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Abstract. This paper investigates the energy-aware virtual machine
(VM) scheduling problems in IaaS clouds. Each VM requires multi-
ple resources in fixed time interval and non-preemption. Many previous
researches proposed to use a minimum number of physical machines;
however, this is not necessarily a good solution to minimize total energy
consumption in the VM scheduling with multiple resources, fixed start-
ing time and duration time. We observe that minimizing total energy
consumption of physical machines in the scheduling problems is equiv-
alent to minimizing the sum of total busy time of all active physical
machines that are homogeneous. Based on these observations, we pro-
posed ETRE algorithm to solve the scheduling problems. The ETRE
algorithm’s swapping step swaps an allocating VM with a suitable over-
lapped VM, which is of the same VM type and is allocated on the same
physical machine, to minimize total busy time of all physical machines.
The ETRE uses resource utilization during executing time period of a
physical machine as the evaluation metric, and will then choose a host
that minimizes the metric to allocate a new VM. In addition, this work
studies some heuristics for sorting the list of virtual machines (e.g., sort-
ing by the earliest starting time, or the longest duration time first, etc.)
to allocate VM. Using log-traces in the Feitelson’s Parallel Workloads
Archive, our simulation results show that the ETRE algorithm could
reduce total energy consumption average by 48 % compared to power-
aware best-fit decreasing (PABFD [6]) and 49 % respectively to vector
bin-packing norm-based greedy algorithms (VBP-Norm-L1/L2 [15]).

Keywords: TaaS cloud - Virtual machine scheduling - Energy efhi-
ciency - Cloud computing - Total busy time - Fixed interval

1 Introduction

Cloud computing, which enables Infrastructure-as-a-Service (IaaS), provides
users with computing resources in terms of virtual machines (VMs) to run their
applications [4,5,10,14,18]. Infrastructure of cloud systems are built from vir-
tualized data centers with thousands of high-performance computing servers
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[4,5,18]. Power consumption in these large-scale data centers requires multiple
megawatts [9,14]. Le et al. [14] estimate the energy cost of a single data center is
more than $15M per year. As these data centers scale, they will consume more
energy. Therefore, advanced scheduling techniques for reducing energy consump-
tion of these cloud systems are highly concerned for any cloud providers to reduce
energy cost. Increasing energy cost and the need to environmental sustainability
address energy efficiency is a hot research topic in cloud systems. Energy-aware
scheduling of VMs in TaaS cloud is still challenging [10,14,17,19,20].

Much previous work [5,6,15] showed that the virtual machine allocation is
NP-Hard. There are several studies that have been proposed to address the
problem of energy-efficient scheduling of VMs in cloud data centers. A number
of [5,6,15] current techniques for consolidating virtual machines in cloud data
centers use bin-packing heuristics (such as First-Fit Decreasing [15], and/or Best-
Fit Decreasing [6]). They attempt to minimize the number of running physical
machines and to turn off as many idle physical machines as possible. Consider
a d-dimensional resource allocation where each user requests a set of virtual
machines (VMs). Each VM requires multiple resources (such as CPU, memory,
and I0) and a fixed quantity of each resource at a certain time interval. Under
this scenario, using a minimum of physical machines may not be a good solu-
tion. Our observations show that using a minimum number of physical machines
is not necessarily a good solution to minimize total energy consumption. In a
homogeneous environment where all physical servers are identical, the power
consumption of each physical server is linear to its CPU utilization, i.e., a sched-
ule with longer working time (i.e. total busy time) will consume more energy
than another schedule with shorter working time (i.e. total busy time).

Table 1. Example of given six virtual machines (VMs) with their normalized (*)
resource demands

VM ID | CPU* | RAM* | Network® | Start-time | Duration (hour)
VM1 0.5 0.1 0.2 0 10
VM2 0.5 0.5 0.2 0 2
VM3 0.2 0.4 0.2 0 1
VM4 0.2 0.4 0.2 0 1
VM5 0.1 0.1 0.1 0 1
VM6 0.5 0.5 0.2 1 9

