecture,
Technische Universitdt Dresden, Dresden, Germany
martin.weissbachl@tu-dresden.de

1 Introduction and Related Work

Software Systems have become incredibly large and complex, hence, difficult
to develop, maintain and evolve. Furthermore, those software systems do not
operate in a stable environment. Certain properties of the environment, e.g.
available bandwidth, through-put or workload of the hosting machine of the
software system, vary over time and might influence the system’s performance
adversely under certain conditions. This issue is addressed by self-adaptive soft-
ware systems, which are systems that can change their own behavior in response
to changes in its operational environment [2].

Moreover, in a distributed application, local changes might require changes of
remote parts of the application as well. Consequently, the adaptation runtime has
to provide mechanisms to ensure that such related operations can be executed
synchronously, i.e. either all operations are executed successfully or changes are
reverted to prevent the application from being in an inconsistent state.

Recently, role-oriented programming has come into focus to allow behavioral
adaptations on the level of programming languages. Roles are used on the design
and implementation level to cover context-dependent behavior of software enti-
ties to increase the expressivity of static and dynamic parts of an application.
In [1,3] approaches were presented to incorporate self-adaptive software systems
and role-oriented programming, but the execution of the planned changes was
not closer investigated.

This thesis further investigates the execution of adaptations of role-bases
software systems, especially of distributed role-based applications.

2 Discussion

The general concept of roles as adaptable entities can be applied at multiple
layers of a software system. Coarse-grained structural adaptations, e.g. exchang-
ing components, would be possible as well as fine-grained modifications of the
component’s behavior, if implemented using roles.

Our research will mainly cover two parts: First and foremost, we are con-
cerned with the behavioral modification of software systems at runtime that
roles allow. We develop a set of adaptation operations that operate on roles
© Springer International Publishing Switzerland 2015

I. Ciuciu et al. (Eds.): OTM 2015 Workshops, LNCS 9416, pp. 3-4, 2015.
DOI: 10.1007/978-3-319-26138-6_1



4 M. Weiflbach

rather than on components or runtime objects directly and will therefore be
applicable to both layers what makes the adaptation more transparent to the
system controlling the adaptation. The controlling system must further deter-
mine a safe point in time in the programs execution to alter the system without
any loss of data. Hence, we will discuss a lifecycle for roles at runtime that sup-
ports the adaptation operations and helps to prevent unwanted behavior during
the adaptation as well as data loss. Roles are usually bound to players, simply
passivating a role when a player’s behavior is supposed to be modified is not suf-
ficient, e.g. when roles are exchanged it must be ensured that state information
are preserved ant the new role is activated after it has been bound to the player.
Second, when the application’s context changes, multiple roles might have to
be exchanged in a coordinated and synchronized manner, e.g. if two roles on
remote nodes collaborate, it might be necessary to exchange both roles if one of
them has to be exchanged due to context changes. Therefore, we are investigat-
ing mechanisms how the controlling system can ensure the safe transition of the
application from an outdated source state to the desired target state. Crucial
at this point is especially the decentralized execution of such operations in a
distributed software system.

As possible evaluation criteria, the performance and reliability of the adap-
tation execution at runtime can be considered, especially in distributed and
concurrent applications where invalid role configurations are supposed to be
prevented during adaptation. Closely coupled to this issue is the interrupt time
that is required to exchange roles at runtime. Naturally, that time frame is sup-
posed to be minimal. Moreover, a formal proof that the algorithms and protocols
that drive the execution of adaptation operations do not run into deadlocks and
behave as specified would be also desirable.

Acknowledgments. This work is funded by the German Research Foundation
(DFG) within the Research Training Group “Role-based Software Infrastructures for
continuous-context-sensitive Systems” (GRK 1907).

References

1. Monpratarnchai, S., Tetsuo, T.: Applying adaptive role-based model to self-adaptive
system constructing problems: a case study. In: 2011 8th IEEE International
Conference and Workshops on Engineering of Autonomic and Autonomous Systems
(EASe), pp. 69-78. IEEE (2011)

2. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D., Johnson, G.,
Medvidovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based
approach to self-adaptive software. IEEE Intelligent Systems 14(3), 54-62 (1999)

3. Tamai, T., Monpratarnchai, S.: A Context-Role Based Modeling Framework for
Engineering Adaptive Software Systems. APSEC 1, 103-110 (2014)



	Adaptation Mechanisms for Role-Based Software Systems
	1 Introduction and Related Work
	2 Discussion
	References