To the best of our knowledge, our work is the first work that studies increas-
ing time and resource efficiency-based approach to allocate VMs onto physical
machines in order that it minimizes the total energy consumption of all physical
machines. Each VM requests resource allocation in a fixed starting time and non-
preemption for the duration time. We present here an example to demonstrate
our ideas to minimize total energy consumption of all physical machines in the
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VM placement with fixed starting time and duration time. For example, given six
virtual machines (VMs) with their normalized resource demands (CPU*, RAM*
and Network* are normalized demand resources to physical server’s maximum
total capacity resources) described in Table 1. In the example, a bin-packing-
based algorithm could result in a schedule S; in which two physical machines
are used: one for allocating VM1, VM3, VM4, and VM5; and another one for
allocating VM2 and VM6. The schedule S; has total busy time of the six VMs
is (104 9) = 19 hours. However, in another schedule Sy in which VMs are placed
on three physical machines, VM1 and VM6 on the first physical machine, VM3,
VM4 and VM5 on the second physical machine, and VM2 on the third physi-
cal machine, then the schedule Sy has total busy time of the six VMs is only
(10 4+ 1+ 2) = 13 hours.

In this paper, we propose a heuristic, namely, ETRE. ETRE heuristic
places VMs that request multiple resources in the fixed interval time and non-
preemption into physical machines to minimize total energy consumption of
physical machines while meeting all resource requirements. Using numerical sim-
ulations, we compare the ETRE with the popular modified best-fit decreasing
(PABFD) [6], two vector bin-packing norm-based greedy (VBP-Norm-L1/12)
[15], and our previous algorithms (e.g. EPOBF-ST/FT [17], and MinDFT-
ST/FT [16]). Using real log-trace (i.e., [1]) in the Feitelson’s Parallel Workloads
Archive, our simulation results show that the ETRE heuristic with its config-
urations could reduce total energy consumption average by 48 % compared to
power-aware best-fit decreasing (PABFD) [6]) and 49 % respectively to vector
bin-packing norm-based greedy algorithms (VBP-Norm-L1/L2 [15]). Addition-
ally, ETRE-ST/LFT/LDTF have also less total energy consumption than our
previous heuristics (e.g. MinDFT-ST/FT and EPOBF-ST/FT) in the simula-
tions.

The remainder of the paper is organized as follows. Section 2 describes the
energy-aware VM allocation problem with multiple requested resources, fixed
starting and duration time. We also formulate the objective of scheduling. The
proposed ETRE algorithm is presented in Sect. 3. In Sect. 4 we discuss our per-
formance evaluation using simulations. In Sect. 5 we review the related work. In
Sect. 6 we conclude this paper and introduce future work.

2 Problem Description

2.1 Notations

We use the following notations in this paper:
vm;: The it" virtual machine to be scheduled.
M;: The j*" physical server.
S: A feasible schedule.
Pjde: Tdle power consumption of the Mj.
P Maximum power consumption of the M;.
P;(t): Power consumption of the (M;) at a time point ¢.
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ts;: Fixed starting time of vm,.

dur;: Duration time of vm,.

T: Maximum schedule length, which is the time that the last virtual machine
will be finished.

n;(t): Set of indexes of all virtual machines that are assigned to the M; at
time ¢.

T;: Total busy time (working time) of the M;.

e;: Energy consumption for running the vm; in the physical machine that
the vm; is allocated.

2.2 Power Consumption Model

In this paper, we use the following energy consumption model proposed in [9]
for a physical machine. The power consumption of the M;, denoted as P;(.), is
formulated as follow:

Pj(t) = Py + (P — Pi)U;(1) (1)

The CPU utilization of the physical server at time ¢, denoted as Uj;(t), is
defined as the average percentage of total of allocated computing powers of n;(t)
VMs that is allocated to the M;. We assume that all cores in CPU are homo-
geneous, i.e. Ve =1,2,...,PE; : MIPS; . = MIPS;; , The CPU utilization is
formulated as follow:

PE;
1 < ,
Ui = (pparips,,) 2 2 M @)

c=1ien;(t)

The energy consumption of the server in a period of [t1,ts] is formulated as
follow:
t2
5= [ Bwma Q
1
where:
U,(t): CPU utilization of the M; at time ¢ and 0 < U;(¢) < 1.
PE;: Number of processing elements (i.e. cores) of the M;.
mips; .: Allocated MIPS of the ¢t processing element to the vm; by the M;.
MIPS,; .: Maximum capacity computing power (Unit: MIPS) of the ¢t process-
ing element on the Mj.

2.3 Problem Formulation

Given a set of virtual machines vm; (i = 1,2,...,n) to be scheduled on a
set of physical servers M; (j = 1,2,...,m). Each VM is represented as a
d-dimensional vector of demand resources, i.e. vm; = (%;1, %2, -.,%iq). Sim-

ilarly, each physical machine is denoted as a d-dimensional vector of capacity
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resources, i.e. M; = (y;1,Y;2,---,Yjd).- We consider types of resources such as
processing element (core), computing power (Million instruction per seconds-
MIPS), physical memory (RAM), network bandwidth (BW), and storage. Each
vm,; is started at a fixed starting time (ts;) and is non-preemptive during its
duration time (dur;).

We assume that the power consumption model is linear to CPU utiliza-
tion. Even if all physical servers are identical and all VMs are identical too, the
scheduling is still NP-hard with d > 1 [15]. With the problem considered in this
paper, all physical servers are identical and their power consumption models are
linear to their CPU utilization as can be seen in the two Egs. (1) and (3). The
energy consumption of a physical server in a time unit is denoted as Ejy and is
the same for all physical servers since the servers are identical. The objective is
to find out a feasible schedule S that minimizes the total energy consumption
in the Eq. (4) with ¢ € {1,2,...,n}, 7 € {1,2,...,m}, t € [0;T] as following:

Minimize (Ey X Z T; + Z €i) (4)
j=1 i=1
Minimize (Ej x Z T; + Z e;) ~ Minimize (Z Tj) (5)
j=1 i=1 Jj=1

where the total busy time (working time) of a physical server, denoted as T,
is defined as union of interval times of all VMs that are allocated to a physical
machine M; at time T'.

The scheduling problem has the following hard constraints that are described
in our previous work [16].

3 Heuristic Based Scheduling Algorithm

In this section, we present our energy-aware scheduling algorithm, namely,
ETRE (Energy-aware using increasing Time and Resource Efficiency metric).
ETRE presents a performance metric to unify the increasing time and esti-
mated resource efficiency when mapping a new VM onto a physical machine.
Then, ETRE will choose a host that has the minimum of the metric. Our
previous MinDFT-ST/FT [16] only focused on minimizing the increasing time
when mapping a new VM onto a physical machine. The ETRE additionally
considers resource efficiency during an execution period of a physical machine
in order to fully utilize resources in a physical machine. Furthermore, the
core ETRE algorithm can swap an overlapped VM, which has already been
assigned to an active physical machine before, with a new VM to minimize total
busy time of the physical machine. In this paper, two VMs are overlapped if
tsy < tsy < (tsy + dury) < (tsa + durs), where tsy, tsa, dury, dure are starting
times and duration times of two VMs. The core ETRE algorithm will swap a new
VM and its overlapped VM together if two VMs meet these conditions: (i) both
VMs are of the same VM type (i.e. the same amount of requested resources such
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as number of CPU core, physical memory, network bandwidth, storage, etc.);
(i) the new VM has duration time longer than its overlapped VM. Neither our
previous MinDFT-ST/FT [16] and the EPOBF-ST/FT [17] have these swapping
steps.

Based on Eq. 2, the utilization of a resource r (resource r can be CPU, phys-
ical memory, network bandwidth, storage, etc.) of a PM j-th, denoted as U,
is formulated as follow: v

Uir = 7~ (6)

sEN; I

where n; is the list of VMs that are assigned to the physical machine j, V; , is
the amount of the requested resource r of the virtual machine s (note that in our
study the value of V; , is fixed for each user request), and H,, is the maximum
capacity of the resource r in the physical machine j.

Inspired by the work from Microsoft research team [8,15], resource efficiency
of a physical machine j-th, denoted by RE};, is Norm-based distant [15] of two
vectors: normalized resource utilization vector and unit vector 1, the resource
efficiency is formulated as follow:

RE; =Y ((1=Uj,) x w,)? (7)
re€R

where R={cpu, ram, netbw, io, storage}: set of resource types in a host, w, is
the weight of resource r in a physical machine.

In this paper, we propose a unified metric for increasing time and resource
efficiency that is calculated as:

TRE = (t" X wy—pime)® + Y (1= Uj) x wy)? (8)
reR

where: t%7f is the increasing time (Unit: hours) of total busy time of all physical
machines before and after allocating a new VM to this host; and wy—¢ime is
weight of time in the TRE metric.

ETRE chooses a physical host that has a minimum value of the TRE metric
to allocate a VM. The ETRE can sort the list of VMs by earliest starting time
first, or earliest finishing time first, or longest duration time first, etc. The ETRE
solves the scheduling problem in the time complexity of O(n x m x q) where n is
the number of VMs to be scheduled, m is the number of physical machines, and
g is the maximum number of allocated VMs in the physical machines M;,Vj =
1,2,...,m.

4 Performance Evaluation

4.1 Algorithms

In this section, we study the following VM allocation algorithms:
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— PABFD, a power-aware and modified best-fit decreasing heuristic [5,6]. The
PABFD sorts the list of VM, (i=1, 2, ..., n) by their total requested CPU
utilization and assigns new VM to any host that has a minimum increase in
power consumption.

— VBP-Norm-LX, a family of vector packing heuristics that is presented as
Norm-based Greedy with degree X =1, 2 [15]. Weights of these Norm-based
Greedy heuristics use FFDAvgSum which are exp(x), which is the value of
the exponential function at the point x, where x is the average sum of demand
resources (e.g. CPU, memory, storage, network bandwidth, etc.). VBP-Norm-
LX assigns a new VM to any host that has minimum of these norm values.

— EPOBF-ST and EPOBF-FT, which is presented in [17], sort the list of V M;
(i=1,2, ..., n) by their starting time (¢s;) and respectively by their finished
time (ts; + dur;). Both EPOBF-ST and EPOBF-FT choose a host that has
the maximum performance-per-watt to assign a new VM. The performance-
per-watt is the ratio of the total maximum capacity MIPS and the maximum
host’s power consumption.

— MinDFT-ST and MinDFT-FT, which is presented in [16], sort the list of
VM; (i=1, 2, ..., n) by their starting time (¢s;) and respectively by their
finished time (ts; + dur;). Both MinDFT-ST and MinDFT-FT allocate each
VM (in a given set of VMs) to a host that has a minimum increase in the
total completion time of hosts.

— ETRE, our proposed algorithm discussed in Sect.3. We evaluate the ETRE
with some of its configurations: The ETRE-ST sorts the list of virtual
machines by VM’s earliest starting time first and host’s allocated VMs by
its finishing times. The finishing time of a virtual machine, which is sum of its
starting time and its duration time, is calculated by (ts; + dur;). The ETRE-
LDTF sorts the list of virtual machines by VM’s longest duration time first
and host’s allocated VMs by its finishing time. The ETRE-LFT sorts the list
of virtual machines by VM’s latest finishing time first and host’s allocated
VMs by its finishing time.

4.2 Simulated Simulations

We evaluate these algorithms by simulations using the CloudSim [7] to create
a simulated cloud data center system that has identical physical machines, het-
erogeneous VMs, and with thousands of CloudSim’s cloudlets [7] (we assume
that each HPC job’s task is modeled as a cloudlet that is run on a single VM).
The information of VMs (and also cloudlets) in these simulated workloads is
extracted from a real log-trace ( HPC2N Seth log-trace [1]) in Feitelson’s Paral-
lel Workloads Archive (PWA) [2] to model HPC jobs. When converted from the
log-trace, each cloudlet’s length is a product of the system’s processing time and
CPU rating (we set the CPU rating which is equal to included VM’s MIPS). We
convert job’s submission time, job’s start time (if the start time is missing, then
the start time is equal to the sum of job’s submission time and job’s waiting
time), job’s request run-time, and job’s number of processors in job data from
the log-trace in the PWA to VM’s submission time, starting time and duration
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Table 2. Eight (08) VM types in simulations

VM Type | MIPS | Cores | Memory | Net. Bw | Storage
(MBytes) | (Mbits/s) | (GBytes)
Type 1 2500 |8 6800 100 1000
Type 2 2500 |2 1700 100 422.5
Type 3 3250 |8 68400 100 1000
Type 4 3250 |4 34200 100 845
Type 5 3250 |2 17100 100 422.5
Type 6 2000 |4 15000 100 1690
Type 7 2000 |2 7500 100 845
Type 8 1000 |1 1875 100 211.25

time, and the number of VMs (each VM is created in a round-robin manner with
the 8 types of VMs, which can be seen in Table 2 on the number of VMs). Eight
types of VMs as presented in the Table2 are similar to categories in Amazon
EC2’s VM instances: high-CPU VM, high-memory VM, etc. Fig. 1 shows the
chart of starting times and finishing times of the VMs in a simulation (the sim-
ulations have the same starting times and duration times of VMs). All physical
machines are identical machines. Each physical machine has system information
and its power consumption as in Table 3. In the simulations, we use weights as
following: (i) the weight of increasing time of mapping a VM to a host: {0.001,
0.01, 1, 100, 3600}; (ii) weights of computing resources such as the number of
MIPS per CPU core, physical memory (RAM), network bandwidth, and storage
are 940, 24414, 1, 0.0001 respectively. We simulate on the combination of these
weights. The total energy consumption of ETRE-ST, ETRE-LFT and ETRE-
LDTF are the average of five times simulation with various weights of increasing
time (e.g. 0.001, 0.01, 1, 100, or 3600) (Fig.2).

Table 3. System information of a typical physical machine and its maximum and idle
power consumption (P™% and P'¥®) (ratio of P'¢ and P™" is 0.7).

Host Type | MIPS | Cores | Memory (MB) | Network (Mb/s) | Storage (GB) | pmaez | pidle
M1 3250 |16 140084 10000 10000 600 420

We choose PABFD [6] as the baseline algorithm because the PABFD is a
famous power-aware best-fit decreasing in the energy-aware scheduling research
community. We also compare our proposed VM allocation algorithms with two
vector bin-packing algorithms (VBP-Norm-L1/L2) to show the importance of
with/without considering VM’s starting time and finish time in reducing the
total energy consumption of VM placement problem.
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Table 4. Result of simulations using the first 400 jobs of the HPC2N Seth log-trace [1].
The normalized energy (Nor. Energy) column is the normalized energy. The energy sav-
ing is percentage of energy consumption of an algorithm which reduces in comparison
with the energy consumption of PABFD.

T

ime (sec.)

Algorithm #Hosts | #VMs | Energy (KWh) | Nor. Energy | Saving (%) ‘
PABFD 5000 7495 7071.50 1.00 0%
VBP-Norm-L1 | 5000 7495 7114.74 1.01 —1%
VBP-Norm-L2 | 5000 7495 7114.74 1.01 -1%
EPOBF-ST 5000 7495 | 4454.77 0.63 37%
EPOBF-FT 5000 7495 | 4409.15 0.62 38 %
MinDFT-ST | 5000 7495 | 4534.36 0.64 36 %
MinDFT-FT | 5000 7495 | 4409.15 0.62 38%
ETRE-ST 5000 7495 | 4070.07 0.58 42%
ETRE-LFT 5000 7495 | 3418.07 0.48 52 %
ETRE-LDTF | 5000 7495 | 3451.53 0.49 51 %
e Starttime = ----- Finish time
2000000
1800000
1600000
1400000
1200000
1000000
800000
600000
400000 &
200000
1 1001 2001 3001 4001 5001 6001 7001

Fig. 1. Starting time (blue line) and finishing time (dotted red line) of VMs in simu-
lations with HPC2N Seth log-trace [1] (Color figure online).

4.3 Results and Discussions

Table4 shows simulation results of scheduling algorithms solving scheduling
problems with 7,495 VMs and 5,000 physical machines (hosts), in which VM’s
data is converted from the first 400 jobs in the HPC2N Seth log-trace [1]. None of
the algorithms use VM migration techniques, and all of them satisfy the Quality
of Service (i.e. allocates all resources that user VM requested on-time). We use
total energy consumption as the performance metrics for evaluating these VM
allocation algorithms. The energy saving shown in both Table4 is the reduction
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Fig. 2. Normalized energy. Result of simulations with HPC2N Seth log-trace.

of total energy consumption of the corresponding algorithm compared to the
baseline PABFD [6] algorithm.

Table 4 shows that our ETRE-ST/LFT/LDTF compared to PABFD [6], can
reduce the total energy consumption on the average by 48 %, and 49 % respec-
tively compared to norm-based vector bin-packing algorithms (VBP-Norm-
L1/L2) in simulations with the first 400 jobs of the HPC2N Seth log-trace.

The PABFD generates a schedule that uses higher energy consumption than
the ETRE-ST/LFT/LDTF because of the following main reasons. First, our
hypothesis in this paper is that each VM consumes the same amount of energy
in any physical server (e;) and all physical servers are identical. As a consequence,
the PABFD will choose a random physical server to map a new VM. The PABFD
sorts the list of VMs by decreasing the requested computing power (e.g. MIPS),
therefore the PABFD allocates VMs that firstly have the most requested com-
puting power. In Table 2, all type-3 VMs have the highest requested computing
power in the list, the next is a type-1 VM, etc. Instead, our proposed ETRE-
ST/LFT/LDTF algorithms assign a new VM to a physical server in such a way
that has minimum increase of total busy time of all physical machines and use
fully all resources in physical machines.

These ETRE-ST, ETRE-LFT and ETRE-LDTF algorithms perform bet-
ter than our previous algorithms such as MinDFT-ST/FT and EPOBF-ST/FT
in the simulations. Compared to EPOBF-ST and EPOBF-FT, the ETRE-ST,
ETRE-LFT and ETRE-LDTF have less total energy consumption on the average
by 18 % and 17 % respectively. The ETRE-ST, ETRE-LFT and ETRE-LDTF
have also less total energy consumption than the MinDFT-ST and MinDFT-
FT on the average by 20 % and 17 %, respectively. In the simulations, swapping
between a new VM and its overlapped VM that is allocated to a host reduce
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total busy time on the host. For input as in Table 1, the VM2 is removed from
the first host, the VM6 will be allocated to the first host.

5 Related Work

Many previous researches [5,6,8,12,19] proposed algorithms that consolidate
VMs onto a small set of physical machines (PMs) in virtualized datacenters to
minimize energy/power consumption of PMs. Much work has considered the
VM placement problem as a bin-packing problem, and have used bin-packing
heuristics to place VMs onto a minimum number of PMs to minimize the energy
consumption [5,6]. Beloglazov et al. [5,6] have proposed VM allocation problem
as bin-packing problem and presented a power-aware best-fit decreasing (denoted
as PABFD) heuristic. PABFD sorts all VMs in a decreasing order of CPU uti-
lization and tends to allocate a VM to an active physical server that would take
the minimum increase of power consumption. A group in Microsoft Research [15]
has studied first-fit decreasing (FFD) based heuristics for vector bin-packing to
minimize number of physical servers in the VM allocation problem. Some other
work also proposed meta-heuristic algorithms to minimize the number of physi-
cal machines. A hill-climbing based allocation of each independent VM is studied
in [11]. In the VM allocation problem, however, minimizing the number of used
physical machines is not equal to minimizing the total energy consumption of
all physical machines.

Takouna et al. [19] presented power-aware multicore scheduling and their VM
allocation algorithm selects a host which has the minimum increasing power
consumption to assign a new VM. The VM allocation algorithm, however, is
similar to the PABFDs [6] except that it concerns memory usage in a period of
estimated runtime for estimating the host’s energy. The work also presented a
method to select optimal operating frequency for a (DVFS-enabled) host and
configure the number of virtual cores for VMs. Our proposed ETRE algorithm
that is different from these previous work. Our ETRE algorithm uses the VM’s
fixed starting time and duration time to minimize the total working time on
physical servers, and consequently minimize the total energy consumption in all
physical servers.

In 2007, Kovalyov et al. [13] presented a work to describe characteristics of a
fixed interval scheduling problem in which each job has fixed starting time, fixed
processing time, and is only processed in the fixed duration time on a available
machine. The scheduling problem can be applied in other domains. Angelelli
et al. [3] considered interval scheduling with a resource constraint in parallel
identical machines. The authors proved the decision problem is NP-complete if
the number of constraint resources in each parallel machine is a fixed number
greater than two.

6 Conclusions and Future Work

In this paper, we formulated an energy-aware VM allocation problem with fixed
starting time and non-preemption. We also discussed our two key observations
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in the VM allocation problem. First, minimizing total energy consumption is
equivalent to minimizing the sum of total busy time of all physical machines
(PMs). For some possible schedules, which have same ETRE-ST/LFT/LDTF of
all PMs, the TRE metric decides a schedule that has higher resource efficiency.
Second, swapping between an unallocated VM and its overlapped VM, which
has already been allocated to a PM, can reduce the ETRE-ST/LFT/LDTF of
all PMs. Based on these observations, we proposed ETRE algorithm to solve the
energy-aware VM allocation with fixed starting time and duration time.

Our proposed ETRE can reduce the total energy consumption of the physical
servers compared with that of other algorithms in simulation results on the
HPC2N Seth [1] in the Feitelson’s PWA [2]. The combination of ETRE with its
sorting list of virtual machines by latest finishing time first(ETRE-LFT) has the
least total energy consumption in these simulations.

In future, we are developing ETRE into a cloud resource management soft-
ware (e.g. OpenStack Nova Scheduler). We are also working on IaaS cloud sys-
tems with heterogeneous physical servers and job requests consisting of multiple
VMs. Moreover, we will study how to choose the right weights of time and
resources (e.g. computing power, physical memory, network bandwidth, etc.) in
another paper.
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